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Chapter 1

Introduction

As the title already suggests, this paper will mainly focus on parameter estimation of certain kinds
of reaction processes. A reaction can be seen as removing some balls from a Pólya urn and then
replacing them with some new balls. In this case the balls can be anything, i.e. atoms, people, an-
imals etc. The reactions that we will focus on, are reactions where the reaction speed is dependent
on the concentration or number of the reactants. Chemical reactions mostly comply to this, since
their reaction speed is dependent on the concentration of the reactants. Modelling a pandemic
is also a good example, since the number of infections is dependent on the number of infectious
and susceptible people. Especially in the last example, it is important that the reactions can be
modelled correctly and that the parameters can be estimated accurately, since the values of the pa-
rameters are very important for determining which measures have to be taken to stop the pandemic.

In chapter 2 we will see how such reaction processes can be modelled. Many ways of how this can
be done, are described in the article Modeling and Simulating Chemical Reactions’ by Desmond
J. Higham [1]. There are two algorithms that we will discuss; the stochastic simulation algorithm
and the tau-leaping algorithm. In chapter 3 we will take a look at how we can estimate the values
of the parameters of the processes using the idea of the tau-leaping algorithm. We will encounter
well-known concepts from statistics, such as the maximum likelihood estimator and the Fisher in-
formation. In the chapter that follows we will derive the Poisson difference distribution, which is
needed when we only measure the the change of concentration. This distribution is widely studied
by Abdulhamid A. Alzaid and Maha A. Omair [2].

After that, we will look at aggregation processes, which is a special reaction process with some
interesting properties. Lastly we will apply our theory on real data from two dimensional percola-
tion and see if our model fits the reality.

All the Python code that is used in this paper can be found on Github, by the following link
(https://github.com/Olffie/Parameter Estimation using the Tau Leaping Algorithm).
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Chapter 2

Our model

The main inspiration for this chapter is the article Modeling and Simulating Chemical Reactions’
written by Desmond J. Higham [1]. First, we will explain what type of model we will be looking at
in this paper. Lets say, we have n different recognisable types. Those types can be anything, for
example molecules, animal species or the current health state of individuals. Suppose we have n
different kind of types. We keep track of the amount of each type by a state vector X(t), that can
change over time. The i’th component of the state vector denotes the amount of the i’th type. For
types to change, we need reactions. The reactions will have the following form

α1S1 + α2S2 + ...+ αnSn → β1S1 + β2S2 + ...+ βnSn,

in which α and β are non-negative integers and Si is type i.
To illustrate this, we will take an example from chemistry. Assume that we have four types of
molecules, S1, S2, S3 and S4. They can react with each other according through reactions of the
following shape

S1 + S2 → S3, (2.1)

S3 → S1 + S2, (2.2)

S3 → S2 + S4. (2.3)

When such reactions will take place, depends on many factors. Normally a reaction with multiple
molecules will take place when these molecules collide with each other. So, theoretically we could
keep track of the position and speed of each of the molecules and exactly model the whole system.
This is called molecular dynamics. However, in practice this is quite hard for two reasons. First
of all, it is almost impossible to determine the speed and place of each molecule exactly from its
initial state, since molecules are extremely small. Secondly, it would take a lot of computing force
to run such a model, because we have to calculate the position of every molecule at every small time
step. Furthermore, it mostly does not tell us much about what is happening, but it only gives us
knowledge about the outcome. That is why, this method is not commonly used in science. Instead
we see the reactions as a probability process. In the coming sections and chapters we will use the
reactions (2.1), (2.2) and (2.3) as an illustration for our theory.
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2.1 Reaction speed

To run a model that is based on a probability process, we first need to know how many times a
reaction will take place. If we take a closer look at reaction (2.1), we see what the reactants of the
equation of S1 and S2 are. In chemistry, a reaction will take place if two molecules collide. That
means that the reaction speed is proportional to the concentration of the reactants. If there are
more molecules present, more reactions can take place. The reaction speed is known to be pro-
portional to the product of the reactants. In other fields of science we can see the same phenomenon.

The reaction speed is, however, not only dependent on the concentrations of the reactants. Many
different factors play a role, for example the speed, temperature, chance that a collision results
in a reaction etc. To take these kinds of factors into account, we take every reaction to have a
rate constant. Lets call the rate constant for reaction (2.1) c1. In total, the reaction speed will
be proportional to c1X1X2 with X1 and X2 denoting the concentrations of S1 and S2. To keep
our notation short, we will introduce a propensity function aj(x). The reaction speed of reac-
tion j is proportional to aj(x), given a concentration (vector) x. For reaction (2.1) we will have
a1(x) = c1X1X2.

Now we can give an expression for the probability that a reaction will take place in some in-
terval. Take the interval [t, t + τ) where τ has to be small to such a degree that only a single
reaction can take place in that interval. The probability that the first reaction will take place is
then equal to a1(x)τ = c1X1X2τ .

2.2 Stochastic simulation algorithm

We can now think of a simulation of our model. The first approach will be an exact algorithm, that
is based on Desmond J. Highman’s paper [1]. We will consider n different reactions with propensity
functions aj(x) for all j in {1, ..., n}.

For deducing this algorithm, we first need to introduce a new probability function P (τ | x, t),
which is the probability that no reaction will take place in the time interval [t, t+τ). Since we have
defined this function, we can determine what P (τ + dτ | x, t) is, where we pick a sufficiently small
value for dτ , such that only one reaction can take place in the time interval [t+ τ, t+ τ + dτ).

Before we go any further, we make the assumption that P (τ | x, t) and P (dτ | x, t + τ) are
independent. Note that this is exactly true if no reactions took place in the interval [t, t + τ) and
approximately true when the reactions that are taking place in [t, t+ τ) are not changing the origi-
nal concentration significantly. This is the case when τ is small, since then the interval is relatively
small which results in less reactions.
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The assumption that dτ is very small, such that there is a maximum of only one reaction in
[t + τ, t + τ + dτ), can be used to express the probability that a reaction will take place in that
time interval as dτ

∑n
k=1 ak(x). We will write the summation over a as asum(x). The law of total

probability then gives us

P (dτ | x, t+ τ) = 1− asum(x)dτ.

Now we rewrite P (τ + dτ | x, t) as

P (τ + dτ | x, t) = P (τ | x, t)P (dτ | x, t+ τ), (independent)

= P (τ | x, t)(1− asum(x)dτ).

This expression can be rewritten in the following way:

P (τ + dτ | x, t)− P (τ | x, t)
dτ

= −P (τ | x, t)asum(x).

When we take the limit of dτ → 0, we end up with a linear ordinary differential equation

δP (τ | x, t)
δτ

= −P (τ | x, t)asum(x).

Solving the differential equation gives us

P (τ | x, t) = P (0 | x, t)e−asum(x)τ = e−asum(x)τ .

We now define R(τ | x, t) as the probability that a reaction took place in the interval [t, t + τ).
Obviously we can see that, R(τ | x, t) = 1 − P (τ | x, t). In this case R(τ | x, t) is nothing more
than the cumulative distribution function of the reaction time of the first reaction. To find the
probability density function, we have to take the derivative with respect to τ . We get

r(τ | x, t) = asum(x)e−asum(x)τ ,

with r(τ | x, t) as the probability density function of the reaction time of the first reaction after
time t.

We now know the probability of how long it will take before a reaction will take place. The
only question that remains is, which reaction will take place. The chance of reaction i taking place
as the first reaction is proportional to the propensity function, this means that the probability that
the first reaction is reaction i equals ai(x)/asum(x). To summarise, we work with two random
variables. One is continuous with an exponential distribution which defines the waiting time. The
other is discrete and defines the reaction type.
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Now we have enough information for deriving the algorithm. The algorithm consists of 6 steps.

