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Abstract

In this thesis we take a look at energy and angular momentum extraction from a rotating
black hole. We start off by introducing basic concepts regarding black hole before moving on
to Kerr black holes. We compute basic properties of a Kerr black hole such as its the location
of its event horizon, the area of the event horizon and we introduce the ergosphere.

Next we move on to the constituting mechanism for energy and angular momentum ex-
traction from a Kerr black hole: the Penrose process. The basic idea of the Penrose process
is that it is possible for a particle within the ergosphere to have a decay product which has
a negative energy. If such a decay product falls into the black hole, it extracts energy and
angular momentum from it.

A more effective energy and angular momentum extraction mechanism is the Blandford-
Znajek process. The Blandford-Znajek process is an electromagnetic process and understand-
ing it amounts to understanding three central components of which we only discuss two in
detail in this thesis.

Firstly, we need to understand force-free electromagnetism. This can be understood as the
physics explaining how the energy and angular momentum is being carried away. This force-
free electromagnetism induceses a current in the plasma surrounding the black hole. This
current is connected to the electromagnetic fields and carries away the energy and angular
momentum.

Secondly we will briefly take a look at the plasma surrounding the black hole. We will
answer the question of how it is formed and what properties it has to satisfy.

Lastly, we need to take a look at the mechanism explaining how energy and angular mo-
mentum is take away from the black hole. For a positive radially outflowing energy flux
measured far away from the black hole, we require a negative radially inflowing energy flux
near the black hole. Here we also recognise the role of the Penrose process.

1 Introduction

1.1 Historical Overview

In 1969 last year’s Nobel prize winner in physics Roger Penrose proposed a mechanism through
which energy and angular momentum could be extracted from the recently discovered rotating or
Kerr black holes. This simple observation kick-started a large area of research focussed on the
question: how can rotational energy and angular momentum be extracted from a Kerr black hole?
This lead to various other mechanisms being proposed that could extract energy, most famously
the Hawking radiation.

Sadly thoug, five years after Penrose’s discovery, Robert Wald showed that the Penrose process
was insufficiently effective to explain various observed phenomena. Originally the hope was that
the Penrose process could supply the energy, or at least play a significant role, in the formation of
jets and the active nature of active galactic nuclei. Wald showed that this could not bet done by
the Penrose process.

The search continued and in 1977 Roger Blandford and Roman Znajek proposed another mecha-
nism for energy extracted apply called the Blandford-Znajek process. This process can be thought
of as the electromagnetic equivalence for the Penrose process. They based a lot of their mechanism
on pulsar physics and thereby linking the study of energy extraction from a black hole to that of
a pulsar.

Even though this is physics from the 70’s, it is still an active area of research with papers coming out
every day still. It is still hotly contested whether or not the Blandford-Znajek process can supply
the energy necessary for various observed phenomena. No analytic solution is also known in the
case of fast spinning black holes, a huge omission since most black holes are fast spinning.

The aim of this thesis is not to offer criticism or support for the Blandford-Znajek process. Rather
its goal is to offer an in-depth explanation of the Blandford-Znajek process, which we will often
refer to as the BZ-process. This has as downside that we do not offer any new result to this field
of research. Rather we offer a textbook like introduction to the Blandford Znajek process. This is
a fairly self-contained document where we go into a lot of details both regarding computations as
well as regarding the physical intuition behind it.

1



1.2 Structure of this Thesis

To be able to understand the Blandford-Znajek process, we need to understand the basics of black
hole physics. This is done in chapter 2. This chapter can viewed as a refresher on this subject
and so can easily be skipped by a reader familiar with the subject. In this chapter we give a basic
explanation of the formation of black holes before moving on to the mathematics. We introduce
the Schwarzschild metric which plays an important role later on in the development of Michel’s
rotating magnetic monopole, a toy model for the BZ-process. Next we introduce the Kerr metric
which describes spacetime around a rotating black hole. We derive the event horizon and the
area of such a black hole before introducing the object that allows energy and angular momentum
extraction to take place: the ergosphere.

In chapter 3 we aim to clarify the Penrose process. Again the reader familiar with this can skip
it safely. In this chapter, we will show that it is possible for the decay product of a particle which
decayed after having entered the ergosphere, to have a negative energy. Since the amount of energy
extracted comes from the kinetic energy of the black hole, this means that the angular momentum
will also decrease. Then we will show that this process in fact increases the area of the black hole,
but the amount of energy that can be extracted is limited by the irreducible mass.

Chapters 4 throughout 7 are aimed at understanding the Blandford-Znajek process. In chapter 4
we develop an analogy between the BZ-process and the rotating cylinder immersed in a uniform
magnetic field. The main goal of this analogy is to sketch in broad lines what we need to do to
understand the Blandford-Znajek process as well as allow us to make some basic estimates.

In chapter 5 we introduce the concept of force-free electromagnetism. Bluntly put, we can under-
stand force-free electromagnetism as the physics describing how the energy and angular momentum
gets carried away. We give an in-depth description of the governing equations of force-free electro-
magnetism and apply it to a class of very important examples before specifying it to the context
of the Michel’s rotating magnetic monopole. The Michel’s monopole will serve as the analytic
starting point for the BZ-process.

In chapter 6 we give a briefly discuss how a plasma can form around a black hole. This plasma is
essential since it contains the charge carriers necessary for the energy and angular momentum to
be carried away from the black hole.

In chapter 7 we go into the mechanics of how energy and angular momentum are extracted. We
start by taking a look at the Michel’s monopole and we compute how much energy and angular
momentum it loses. Then we discuss the physics behind this extraction and we note that this
cannot coincide with the physical reality in the case of a Kerr black hole. These problems though
are not insurmountable and we discuss how we can fix the situation.
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2 Black Holes

Since black holes will be the central object of study in this thesis, it is worthwhile to start off
by giving a description of what black holes are. We will do this in two ways: an astrophysical
approach to the formation of black holes as well as a more mathematical description of black holes
as singularities occurring in the metric of curved spacetime.

2.1 The Astrophysical Approach

Let us start off by giving a fairly informal description of how black holes are formed. We will limit
ourselves to a brief discussion about stellar black holes since they form the largest class of black
holes and the process of their formation is well understood. The more interested reader we refer
to [4] chapter 2.

To better understand stellar black holes, an important question one must ask is: why do stars not
collapse in on themselves? To say it crudely, stars are just a very heavy ball of gas. Gravity should
just pull all that gas to the center and the star should be more or less inseparable from a point
particle. So the question then becomes: why does that not happen? The answer is actually that
this does happen. This is the very basics of a stellar black hole, but this does not happen while
the star is ’alive’.

The way to understand this is as follows: A star starts out as a cloud of gas. This gas is attracted
due to gravity to its center of mass (of course, assuming that there is no external force acting on
this cloud). As this cloud moves towards its center of mass, the pressure around the center of mass
starts to increase. This causes the particles (in this phase usually hydrogen) to start interacting
with each other to form a heavier particle, a process known as nuclear fusion. In this interaction,
energy, in the form of a photon, is released. This photon moves away from the center of the star,
but it can hit other particles which are pulled to the center by gravity. This being hit by photons
is what causes the particles to slow down untill an equilibrium is reached: the gravitational force
pulling the particles in is offset by the light emitted due to the burning core of the star. To put it
simples: the star stops collapsing.

Of course, this process does not hold indefinitely. After billions of years, the core has exhausted
its fuel and gravitational collapse resumes. It is possible that the core of the star reignites. For
example, suppose we have a star consisting only out of hydrogen. When its core is burning, what in
fact is happening is the conversion of two hydrogen atoms into one helium atom and a photon. After
all the hydrogen is converted into helium, it is possible that the gravitational collapse increases
the pressure on the stars core to such a level that the helium atoms fuse to form heavier atoms.
This interaction also releases energy which is able to counteract the gravitational collapse.

This exhaustion of the fuel and reignition can only happen so many times. An end point of this
process is for example the case that the core consists only out of iron. In that case two or more
iron atoms interacting to form a heavier atom does not release energy, but actually requires it. So
then the burning of the core will not compensate the gravitational collapse. Another end point
might be that the mass of the star is not sufficient to raise the pressure to such a level that the
core combusts.

The most important thing to note is that in both of these cases the gravitational collapse is not
counteracted. The star keeps collapsing in on itself. There are various other fail-safes which might
counteract the gravitational collapse of the star. For example, the neutron degeneracy pressure,
which is a consequence of the Pauli exclusion principle, can counteract gravitational collapse and
leads to the formation of a neutron star.

It is possible though that the star has such a high mass that these various other fail-safes are not
sufficient to counter the gravitational collapse. This results all the mass to converge on a single
point, called the singularity, and a black hole is formed.
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2.2 Black Holes: The Mathematical Approach

The astrophysical approach discussed here above is quite informal and serves only to develop an
idea of what kind of objects (stellar) black holes are. What is more important for us is the fact
that general relativity allows for the existence of black holes.

2.2.1 The Schwarzschild metric

The metric describing curved space around a planet or a star is the Schwarzschild metric:

ds2 = −(1− 2M

r
)dt2 + (1− 2M

r
)−1dr2 + r2(dθ2 + sin2(θ)dφ2) (1)

We note that for the spatial components we have switched from Cartesian coordinates to spherical
coordinates. We call (t, r, θ, φ) the Schwarzschild coordinates. Furthermore M is the mass of
the black hole.

The first thing to note is that there are a couple of symmetries in this metric. Applying equation
(96) one can show that ∂t is a Killing vector, implying that the metric is time translation invariant.
More difficultly, one can show that there exist Killing vectors implying the spherical symmetry of
the metric. The easiest one of those is ∂φ.

Next, since the Schwarzschild metric is diagonal, it is quite easy to compute its inverse. This gives
us:

gµν =


−(1− 2M

r )−1 0 0 0
0 (1− 2M

r ) 0 0
0 0 1

r2 0
0 0 0 1

r2 sin2(θ)

 (2)

Another point to note is that there are two singularities in this metric, namely at r = 0 and at
r = 2M . Let us first take a look at r = 2M . It appears that this is not a real physical singularity,
but occurs as a consequence of the choice of coordinates. To make this clear, we transform time
in the Schwarzschild coordinates as follows:

t = u+ r + 2M ln | r
2M
− 1|

The coordinates (u, r, θ, φ) are called outgoing Eddington-Finkelstein coordinates. We can
compute its differential:

dt =
∂t

∂u
du+

∂t

∂r
dr = du+ dr +

1
r

2M − 1
dr = du+

1

1− 2M
r

dr

If we square this, we get:

dt2 = du2 +
2

1− 2M
r

dudr +
1

(1− 2M
r )2

dr2

Now if we plug this into the Schwarzschild metric, we get:

ds2 = −(1− 2M

r
)du2 − 2dudr + r2(dθ2 + sin2(θ)dφ2)

The first thing to note is that this is still the Schwarzschild metric. So the space it describes, is
unchanged. The second thing to note is that there is no singularity at the point r = 2M , but
something interesting still does happen. If we look at the first component of the metric (1− 2M

r ),

we see that if we have that r < 2M , then we have (1− 2M
r ) < 0. But if we have r > 2M , we get

that (1− 2M
r ) > 0. So that metric component changes sings at r = 2M .

The consequence of this is actually what allows black holes to exist in general relativity. To make
this clear, let us take a look at the light cone ds2 = 0. To simplify computations, we assume
dθ2 + sin2(θ)dφ2 = 0. This then gives us the following equation:

−(1− 2M

r
)du2 + 2drdu = 0 (3)
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So the first solution is straightforward: u is constant. Since we defined u = t− r− 2M ln | r2M − 1|,
if we want it to remain constant as time passes on, then r must become larger. This then implies
that any light ray that follows the geodesic described by u = const, moves away from the centre
of the system. These light rays are called outgoing radial light rays since they go away from
the black hole. The light rays which move away to the singularity are called ingoing radial light
rays.

The second solution to the above equation is described by:

du

dr
=

2

1− 2M
r

We can solve this differential equation to get:

u = 2(r + 2M ln | r
2M
− 1|) + const.

If we look back at the equation du
dr , what is interesting about this is that if r < 2M , then du

dr < 0.
This implies that if r < 2M , the radial light rays are ingoing. So the two solutions to (3) describe
ingoing light rays if r < 2M . This means that not even light can escape if it gets too close to
the singularity. This is the defining property of black holes: If one crosses the event horizon, or
simply put the horizon, one is doomed to remain in the black hole forever.

Due to the above discussed special properties of r = 2M , it is also called the Schwarzschild
radius and it is the event horizon of a Schwarzschild black hole.

2.3 The Kerr Geometry

Schwarzschild black holes are the simplest sort of black holes. They were discovered quite early
after Einstein’s publication of the theory of general relativity. There is a problem though with
Schwarzschild black holes. As described, black holes are remnants of stars. We also know that
some stars rotate around an axis in the same way the earth rotates around its axis. We also know
that angular momentum is a conserved quantity. Yet, in the description of Schwarzschild black
holes, no mention has been made about angular momentum. So does a black hole break the law of
conservation of angular momentum or is the Schwarzschild description of black holes insufficient?
It appears that the second one is the case. Black holes do rotate and the description of these
rotating black holes is given by the Kerr geometry.

2.3.1 Rotating Black Hole?

So a first question one can ask is this: What does it mean for a black hole to rotate? As said, a
black hole is just the remnant of a star which collapsed into a singularity. This singularity is just
a point and it is not well-defined what it means for a point to rotate around an axis. Furthermore,
it also appears that we can observe this rotation from outside the black hole. If it were just this
singularity spinning, we would never have been able to see it since it is hidden behind the event
horizon.

So what does it mean for a black hole to rotate? It is clearly not the same rotation as we see in
everyday objects such as a football or the earth. The better way to think about a rotating black
hole is that it rotates spacetime around the singularity. So it is not actually the black hole which
rotates, but space itself. Mathematically, this is precisely what we will do. We will encode the
angular momentum within the metric describing spacetime around this rotating black hole and so
in essence say that spacetime is rotating around the black hole.

2.3.2 The Mathematics

The metric describing the spacetime around a rotating black hole is called the Kerr metric and
it is given by:

ds2 = −(1− 2Mr

ρ2
)dt2− 4Mar sin2(θ)

ρ2
dφdt+

ρ2

∆
dr2 +ρ2dθ2 + (r2 +a2 +

2Mra2 sin2(θ)

ρ2
) sin2(θ)dφ2

(4)
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where M is the mass of the black hole and where a, ρ and ∆ are defined as:

a =
J

M
ρ2 = r2 + a2 cos2(θ) ∆ = r2 − 2Mr + a2

where J is the angular momentum and a is called the Kerr parameter. In this case the coor-
dinate (t, r, θ, φ) are called the Boyer-Lindquist coordinates and they are the analogue of the
Schwarzschild coordinates for a Schwarzschild metric.

