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Abstract

The aim of this thesis will be to study the Clifford algebras that appear in the derivation of the Dirac
equation and investigate alternative formulations of the Dirac equation using (complex) quaternions. To
this end, we will first look at the symmetries of the Dirac equation and some of the additional insights
that follow from the Dirac equation. We will also give a derivation of the Dirac equation starting from
the Schrodinger equation, in which we will come across the gamma matrices. These gamma matrices are
a representation of a Clifford algebra. We then give a mathematical description of Clifford algebras and
explore some of the properties of Clifford algebras. We eventually classify the universal Clifford algebras
over regular quadratic spaces for all possible dimensions and find that the Clifford algebra mostly used
as the algebra of space-time is actually isomorphic to a matrix algebra with entries from the quaternions.
In the last part, we therefore look at different (complex) quaternionic formulations of the Dirac equation
and some of the operators and operations in these formalisms. We end with the conclusion that even
though some of these (complex) quaternionic formulations are very elegant, it is highly unlikely that it
will yield any new physical results and that there is no real reason to prefer a (complex) quaternionic
formulation of the Dirac equation over the standard complex formulation.
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1 INTRODUCTION 1

1 Introduction

In his paper “The Quantum Theory of the Electron. Part I”, published on the first of February 1928 [10],
Paul Dirac formulated a first-order relativistic wave equation This equation is now called the Dirac equation.
The Dirac equation was the first attempt to unify the theory of relativity and quantum mechanics. The
equation turned out to have a great deal more hidden inside of it than Dirac expected. Examples of the
additional insights that followed from the Dirac equation are an explanation of spin and the prediction of
the existence of antimatter. These additional insights caused the Dirac equation to become one of the most
important equations in physics. When writing the Dirac equation in its covariant notation

("0, —m)Yy =0 (1.1)

one stumbles upon the gamma matrices, or as they are also called: the Dirac matrices. These gamma matrices
are a set of 4 x 4-matrices with entries from the set of complex numbers that satisfy specific anticommutation
relations. The anticommutation relations between these gamma matrices are the defining relations of a
4-dimensional Clifford algebra with metric signature (+ — ——). Clifford algebras are associative algebras
generated by a vector space with a quadratic form. The concept of Clifford algebra already existed for
quite some time before Dirac derived his equation. It was discovered in 1878 by the mathematician William
Kingdon Clifford (1845-1879), who only had two sources for his paper: Grassmann’s algebra and Hamilton’s
quaternions. In this thesis we will not pay a lot of attention to Grasmann’s algebra, but the quaternions will
definitely play an important role.

The Irish mathematician William Rowan Hamilton is of course most known for his formulation of classical
mechanics known as Hamiltonian mechanics. By the time he formulated Hamiltonian mechanics he had
realized that multiplication by a complex number of absolute value one is equivalent to a rotation in the
complex 2-plane C. He wanted to extend this concept for the geometry of 3-space, but the attempts that
he made to find a three-dimensional generalization of the complex numbers were unsuccesful. That is why
he turned to the idea of generalizing C for four dimensions and thus, in 1843, came up with the idea of
quaternions. E| The quaternions can be applied to describe rotations in three-dimensional space, but in this
thesis we will come across the quaternions when classifying Clifford algebras. [33]

The fact that we stumble across quaternions when classifying Clifford algebras gave us the idea of looking into
the possibility of finding a formulation of the Dirac equation using quaternions. However, using quaternions
with real coefficients is very limiting to our study of formulating the Dirac equation in a different way. That
is why we will also look at the formulation of the Dirac equation using complex quaternions. The application
of (complex) quaternions in physics has been an interesting topic for physicists for a very long time. As early
as 1912, Arthur Conway [6] was interested in the application of (complex) quaternions to the special theory
of relativity. In fact, even Dirac [§] looked into the applications of quaternions in physics and even found a
relation between Lorentz transformations and quaternions.

The aim of this thesis will be to study Clifford algebras and their properties to then use this knowledge to
get a better understanding of the Dirac equation and investigate the elegance of, and the physical results
that follow from, a (complex) quaternionic formulation of the Dirac equation. To this end, we will first take
a look at the derivation of the Dirac equation along with its symmetries and some of the additional insights
that sprung from the equation. These additional insights include an explanation of spin and the prediction
of antimatter. After seeing how we naturally stumbled upon Clifford algebras in the derivation of the Dirac
equation, we will give a mathematical definition of Clifford algebras and explore its properties in the third
chapter. In the third chapter we will also apply our new knowledge to get a better understanding of the Dirac
equation. The main result of the third chapter will be the classification of the universal Clifford algebras over
regular quadratic spaces for all possible dimensions. In chapter 4| we will investigate the possibility of writing
the Dirac equation using real quaternions and complex quaternions after coming across them when classifying
Clifford algebras. We will end with a conclusion in which we will discuss the outcomes of formulating the
Dirac equation using (complex) quaternions.

1Sir William Rowan Hamilton eventually published his ideas in 1853 in “Lectures on quaternions” |14].
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2 The Dirac Equation

In the early 20th century an effort was made to combine the findings on quantum mechanics with the theory
of relativity that Einstein had just published. The general problem of forming a relativistic wave equation
for a free particle appeared to be particularly interesting. As a starting point for such a relativistic wave
equation the Schrédinger equation seemed to be the most logical choice as everything that has to do with
time development follows from this fundamental equation. For this chapter we will follow chapter 8 of the
book "Modern Quantum Mechanics” [26]. The Schrédinger equation states that a state |¢(¢)) evolves in time
according to the following equation.

Definition 2.0.1 (The Schrodinger equation).

0
ih [V(0) = H [6(0)

To incorporate special relativity into this equation we insert the expression for the Hamiltonian of a free
particle
H =+/c?p? + m2c* (2.1)

Substituting this expression into the Schrédinger equation gives us

zhﬁ = /c2p? + m2c* [Y(t) (2.2)

The problem with this equation, however, is that it does not put time and space on ”equal footing”. To see
this we need to take the taylor expansion of the Hamiltonian.

2
=+/2p? + m2ct :mczwl—!- 7192 5
m2c

2 p p
me (1 + o2 Smick + )

By making the substitution p?> — —h?V? we see that in Equation this would result in an infinite series of
increasing spatial derivatives, but only one time derivative. Space and time are thus treated asymmetrically.
To get an equation that is of the same order in both space and time we take a look at the square of the
Hamiltonian. We start with the Schrédinger equation, multiply it on both sides with % and take the time
derivative.

(2.3)

i 0
2 ) =L 2 i) = 51 ) (2.4)

If we now plug in the square of the Hamiltonian (H? = ¢2p? + m2ct) we get

cp? m2ct

-2 e = ( o+ T ) o) 25)

If we now use that W(x,t) = (x|1(t)) and (x|p?|¢y(t)) = —h?V2U(x,t), we get the Klein-Gordon equation.
Definition 2.0.2 (Klein-Gordon equation).

1 62 2 me\ 2

The Klein-Gordon equation looks a lot like a classical wave equation except for the (7)2 term. This term
actually introduces a length scale fi/mc called the Compton wavelength. A very desirable property of the
Klein-Gordon equation is that it is Lorentz covariant. To show that this equation has this property we
introduce the relativistic covariant notation. In this notation the Greek indices run 0,1,2,3 and the Latin
indices run 1,2,3. If an index is ever repeated in an expression then summation over that index is implied.
We define a contravariant vector as a* = (ao a) and a covariant vector as a, = 71,,a” where 7,, is the

minkowski tensor (199 = +1, 11 = 122 = 733 = —1 and all the other elements are zero). This means that
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a, = (a’, —a). The inner product of two four vector we define as atb,, = a’® —a-b. The inner product
is thus always with a contravariant and a covariant vector. A property of the inner product of four vectors
is that they are Lorentz invariant. This means that a*b, will be the same in every reference frame. For a

space-time position four-vector z* = (ct,x) we have that the four-gradient is given by

9, = 2 —(18 v) (2.6)

Azt \cot’

which we call a covariant vector operator.

Intermezzo: Relativistic covariance
Given any dynamical equation of the form
Lo =0 (2.7)

where L is a linear operator. We say that this equation is covariant under a given transformation if
L'¢ =0 (2.8)

where ¢’ represents the transformed wavefunction and L’ the transformed operator. To see if an equation
is relativistically covariant, we have to check that every quantity has the correct transformation properties
under a Lorentz transformation. A Lorentz transformation of spacetime coordinates can be written in the
form

't = A", a (2.9)

n . . .
where A#, = gg‘f—,y. Note that scalars are invariant under Lorentz transformations. An example of a Lorentz

transformation is a Lorentz boost. A Lorentz boost is a Lorentz transformation that does not involve rotation.
A Lorentz boost in the x-direction where the relative velocity between the two frames is v, looks as follows:

a —fBa 0 0
—Ba o 0 0

O I (2.10)
0 0 0 1

where 8= ¢ and a = \/172 For more information on Lorentz transformations, see section 3.1 of |7]. For
-

general Lorentz transformations, we have that x’“a:L =A* A, %22y = 2¥x, so that
A AL = AT AR, = 62 (2.11)

From this it follows that AT = A® - With the Minkowski metric n*” (see Equation , we can write
Equation 2.11] in the following way

ApaA*y = NP Mgy = New (2.12)

where 15, = 7. The above equation is frequently used as the definition of a Lorentz transformation. Let
us take a look at the four-gradient under a Lorentz transformation.

g _ O _ 02 0 )

— —_ — -1\« _ (e}
W9 9alk Dpe (A7) Fogpa Ay 0a (2.13)
What we see is that the four-gradient behaves like a four-vector under a Lorentz transformation so that we

have that 0'*0;, = 90"0,,. [5]

Let us now write the Klein-Gordon equation in this relativistic covariant notation

mc

{5@8/‘ + (hﬂ U(z,t) =0 (2.14)
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Since 5"“(% = 0”0, and (%)2 is just a scalar, we see that this equation is Lorentz covariant. Another
desirable property of the Klein-Gordon equation is that it gives us the solutions that we expect for a free
particle with mass m. The solution that we expect is namely

U(x,t) = Ae” #(FPx) — go=ip" e (2.15)

with p* = (E, p) the four-momentum. If we plug this solution into Equation we get

1 me\ 2 1 E?
et () = (‘cz P m) B (210

Which gives us the following dispersion relation:
E = +/p?c2 + m?c* = +E, (2.17)

The positive eigenvalue for the energy we expect, but the negative energy eigenvalue that we get seems
to be physically impossible. These negative energy solutions appear because the Klein-Gordon equation is
second-order in time derivatives, contrary to the Schrédinger equation. At first these negative eigenvalues
were a big problem in the development of relativistic quantum mechanics. However, nowadays we have an
explanation for these negative eigenvalues. We will discuss this explanation in section

The Klein-Gordon equation was eventually left behind due to several reasons. One of them was that when
we go as far as to solve the Klein-Gordon equation for an atomic system, the results do not compare well
with experiments if that atomic system has so-called spin. Another problem with the Klein-Gordon equation
is that the expression for the probability density following from the Klein-Gordon equation is not positive
definite. We will discuss this problem with the probability density in section These two problems were
the main reasons for the Klein-Gordon equation to be left behind and meant that a new approach was
necessary. In comes Dirac who made a leap of faith to create a wave equation linear in space. The idea with
which Dirac started was to take the square root of ¢>p? + m2c*.

?p? + m?ct = (caupy + caypy + cap, + Bmc®)? = (ca-p + fmc?)? (2.18)

To get all the cross terms on the right side to vanish we find that

a0+ ajoy = {ay, 01 =0 (2.19a)
a;f + Ba; = {a;, B} =0 (2.19b)

and
af =p*=1 (2.20)

We also require the a; for i = 1,2,3 and § to be Hermitian since the Hamiltonian must be Hermitian

of = (@) =aand ' = ()T =5 (2.21)

where * indicates taking the complex conjugate and 7 taking the transpose. From these relations we find
that « and § are not numbers, but matrices. We see that these matrices must be traceless (because of the
first two properties) and have eigenvalues 1 (as property three implies that the matrices are involutory).
The fact that these matrices are Hermitian also implies that they have to be square. We also know that they
have to be at least 4 x 4 matrices. This is because 2 x 2 matrices are not big enough. We can see this by

taking a look at the Pauli matrices

o1 = (? é) o0 = (S 0i> 03 = ((1) _01) (2.22)

These Pauli matrices have the following relations

{oi, 05} =26y (2.23a)
[O'i,O'j] = 2i5ijk0'k (223b)
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The set of these three Pauli matrices together with the identity matrix form a complete set. However, we
find that {0y, I} = 204 and thus that this set is not large enough to satisfy the properties of Equation m
and This implies that the wave function will have four components, a lot more than the one component
that it has in the Schrédinger equation. The matrices o and 3 are not unique. We see that o« — STaS and
B — STBS also satisfy Equation @l and if S is unitary (STS = I). For a and 3 the following matrices

are chosen
O g; _ I 0

We have written the 4 X 4 matrices as 2 x 2 matrices of 2 x 2 matrices. With these expressions we arrive at
the Dirac equation.

Definition 2.0.3 (Dirac equation).

L O(t
U0 — (car- p 4+ pme?) (1)
where we call the term co - p + fmc? the Dirac Hamiltonian.

We would like to write the Dirac equation in covariant notation. To do so, we introduce the gamma matrices,
also known as the Dirac matrices.

Definition 2.0.4 (Gamma matrices). _
Y =87 =7
With a little algebra, the Dirac equation can then be written in the following form

(thy" 0y — me)¥(x,t) =0 (2.25)

The gamma matrices in this equation have the following properties

(Y2 =1 (2.26a)
(v9)? = -1 i=1,2,3 (2.26b)
and Ay = —V Ayt (2.26¢)
Or shortly written as
{7 =21 (2.27)
With n#*¥ the Minkowski metric.
+1 0 0 O
0 -1 0 O
py _
=10 0 -1 o0 (2.28)

0 0 0 -1

The proof that the Dirac equation is in fact Lorentz covariant is actually quite lengthy. We have therefore
chosen to leave it out of this thesis, but if one is interested in the proof, see section 3.2 of |7]. The standard
representation of the gamma matrices is the following

I 0 0 o 0 o 0 o
0 __ 2 1 _ 1 2 _ 2 3 _ 3
T <0 —12) = <—01 0> = (—0’2 0)”‘17 - (—03 0) (2.29)

Another representation that is frequently used is the so-called Weyl representation. For this representation

we have that
o_ (0 I
v = (I2 0 (2.30)

and that the other 4% are equal to the 7’ in the standard representation. In the rest of this thesis we will
be referring to the standard representation of the gamma matrices when we mention the complex gamma
matrices. The relations between these gamma matrices defined in Equation [2.26] are the defining relations of
a so-called Clifford algebra over a 4-dimensional space with metric signature (+ — ——).The specific Clifford
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algebra that is used in the Dirac equation is called the Dirac algebra. This Dirac algebra was more of a
sideproduct of the creation of the Dirac equation, but turned out to be a large contributor to the field of
geometric algebra and eventually also the quantum field theory.

To simplify expressions from now on, we will switch to the natural units. This means that we set A =c = 1.
Setting ¢ = 1 implies that time (=distance/c) is measured in units of length and that momentum and mass is
measured in units of energy. Also setting i = 1 means that we tie up the units of length and energy together.

2.1 Comnserved Current

A very important property of the Schrodinger equation is that it implies that probability is conserved. The
probability density derived from the Schrodinger equation is defined as follows

p(x,t) = ¢*¢ (2.31)

Note that this probability density is positive definite. For the probability to be conserved, the probability
flux has to obey the continuity equation.

Definition 2.1.1 (The continuity equation).

Ip .
E_‘_V.J_O

In this equation the probability flux 7 is defined as

i(x0) = = (50 ) 0"V = (700
i (731) - (2.32)

2.1.1 Klein-Gordon equation

One would like to identify analogous expressions using the Klein-Gordon equation. The form of the continuity
equation suggests that there exists a four-vector current j# with the property that 9,j* = 0. The probablity
density will then be defined as p = j°. If we follow Equation we can write
)
= — (UMW — (O*T)* W 2.33
7= 5 (0"w)"w) (233

It is then easily seen that 9,5 = 0. The probability density that we then find is

plx,t) =7 (x, t) = ﬁ (w*%\f — (aa\f)* \1/) (2.34)

Since the Klein-Gordon equation is a second order equation in time, the initial conditions of both ¥ and
%—‘f have to be specified. This extra freedom in the choice of initial conditions means that the probability
density that we have defined can take on negative values. The standard probabilistic interpretation of the
wave function is therefore impossible. This caused a big problem in the development of relativistic quantum
mechanics and was one of the reasons for the Klein-Gordon equation to be left behind. Eventually a consistent
physical interpretation was found. However, we will not discuss this interpretation in this thesis. If one is
interested in this interpretation though, see [32].

2.1.2 Dirac equation

We can show that for the Dirac equation the quantity p = ¥ W can be interpreted as a probability density.
First, we note that this quantity can be interpreted as the sum of the squared magnitudes of all four compo-
nents of ¥(x,t) and is thus positive definite. We want to show that this probability density also satisfies the
continuity equation with j = WTaW. We therefore take the Hermitian conjugate of the Dirac equation

ovt . out vt

z—al +
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If we now multiply the Dirac equation from the left by ¥t and subtract from that Equation multiplied
from the right by ¥, we find that

ov ov ov ouft owt owt or vt
vl — — — I I No+o=— 4 —— 0= 2.
<O‘$ax+o‘yay+o‘zaz)+<ax%+ gy v g )Y VG v =0 (236)
which can be compactly written as
Uig
V. (Ulal) + - =0 (2.37)

In this equation we can recognize p and j. From this we can conclude that p can only change if there is a flow
into or out of the system and is therefore a conserved quantity. The fact that the Dirac equation provided a
probability density and was consistent with experimental findings meant that it was from then on accepted
as the correct equation for describing relativistic quantum mechanics.