1) Determine all values of ai(x) and calculate asum(x).
2) Draw two random independent standard uniform distributed numbers u1, u2.
3) Determine which reaction is going to take place. This can be done by finding the smallest j that
satisfies

∑j
k=1 ak(x) ≥ asum(x)u1.

4) Now we want to know at what time the reaction is taking place. We can set R(τ | x, t) = u2

and solve for τ to find how long it will take for a reaction to take place. Solving for τ gives us
τ = − log(1− u2)/asum.
5) Change the time t to t+ τ and change the state vector according to the reaction that took place.
6) Go back to step 1 or end the simulation.

2.2.1 Implementation

We can implement the stochastic simulation algorithm for the model that we have seen at the
beginning of this chapter. For this model we use the following reaction rates as values

c1 c2 c3

2 · 10−3 4 · 10−2 0.1

Table 2.1: Values of c

and as initial concentrations we take

X1 X2 X3 X4

500 200 0 0

Table 2.2: Initial values of X

Those initial values give us the graph that can bee seen in figure 2.1.

From figure 2.1 we can clearly see that S4 never decreases. This is what we would expect, because
nowhere in the equation is S4 a reactant. Another thing that can be observed is the fast increase
of S3 at the beginning and then its decrease after t = 4. This phenomenon can also be explained.
At the beginning, the first reaction will be dominant, because the other reactions are dependent
on the concentration of S3, which is low at the beginning of the process. However, after a certain
amount of time the concentration of S3 is getting higher. This leads to an increase of reactions
(2.2) and (2.3) wherein S3 is a reactant, which then causes a decrease of the concentration of S3.
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Figure 2.1: Implementation of the stochastic simulation algorithm,
S1: blue, S2: orange, S3: green, S4: red.

2.3 Tau-leaping algorithm

There is one practical problem with the stochastic simulation algorithm and that is its slowness.
After each reaction the propensity functions have to be recalculated and in each step you have to
take two random variables. This is not a problem when there are only a few particles, however in
scientific research these models can contain millions of particles. If this is the case the stochastic
simulation algorithm is very time inefficient. That is why we are searching for a new algorithm for
a new quicker algorithm that retains the accuracy of the stochastic simulation algorithm.

Instead of sampling τ , we take small time steps of fixed size τ , which we are free to define. We
assume that in each time interval [t, t + τ) the propensity functions will not change significantly.
Now we can model how many times reaction i will take place within that time interval. We already
know the probability of reaction i taking place in the interval [t, t + dτ) where dτ is infinitesimal,
such that the reaction could at most only take place once, which is equal to ai(x)dτ . We now only
have to count in how many of those infinitesimal time intervals of size dτ in [t, t+ τ) the reaction
occurred. This is known as a counting process. It is well-known that the number of reactions
that take place in [t, t + τ) will have a Poisson distribution with parameter ai(x)dτ . With this
information we can construct the tau-leaping algorithm.

The tau-leaping algorithm consists out of 4 steps:

1) Determine ai(x) for all i.
2) Draw samples from the Pois(ai(x)τ) distribution. This is the number of reactions of type i that
occurred.
3) Change the state vector x given the occurred reactions and update the time t to t+ τ .
4) Go back to step 1 or end.
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The tau-leaping algorithm is much more time efficient than the stochastic simulation algorithm
and therefore used much more often in scientific research. Thus, we will focus on the tau-leaping
algorithm the next sections instead of the stochastic simulation algorithm.

2.3.1 Implementation

If we implement the tau-leaping algorithm in the model with the initial values from table 2.1 and
2.2, we get figure 2.2.

Figure 2.2: Implementation of the tau-leaping algorithm with τ = 0.1,
S1: blue, S2: orange, S3: green, S4: red.

If we compare this figure with figure 2.1, we can see that we got approximately the same result.
This gives an indication that the tau-leaping algorithm is almost as accurate as the stochastic
simulation algorithm. It can never be as accurate as the stochastic simulation algorithm, since that
is an exact algorithm. However, when we pick a proper value for τ , it becomes quite close to an
exact algorithm.
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Chapter 3

Parameter estimation given the
number of occurred reactions

In the previous chapter we saw how we can use different kinds of algorithms to model the system
of reactions. For illustration purposes we will continue using the chemical model of particles.

Sometimes when you have a chemical model wherein particles react with each other, it is possible
to measure the number of reactions that occurred and the consequent change in concentration.
When using this procedure the rate constant remains unknown however. Nonetheless is it possible
to give an estimation of the rate constant making use of statistics. In this chapter we will show
how this can be done and how a confidence interval for the estimation can be made.

3.1 Estimation of rate constant

One of the most common ways of estimating parameters in statistics is with use of the maximum
likelihood method. We assume that this method is well-known, if not the book ‘A Modern Intro-
duction to Probability and Statistics’ can be consulted [3].

We will use the idea of the tau-leaping algorithm for estimating the rate constant, it is impor-
tant that the time steps are sufficiently small such that the algorithm is an accurate representation
of the real model.

Lets say we want to estimate c1, which is the rate constant of (2.1). We assume that we know
how many times this reaction took place in each time interval [iτ, (i + 1)τ). We define Xi(t) as
the concentration of Si at time t, ri as the number of reactions of type (2.1) that occurred in
[iτ, (i+ 1)τ), and R as [r0, r1, ..., rn].

According to the tau-leaping algorithm, we know that ri is Pois(X1(t)X2(t)c1τ) distributed. We
define fi as the probability mass function of the Poisson distribution at time step i. We can now
try to find the maximum likelihood estimator. The likelihood is

L(c1|R) =
n∏
i=0

fi(ri) =
n∏
i=0

(X1(τi)X2(τi)τc1)ri

ri!
e−X1(τi)X2(τi)τc1 . (3.1)
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To find the maximum likelihood estimator of c1 we must maximise this function. However, maximis-
ing this function directly is quite difficult. Therefore, we first take the logarithm of the likelihood.
Since this new function will take the maximum value at the same point as the normal likelihood
function, it is sufficient to just minimise the log-likelihood, which is

l(c1|R) = log(L(c1|R)) =

n∑
i=0

ri log (X1(τi)X2(τi)τc1)− log(ri!)−X1(τi)X2(τi)τc1.

To maximise this function, we can take the derivative with respect to c1 and set it to be equal to
zero. Doing so, gives us

∂l(c1|R)

∂c1
=

n∑
i=0

ri
c1
−X1(τi)X2(τi)τ = 0, (3.2)

so the maximum likelihood estimator of c1 then becomes

ĉ1 =

∑n
i=0 ri∑n

i=0X1(τi)X2(τi)τ
. (3.3)

For this value of ĉ1 we indeed have a minimum, since the second derivative is negative

∂2l(c1|R)

∂2c1
=

n∑
i=0

− ri
c2

1

< 0.

We can now start to debate the accuracy of this estimation. By making a 95%-confidence interval
for c1 we can say more about the accuracy of the estimation. We can do this with the use of the
Fisher information, before we do that however, we need to dive into the meaning and definition of
the Fisher information.

3.2 One dimensional Fisher information

Most definitions and proofs in this section are based on the book ‘Mathematical Statistics and Data
Analysis’ by John A. Rice. [4]. In this section we explore the properties of the Fisher information
and how it can be used for making confidence intervals of estimated parameters. To do so, we first
need a definition of the Fisher information.

Definition 3.1. Suppose we have a random variable X with a probability density function (or
probability mass function) that is dependent on a variable θ0. We call this function f(X; θ0). Then
the Fisher information of variable θ0 is defined as

I(θ0) = Eθ0

[(
δ

δθ0
log f(X; θ0)

)2
]
.

This expression is, however, for the most part difficult to deal with. The following expression of
the Fisher information is more commonly used.