The first thing we will show is if the black hole is not rotating, i.e. J = 0, then we should recover
the Schwarzschild metric. This is in fact the case. For example, the cross term vanishes since
J = 0 implies a = 0. One can do this check for all the other terms and see that we get back the
Schwarzschild metric.

The second thing we should take a look at are the symmetries in the metric. We see that the
metric does not depend on time nor on the azimuthal angle φ. This gives us two Killing vectors
∂t and ∂φ. But note that this metric is not spherically symmetric. For example, if we replace θ by
θ′ = θ + π

2 , the cross term becomes:

4Mar sin2(θ′)

r2 + a2 cos2(θ′)
=

4Mar cos2(θ)

r2 + a2 sin2(θ)
6= 4Mar sin2(θ)

ρ2

where in the first step we applied the equality sin(θ + π
2 ) = − cos(θ) and cos(θ + π

2 ) = sin(θ). So
this shows that the metric is not spherical symmetric. The best we can do is say that the metric
is invariant under the replacement of θ by π − θ.
Lastly, we note that the singularities of this metric are given by ρ2 = 0 and ∆ = 0. ρ2 = 0 implies
that r = 0 and θ = π

2 . The singularity given by ∆ = 0 can be solved using the quadratic formula

to give r± = M ±
√
M2 − a2. r+ is the horizon of a Kerr black hole. We note that if a = 0, then

we get back the Schwarzschild radius. Also note that r± has to be real since it is a length. This
limits the values of a to be a ≤M .

It appears that ρ2 = 0 describes a real physical singularity, but that ∆ = 0 is a coordinate
singularity. To make this clear, we can write the Kerr metric using outgoing Eddington-Finkelstein
coordinates as Roy Kerr, the one who discovered the metric, did:

ds2 =− (1− 2Mr

ρ2
)(du+ a sin2(θ)dφ)2

+ 2(du+ a sin2(θ)dφ)(dr + a sin2(θ)dφ)

+ (r2 + a2 cos2(θ)(dθ2 + sin2(θ)dφ2)

Showing that these two metrics coincide requires a lot of algebra and is not very insightful, so for
those reasons we will not do it. But as one can see, the only singularity occurring in this way of
writing is when ρ2 = 0 and so ∆ = 0 is a coordinate singularity.

2.3.3 Angular Velocity at Event Horizon

We will now compute the angular velocity of the rotating black hole at the event horizon. Suppose
we have a light ray traveling with four-velocity u = ut∂t + uθ∂θ + uφ∂φ. We have assumed that
this light ray is situated at the event horizon r+ and does not move in radial direction. Since it is
a light ray it has to satisfy ds2(u, u) = 0. This gives us:

gtt(u
t)2 + 2gφtu

tuφ + gθθ(u
θ)2 + gφφ(uφ)2 = 0 (5)
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Let us first look at gφφ. We will rewrite this in a handier way. We note that r2
+ = 2M2 − a2 +√

M2 − a2 and hence we get r2
+ +a2 = 2M2 +

√
M2 − a2 = 2Mr+. Using this, we can write:

gφφ =(r2
+ + a2 +

2Mr+a
2 sin2(θ)

ρ2
+

) sin2(θ)

=(2Mr+ +
2Mr+a

2 sin2(θ)

ρ2
+

) sin2(θ)

=
2Mr+(ρ2

+ + a2 sin2(θ))

ρ2
+

sin2(θ)

We note ρ2
+ = r2

+ + a2 cos2(θ). This gives us:

gφφ =
2Mr+(ρ2

+ + a2 sin2(θ))

ρ2
+

sin2(θ) =
2Mr+(r2

+ + a2)

ρ2
+

sin2(θ)

Using again r2
+ + a2 = 2Mr+ we get:

gφφ = (
2Mr+ sin(θ)

ρ+
)2

It is also an easy check to see:

2gφt = −4Mar+ sin2(θ)

ρ2
+

= −(
2Mr+ sin(θ)

ρ+
)2 a

Mr+

Now we are also going to rewrite gtt.

gtt = −(1− 2Mr

ρ2
) = −(

ρ2
+ − r2

+ + r2
+

ρ2
+

− 2Mr

ρ2
) = −(

ρ2
+ − r2

+

ρ2
+

+
r2
+ − 2Mr

ρ2
)

By definition of ρ2
+ we get that ρ2

+ − r2
+ = a2 cos2(θ). Also by definition of r+ we get r2

+ − 2Mr =
−a2. Plugging this in gives us:

gtt = −(
a2 cos2(θ)

ρ2
+

+
−a2

ρ2
) =

a2

ρ2
+

(1− cos2(θ)) =
a2

ρ2
+

sin2(θ)

If we multiply this with a usefull chosen 1 we get:

gtt =
a2

ρ2
+

sin2(θ) =
a2

ρ2
+

sin2(θ)
4M2r2

+

4M2r2
+

= (
2Mr+ sin(θ)

ρ+
)2 a2

4M2r2
+

Plugging the above calculated values into the equation gtt + gφtu
φ + gφφ(uφ)2 we get:

gtt(u
t)2 + gφtu

tuφ + gφφ(uφ)2 = (
2Mr+ sin(θ)

ρ+
)2(

a2

4M2r2
+

(ut)2 − a

Mr+
utuφ + (uφ)2)

= (
2Mr+ sin(θ)

ρ+
)2(uφ − a

2Mr+
ut)2

So now looking back at (5) we get:

(
2Mr+ sin(θ)

ρ+
)2(uφ − a

2Mr+
ut)2 + gθθ(u

θ)2 = 0

Which can only be satisfied if uφ = a
2Mr+

ut and uθ = 0. The value a
2Mr+

is what we call the

angular velocity at the event horizon of a rotating black hole. We denote it as ΩH :

ΩH =
a

2Mr+
(6)

To check that this equation is correct, we show that MΩH ≤ 1. Note that MΩH is a velocity.
Note that ar−1

+ ≤ 1 since a ≤M and r+ ≥M . Hence it follows that MΩH ≤ 1.
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2.3.4 Area of Event Horizon

Let us compute the area of the event horizon of a Kerr black hole. The formula for the area is
given by:

A =

∫ π

0

dθ

∫ 2π

0

√
gθθgφφdφ

A =

∫ π

0

dθ

∫ 2π

0

√
ρ2

+(r2
+ + a2 +

2Mr+a2 sin2(θ)

ρ2
+

) sin2(θ)dφ

Since we want to know the area at the event horizon, we had to replace all r in gθθ and gφφ with
r+. We also note that since ρ depended on r, we write ρ+ to indicate that the r has also been
replaced with r+. Some simple algebra now gives us:

A = 2π

∫ π

0

sin(θ)
√

(r2
+ + a2)(r2

+ + a2 cos(θ)) + 2Mr+a2 sin2(θ)dθ

By definition we have

r2
+ = 2M2 − a2 + 2M

√
M2 − a2

From which readily follows:

r2
+ + a2 = 2M2 + 2M

√
M2 − a2 = 2Mr+

Also by the above follows that:

r2
+ + a2 cos2(θ) = 2M2 + 2M

√
M2 − a2 − a2(1− sin2(θ)) = 2Mr+ − a2 sin2(θ)

From which now follows:

(r2
+ + a2)(r2

+ + a2 cos(θ)) = 4M2r2
+ − 2Mr+a

2 sin2(θ)

Plugging this into our formula for A gives us:

A = 2π

∫ π

0

sin(θ)
√

4M2r2
+ − 2Mr+a2 sin2(θ) + 2Mr+a2 sin2(θ)dθ

A = 4πMr+

∫ π

0

sin(θ)dθ

Solving the integral now gives the area of the event horizon:

A = 8πMr+ (7)

2.3.5 The Ergosphere

Something interesting happens in the Kerr metric. Let us take a look at the time component gtt of
the metric in Boyer-Lindquist coordinates. We can ask ourselves at what distance r from the centre
does that component switch signs. To know this, we have to solve the following equation:

−(1− 2Mr

ρ2
) = 0

After some algebra and noting that ρ depends on r, we get the following equation:

r±E = M ±
√
M2 − a2 cos2(θ) (8)

What one should note is that if a 6= 0, then we have r+
E > r+. Put in words, the time component

of the Kerr metric switches signs outside the horizon of the black hole. The zone between r+ and
r+
E is what we call the ergosphere.

10



Some strange things happen due to the presence of the ergosphere. For example: it is impossible to
remain stationary within the ergosphere. To make this clear, suppose we have an observer which
moves forward through time at speed ut, but remains stationary in the spatial dimensions. The
four-velocity of this observer is given by u = ut∂t. In general, we will require a four-velocity u to
be normalizable and its normalization is given by ds2(u, u) = −1. From this normalization we get
for our stationary observer:

−(1− 2Mr

ρ2
)(ut)2 = −1

If we have r > r+
E , then this above equation gives us the value for ut. The problem arises when

r < r+
E . In that case we have that −(1− 2Mr

ρ2 ) > 0 and the only way this equation can hold is if ut

is imaginary. This would then imply that time is imaginary which is not the case. So a stationary
observer cannot exist in the ergosphere.

We can actually claim something more, namely that, when viewed form infinity, an observer within
the ergosphere has to rotate in the same direction as the black hole. To make this point clear,
suppose our four-velocity is given by u = ut∂t + uφ∂φ. The normalization condition then gives
us:

−(1− 2Mr

ρ2
)(ut)2 − 4Mar sin2(θ)

ρ2
uφut + (r2 + a2 +

2Mra2 sin2(θ)

ρ2
) sin2(θ)(uφ)2 = −1

Now we note that −(1− 2Mr
ρ2 )(ut)2 and (r2 +a2 + 2Mra2 sin2(θ)

ρ2 ) sin2(θ)(uφ)2 are positive within the

ergosphere. So the only way this equation can hold is if − 4Mar sin2(θ)
ρ2 uφ is negative. This is the

case since if it were positive, we would have that all the components on the left hand side of the

equation are positive and thus could never sum up to −1. The only two elements in 4Mar sin2(θ)
ρ2 uφ

which can be negative are a and uφ. So the only way for it to be negative, we must have that
auφ > 0. From this last inequality follows that the observer must spin in the same direction as the
black hole.

Remark. Since we now have shown that a and uφ both rotate in the same direction, from now on
we will use as convention that the black hole always rotates in positive direction. This implies that
both a and uφ will be positive. 4
So now we have shown that uφ has to rotate in the same direction as the black hole. If we look at
fixed values of r and θ, we are actually able to do something more, namely derive boundaries for
the value uφ. To that end, suppose we have a light ray which only moves in the direction ∂φ i.e.
it has four-velocity v = vt∂t + Ω∂φ. We know that light has to satisfy the condition ds2(v, v) = 0.
This now gives us the following equation:

gφφΩ2 + gφtv
tΩ + gtt(v

t)2 = 0

Note that this equation gives us that vt has to be positive. This is so because within the ergosphere
we have that gφφ, gtt, Ω > 0 and gφtΩ < 0 by the above discussion. So now if vt is negative, all
the terms on the left-hand side would be positive and could never sum up to 0. Thus vt is
positive.

We can solve this equation to get:

Ω± =
−vtgφt ±

√
(gφtvt)2 − 4gφφgttvt

2gφφ
(9)

Anything else than a light ray which has four-velocity u := vt∂t+uφ∂φ has to satisfy ds2(u, u) < 0
i.e. it has to move in a timelike direction. For simplicity we have assumed that u has the same
velocity in the time direction as the light ray. If we calculate ds2(u, u) we get:

ds2(u, u) = gφφ(uφ)2 + gφtu
φvt + gtt(v

t)2

Now since gφφ is positive within the ergosphere, we get that ds2(u, u) when viewed as function
in uφ is an upward facing parabola. Hence we get that ds2(u, u) is only negative for the values
Ω− ≤ uφ ≤ Ω+.
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After doing a lot of not very insightful algebra, we can compute the limits of Ω+ and Ω− closer to
the event horizon. We then get that:

lim
r↓rH

Ω−(r) = lim
r↓rH

Ω+(r) = ΩH

2.3.6 Energy and Angular Momentum of a Particle in Kerr Spacetime

We will conclude this chapter by computing an explicit formula for the energy and angular mo-
mentum of a particle in the Kerr metric. Suppose we have some particle originating from infinity
with velocity u = uµ∂µ. Because of the fact that we know that ∂t and ∂φ are Killing vectors of
the Kerr metric, we are able to calculate the energy and the angular momentum of this incoming
particle in the following way:

E = −ds2(∂t, u), L = ds2(∂φ, u)

We have written an appendix proving these formulas.

We will do the algebra in the case of the energy, but then we will just state the formula for angular
momentum since the way to derive it, is completely analogous to the case of the energy. So we
start by writing:

E = −ds2(∂t, u) = −ds2(∂t, u
µ∂µ) = −uµds2(∂t, ∂µ)

In the last step we made use of the fact that any metric is linear. Now we note that ds2(∂t, ∂µ) = 0
if we have µ = r or µ = θ. This is so since there are no cross terms in the Kerr metric in the shape
of dtdr or dtdθ. This then gives us:

E = −utds2(∂t, ∂t)− uφds2(∂t, ∂φ)

Now we get:

ds2(∂t, ∂t) = −(1− 2Mr

ρ2
)

ds2(∂t, ∂φ) = −2Mar sin2(θ)

ρ2

We have to note one small thing, namely that the second equation differs by a factor of 1
2 from the

cross term component in the Kerr metric. The reason for this is because dtdφ is actually defined
as dtdφ = 1

2 (dt ⊗ dφ + dφ ⊗ dt). Now we note that dt ⊗ dφ(∂t, ∂φ) = dt(∂t)dφ(∂φ) = 1, but that
dφ ⊗ dt(∂t, ∂φ) = dφ(∂t)dt(∂φ) = 0 and hence dtdφ(∂t, ∂φ) = 1

2 (1 + 0) = 1
2 . So this gives us the

following equation for the energy:

E = (1− 2Mr

ρ2
)ut +

2Mar sin2(θ)

ρ2
uφ

In an analogous way, one can show that the angular momentum of the particle equals:

L = ds2(∂φ, u) = −2Mar sin2(θ)

ρ2
ut + (r2 + a2 +

2Mra2 sin2(θ)

ρ2
) sin2(θ)uφ
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3 The Penrose Process

In the previous chapter we have shown that a Kerr black hole has an ergosphere. Within this
ergosphere, it is impossible for an observer to remain stationary. The observer must rotate in the
rotation direction of the black hole. This though is not the only quirky property of a Kerr black
hole. Another property of having an ergosphere is that it allows for the extraction of energy and
angular momentum from a black hole through a process called the Penrose process. In this
chapter we will study this process in more detail.