The expression for the current can be simplified even more by introducing the adjoint of the four-component
wave function ¥ = Wi~0, We find that p = UTW = Ui40700 = U190 and j = U104l = U1l = U~ T,
With this new notation we can write the continuity equation as

% (TAO0) + V- (TyP) =9pj* =0 (2.38)

with j# being the following four-vector current

G = Uyrw (2.39)

2.2  Free-particle solutions

As we already know, the wave function in the Dirac equation has four components. This is twice as many
components as the wave function in the Klein-Gordon equation. We will eventually see that these additional
degrees of freedom have to do with the quantity spin % We call the four-component wave function ¥(x,t)
a spinor. Let us first take a look at the solutions of the Dirac equation for free particles (p = 0). The Dirac
equation then boils down to :9; ¥ = BmW. The four independent solutions for W(x,t) are then

1 0 0 0
Uy = e imt 8 LUy = e~ imt (1) Uy = etimt (1) and U, = etTimt 8 (2.40)
0 0 0 1

We see that the lower half of the wave function corresponds to negative energy and the upper half to positive
energy. Both the upper half and the lower half of course consist of two components. It seems tempting to
call one component ”spin up” and the other one ”spin down”. This interpretation is in fact correct, but to
prove this statement we have to take a look at the free-particle solutions with nonzero momentum p = p2.
The particle will thus be moving freely in the z-direction. The eigenvalue problem that we have to solve in
this case is the following HV = EV for H = a,p + fm. We can write this equation out.

m 0 p 0 Uy Ul
0 m 0 —-p u2 | U2
» 0 —m 0 us | = E s (2.41)
0O —p 0 -—-m Uy Uy

For this eigenvalue problem we again find that £ = +F,,. Notice that the equations for u; and uz and the
equations for us and u4 are coupled. For E = £E, we can set either u; = 1 (and ug = uq = 0), in which case

Uz = —i—ﬁ, or ug =1 (and u; = uz = 0), in which case uy = — 5 ﬁm. In the nonrelativistic case (p < E,)
p P
we see that the upper components dominate. For & = —F,, the nonzero components are either uz = 1 and
u; = fﬁ oruy =1and uz = 5 ]im' In this case, the lower components dominate nonrelativistically.
P P

Let us now introduce the spin operator § = 33 with 3 = (32,,3,,>";) via

S, = (‘6 0> (2.42)

0;
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with o; being the corresponding Pauli matrices. The projection of the spin onto the direction of momentum
that this spin operator projects out, is positive for the positive-energy solution with u; # 0 and negative
for the positive-energy solution with us # 0. An analogous result is found for the negative-energy solutions.
From this we may conclude that the free-particle solutions do in fact behave according to our spin up/down
conjecture. The Dirac equation thus describes spin % particles.

If we put all this together, we have that the positive-energy solutions are

1 0
0 1
uFo) = | aduiPm)=| (2.43)
Ep+m »
0 E,4+m

where the subscript R (L) denotes the so-called right (left) handedness. Right (left) handedness means that
the spin operator projects out a positive (negative) projection of the spin onto the direction of momentum
for that solution. For the negative-energy solutions we have that

ot 0
up (p)=| | [ andug(p)=| "] (2.44)
0 1

The free-particle wave functions are then formed by including the normalization factor and also the term
e~ Pua

2.3 Symmetries of the Dirac equation

Let us from now on consider situations in which there is a spin % particle sitting in an external potential.
This means that the Hamiltonian will become

H=a -p+pm+V(x) (2.45)

for some potential energy function V(x).

2.3.1 Angular momentum

When we consider a system with a Hamiltonian that contains a central potential (the system is spherically
symmetrical), we know that the Hamiltonian will commute with the orbital-angular-momentum operator
L = x x p. The so-called Heisenberg picture tells us that in this system the orbital angular momentum is
a constant of motion. The Heisenberg picture namely states that operators incorporate a time-dependency
while the state vectors are time-independent. This picture stands in contrast with the Schrodinger picture, in
which the operators are time-independent and the state vectors have a time dependency. In the Heisenberg
picture the observables A satisfy

GAn ) =ittt An )+ (%52) (2.40

where the subscripts H and S denote the observables in the Heisenberg and Schrédinger picture respectively.
Let us now take a look at the commutation relation between the free Dirac Hamiltonian and the orbital
angular momentum [H, L]. To do so, we need to check the relations [3, L] and [e - p, L;]. We see that [3, L]
is not that interesting, as it is clearly equal to zero. However, [ - p, L;] is more interesting:

la - p, Li| = [cupi, €1 pr) (2.47)
= €ijkQu[p1, TPk

Knowing that [z;,p;] = id;;, we find
la - p, L] = €ijrau(pijpr — xpepi)
= €ijkou (PP — 105k + P1T;pK) (2.48)
= —i€ijropr # 0
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From this it follows that the orbital angular momentum L will not be a constant of motion for spin % particles
that are free or find themselves in an external potential. However, recall that we also have the spin operator
S = %E To find the commutation relation between this spin operator and the Dirac Hamiltonian we take
a look at the relations [3,,;] and [ac- p,>_;]. We again see that [3,3 ;] is not that interesting, as it is also

equal to zero. The expression that we get for [ - p, ] is more interesting though:

loc-p,305] = [aipi, 3]
=iy, + o, Y Ipi — «ud i (2.49)
= [ai,zj]pi

Using the commutation relations of the Pauli matrices (Equation , we get
[a-p, ;] = 2ieijpounp; (2.50)

So even though both S and L do not commute with the Hamiltonian, we see that the vector operator
J = L + S does commute with the Hamiltonian

1 , .
[H, Ji] = [H, Li] + 5 [H, 3] = ieijucnp; — icijeaipi = 0 (2.51)

We call this vector operator J the total angular momentum. From the fact that the total angular momentum
operator commutes with the Dirac Hamiltonian, we may conclude that the total angular momentum is
conserved for a system containing spin % particles.

2.3.2 Parity

Let us now consider a few new operators. The first operator that we will be discussing is the parity operator.
When we look at the parity operator m we look at a transformation on state kets. A property of this parity
operator is that it changes the sign of . This means that  — —a and thus that p — —p. If we now consider
the case where V(x) = V(|x|), then we expect the solutions to the Dirac equation to obey ¥(—x) = £U(x).
However, due to the fact that the Dirac Hamiltonian changes under the operation p — —p, this does not
seem to hold. In this consideration we have not taken into account the effect of the parity transformation
on the spinors though. To incorporate this effect we need to change our parity operator. Since our parity
operator is a unitary operator (applying the parity operator twice to an object leaves it unchanged), it must
contain a unitary operator U,. This unitary operator is a 4 x 4-matrix which will leave the Hamiltonian
invariant under a parity transformation. This gives us the following parity operator

P =nU, (2.52)

The following relations for 7 must hold
ter = —2 (2.53a)
mipr = —p (2.53b)

This means that our matrix U, must have the following properties

Uang = -« (2.54a)
and Up,BUS = B (2.54b)
in addition to Ug =1 (2.54c)

From this it follows that U, = 8 = 87 = 4°. This means that a parity transformation will not only consist
of x — —a, but also a multiplication on the left and right of 3. This means that the parity transformation
of our solutions ¥(x) will give us S¥(—x).
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2.3.3 Charge conjugation

Let us now add electromagnetic interactions into the Dirac Hamiltonian. We may assume for our particle
that it has an electric charge of e < 0. In a classical Hamiltonian we make the substitutions ¥ — E — e®
and p — p — eA where ® is the scalar potential and A is the vector potential. The procedure that we use
here to couple to the electromagnetic field is called minimal coupling (see section 3.9 of [7]). This minimal
coupling is an effect of Lorentz invariance. There has also been done a lot of research on the Lorentz violating
non-minimal coupling in the context of the Dirac equation. We will not go deeper into this topic in this thesis,
but for further reading on this topic, see [1]. Let us write the minimal coupling using covariant notation

p* — pt — e AV (2.55)
where A* = (®, A). If we plug this into our covariant form of the Dirac equation we get
(V"0 — ey Ay —m)¥(z") =0 (2.56)

We now introduce a term called the antiparticle. An antiparticle is an object whose wave function behaves just
like the one for a 'normal’ particle but with opposite electric charge. To find the corresponding antiparticle
wave equation in relation to the original wave equation we thus need an equation where e — —e. To do this
we first take the complex conjugate of Equation [2.56

[=i(v*)"Op — e(7")" Ay — m] U (z#) = 0 (2.57)

We see that the relative sign between the first two terms has now changed. To change the sign of the first
two terms relative to the third we define a matrix C with the property that

CH)yC™t =t (2.58)

If we now plug in 1 = C~1C before the wave equation in Equation and multiply with matrix C' from
the left we get
(V"0 + ey Ay —m)CU* (2#) =0 (2.59)

We see that only the sign in front of the e has changed in comparison with Equation The wave function
CU*(x,t) thus satisfies the antiparticle wave equation if U(x,t) satisfies the normal wave equation.
We now want to find an expression for this matrix C. As 72 is the only gamma matrix with imaginary
elements and given that (v2)* = —+2, we find that

C = iv? (2.60)

It turns out to be more useful to write the wave function in terms of ¥ = (¥*)T~Y. If we plug this into our
antiparticle wave equation we find that

CU*(x,t) = iy*(Ty")T = U, (9)T (2.61)
Where U, is the unitary matrix given by
U. = iv*y° (2.62)
We can now define the so-called charge conjugation operator C, which satisfies

CU(x,t) = U, ()T (2.63)

The change of this charge conjugation operator C to the space-time part of the free particle wave function is
to effectively take t — —t and * — —.

2.3.4 Time reversal

We will now introduce an operator called the time reversal operator. The function of this time reversal
operator is to, like the name says, reverse the time (or, more properly, to reverse motion). This means that
for a time reversal operator © the following relations hold

0z0 ! =« (2.64a)
OpO~t=—p (2.64b)



2 THE DIRAC EQUATION 11

With time reversal we thus do not reverse the position, but the velocity.

Let us now introduce a theorem called Wigner’s theorem. [24] This theorem states that any symmetry
transformation is represented by a unitary or antiunitary transformation. This thus tells us that the time
reversal operator is anti-unitary and can be written as

0=UK (2.65)

where U is a unitary operator and K is an operator that takes the complex conjugate of any complex numbers
that follow it. Using this recipe, we can define a time reversal operator T for the Dirac equation

T =UrK (2.66)

where Ur is a unitary matrix. To identify the matrix Ur we take a look at the Schrodinger equation and
insert the Dirac Hamiltonian using the gamma matrices

0,V (x,t) = [—ivy - V ++"m] ¥(z,1) (2.67)

Using the same method as with the charge conjugation operator, we plug in 1 = 7 !7 before the wave
function on both sides and multiply from the left by 7. The left side then becomes

T (i0)T "T¥(x,t) = UrK (i0,) KUy ' Up¥* (z, t)
= —i0,UrV*(z,t) (2.68)
=i0_; [Up U™ (x,t)]

Note that in the last line, the sign of the time in the derivative is reversed. As the time-reversed form of
Equation [2.67]is given by

i0_¢ [Ur¥*(z, )] = (—iv°y - V +1"m) [Ur U™ (z, t)] (2.69)

we see that for [UpU*(x, t)] to satify this equation we get the following relations
T (mo'y) T =iy (2.70a)
TH)TH=4° (2.70b)

To turn these into relations that contain Uz, we multiply both equations by 7! from the left and by T
from the right

iy = KU;! (iwo'y) UrK (2.71a)
70 = KU (¥°) UrK (2.71b)

Next we multiply by K from the left and the right and insert UrU,. !in between the v matrices in the first
equation

K (iy°) UrUp' (v) K = Uzt (i9°) UrUz ™t () Ur (2.72a)
KK =U;'("°)Ur (2.72b)
If we now use the fact that (70)* = ~% and plug the second equation into the first, we find

Ur' (v)Ur = —v* (2.73a)
Ut (%) Ur =4° (2.73b)

We know that 42 is the only imaginary gamma matrix. This means that on the right side of both equations
in Equation we only have a minus sign in front of ¥! and +3. From this we can conclude that

Ur = '3 (2.74)
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2.3.5 CPT

Now that we have introduced the operators C, P and T we can look at their combination CPT. If we let
CPT operate on the Dirac wave function we find

CPTU(x,t) = iy? [PTU(x,t)]"

= i7*y° [TO(—a, )]
= i7"y U (1)
=iy U (—a, 1)

(2.75)

This combination of gamma matrices brings us at the so-called fifth gamma matriz.

Definition 2.3.1 (Fifth Gamma matrix).

75 = i70717273

In matrix form this gamma matrix is given by

v® = (? é) (2.76)

The concept of CPT invariance actually has very interesting consequences. The implication of the CPT
symmetry is that there is a mirror-image of our universe. This mirror image consists of all the objects in
our universe but with its position reflected through an arbitrary point, its momenta reversed and with its
matter replaced by antimatter. This CPT symmetry holds for any Lorentz invariant local quantum field with
a Hamiltonian that is Hermitian. For a relatively recent article on the CP7 symmetry in our universe, see
[4].

2.4 Dirac’s interpretation of negative energies

For this section we will follow section 20.3 of [30]. The problem with the union of relativity and quantum
mechanics is that relativity allows particles to be produced if there is enough energy while quantum mechanics
is mostly based on the conservation of probability. This means that a relativistic system that starts of with
one particle can end up in a state with 10 particles. Nevertheless, the Dirac theory appears to be a single-
particle theory and does not seem to really be influenced by this problem. The fact is that this phenomenon
that relativity brings with it does occur in the Dirac theory, but in the negative energy solutions. To see this
we take a look at the free-particle Dirac equation with natural units

L
i— =(a-p+pm)¥ (2.77)
ot
Let us now consider the plane wave solutions
U = w(p)eP2—EY (2.78)
we find that they satisfy
Ew=(a-p+pm)w (2.79)

To write the Dirac equation in a more compact way we divide the four-component spinor ¥ into two two-

component spinors y and ¢
_ (X
U= < <I>> (2.80)

With this notation we find that Equation 2.79] becomes

<i— T; Eis;) (é) - (8) (2.81)
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If we now consider a particle at rest (p = 0) we find that the equation for y becomes
(E—m)x=0 (2.82)

which means that
E=m (2.83)

This is of course the result that we expect: a positive-energy solution. But if we now take a look at the
equation for ¢
(E4+m)®=0 (2.84)

we find that
E=-m (2.85)

This solution of course seems odd. The energy of a particle always has to have a positive value. Note that by
dividing ¥ into two two-component spinors we split up ¥ into a positive enrgy part x and a negative energy
part ®. The two components of x and ® correspond to the two different spin orientations (up and down). If
we now take a look at the case when p # 0 we find that

o-p
= P 2.86
X E—m ( )
o-p
o = 2.87
E+m" (2.87)
Which we only find to be consistent if
2
p
w2 (2.88)

which gives us
E = ++/p?> + m? (2.89)

We see that we retrieve exactly the same dispersion relation. To explain these negative energy solutions, Dirac
made use of the Pauli exclusion principle. The Pauli exclusion principle states that two or more identical
spin % particles cannot share a single energy state within an atom. Dirac postulated a sea of negative-energy
electrons in which all the negative-energy states were occupied. The left picture in figure 1 shows a depiction
of this so-called Dirac sea. Due to the exclusion principle this meant that there was no way for the electrons
to fall into that negative energy sea. However, this meant that high energy photons would be able to bring a
negative-energy electron into a positive-energy state. Since this negative-energy electron would come out of
the unobservable Dirac sea, it would leave an observable hole. This hole will have an opposite charge to the
electron and a positive energy. This particle is called a positron. In the right picture of figure 1 the discovery
of the positron in 1933 by Carl Anderson is shown. When an electron and a positron collide both particles
will disappear and an energy of 2m will be let out into the world in the form of photons.

With Equation 2.81] we have found an equation where ® and x are coupled. We can use this equation to
look at what happens to the Dirac equation in the nonrelativistic case. At nonrelativistic (positive) energies
FE = K + m we have that K < m. This means that Equation becomes

o-p

o~ —— 2.90
o X (2.90)

If we plug this into Equation [2.86] we get

(o -p)(o-p) p’

-2 K 291
oy X = 5 X = KX (2.91)
In this equation we recognize the Hamiltonian of a free particle H = %. The Dirac equation thus reduces
nonrelativistically to
H® =Ko (2.92)

This equation is called the time-independent Schridinger equation with energy eigenvalue K. The time-
independent Schrodinger equation is used when the Hamiltonian is not dependent on time explicitly. However,
even in this case the wave function has a time dependency. In the language of linear algebra, we call the time-
independent Schrodinger equation an eigenvalue equation. In that sense, the wave function is an eigenfunction
of the Hamilton operator with corresponding energy eigenvalues.
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Figure 1: The figure on the left, taken from , shows a depiction of the Dirac sea and how a high energy
photon can make a particle from an antiparticle. The figure on the right, taken from , shows a cloud
chamber picture of the first ever positron detected. The curvature of the path of the positron is due to the
presence of a magnetic field. The curvature above the lead plate is larger than below as the positron lost
energy while traversing it.

Energy

A

photon e particle
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3 Clifford algebra

While deriving the Dirac equation we stumbled upon the gamma matrices. The relations between these
gamma matrices were the defining relations of a Clifford algebra over a 4-dimensional space. Clifford algebras
actually already existed a pretty long time before Dirac posed his relativistic wave equation. However, it
only gained the interest of physicists after Dirac published the article “The Quantum Theory of the Electron.
Part I” on the first of February 1928 |10] and its sequel one month later. In this chapter we will look at
some interesting properties of the Clifford algebras and eventually classify them. To do so, we start by giving
the definitions needed to explain Clifford algebras. For this chapter we will mostly follow the book “Clifford
Algebras: An Introduction” [12].

3.1 Preliminaries

Let us first give the necessary definitions and some theorems that will help in the study of Clifford algebras.
For this section we will follow chapters 2, 3 and 4 and section 1.3 of |12]. Let K denote either the field R of
real numbers or the field C of complex numbers. Let E denote a real vector space.

Definition 3.1.1. A finite-dimensional (associative) algebra A over K is a finite-dimensional vector space
over K equiped with a binary operation A x A — A, called multiplication (a,b) — ab. This mapping must
satisfy

e Associativity: (ab)e = a(be)

e Left distributivity: a(b+ ¢) = ab+ ac

e Right distributivity: (a + b)c = ac + be

e Scalar compatibility: A(ab) = (Aa)b = a(\b)
for A € K and a,b,c € A.