Lemma 3.1. Suppose that f(X; θ0) is the probability density function of a continuous random
variable X. If f(X; θ0) and ∂

∂θ0
f(X; θ0) are continuous on the sample space, then we can rewrite

the Fisher information as

I(θ0) = −Eθ0
[
δ2

δθ2
0

log f(X; θ0)

]
.
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Proof. All the derivatives in this proof will be with respect to θ0. We start by taking the derivative
of the log-likelihood. With use of the chain rule, we get

δ

δθ0
log f(X; θ0) =

f ′(X; θ0)

f(X; θ0)
.

In a similar fashion, we can rewrite the second derivative of the log-likelihood as

δ2

δθ2
0

log f(X; θ0) =
δ

δθ0

[
f ′(X; θ0)

f(X; θ0)

]
,

=
f ′′(X; θ0)f(X; θ0)− f ′(X; θ0)2

f(X; θ0)2
,

=
f ′′(X; θ0)

f(X; θ0)
−
(
δ

δθ0
log f(X; θ0)

)2

.

We now can take the expected value of the second derivative of the log-likelihood. Usage of the
linearity and definition of the expected value gives us

−Eθ0
[
δ2

δθ2
0

log f(X; θ0)

]
= −Eθ0

[
f ′′(X; θ0)

f(X; θ0)
−
(
δ

δθ0
log f(X; θ0)

)2
]
,

= −
∫
f ′′(X; θ0)

f(X; θ0)
f(X; θ0)dx+ Eθ0

[(
δ

δθ0
log f(X; θ0)

)2
]
,

= −
∫
f ′′(X; θ0)dx+ I(θ0).

According to Leibniz integral rule, we can interchange the order of integration and differentiation,
since f(X; θ0) and f ′(X; θ0) are continuous. We get

= − δ2

δθ2
0

∫
f(X; θ0)dx+ I(θ0),

= − δ2

δθ2
0

1 + I(θ0),

= I(θ0).

Remark that the proof above also holds when we have a discrete random variable X. Therefore,
the expression as in lemma 3.1 can also be used for Poisson random variables.
In this paper we will assume that all the Fisher information’s that we encounter can be written in
the form of lemma 3.1.

The Fisher information has also a property that is called the Chain rule, which we will need
later in this section.
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Theorem 3.2 (Chain rule). Suppose we have a sample X = X1, X2, ..., Xn, where all the Xi are
independent, but not necessarily identical, distributed with probability density (or mass) function
fi(Xi; θ0). The Fisher information is then given by

IX(θ0) =
n∑
i=1

IXi(θ0).

Proof. Since the Xi’s are independent, we know that we can write the joint probability function as
the product of the probability functions of the Xi’s. Using this fact and lemma 3.1 gives us

IX(θ0) = −Eθ0
[
δ2

δθ2
0

log f(X1, ..., Xn; θ0)

]
,

= −Eθ0
[
δ2

δθ2
0

log(f(X1; θ0) · ... · f(Xn; θ0))

]
,

= −Eθ0
[
δ2

δθ2
0

(log f(X1; θ0) + ...+ log f(Xn; θ0))

]
,

= −Eθ0
[
δ2

δθ2
0

log f(X1; θ0)

]
− ...− Eθ0

[
δ2

δθ2
0

log f(Xn; θ0)

]
,

=
n∑
i=1

Ixi(θ0).

One useful property of the Fisher information is that it can be used to construct a confidence
interval for an estimated parameter. Before we start showing the correlation, we first state an
important property of the maximum likelihood estimator. The following lemma is widely known for
independent identically distributed samples, however is also holds for independent non-identically
distributed samples [5].

Lemma 3.3. Suppose that X = X1, X2, ..., Xn have probability density (or mass) function fi(Xi, θ0)
and that θ̂ is the maximum likelihood estimator for θ0 given the outcomes of X1, X2, ..., Xn. Then

√
n(θ̂ − θ0)

d−→ N (0, σθ0),

in other words the
√
n(θ̂ − θ0) converges in distribution to a normal distribution with mean 0 and

some variance σθ0.

It turns out that the value of σθ0 equals IX(θ0)−1. Which is stated in the theorem below. Mostly,
this theorem is only stated for an independent distributed samples, however with some adjustments
it can also be shown that it holds for an independent non identically distributed sample. This is
important, since we have seen that we do not have identically distributed random variables when
we apply the tau-leaping algorithm.

Theorem 3.4. Suppose we have a sample X = X1, X2, ..., Xn of sample size n, where all the
Xi are independent distributed with probability density function fi(Xi; θ0) where θ0 is an unknown
parameter and θ̂ as the maximum likelihood estimator of θ0. The asymptotic distribution of θ̂ is
then given as

N
(
θ0,

1

IX(θ0)

)
.
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Proof. We start again with defining ln(θ0) =
∑n

i=1 log fi(Xi; θ0). We find the value of the maximum

likelihood estimator by solving ln(θ̂)′ = 0. We can do a Taylor expansion at θ0.

We get 0 = l′n(θ̂) ≈ l′n(θ0) + (θ̂ − θ0)l′′n(θ0). This can be written as

θ̂ − θ0 ≈
−l′(θ0)

l′′(θ0)
.

Multiply each side with
√
n,

√
n(θ̂ − θ0) ≈ −n

−1/2l′(θ0)

n−1l′′(θ0)
. (3.4)

Now we will derive the expected value and variance of the numerator,

E
[
−n−1/2l′(θ0)

]
= −n−1/2E

[
n∑
i=1

δ

δθ0
log fi(Xi; θ0)

]
.

If we now apply the linearity of the expected value and Leibniz integral rule, we end up with

−n−1/2
n∑
i=1

δ

δθ0
E [fi(Xi; θ0)] = −n−1/2

n∑
i=1

0 = 0.

For the variance we use the linearity, definition and Leibniz integral rule,

V ar
[
−n1/2l′(θ0)

]
=

1

n
V ar

[
n∑
i=1

δ

δθ0
log f(Xi; θ0)

]
,

=
1

n

n∑
i=1

V ar

[
δ

δθ0
log f(Xi; θ0)

]
,

=
1

n

n∑
i=1

(
E

[(
δ

δθ0
log f(Xi; θ0)

)2
]
− E

[
δ

δθ0
log f(Xi; θ0)

]2
)
,

=
1

n

n∑
i=1

(IXi(θ0)− 0) ,

=
1

n
IX(θ0).

where we used the Chain rule (3.2) in the last step.

Now we take a look at the denominator of the fraction in equation (3.4). Since all the Xi are
not necessarily identically independently distributed, we cannot apply the law of large numbers,
because that is based on i.i.d. samples. However, there is a variation that is known as the Kol-
mogorov’s strong law [6], which we can use in this case. Doing so gives us,

n−1l′′(θ0) =
1

n

n∑
i=1

δ2

δθ2
log fi(Xi; θ0)

a.s.−−→ E

[
1

n

n∑
i=1

δ2

δθ2
log f(Xi; θ0)

]
.

14



Using the linearity and the Chain rule (3.2) gives us,

E

[
1

n

n∑
i=1

δ2

δθ2
log f(Xi; θ0)

]
=

1

n

n∑
i=1

E

[
δ2

δθ2
log f(Xi; θ0)

]
=

1

n

n∑
i=1

−IXi(θ0) = − 1

n
IX(θ0).

This means that for a large n the expression
√
n(θ̂ − θ0) can be written as

√
n(θ̂ − θ0) ≈ n1/2l′(θ0)

n−1IX(θ0)
,

with expected value and variance equal to

E[
√
n(θ̂ − θ0)] ≈ 0,

V ar[
√
n(θ̂ − θ0)] ≈ n2

IX(θ0)2
V ar[−n1/2l′(θ0)] =

n2

IX(θ0)2

1

n
IX(θ0) =

n

IX(θ0)
.