3.1 Penrose Process in broad strokes

Let us now paint in broad strokes how the Penrose process occurs. Suppose we have an particle
entering the ergosphere of a Kerr black hole. After this incoming particle crosses the ergosphere,
it splits into two particles. One of these particles falls into the black hole. The other escapes the
ergosphere and flies away from the black hole. What makes this process strange is that because
the decay happens within the ergosphere, an observer at infinity can observe a negative energy for
one of the decay products. If the particle which falls into the black hole has this negative energy,
then we must have by conservation of energy that the outgoing particle has a higher energy than
the incoming particle. This implies that the Penrose process extracts energy from the black hole.
From this extraction of energy follows also the extraction of angular momentum implying that the
black hole will spin slower.

3.2 Energy Extraction

To show that a particle can have negative energy, we will derive the Wald inequalities. These
inequalities give an upper and lower bound to the energy a particle produced from a decay process
by another particle, can have. To be more concrete, let us suppose that we have an incoming
particle with specific energy E, which is the energy per unit mass. We also suppose that this
incoming particle has a four-velocity Uµ and that this incoming particle splits into two particles,
one of which has specific energy E′ and four-velocity uµ. So what the Wald inequality give us are
limits on E′ in terms of E. Let us derive them.

We can choose four orthogonal vector fields e(α), where we have α ∈ {0, 1, 2, 3}, which at every
point in spacetime form a basis for spacetime. We call four of such vector fields together a tetrad.
We write eµ(α) to mean the µ-th component of e(α). Furthermore, we choose the eµ(0) to coincide

with Uµ. We can now write the four-velocity uµ in terms of this tetrad frame as:

uµ = γ(Uµ − v(j)eµ(j))

where v(j) is the spatial velocity of the emitted particle and j runs over {1, 2, 3}. Furthermore we
note γ = (1− |v|2)−1/2 is the Lorentz factor and |v|2 = ds2(vj , vj). This equation can be derived
from the normalisation condition ds2(uµ, uµ) = −1.

We know that the Kerr metric has a timelike Killing vector, namely ξ = ∂t. In fact, this approach
works for all the metrics which have a timelike Killing vector, but let us focus on the Kerr metric.
We can represent this Killing vector in terms of the chosen tetrad frame as:

ξµ = ξ(0)Uµ + ξ(j)eµ(j)

Because ξ is the Killing vector of the Kerr metric, we can calculate the energy of the incoming
particle in the following way:

E = −ds2(ξµ, Uν) = ξ(0)ds2(Uµ, Uν)− ξ(j)ds2(eµ(j), U
ν) = −ξ(0)

We note that in the second step, we made use of the fact that the metric is linear and in last step
that the tetrad frame is orthogonal.

Next, by the way we have chosen ξ we can compute gtt as:

gtt = ds2(ξ, ξ) = −ξ2
(0) + ξ(j)ξ

(j) = −E2 + |ξ|2

13



where again in the second step we made use of the linearity and orthogonality of the metric. Lastly,
in the same way we computed the specific energy of the incoming particle, we can compute the
specific energy of the emitted particle as:

E′ = ds2(ξi, ui) = γ(ξ(0) + v(α)ξ(α))

By using the metric, we can compute the angle between two spacelike vectors as v(α)ξ(α) =

|v||ξ| cos(χ). Since we also know that |ξ| =
√
E2 + gtt. If we plug this all in, we get:

E′ = γ(E + |v|
√
E2 + gtt cos(χ))

Lastly, we note that −1 ≤ cos(χ) ≤ 1. This gives us the Wald inequalities:

γ(E − |v|
√
E2 + gtt) ≤ E′ ≤ γ(E + |v|

√
E2 + gtt)

For the Kerr metric we have gtt = −(1− 2Mr
ρ2 ). Within the ergosphere we have that gtt ≥ 0. Since

we consider only the region outside the event horizon, it is also bounded by above. This then gives
us that the maximum value is reached when r = r+, a = M and θ = π

2 . In that case, we see that
gtt ≤ 1. This then gives us:

γ(E − |v|
√
E2 + 1) ≤ E′ ≤ γ(E + |v|

√
E2 + 1)

Since we require E′ ≤ 0 for the Penrose process, we look at:

γ(E − |v|
√
E2 + 1) ≤ E′ ≤ 0

We can rewrite this as:
E2

E2 + 1
≤ |v|

2

γ2

Now we note that γ−1 ≤ 1. This now gives us:

E2

E2 + 1
≤ |v|

2

γ2
≤ |v|2

According to [Wald], choosing E ≥ 3−1/2 is a reasonable choice. So let us plug in E = 3−1/2 to
get:

|v| ≥ 1

2

This is an allowed velocity implying that it is possible for a particle to extract energy from a Kerr
black hole through the Penrose process.

3.3 Angular Momentum Extraction

We claimed that the Penrose process also extracts angular momentum from the black hole. To this
end, we now suppose we have an observer within the ergosphere which rotates along with the black
hole i.e. it has four-velocity vobs = vt∂t + vφ∂φ. This observer must measure a positive energy for
the particle which falls into the black hole. So we get:

0 ≤ −ds2(vobs, u
i) = −vtds2(∂t, u

i)− vφds2(∂φ, u
i) = vtEbh − vφLbh

Where we note that −ds2(vobs, u
i) is the energy of the particle for the observer within the er-

gosphere. Furthermore we made use of the fact that −ds2(∂t, u
i) =: Ebh is the energy of the

particle falling into the black hole as measured by an observer at infinity and ds2(∂φ, u
i) =: Lbh is

the angular momentum of a particle as measured by an observer at infinity. From this equation
follows:

vtEbh ≥ vφLbh
As we have shown vφ is assumed to be positive and thus it now follows that if Ebh is negative,
then Lbh must be negative as well. Since angular momentum is a conserved quantity, it follows
that the escaping particle has a higher angular momentum then the incoming particle implying
that angular momentum has been extracted from the black hole
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3.4 The Area Increase Theorem

Now we will show that the Penrose process increases the area of a black hole. As we have shown,
the formula for the area of the event horizon of a Kerr black hole is given by A = 8πMr+. So we
know that the Penrose process changes the energy and angular momentum of a black hole. This
then results in a change of mass and of radius r+. So we now get:

∆A = 8π(r+∆M +M∆r+)

What we want to do now is express ∆r+ in terms of changes in the mass and angular momentum.

To this end we note that r+ = M +
√
M2 − a2. So now we know that ∆r+ = ∂r+

∂M ∆M + ∂r+
∂a ∆a.

We now get:

∆r+ = (1 +
M√

M2 − a2
)∆M − a√

M2 − a2
∆a

So now we have to express ∆a in terms of changes in the mass and angular momentum. Using
again that ∆a = ∂a

∂M∆M + ∂a
∂J∆J and plugging in a = J

M , we get:

∆a = − J

M2
∆M +

1

M
∆J

So plugging now everything into the equation for ∆A gives us:

∆A = 8π
(
r+∆M +M

(
(1 +

M√
M2 − a2

)∆M − a√
M2 − a2

(− J

M2
∆M +

1

M
∆J)

))
Organizing the terms gives us:

∆A = 8π
(
(r+ +M +

M2

√
M2 − a2

+
a2

√
M2 − a2

)∆M − a√
M2 − a2

∆J)
)

If we plug in the value for r+ and do some algebra, we can rewrite the equation as:

∆A =8π(
2Mr+√
M2 − a2

∆M − a√
M2 − a2

∆J))

=8π
2Mr+√
M2 − a2

(∆M − a

2Mr+
∆J)

=8π
2Mr+√
M2 − a2

(∆M − ΩH∆J)

Since Ebh ≤ 0, it follows that the change in the mass of the black hole is negative i.e. ∆M ≤ 0. In
the previous subsection we have shown that Ebh ≥ vφLbh for all allowed values of vφ. Thus we now
get Ebh ≥ ΩHLbh. This implies that the amount on angular momentum extracted from the black
hole is more than the amount of energy extracted from it, i.e. ∆M ≥ ΩH∆J . The greater than or
equal to sign points towards ∆J since both of these values are negative. Since then ΩH∆J ≤ 0, it
follows that ∆M − ΩH∆J ≥ 0. This shows that ∆A is positive since 8π 2Mr+√

M2−a2 is also positive.

Hence we get that the Penrose process increases the area of a Kerr black hole.

3.5 Irreducible Mass

We define the irreducible mass as follows:

Mirr =

√
A

16π

As we have shown here above, the area of a rotating black hole can only remain constant or
increase through the Penrose process. By the way we have defined it, this must also hold true for
the irreducible mass (hence its name).

We can also express the mass of a black hole in terms of the irreducible mass by:

M2 = M2
irr +

J2

4M2
irr
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We will prove this equation now. Let us start from the right-hand side. We have shown in the
previous chapter that A = 8πMr+. If we plug this into our equation, we get:

M2
irr +

J2

4M2
irr

=
A

16π
+

4πJ

A
= 2Mr+ +

J2

2Mr+
=
M2r2

+ + J2

2Mr+

We know that by definition of the Kerr parameter that J2 = a2M2 and hence:

M2r2
+ + J2

2Mr+
=
M2r2

+ + a2M2

2Mr+
= M

r2
+ + a2

2r+

We also know by definition of r+ that r2
+ + a2 = 2Mr+. This gives us:

M
r2
+ + a2

2r+
= M

2Mr+

2r+
= M2

This proves the equation.

As a check that the irreducible mass cannot decrease through the Penrose process, we can take
a look at Schwarzschild black hole. We know that a Schwarzschild black hole has no angular
momentum and thus follows M = Mirr. This says that all the mass of a black hole is irreducible.
This is precisely what we would expect since for the Penrose process to take place, one needs an
ergosphere outside the event horizon of a black hole. For the existence of the ergosphere, the black
hole needs to spin which is not the case for a Schwarzschild black hole. So this shows that the
Penrose process cannot decrease the mass of a black hole to a quantity lower than the irreducible
mass.
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4 The Foundations of the Blandford-Znajek Process

The aim of the coming four chapters is to understand the Blandford-Znajek process (henceforth
called the BZ-process). In this first chapter, we will describe the BZ-process in very broad strokes
and we will develop an analogy between an element of circuit theory and the BZ-process. The three
chapters after this one are all dedicated to a specific component of the BZ-process, namely force-
free electromagnetism, plasma formation and the extraction of energy and angular momentum
from the rotating black hole.

4.1 BZ-process in Broad Strokes

The core claim of the BZ-process is that it is possible to extract energy and angular momentum from
a rotating black hole immersed in a magnetic field. The first question that we need to understand
is then: how does this magnetic field form? It appears that this field is caused by a current flowing
in the accretion disk of the black hole. This immediately gives us our first assumption, namely the
black hole needs to have a charged accretion disk.

A magnetic field alone though is not sufficient to explain how the energy and angular momentum
are being carried away from the black hole. We need an electric current to be able to explain this
extraction. This electric current needs to flow into and out of the black hole. The problem is that
the space outside the event horizon is just empty space and it alone would not be able to supply
the particles necessary, i.e. electrons and positrons, for this current to exist. Yet because there is
a current flowing in the accretion disk, a voltage difference between the accretion disk and a point
outside of it exists. If this voltage difference is high enough to accelerate a stray electron into
causing an electron-positron cascade, then we would be able to fill up the space around the black
hole with a plasma of positrons and electrons. This plasma could act as a conductor and would
supply us with the particles necessary for the current through the black hole to exist.

Importantly, we assume that the current threading the black hole is not independent of the magnetic
field. What this means is that the energy flux is dominated by the electromagnetic component
and we ignore the energetic flux as a result of the plasma. This assumption is fairly complex to
understand and we will go into it in more detail later on, but basically we are allowed to make
this assumption if the magnetic field is strong enough and the density of the plasma is low enough.
We refer to this assumption as the black hole having a force-free magnetosphere. We also note
briefly that this force-free assumption lays further conditions on the charge density of the accretion
disk.

Lastly we need to understand how energy and angular momentum are being transferred from the
black hole to the current threading the black hole. In the next section we understand this transfer
as the black hole being a non-perfect conductor and thus having a resistance. Having a resistance
means that the black hole converts power into heat. This heat emitted by the black hole can only
exist due to the fact that the black hole radiates energy and angular momentum.

This energy and angular momentum transfer process can also be understood mechanically, but we
will refrain from this until later on.

4.2 An Estimate for the BZ-process

Let us develop an intuitive understanding of what is happening in the BZ-process. In this subsection
we will work out in a bit more detail what is also explained [10] on page 326 and 327.

4.2.1 Setup

For convenience we will work with cylindrical coordinates (ρ, φ, z). Suppose we have a cylindrical
conductor with radius R and length L rotating around its axis with constant angular velocity Ω.
Suppose also that this cylinder is immersed by a homogeneous magnetic field ~B pointing in the
z-direction i.e. ~B = B~ez where B is the magnetic field strength. We furthermore assume that
this field is static. This means that it does not evolve in time. More formally we write ∂tB = 0.
Lastly, suppose we have a path C from the point z = 1

2L and ρ = 0 to the point z = z0, φ = φ0
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and ρ = R where z0 and φ0 are constants. Now since a cylinder is axisymmteric around the z-axis
we can rotate our coordinate system such that φ0 = 0. We have not specified how this path looks
like, but, as we will argue below, we are free to choose whichever path we like. The setup then
looks as follows:

Ω

~B

b

e

C

Figure 1: Picture inspired by [10] page 326.