A linear subspace B of an algebra A is a subalgebra of A if bybs € B whenever by,by € B. A subalgebra J of
A is a left ideal if aj € J whenever a € A and j € J. A right ideal is defined in a similar way. A subalgebra
is then called an ideal if it is both a right-ideal and a left-ideal. An ideal J in A is proper if J is a proper
subset of A. An algebra is then simple if the only proper ideal in A is the trivial ideal {0}. Another property
that an algebra can have is that can be unital. This is when an algebra contains an identity element 1, which
satisfies 1la = al = a for all a € A. We also have that an algebra is commutative if ab = ba for all a,b € A.
An important example of a commutative subalgebra is the so-called centre Z(A) of an algebra A. The centre
is defined as

Z(A)={a€ A:ab=baforallbec A} (3.1)

The centre Z(A) is then of course unital if A is unital. Let us now take a look at mappings between algebras.

Definition 3.1.2. A mapping ¢ from an algebra A over K to an algebra B over K is called an algebra
homomorphism if it is linear and if ¢(ab) = ¢(a)p(b) for all a,b € A.

An algebra homomorphism is called a unital homomorphism if it is between two unital algebras and if it
satisfies ¢(14) = 1, where 14 is the identity element of A and 15 is the identity element of B. If an algebra
homomorphism is bijective we call it an algebra isomorphism. An algebra homomorphism of an algebra into
itself is called an endomorphism. To give you an idea of what an algebra is, we will give some examples:

e The vector space L(E) of all endomorphisms of the vector space E over K becomes a unital algebra
when multiplication is defined to be the composition of mappings. The identity element of this unital
algebra is then the identity mapping I.

e Suppose dim(E) =d. If T' € L(E), then T can be represented by a matrix (¢;;). The mapping T — (¢;;)
is then an algebra isomorphism of L(F) onto the algebra M;(K) of d x d matrices. The composition
of this algebra of d x d matrices is defined as matrix multiplication.
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A unital homomorphism from a unital algebra into My(K) or L(E) is called a representation of A. A linear
subspace F' of E is m-invariant if w(a)(F) C F for each a € A. The restriction of 7 to this m-invariant
subspace is then called a subrepresentation of w. A representation is called irreducible if {0} and E are the
only m-invariant subspaces of E. If a unital homomorphism is also injective, then the representation is called
faithful. A faithful representation of A onto a subalgebra of My(K) is a unital isomorphism; the elements of
A are then represented as matrices. An example of a representation of elements of a Clifford algebra is the
gamma matrices that we found in the derivation of the Dirac equation in chapter [2 An important example
of a faithful representation of a unital algebra A into L(A) is the left reqular representation (I : A — L(A)).
The left regular representation is given by setting I(a)(b) = ab. The interesting thing about the left regular
representation [ of A is that it considers A as a so-called left A-module.

Definition 3.1.3. A left A-module M is a real vector space M together with a multiplication mapping
(a,m) = am from A x M to M that satisfies

o (A1a1 + Agaz)m = Ai(aim) + Aa(agm)
o a(pimy + pama) = p1(amy) + pa(amsz)
e (ab)m = a(bm)
e lym=m
for all a,a1,a2,b € A, A1, Ao, 1, 2 € R, m € M.

Another very important example of an algebra is the quaternions. Like R and C, the algebra H of quaternions
is a division algebra. An algebra is a division algebra if and only if that algebra has no non-zero zero divisors.
A zero divisor a is an element of the algebra for which there exists a non-zero element b in the algebra with
ab = ba = 0. The fact that a division algebra has no non-zero zero divisors means that all non-zero elements
in a division algebra have a multiplicative inverse. The only thing that is different about H compared to R
and C is that H is not commutative. We therefore call H a non-commutative finite-dimensional real division
algebra. This algebra was invented by the famous mathematician and physicist Sir William Rowan Hamilton
in 1843. [33] We will construct the algebra by using the so-called associate Pauli matrices 19,1, 72 and 73.
These associate Pauli matrices are defined as 7 = Iy, 71 = 01,72 = —iog and 73 = ioz with 01,09 and
o3 the Pauli matrices as defined in chapter These associate Pauli matrices form a linearly independent
subset of the eight-dimensional real algebra M>(C). The linear span of these matrices is denoted by H and
is four-dimensional. If h = ary + b1y 4+ ¢72 + d13 € H, then

(a+id c+ib
h<—c+ib a—id) (3.2)

H= {(_’Zw lz") :z,we(C} (3.3)

so that H is a four-dimensional unital subalgebra of M3(C). The algebra H of quaternions is defined to be
any real algebra that is isomorphic as an algebra to H. Let ¢ : H — H be such an isomorphism. We set

1=¢(10), 7 =¢(11),TJ = ¢(12) and K = ¢(3) (34)

This means that

These elements of H satisfy the following relations

I7=K JK=I KI=J
JI=-K KJ=-T IK=-J (3.5)
P=-1 J?2=-1 K2=-1

Let us now take a look at mappings between vector spaces. Of particular interest are the mappings that are
linear.
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Definition 3.1.4. Let E1, ..., By and F be vector spaces over K. A mapping T : Fq X ... X B, — F is called
multilinear, or k-linear, if it is linear in each variable:

T(Ih ey Lj—1, 0 + /Byjazj-‘rla axk) = O[T(xlv ey Lj—1, L5, Tj41, axk) +/BT(:C17 ey Lj—1,Y5, Tj+1, ,SCk)
fora,f € K, z;,y; € E;and 1 < j < k.

These k-linear mappings form, under pointwise addition, a vector space. We denote this vector space by
M(E;,...,Ex; F). We write M¥(E; F) when Ey = ... = Ey, = E and M(E, ..., E},) for M(Ey, ..., Ey; K).
Elements of M(E}, ..., Ex; F) are called multilinear forms or k-linear forms. An important property of k-
linear forms is symmetry.

Definition 3.1.5. A k-linear mapping T is symmetric if
T(l‘l, ...,a:k) = T(l‘g(l), . zg(k)) for each o € ¥,
with ¥ the group of permutations of {1, ..., k}.

The set S¥(E; F) of symmetric k-linear mapping s : E¥ — F is a linear subspace of M*(E; F). We denote
Sk(E; K) by S*(E). For a 2-linear mapping we have an explicit name, namely a bilinear mapping. The vector
space of bilinear mappings from F; X Es into F is denoted by B(E1, F; F') and elements of B(FEy, Eq; F') are
called bilinear forms. Bilinear forms and especially symmetric bilinear forms will play a very important role
in the study of Clifford algebras. An important property of a bilinear form is its rank.

Definition 3.1.6. Suppose b € B(F1,E2; F),e; € By and ex € Ey. Let ly(e1) : E2 — F be defined by
Iy(e1)(e2) = b(e1,ea). Then Iy : By — L(Es, F) is linear and we define the rank of b to be the dimension of
the image of I, which we call the rank of .

The bilinear form b is then called non-singular if rank(ly) = dim(E;) = dim(E2).

3.1.1 The algebra of tensors

To get a better understanding of Clifford algebras and their properties we have to define tensors and their
corresponding tensor algebra. For this subsection we will follow chapter 3 and section 1.3 of [12]. Before we
can define what a tensor is, we have to define what a linear functional is.

Definition 3.1.7. Suppose K is a one-dimensional vector space over K. A linear functional on the vector
space F is then a linear mapping from F into K.

The set of linear functionals on E is denoted by L(E; K) or E’ and is called the dual space of E. Suppose
(e1,...,eq) is a basis for E. If x = Z?Zl xie;, let ¢;(x) = x; for 1 <i < d. Then ¢; € E’ and (¢1, ..., ¢q) is a
basis for E’. We call this basis the dual basis to (eq, ..., eq).

Definition 3.1.8. Suppose that A is a subset of E. Then the annihilator A+ in E’ of A is the set
At ={p € E' : ¢(a) =0foralla c A}

We see that AL is a linear subspace of E’. In the same way, suppose that B is a subset of E’. Then the
annihilator B in E of B is the set

Bt ={x € E:¢(x) =0for all ¢ € B}.

We see that A1+ = span(A) and B+ = span(B). If F is a linear subspace we also have that dim(F) +
dim(F+) = dim(E). We are now ready to define tensors.

Definition 3.1.9. Suppose that (z1, ..., zx) € E1 X ... X Ex. The evaluation mapping m — m(zx1, ..., z)) from
M(FE, ..., Ey) into K is a linear functional on M (Fj, ..., Ex). We denote this linear functional by 21 ® ... @ zy,
and call it an elementary tensor. We denote the linear span of all such elementary tensors by £ ® ... ® Ej,
and call it the tensor product of (Ey, ..., Ey).
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We denote k copies of the vector space E by ®*E. We show next that the elementary tensors span the dual
space M'(Ey, ..., Ey) of M(FEy,..., Ey).

Proposition 3.1.10. F; ® ... ® E, = M'(E1, ..., E).

Proof. If m € (B4 ®...® Ex)%, then (21 ® ... @ zx)(m) = m(z1, ...,zx) = 0 for all (x1,...,2;) € E1 X ... X E}.
This means that m = 0, implying that for all ¢ € M'(FE}, ..., Ey) we have that ¢(m) = 0. From this it follows
that (B ® ... ® Ey)*t = M'(Ey, ..., Ey) and thus that By ® ... ® E, = M'(Ey, ..., Ey). O

We can obtain a basis for F; ®...® Ej by taking a basis of the spaces Fj, ..., E}, and taking all tensor products
of the form e; ® ... ® ey, where each e; is an element of the basis of E; for 1 < j < k. From this and the
proposition above we may then conclude that dim(F ® ...® Ey) = Hle dim(E;). The following proposition
will help us in proving other theorems about Clifford algebras and in eventually classifying Clifford algebras.

Proposition 3.1.11. The mapping @ : By x ... x By, — E1®...® E), defined by @*(x1,...,7) =11 ®... @ )
is k-linear. If m € M(E\, ..., Ex; F) there exists a unique linear mapping L(m) : By ® ... ® E, — F such
that m = L(m) o @*. The mapping L : m + L(m) is an isomorphism between M(Ei, ..., Ex;F) and

Proof. As we know, an elementary tensor denotes a linear functional on M (Eq, ..., Fx). This means that
(21 ®...® (az; + fy;) ® ... ® k) (m) = m(z1, ..., (ax; + By;), ..., Tk)
From the linearity of m we may then conclude that

m(z1, ..., (ax; + By;), ..., o) = am(z1, ..., T, ..Tx) + Sm(x1, ..., Yj, -.os Tk)
=01 ®.0%;® .0z (M) + B(z1 ®...0Y; ® ... ® x) (M)

The mapping ®* is thus a multilinear mapping. We see that the mapping T : L(m) — L(m) o ®* from
L(E1 ®...Q Ey; F) into M(E1, ..., Ex; F) is a linear mapping. To check if this mapping is an isomorphism
we have to check if it is injective and surjective. If L(m)o ®* = 0, then L(m)(z; ® ... ® 2) = 0 for all
r1®.0x; € B1®...Q Ey. We may assume that for all i € {1,...,k} the E; # 0, meaning that F4 ® ... ® E,
must contain elements that are not equal to zero. From this it follows that L(m) must be equal to the
zero mapping, implying that ker(T) = 0. This then means that T is injective. As dim(E; ® ... ® Ey) =
Hle E; =dim(E; X ... X Ey), we know that both L(E; ® ... ® Ey; F) and M (E}, ..., Ex; F) have dimension
(Hf:1 E;)dim(F). From this we may conclude that T is also surjective and thus an isomorphism. The inverse
T~ :m+ L(m) must then also be an isomorphism. The uniqueness of L(m) follows from the fact that the
inverse T ! is injective. O

From this proposition we may conclude that multilinear mappings and linear mappings can be used inter-
changeably.

On a vector space we can define an algebra with multiplication being the tensor product. We call this algebra
the tensor algebra. To give a formal definition of this algebra we first have to proof the following corollary.

Corollary 3.1.12. (E1®..Q F;)® (Br41® .. Q E) 2 E1®..® E
Proof. From Proposition [3.1.11]it follows that

(F1®.0FE) ® (Bk1®...Q E) = B(F1 ® ... @ B, B 1 ® ... ® E))

Let us now define the linear mapping 7' : B(E; ® ... ® Ex, Fx11 @ ... ® E) — M(Ey,....,E;) by b — m
where m : E7 X ... x B} — K is defined by (z1,...,2;) = b(x1 ® ... ® Tk, Tp41 @ ... ® 27). We immediately
see that T(ab) = T(a)T'(b) for a,b € B(E1 ® ... ® E, Ex41 ® ... ® E}), implying that T is an algebra
homomorphism. If T'(b) = 0 then b(z; ® ... ® Tk, Tpt1 ® ... ® 27) = 0 for all (z1,...,2;) € By X ... X E}.
This then means that b is the zero map and thus that ker(T) = {0}. Therefore T is injective. We also
have that dim(B(F1 ® ... ® Ey, Ex41 ® ... ® Ey)) = Hézl dim(E;) = dim(M(E4, ..., Ey)), implying that T is
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an isomorphism. Now that we have proven that B(E; ® ... ® Eg, Fxy1 ® ... ® E}) & M(E, ..., E}), we may
conclude that B'(E} ® ... ® Fg, Ex41 ® ... ® E;) & M/ (FE}, ..., E}). This means that

(F1®...0 F) ® (Br41 ® ... @ E})) 2 M'(Ey, ..., E)})
Y ®.QE

Using this corollary, we can give a formal definition of the tensor algebra.

Definition 3.1.13. Let E be a vector space on K. If we define the vector multiplication on the following
infinite direct sum
*E=KOED(EQE)®..0R"EQ..

to be ®, then it follows from the preceding corollary that ®*F is an infinite-dimensional unital associative
algebra. We call this the tensor algebra of E.

We have that (9 E) ® ('E) C @* T E. The tensor algebra is, in general, not commutative and has 15 as its
unique identity element. We will use the tensor algebra later on to give an alternative definition of a Clifford
algebra. The tensor algebra has the following universal property.

Theorem 3.1.14. Suppose that T : E — A is a linear mapping from a vector space E into a unital algebra
A. Then T extends uniquely to a unital algebra homomorphism T : @*E — A.

Proof. Let (e1,...,eq) be a basis for E. If e;, ® ... ® e;, is a basis vector for ®*E, define

T(eil ®...Q Bik) = T(eil)T(eiQ)...T(eik)

If we extend this linearly, we get an algebra homomorphism of ®*E into A. The required map is the infinite
sum of all these maps, which means that it is clearly a homomorphism extending T. Since E generates QFF
we also know that T' is unique. O

Besides from taking the tensor product of vector spaces we can also take the tensor product of algebras.

Definition 3.1.15. Suppose A and B are unital algebras. The vector space tensor product A ® B with
multiplication defined by
(a1 X bl)(ag X bg) = ai1az ® blbg

is a unital associative algebra with identity element 14 ® 15.
We also see that
ab=(a®1p)(1a®b)=a®b=(143b)(a® 1) =ba (3.6)

so the elements taken from A and B commute. To see if an algebra is isomorphic to the tensor product
of two algebras we use the following proposition and corollary. These will turn out to be very useful when
classifying Clifford algebras for all possible dimensions.

Proposition 3.1.16. Suppose that F' and G are subalgebras of a finite dimensional unital algebra A which
generate A. If F' and G commute, fg = gf for f € F and g € G, then there exists a unique algebra
homomorphism ¢ : F ® G — A which satisfies ¢(f @ g) = fg for (f,g9) € F x G.

Proof. Define a mapping 0 : F x G — A by setting 6(f,g9) = fg. Then 6 is a bilinear mapping. From
Proposition we may then conclude that there exists a unique linear mapping ¢(f ® g) = fg for
(f,9) € F x G. What we see is that
o(f1 ® g1)o(f2 ® g2) = (f191)(f292)
= (f1f2)(9192)
= ¢(f1.f2 ® g192)

This means that ¢ is an algebra homomorphism. O

Corollary 3.1.17. The mapping ¢ is an isomorphism if and only if dim(A) = (dim(F))(dim(G))
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Proof. We know that dim(F' ® G) = (dim(F))(dim(G)). Since F'U G generates A, we know that ¢ is
surjective. This means that ¢ is an isomorphism if and only if dim(A) = (dim(F))(dim(G)). O

We can immediately make use of the previous corollary in proving the following proposition. This proposition
will also turn out to be very useful when we will eventually classify Clifford algebras.

Proposition 3.1.18. Suppose that A is a real finite-dimensional unital algebra with identity element I.
Consider R with coordinate-wise multiplication:

(15 Ta) (Y15 oy Ya) = (X191, o, TaYd)
Then:
o My(R)® A= My(A).
e COH= M(C).
e Ho H X My (R) ® Ma(R) = My(R).

Proof. o Let
F={(ziI):z;; €R, for1<i,j<d}
and G = {diag(a,...,a) : a € A}

We see that (fi;I)(hijl) = (22:1 firhiiI) € Fif (fi;I), (hijI) € F and diag(ay, ..., a1)diag(as, ..., a2) =
diag(ajaz, ...,a1a2) € G if diag(ay, ...,a1),diag(as, ...,a3) € G. Also, both I; € F and I; € G. This
means that both F' and G are unital subalgebras of My(A). If (z;;I) € F and diag(a,...,a) € G, then
(xi;1)diag(a, ...,a) = (ax;;I) = diag(a, ..., a)(z;;I) meaning that F' and G commute. We also have that

0 -+ .. 0
aip -+ Qid 0 0 :

= diag(an, ey (111) ) ) + ...+ diag(add, ey add)
agr -+ Gdd : AR : 0 0

Together with the fact that F' = My(R), G = A and that dim(My(A)) = d*dim(A) = dim(F)dim(G),
we may conclude that My(R) @ A = My(A)

o Let F' = diag{(z,2) : z € C} and G = H, the subalgebra of Ms(C) spanned by the associate Pauli
matrices that we used to define the quaternions. From the definition of the algebra of quaternions it
follows that G = H. It is also easy to see that F' = C. From the fact that F'is a set of diagonal matrices
just like G in the item above, we conclude that F' and G from this item commute as well. The subalgebra
of M5(C) generated by F' UG contains a linearly independent set of 8 matrices {+/Is, +01, +ics, £03}.
Together with the fact that dim(Mz(C)) =8 = 2-4 = (dim(F))(dim(G)) we may conclude that M (C)
is generated by F'U G and thus C @ H = M;(C).

e Define the injective linear mappings 0r : H — M3(R)® M3 (R) and 0 : H — M2(R) ® M3(R) by setting

Or(1) =1®1, 0p(i) = —io1 ® 03, Op(j) =io2 ® I, Op(k) = —ios ® 02
() =1I®1, 9(;(1) = —1i0y ® 01, Gg(J) =1l ® o9, Hg(k) = —1i09 ® 03

and extending by linearity. Now let F' and G be the images of 0 and 0¢ respectively. It can be checked
that F' and G commute and we see that dim(Ms(R)®@M3(R)) = 16 = 4-4 = (dim(F))(dim(G)). The set
{0F ()0 (v) : u,v € {1,1,],k}} is a linear independent set containing 16 elements in Ms(R) @ Mz (R).
From this we may conclude that Ms(R) ® M5(R) is generated by F U G. This means that H ® H =
M5(R) ® My(R) and thus also that H ® H = M, (R).