We already know that the expression
√
n(θ̂ − θ0) is asymptotically normal distributed with mean

zero and some variance (lemma 3.3). Above we have calculated what that variance is, so we get

√
n(θ̂ − θ0) ∼ N

(
0,

n

IX(θ0)

)
,

or in other words,

θ̂ ∼ N
(
θ0,

1

IX(θ0)

)
.

We now know how the maximum likelihood estimator is distributed and how the variance depends
asymptotically on the Fisher information. There is only one problem with this distribution and
that is its dependence on θ0. In practice, our goal is to estimate θ0 by making use of the maximum
likelihood estimator. If the distribution of θ̂ is dependent on θ0 we cannot determine how it is
distributed. However, we know that the maximum likelihood estimator is a consistent estimator,
so it converges in probability to θ0, in notation

θ̂
P−→ θ0.

The Fisher information is a continuous function, so we can use the continuous mapping theorem.
This gives us

I(θ̂)
P−→ I(θ0). (3.5)

Combing (3.4) and expression (3.5), gives us the following result.

Lemma 3.5. Suppose we have a sample X = X1, X2, ..., Xn of sample size n, where all the Xi

are independent distributed with probability density function fi(Xi; θ0) where θ0 is an unknown
parameter and θ̂ as the maximum likelihood estimator of θ0. The asymptotic distribution of θ̂ is
then given as

N

(
θ̂,

1

IX(θ̂)

)
.
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3.3 Confidence interval for a constant rate factor

In section 3.1 we have seen how we can determine the maximum likelihood estimator of the rate
constant. With the knowledge of the previous section about the Fisher information, we can now
also determine a confidence interval for our estimation. To do so, we first need to determine the
Fisher information of our parameter c1. We will do this by applying lemma 3.1. Doing this requires
the second derivative of the log-likelihood. The first derivative has already been given in (3.2).
When we take the derivative of (3.2), we get

∂2l(c1|X)

∂c21
= − 1

c2

n∑
i=0

ri.

Using lemma 3.1 gives us that the Fisher information of ĉ1 is equal to

IR(ĉ1) =
1

ĉ2
1

n∑
i=0

ri.

If we now assume that n is sufficiently large to use lemma 3.5, we get that the distribution of our
estimated parameter ĉ1 is

N
(
ĉ1,

ĉ2
1∑n

i=0 ri

)
.

Which means that a 100(1-α)% confidence interval for c1 can be written as[
ĉ1 − z(1− α/2)

√
ĉ2

1∑n
i=0 ri

, ĉ1 + z(1− α/2)

√
ĉ2

1∑n
i=0 ri

]
, (3.6)

with z(1 − α/2) denoting the value x for which the probability P (Z < x) = 1 − α/2, where Z is
standard normal distributed.

In statistics we are mainly interested in a 95% confidence interval. We can construct such an
interval for c1 with a data set. If we take 6 different data sets from our tau-leaping algorithm,
with the initial values as in table 2.1 and 2.2, τ = 0.1 and tfinal = 30, we get the following results
rounded to 3 significant figures:

Data set Lower bound MLE Upper bound width

1 1.96 2.15 2.34 0.38

2 2.02 2.21 2.41 0.39

3 1.70 1.86 2.03 0.33

4 1.90 2.08 2.27 0.37

5 1.84 2.02 2.20 0.36

6 1.91 2.09 2.28 0.37

Table 3.1: 95% confidence intervals for c1. All values should be multiplied by 10−3.
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We can see that the width of the confidence intervals, which is a measure of the certainty, is mostly
around 3.6 · 10−4. In this case, we know the real value of c1, which is 2 · 10−3. Therefore we can
conclude that we can estimate our c1 quite precisely without a large uncertainty.

3.4 Estimation of linear rate constant

In the previous sections we assumed that the rate constants did not change over time. Now we will
assume that they are linear dependent on time, so ci(t) = ait + bi. In practice this can happen
by increasing the temperature, since molecules will have a higher velocity and therefore will collide
more. The methods that we are going to use in this section can also be applied to ci(t)’s that have
a higher order of n, however for the sake of simplicity we will continue using the linear dependency.

Lets take, for the first reaction (2.1) the rate constant c1(t) = a1t + b1. For estimating a1 and
b1, we can again apply the maximum likelihood method. Doing so eventually gives us the following
two equations that we have to solve

∂l(c1|X)

∂a1
=

n∑
i=0

ri · τi
a1τi+ b1

−X1(τi)X2(τi)τ2i = 0, (3.7)

∂l(c1|X)

∂b1
=

n∑
i=0

ri
a1τi+ b1

−X1(τi)X2(τi)τ = 0. (3.8)

Sometimes this can be solved by rewriting one of the equations and substituting it back in the
other equation. That method, however, is not applicable on (3.7) and (3.8), since we cannot get
the equations in a form wherein we can do a substitution. Therefore we have to solve this system
of equations numerically. There are several methods for solving these equations, we will apply the
Newton–Raphson method [7].

Solving these equations, does not give any information on the certainty of the estimated parameter.
If we want to determine a confidence interval for a1 and b1 again, the one dimensional Fisher
information, as described in section 3.2, is not sufficient anymore, since we have two estimated
parameters that are dependent on each other. Nevertheless, we can compute a confidence interval
of both parameters with the use of the Fisher information matrix, which is described in the next
section.

3.5 Higher dimensional Fisher information

Definition 3.2. Suppose we want to estimate the parameter vector θ = (θ1, θ2, ...θn)T . The Fisher
information matrix is then defined as

[I(θ)]i,j = Eθ

[(
δ

δθi
log f(X;θ)

)(
δ

δθj
log f(X;θ)

)]
,

which can be rewritten again with the same conditions as in lemma 3.1 to

[I(θ)]i,j = −Eθ

[(
δ

δθiθj
log f(X;θ)

)]
. (3.9)
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For the higher dimensional Fisher information we also have a way of determining the distribution
of θ. In this case we have the following theorem, which is very similar with the one dimensional
case [5].

Theorem 3.6. Suppose we have a sample X1, X2, ..., Xn of sample size n, where all the Xi are
independent distributed with probability density function f(X;θ) where θ is an unknown parameter
vector of dimension m. Denote θ̂ as the maximum likelihood estimator of θ given the data. The
asymptotic distribution of θ̂ is then

N
(
θ̂, [I(θ)]−1

)
,

where the −1 indicates the inverse of the matrix.

3.6 Confidence interval linear rate factor

The Fisher information matrix can be used to make a confidence interval for the parameters a1 and
b1. In this case we have θ = (a1, b1), and the Fisher information matrix will be

I(θ) =

[∑n
i=0

ri·(τi)2
(a1τi+b1)2

∑n
i=0

ri·τi
(a1τi+b1)2∑n

i=0
ri·τi

(a1τi+b1)2
∑n

i=0
ri

(a1τi+b1)2

]
,

which followed from (3.7), (3.8) and (3.9). Now we can make a 95% confidence interval again by
making use of theorem 3.6. We continue using the model that was described in (2.1)-(2.3). We
take τ = 0.1, tfinal = 30, the values listed in the table below,

a1 a2 a3 b1 b2 b3
2 · 10−4 4 · 10−3 0.01 2 · 10−3 4 · 10−2 0.1

Table 3.2: Values of c(t).

and the initial concentration from table 2.2. If we determine a 95% confidence interval from 6 data
sets from our code, we get the results rounded to 3 significant figures in table 3.3 and 3.4.