4.2.2 Voltage for a Cylindrical Conductor

What we are interested in now is computing the voltage difference at the endpoints of our curve
C. This voltage difference is defined as:

V =
1

q

∫
C
~F · d~l (10)

where ~F is the Lorentz force acting on a charge carrier, for example an electron, within the
conductor and is given by:

~F (ρ) = q~v × ~B (11)

So q in both equations is the charge of the charge carrier. We assume that this charge carrier
rotates in the same direction and with the speed proportional to the distance from the rotational
axis of the cylinder. To put it formally, it has velocity ~v = ρΩ~eφ. This then allows us to compute
the Lorentz force as:

~F (ρ) = q((ρΩ~eφ)× (B~ez)) = qρΩB~eρ

This means that the Lorentz force points in the radial direction. What this also tells us is that
the Lorentz force is conservative i.e. its curl is zero. To show this, let us calculate the curl of the
Lorentz force:

~∇× ~F (ρ) =
∂

∂φ
(qρΩB)~ez −

∂

∂z
(qρΩB)~eφ

We note that the magnetic field is uniform and the angular velocity Ω is constant. This should
make it clear that the partial derivatives are all equal to 0. This thus shows that the Lorentz force
is conservative. This then implies that the voltage difference does not depend on the choice made
for the path C and thus we are free to choose it as easy as possible.
The way in which we have drawn the path shows that we first move in the radial direction and
then in the z direction. So we can separate the integral of the voltage as:

V =
1

q
(

∫ R

0

(~F · ~eρ)dρ+

∫ z0

L/2

(~F · ~ez)dz)

We note that ~F · ~ez = 0, so the voltage only depends on the radial direction. This then gives
us:

V =

∫ R

0

ρΩBdρ =
R2ΩB

2
(12)
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4.2.3 Voltage for any Axisymmetric Conductor

We will rewrite equation (12) in a way that holds not only for the cylinder, but for any axisymmetric
conductor. To this end, we will introduce the magnetic flux ΦB . The magnetic flux can intuitively
be though of as the net magnetic field lines passing through a surface A. With net magnetic field
lines we mean to say the number of field lines passing through this surface in one direction minus
the number of field lines passing through the same surface in the other direction. For a uniform
magnetic field, the magnetic flux is given by:

ΦB = BA cos(θ)

where B is the strength of the magnetic field, A is the are of the chosen surface and θ is the angle
between the magnetic field ~B and the normal to the surface A.
In our case of the cylinder, we can choose the surface A to be a slice of the cylinder with normal
pointing in the z-direction. To put it differently, we can take A to be the disk of radius R parallel
to the xy-plane in Cartesian coordinates. The area is then A = πR2. The angle θ is equal to zero
since the normal of A is pointing in the z-direction and thus parallel to ~B. This then gives us for
the magnetic flux:

ΦB = BπR2

We can substitute this into the equation (12) to get:

V =
ΩΦB
2π

(13)

To show that this equation holds for any axisymmetric conductor, we simply have to note that any
such conductor can be approximated by a series of concentric cylinders. To make this clear let us
look at a cross section of a axisymmetric conductor at a fixed value φ = φ0:

b

e

a1
a2

Figure 2: The above cross section is for a fixed value φ0. The axisymmetric conductor is coloured
black. The series of concentric cylinders are drawn in red.

We have not drawn it, but we assume that the conductor is rotating with velocity ~v = Ω~eφ and it

is immersed in a uniform magnetic field ~B = B~ez.

So what we want to do is compute the voltage difference between the points b and e. The problem
is that the curve over the surface connecting these two points is not so easy to compute. The way
in which we can compute it, is by approximating it with a series of concentric cylinders.

We can compute the voltage difference between points b and a1, both lying on the same cylinder
as shown in the picture. We know the voltage difference between these two points, namely its just

V =
ΩΦ1

B

2π , where Φ1
B is the magnetic flux through the top of this first cylinder.

Next we can compute the voltage difference between the two points a1 and a2. We can again choose
a cylinder such that the point a1 lays on the top of the cylinder and the point a2 lays on the side

as in the picture. Now here we have to note that the voltage difference is not equal to
ΩΦ2

B

2π , where
Φ2
B is the magnetic flux going through this cylinder. This is so because a1 does not lay on the

rotation axis of the cylinder. There is an easy fix though. The vertical part of the cylinder does
not contribute anything to the voltage difference, since the magnetic field is pointing in a direction
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parallel to the cylinders. So the voltage difference between the rotation axis of the cylinder and

the point a1 is equal to
ΩΦ1

B

2π . We also know that the voltage difference between the rotation axis

and the point a2 is equal to
ΩΦ2

B

2π . This then implies that the voltage difference between the points

a1 and a2 is
Ω(Φ2

B−Φ1
B)

2π .

Analogously we can argue that the voltage difference between a2 and b is equal to
Ω(Φ3

B−Φ2
B)

2π where
Φ3
B is the magnetic flux through the third cylinder where a2 and b both lay on. This allows us to

give a crude approximation of the voltage difference between the points a and b, namely just as

the sum of these three voltage differences. It is easy to see that this is just
ΩΦ3

B

2π . What should also
be clear from the drawing is that if we were to choose more than three cylinders, the magnetic flux
ΦnB passing through the n-th cylinder would approximate the magnetic flux ΦB passing through
the axisymmetric conductor. So the precise value of the voltage difference between a and b is
ΩΦB
2π .

4.2.4 The Current

We will now connect an external resistance to our setup in the following way:

Ω

~B

b

e

C

RL

Figure 3: We have connected to our cylindrical conductor at the points b and e an external
resistance RL.

Since there is a voltage difference between the points b and e, we get that at current starts flowing
from e to b. Applying Ohm’s law we see that the current I that starts flowing equals to:

I =
V

RC +RL

Where RC is the resistance of the conductor and RL is the resistance of the load. The power this
current then supplies to the external load is then maximised when RL = RC . We can see this by
taking the derivative with respect to RL of the equation PL = I2RL, which is the equation telling
us how much power is transferred to the resistance by the current. If we do this, we get:

∂PL
∂RL

=
V 2(R2

C −R2
L)

(RC +RL)4

Setting this equation equal to 0 shows us that the power is maximised when RL = RC . So now we
can calculate the maximum power dissipated by the load as:

Pmax = I2RL =
V 2

4RC
=

Ω2Φ2
B

16π2RC
(14)
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4.2.5 Relation to Black Holes

We have not mentioned black holes anywhere in the above discussion which is weird since the
subject of this thesis is the extraction of energy from a rotating black hole. So how do black holes
fit into this discussion? It appears that black holes can have a charge, conduct electric current and
even have electrical resistance. Charged black holes are refered to as Kerr-Newman or Reissner-
Nordström black holes depending on whether or not they rotate. That is not something we are
interested in, so we will leave it be and focus our attention on the other two properties.

To understand how a black hole can conduct a current, suppose we have a stream of negatively
charged particles flowing into the black hole on one side and an equally big stream of positively
charged particles flowing into the other side. Importantly, an observer sitting at infinity will never
see one of those particles cross the event horizon. This is due to the property of the event horizon.
Instead what this observer will see is that the charge will spread out over the event horizon creating
a surface charge. Since the two streams of particles is equally big, no surface charge will form,
but for an observer sitting at infinity will see that the black hole has conducted electricity. This
process shows that black holes are electric conductors.

Now since black holes are not perfect conductors, they will have a resistance. We see now that
black holes take the role of the external resistance RL from the previous subsection. The aim of the
rest of this subsection will be to guess the resistance of a black hole using a dimensional argument
and from that we will estimate how much power is converted into heat by the black hole.

4.2.6 The Resistance of a Black Hole

The dimension of resistance in geometrized units is actually quite simple. Voltage is dimensionless
i.e. [V ]G = 1 where the brackets with subscript G means the dimension in geometrized units.
Current is also dimensionless. We know that current is defined as charge flowing in time i.e.
I = Q

t . Now both electric charge and time have dimension of length L. Thus it follows that

[I]G = [Q]G
[t]G

= 1. Since resistance is defined as R = U
I , we get that resistance is dimensionless i.e.

[R]G = 1.

So let us suppose that the resistance of the black hole RBH = 1. Is this a reasonable guess? The
answer is yes and to make this clear, we have to convert back to SI units. We know that in SI

units the dimension of voltage is the volt which can also be written as [V ]SI = kgm2

As3 . It is an easy

check to see that the dimension of c2√
Gε0

has the same units as the voltage. This implies that the

conversion factor from SI units to geometrized units is

[V ]SI =
c2√
Gε0

[V ]G (15)

Analogously, using the formula I = Q
t , one can show that the way to convert current from SI to

geometrized units is

[I]SI =

√
ε0
G
c3[I]G (16)

Applying these two equations, we get:

[R]SI =
[V ]SI
[I]SI

=
1

ε0c
[R]G (17)

If we compute 1
ε0c

, we get a value of 377Ω. This value does not differ from the value of the
impedance of free space. This is what one would expect since a black hole is mostly empty space.
All of its mass is centered at the singularity.

4.2.7 Black Hole’s Power Loss

So now that we have estimated the value of the resistance of the black hole, we are almost in a
position to use equation (14). We only need a value for the magnetic flux ΦB . To this end suppose
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the magnetic field is pointing in the same direction as the rotation axis of the black hole. This is
a reasonable expectation since the current causing the magnetic field is located in the accretion
disk of that black hole and either corotates or counterrotates in a circular loop around the black
hole.

As a guess for ΦB we will look at the magnetic flux threading the equatorial plane of the black
hole. The reason that we look at the equatorial plane and not at the surface area of the black hole
has to do with how we view the black hole in the context of the axisymmetric space surrounding
it. As said before, the black hole conducts a current. This current flows in from the space outside
the event horizon. So the space outside the event horizon together with the black hole act as an
axisymmetric conductor for this current. So what we are interested in is knowing the magnetic flux
through this conductor and not only the magnetic flux through the surface of the black hole, which
is zero since it is a closed surface. Hence we look at the magnetic flux threading the equatorial
plane of the black hole.

We know that the radius from sigularity to the event horizon of a Kerr black hole equals r+ =
M +

√
M2 − a2, where M is the mass of the black hole. Now since the surface we are looking at is

just a disk, we get that the magnetic flux through it equals ΦB = πr2
+B. Lastly, if we substitute

Ω in equation (14) with the rotational velocity ΩH of the black hole and plug in our estimate for
the resistance of the black hole, we get an equation for the power loss:

PBH =
Ω2
Hr

4
+B

2

16
= (

ΩHr
2
+B

4
)2 (18)

Note that this equation is only zero if there is no magnetic field or if the black hole does not rotate,
i.e. ΩH = 0. What this means is that a Kerr black hole, when immersed in a uniform magnetic
field, will always lose energy. This energy can only be supplied by the rotational energy of the
black hole, meaning that the black hole slows down.
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5 Force-Free Electromagnetism

5.1 Force-Free Magnetosphere

Let us dive into a bit more details now. We start off by looking at the most important assumption
of the BZ-process: the presence of a force-free magentosphere. To this end, we already assume
a presence of a conducting plasma around our black hole. In the next section, we will justify the
presence of this plasma.

We also want to briefly note that while we apply force-free electromagnetism in the context of
the BZ-process, it is in fact a theory which finds its applications in broader relativistic astronomy.
Good papers to better understand force-free electromagnetism are [20] and [8].

We also want to say that a lot of work in these coming chapters is based on [8]. What we add to
their work is a lot more detail as well as more worked out computations.

5.1.1 Main Equations

There are three central equations: the two Maxwell equations plus the so-called force-free equation.
These equations are given by:

∇[µFνρ] = 0 (19)

∇µFµν = 4πjν (20)

Fµνj
ν = 0 (21)

where Fµν is the Faraday tensor and jν is the electric four-current. The first two equations are
the Maxwell equations and the last one is the force-free equation.

What the equation Fµνj
ν describes is the rate of energy and momentum transfer from the electro-

magnetic fields to the charge carriers. It is sometimes also called the Lorentz four-force density.
In the force-free regime, what equation (21) means, is that no energy and momentum transfer takes
place between the fields and the charge carriers. Alternatively we can say that the electromagnetic
fields do not exert a force on the plasma surrounding the black hole since the charge carriers are
situated within the plasma. Hence it is named force-free.

An important question is: when are we allowed to make the force-free assumption? The answer is
that we are allowed to assume this if the electromagnetic fields are strong enough compered with
the density of the plasma. To make this clear, suppose we have a really dense plasma. It would
then not be reasonable to expect that the energy transfer between the fields and this high-density
plasma is neglectable since then a lot of interaction is taking place between the fields and the
plasma. So one would expect the energy transfer to be significant. Analogously this would hold
true in the case of weak fields.

Normally when not assuming the force-free condition, one determines the electric four-current by
looking at how the charges carriers are spread in the matter, i.e. determining the charge density,
and what the net flow of these charge carriers is, i.e. determining the electric current. Yet in
the setting of force-free electromagnetism, this electric four-current depends entirely on the fields.
What we mean by this is that the electric four-current is defined by equation (20) and does not
impose any boundary conditions on our fields as it does in general electromagnetism. In fact we
can use equation (20) to rewrite equation (21) as:

Fµν∇σFσν = 0 (22)

5.1.2 Alternative Understanding of the Force-Free Equations

We could have also defined the force-free equations using the stress-energy tensor Tµν which we
can write as:

Tµν = T (plasma)
µν + T (EM)

µν

where T
(plasma)
µν is the part of the stress-energy tensor due to plasma and T

(EM)
µν is the stress-energy

tensor due to the electromagnetic fields. The last one is given by:

T ν,(EM)
µ = FµσF

νσ − 1

4
FσρF

σρδνµ (23)
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where Fµν is the faraday tensor and δνµ is the Kronecker delta.

What a stress-energy tensor describes is the energy and momentum density together with the
energy and momentum flux. In the force-free regime, the density of the plasma surrounding the
black hole should be sufficiently low for there to be little energy transfer from the electromagnetic
fields to the plasma. What this tells us is that the component of the stress-energy tensor due to the
plasma can be neglected as it pales in comparison to the stress-energy tensor of the electromagnetic
field. From this follows:

T νµ = T ν,(EM)
µ

So from now on, we will drop the superscript (EM). What we will aim to prove now is that the
force-free equations imply:

∇νT νµ = 0 (24)

We start from equation (22). We note that by definition of the covariant derivative we have:

∇σ(FµνF
σν) = (∇σFµν)Fσν + Fµν(∇σFσν)

So we can write the Lorentz four-force density, which is the left-hand side of equation (22), as:

Fµν∇σFσν = ∇σ(FµνF
σν)− (∇σFµν)Fσν

We can rewrite the last component on the right-hand side as:

(∇σFµν)Fσν =
1

2
Fσν(∇σFµν +∇νFσµ) (25)

where we made use of the antisymmetry of the Faraday tensor. Now we note that equation (19)
can be written as:

0 = ∇[µFνσ] = 2∇µFνσ + 2∇νFσµ + 2∇σFµν
Hence we get:

∇σFµν +∇νFσµ = −∇µFνσ
If we plug this into equation (25) we get:

(∇σFµν)Fσν = −1

2
Fσν∇µFνσ =

1

2
F νσ∇µFνσ

Now we use the same trick to note that:

∇µ(F νσFνσ) = (∇µF νσ)Fνσ + (∇µFνσ)F νσ = 2(∇µFνσ)F νσ

Thus we get:

(∇σFµν)Fσν =
1

4
∇µ(F νσFνσ) = ∇λ(

1

4
δλµF

νσFνσ)

Now if we plug this into equation (5.1.2) we get:

Fµν∇σFσν = ∇λ(FµνF
λν)−∇λ(

1

4
δλµF

νσFνσ) = ∇λTλµ

where in the last step we used the linearity of the covariant derivative and equation (23). Now
since the left-hand side of the equation is zero by equation (22), equation (24) follows.