O
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3.1.2 Quadratic forms

Before we can give a definition of a Clifford algebra, we first have to define what is called a quadratic form.
For this subsection we will follow chapter 4 of [12]. Readers are probably familiar with Euclidean spaces. On
these finite-dimensional real vector spaces an inner product is defined. An inner product is actually a special
case of a quadratic form.

Definition 3.1.19. A real-valued function on E is called a quadratic form on E if there exists a symmetric
bilinear form b on E such that ¢(z) = b(z,z) for all z € E

A vector space equipped with a quadratic form ¢ is called a quadratic space (E,q). When this quadratic form
is positive definite (g(z) > 0 for all nonzero x € E), the associated bilinear form is called an inner product
on E. In that case, E is an inner-product space. If (e1,...,eq) is a basis for the quadratic space (F,q) and
B = (b;;) the matrix representing the associated bilinear form b, then

d d
g(@) =D > bijwi, (3.7)
i=1j=1

Each symmetric bilinear form on E defines a quadratic form on E.

Proposition 3.1.20. Distinct symmetric bilinear forms define distinct quadratic forms
Proof. Suppose that ¢(x) = b(x,z). Then

gz +y)=blx+yz+y)
=b(x,z) + b(x,y) + by, z) + b(y,y)
= q(x) + q(y) + 2b(x,y)

This means that b(z,y) = (q(z + y) — g(z) — q(y)). We call this equation the polarization formula. We see
that ¢ determines b uniquely via this polarization formula. O

A quadratic space is called regular if the bilinear form associated with the quadratic form is non-singular.
On a regular quadratic space we can define orthogonality.

Definition 3.1.21. Suppose (F, q) is a regular quadratic space with associated bilinear form b. If z,y € E,
we say that z and y are orthogonal if b(x,y) = 0. We then write x L y.

Since b is symmetric, we have that = L y is equivalent to y L x. If A is a subset of E, we define the orthogonal
set AL by
At ={z:2 LaVac A} (3.8)

The following theorem tells us that the matrix that represents the bilinear form can always be written as a
diagonal matrix.

Theorem 3.1.22. Suppose that b is a symmetric bilinear form on a real vector space E. Let r be the rank
of b. There exists a basis (e1,...,eq) and non-negative integers p and m, with p +m = r, such that if b is
represented by the matriz B = (b;;), then

bi; =1for1l <i<p,
by =—1forp+1<i<p+mand

b;; = 0 otherwise

A basis that satisfies this condition is called a standard orthogonal basis. If m = 0 and r = d, then the
condition becomes b;; =1 for 1 < i < d, the basis is then called an orthonormal basis.

Proof. The proof of this theorem will be done by induction on d, the dimension of E. This means that we
first need to take a look at the case for d = 0. When d = 0, E only consists of its zero element so the
statement is obviously true. Let us now assume that the theorem holds for all spaces of dimension less than d
and all symmetric bilinear forms on them. Suppose (E, ¢) is a quadratic space of dimension d with associated
bilinear form b. We will consider three possible cases
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e The first possible case is that g(z) = 0 for all z € E. As we have seen before, ¢ uniquely determines b.
This means that in this case, b(x,y) = 0 for all z,y € E and thus p = m = r = 0. Therefore any basis
will satisfy the conclusions of the theorem.

e The second case that we will consider is that there exists « € E with ¢(x) > 0. In this case we set
_ x s _ 1 _ M _ s _
el = T in order that b(ej,e1) = 7\/@2 b(x,z) = i@ = 1. This then means that by; = 1.
e The third case is that g(z) <0 for all x € E. This case must be different from the first so there exists
x € E with g(x) < 0. In this case we set e; = —2— so that b(e1, e1) = bz, z) = L2l = 1,

1
Vi) =) ~9@)

This then means that b;; = —1.

Let F' = {e; }* in both of the last two cases. To see what dimension F'* has, we take a look at the isomorphism
Iy from E onto E’. We have that [,(z)(y) = 0 if and only if b(x,y) = 0. This means that we may use the
results that we found for the dual spaces. We may thus state that dim(F) = d — 1. We also have that
span(e1) N F = {0} and E = span(e1) + F so that E = span(e;) ® F. The restriction of b to F is still a
symmetric bilinear form and due to the inductive hypothesis there is a standard orthogonal basis (es, ..., e4)
for F. If j > 1, then e; € F' and due to the definition of F' we then have that b(ej,e;) = b(e1,e;) = 0. In
both of the last two cases we then have that (eq,...,eq) is a standard orthogonal basis for E. From the fact
that this basis is orthogonal it immediately follows that the rank of b is equal to p 4+ m. O

If (eq, ..., eq) is such a standard orthogonal basis, z = Ele ze; and y = Ele yie;, then

p p+m p p+m
b(w,y) = Zwiyi - Z z;y; and g(z) = ZIE? - Z @y (3.9)
i=1 i=p+1 i=1 i=p+1

Theorem 3.1.23 (Sylvester’s law of inertia). Suppose that (e, ..., eq) with parameter (p,m) and (f1, ..., fq)
with parameter (p’',m') are standard orthogonal bases for a quadratic space (E,q). Then p =p' and m =m’.

Proof. Let Uy = span{ex,...,ep} and Wi = span{fpr41,..., fa}. The restriction of ¢ to Uy is then positive
definite and the restriction of ¢ to Wj is negative semi-definite, ¢(w) < 0 if w € Wj. This means that
Uy N Wy = {0} and thus

p+(d—p')=dim(Uy) + dim(Wy) < d = dim(F)

We can rewrite this into p < p'.
Now let Uy = span{epyi1,...,eq} and Wao = span{fi,..., fpr}. The restriction of ¢ to Us is then negative
semi-definite and the restriction of ¢ to W5 is positive definite. This means that Us N W5 = {0} and thus

P+ (d—p) = dim(Us) + dim(Ws) < d = dim(FE)

We can rewrite this into p’ < p. We now have that p’ < p and that p < p’, which means that p = p’. From
the fact that p+m = r = p’ + m’ it now also follows that m = m/’. O

We call (p,m) the signature of q. Sylvester’s law of inertia showed us that this signature is invariant under
basis transformation. There are certain spaces that have a distinct signature, in the following table we will
name a few.

Table 1: Spaces with a distinct signature

p=dm=0 Euclidean space

min(p,m) >0 | Minkowski space
p=d—1m=1 Lorentz space

p=m,d=2p Hyperbolic space
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Furthermore, suppose p and m are non-negative integers with p+m = d. Let R, ,,, denote R? equipped with

the quadratic form
pt+m

fof Z z? (3.10)

1=p+1

We call R, ,,, the standard regular quadratic space with dimension d and signature (p, m).

3.2 Clifford algebras

As explained in [33], Clifford formed what are now called Clifford algebras in 1878, even though he referred
to them as geometric algebras. He did this by expanding on Grassman’s algebraic work and looking at the
quaternions of Hamilton. The development of the geometric algebra would lead to 20th century mathemati-
cians to formalize and explore the properties of Clifford algebras. As almost two centuries of formalizing
and exploring the properties of Clifford algebras has passed, the theory around Clifford algebra has become
quite advanced. In this section we will give a formal definition of a Clifford algebra and deal with some of its
properties. It is of course impossible to deal with all the properties of the Clifford algebras in this section,
so we will only focus on the properties that are needed for a better understanding of the gamma matrices
and the ones that are needed to classify Clifford algebras for all possible dimensions. In this section we shall
suppose that (E,q) is a d-dimensional real vector space E with a quadratic form ¢, associated bilinear form
b and standard orthogonal basis (ey, ..., eq). For this section we will follow chapters 2, 3, 4 and 5 of [12].

Definition 3.2.1. Suppose that A is a unital algebra. A Clifford mapping j is an injective linear mapping
j : E — A that satisfies

o 1¢j(E)
e (j(2))?=—q(x)l = —q(z) forallx € E

If j also has the property that j(E) generates A, then A together with the mapping j is called a Clifford
algebra for (E, q).

In this unital algebra A we can identify R with span(1) and call these the scalars in A. We can also identify
E with j(F) making E a linear subspace of A. We call the elements of E the vectors in A. If j is a Clifford
mapping and x,y € E, then we have that

3(@)i(y) +i)i(x) = j(x+y)* —j(x)* —j(y)*
= (—q(z +y) +q(z) +q(y)1 (3.11)
= —2b(x,y)1

In particular we have that j(z)j(y) = —j(y)j(x) if x L y. The Minkowski metric that we used to describe
the relations between the gamma matrices from chapter [2]is actually an example of a bilinear form. We see
that if we plug in b(z,y) = —n(z,y), we retrieve Equation that we found in the derivation of the Dirac
equation. In proving that an algebra is a Clifford algebra, the following elementary result will be very useful.

Theorem 3.2.2. Suppose that a,...,aq are elements of a unital algebra A and (ey, ...,eq) a standard orthog-
onal basis for the quadratic space (E,q). Then there exists a unique Clifford mapping j : (E,q) — A that
satisfies j(e;) = a; for 1 <i < d if and only if

a? = —q(e;) for1 <i<d,
aja; +aja; =0 for1 <i<j<d,
and 1 ¢ span(ay, ...,aq)
Proof. First we will prove that the conditions follow from the fact that j is a Clifford mapping Wlth j(el) = a;

for 1 < i < d. Since j is a Clifford mapping it immediately follows that 1 ¢ span(ai,...,aq), a? = j(e;)? =
—q(e;) and a;a; + aja; = j(e;)j(e;) + jej)jle;) =0 for i # j, ase; Le;.
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To prove the other way around we consider © = x1e1 + ... + z4e4 € E and set j(z) = z1a1 + ... + x4aq4. We
then see that j is an injective linear mapping from E into A with 1 ¢ j(E). We also see that

d d d
j(a)? = foaf + Z rixj(aia; +aja;) = — ZﬁQ(ez’) = *‘J(Z ziei) = —q(x)
i=1 j=1 i=1

1<i<j<d

This means that j : (E,q) — A is a Clifford mapping. The uniqueness of j follows from the fact that
E = span(ey, ..., eq). O

One of the most important properties that a Clifford algebra can have is that it can be universal. To define
this property we first have to define what is called an isometry.

Definition 3.2.3. Let us consider a linear mapping T' from the quadratic space (E1,q1) to (Fa,g2). This
linear mapping 7T is an isometry if it satisfies

e T is injective
e ¢2(T(2)) = q1(z) for all x € Fy

A Clifford algebra A(E, q) is then said to be universal if whenever T' € L(FE, F') is an isometry of (FE, q) into
(F,r) with B(F,r) a Clifford algebra for (F,r), then T extends to an algebra homomorphism T': A(E, q) —
B(F,r). This is illustrated in the following diagram.

E——F

C -

A(E,q) -5 B(R,)

A universal Clifford algebra for (F, q) is denoted by A(E, q). Since A(E,q) is generated by E, we know that
T is unique. If we use the identity mapping as the isometry, we see that a universal Clifford algebra for (E,q)
is unique.

Let us now take a look at a basis for Clifford algebras. Suppose (eq, ..., e4) is a standard orthogonal basis for
the quadratic space (E,q). We set Q = Qg = {1,...,d}. If C = {i1,..., i} with 1 <43 < ... < i} < d, then
we define the element ec to be the product ec = ey, ...e;, , which is taken inside the Clifford algebra. We set
ep = 1. Note that ec will depend on the ordering of {1,...,d} if |C] > 1. The element eq = e;...eq, which
we call the volume element, will be particularly important. From chapter [2| we recognize —iy° as the volume
element of the algebra of space-time. Note that e = (71)2?:_11 : H?Zl q(e;). This means that e = (—1)"
with n = %d(d — 1) + p. To see when € is either 1 or —1 we look at two cases:

e Suppose that d = 2k is even and that p = k+t and m = k—t. Then n = k(2k — 1)+ k+t = 2k% +t so
7 (mod 2)=1¢ (mod 2). If p—m =0 (mod 4), then p—m =k +¢— (k—t) =2t =4l for some | € K.
This means that then ¢ = 2I, implying that €3 = 1. If p—m = 2 (mod 4), then p —m = 2t = 4] + 2
for some | € K. This means that in that case t = 2/ 4+ 1, which means that e = —1.

e Now suppose that d = 2k+1isodd and p = k+t and m = k—t+1. Thenn = k(2k+1)+k+t = 2k(k+
1)+t, so again 1 (mod 2)= ¢ (mod 2). If p—m = 1 (mod 4), then p—m = k+t—(k—t+1) = 2t—1 = 4i+1
for some | € K. This means that we then have that t = 20 + 1 so e = —1. If p—m = 3 (mod 4),
then p —m = 2t — 1 = 41 + 3 for some [ € K. This means that in that case ¢t = 2(I + 1), implying that
e = 1.

Theorem 3.2.4. Let P = {ec : C C Q}. Suppose that A is a Clifford algebra for (E,q), then A = span(P).
If P is linearly independent, then A is universal and the elements of P form a basis for A.
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Proof. What we know is that a Clifford algebra A for (E, q) is generated by all the elements of the basis of
(E,q). This Clifford algebra A is therefore the span of all the infinite amount of possible products between
these elements. We thus need to check if the set P contains enough elements to span A. We know that e?
is either 0, 1 or —1 and that e;e; = —eje; for © # j. From this it follows that if ec,ep € P, then either
ecep = 0or ecep = tecap, where CAD = (C\ D)U(D\ C). This means that the product of two elements
of P will end up in either P or —P so we may conclude that P is large enough to span A.

Suppose P is linearly independent and let T' € L(E; F') be an isometry of (E,q) into (F,r) with B(F,r) a
Clifford algebra for (F,r). We can extend T into an algebra homomorphism T:A—B by setting

T(eil ...eik) = T(GZI)T(GM)

and then extending this by linearity. From this we may conclude that A is then universal. The fact that
elements of P form a basis for A immediately follows from the fact that A = span(P) and that P is linearly
independent. O

Corollary 3.2.5. If dim(A) = 2%, then A is universal.

Proof. From Theorem we know that A = span(P). This means that the dimension of A must be
equal to the amount of elements in P minus the amount of elements in P that can be written as the linear
combination of other elements in P. If we take ec € P, we have for every element of ) that it is either in
C = {i1,...,4,} or not in C. This means that there 2¢ different ways to define ec. The amount of elements
in P is thus equal to 2¢. We therefore find that P must be linearly independent if dim(A) = 2¢ and from
Theorem we may then conclude that A is universal. O

3.2.1 Existence of a universal Clifford algebra

We want to show that for every quadratic space there exists a universal Clifford algebra. To do so, we first
have to define what is called a Zy-graded algebra or super-algebra. For this subsection we will follow chapters
2,3 and 5 of [12].

Definition 3.2.6. A super-algebra is a unital algebra A that can be decomposed into a so-called even AT
and an odd part A=, A= At @ A~. For these even and odd parts the following must hold

ATAT CAT ATA- CAT A AT C A  and A=AT C A~
To define this even and odd part we will take a look at involutions.

Definition 3.2.7. An involution is a function f that is its own inverse, i.e. f(f(z)) = z for all = in the
domain of f.

If # is an involution of a unital algebra A onto itself, then we find that p = (I 4+ 6)/2 is an idempotent. This
means that p? = p. If a € A, then a = I(a);e(a) + I(a)ge(a) so that A = p(A)+ (I —p)(A). We also have that
p(A) N (I —p)(A) = {0}. Using this we can write A = AT & A~, where AT = p(A) and A~ = (I — p)(A).
We then have that p(A) is a subalgebra of A and

At ={a€ A:0(a)=a}and A~ ={a € A:0(a) = —a} (3.12)

These even and odd parts satisfy the relations in Definition Ifa € ATUA™ we say that a is homogeneous.
When A and B are super-algebras we can define another law of multiplication called the graded tensor product.

Definition 3.2.8. Let A= At ® A~ and B = Bt @ B~, then the graded tensor product is defined as

—a1a2 @ biby ifby € B~ and ax € A~

®b ®be) =
(a1 1)g(az @ bs) {a1a2 ® byby otherwise

for aq,as homogeneous in A and by, by homogeneous in B.
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We write A ®, B for A® B with the graded tensor product as the law of multiplication and write a ®4 b for
the elementary tensors in it.

Theorem 3.2.9. Suppose that the quadratic space (E,q) is the orthogonal direct sum (E1,q1) @ (E2,q2) of
quadratic spaces where qq is the restriction of q to E1 and qo the restriction of q to Es. If, also, there exists a
universal Clifford algebra A(Eh,q1) for (E1,q1) and a universal Clifford algebra A(Esq,qs) for (Es,qs2), then
G = A(Ey, q1) ®¢ A(Es, q2) is a universal Clifford algebra.

Proof. For z; € Ey and 5 € E5 define the linear mapping j from E to G by j(z1+22) = (21 ®41)+ (1®422).
We see that j is an injective linear mapping with 1 ¢ j(E). As z; € A= (E1,¢1) and 29 € A~ (E», g2) we have
that

Jlz + $2)2 = (71 ®y 1) + (1 ®¢ 72))y((z1 @y 1) + (1 ®y 2))
= (21 ®g 1)g(x1 ®g 1) + (21 ®g 1)g(1 ®g z2) + (1 ®g 22)g(x1 ®g 1) + (1 ®g x2)4(1 ®4 2)
= —q1(71) + (21 ®g 12) — (1 ®g ¥2) — g2(72) = —q(2)

So j is a Clifford mapping from (E, ¢) into G. Furthermore, G is generated by elements of the form z ®,y =
(x®41)(1®4y). Since j(z1+0) =21 Q41 and j(0+z2) = 1 ®4 2, we find that j(z1 +0)j(0+22) = 21 R4 2
and thus that G is generated by j(E; + E3). This means that G is a Clifford algebra for (E, ¢). We also have
that

dim(A) = dim(A(E1, q1))dim(A(Fs, q2)) = 241242 = 24

so from Corollary we may then conclude that G is a universal Clifford algebra for (E, q). O

The theorem above is not used very often, as the the graded tensor product is not very practical in solving
problems. However, it is very useful in proving the next important theorem.