Data set Lower bound MLE Upper bound width

1 1.09 1.53 1.98 0.89

2 1.38 1.83 2.29 0.91

3 1.37 1.81 2.26 0.89

4 1.54 2.00 2.46 0.92

5 1.77 2.26 2.75 0.98

6 1.87 2.39 2.90 1.03

Table 3.3: 95% confidence intervals for a1. All values should be multiplied by 10−4.
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Data set Lower bound MLE Upper bound width

1 2.01 2.34 2.68 0.67

2 1.81 2.13 2.45 0.64

3 1.64 1.93 2.23 0.59

4 1.67 1.97 2.26 0.59

5 1.67 2.00 2.33 0.66

6 1.49 1.76 2.03 0.54

Table 3.4: 95% confidence intervals for b1. All values should be multiplied by 10−3.
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Chapter 4

Parameter estimation given the
concentrations

In the previous chapter we discussed several ways of estimating the rate constant with the assump-
tion that we know how many times each reactions occurred. This assumption, however, is not a
realistic one, since in practice it is hard to count the number of reactions that occurred. It is much
easier to measure the concentration at a certain time. If we take a look at our model from chapter
2, we see that we can sometimes determine the number of reactions that occurred by measuring the
change in concentration. The reaction (2.3) is a perfect example of this. The trick is to measure
the change in concentration of molecule S4. Every extra molecule of S4 means one extra reaction of
(2.3). So, for determining the rate constant, we can apply the same method as described in chapter
3.

We only encounter a problem when we want to determine the number of occurred reactions
of (2.1) and (2.2). We cannot exactly determine how many times the reactions occurred, if
we measure the concentrations of S1, S2 or S3. Let us call the number of reactions that oc-
curred for (2.1) r1 and for (2.2) r2. The only information that we could get by measuring
S1, S2 or S3 is the number r1 − r2. If we use the tau-leaping algorithm again, we know that
the r1 ∼ Pois(X1(t)X2(t)c1τ) and r2 ∼ Pois(X3(t)c2τ) in [t, t + τ). From which follows that
r ∼ Pois(X1(t)X2(t)c1τ) − Pois(X3(t)c2τ). The question that now arises is: “How can we esti-
mate c1 and c2 given r over time?”. In this chapter we will show how this can be done. To do so,
we first determine the distribution of the difference of two Poisson variables.

4.1 Poisson difference distribution

To determine the distribution of r we must know what the distribution is of the difference of two
Poisson variables. This distribution is called the Poisson difference distribution, but is also known
as the Skellam distribution. John Skellam was an English statistician who was the first person
to derive the distribution of the Poisson difference distribution and therefore the distribution was
named after him. The derivation of the distribution that we will provide in this section is based on
his original proof [8].
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The proof of the distribution of the Poisson difference distribution is based on probability generation
functions. Before we start we will give a small recap of the definition and a theorem about the
probability generation function. For the definition of a probability generating function we use the
more generalised definition in which a random variable X can be negative as well. The following
definition and lemmas can be found in ‘Probability generating functions for discrete real-valued
random variables’ by M. L. Esqúııvel [9].

Definition 4.1. Suppose X is a discrete random variable that can take the values αk with
P (X = αk) = pk. The probability generating function (PGF) of X is defined for all t > 0 as

GX(t) = E[tX ] =
+∞∑

k=−∞
pkt

αk .

A fundamental theorem about the PGF is the following.

Theorem 4.1 (Uniqueness of PGF). Let X,Y be (discrete) random variables, such that
GX(t) = GY (t) for all t > 0. Then the probability distributions of X and Y are the same.

Another important property of the PGF is stated in the following lemma.

Lemma 4.2. Let X,Y be (discrete) random variables with PGF GX(t) and GY (t). The PGF of
Z = X + Y is given as

GZ(t) = GX(t)GY (t).

Lastly we need the following lemma before we can start by deriving the Poisson difference dis-
tribution. This lemma can be found in the ‘Handbook of Mathematical Functions’ by Milton
Abromowitz and Irene A. Stegun [10].

Lemma 4.3. Let t and z be real valued numbers (t 6= 0), then we have that

e
z
2

(t+1/t) =
∞∑

n=−∞
tnIn(z),

where In(z) is the modified Bessel function of the first kind.

Now we can start with deriving the Poisson difference distribution, which is based on Skellam’s
original proof [8].

Theorem 4.4. Let X and Y be random Poisson variables with parameter µ1 and µ2 respectively
and define Z = X − Y . The distribution of Z is known as the Poisson difference (or Skellam)
distribution and equals

P (Z = n) = e−(µ1+µ2)

(
µ1

µ2

)n/2
In (2

√
µ1µ2) ,

where

Iy(x) =
(x

2

)y ∞∑
k=0

(x2/4)k

k!(y + k)!
,

is known as the modified Bessel function of the first kind.
For Z we write that Z ∼ PD(µ1, µ2).
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Proof. We start by determining the probability generation function of Z. This can be done with
use of Lemma 4.2. Therefore, we first need to determine the PGF of X and −Y . We get that

GX(t) =
∞∑
k=0

e−µ1µk1
k!

tk,

= e−µ1
∞∑
k=0

(µ1t)
k

k!
,

= e−µ1eµ1t,

= eµ1(t−1),

G−Y (t) =

∞∑
k=0

e−µ2µk2
k!

t−k,

= e−µ2
∞∑
k=0

(µ2t
−1)k

k!
,

= e−µ2eµ2t
−1
,

= eµ2(t−1−1).

With use of lemma 4.2 we get that

GZ(t) = GX(t)G−Y (t) = eµ1(t−1)eµ2(t−1−1) = e−(µ1+µ2)+µ1t+µ2t−1
. (4.1)

Now we need to work back to a probability mass function, which can be done by making use of a

smart substitution. We do the substitution γ = 2
√
µ1µ2 and φ =

√
µ1
µ2

. Some algebraic steps and

substitutions will lead to the expressions µ1 = γ
2φ and µ2 = γ

2φ
−1.

If we substitute these expressions in (4.1), we get that

GZ(t) = exp

{
−γ

2
(φ+ φ−1) +

γt

2
φ+

γ

2
(φt)−1

}
,

= exp
{
−γ

2
(φ+ φ−1) +

γ

2
(tφ+ (φt)−1)

}
,

= exp
{
−γ

2
(φ+ φ−1)

}
exp

{γ
2

(tφ+ (φt)−1)
}
.

Which can be rewritten with use of lemma 4.3 as

GZ(t) = exp
{
−γ

2
(φ+ φ−1)

} ∞∑
n=−∞

tnφnIn(γ),

=

∞∑
n=−∞

exp
{
−γ

2
(φ+ φ−1)

}
tnφnIn(γ).
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If we compare this expression to the definition of a PGF in 4.1. We can conclude that the probability
P (Z = αz) = pz equals

P (Z = z) = exp
{
−γ

2
(φ+ φ−1)

}
φzIz(γ).

Substituting this back in terms of µ1 and µ2 gives us

pz(z) = e−(µ1+µ2)

(
µ1

µ2

) z
2

Iz(2
√
µ1µ2),

which is the probability mass function of the Poisson difference distribution.

4.2 Maximum likelihood estimator for Poisson difference distri-
bution

We have seen what the probability mass function of the difference of two Poisson variables is. Now
we can return to our original problem wherein we are trying to estimate a rate constant. We will
again look at (2.1) with the assumption that we can only measure the change in concentration.
In other words, we only know the outcome of the random variable r, which was described at the
beginning of this chapter. In this case we have, that r ∼ PD(X1(t)X2(t)c1τ,X3(t)c2τ). Abdul-
hamid A. Alzaid and Maha A. Omair showed that you could determine the parameters of a Poisson
difference distribution given an i.i.d. sample [2]. The method they used is only applicable to an
i.i.d. sample, therefore we need to make some adjustments in their method before we can apply it.
How this can be done for our model, is shown below.