By definition of equation (24), the left-hand side of the equation is a measure for how much
energy is being extracted from or added to the electromagnetic fields. Since this equals zero,
there is no energy transfer. This coincides with the aforementioned interpretation of the force-free
condition.
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5.1.3 Degeneracy

It appears that any force-free electromagnetic fields are degenerate. This means that they satisfy
F[µνFσρ] = 0 where the square brackets denote the antisymmetric part of the tensor FµνFσρ. To
show this, we need the following formula:

F[µνFσρ] =
1

3
(FµνFσρ + FµρFσν + FµσFνρ) (26)

One can derive this formula using the definition of the antisymmetric part of a tensor, a lot of
algebra and noting that the Faraday tensor is antisymmetric. What this formula tells us is that if
two indices are the same, then F[µνFσρ] = 0. To make this clear, let us look at:

F[µµFσρ] =
1

3
(FµµFσρ + FµρFσµ + FµσFµρ) =

1

3
(0 + FµρFσµ − FσµFµρ) = 0

Using formula (26), we see that F[µµFσρ] = F[µσFµρ]. Thus we conclude that if any of the two
indices are the same, F[µνFσρ] = 0 holds.

It should be noted that due to the force-free property and equation (26), we have that F[µνFσρ]j
ρ =

0. Let µ, ν, σ and λ be four distinct indices. Since we work in four-dimensional spacetime, we see
that the sum F[µνFσρ]j

ρ has four terms and thus follows that ρ takes on the indices µ, ν, σ and λ.
If ρ is equal to one of the indices µ, ν or σ, we have that F[µνFσρ] = 0. So the only non-zero term
is ρ = λ. This gives us:

0 = F[µνFσρ]j
ρ = F[µνFσλ]j

λ

where λ here is not summed over, but is a fixed index. Since by equation (20) jν is totally
determined by Fµν , the only way the above equation can be zero is if F[µνFσλ] = 0. This means
that F[µνFσλ] is zero for all the terms, showing that a force-free field is degenerate.

Note that we did not really need the fact that Fµνj
ν = 0. It would have been sufficient if there

was a non-zero vector field vν such that Fµνv
ν = 0. This tells us that there are degenerate, but

non-force-free electromagnetic fields.

We can write the degeneracy condition down in flat spacetime. If we do this, we would get:

~E · ~B = 0 (27)

ρ ~E + ~B ×~j = 0 (28)

The second equation follows trivially from the definition of the electric four-current and the defi-
nition of the Faraday tensor. To show the first equation, we have to rewrite equation (26). To this
end we look at the Hodge dual of the Faraday tensor ?Fµν := εµνρσFρσ, where ε is the Levi-Civita
symbol. We can look at the following Lorentz invariant quantity

Fµν ? F
µν = εµνρσFµνFρσ

Thus by property of the Levi-Civita symbol, we get:

FµνFρσ = εµνρσFαβ ? F
αβ

We know that Fαβ ? F
αβ = 4 ~B · ~E. This then allows us to write equation (??) as:

F[µνFσρ] =
1

3
(εµνσρ + εµρσν + εµσνρ)Fαβ ? F

αβ = −4

3
εµνσρ( ~B · ~E)

where in the last step we used the fact that εµρσν = εµσνρ = −εµνσρ. Hence we get that the

property F[µνFσρ] = 0 reduces to ~B · ~E = 0.
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5.1.4 Understanding Degeneracy

As said, in tensor notation the degeneracy condition is given by F[µνFσρ] = 0. Note that in
the derivation of this formula from the force-free condition, we had to make use of the fact that
Fµνj

ν = 0. As also stated, we did not necessarily need that it sums to zero with the electric
four-current, but only that there exists a non-zero vector field vµ such that Fµνv

ν = 0. We could
have taken this vµ to be the four-velocity of an observer. Then we can understand Fµνv

ν = 0 to
mean that observer does not observe an electric field. To make this clear, just plug in µ = t.

In conclusion, we can understand the degeneracy condition to imply the existence of an observer
in whose rest frame no electric field is observed.

5.1.5 Alternative Formulation Main Equations

Up until now, we have made use of tensorial notations. To understand the BZ-process, it appears to
be easier to formulate our equations using exterior calculus. We know how the Maxwell equations
look like using exterior calculus:

dF = 0 (29)

d ? F = J (30)

Here F is the Faraday 2-form. Given a coordinate basis xµ, we can write the Faraday 2-form
as F = Fµνdx

µ ∧ dxν , where Fµν is the Faraday tensor. Furthermore J is the current 3-form. It
is related to the electric four-current by Jµνρ = jσ ε̃σµνρ. Here ε̃σµνρ is the Riemannian volume

element defined by ε̃σµνρ =
√
|g|εσµνρ, where g is the determinant of the metric and εσµνρ is the

Levi-Civita symbol. Note that in Minkowski spacetime, the Riemannian volume element is the
Levi-Civita symbol.

So what remains to do, is determine how to write the force-free condition using the language of
exterior calculus. To ths end, let us rewrite the force-free equation (21) using the current 3-form.
We note that jν = 1

3! ε̃
νσρλJσρλ. This gives us:

Fµνj
ν =

1

3!
ε̃νσρλFµνJσρλ

A tedious algebraic computation shows us that ε̃νσρλFµνJσρλ =
√
|g|Fµ[νJσρλ]. It follows thus

that if Fµνj
ν = 0, then we have Fµ[νJσρλ] = 0.

The next step is to look at how to write the degeneracy condition using exterior calculus. For this
we look at F ∧ F . By definition, the wedge product of two 2-forms is a 4-form whose components
are written as:

(F ∧ F )µνρσ = 6F[µνFρσ]

The number 6 in front has to do with the fact that we are taking the wedge product of two 2-forms.

If we were to take the wedge product of a k-form and a l-form, the numer in front would be (k+l)!
k!l! .

From this we readily see that the degeneracy condition F[µνFρσ] = 0 implies that F ∧F = 0.

There is a mathematical theorem that states that any 2-form ω in four-dimensional space whose
wedge with itself vanishes, i.e. ω ∧ ω = 0, can be decomposed as a wedge product of two linearly
independent one-forms. Since this is true for the Faraday 2-form, we can write it as F = α ∧ β
where α and β are one-forms.

Using the fact that we can decompose F in this way, let us write Fµν in another way:

Fµν = (α ∧ β)µν =
2!

1!1!
α[µβν] = (αµβν − ανβµ)

where we note that α[µβν] = 1
2 (αµβν − ανβµ). Thus we can write:

Fµ[νJσρλ] = αµβ[νJσρλ] − βµα[νJσρλ]

Note that (β ∧ J)νσρλ = 4β[νJσρλ] and the same holds true with α. This gives us:

Fµ[νJσρλ] =
1

4
αµ(β ∧ J)νσρλ −

1

4
βµ(α ∧ J)νσρλ
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We know that Fµ[νJσρλ] = 0. We also know that α and β are linearly independent. So the only
way the above equation can be zero is if

α ∧ J = β ∧ J = 0 (31)

This gives us the force-free equation in terms of the wedge product.

5.1.6 Euler Potentials

Another formulation for the Faraday two-form is possible by using two scalar functions called
Euler potentials. The advantage of this formulation is that it allows for a much more geometrical
interpretation of BZ-process.

Using the Euler potentials φ1 and φ2, we can write:

F = dφ1 ∧ dφ2 (32)

Proving this exactly is outside the scope of this thesis. One needs to use a version of Frobenius
theorem for differential forms in addition to using equation (??) and the fact that the Faraday
two-form is decomposable.

We will offer a more intuitive approach as to what this means. For this we will be looking at an
example due to [20]. Suppose we live in Minkowski spacetime and we use Cartesian coordinates.
Suppose furthermore that our Faraday tensor is given by:

Fµν =


0 0 0 −E
0 0 0 −B
0 0 0 0
E B 0 0

 (33)

Where we assume B and E to be constant. This is a rank two matrix and it has two annihilators
given by:

ξ(1)
µ =


0
0
1
0

 ξ(2)
µ =


−B
E
0
0


Note also that any linear combination of these two annihilators, gives an annihilator. Hence we
get a two-dimensional linear subspace dimension of annihilators for Fµν . This is precisely what
it means for our Faraday two-form to be written in the way of equation (32). At every point on
our manifold, there exists a two-dimensional linear subspace of the tangent space at that point
which annihilates the Faraday two-tensor. In the case of the example, this is given by the Euler
potentials:

φ1 = z φ2 = Et+Bx

As a simple check, we can plug these values into (32) and show that what we get, coincides with
equation (33):

F = dφ1 ∧ dφ2 = dz ∧ d(Et+Bx) = dz ∧ (Edt+Bdx) = −Edt ∧ dz −Bdx ∧ dz

5.2 Force-Free in Action

In the previous section we have laid the foundations of force-free electromagnetism. In this one
we are going to look at some situations where force-free electromagnetism plays a role. This is
important later on when analysing the BZ-process.

5.2.1 Magnetic Monopole

Let us start of with an easy example and look at the magnetic monopole whose Faraday two-form
is given by:

F = qm sin(θ)dθ ∧ dφ = −d(qm cos(θ)) ∧ dφ (34)

27



where we write qm to clearly indicate that it is a magnetic charge, in this case the magnetic charge
of the monopole. By using the fact that Fθφ = r2 sin(θ)Br, where Br is the magnetic field in the
radial direction, it is easy to see that this is indeed the magnetic field created by a monopole. In
the second equation it becomes clear that −q cos(θ) and φ are Euler potentials for our Faraday
two-form.

What we want to check now is that this situation is force-free. First of all, let us look at:

dF = qmd(sin(θ)) ∧ dθ ∧ dφ = qm cos(θ)dθ ∧ dθ ∧ dφ = 0

So now we compute the dual ?F . To this end we make use of the fact that the Schwarzschild
metric is diagonal which implies that the following one forms are orthogonal: (1 − 2M

r )1/2dt,

(1− 2M
r )−1/2dr, rdθ and r sin(θ)dφ. So let us look at:

?(dθ ∧ dφ) =
1

r2 sin(θ)
? (rdθ ∧ r sin(θ)dφ)

=
1

r2 sin(θ)
(1− 2M

r
)1/2(1− 2M

r
)−1/2dt ∧ dr

=
1

r2 sin(θ)
dt ∧ dr

where we have chosen the orientation dt ∧ dr ∧ dθ ∧ dφ to be positive. Hence we get:

?F =
qm
r2
dt ∧ dr

From this follows that the current three-form equals:

J = d ? F = −2qm
r3

dr ∧ dt ∧ dr = 0 (35)

Thus the magnetic monopole trivially satisfies the force-free equations.

5.2.2 Poynting Flux

Let us look at another important example. Suppose we are in Schwarzschild spacetime and our
Faraday two-form is given by:

F = dξ ∧ du (36)

where ξ = ξ(θ, φ, u) is a function and u is the retarded time in outgoing Eddington-Finkelstein
coordinates. Note that in this case ξ and u are the Euler potentials. From this follows that the
space of annihilators is not fixed, but depends on where we are in spacetime.

We can interpret the above equation as an Poynting flux flowing along u. To see this, we simply
need to compute the Faraday tensor. To this end, we use the following two facts:

dξ =
∂ξ

∂θ
dθ +

∂ξ

∂φ
dφ+

∂ξ

∂u
du (37)

du = dt− (1− 2M

r
)−1dr (38)

From this follows:

F =
∂ξ

∂θ
dθ ∧ dt− ∂ξ

∂θ
(1− 2M

r
)−1dθ ∧ dr +

∂ξ

∂φ
dφ ∧ dt− ∂ξ

∂φ
(1− 2M

r
)−1dφ ∧ dr (39)

where we made us of the fact that du ∧ dr = du ∧ dt = 0. This gives us for the Faraday tensor in
Boyer-Lindquist coordinates:

Fµν =


0 0 −∂ξ∂θ − ∂ξ

∂φ

0 0 ∂ξ
∂θ (1− 2M

r )−1 ∂ξ
∂φ (1− 2M

r )−1

∂ξ
∂θ −∂ξ∂θ (1− 2M

r )−1 0 0
∂ξ
∂φ − ∂ξ

∂φ (1− 2M
r )−1 0 0


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This implies that the Poynting vector ~S ∝ ~E× ~B only has a radial component. Since the Poynting
vector is lightlike, it must move along the direction u. Now let us show that this setup satisfies all
the demands for force-free electromagnetism. It should be clear that dF = 0 since by property of
the exterior derivative d ◦ d = 0.

Next we need to compute the current three-form. To this end we have to calculate the Hodge dual
of the Faraday two-form. In the same way as before, we can show that:

?(dθ ∧ dt) = − sin(θ)

(1− 2M
r )

dr ∧ dφ

?(dθ ∧ dr) = sin(θ)(1− 2M

r
)dφ ∧ dt

?(dφ ∧ dt) = − 1

(1− 2M
r ) sin(θ)

dθ ∧ dr

?(dφ ∧ dr) =
(1− 2M

r )

sin(θ)
dt ∧ dθ

where again we have chosen the orientation dt ∧ dr ∧ dθ ∧ dφ to be positive.

So now we can compute the Hodge dual of the Faraday two form using equation (39) and the
linearity of the Hodge dual:

?F =
∂ξ

∂θ

sin(θ)

(1− 2M
r )

dr ∧ dφ+
∂ξ

∂θ
sin(θ)dφ ∧ dt+

∂ξ

∂φ

1

(1− 2M
r ) sin(θ)

dθ ∧ dr +
∂ξ

∂φ

1

sin(θ)
dt ∧ dθ

Note that the Hodge dual of the Faraday two-form is only defined outside of the equator plane
θ = π

2 . Now the current three-form equals:

J = d ? F = (
∂ξ

∂θ
cos(θ) +

∂2ξ

∂θ2
sin(θ) +

∂2ξ

∂φ2

1

sin(θ)
)dθ ∧ dφ ∧ du (40)

It requires a lot of not so interesting algebra to see. If one desires to compute it, note that
d(sin(θ)) = cos(θ)dθ. Next use equation (37), but replace ξ with ∂ξ

∂θ or with ∂ξ
∂φ . Furthermore use

that dθ ∧ dθ = dr ∧ dr = dφ ∧ dφ = 0. Lastly use equation (38).

To check that F satisfies the force-free condition, we simply note that F is decomposable into the
two one-forms dξ and du. Furthermore, using equation (37) we note that:

dξ ∧ J = du ∧ J = 0

This is precisely the force-free property.