Theorem 3.2.10. If (E,q) is a quadratic space, then there exists a universal Clifford algebra A(E,q).

Proof. We will prove this theorem using induction. First we take a look at the case d = 1. In this case there
are three possibilities

e The basis element ey satisfies g(e;) = 0. The universal Clifford algebra in this case is actually the
so-called exterior algebra introduced by Hermann Grassmann. We will not explore the exterior algebra
in this thesis, but if one is interested in the mathematical description of this algebra, see section 3.4 of
[12].

e Another possibility is that the basis element e; satisfies g(e;) = 1. In this case, let A = C and
j(Ae1) = Xi. We see that (j(Aep))? = =A% = —q(Xe1) and that 1 ¢ j(E), implying that j is a Clifford
mapping. As C is generated by {1,:}, we see that j(E) generates C. This means that C is a Clifford
algebra for (E, ¢). Since dim(C) = 2, we may conclude that this Clifford algebra is universal.

e The last possibility is that e; satisfies g(e;) = —1. Let A = R? with coordinate-wise multiplication and
j(xer) = (A, —)\). We see that 1 ¢ j(E) and that (j(Ae1))? = A2(1,1) = —g(Xe1)1. This means that j
is a Clifford mapping of E into R?. Furthermore, for every (a,b) € R? we have that

(maz(a, b) — i ; b|)j()\€1)j(§€1) + J( la g b|e1) = (max(a,b) — o ; b|,maa¢(a7b) _ @)
Lot
2 2
= (max(a,b), max(a,b) — |a — b|) = (a,b)
if a > b and
(min(a,b) + |a g b| )j()\e1)j(§el) - j(|a2;b|e1) = (min(a,b) + MQ;b',mm(a, b) + @)

= (min(a,b), min(a,b) + |a — b|) = (a,b)
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if b > a. This means that j(E) generates R? and thus that R? is a Clifford algebra for (F,q). Since
dim(R?) = 2, we may conclude that R? is a universal Clifford algebra for (E, q).

Assume now that the result is true for all quadratic spaces with a dimension less than dim(E) = d, with
d > 1. Because d > 1 we can write E as an orthogonal direct sum E; @ Es, with dim(E;) = dy < d
and dim(E3) = ds < d. By the inductive hypothesis there exist universal Clifford algebras A(E1,q;) and
A(FEs,q2), with g1 and g2 the restrictions of ¢ to Ey and Es respectively. From Theorem we may then
conclude that the graded product A(E1, ¢1) ®4 A(Es, g2) is a universal Clifford algebra for (E, q). O

Corollary 3.2.11. A Clifford algebra A of the quadratic space (E,q) is universal if and only if dim(A) = 2°.

Proof. As we have already proven that dim(A) = 2% implies that A is universal, we only have to prove it the
other way around. We will prove the other way around using induction. We start with the case where d = 1.
In this case we see that a universal Clifford algebra of (E,q) is either C, R? or the exterior algebra. In all
these three cases the dimension of the Clifford algebra is 2 [12] so for d = 1 the theorem holds.

Suppose now that (E,q) is a quadratic space with dimension d. We can then write E as an orthogonal
direct sum Ey @ Es, with dim(E;) = di < d and dim(F3) = da < d. We now know that for these
quadratic spaces there exists universal Clifford algebras A(FE4,q1) and A(Es,q2). From Theorem we
may then conclude that A(E, q) = A(E1,q1) ®4 A(Es, q2). From the inductive hypothesis it then follows that
dim(A(E, q)) = 2129 = 24, O

A universal Clifford algebra for a standard regular quadratic space with signature (p, m) will be denoted by
Ap.m. An interesting property of universal Clifford algebras is that we can consider them as a quotient of
®*E. To do so, we have to define the ideal I,. This is the ideal in ®*E generated by all elements of the form

z@x+q(x)lforallz € F (3.13)

With this ideal we can give the following alternative definition of a universal Clifford algebra A(E, q).

Proposition 3.2.12. A universal Clifford algebra A for a quadratic space (E,q) can be defined as
A(E,q) = (®"E)/1,

Proof. Let C(E, q) = (®*E)/I, be the quotient algebra and 7 : ®*E — C(E, q) the quotient mapping. Also
define 7 to be the inclusion mapping from F into ®*F and let jp = m oi. We see that

(jB(@))* = n(i(2)i(x)) = 7(z @ ) = m(z @ x + q(2)1) — 7(q(x)1) = —q(x)

We also have that 771(1) = 1+ I,. From the fact that I, N E = {0} it then follows that i(E) N7 ~1(1) = {0}
and thus that 1 ¢ jp(F). This means that jp is a Clifford mapping from F into C(F,q) and thus that
C(E,q) is a Clifford algebra for (F,q).

We will now prove that C(F, q) is a universal Clifford algebra for (E,q). Suppose that we have an isometry
T from E into another quadratic space (F,r) and that B(F,r) is a Clifford algebra for (F,r). Denote the
Clifford mapping from (F,r) into B(F,r) by ja. Since f = ja o T is a linear mapping from F into the
unital algebra B(F,r), we may conclude from Theorem that f extends uniquely to a unital algebra
homomorphism f: ®*E — B(F,r). The way we defined this extension in the proof of Theorem is the
following

f(ei1 ®...0 eik) = f(ell)f(elk)
From the fact that T is an isometry it then follows that

flz @z +q(@) = f(2)f(2) +q(z) = jA(T(2)) + (T (z)) = 0

We thus see that I, C ker(f). From the universal property of the quotient (see Proposition 2.1.26 of
[23]) it then follows that there exists a unique algebra homomorphism o C(E,q) — B(F,r) such that
f'om = f. This means that every isometry of (E, ¢) into another quadratic space (F,r) extends to an algebra
homomorphism of C(E, ¢q) into B(F,r), with B(F,r) a Clifford algebra for (F,r). We may therefore conclude
that C(E, q) is a universal Clifford algebra for (E, q). O
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Let us now take a look at the concept of even and odd algebras for universal Clifford algebras A(E,q). Let
m(z) = —x for x € E. The mapping m is an isometry of E onto itself (¢(—z) = (—=1)2q(z) = q(z)). As
A(FE,q) is universal, m extends to an algebra homomorphism m : A(E,q) — A(E,q) in a natural way by
defining:

m(ei,...e;,) = m(e)..m(e;,)

and then extending this by linearity. We write o’ for m(a). We know that every element of A(F,q) can be
written in a unique way as a finite linear combination of the elements of the basis for A(F,q). From the
definition of m it then follows that a = b if ¥’ = @’ for ¥',a’ € A(F,q). The mapping a — a’ is therefore
injective and thus an isomorphism of A(E, q) onto itself. Note that e}, = (—1)/®lec and that o/ = a. We
thus have that the mapping m is an involution. We call this involution the principal involution. Let us now

set
At ={a:a=d}and A~ ={a:a=—d'} (3.14)

We then have that A = AT @ A~ and that AT is a subalgebra of A. We call this subalgebra the even Clifford
algebra. Furthermore,
ATAT=A A" =ATand ATA- = A" AT = A~ (3.15)

This means that every universal Clifford algebra can be decomposed into an even and an odd part and is
thus a super-algebra. We also see that ec € A if |C] is even and that ec € A~ if |C] is odd. This means
that all elements of the basis (e, ..., e4) are in A, implying that j(E) C A~.

3.2.2 Simplicity

Even though the most interesting Clifford algebras are universal, it also interesting to look at the cases in
which we encounter non-universal Clifford algebras. For this subsection we will follow section 5.5 of [12].
If (E,q) is not regular, then e3 = 0. We then have that A(F,q)eq is an ideal in A(E,q) and because
1a ¢ A(E,q)eq we see that this ideal is actually a proper ideal. Let B(E,q) = A(FE,q)/A(E,q)eq and
q: A(F,q) — B(F,q) the quotient mapping. If dim(F) > 1 , then there exists a Clifford mapping j from
(E,q) into A(E,q). Now define jg = qoj. For a € A(E,q) we have that 1+ aeq ¢ j(FE). This means that
1 ¢ jp(E). We also have that

(jB(2))* = 7(j(2))m(j(x)) = 7(j(2)*) = —q(x) (3.16)

This means that jp is a Clifford mapping from (FE, ¢) into B(E, ¢) and thus that B(F, q) is a Clifford algebra
for (E,q). We also have that dim(B(E, q)) < 2%, implying that B(E, q) is a non-universal Clifford algebra.
Now that we know that there exist non-universal Clifford algebras for (E, ¢) when (FE, ) is not regular, let us
look at the cases in which there are non-universal Clifford algebras when (F,q) is regular and has signature
(p,m). Suppose A is a Clifford algebra for (F,q), where dim(E,q) > 0. We then we have the following
diagram.

As A(E, q) is universal, we know that Id is an algebra homomorphism of A(E, ¢) into A. Let us take a look
at ker(Id). If we take a € A(FE,q) and b € ker(Id), then Id(ab) = Id(ba) = Id(b)Id(a) = 0, implying that
ab,ba € ker(Id). This means that ker(Id) is an ideal in A(E, q). If A(E, q) is simple, then we know that either
ker(Id) = 0 or ker(Id) = A(E,q). From the assumption that (E,q) # {0} it follows that ker(Id) = A(E,q)
is not possible. We therefore must have that ker(fd) = 0 and thus that Id is injective. From this it follows
that dim(A(E,q)) < dim(A). From the proof of Corollary we may conclude that dim(A(E,q)) > A,
which means that dim(A(FE,q)) = dim(A). This means that Id is an isomorphism if A(E, q) is simple and
thus that every Clifford algebra for (F,q) is universal.

Let us now take a look at the cases in which the universal Clifford algebra A(FE,q) for the regular quadratic
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space (F,q) is simple. Since a universal Clifford algebra for every quadratic space is unique, we have that
(A,q) = A, ;. It is therefore sufficient to only consider the algebras A, p,.

Theorem 3.2.13. Ifp—m # 3 (mod 4), then A, , is simple. This means that all Clifford algebras for Ry .,
are universal.

Proof. Suppose J is a proper ideal of A, ,,. As J is a proper subset of A, ,,, it must have a dimension of
at most 2¢ — 1. This means that all A, ,, with dim(A,,,) < 2 are simple. For the rest of our proof we may
thus assume that d > 1. Suppose I is a non-zero ideal in A, ,,,. The technique that we are going to use for
this proof is proof by contradiction. Let x be a non-zero element in I with a minimal number of non-zero
coefficients in its expansion with respect to the basis {ec : C' C Q}. By multiplying and scaling we can write

r=1+ Z Acec
CeR

where R is a set of nonempty subsets of 2. With our contradiction we will prove that R is either the empty
set or only contains 2. Suppose that B € R and that B # €, this means that there exist ¢ € B and j ¢ B.
Then
€i€jTEE; = €,€5€,€5 + Z eiej)\ceceiej
CeR
—q(ei)ale;) + Y poec

CeR

where po = £q(e;)q(ej)\c. However, as e;e; = —eje; for i # j, we have that
eiejepeie; = (—1)‘B|q(ei)ejeBej

with |B| the amount of elements in B. This means that for up we find that up = (—1)2Blg(e;)q(e;)\p =
q(ei)q(e;) . As q(ei),q(ej), ei,ej € Ay m, we know that g(e;)g(e;)x € I and e;ejxe;e; € I. Together with
the fact that I is closed under addition, we have that g(e;)q(ej)x — e;ejze;e; € I. If we try to write the
expansion of ¢(e;)q(e;)r — e;ejze;e; with respect to the basis {ec : C C Q}, we find that

alei)alej)z — esejweie; = qlei)ale;) — (—aleale)) + Y alenales)rcec — (Y £alealej)Acec)

CeR CeR
=2q(e;)qle;) + Y (qlei)alej)Acec — £qlei)q(ej)Acec) + qlei)ale;) Apes — qlei)qle;) Apes
CER\B
=2q(ei)q(e;) + Y (aleiales)Acec — +qlei)q(e;)Acec)
CER\B

What we see is that g(e;)g(ej)x — ejejxe;e; is a non-zero element of I with fewer non-zero terms than z,
which of course gives a contradiction. This means that we can write x = 1 + A\geq. Let us now consider the
two possible cases.

e Suppose that d is even. Then ejze; = —q(e1)l + (=1)%g(e1)Aaeq = —q(e1)(1 — Ageq). This means
that g(e1)r — erxer = 2¢g(e1)1 € I. We know that g(e1) # 0, so I = Ap .
1

e Suppose that p —m = 1 (mod 4). In that case e = —1 meaning that z(1 — A\geq) = (1 + A\3)1. As
A3 # —1, we may conclude that [ = A, ,,,.

In both cases we see that A, ., is simple. Therefore when p —m # 3 (mod 4), all the Clifford algebras for
R, are universal. O

We can find corresponding results for even Clifford algebras if we combine the above theorem and Theorem
3.3.4] which we will touch upon later.

Corollary 3.2.14. If p 2 m (mod 4), then Al is simple.

p,m

Let us now take a look at the case where p — m = 3 (mod 4).
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Theorem 3.2.15. If p—m =3 (mod 4), then A, n, is not simple and

Apm = AT, ® AF

p,m
There ezists a non-universal Clifford algebra By, ., for R, .., and any such algebra is isomorphic to A;m

Proof. Let us denote Ap.m by A in this proof. When p —m = 3 (mod 4) we have that e = 1. From this it
follows that f = £(1+ eq) and g = 1(1 — eq) are idempotents satisfying f + ¢ = 1 and fg = 0. We thus
have that a = a(3 (1 +eq) + 3(1 —eq)) if a € A. We also have that Af N Ag = {0}. This means that A can
be written as A f @ Ag, where Af and Ag are unital algebras with identity elements f and g respectively.

Let us define the mapping my : a — af from A into Af. We see that this mapping is an algebra homomor-
phism and since a = af + ag we also see that Ag is its null-space. Let j be the Clifford mapping from R, ,,,
into A. Define [ : R, ,, = Af to be the mapping = — j(x)f. Since Ag is the null-space of my, we have that
I7Y(f) = 1+ Ag. From the fact that 1 + Ag N j(R,,,) = {0} it then follows that f ¢ [(R, ). We also have

that
() f)? = j(2)?f? = —q(a)f

This means that [ is a Clifford mapping. We also have that j(R, ,,,) generates Af so that Af is a Clifford
algebra for Ry, ,,,. To see if Af is a universal Clifford algebra for R, ,,, we have to take a look at the dimension
of Af.

Since d = p + m is odd, we have that aeq € AT if a € A~ and aeq € A~ if a € A". In both cases
we see that (a’ + (aeq)’) € Ag. This means that m|ay is an algebra homomorphism from Af into Ag,
where m is the extension of the principal involution. What we see is that ﬁm\;‘}(O) =0 = 0. We thus
have that ker(m|ay) = 0, implying that m|as is injective. Suppose | € Ag and [ # 0. We then have

that [ = J(a — aeq) for some a that is either an element of A* or A~. In both cases we have that

ﬁl\;}(l) =1 = 4(d’ — (aeq)’) € Af. We may thus conclude that m|ay is also surjective and therefore

an isomorphism. The dimension of Af is thus equal to the dimension of Ag. Together with the fact that
dim(A) = dim(Af)+dim(Ag) we find that dim(Af) = 2¢71. This means that Af is a non-universal Clifford
algebra for Ry, ,.

Let us now prove that this non-universal Clifford algebra is isomorphic to A*. Since d = p + m is odd,
we have that aeq € A~ if a € AT. Every element of A can be decomposed into an even and an odd part

a=at+a = ‘”“ + 5% “ . If we take a € AT we thus find that (af)™ (a+ae”)+ (a’+(aea)) _ 2. From
this we may conclude that the restriction of my to A" is one-to-one. Slnce both A f and AT have half the
dimension of A, we may conclude that the restriction of my to AT is also surjective and thus an isomorphism.
In the same way we can find that the restriction of m, : @ — ag to A is an isomorphism. This means that
AE,q) 2 Af® Ag 2 AT @ AT.

Let us now prove that any non-universal Clifford algebra for R,, ,, is isomorphic to A;m. Suppose that B is
a Clifford algebra for (E,q) = Ry, where p+m > 0. Then we have the following diagram

Id

E——F

- -

Af@AgWIfdféB

We have that Af = AT(FE,q) and from Corollary m we know that A*(F,q) is simple. This means that
cither ker(Id|as) = 0 or ker(Id|a;) = Af, the same holds for Ag. From the assumption that E # {0} it
follows that it is not possible that both ker(Id|as) = Af and ker(Id|a,) = Ag. If either ker(Id|af) = Af or
ker(Id|a,) = Ag, then we have that B = Af = Ag = A+ (where we have used that B # {0}). This means
that in that case B is a non-universal Clifford algebra that is isomorphic to A*. If both ker(Id|47) = 0 and
ker(Id|a,) = 0, then from the rank-nullity theorem (see Theorem 2.3 of [11]) it follows that dim(B) = 27
and thus that B is universal. From this we may conclude that there exists a non-universal Clifford algebra
for R, ., if p —m =3 (mod 4) and that this non-universal Clifford algebra is isomorphic to A . O
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In the case where (FE, q) is regular, we thus see that there are only non-universal Clifford algebras for (E, q)
possible if p — m = 3(mod 4). In this case, we actually see that a universal Clifford algebra for (F,q) is
isomorphic to the direct sum of these non-universal Clifford algebras. We will see that this plays an important
role in classifying Clifford algebras for p — m = 3(mod 4).

3.3 Classifying Clifford algebras

To get a better understanding of where the gamma matrices and the other representations of Clifford algebras
come from, we will classify the Clifford algebras for all possible dimensions of (E, g). For this section we will
follow chapter 6 of [12|. From now on, we will only consider Clifford algebras for regular quadratic spaces.
This means that the square of the volume element is equal to either 1 or —1. Let us first have a look at the
Clifford algebras A(E, q) with dim(E) = 2 before we classify Clifford algebras for higher dimensions.

The algebra A,
Let us define the mapping j : R? — H by j(x1e1 + z2e2) = x1i + 22j. We then see that 1 ¢ j(R?), that j is
injective and that

jlxier + x262)2 = chi2 + T1x0ij + T2 ji + x%jQ

= —a? + zy20k — 1120k — 23 (3.17)
- —at—a}

This means that j is a Clifford mapping. This Clifford mapping extends to an algebra homomorphism of
Ay into H. We also have that 2 — 0 # 3 (mod 4), which means that As( is simple. Together with the fact
that dim(Asz,o) = dim(H) = 2 we may conclude that A o = H.