We use the normal procedure to determine the maximum likelihood estimator of c1. We assume
that we have an independent sample R = [r0, r1, ..., rn], where every ri is Poisson difference dis-
tributed with parameter X1(τi)X2(τi)c1τ and X3(τi)c2τ respectively. To keep the notation short,
we define θ1(t) = X1(t)X2(t)τ and θ2(t) = X3(t)τ , so we have ri ∼ PD(θ1(τi)c1, θ2(τi)c2). The
(log-)likelihood function then becomes

L(c1, c2|R) =
n∏
i=0

e−θ1c1−θ2c2
(
θ1c1

θ2c2

)ri/2
Iri

(
2
√
θ1c1θ2c2

)
, (4.2)

l(c1, c2|R) =
n∑
i=0

−θ1c1 − θ2c2 +
ri
2

log

(
θ1c1

θ2c2

)
+ log

(
Iri

(
2
√
θ1c1θ2c2

))
. (4.3)

We can now take the derivative with respect to c1 and c2. Before we do so, we need to know what
the derivative of the modified Bessel function of the first kind is. That is given in the following
proposition, see [2].

Proposition 4.4.1. The derivative of the modified Bessel function of the first kind Iy(θ) can be
written as

∂Iy(θ)

∂θ
=
y

θ
Iy(θ) + Iy+1(θ).
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We can now take the derivative of (4.3) with use of proposition 4.4.1. We get

∂l(c1, c2|R)

∂c1
=

n∑
i=0

−θ1 +
ri

2c1
+

θ1θ2c2√
θ1c1θ2c2

( ri
2
√
θ1c1θ2c2

Iri
(
2
√
θ1c1θ2c2

)
+ Iri+1(2

√
θ1c1θ2c2)

Iri
(
2
√
θ1c1θ2c2

) )
,

(4.4)

=
n∑
i=0

−θ1 +
ri

2c1
+

ri
2c1

+
θ1θ2c2√
θ1c1θ2c2

(
Iri+1(2

√
θ1c1θ2c2)

Iri
(
2
√
θ1c1θ2c2

) ) , (4.5)

=
n∑
i=0

−θ1 +
ri
c1

+
θ1θ2c2√
θ1c1θ2c2

(
Iri+1(2

√
θ1c1θ2c2)

Iri
(
2
√
θ1c1θ2c2

) ) , (4.6)

and

∂l(c1, c2|R)

∂c2
=

n∑
i=0

−θ2 −
ri

2c1
+

θ1θ2c1√
θ1c1θ2c2

( ri
2
√
θ1c1θ2c2

Iri
(
2
√
θ1c1θ2c2

)
+ Iri+1(2

√
θ1c1θ2c2)

Iri
(
2
√
θ1c1θ2c2

) )
,

(4.7)

=

n∑
i=0

−θ2 +
ri

2c2
− ri

2c2
+

θ1θ2c1√
θ1c1θ2c2

(
Iri+1(2

√
θ1c1θ2c2)

Iri
(
2
√
θ1c1θ2c2

) ) , (4.8)

=

n∑
i=0

−θ2 +
θ1θ2c1√
θ1c1θ2c2

(
Iri+1(2

√
θ1c1θ2c2)

Iri
(
2
√
θ1c1θ2c2

) ) . (4.9)

Now we set (4.6) and (4.9) equal to zero. If we multiply (4.6) by c1 and (4.9) by c2 and then
subtract them from each other, we get

n∑
i=0

−ĉ1θ1 + ri + θ2ĉ2 = 0,

and due to the independence of ĉ1 and i, we could express ĉ1 as

ĉ1 =

∑n
i=0 ri + θ2ĉ2∑n

i=0 θ1
. (4.10)

Now we substitute (4.10) in (4.9) and set the equation equal to zero. We then get a equation with
one unknown variable that can be solved. Solving this equation gives a value of ĉ2 which can be
used to get ĉ1 with the use of (4.10).

4.3 Fisher information of Poisson difference distribution

We again want to know what the accuracy of our estimated ĉ1 is. This can again be done with a
confidence interval. Since we have a probability mass function that is dependent on two parameters
(c1 and c2), we must use the Fisher matrix as described in section 3.6. The Fisher information
matrix can be calculated by making use of (3.9). To keep things short, we define ξ = 2

√
θ1c1θ2c2,
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where θ1 and θ2 have the same definition as in the previous section. Using straightforward derivative
rules in combination with proposition 4.4.1 gives us

I11(c1, c2) =

n∑
i=0

ri
c1

+
1

2
c
− 3

2
1

√
θ1θ2c2

(
Iri+1(ξ)

Iri(ξ)

)
+
θ1θ2c2

c1

(
ξ−1Iri+1(ξ)Iri(ξ) + Iri+2(ξ)Iri(ξ)− I2

ri(ξ)

I2
ri(ξ)

)
,

I22(c1, c2) =

n∑
i=0

1

2
c
− 3

2
2

√
θ1θ2c1

(
Iri+1(ξ)

Iri(ξ)

)
+
θ1θ2c1

c2

(
ξ−1Iri+1(ξ)Iri(ξ) + Iri+2(ξ)Iri(ξ)− I2

ri(ξ)

I2
ri(ξ)

)
,

I12(c1, c2) =
n∑
i=0

−1

2

√
θ1θ2c1c2

(
Iri+1(ξ)

Iri(ξ)

)
+ θ1θ2

(
ξ−1Iri+1(ξ)Iri(ξ) + Iri+2(ξ)Iri(ξ)− I2

ri(ξ)

I2
ri(ξ)

)
,

I21(c1, c2) = I12(c1, c2).

By making use of the Fisher information matrix and theorem 3.6, we can make a confidence interval.

4.4 Confidence interval

We return to our original problem, wherein we wanted to determine a confidence interval for c1.
We will use the same model as described in section 3.3. If we apply our method that was described
above to six of those data sets, we get the following 95% confidence intervals for c1,

Data set Lower bound MLE Upper bound width

1 1.76 2.02 2.29 0.53

2 1.89 2.11 2.33 0.44

3 1.86 2.14 2.41 0.55

4 1.95 2.17 2.39 0.44

5 1.60 1.87 2.13 0.53

6 1.76 2.00 2.24 0.48

Table 4.1: 95% confidence intervals for c1. All values should be multiplied by 10−3.

Now we can make a comparison with table 3.1. Both tables represent 95% confidence intervals
for c1 with data sets from the same model. We can clearly see that the estimation from section
3.3 a better estimation gives. This is due to the fact that the width in table 3.1 is smaller than
in 4.1, which is also what we would expect. The method from section 3.3 used the number of
reactions that occurred, since we assume this is a known value. In the second method we assumed
that we can only measure the change in concentration and since (2.1) and (2.2) are exact opposites
, we were not able to determine the exact number of reactions. Therefore, the last method had
less information to work with and that is why we would expect that the method from section 3.3
would give a more accurate estimation of c1 than with the method that uses the Poisson difference
distribution.
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Chapter 5

Aggregation

In this chapter we will take a look at a certain type of process, which is known as aggregation. The
definition of the aggregation model is based on the book ‘A kinetic View of Statistical Physics’ [11].

In the aggregation process clusters merge with each other irreversibly. This phenomenon is ob-
served in many different processes, i.e. cheese making and star formation. If we have n types of
clusters, then the aggregation model consist of the reactions

Si + Sj
cij→ Si+j , (5.1)

with i ≤ j and i+ j ≤ n.

To illustrate this model, we look at some examples. The first example we look at is the exam-
ple of soap bubbles. Soap bubbles can merge with each other and then become a bigger bubble
until they eventually burst. This fits the aggregation model, since clusters, in this case bubbles,
can react with each other and form bigger clusters which are also bubbles. Another example is par-
ticle aggregation, where you start with many individual particles that are ‘sticky’. If two particles
collide, they stick together and become a larger particle. The mass of the product will equal the
sum of the mass of the reactants. It is common in aggregation that S1 is in the starting situation
the only cluster which has a positive concentration or quantity.