5.2.3 Superpostition

In general, superposition in the case of the force-free equations is not available to us. This is so
because equation (22) is not a linear equation. Yet, if we superimpose the above two solutions for
the magnetic monopole and radial Poynting flux, we do get a new force-free solution.

F = F (mon) + F (Poy) = qm sin(θ)dθ ∧ dφ+ dξ ∧ du (41)

To make clear that this solution is force-free, let us revert to the tensor notation. We can define a

new Faraday tensor Fµν as the sum of the Faraday tensor F
(mon)
µν of the magnetic monopole and

the Faraday tensor F
(Poy)
µν of the Poynting flux i.e.:

Fµν = F (mon)
µν + F (Poy)

µν (42)

If we plug this into the equation (22) we get:

Fµν∇σFσν = F (mon)
µν ∇σFσν(mon) + F (Poy)

µν ∇σFσν(mon) + F (mon)
µν ∇σFσν(Poy) + F (Poy)

µν ∇σFσν(Poy)
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where Fσν(mon) and Fσν(Poy) are the contravariant forms of F
(mon)
σν and F

(Poy)
σν respectively.

So we know a couple of things. Firstly, both F
(Poy)
µν as F

(mon)
µν are force-free solutions. This implies

by definition that:
F (mon)
µν ∇σFσν(mon) = F (Poy)

µν ∇σFσν(Poy) = 0

Secondly, we know that the current three-form is zero in the case of the magnetic monopole which
implies that the electric four-current is zero and thus

∇σFσν(mon) = 0

So to show that this superposition results in a force-free situation, we have to prove that:

F (mon)
µν ∇σFσν(Poy) = 0 (43)

First, we are going to make use of equation (20) to write:

∇σFσν(Poy) = 4πjν(Poy)

Next, by the definition of the current three-form we have that jν = 1
3! ε̃

νσρλJσρλ. This allows us to
write:

∇σFσν(Poy) =
1

3!
ενσρλJ

(Poy)
σρλ

Equation (40) tells us how the current three-form in the Poynting case looks like and which we
can rewrite as:

J = f(θ, φ, u)dθ ∧ dφ ∧ dt− f(θ, φ, u)

1− 2M
r

dθ ∧ dφ ∧ dr (44)

where we define f as:

f(θ, φ, u) = (
∂ξ

∂θ
cos(θ) +

∂2ξ

∂θ2
sin(θ) +

∂2ξ

∂φ2

1

sin(θ)
)

It now readily follows that:

∇σFσt(Poy) = −f(θ, φ, u)

1− 2M
r

∇σFσr(Poy) = −f(θ, φ, u)

∇σFσθ(Poy) = ∇σFσφ(Poy) = 0

What we are interested in is showing equation (43). Note that the only non-zero component of

F
(mon)
µν has ν = θ or ν = φ. Combining this with the above equations, equation (43) follows readily

which shows that this superposition is force-free.

It is also worthwhile to compute the electric and magnetic field explicitly. In spherical coordinates
the Faraday tensor is given by:

Fµν =


0 Er rEθ r sin(θ)Eφ
−Er 0 −rBφ r sin(θ)Bθ
−rEθ rBφ 0 −r2 sin(θ)Br

r sin(θ)Eφ −r sin(θ)Bθ r2 sin(θ)Br 0

 (45)

So let us now rewrite equation (41) using equation (39) to get:

F = qm sin(θ)dθ ∧ dφ+
∂ξ

∂θ
dθ ∧ dt− ∂ξ

∂θ
(1− 2M

r
)−1dθ ∧ dr +

∂ξ

∂φ
dφ ∧ dt− ∂ξ

∂φ
(1− 2M

r
)−1dφ ∧ dr

So this gives us for the Faraday tensor:

Fµν =


0 0 −∂ξ∂θ − ∂ξ

∂φ

0 0 ∂ξ
∂θ (1− 2M

r )−1 ∂ξ
∂φ (1− 2M

r )−1

∂ξ
∂θ −∂ξ∂θ (1− 2M

r )−1 0 qm sin(θ)
∂ξ
∂φ − ∂ξ

∂φ (1− 2M
r )−1 −qm sin(θ) 0

 (46)
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If we compare equation (45) with equation (46), we can just read of the components of the magnetic
and electric field:

Er = 0

Eθ = −1

r

∂ξ

∂θ

Eφ = − 1

r sin(θ)

∂ξ

∂φ

Br = −qm
r2

Bθ =
1

r sin(θ)(1− 2M
r )

∂ξ

∂φ

Bφ = − 1

r(1− 2M
r )

∂ξ

∂θ

(47)

Note that in the above equations we have assumed θ 6= 0 and θ 6= π. If we have θ = 0 or θ = π,
then Eφ = 0 and Bθ = 0.

5.2.4 Michel’s Rotating Magnetic Monopole

A very important example of such a superpositioned solution is the Michel’s rotating magnetic
monopole since this monopole serves as the starting point for most analytical models of black hole
magnetospheres. We suppose that we are in Schwarzschild spacetime. In the case of the Michel’s
monopole we have ξ = qmΩ cos(θ). This gives the following Faraday two-form:

F = qmd(cos(θ)) ∧ (dφ− Ωdu) (48)

where Ω is the rotation frequency of the monopole. Note that for the above equation we mage use
of the fact that sin(θ)dθ = −d(cos(θ)).

Let us now show that our understanding of degenerate fields is in fact correct. To this end, suppose
that we have an observer corotating with the monopole i.e. having a four-velocity U = ∂t + Ω∂φ.
Let us compute:

FtµU
µ = FttU

t + FtrU
r + FtθU

θ + FtφU
φ

Note that trivially Ftt = 0. Next note that Ur = Uθ = 0 since U has no components ∂r or ∂θ.
Lastly note that Ftφ = 0 since F has no two-form of the form dt ∧ dφ. This shows:

FtµU
µ = 0

This tells us that an observer corotating with the magnetic monopole does not see any electric
field. This supports our interpretation of degenerate fields.

We can also compute the current three-form for the Michel’s monopole. As argued above, this
amounts to computing the current due to the Poynting part of the Faraday tensor as the monopole
part does not have a current. We can use equation (40) to see:

J = −qmΩ sin(2θ)dθ ∧ dφ ∧ du

We can also compute the electric four-current. To this end let us rewrite current three-form as in
equation (44):

J = −qmΩ sin(2θ)dθ ∧ dφ ∧ dt+
qmΩ sin(2θ)

1− 2M
r

dθ ∧ dφ ∧ dr

Using the fact that we can write jρ = 1
3! ε̃

ρµνσJµνσ, we are able to compute the components of the
electric four-current:

jt =
qmΩ sin(2θ)

r2 sin(θ)(1− 2M
r )

=
2qmΩ cos(θ)

r2(1− 2M
r )

(49)

jr =
qmΩ sin(2θ)

r2 sin(θ)
=

2qmΩ cos(θ)

r2
(50)
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jθ = jφ = 0 (51)

where the determinant of the Schwarzschild metric is g = −r4 sin2(θ). Note also that ε̃ρµνσ =
(|g|)−1/2ερµνσ. Hence the factor (r2 sin(θ))−1 in the above equations. We furthermore note that
by equation (38) we have:

du(jt∂t + jr∂r) = dt(jt∂t + jr∂r)− (1− 2GM

r
)−1dr(jt∂t + jr∂r) = 0

This means that the electric four-current flows in radial directions along the lines where u is
constant.

We want to note that there is no reason for the magnetic monopole to be a point particle. It is
equally valid if it would be a spherical symmetric object. In that case the magnetic charge would
be qm = B0R

2, where B0 is the magnetic field strength on the star surface and R is the radius of
the star.

Again, we can compute the magnetic and electric field using equations (47) to see:

Eθ =
qmΩ sin(θ)

r

Br = −qm
r2

Bφ =
qmΩ sin(θ)

r(1− 2M
r )

Er = Bθ = Eφ = 0

(52)

This example will play an important role when analysing the energy and angular momentum
extraction mechanism since the rotating black hole can be approximated as a split monopole as
Blandford and Znajek did.
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6 Plasma Formation

In this chapter, we just want to mention that there is a plasma surrounding the black hole and
briefly explain how this plasma is formed. The details are quite scarce and a more in-depth
treatment would relate the plasma formation to the force-free condition. The more interested
reader we refer to [1] chapters 2 and 3.

Let us return to the example of subsection 4.2. We have discussed that the black hole acts as a
resistance. Yet what we have not discussed is what is the equivalent of the axisymmetric conductor
within the BZ-process. The answer is the space surrounding the black hole. The problem is that
this is empty space and empty space cannot conduct electricity. So something needs to happen
before it is able to act as a conductor. This something is the formation of a plasma. Our aim for
now is to give an intuitive example as to the formation of this plasma.

Our setup is as follows:

BH II
d

Figure 4: This is a cross section of the setup. In the centre we have the rotating black hole. On
both sides we have the accretion disk. In this accretion disk runs in a circular loop around the
black hole a current I. In this drawing it is ingoing on the right-hand side and outgoing on the
left-hand side. d is the shortest distance between the black hole horizon and the accretion disk.

Suppose that there is no conducting material between the charged accretion disk and the black
hole. We would still have a voltage drop described by equation (13). Using Ω = ΩH and our
estimate for the magnetic flux ΦB = Br2

+π we get:

V =
ΩΦB
2π

=
ΩHBr

2
+π

2π
=

1

2
ΩHBr

2
+ (53)

Let us now just plug in some values. Suppose our black hole is a supermassive one with mass around
109M� which is a reasonable guess. We estimate the magnetic field strength to be B = 5·103gauss.
This equals the measured magnetic field strength of the black hole Cygni V404. We also estimate
the black hole to be extremely fast rotating i.e. a = M . This gives us that r+ = M and
ΩHM = 1

2 .

Now we rewrite equation (53) as follows:

V =
1

2
ΩHBr

2
+ =

1

2
(ΩHM)BM =

1

4
BM

Let us now make B and M dimensionless by dividing them by 5 ·103gauss and 109M� respectively
to get:

V =
1

4
(5 · 103gauss)(109M�)(

M

109M�
)(

B

5 · 103gauss
) ≈ 1042(

M

109M�
)(

B

5 · 103gauss
)

There still is a problem though and that is the problem of units. We want our voltage in geometrized
units, but the values we have given are in SI-units. The way to convert voltage from SI units to
geometrized units is given by equation (15). So this tells us that the voltage in geometrized units
is:

V G =

√
Gε0
c2

V SI =

√
Gε0
c2

1042(
MSI

109MSI
�

)(
BSI

5 · 103gauss
) ≈ 1015(

MSI

109MSI
�

)(
BSI

5 · 103gauss
)

So if we plug in our values, we get a voltage difference of V G = 1015.
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We now claim that the plasma we are going to create exists only out of electrons and positrons.
The way they get produced is by a stray electron. This stray electron notices this potential drop
and accelerates in the direction of the black hole. The question now becomes: Does the electron
accelerate enough for it to emit a photon with enough energy to create an electron-positron pair?
For a photon to be able to produce such a pair, it needs an energy of about 1MeV . So this stray
electron needs to accelerate enough to gain 1MeV of energy. The defintion of one electronvolt is
the kinetic energy gained by an electron after traversing the distance equivalent to a drop of electric
potential by one volt. Since the distance between the event horizon and the accretion disk is d and
the voltage difference is 1015, we can calculate how distance the electron has to traverse:

106

1015
d = 10−9d

So the electron has to traverse a distance of 10−9d before gaining eneough energy to emit a photon
with enough energy for it to produce an electron-positron pair. This seems like it would be a
reasonable distance. Thus the plasma would get formed.
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7 Energy and Angular Momentum Extraction in the BZ-
process

In chapter 4 we have understood the extraction of energy and angular momentum from a rotating
black hole as the heat emitted by a resistance placed in a circuit. This analogy though does not
offer us insight into how the black hole’s energy is extracted. To put it in terms of that example:
how can the black hole act as an resistance? Understanding this is the aim of this subsection.
After

7.1 A Mechanical Analogy

Let us start off with another analogy: suppose we have a disk rotating with angular velocity ΩH
and suppose we have an annulus around that disk rotating with angular velocity ω. In terms of
the BZ-process, the disk is the black hole and the annulus is the magnetic field. The setup looks
as follows:

ω

ΩH

Figure 5: In blue we have drawn the disk. In red we have drawn the annulus surrounding the
disk. The disk is rotating with angular velocity ΩH . The annulus is rotating with angular velocity
ω. The rotation direction is pointing outwards of the paper. Note that we have drawn ΩH and ω
both rotating in the same direction. This need not be necessarily the case. It is possible that they
rotate in opposite directions.

Suppose a torque is exerted by the disk on the annulus which is proportional to the relative velocity
of the two. This gives us:

τ = K(ΩH − ω)

By Newton’s third law the annulus then exerts a torque in opposite direction i.e. −τ . The power
gained by applying a torque is given by the product of the torque applied together with the angular
velocity. Thus the power gained by the annulus is:

PA = τω = Kω(ΩH − ω)

And the power lost by the disk is:

PD = −τΩH = −KΩH(ΩH − ω)

If ω 6= ΩH , there is some energy not accounted for. This energy is converted into heat. By
conservation of energy we then have PD + PA + PH = 0, where PH is the amount of power which
becomes heat. Thus it follows:

PH = −(PA + PD) = K(ΩH − ω)2

Now we see that if ω > ΩH , then the annulus loses energy to the disk. This is to be expected since
if ω > ΩH the annulus would spin faster than the disk. So the friction between the disk and the
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annulus causes it to slow down and thus lose rotational kinetic energy. This process would speed
up the disk, giving it energy. Note that this process also transfers angular momentum from the
annulus to the disk.

If ΩH ≥ ω ≥ 0, then the annulus would gain energy from the disk. The situation is analogous to
the case of ω > ΩH , but now the disk spins faster than the annulus. Again the angular momentum
is also being transferred from the disk to the annulus.

If ω < 0, then both the disk and the annulus would lose energy. All this lost energy would be
converted into heat. Note though that also angular momentum is being transferred in this case.
To see this, note that if ω < 0, then the disk and the annulus rotate in opposite direction. The
friction between them causes the disk to rotate slower. This means that the disk loses angular
momentum. Since angular momentum is conserved, the annulus must gain it.

Note that this is not in contradiction with the fact that the annulus also slows down due to the
friction between the disk and the annulus. This is so because the annulus was rotating with a
negative angular velocity. Hence if it slows down, it implies that it rotates with a less negative
angular velocity. Since angular momentum is proportional to the angular velocity, this implies
that the angular momentum becomes less negative and thus increases.