The algebra A4, ;
Let us define the mapping j : Ry ;1 — M2(R) by

) . 0 —T1 + 22
jlxrer + xoe) = <x1 ¥ 2y 0 ) (3.18)
We see that 1 ¢ j(Ry 1), that j is injective and that
2 .2
. 2 [~ + xo 0
Jj(zier + xoe0)” = ( 0 _a? er%) (3.19)

This means that j is a Clifford mapping, which extends to an algebra homomorphism of A; 1, into M>(R).
As1—1 = 3 (mod 4), we know that A; ; is simple. We also have that dim(A; 1) = dim(Mz(R)) = 4 so we
may conclude that A; 1 = M3(R).

The algebra A
Let j : Rg 2 — Ma(R) be defined by

J(@ier + zae2) = (332 ! ) (3.20)

r1 —T2

We see that 1 ¢ j(Rg2), that j is injective and that

2 2
: e 0 ) (3.21)

2 _

This means that j is a Clifford mapping and extends to an algebra homomorphism of Ag o into Mz(R). As
0—2# 3 (mod 4), we know that Ag o is simple. We also have that dim(Ag2) = dim(M2(R)) = 4 so we may
conclude that Ag o = M (R).

To classify Clifford algebras for a regular quadratic space (F, ¢) wih an even dimension higher than 2, we use
Clifford’s theorem.
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Theorem 3.3.1 (Clifford’s theorem). Suppose that (E,q) is a reqular quadratic space of even dimension 2k
and that E is an orthogonal direct sum F & G, where F and G are reqular subspaces of dimensions 2k — 2
and 2 respectively. Let wr be the volume element in the subalgebra Ap = A(F,q) of A = A(E,q), and let
(91, 92) be an orthogonal basis for G. Let ¢c; = wpgy and ca = wpge and let C' be the subalgebra generated by
{c1,c2}. Then dim(C) =4 and Ap and C commute. This means that A= Ar @ C. We can then distinguish
between two cases

e If, in addition, G is hyperbolic or g2 = g5 = w2, then C = M(R).

e If, instead, g? = g5 = —w?2, then C = H.
Proof. Since dim(F') is even, we see that wpg; = ¢; = giwp for i = 1,2. We also have that ¢;f; = fjc; for
it =1,2if f; is an element of the orthogonal basis for F. This means that c;x = z¢; for ¢ = 1,2 and « € F.

We thus have that Ar and C' commute. To see what the dimension of C is, we look at all the possible
combinations of the two elements c;. First, we see that ¢ = w%g? = +1 for i = 1,2. Next we find that

C1C2 = WRJI1WFg2 = UJ%gng = —WFYawWrg1r = —C201
and that
(0102)2 = w}lvglgzglgz = *Q%QS ==+l

We may thus conclude that C' is four-dimensional. From Corollary it then follows that A~ Ar ® C.
We also have that A\jc1 + Aaca = wr(A1g1 + A2g2) for A\, A2 € K. Together with the fact that ﬁ is clearly
not in span(gi, g2), we find that 1 ¢ span(c1,c2). We also have that cica + cac; = 0 and that ¢? = 41
for i = 1,2. From Theorem [3.2.2] it then follows that C is a Clifford algebra for G and from the fact that
dim(C) = 4 it follows that C is a universal Clifford algebra. Using what we have found on universal Clifford
algebras A(E, q) with dim(E) = 2 we can distinguish between three cases.

e If G is hyperbolic, then ¢ = —c% and (c1¢2)? = —c2c3 = 1 so that C = My (R).

o If g7 = g3 = w%, then ¢? = ¢ = 1 and (c1¢2)? = —1. This then means that C = Ms(R) as well.

o If g} = g3 = —w?, then ¢f = ¢ = —1 and (c1c2)? = —1. This means that C' = H. O
The corollaries of this theorem are what we actually use to classify Clifford algebras.
Corollary 3.3.2. Suppose d =p+m = 2k.

e Ifp—m=2ord (mod8), then Ay = Mor—1(H)

e Ifp—m=0o0r6 (mod8), then Ay, = Moy (R)

Proof. If we combine Clifford’s theorem with Proposition we find that Apiq me1 = Ay @ Ma(R) =
M>5(A, ). From this it follows that A, mt; = Ap m@Mas (R) = My, (A m). We know that My (Mor—1 (H)) =
H® M2k—1 (R) ® Moy (R) = Mgk:+_7‘—1 (H) and that My (M2k (R)) = My, (R) (2] M2k (R) = M2k+j (R) It is there-
fore sufficient to prove the result when m = 0 or p = 0. Suppose that m = 0. We will prove the result
using induction. We know that Ay = H. Now suppose that the corollary holds for all even d = 2k with
d < 85+ 2. This means that we assume that Agjio = Maa; (H). Keeping in mind that wi=—-1lifp—-m=0
(mod 4) and that w% = 1if p —m = 2 (mod 4) we may conclude from Clifford’s theorem that

° Aglj+4 = M24j (H) 39 MQ(R) = M24j+1 (H)

° Agj+6 = M24j+1 (H) Q H

Using Proposition we find that
A8j+6 = M24j+1 (R) QHR H = M24j+1 (R) X M4(R) = M24j+3 (R)

° A8j+8 = M24j+3 (R) [ MQ(R) = M24j+4 (R)
o Agjy10 = Maajra(R) @ H = Maajra (H)
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Now suppose that p = 0. We will again prove the result using induction. We know that Ag2 = M3(R).
Suppose that the corollary holds for all even d = 2k with d < 8j + 2. This means that we assume that
Apgjt2 = Maaj+1(R). From Clifford’s theorem it then follows that

o Aggjta = Moaj+r(R) @ H = Moajr (H)

o Aosjre = Mysjri (H) @ Ma(R) = H® Maai+1 (R) @ Ma(R) 2= Myas+2 (H)

o Agsgjts = Masjr2(H) @ H = Mosj+a(R)

o Apsjt10 = Maaiva(R) @ Ma(R) = Maaj+s (R) 0

With Clifford’s theorem we have only classified Clifford algebras for quadratic spaces with an even dimension.
Let us now take a look at Clifford algebras for quadratic spaces with an odd dimension. We will start by
looking at the case where p —m = 1(mod 4).

Proposition 3.3.3. Ifd=p+m=2k+1andp—m =1 (mod 4), then A, ., = Mo (C)

Proof. Let F be a regular subspace of R, ,, of dimension 2k and eq be the volume element of A, ,,. Since
p—m =1 (mod 4), we have that e} = —1. We see that C = span(1,eq) is a subalgebra of A4, ,,. We
also have that C = span(1,4) with 2> = —1. This means that C' = C. As the dimension of Rp.m is odd, we
know that A(F,q) and C commute. We also know that A(F,q) = span(P) with P = {e. : C C Qq} and
Qo = {1, ..., 2k}. Together with the fact that C' contains the volume element of A4, ,,,, we may conclude that
A(F,q) and C generate A, ,,. We also have that dim(A,,,,) = 22**1 = 22% . 2 = dim(A(F, q))dim(C). Tt
thus follows from Corollary that A, ,, = A(F,q) ® C = A(F,q) ® C.

As p—m =1 (mod 4), there are two possibilities for A(F,q):

o A(F,q) = Msx(R). In this case it is clear to see that A4, ,, = My (R) @ C = My (C).

o A(F,q) = Myw—1(H). In this case we have that Ay, = Mox—1(R) ® H® C. This means that from
Proposition [3.1.18|it follows that A, ,, = Mar-1(R) ® M»(C) = My (C). O

Recall from the previous section that for the universal Clifford algebras A, , over the regular quadratic
spaces with p — m = 3 (mod 4), we proved that they were isomorphic to the direct sum of two copies of
their even Clifford algebra A;m. To classify these Clifford algebras we thus have to first prove the following
theorem regarding even Clifford algebras.

Theorem 3.3.4. A"

~ + ~
p+1,m — Apam and A - Am7P

p,m+1

Proof. Let (e1,...,eptm+1) be the standard orthogonal basis for R,i1,, and (f1,..., fp4m) the standard
orthogonal basis for Ry, ,,,. Since g(e1) = 1, we have that e;11€j41 = (e1€;41)(e1e;41). The basis of A;_—‘,-l,m
consists of all the products consisting of an even amount of elements from (e1, ..., €p4m+1). This means that
{e1ej4+1 : 1 < j < p+ m} generates A;er+1,m~ Let f:Rpm — A;H,m be the mapping defined by f; — eiejq1
for 1 < j < p+m. We see that

(erej11)? = —efes ) = —qlej41) = —q(f))

We also have that 1 ¢ f(R,,,) and that f is injective. This means that we can extend f by linearity into a
Clifford mapping from R, ,, into A;—i—l,m' This Clifford mapping can be extended to an algebra homomor-
phism of Ap,,, into A¥,, . We also have that dim(A},, ) = 2rtm+! /2 = 207™ — dim(A,, ,,,). Together
with the fact that the elements of the set {e1ej11 : 1 < j < p + m} generate A;Hm and thus that this
algebra homomorphism is surjective, we may conclude that this algebra homomorphism is actually an algebra
isomorphism.

Now let (e1, ..., ep+-m+1) be the standard orthogonal basis for Ry, 41 and (g1, ..., gp+m) the standard orthog-

onal basis for Ry, ,. Since (ej€pim+1)(€i€prm+1) = —ej€;, we have that {ejeprmi1 1 1 < j < d} generates

A;mH in the same way as above. Let g : R,, , — A;,m-u be the mapping g; = €ptm+1—j€ptm+1. We see
that

(€P+m+1—j6p+m+1)2 = *€§+m+1—j€;2>+m+1 = —q(g;)
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We also see that 1 ¢ g(R,, ) and that g is injective. We can again extend this map by linearity to create
a Clifford mapping from R,, , into A:;m 11- Which, again, can be extended to an algebra homomorphism

of A, p into A;m—i—l' In the same way as above, A, and AF, | both have dimension 227, Together

with the fact that the elements of the set {ejepim41 1 1 < j < d} generate A;mﬂ, we may conclude that
~J +

Amp = AL m- O

Remark 3.3.5. From Theorem it follows that A, ;41 = A;_+1,m+1 = A, p+1. However, we also have
that A;mﬂ = App and that A, = Ay, In general, Ay, , and Ay, are not isomorphic to each other.
For example, when p +m = 2k and p — m = 2 (mod 8), then A, ,, = My—:(H) and A,,, = My (R).
So, in general A;;m 41 and A;J;r+1,m are not isomorphic to each other. This means that most of the time,
Ap m+y1 and A, 41 decompose into a different direct sum of an even and an odd Clifford algebra. The
isomorphisms between algebras following from Theorem [3:3.4] thus do not always imply that these algebras

are also isomorphic as super-algebras.
Using Theorem we can classify the Clifford algebras A, ,,, for the case where p — m = 3(mod 4).
Corollary 3.3.6. Suppose thatd =p+m =2k +1

o Ifp—m =3 (mod 8), then Ay = Mor—1(H) & Myr—1 (H)

o Ifp—m=7 (mod 8), then A, , = Mox(R) & Myr(R)

Proof. In both cases we have that p—m = 3 (mod 4). This means that from Theorem[3.2.15|we may conclude
that Ay, = Af, ® Al If p > 0, then from the Theorem above it follows that A}, = A, ;. In that
case, we can distinguish between two cases:

o If p—m = 3 (mod 8), then p — 1 —m = 2 (mod 8), implying that A,_1 ,, = Myr-1(H). This then
means that Ay, = Mok—1(H) @ Mor—1 (H).

e If p—m =7 (mod 8), then p—1 —m =6 (mod 8), which means that A,_1 ., = Mo (R). From this it
follows that Ay, = Mor(R) & Mo (R)

If p = 0, then from the Theorem above it follows that Aam = A,,—1,0- In this case we can also distinguish
between two cases:

e If —m =3 (mod 8), then m — 1 = 4 (mod 8), so that A,,—1,0 = Myr—1(H). In this case we thus have
that Ap7m = Mok (H) D Mor—1 (H)

o If —m =7 (mod 8), then m —1 = 0 (mod 8), implying that A,,—1,0 = My (R). From this it follows
that A, = Mox(R) @ Mok (R) 0

Essentially, we have now already classified the Clifford algebras for all possible dimensions over regular
quadratic spaces. However, an attentive reader might have already noticed that there is a form of periodicty
hidden in the classification of the Clifford algebras. This periodicity is summarized in Cartan’s periodicty
law, named after the French mathematician Elie Cartan. Before we can take a look at this law, we first have
to prove the following proposition.

Proposition 3.3.7. There is an isomorphism of Ap pmya onto Apiam.

Proof. Let (eq,...,eq) denote a standard orthogonal basis for Rpt4,, and (g1, ..., 94) a standard orthogonal
basis for Rp 44, with d = p+m +4. Let f = epri1eproeprsepra € Apianm and define the mapping
T R.,>+¢ — Apta,m by setting

(g;) = ejfforp+1<j<p+4
! ejforl<j<pandforp+5<;5<d
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and then extending by linearity. Keeping in mind that f? = ef, _Heg _‘_2612, +3eg 14 =1, we see that
n(g;)? =2 = —1for 1 < j <p,

W(gj)Qz—eifQ:]_forp_’_lgj§p+4’
m(g;)? =€ =1lforp+5<j<d.

We also have that 7(g;)m(gx) = —7(gx)7(g;), implying that the mapping 7 can be extended linearly into a
Clifford mapping from Ry, ;5,4 into A, 44 .,,,. This Clifford mapping then extends to an algebra homomorphism
from A, 44 into A,14.,. From the fact that the set {m(g;) : 1 < j < d} generates Ap 4., it follows that this
algebra homomorphism is actually surjective. Together with the fact that dim(Ap my4) = dim(Apyam) =
2PT™m+4 we may conclude that this homomorphism is actually an isomorphism. O

Let us now take a look at Cartan’s periodicity law.

Theorem 3.3.8 (Cartan’s periodicity law). There are isomorphisms between the three algebras Apis m,
Ap s and Myg(Ap,m).

Proof. From Proposition it follows that Apigm = Aptamya = Apmys. From Clifford’s theorem it
follows that Apiamia = Apm ® Mis(R) and from Proposition [3.1.18] it then follows that A,i4mia =
Mig(Apm)- O

This theorem essentially tells us that it is sufficient to classify the Clifford algebras for 0 < p,m < 7 as the
classification of the Clifford algebras for other dimensions follow from these classifications. In this table we
write A% for A @ A, where A denotes an algebra.

Table 2: Universal Clifford algebras

p —

0 1 2 3 4 ) 6 7
m|0| R C H H?  Mx(H) MyC) Ms(R) Mgs(R)
L1 R? My(R)  My(C)  My(H) DMp(H)>  My(H)  Ms(C)  Mi(R)

2| My(R) Mp(R)?  MyR) Mi(C) M(H) Mi(H? Mg(H) My(C)
3| My(C) MuR) MyR)? Mg(R) Mg(C)  Mg(H) Mg(H)?2  Mg(H)
4| My(H) M(C)  My(R) Mg(R)2 Mig(R) Mig(C) Mig(H) Myg(H)?
5| Mp(E)?  My(H) Ms(C) Mig(R) Mig(R)2 Miy(R) Ms(C)  Mao(H)
6| My(H) My(H? Mg(H) Mio(C) Map(R) Map(R)? Mgi(R)  Mea(C)
7| Mg(C) Mg(H) Mg(H)> Me(H) Ms(C) Mea(R)  Mea(R)>  Miogs(R)

The periodicity of 8 that we see in this table is an example of the so-called Bott periodicity. Bott periodicity
has applications in many areas of mathematics, from algebraic topology to functional analysis. However,
Bott periodicity lies outside the topic of this thesis so we will not go further into it. If one does want to know
more about the link between the Bott periodicity and Clifford algebras see |31].

3.4 Spinors

Now that we have classified the universal Clifford algebras for all possible dimensions of (E,q), let us take a
look at what these Clifford algebras act on. For this section we will follow section 7.1 of [12]. When A, ,,, is
simple, we have seen in the section before that it can be represented as My (D), with D = R, C or H. Simple
Clifford algebras can thus be identified as matrix algebras. On the matrix algebra M}, (D) we have the natural
representation p of My (D) into D*.

Proposition 3.4.1. The natural representation p of My(D) into D* is irreducible.
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Proof. We will prove this proposition by contradiction. Suppose that the natural representation p is reducible
and that it thus has sub-representations. This means that there exists Ey, Fy € D* with Ey, Fs # 0 such
that Ey @ E, = DF. For F; to be a sub-representation we must have that Av € E; if v € E; and A € M, (D).
Suppose that e; # 0 is a basis element of F; and es # 0 a basis element of F5. We can pick these basis
elements to be nonzero because Ep, Es # 0. We know that there exists a transformation matrix A € My (D)
such that Ae; = ey. Since Ey N Es; = 0, this must then mean that either e; = 0 or e = 0. This is in
contradiction with the fact that we could pick two basis elements out of Fy and F, that were not equal to
zero. From this contradiction it follows that the natural representation is irreducible. O

There is actually an even stronger theorem that says that any irreducible representation of M (D) is isomor-
phic to this natural representation. However, the proof of this statement is actually pretty complicated and
we will therefore not include it in this thesis. If one is interested though, the proof can be deduced from
theorem 4.3 and 4.4 on page 653 of [16]. If A, ,, is simple we can thus consider A, ,, acting on the left
D-module D*. A left R-module is just a real vector space, a left C-module is a complex vector space and a
left H-module is called a vector space over H. Using this theorem we can give the following definition.

Definition 3.4.2. If A, ,, is simple and thus isomorphic to a matrix algebra M} (D), then DF represents the
so-called spinor space of A, ,,. We call the elements of D* the spinors.

Let us take a look at the dimension of the spinor spaces. If A, = My (R), then
dim(Ay ) = 2¢ = dim(My(R)) = k2 (3.22)

This means that d = 2t is even and that £ = 2°. The real dimension of a spinor space for A, ,, is then 2%.
If A, = Mi(C), then
dimg(Ap.m) = 2¢ = dimg(My,(C)) = 2k? (3.23)

This means that d = 2t + 1 is odd and that £ = 2'. The complex dimension of a spinor space for A, , is
d—1 . 3 A d+1
then 272, and the real dimension is 272" .
If Ay, = My (H), then
dimg(Ap.m) = 2¢ = dimg (M, (H)) = 4k? (3.24)

This means that d = 2t is even and that k = 2/~!. We then have that the quaternionic dimension of a spinor
space for A, ,, is 2“7% | and that the real dimension is 2°%" .