In aggregation, the maximum size of the cluster is very important. In some aggregation pro-
cesses the maximum cluster size is limited. After that size the clusters can break down to smaller
pieces. However, in particle aggregation, the size of the highest possible cluster can be as large as
the sum of the clusters of all the particles. The following assumptions about the maximum cluster
size can be made:

(i) The maximum cluster size equals the sum of the cluster sizes in total.

(ii) When the cluster becomes greater than size n, it breaks down in cluster of smaller sizes.

(iii) When the cluster becomes greater than size n, it vanishes.

For the aggregation model we can also use the tau-leaping algorithm. The question that arises is:
‘What does ci,j look like?’. In this case, the reaction speed depends on the sizes of the clusters.
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The larger the size, the higher the chance that another cluster will collide with this cluster. It can
be argued that the reaction speed is exponentially dependent on the sizes of the clusters.

We therefore assume that ci,j = C · (i · j)α with C,α > 0 and i 6= j. If i = j, then we get
ci,i = C

2 · (i · i)
α. The last case can be explained in the following way. If Xi is the number of clusters

of size i, we get that the number of pairs of (Si, Si) is equal to 1
2Xi(Xi−1), which is approximately

equal to 1
2X

2
i for large enough Xi . The factor 1

2 thus corrects for the double counting of pairs that
would otherwise occur. We conclude from the definition of ci,j that clusters with a larger size are
more reactive. We can conclude this because α > 0.

If we want to apply the tau-leaping algorithm to the aggregation model, we need to choose τ
to be very small, since big clusters can be very reactive. Furthermore, it is important to pay at-
tention to the assumption about the largest cluster size. We look at an example, to show how the
aggregation model works and how the assumption (i) and (iii) can change the model drastically.
The values can be found in the table below.

C α τ X1(0)

1 · 10−4 0.9 0.02 10000

Table 5.1: Initial values for an aggregation model

(a) Assumption (i) (b) Assumption (iii) with n = 50.

Figure 5.1: Implementation of the tau-leaping algorithm on the aggregation model,
S1: blue, S2: orange, S4: green, S6: red.

We can see that S1 is decreasing in concentration, which is what we would expect, since S1 is never
a product of a reaction. We also see that the concentrations of clusters of larger size are lower than
the concentration of S1. The main reason for this is that they are more reactive, because ci,j is
proportional to (ij)α. Another reason is, that there can exist less clusters of larger size than of
smaller size, i.e. in the beginning the concentration of S1 is 10000, but that means that there can
only exist a maximum of 10 clusters of size S1000.
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Another thing that stands out, is that the concentrations of S1, S2, S4 and S6 decrease much slower
than with assumption (iii). This can also be explained. At the beginning, the graphs show the same
behaviour. After t = 5 they begin to differ drastically. The reason for this is that with assumption
(i) big reactive clusters can exist, which will react with the clusters S1, S2, S4 and S6, hence those
clusters will decrease in concentration. It is therefore very important to really think through which
assumption is suitable for a model, since the outcomes can be totally different.

5.1 Confidence interval parameters

Just like in the case of the previous chapters, we are again interested in estimating the parameters
of the model, in this case C and α. We suppose that the tau-leaping algorithm is a suitable fit and
that the number of occurred reactions is known.1 With those two assumptions, we can define the
likelihood function as

L(C,α|X) =
∏
K

n∏
k=0

(Xi(τk)Xj(τk)τCδ(i, j)(ij)α)r
ij
k

rijk
eXi(τk)Xj(τk)τCδ(i,j)(ij)α , (5.2)

with K = {(i, j)|1 ≤ i ≤ n, i ≤ j ≤ n}, δ(i, j) = 1
2 if i = j and δ(i, j) = 1 otherwise and rijk the

number of occurred reactions of type Si + Sj → Si+j at time step k.

If we take the logarithm of (5.2) and then the derivative with respect to C and α and let it equal
0, we get

∂l(C,α|X)

∂C
=
∑
K

n∑
k=1

rijk
C
− (ij)αXi(τk)Xj(τk)τδ(i, j) = 0, (5.3)

∂l(C,α|X)

∂α
=
∑
K

n∑
k=1

rijk log(ij)− Cl log(ij)(ij)αXi(τk)Xj(τk)τδ(i, j) = 0. (5.4)

If we rewrite (5.3), we find

Ĉ =

∑
K
∑n

k=1 r
ij
k∑

K
∑n

k=1(ij)α̂Xi(τk)Xj(τk)τδ(i, j)
. (5.5)

If we substitute (5.5) into (5.4), we find

∑
K

log(ij)
n∑
k=1

(
rijk −

∑
K
∑n

k=1 r
ij
k∑

K
∑n

k=1(ij)α̂Xi(τk)Xj(τk)τδ(i, j)
(ij)α̂Xi(τk)Xj(τk)τδ(i, j)

)
= 0, (5.6)

which is an equation that does not depend on Ĉ anymore and has only one unknown variable,
namely α̂. When we solved the equation, we can use the the value of α̂, for determining the value

1If we assume that we can only measure the change in concentration, then the method from chapter 4 has to be
applied. This gives, however, some unpleasant expressions.
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of Ĉ by using (5.5).

To calculate the confidence interval for C and α, we need to use the Fisher information matrix
again, since we have two parameters. Using (3.9) gives us

I11(C,α) =
∑
K

n∑
k=1

rijk
C2

, (5.7)

I22(C,α) =
∑
K

n∑
k=1

C log2(ij)(ij)αXi(τk)Xj(τk)τδ(i, j), (5.8)

I12(C,α) =
∑
K

n∑
k=1

log(ij)(ij)αXi(τk)Xj(τk)τδ(i, j), (5.9)

I12(C,α) = I21(C,α). (5.10)

5.2 Implementation

The method as described above can be again implemented in Python. The hardest problem is
solving (5.6), since it cannot be solved exactly. We will solve this equation by making use of the
bisection method. The data sets that we will be using are from an aggregation model where the
clusters disappear after size n = 50. This is pure practical, since calculating a value of (5.6) is in
O(n2), because of the first summation.2

The parameters that are used can be found in table 5.2. We will determine a 95% confidence
interval for C and α with the use of theorem 3.6.

C α τ X1(0) n

2 · 10−4 0.95 0.02 10000 50

Table 5.2: Initial values for the aggregation model.

We can see from table 5.3 and table 5.4, that we can determine the values of C and α for this
example with a relatively high accuracy. This is mainly due to the amount of information that the
data sets contain. There are many reactions happening in this example of aggregation, which means
that there is also a lot of information that can be deducted from the data. The more information
there is, the more accurate the estimation of the parameters will be.

2Most of the times, this is not really a problem for aggregation models. With use of smart data structures it is
usually still doable to solve (5.6) for large n.
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Data set Lower bound MLE Upper bound width

1 1.901 1.956 2.010 0.110

2 1.949 2.005 2.061 0.112

3 1.969 2.025 2.081 0.112

4 1.935 1.990 2.045 0.110

5 1.977 2.034 2.090 0.113

6 1.926 1.981 2.036 0.110

Table 5.3: 95% confidence intervals for C. All values should be multiplied by 10−4.

Data set Lower bound α MLE α Upper bound α width

1 0.949 0.960 0.971 0.22

2 0.937 0.948 0.960 0.23

3 0.935 0.946 0.958 0.23

4 0.936 0.947 0.959 0.23

5 0.931 0.943 0.955 0.24

6 0.942 0.954 0.965 0.23

Table 5.4: 95% confidence intervals for α.
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Chapter 6

Percolation

In the previous chapters we have seen how we could estimate parameters using a certain data set.
These data sets were generated with Python code that uses the tau-leaping algorithm. Processes
in real life are clearly not just data sets from Python. Therefore, it is time to test our method
of estimating parameters on real data. The data that we will be using is from a two dimensional
percolation process on a geometric graph. Percolation processes are well studied and a lot is already
known about them.