7.2 Energy and Angular Momentum Extraction

7.2.1 Conserved Current

For there to be energy and angular momentum extraction from a black hole, there needs to be
conserved current of energy and angular momentum. Without it we are not able to talk about
conservation of energy and angular momentum and thus our argument and the entire BZ process
would fail. So we need a conserved current. To show that we have such a current, we have to
proof:

∇ν(ξµT
µν) = 0 (54)

Here ξ is an arbitrary Killing vector and Tµν is the stress-energy tensor. Noether has shown that
if this holds true then there is a conserved quantity associated to this Killing vector.

So we have to show that this equation holds true in our case. Since we still work in the force-free
regime, we have that Tµν is the electromagnetic stress-energy tensor defined by equation (23), but
now we have raised the index µ. Furthermore, we note again that the Kerr metric has two Killing
vector fields namely ∂t and ∂φ. So for the time being we will continue to work with an arbitrary
Killing vector fields ξ and later we will plug in one of these two vector fields.

Next by property of the covariant derivative, we can rewrite equation (54) as:

∇ν(ξµT
µν) = (∇νξµ)Tµν + ξµ(∇νTµν) (55)

As we have show equation (24) holds true. This tells us that ∇νTµν = 0. So we are left to show
that the first component is also zero. To this end, we note that any Killing vector field has to
satisfy the following equation:

∇µξν +∇νξµ = 0 (56)

Now we note that we can rewrite the first component of the left-hand side of equation (55) as:

(∇νξµ)Tµν =
1

2
((∇νξµ)Tµν + (∇µξν)T νµ) (57)

We know that any stress-energy tensor is symmetric i.e. Tµν = T νµ. This tells us:

(∇νξµ)Tµν =
1

2
((∇νξµ) + (∇µξν))Tµν = 0 (58)

where in the last step we have used equation (56).

So what we have shown is that there is a conserved current associated to our setup. We can define
this current as the energy flux in the case of ∂t:

Eν = −(∂t)µT
µν = −T νt (59)
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The minus sign arises due to Noether’s theorem. For more details one can look at appendix
1.

Furthermore we can define the conserved current as the angular momentum flux in the case of
∂φ:

Lν = (∂φ)µT
µν = T νφ (60)

7.2.2 The Extraction Equations

Now that we have conserved currents, we can measure how much energy and angular momentum
is being extracted from the system. The rate of energy extraction is given by:

PE(t) = − lim
r→∞

∫ ∫
A

ErdΩ = − lim
r→∞

∫ ∫
A

T rt dΩ (61)

One can interpret this equation as the energy equivalent of the magnetic flux flowing through
a surface. T rt is the amount of energy flowing in radial direction at some time t. We are only
interested in this value since this tells us the amount of energy flowing away from the system or,
in the case of the BZ-process, from the black hole. If we integrate this over some surface A, it
become the amount of energy flowing through that surface. If we want to know how much energy
escapes to infinity, we must take the limit.

Analogously, we can define the amount of angular momentum extracted as:

PL(t) = lim
r→∞

∫ ∫
A

LrdΩ = lim
r→∞

∫ ∫
A

T rφdΩ (62)

7.3 The Michel’s Magnetic Monopole Revisited

7.3.1 The Extraction of Energy from Superposed Situation

Our aim now is to compute the amount of energy extracted from Michel’s rotating magnetic
monopole. As we have seen in chapter 5 the rotating monopole case arises from the broader case
of the superposition of the non-rotating magnetic monopole together with the situation of the
Poynting flux i.e. equation (41). So it is in fact worthwhile to compute the energy extracted from
this case ans then specify it to the case of the magnetic monopole.

So our starting point are equations (23) and (41). We also note that we are working in Schwarzschild
spacetime. We look at:

T rt = FtσF
rσ − 1

4
FσρF

σρδrt = FtσF
rσ (63)

Let F
(Poy)
µν and F

(mon)
µν be the Faraday tensors as in equation (42). This now gives us:

FtσF
rσ = (F

(Poy)
tσ + F

(mon)
tσ )(F rσ(Poy) + F rσ(mon))

As we can see in equation (34), F
(mon)
µν is zero if µ = t or if µ = r. This also holds true for the

contravariant form Fµν(mon). Hence this gives us:

FtσF
rσ = F

(Poy)
tσ F rσ(Poy) = grαgσβF

(Poy)
tσ F

(Poy)
αβ = grrgσβF

(Poy)
tσ F

(Poy)
rβ

where in the second step we have lowered the indices and in the third step we have made use
of the fact that we work with the Schwarzschild metric. It should not come as a surprise that
the monopole part does not contribute anything to the amount of energy extracted from the
superposed situation since we have shown (equation (35)) that the magnetic monopole does not
cause any current flow. In the force-free regime, this current is essential since it carries away the
energy and angular momentum. Thus it follows that no energy is being carried away from the
magnetic monopole.

By equation (??), we can write:

F (Poy)
µν = (dξ ∧ du)µν = (dξµduν − dξνduµ)
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In the second step we have made use of the formula for the components of the wedge product.
This now gives us:

grrgσβF
(Poy)
tσ F

(Poy)
rβ = grrgσβ(dξtduσ − dξσdut)(dξrduβ − dξβdur)

= grrgσβ(dξtdξrduσduβ − dξtdξβduσdur
− dξσdξrdutduβ + dξσdξβdutdur)

(64)

We will show now that the first three components of this equation are equal to zero. We look
at:

gσβduσduβ = gttdutdut + grrdurdur

Using equation (38) we see that dut = 1 and dur = −(1− 2M
r )−1. Thus it now follows:

gσβduσduβ = gttdutdut + grrdurdur = − 1

1− 2M
r

+
1− 2M

r

(1− 2M
r )2

= 0

where we have made use of equation (2) for gtt and grr.

Next let us look at:

gσβdξσduβ = gttdξtdut + grrdξrdur + gθθdξθduθ + gφφdξφduφ (65)

As we can see in equation (38) we have that duθ = duφ = 0. So we only have to look at the first
two terms. We can use equation (37) together with equation (38) to compute dξt and dξr:

dξ =
∂ξ

∂θ
dθ +

∂ξ

∂φ
dφ+

∂ξ

∂u
du = dξ =

∂ξ

∂θ
dθ +

∂ξ

∂φ
dφ+

∂ξ

∂u
dt− ∂ξ

∂u
(1− 2M

r
)−1dr

Thus we see that:

dξt =
∂ξ

∂u

dξr = − 1

1− 2M
r

∂ξ

∂u

We note again that by equation (38) we have that dut = 1 and dur = −(1 − 2M
r )−1 We can now

plug this into equation (65) to get:

gσβdξσduβ = gttdξtdut + grrdξrdur = − 1

1− 2M
r

∂ξ

∂u
+ (1− 2M

r
)

1

(1− 2M
r )2

∂ξ

∂u
= 0

Hence we get for equation (64):

grrgσβF
(Poy)
tσ F

(Poy)
rβ = grrgσβdξσdξβdutdur = −gσβdξσdξβ

where in the last step we have filled in the values for grr, dut and dur. If we plug this into equation
(63), we now get:

T rt = −gσβdξσdξβ
And thus the amount of energy extracted follows from equation (61)

PE(t) = lim
r→∞

∫ ∫
A

gσβdξσdξβdΩ (66)

7.3.2 The Extraction of Angular Momentum from Superposed Situation

Analogously we can compute the formula for the amount of angular momentum extracted from
the superposed situation. We start from equation (62) Again using equation (23) we get:

T rφ = FφσF
rσ − 1

4
FσρF

σρδrφ = FφσF
rσ = grrgσαFφσFrα (67)
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Let us look at:

gσαFφσFrα = gttFφtFrt + grrFφrFrr + gθθFφθFrθ + gφφFφφFrφ = gttFφtFrt + gθθFφθFrθ

where in the second step we made use of the antisymmetric property of the Faraday tensor. Instead
of decomposing the Faraday tensor as we did before, we can just read of the values of the Faraday
tensor as given by equation (46). This gives us:

gσαFφσFrα = gttFφtFrt + gθθFφθFrθ = 0− qm sin(θ)

r2(1− 2M
r )

∂ξ

∂θ

If we plug this into equation (67) we get:

T rφ = grrgσαFφσFrα = −grr qm sin(θ)

r2(1− 2M
r )

∂ξ

∂θ
= −qm sin(θ)

r2

∂ξ

∂θ

Hence we get for the angular momentum extracted:

PL(t) = − lim
r→∞

∫ ∫
A

qm sin(θ)

r2

∂ξ

∂θ
dΩ (68)

7.3.3 Energy and Angular Momentum Extracted from Michel’s Rotating Magnetic
Monopole

We can now specify the situation to the Michel’s monopole. In that case we know that ξ =
qmΩm cos(θ). We have now written Ωm to distinguish from the dΩ in equation (61) which stands
for an area element and not for the angular velocity. Hence it follows dξ = −qmΩm sin(θ)dθ. So
now we can compute:

gσβdξσdξβ = gθθdξθdξθ =
q2
mΩ2

m sin2(θ)

r2

Since for σ 6= θ we have that dξσ = 0. Furthermore, since our situation is spherical symmetric,
we can take A to be the sphere of radius r. If we then work in spherical coordinates, we get that
dΩ = r2 sin(θ)dθdφ. Hence the amount of energy extracted equals:

PE(t) = lim
r→∞

∫ ∫
A

gσβdξσdξβdΩ

= lim
r→∞

∫ 2π

0

dφ

∫ π

0

q2
mΩ2

m sin2(θ)

r2
r2 sin(θ)dθ

= lim
r→∞

2πq2
mΩ2

m

∫ π

0

sin3(θ)dθ

=
8

3
πq2
mΩ2

m

We want to note now that if we have a spherical symmetric star of radius R, it is conventional to
write the magnetic monopole charge qm in terms of the magnetic field on the surface as qm = B0R

2

where B0 is the magnetic field strength on the surface. This is just Gauss’s law for magnetism
modified by assumption that magnetic monopoles exist. This gives us:

PE(t) =
8

3
πB2

0R
4Ω2

m (69)

Note that up to a constant, this is precisely the equation we estimated in equation (18) when we
replace R = r+ and Ωm = ΩH , the values for a rotating black hole. Later on in this chapter we
will argue that this should be expected since we can regard Michel’s rotating magnetic monopole
as a linear approximation of the BZ-process.

Note also that the formula for the amount of energy extracted is the same as the formula for the
amount of angular momentum extracted from the black hole. If we take A to be the sphere and
plug in ∂θξ = −qmΩm sin(θ) and dΩ = r2 sin(θ)dθdφ into equation (62) we get:

PL(t) = − lim
r→∞

∫ ∫
A

qm sin(θ)

r2

∂ξ

∂θ
dΩ = lim

r→∞

∫ 2π

0

dφ

∫ π

0

q2
mΩ2

m sin2(θ)

r2
r2 sin(θ)dθ
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Which we can read of immediately equals to 8
3πq

2
mΩ2

m. That these two values are the same,
need not be necessarily the case in an arbitrary force-free situation. But that they are related is
to be expected since the energy extracted comes from the rotational kinetic energy of the black
hole.

7.3.4 Understanding the Energy and Angular Momentum Extraction

How must we understand the fact that in the force-free regime the Michel’s rotating magnetic
monopole loses energy and angular momentum? To answer this question we have to analyse how
the current flows. First of all, note that outside the monopole due to equation (50), we only
have a radial current which is infalling in the northern hemisphere and outgoing in the southern
hemisphere. So what we need to understand is what happens to the current within the monopole.
Let us first make a picture before we explain what happens.

~jΩ

θ = π/2

Figure 6: In black we have drawn the Michel’s rotating magnetic monopole. The rotation axis is
drawn in purple and in red we have drawn the current. This is a cross section where we have fixed
φ = φ0.

So we must show now that the current in fact does act that way within the monopole. To this end,
we assume that the Michel’s rotating magnetic monopole is a conductor. This is a reasonable as-
sumption in our case since we will apply it to a black hole which in chapter 4 we have demonstrated
is a conductor.

When the current enters the magnetic monopole, the force-free condition breaks down because
the density within the monopole (which, remember, is not necessarily a point particle, but can
also be a star) is too high to allow for the force-free approximation. So what this means is that
the coupling between the magnetic field and the current is lost. The current starts experiencing
external forces other than the magnetic field. Specifically it experiences a Lorentz force. We can
compute this Lorentz force by noting that the charge carriers within the monopole corotate with
it. So they have a velocity given by ~v = rΩ sin(θ)~eφ, where we note that we work in spherical
coordinates. The equation for the magnetic fields has been given above by equation (52). So this
gives us for the Lorentz force:

~F = q ~E + q~v × ~B = (
qqmΩ

r
sin(θ) +

qqmΩ

r
sin(θ))~eθ = 2

qqmΩ

r
sin(θ)~eθ

where q is the charge of the charge carrier within the monopole. What this equation tells us is
that all the charges in the in the monopole experience a Lorentz force which forces them to flow
to the southern hemisphere of the monopole.

We now know that there is a current flowing from the northern to the southern hemisphere of
the magnetic monopole. The problem is that we do not know precisely the shape of it. We can
make a couple of approximations. Firstly, we note that the magnetic monopole is by assumption
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spheric symmetric. This means that the current should not be influenced by the φ coordinate.
Next, we note that our charge carriers within the monopole move along the ~eφ direction and that
the force they experience is along the ~eθ direction. Hence there should not be a current flowing
in the radial direction. Lastly, because the current should flow from the northern to the southern
hemisphere, we have to assume that the component of the current parallel to ~eθ has to positive.
These assumptions allow us to write the current as:

~j(mon)(r, θ) = f(r, θ)~eθ + rΩ sin(θ)~eφ

Where we assume f(r, θ) to always be positive and rΩ sin(θ) is the necessary velocity in the ~eφ-
direction of the charge carriers for them to corotate with the monopole.

Again we can compute the Lorentz force a charge carrier flowing along ~j(mon) feels. We again use
equation (52) to compute:

~F = q ~E + q~v × ~B = f(r, θ)
qqmΩ sin(θ)

r(1− 2M
r )

~er + (
qqmΩ sin(θ)

r
+
qqmΩ

r
g(r, θ))~eθ −

qm
r2
f(r, θ)~eφ

where ~v is taken to be ~j(mon) evaluated at some point (r, θ).

Now the most important part is the last component. Note that the force the current experiences
in the ~eφ direction is against the rotation of the monopole. This force slows down the rotation of
the monopole and thus lowers the rotational kinetic energy and angular momentum. To compare
it with our mechanical analogy, the current flowing from the north to the south is the annulus and
the monopole is the disk.