When A, ,,, is not simple, we saw that it was isomorphic to My (D) & My (D). We then have exactly two
equivalence classes of irreducible representations. They are given by

p1(d1, ¢2) = p(é1) and pa(d1, p2) = p(P2) (3.25)

where ¢1,¢02 € Mp(D). If A, ,, is not simple we will consider the irreducible representation of the non-
universal Clifford algebra My (D) and call D* the semi-spinor space. The elements of D* we call the semi-
spinors. Table [3] shows the results of this section. The square brackets in this table indicate that we are
dealing with semi-spinor spaces instead of spinor spaces.



3 CLIFFORD ALGEBRA 37

Table 3: Spinor and semi-spinor spaces

b

0 2 3 4 5 6 7
m R H [H ©B2Z C* R¥ R
\L [R] Q2 H?2 [H2] H4 (@ R16

—
1
C
RQ
R2] R4 (C4 H4 [H4] H8 (Clﬁ
(CQ R4 [Rﬂ RS (CS H8 [HS] HlG
(C4 RS [RS] R16 (C16 HIG [HIG}
H4 (CS Rlﬁ [R16] RSZ (C32 H32
H4] HS (Clﬁ R32 [R32] R64 (C64
(CS HS [HS] Hlﬁ (C32 R64 [R64] R128

N O Uk W= O
&

3.5 The Dirac equation

In the previous sections we have learned more about Clifford algebras. Let us use this knowledge to get a
better understanding of the Dirac equation. For this section we will follow chapter 9 of |12]. As one might
know, we use R3; to describe space-time in physics. If we take a look at the table in which we classified the
universal Clifford algebras over regular quadratic spaces for all dimensions, we see that Az is isomorphic
to My(H). However, the representations of the gamma matrices that we have seen so far are in My (C).
The reason why is because in normal quantum mechanics the wave function takes on complex values. We
therefore want our spinor space to be a complex vector space. The Clifford algebra that we use, thus has to
be isomorphic to a matrix algebra that has entries from the complex numbers. Physicists therefore chose the
smallest Clifford algebra that is isomorphic to a matrix algebra with entries from the complex numbers and
decided to represent A3 ; as a subalgebra of this algebra. To see how this works, we will explicitly show how
My (C) is a Clifford algebra for R3 ;. Let us write ¥4 for 4° for this mapping only. Define the injective linear
map v : Rg 1 — My(C) by

y(zrer + ... + wgeq) = oyt 4 o+ gyt (3.26)

We see that 1 ¢ y(Rs,1) and that y(z1e1+...+z4€4)? = 25 —2F — 23 — 23 = —q(z1€1+ ...+ 24€4). This means

that + is a Clifford mapping of Rs ; into M4(C). This Cliffford mapping extends to an algebra homomorphism
of Ag; into My(C). The image I's ;1 = y(As3,1) we call the Dirac algebra. To see what the Dirac equation
looks like, we define the so-called Dirac operator.

Definition 3.5.1. Suppose that U is an open subset of R, ,,,, that F' is a finite-dimensional left A, ,,-module
and that f is a continuously differentiable function from U into F'. We can then define the Dirac operator
D, as
d of
Dyf(x) =Y a(es)es5 -
L

=1
The Dirac operator D3 ; for the algebra of space-time R3 ; reads

0 0 0 0
Dgq=—"— 44— +~42— 43— 2
3,1 " ot +’Y 8.731 +’Y 8332 +7 8%‘3 (3 7)

so that that the Dirac equation becomes

0 0 0 0
_ [ _0Z 1_ Y 2 Y 3_Y .
D371\I/(x,t) = ( Y ; + 7y o + o + 333> U(x,t) = im¥(x,t) (3.28)

where we consider A3 to be acting on C*.

In the standard representation we have chosen to represent As; as a subalgebra of Aso. One might ask
oneself; what happens if we do not restrict ourselves to only working with wave functions that take on
complex values. In the next chapter we will explore this possibility. We will take a look at wave functions
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that can take on quaternion values and explore how the gamma matrices will look if we used Clifford algebras
that are isomorphic to quaternionic algebras. Maybe working with Clifford algebras that are not ‘too big’
will even provide us with new physical results.
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4 A quaternionic formulation of the Dirac equation

The Dirac equation as we know it is formulated using the gamma matrices in M, (C). However, in the previous
chapter we found that the algebra usually used to describe space-time (As 1) is actually isomorphic to My (H).
One of the reasons why we use the matrix algebra My (C) is because in normal quantum mechanics we expect
the wave function to take on complex values. Using My (C) also has the advantage that we can use the rich
theory of complex analysis H Quaternions on the other hand, are relatively hard to work with due to their
noncommutativity. However, this challenge did not stop physicists to attempt to write a quaternionic version
of quantum mechanics. This included the attempt to formulate the Dirac equation using quaternions. In the
following chapter we will take a look at some of the formulations of the Dirac equation using real and complex
quaternions. We will also take a look at some of the operators and operations in these formalisms. Before
we can take a look at these quaternionic formulations, we have to expand our knowledge on quaternionic
algebra.

4.1 Quaternion algebra

For this section we will follow [21]. In chapter [3| we already encountered the quaternions while classifying
Clifford algebras. The quaternions are actually an extension of the complex numbers in such a way that
besides the complex unit ¢ that squares to -1, we also have the elements Z, J and K that square to -1. To
distinguish between when we are working with quaternions and when we are working with complex numbers,
we will denote the complex unit using ¢ and the quaternion units using Z, J and K.

Definition 4.1.1. A real quaternion is of the form
g=ao+al+aJ + a3k
where ag, a1, a2,a3 € R and the Z, 7 and K satisty the relations defined in section (3.1

The real number ag we call the scalar part of the quaternion and a1Z + a2 J + asK the vector part of q. Let
us denote the vector of all the bais elements of the vector part of ¢ as follows h = (Z,J,K). Note that we
can identify the space-time point (ct, z,y, z) by the quaternion

g=ct+Ie+Jy+ Kz (4.1)

Analogous to the complex conjugate
it =— (4.2)

we also have a conjugation operation on quaternions.

Definition 4.1.2. The conjugation operation on quaternions we call the quaternion conjugation. The quater-
nion conjugation is denoted by © and has the following property

19=1,7=-7,7%°=-J and K® = —K
The quaternion conjugate of a real quaternion g has the following form
¢ =ap— a1Z — axJ — ask (4.3)
Note that for this conjugation we have that
(ap)® =p°¢° (4.4)

In this chapter we will also look at formulations of the Dirac equation using so-called complex quaternions.
Complex quaternions are an extension of the quaternions where instead of using real coefficients we will use
complex ones. A complex quaternion will thus come from the tensor product space C ® H.

2If one is looking to learn more about the rich theory of complex analysis, see [17]
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Definition 4.1.3. A complex quaternion has the following form
ge=co+ 1T+ +ck

where cg, ¢1,ca,c3 € C and the imaginary unit ¢ commutes with the quaternionic imaginary units Z, 7 and

K.

Recall from section that an algebra is a division algebra if there are no non-zero zero divisors for that
algebra. For 1 —iZ,1+4iZ € C ® H we have that

(1 —iZ) (1 +iZ) =1 — (=1)(=1) = 0 (4.5)

We thus see that C ® H is not a division algebra. This means that for complex quaternions we may not
assume that every non-zero element has a multiplicative inverse.
On complex quaternions we have three different ways to define conjugation operations:

ge=cj+h-c*
@ =co—h-c (4.6)

@ =c—h-c
where * denotes the standard complex conjugation (i — —i) and ¢ = (¢, ¢2, ¢3). Note that

(qepe)® = qope

(4.7)
(gepe)” = phay

and consequently
Q
(@cpe)® = (aepe)*™ = (a2p8)" = P20 = i (4.8)
In C® H we can either choose i or Z to represent the imaginary unit. We therefore denote the set of complex

numbers by C(1,7) when we are using ¢ as the imaginary unit and by C(1,Z) when we are using Z as the
imaginary unit. With a little algebra we can also write a complex quaternion in the following way

ge = bo + 01T +i(b2 + b3T) (4.9)

where bo, bl, b2, bg € C(l,I)
Due to the noncommutative nature of the quaternions we must consider left/right-actions. We therefore
introduce barred operators to distinguish between left- or right-multiplication.

Definition 4.1.4. Suppose that q., p. and r. are (complex) quaternions. The action of the barred operator
dc|pe on the (complex) quaternion 7. is defined as follows

(QC |pc)7'c = (gcTcPe

We thus write
11Z, 1|7 and 1|K (4.10)

to denote the right multiplication of Z, 7 and K.

To find the most general transformation on quaternions we will make use of lemma 2.1 of [27]. The A° that
they use here is the opposite algebra. The opposite algebra has the same additive structure as A but the
product is defined by setting a - b = ba, where ba refers to the product in A. In this lemma they also use
the term central simple algebra. A central simple algebra is an algebra over the field F' of which the center
is exactly F'. The algebras that we have looked at are all over R and from the commutation relations of the
basis elements of H we may conclude that the centre of H is exactly R. We thus have that H is a central
simple algebra. From the fact that H = span(1,Z, 7, K) it then follows that the most general transformation
on a quaternion is of the following form:

Q@+ q1|T+ 2T +gs|K (4.11)

where qo, g1, g2 and g3 are quaternions. We call these transformations real linear barred operators. A subset
of the set of real linear barred operators is the set of complex linear barred operators.
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Definition 4.1.5. Complez linear barred operators on quaternions are of the following form:
q +q1|T
where ¢y and ¢; are quaternions.

These complex linear barred operators on quaternions are characterized by four complex numbers from
C(1,7).

To find the form of the general transformations on complex quaternions we make use of lemma 2.2.2 from [13].
From this lemma it follows that the algebra of complex quaternions C ® H is a central simple algebra over C.
Where we have used that C is an extension of R. This means that to find the most general transformation
on complex quaternions, we may also use lemma 2.1 of |27]. The most general transformation on a complex
quaternion that follows from this lemma is of the following form:

Oizqc+pc\l+rc|j+scv€ (4.12)

where q.,pc, 7. and s, are all complex quaternions. We call these general transformations ¢-complex lin-
ear barred operators. Multiplication of two i-complex linear barred operators O%! and O%? in terms of
complexified quaternions is defined as

02,1@?2 =(c,19c,2 = Pc,1Pc,2 — Te,1Tc,2 — Se,15¢,2
+ (QC,lpc,Q + Pe,1Ge,2 — Te,18c,2 + Sc,lrc,2)|I
+ (geaTe2 + Te14e,2 — Se,1Pe2 + Pe1Se,2)| T
+ (qc,lsc,Z + S¢,19¢,2 — Pe,1Tc,2 + Tc,ch,Q)VC

(4.13)

And the conjugation operations are defined as follows

O =gt +plT+72|T +s2IK
O =g —pi|T —ri|T — stk (4.14)
0.%=q2 —p|T — 12T — sg|K

A transformation like the one in Equation is characterized by 16 i-complex parameters. A subset of the
set of i-complex linear barred operators is the set of Z-complez linear barred operators.

Definition 4.1.6. Z-complex linear barred operators on complex quaternions are of the form:
OcI =qc +pe|T
where ¢. and p. are complex quaternions.

What we see is that this barred operator O is characterized by 8 Z-complex numbers. This means that we
cannot relate these operators to 4 x 4 complex matrices and it thus seems that we cannot express the Dirac
algebra using these operators. However, later on in this paper we will see that we can still express the Dirac
equation with these kind of linear barred operators using a ’special’ trick.

4.2 Translations from (complex) quaternions to complex matrices

For this section we will also follow [21]. As we saw, complex linear barred operators on quaternions were
characterized by four complex numbers from C(1,Z) and i-complex linear barred operators were characterized
by 16 i-complex parameters. This suggests a possible identification between 2 x 2 complex matrices and
complex linear barred operators on quaternions and between 4 x 4 complex matrices and ¢-complex linear
barred operators on complex quaternions.
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4.2.1 2 x 2 complex matrix identification

Let us first take a look at the correspondence between complex linear barred operators on quaternions and
2 x 2 matrices. To do so we write a real quaternionic state in the following way

=21+ 27 (4.15)

where z; and 29 are elements of C(1,Z). In this way, we can introduce the so-called symplectic complex
representation by a column matrix of a real quaternionic state

g (Z) (4.16)

where the Z in the expressions for z; and zo has now become an i. An operator representation of 1,Z, 7 and
IC that is consistent with the previous identification is the following

1 0 i 0 . 0 -1 . 0 —1 .
19(0 1),I<—><0 i)ZZUg,JH(l 0):—wgandlC<—><Z. 0>:—wl (4.17)

where the o; represent the corresponding Pauli matrices defined in chapter[2] This representation has actually
been known since the discovery of the quaternions and permits any real quaternionic number to be translated
into a 2 x 2 complex matrix. However, the other way around not necessarily. There are eight real numbers
necessary to define a 2 X 2 complex matrix while there are only 4 real numbers necessary to define a real
quaternion. Complex linear barred operators complete the identification. With the representation of the

barred quaternionic imaginary unit
i 0
1Z «+ (0 z) (4.18)

we can add four additional degrees of freedom. Namely, by matrix multiplication of the four following
corresponding matrices
1Z, 7)Z, J|T K|Z (4.19)

In that way we get 8 linearly independent 2 x 2 complex matrices from the 8 linearly independent complex
linear barred operators on quaternions. With these additional degrees of freedom we thus have a set of rules
for translating from 2 x 2 complex matrices to complex linear barred operators on quaternions and vice versa.

4.2.2 4 x 4 complex matrix identification

Let us now take a look at the correspondence between i-complex linear barred operators on complex quater-
nions and 4 x 4 complex matrices. In analogy to the symplectic complex representation for a real quaternionic
state, we introduce for a complexified quaternionic state

qc = Co+61.’[+02j+03lc, Cp,C1,C2,C3 € (C(].,’L) (420)
the symplectic i-complex representation by the following four-dimensional column matrix:
Co
. | @ (4.21)
2
C3

The representation for Z, J and K that is consistent with the above identification is the following

—’iO’g 0 0 —03 0 —01
I+ ( 0 —iag) , J & (Ug 0 ) and K < (01 0 ) (4.22)
We also identify the imaginary unit ¢ with the matrix il4. This is, of course, not enough to translate any

4 x 4 complex matrix into an i-complex linear barred operator. For that, we must also give a representation
for the right-action of all the quaternionic imaginary units

—iJg 0 0 —IQ 0 —iJQ
1|I<—>( 0 Z,Uz), 117 & (12 0 ) and 1|K < <_Z.0_2 0 > (4.23)
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Since [h, 1|h] = 0 we can construct products of the above identifications via left or right multiplication. In
that way, we can create a set of rules for translating from 4 x 4 complex matrices to i-complex linear barred
operators and vice versa.

4.3 Real quaternionic formulation of the Dirac equation

For this section we will follow [25]. We begin by stating the Dirac equation in the standard form:

v
i— = (- p+ pm)¥ (4.24)
ot
with p = —iV and ¥ as a 4 x 1 complex column matrix. In Equation [£:24] the norm of ¥ is not conserved

(see [25]). This means that we have to modify Equation The first modification that we make is writing
the Dirac equation in the following way

ov

;L= p+pm)v (4.25)

where now W is a real quaternionic column matrix of which we will deduce the dimension later on. Since we

have placed the Z on the right of %—%’, we see that with the old definition of the momentum operator time

and space are not treated in the same way. To ensure that Equation [£:25]is relativistically covariant we thus
have to modify the action of our momentum operator. The modification that we make is the following

p¥ = -VVUZ (4.26)
This means that we define the momentum operator as

p=-V[I (4.27)

From chapter [2] we know that the & and 8 in Equation have to satisfy the following relations:

{O‘i’aj} =0
{a;, 8} =0 (4.28)
a? = ,6’2 =1

for 4,7 = 1,2,3. Recall that the «; and 8 matrices also had to be Hermitian. In the quaternion formulation
this means that the «; and 8 matrices have to be quaternion Hermitian. The «; and § matrices thus have
to satisfy

Q@ _
Q= Oy

@
g~ =8
where ¢ = 1,2, 3. Using quaternions, we can give a matrix representation for the a; and 5 that satisfies the

relations in .28 and [A.29
1 0 0 1 0 1 0 1
8= (0 1) o1 =1 (1 O) Jas=J (1 0) and a3 = K (1 0) (4.30)

We can write this equation in covariant form by introducing the v matrices in the usual way

(4.29)

V=8, 9" =" (4.31)

The Dirac equation then becomes
0, VL = mV¥ (4.32)

where we see that ¥ is a 2 X 1 matrix with entries from H. In this equation the gamma matrices again satisfy
the defining relations of a Clifford algebra over a 4-dimensional space with metric signature (+ — ——).