The percolation process that we will use works as follows. We start with a graph that only contains
nodes. We then start with randomly adding edges. If nodes are connected with each other by an
edge, then they form a cluster, which size is equal to the number of nodes that it contains.

It can be hypothesised that the percolation process fits the aggregation model. Larger clusters
have more neighbours to which they can connect, hence they are more reactive just as in the aggre-
gation model. The value of α is highly dependable on the number of neighbours. This can be seen
the following way. Assuming we have a graph that contains nodes that are all on one straight line,
such that they can only have an edge with their neighbours. This means that every node has two
neighbours. For big clusters the same number holds, since they can only have one neighbour on the
left and one on the right. Therefore, we can see that big clusters are not more reactive than smaller
ones. In other words, we would expect that α = 0. However, when the number of neighbours of
each node is higher than two, then larger clusters do have, in general, more neighbours. In that
case you would expect that α > 0. The model stops when all nodes have formed one big cluster,
just like in aggregation processes. How this takes shape can be seen in figure 6.1.

We assume that the aggregation model as described in chapter 5 fits the data from the two di-
mensional percolation. In this case the clusters can get as large as the sum of all the nodes at the
beginning. The data that we will be using has been given by Dr. I. Kryven.
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Figure 6.1: Final situation of percolation on a 2D geometric graph.

6.1 Confidence interval

The data that we will be using is from percolation on a two dimensional geometric graph with 2000
nodes. The data consists of 157 files at which is stated which clusters are formed at a specific time.
We also have a file containing the information about the number of each cluster that exists at that
time. The used time in the data set is scaled. The scaled time, let us call it t̃, is defined as the
total number of nodes minus the number of clusters. Hence, the time steps are not uniform. This
poses for us a problem, since we cannot directly implement the same method that we have seen in
chapter 5, because that is based on fixed non-scaled time steps. However, there is a way we could
work around this, but then we first have to make an assumption about the way that the data was
measured. We assume that the reactions are counted every one time unit τ and that then the t̃ is
calculated. What this means is that the time steps are not fixed given t̃, but are fixed given the
normal non-scaled time steps. The steps are then equal to τ . There is, however, still one problem.
When in some time step τ no reaction occurred, the time step will be 0 under t̃. This means that,
when no reaction occurred, a time step in t̃ can take longer than τ , since the time t̃ only gets
updated when a reaction took place. Therefore we can never be sure, how long a time step in t̃
takes in our standard non-scaled time.

From the data set we can see that there are several reactions occurring at each time step for
t̃ < 1600. We assume that for t̃ < 1600 in every time step τ at least one reaction occurred. We
now can state that every time step for which t̃ < 1600 takes τ non-scaled time.

For the confidence interval of C and α we can apply the method that is described in chapter
5. We will ignore everything that happens after t̃ = 1600, since we cannot be certain what the
lengths of the time steps are. The first step is to solve equation (5.6) and then we can determine
Ĉ by expression (5.5). Lastly we need to compute the Fisher information matrix with use of ex-
pressions (5.7)-(5.10). We find Ĉ = 2.47 · 10−5 and α̂ = 0.482. The 95% confidence interval for C
is [2.34 · 10−5, 2.60 · 10−5] and for α we get [0.444, 0.519].
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6.2 Goodness of fit

The maximum likelihood estimators that we have calculated do not tell us anything about the
goodness of fit of the aggregation model. We will determine if the aggregation model fits by
comparing plots with each other. One plot is from the data itself, the other is an aggregation
model that is modelled with the use of the tau-leaping algorithm and the maximum likelihood
values of α and C. First we will see how the concentrations of S1, S2, S4 and S6 change over time.
Note that both plots have the scaled time on the x-axis.

(a) The 2D percolation. (b) Aggregation with α̂ and Ĉ.

Figure 6.2: The two dimensional percolation and the aggregation process,
S1: blue, S2: orange, S4: green, S6: red.

From figure 6.2a and 6.2b we can see two interesting things. First of all, we see that both figures
show the same behaviour. This gives us an indication that the aggregation model fits the percola-
tion process. Another thing that can clearly be observed is some interesting behaviour at the end
of both plots. This is due to the time scaling. At the end of the process, one big cluster of size
2000 has formed, we know then that t̃ = 2000 − 1 = 1999. Therefore you see a drastic decline in
concentration in the end for S1, S2, S4 and S6. This is only due to the scaled time, on a non-scaled
time axis, you would not see this behaviour.

Lastly, we can also compare the largest cluster at each time.

Again we can see from figure 6.3a and 6.3b that both plots show the same behaviour, that indicates
again that the aggregation model might be a good fit for the percolation. Another interesting thing
that can be noticed, is that big clusters that has a size greater than 100 are only observable after
t̃ = 1500.
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(a) The 2D percolation. (b) Aggregation with α̂ and Ĉ.

Figure 6.3: The 2D percolation and a implementation of the tau-leaping algorithm on the
aggregation model.
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Chapter 7

Discussion

The methods that we have used in this paper strongly rely on the accuracy of the tau-leaping
algorithm. Theoretically, the tau-leaping algorithm gives an exact result when the time steps are
infinitesimally small. In real life however, the time steps that are taken to measure the concentra-
tion are not infinitesimally small. If the time steps are too big, then the tau-leaping algorithm does
not give a good representation of the situation. If that is the case, than the methods of estimating
parameters that are described in this paper are no longer reliable. Especially in aggregation we
can have large deviations from reality. Large clusters in aggregation processes can be very reactive,
but it is still important that the cluster for the most part does not react more than once in a single
time step. This is only the case when τ is sufficiently small.

If τ is sufficiently small, then the tau-leaping algorithm is a good representation of the reality.
We can then make some useful estimations. We can estimate the value α for aggregation processes
using the method from chapter 5. Usually with aggregation processes, the value of α can be de-
termined by reasoning, however now it can be checked if the reasoning is in line with the reality.
It is important to note that there are several other ways for determining the maximum likelihood
estimator, for example by the Cross-Entropy Method [12].

Estimating those parameters can be very useful in many ways. There is for example a strong
relation between the tau-leaping algorithm and some ordinary differential equations that can de-
scribe the system at a macroscopically level. It turns out that the parameters that we estimated
are related to the coefficients of the differential equations [1].

We have also seen that it is not necessary to know the number of reactions that occurred in
order to estimate the parameters of a reaction process. By using the Poisson difference distribution
it becomes possible to estimate reaction speeds by just measuring the change in concentration.
This insight could lead to some new ideas in the field of transition theory.

Another thing that we encountered was the two dimensional percolation process. We have seen
that there are some indications that the percolation process can be modelled with the use of an
aggregation process. This was only based on similarities between some plots. To prove that the
aggregation model fits the percolation model, more research has to be done which should have a
better mathematical foundation.
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Chapter 8

Conclusion

At the beginning of this paper we have seen how we could model certain kinds of reaction processes
in which the reaction speed is dependent on the concentration of the reactants. As an illustration
we have used an example with molecules, however, there are plenty of other processes where here
could be used. The tau-leaping algorithm was one of the algorithms that we could use for modelling
those kinds of processes. For small time steps, the algorithm gives us a trustworthy result. When
we assumed that a process could indeed be modelled by the tau-leaping algorithm for sufficiently
small time steps, then we could use the idea behind the algorithm to determine the maximum
likelihood estimators and confidence intervals for the parameters.

From the confidence intervals that we constructed for some example processes, it became clear
that, with use of the tau-leaping algorithm it is possible to estimate the parameters with quite
some certainty. This is not generally the case and the certainty of the estimation is highly depen-
dent on the data and the process itself. Finally, we have seen what aggregation processes are and
how we could estimate the parameters of those processes. We also used the aggregation model
on a two dimensional percolation process. We have seen that there are some indications that the
aggregation model is indeed a good fit for the percolation process.
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