Ay =2 (4.33)
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We also have that
POy = e (4.34)

A representation of the gamma matrices in Ma(H) is then given by
1 0 0 1 0 1 0 1
7 = (0 _1> e =I(1 0) =T (1 0) and v* = K (1 0) (4.35)

or compactly written as
o_(1 O . 0 1

Now that we have found this representation of the gamma matrices using real quaternions, let us compare
this representation to the representation that we get when we use the translation rules from section [£.2]
The translation from the standard gamma matrices to 2 x 2 real quaternionic matrices yields the following

matrices K| | |
o_ (1 0 1_ 0 1z 2 0 JIZ\ 3 (0 -I1Z
"= (0 —1) e = (—/qz 0 ) \—qz 0 )T \zz 0 (4.37)

At first sight these matrices do not seem the same. However, there exists a similarity transformation which
transforms the matrices given by the translation into the ones that we got earlier [20]

SyltSh = 1 (4.38)
where ) 7
_ 1 1+ 0
s L(T ) -

Let us now look at how some of the objects that we defined using the standard complex gamma matrices
look in a real quaternionic formalism. From now on we will use the gamma matrices from the paper written
by Rotelli [25]. From our expressions for a and 5 we find that

H:a.p+5m=(;’fp h'?f;) (4.40)

The spin operator in this quaternionic formulation of the Dirac equation is then defined as follows

DN | =

S=-h|T (4.41)

Due to the new definition of p, we also have that [H, p] = 0. This means that there exist plane wave solutions.
These plane wave solutions are of the form

U(x,t) = ue” Pu" (4.42)

Rotelli gives the following four complex-orthogonal solutions for u:

u(p) = < _i.p ) J and u(p) = ( _;1”, ) for E = +E,, (4.43)

E,+m E,+m

—hp —h-p
u(p) = <_E1i+m> J and u(p) = (‘Ele””) for E = —FE,, (4.44)

where we have left out the normalization factor. The solutions of the Dirac equation are then given by the
corresponding ¥ (x,t). We can also define a conserved current in this representation. To do so, we make a
slight modification in the definition of W. Instead of defining it like in section we define it as

U = 00 (4.45)
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To prove that j* = U~y*W¥ is now our conserved current we take a look at Equation m

v
7051 +7-VVUZ =m¥ (4.46)
and take the adjoint of this equation
\If@
- I%’yo +IVY® .y =mu® (4.47)

Let us now multiply Equation from the left by ¥ and Equation from the right by 7°¥. Equation
4.46[ then becomes o -
U0, ¥T = m¥Ww (4.48)

and Equation [1.47] becomes - -
Z(0 V)V = —mUT (4.49)

By observing that the term on the right hand side of both of these equations is a real number, we conclude
that the terms @’y“@ulll and (8M§)7“\I! are quaternions (q = ¢y + c1Z + c2J + ¢3K) that only have a nonzero
coefficient in front of Z. This means that ¥7#9, ¥ and (9, ¥)y*¥ commute with Z. If we now add them, we
find that

0,(Uy"W) =0 (4.50)

We may therefore conclude that in this formalism, U~*W is the conserved current.

A vparticularly interesting thing that Rotelli noticed was that in order to derive the real quaternionic Dirac
equation he had to admit the axiom that all scalar products are complex, even if wave functions and operators
were quaternions. One may note that in a way this is analogous to the passage from classical mechanics
(essentially based on the reals) to quantum mechanics (based on the complex numbers) where observables
are required to have real eigenvalues.

4.4 Complex quaternionic formulation of the Dirac equation

In section[d.I] we found that there are two types of complex linear operators on complex quaternions. We have
the i-complex linear operators and the Z-complex linear operators. We can use both of these to formulate a
complex quaternionic Dirac equation.

4.4.1 i-complex linear formulation

First we will take a look at the complex quaternionic formulation of the Dirac equation using i-complex geom-
etry. For this section we will follow [21] and [19]. We can obtain a one-component complexified quaternionic
Dirac equation using the translation that we found in section The complex quaternionic representation
for the standard y*-matrices that we find in this way is the following

7 = —Z|Z and v = —(K,iZ|T,T) (4.51)

Even though this translation between 4 x 4 complex matrices and i-complex linear barred operators is
interesting itself, we will not use the complex quaternionic representation of the v*-matrices that we get from
it. This representation is namely not a very elegant complex quaternionic representation. We will therefore
use the following (more elegant) complex quaternionic representation for the rest of this section.

7Y = I|T and v = ih|J (4.52)
These matrices satisfy the Dirac algebra
{7y =20 (4.53)
and
A0 0 O (4.54)

The one-component Dirac equation then reads

iv"0,¥(x) = m¥(x) (4.55)
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where ¥(z) is a complex quaternion. Note that when we are working with i-complex geometry, we use the
original definition of the momentum operator (p = iV). Even though this one-component wave equation is
quite elegant, it does come with some problems. For example, the spinor structures are complicated and the
CPT interpretation is unclear. Therefore there is no real reason to prefer this formulation over the complex
formulation. However, there is one interesting thing that follows from this interpretation. As we know from
Proposition the algebra of complex quaternions C ® H is isomorphic to M3(C). This would suggest
that we can write the Dirac equation based on the Clifford algebra Ay 3. This Clifford algebra is called the
Pauli algebra and is generated by the three Pauli matrices. Table [] shows the basis of the matrix algebra
M>5(C) together with the corresponding basis of the complexified quaternion algebra.

Table 4: Basis of M2(C) and C @ H

M;(C) CoH
Iy 1
g1,02,03 iI,ij,ilC
0201,0203,0301 I,j,IC
010203 1

We can try to obtain a formulation of the Dirac equation using the matrix algebra M;(C) by translation
from our complex quaternionic version. The spinors in our new formulation will be 2 x 2 complex matrices.
The most general transformation on the 4-dimensional complex column matrix

G

I
v=| (4.56)

(N

is of course performed by a complex 4 x 4 matrix. Which, as we know, has 16 complex parameters. Let us
now rewrite the previous 4-dimensional column matrix by a 2 x 2 complex matrix.

U = <1’5]Z z;) 5 wa == d}l - Z'QZJZa wb == 77/14 +Z.1,Z)3, ’L/}C = ¢4 +7;1/)37 q/)d — d)l +Z¢2 (457)

This matrix can be rewritten as
U =11 + 020112 + 02033 + 030194 (4.58)

From our expression for the most general transformation on complex quaternions, we find that the most
general transformation on our "new” spinors is given by

M0+M1‘0'1+M2|0'2+M3‘0'3 (459)

where the My, My, My and M3 are 2x 2 complex matrices. As you can see, this general transformation also has
16 complex parameters. We can therefore translate from i-complex linear barred complexified quaternionic
operators to these general transformations containing 2 x 2 complex matrices and barred operators. An
explicit representation of the gamma matrices using 2 X 2 complex matrices is given by

70 = Loy, 7' = —012301|02, ¥ = —012302|02 and v* = —012303|02 (4.60)

where o123 = 010203. As you can see, the explicit expressions for these gamma matrices contain barred
operators. We can therefore not say with certainty that these matrices are elements of My(C). If we have
formulated the Dirac equation using Pauli algebra here is thus open to question.
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4.4.2 Z-complex linear formulation

For this section we will follow [21] and [22]. When working with Z-complex geometry we again use the
following definition for the momentum operator

p=-V|I (4.61)

As we saw, an Z-complex linear barred operator on the complexified quaternionic spinor was characterized
by only 8 Z-complex parameters instead of 16.

OCI ={c +pc|I (4.62)

where ¢, and p,. are complex quaternions. This would already suggest that we will find difficulties in formu-
lating the Dirac equation using Z-complex geometry. We do indeed find these difficulties when looking for
the y#-matrices satisfying the Dirac algebra. There are actually not that many problems with finding the
~-matrices, in fact we find as a suitable choice

Y= h = (I,j,’C), {hma hn} = 2,’7mn (m,'fl = 172a3)7 h@ =-h (463)

Nevertheless, we cannot seem to find a quaternionic number that anticommutes with h and therefore cannot
give a complexified quaternionic representation of the v’-matrix. However, there is a trick that we can use to
solve this problem. Let us take a look at the action of the standard v°-matrix on the complex spinor ¥ € C*

10 0 0\ [ Y1
AT = 8 é _01 8 zz = Z; (4.64)
00 0 -1 on (2
For the complex quaternions
Y1+ TP +i(s + Ttha), 1,234 € C(1,7) (4.65)
to correspond with the complex spinor ¢ € C*
U1
_fzg (4.66)
14
we have have to find an operation that performs the following translation
Y1+ T2 +i(s + Tha) = 1 + Ttha —i(P3 + T¢a) (4.67)
The solution is then of course the e-involution, ¥ — W*. Our Dirac equation
(0 + 7y - V) ¥ (2)T = my ¥ () (4.68)
can then be rewritten as
(O +ih - V) ¥(2)T = m¥*(z) (4.69)

On the left hand side, you can see that we substituted 7° for i. To justify this choice we will show that this
new Dirac equation reduces to the Klein-Gordon equation. Let us therefore write Equation 4.69| as

DU = my)® (4.70)

where
D=(0;+ih-V)|T (4.71)

If we now multiply Equation from the left with the barred operator

D* = (9, —ih-V)|T (4.72)
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we get
D*DV = — (9} — V?) ¥ = mD*¥* (4.73)

Note that D*¥® = m¥, so that [£.73] gives us the Klein-Gordon equation
(0,,0" +m?)¥ =0 (4.74)

Let us try to find the solutions for this Dirac equation. Instead of solving four coupled equations directly, we
will make the following ansatz

U = ippe IPu” (4.75)
When we insert this function into Equation we find
(B —ih - p)p = myy (4.76)
If we then pose
¥p = u(p) +v(p), u(p) € Hand v(p) € iH, (4.77)
then the Dirac equation becomes
(0 + ih - V) (u(p) + v(p))e~ ™" T = m(u(p) — v(p))e” TP+ (4.78)
so that
(E —ih - p) (u(p) + v(p)) = m(u(p) — v(p)) (4.79)

From the following two coupled equations

Eu(p) —ih - pv(p) = mu(p)

Ev(p) — ik - pu(p) = —mo(p) (4.80)

we can then derive the complexified quaternionic solutions to the Dirac equation. The positive-energy solu-
tions that we find are

ih - p ih-p
o1 P andyd = (14 P 4.81
and the negative-energy solutions that we find are
_ ith-p \ . _ th-p \ .
=(14—=— d =14 —=— 4.82
oo = (e ) i = (14 g5 ) 0 s

where we have left out the normalization factor. We can also give an explicit form of the spin operator in
this framework, namely

7|1
s I as
For p = (p:,0,0) we find that our four solutions, again, correspond to particles with S, = %, f%, %, f%

respectively. We have chosen our polarization direction along the x-axis because we associate the imaginary
unit Z with p,.

The interesting thing about this formulation of the Dirac equation is that it has a very elegant CPT inter-
pretation. Let us recall the CPT operations from section [2:3]

U = U(z),
Up=~T —x),

e C T) (4.84)
Ve =i (9)",
Up =o'y 0

where in Equation we have of course used the standard complex representation to represent the ~y*-
matrices. Let us start with formulating the parity transformation in our new formalism. If we start with
Equation [£.69 and perform the required coordinates transformation

Tz — —x (4.85)
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then we obtain the following transformed Dirac equation
(0 —ih -V)UpZ =mU% (4.86)

It now becomes very easy to find the relation between the transformed wave function ¥p and the initial wave
function ¥. The e-involution transforms the original Dirac equation as follows

(8, — ih - V) U*T = m¥ (4.87)
If we compare this equation with Equation we immediately find that
Up =0 (4.88)

Let us now take a look at the charge conjugation operation. To discuss this operation we also have to
introduce an external potential (®, A), just like in section [2.3.:3] We do this in the following way

8f\I — 8t|I+ 6‘1)7

VIZ—=V|ZT-eA (4.89)
The Dirac equation then reads
[0 Z + e® +ih - (V|I —eA)]¥ =mU*® (4.90)
If we now perform the change e — —e, the Dirac equation becomes
[04|Z —e® +ih - (V|IT+eA)] Yo =mUg (4.91)
Let us now search for the charge conjugated wave function. By multiplying Equation by 4
[T+ e +ih- (VT —eA)](iV) = —m(i¥)*® (4.92)
and from the right by J, we get
[—O0Z+e® +ih- (—V|Z—-eA)|(ivT)=-m(iVT)* (4.93)
We can rewrite this equation as
[0 — e® +ih- (VI +eA)](iVT)=m@EvJ)® (4.94)
from which we can conclude that
Ve =0T (4.95)

Let us now look at the last operation, the time reversal operation. In the presence of an external potential,
the motion can only be reversed by the following transformation (See chapter 11.4.1 of [29])

b —»Pand A— —-A (4.96)
Applying this transformation on the Dirac equation gives us
[0 +e® +ih- (V|IIT+eA)] Yy =mUT (4.97)
If we multiply Equation from the right by J, we get
[T+ eP +ih- (-V|T —cA)](VT)=m(VT)* (4.98)
Applying the e-involution to this equation gives us
[T+ ed+ih-(VIZ+eA)](VT) =m(VT) (4.99)

It is now easily seen that
Uy =97 (4.100)

As you can see, the C,P and T operations are very elegant. One may even prefer the Z-complex formulation
over the standard complex formulation when working with these operations.
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4.5 Another complex quaternionic formulation of the Dirac equation

Another formulation of the Dirac equation using complex quaternions that differs from the two above is one
given in [28]. To give this formulation we define the contravariant differentiation operator D by

.0 0 0 o .

The Dirac equation stated in [28] is the following

<gg _lzn> @;) =0 (4.102)

To link this Dirac equation to Table 2] from section [3.3] we want to write this equation in the following form

0¥ = (- p+ Pm)T (4.103)

_ (1
where ¥ = <¢2

(0 Now=(z( Dora( Dorx(s Doem(t ) i

If we now write this as

. 1 0 1 0 1 0 0 1
v (z(d oo Varelt Voem® De

we can recognize the a; and 8 matrices with which we retrieve Equation Namely

B = <(1) é) and a = h ((Z) _OZ> (4.106)

Recall that the gamma matrices are defined as 70 = 8 and 7 = 7%q;. This definition gives us the following

gamma matrices
A0 = ((1) é) andvy = h ((Z) 0’) (4.107)

These gamma matrices satisfy {y*,v”} = 29" so that we can write the Dirac equation in its covariant form

>. The first step in doing so, is writing Equation [4.102| as

(thy"90, — me)T =0 (4.108)

As you can see, the gamma matrices are all elements of M(C ® H). However, from Proposition we
know that C ® H 2 M5(C). This means that M3(C ® H) = M3(C) ® M2(C) = My(C). By writing the Dirac
equation this way we are thus again representing As 1 as a subalgebra of A3 and essentially using the same
Clifford algebra that is "too large”. We can even retrieve the Weyl representation of the complex gamma
matrices when we perform the following translation

1—)[2,I—>i017j—>i02 andlC—)iog (4109)

Even though we are essentially not using a different Clifford algebra, let us still take a look at what some of
the operators and solutions look like in this formalism. The spin operator in this formulation of the Dirac
equation is defined as follows

S =(S4,5,,5.) = =h (4.110)

N | .

It can be verified that these expressions for the components of the spin operator satisfy the following algebra

[S2,S,] = iS., [S,,S.] = iS, and [S., S,] = iS5, (4.111)
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If we then choose the z-axis as the spin quantization direction we find that the solutions for this formulation
of the Dirac equation (which are also eigenstates of S, with eigenvalues m, = +1) are of the form [28]

(4.112)

N = N

L (i + )W, (—i— K)¥g

m, = —

where
Ty = G) e~ imi (4.113)
It can be checked that the following two subspaces
spanc (1l 4+ K)o, (i + J)¥o and spanc(Z +iJ) Vo, (—i — K)¥q (4.114)

are closed under the spin algebra|d.111] We call these two subspaces the spin eigenspaces. Note that we can
convert the eigenvectors of the same eigenvalues in by right multiplication with the quaternionic basis
elements Z, J and K:

(1+iK)WoT = (T +iJ) Vo and (iT + J)VoT = (=i — K) Ty (4.115)

Right multiplication with the other basis elements J and K does not yield independent states. We thus see
that we can connect the two spin eigenspaces in by right multiplication with Z, J and K.
In this complex quaternionic formulation of the Dirac equation a doubling of solutions occurs. This is evident
from the existence of two closed spin eigenspaces instead of one. These two spin eigenspaces are connected by
right multiplication of the quaternionic basis elements Z, J and K. We can generalize these transformations
to

U — U = Pe "8 (4.116)

where n = n,Z+n,J +n.K is a complex quaternion and 3 € R. In [28], it is shown that this transformation
leaves the Lagrangian density invariant and that represents a global SU(2) gauge symmetry. In this
thesis we will not go into the details of these derivations but just state the conclusions. This symmetry
namely connects the two spin eigenspaces while leaving the spin eigenvalues invariant. If we thus identify the
states connected by gauge transformations [4.116] with each other, the number of solutions for our complex
quaternionic formulation of the Dirac equation reduces back to the original amount.
If we take a look at the solutions that we find for our complex quaternionic formulation of the Dirac equation,
we see that the following states

Wo,ZWy, TV, Ky (4.117)

actually form a basis of the subspace of particle solutions. Note that the elements of this basis mix the two

eigenspaces [A.114}

, .
o = (1 +iK)¥ + %(—i —K)¥, (4.118)

Finding this basis does not specifically lead us to any new physical results, but it is still an elegant peculiarity
of this complex quaternionic formulation of the Dirac equation.
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5 Conclusion

After first looking at the derivation of the Dirac equation and investigating its symmetries and some of the
insights that followed from it, we looked at the Clifford algebras of which we found a representation in the
derivation of the Dirac equation. We eventually classified universal Clifford algebras for regular quadratic
spaces of all possible dimensions and saw that it would be interesting to take a look at the formulations of
the Dirac equation using quaternions.

In the last chapter we have looked at certain different formulations of the Dirac equation using (complex)
quaternions and looked at certain aspects of the Dirac theory in these new formalisms. Especially the
one-component Dirac equation using Z-complex geometry returned a very elegant Dirac equation and CPT
interpretation. However, elegance seems to be the only actual result of formulating the Dirac equation using
(complex) quaternions. It is highly unlikely that these formulations of the Dirac equation will yield any
new physical results. At first it was thought that the doubling of solutions that occurred in the complex
quaternionic Dirac equation that James Edmonds [15] formulated would allow for more degrees of freedom and
in that way produce ‘new physics’. However, De Leo later showed [18] that the doubling of solutions is strictly
connected with the use of reducible matrices.. Also Schuricht and Greiter showed (28] that the doubling of
solutions that occurred in their complex quaternionic formulation of the Dirac equation could be attributed
to different gauge choices of a global SU(2) gauge symmetry. All in all, we can say that formulating the Dirac
equation using (complex) quaternions has not been particularly useful. Finding new physical results from
these new formulations turned out to be highly unlikely and the anticommutativity of the quaternions makes
doing calculations with quaternions rather cumbersome. Together with the underdevelopedness of the system
of quaternions in comparison with the notation usually used in quantum mechanics means that there is no
real reason to prefer the (complex) quaternionic formulation of the Dirac equation over the standard complex
one. Even though the standard complex notation essentially makes use of a Clifford algebra that is ‘too big’.
Of course this result is not what the mathematicians and physicists hoped for when they started with the
idea of formulating the Dirac equation using complex quaternions, but the elegance of the one-component
Dirac equation is still an impressive result in itself. So to end on a positive quote by Dirac himself: “If one
is working from the point of view of getting beauty into one’s equation, ... one is on a sure line of progress.”
19].
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