Now by conservation of energy and angular momentum, it has to be transferred from the monopole
to the current. Now note that on the south pole we have a radially outflowing current outside of the
monopole. The charges for this radially outflowing current have to be supplied by the monopole.
So what this tells us is that the charge carriers of the current flowing over the surface of the
monopole are being stripped away from somewhere on the southern hemisphere. Now note that
these charge carriers have a higher energy and angular momentum than the charge carriers flowing
radially inward from the northern hemisphere. Hence energy and angular momentum are extracted
from the monopole.

What should also become clear is that there exists a relation between the amount of energy and
angular momentum extracted from the rotating magnetic monopole. This is so because the energy
that is being extracted is taken from the rotational kinetic energy of the monopole which is related
to the angular momentum.

7.3.5 Problems with Comparison to the BZ-process

Even though this process offer a good insight into how energy and angular momentum can be
extracted from a pulsar, it does not coincide with the physical reality of the extraction of energy
and angular momentum from a black hole. The problems is twofold.

Firstly, we required the force-free condition to break down within the rotating monopole. We could
do that since we assumed that the density of the rotating monopole was too high with respect to
the electromagnetic fields. The problem is that the density within the black hole, at least near the
event horizon, is not that much higher than the density of the plasma outside of the black hole
since most of the mass of the black hole is situated around the singularity. This implies that the
force-free condition could still hold true within the black hole.

Secondly, even if the force-free condition breaks down within the black hole, for energy and an-
gular momentum to be extracted we also required particles to escape from the rotating magnetic
monopole. This cannot happen in the context of a black hole. When a particle falls within the
black hole, it can never escape.

So as shown the Michel’s rotating magnetic monopole is a good approximation for the Kerr black
hole. This implies that energy is flowing away from the black hole. Yet we have described that the
way in which energy is extracted from a Michel’s rotating monopole cannot describe the reality
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in the case of a black hole. These problems though are not insurmountable and the solution for
them are related to the Penrose process. Remember that in the Penrose process, a particle which
entered the ergosphere and then decayed, could have a decay product that has a negative energy.
Something similar also happens when we measure a positive energy flux far away from the black
hole. It is compensated by a negative energy flux into the black hole. We will not go into details
as to under which conditions this negative energy flux can happen, but the interested reader is
referred to [8] chapter 7 and 9.

7.4 Towards the BZ-process

7.4.1 Approximation

We have not yet discussed how this all fits in the broader context of the BZ-process. We will argue
now that in the regime of a slowly rotating black hole, i.e. a�M , the Michel’s monopole solution is
a good approximation. So we assume that we have a slowly rotating Kerr black hole. We approach
the electromagnetic fields around this black hole as fields generated by a non-rotating magnetic
monopole i.e. by equation (34). Clearly, this cannot be the case and thus we get a correction term.
We assume this correction term to be given by the second term in Michel’s rotating magnetic
monopole i.e. the second term is equation (48). To put in more concrete terms, the Faraday
two-form for this situation is given by equation (48), which we will state here again:

FBZ = qmd(cos(θ)) ∧ (dφ− Ωdu) = −qm sin(θ)dθ ∧ dφ+ qmΩ sin(θ)dθ ∧ du (70)

The way we interpret this equation now is different. The background solution is the non-rotating
magnetic monopole in Schwarzschild spacetime. The second term is the error due to the rotation
of the black hole. For the sake of reference, we also define:

F (0) = −qm sin(θ)dθ ∧ dφ
F (1) = qmΩ sin(θ)dθ ∧ du

Where we interpret F (0) as the background solution and F (1) as correction term. Since we assume
this rotation to be small, we regard only components which are at most linear in a. We regard Ω
as a function of a, i.e. Ω = Ω(a). This means that F (1) is also only a function of a. We also note
that there are could be higher order terms in a. We just choose to chop it of at the first order
approximation.

Now we note that since we work in Kerr spacetime, the coordinates you see are not Eddington-
Finkelstein, but Boyer-Lindquist coordinates. What we are doing now is is just a brute force
solution which we expect should correctly describe the situation when the Kerr black hole is
slowly rotating because we know that in the slowly rotating limit the Kerr metric becomes the
Schwarzschild metric.

Since we work in the Kerr metric, we have to upgrade u from outgoing Eddington-Finkelstein to
its equivalent in Kerr spacetime. This is done by defining its differential as:

du = dt− r2 + a2

∆
dr

7.4.2 Maxwell and Force-Free

As a check that this approximation holds, we need to show that this approximation still satisfies
the Maxwell equation (29) and the force-free condition (31). To prove that dFBZ = 0, we note
that dΩ = 0. This is so because Ω only depends on a and a does not vary. Hence it follows:

dFBZ = d(−qm sin(θ)dθ ∧ dφ+ qmΩ sin(θ)dθ ∧ dφ)

= −qm cos(θ)dθ ∧ dθ ∧ dφ+ qmΩ cos(θ)dθ ∧ dθ ∧ dφ
= 0

since dθ ∧ dθ = 0.
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Let us now control the force-free condition. We revert back to tensor notation. We want to compute
the electric four-current jµ. Since we have FBZ only up to first order in a, we can only compute
the electric four-current up to first order in a since it is defined as 4πjν = ∇µFµν . We decompose
this current as:

jµ = jµ(0) + jµ(1)

where j(0) is the zeroth order approximation and j(1) is the component which depends linearly on
a. We note now that it is not true that jν(1) = ∇µFµν(1) since the Kerr metric, which is implicitly

encoded in the covariant derivative, has a component linear in a, namely the gφt component. This
means that ∇µFµν(0) also supplies a component to the linear part j(1). If gφt was not linear in a

and none of the other components of the metric were linear in a, then the equation would hold
true.

What we want is for this current to satisfy the force-free condition:

FBZµν j
ν = (F (0)

µν + F (1)
µν (a))(jν(0) + jν(1)) = F (0)

µν j
ν
(0) + F (1)

µν (a)jν(0) + F (0)
µν j

ν
(1) + F (1)

µν (a)jν(1) = 0

We know that F
(0)
µν is the non-rotating magnetic monopole and it serves as the zeroth-order ap-

proximation. We demand additionally that the current in this zeroth-order approximation satisfies

the force-free equation i.e. F
(0)
µν jν(0) = 0. This is not unreasonable since what we want to achieve

is a force-free solution and the easiest way to do that is to perturb another force-free solution.
By equation (35), we know that the force-free solution of the magnetic monopole has no current
flowing. Thus we get that j(0) = 0.

Since our solution is the zeroth-order approximation, for any current to be force-free, it has to

be force-free in the zeroth-order approximation. This implies that F
(0)
µν jν(1) = 0. From this fol-

lows:
F

(0)
θν j

ν
(1) = F

(0)
θφ j

φ
(1) = 0

This is so because the only non-zero components of F (0) are F
(0)
θφ and F

(0)
φθ . Thus we get that

jφ(1) = 0. Analogously, we can show that jθ(1) = 0.

Differently put, if J (1) is the current three-form associated to j(1), then the force-free condition
would be satisfied if:

dθ ∧ J (1) = dφ ∧ J (1) = 0

i.e the current three-form has dθ and dφ as components. To determine that this is indeed the case,
we make use of the fact that by equation (30) we have (d ? F )(1)(a) = J (1). Note a subtlety here:
we first compute d ? F and then throw out all the components which do not depend linearly on a.
This gives us the current in first order perturbation. So let us compute:

?F = −qm sin(θ) ? (dθ ∧ dφ) + qmΩ sin(θ) ? (dθ ∧ du)

= −qm sin(θ) ? (dθ ∧ dφ) + qmΩ sin(θ) ? (dθ ∧ dt)− (r2 + a2)qmΩ sin(θ)

∆
? (dθ ∧ dr)

(71)

where we plugged in the value for du in the second step. In chapter 5 we computed some Hodge
duals, but we are not allowed to use those since they were computed using the Schwarzschild
metric, but we work in Kerr spacetime. So we need to compute them again. We will just do it for
one because the other equations follow trivially.

The formula for the components of the Hodge dual are given by:

?(dθ ∧ dt)µν =
1

2
ε̃αβγδgµγgδν(dθ ∧ dt)αβ

where we note again that ε̃αβγδ is the contravariant form of the volume element which is defined
as ε̃αβγδ = |g|−1/2εαβγδ, where the εαβγδ is the Levi-Civita tensor and g is the metric determinant.
We also know that the components of the wedge product can be computed as:

(dθ ∧ dt)αβ = 2dθ[αdtβ] = dθαdtβ − dθβdtα
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So this gives us:

?(dθ ∧ dt)µν =
1

2
ε̃αβγδgµγgδν(dθαdtβ − θβdtα)

=
1

2
gµγgδν(ε̃θtγδ − ε̃tθγδ)

= ε̃θtγδgµγgδν

= ε̃θtrφgµrgφν + ε̃θtφrgµφgδr

= 2ε̃θtrφgr[µgν]φ

where in the second step we have made use that the only non-zero components of dθµ and dtν are
µ = θ and ν = t respectively. In the third step we made use of the antisymmetric property of the
volume element. In the fourth step we made use of the fact that the volume element is non-zero
only if all the indices are different.

Following the same steps we get:

?(dθ ∧ dr) = 2ε̃θrtφgt[µgν]φ

?(dθ ∧ dφ) = 2ε̃θφtrgt[µgν]r

From this follows that:

?(dθ ∧ dt) = 2ε̃θtrφgrrgtφdr ∧ dt+ 2ε̃θtrφgrrgφφdr ∧ dφ
?(dθ ∧ dr) = 2ε̃θrtφ(gttgφφ − g2

tφ)dt ∧ dφ
?(dθ ∧ dφ) = 2ε̃θφtrgttgrrdt ∧ dr + 2ε̃θφtrgtφgrrdφ ∧ dr

(72)

So now we are going to make the following approximation: since we only regard terms which are
linear in a, we can throw out all the terms in the Kerr metric which are not linear in a. If one
looks at equation (4), one can see that the metric becomes:

g = gSchw +
4Mar sin2(θ)

r2
dtdφ

= −(1− 2M

r
)dt2 + (1− 2M

r
)−1dr2 + r2(dθ2 + sin2(θ)dφ2) +

4Ma sin2(θ)

r
dtdφ

(73)

We reobtain the Schwarzschild metric with one off-diagonal component gtφ. We note that this
gtφ differs from the component in the Kerr metric (4) since in the Kerr metric the denominator
is given by ρ2. In this approximate case, since ρ2 = r2 + a2 cos2(θ) and we do not regard higher
order components in a, we get r2 in the denominator instead of ρ2.

This allows us to write the equations (72) as follows:

Ω ? (dθ ∧ dt) =
4Ma sin2(θ)

r(1− 2M
r )

ε̃θtrφΩdr ∧ dt+
2r2 sin2(θ)

(1− 2M
r )

ε̃θtrφΩdr ∧ dφ (74)

Ω ? (dθ ∧ dr) = −2ε̃θrtφ((1− 2M

r
)r2 sin2(θ) + (

2Ma sin2(θ)

r
)2)Ωdt ∧ dφ (75)

?(dθ ∧ dφ) = −2ε̃θφtrdt ∧ dr +
4Ma sin2(θ)

r(1− 2M
r )

ε̃θφtrdφ ∧ dr (76)

And the volume element is given by:

ε̃αβγδ =
1√

grrgθθ(gttgφφ − g2
tφ)

εαβγδ

=
(
−

(1− 2M
r )

r2((1− 2M
r )r2 sin2(θ) + ( 2Ma sin2(θ)

r )2)

)1/2

εαβγδ
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We have added Ω to equation (74) and equation (75) to make clear which components depend
linearly on a. So as one can see, the first term of equation (74) has both a loose a as well as a
Ω term. Since Ω also depends on a, this means that it does not depend linearly on a and hence
we throw it out. We do this with all the terms which do not depend linearly on a. This gives
us:

(Ω ? (dθ ∧ dt))(1) =
2r2 sin2(θ)

(1− 2M
r )

ε̃θtrφΩdr ∧ dφ (77)

(Ω ? (dθ ∧ dr))(1) = −2ε̃θrtφ(1− 2M

r
)r2 sin2(θ)Ωdt ∧ dφ (78)

(?(dθ ∧ dφ))(1) =
4Ma sin2(θ)

r(1− 2M
r )

ε̃θφtrdφ ∧ dr (79)

Also by throwing out the terms not linear in a, we can write:

ε̃αβγδ =
1

√
grrgθθgttgφφ

εαβγδ

=
1

r2 sin(θ)
εαβγδ

Thus we get:

(Ω ? (dθ ∧ dt))(1) =
2 sin(θ)

(1− 2M
r )

Ωdr ∧ dφ (80)

(Ω ? (dθ ∧ dr))(1) = 2(1− 2M

r
) sin(θ)Ωdt ∧ dφ (81)

(?(dθ ∧ dφ))(1) =
4Ma sin(θ)

r3(1− 2M
r )

dφ ∧ dr (82)

If we plug these into equation (71), we get:

?F = −4Maqm sin2(θ)

r3(1− 2M
r )

dφ∧dr+
2qm sin2(θ)

(1− 2M
r )

Ωdr∧dφ− 2(r2 + a2)qmΩ sin2(θ)

∆
(1− 2M

r
)dt∧dφ (83)

Again we throw out the a2 component. Then we note that we can simplify:

r2

∆
= (1− 2M

r
)−1

Hence:

?F = −4Maqm sin2(θ)

r3(1− 2M
r )

dφ ∧ dr +
2qm sin2(θ)

(1− 2M
r )

Ωdr ∧ dφ− 2qmΩ sin2(θ)dt ∧ dφ (84)

If we compute the current we get:

J (1) = (d?F )(1) = −4Maqm sin(2θ)

r3(1− 2M
r )

dθ∧dφ∧dr+
2qm sin(2θ)

(1− 2M
r )

Ωdθ∧dr∧dφ−2qmΩ sin(2θ)dθ∧dt∧dφ

(85)
So now we see:

dθ ∧ J (1) = dφ ∧ J (1) = 0

As argued above, this means that our setup is force-free.
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7.4.3 The Role of the Michel’s Monopole

Up until now we have only assumed that Ω is a function of a, but in fact we can show it. The
way to show it, is by assuming that the Faraday tensor needs to be regular on the event horizon.
This is appears not to be the case if we continue to work with du since r+ is a zero of ∆. There
exists though a coordinate transformation in which dφ−Ωdu is not singular on the event horizon.
Take:

dφ̃ = dφ− a

∆
dr

dv = du+ 2
r2 + a2

∆
dr

Plugging this into dφ− Ωdu gives us:

dφ− Ωdu = dφ− a

∆
dr − Ωdv + 2Ω

r2 + a2

∆
dr

We also note by definition of ΩH , we have that a = 2Mr+ΩH . By definition of r+, we get that
2Mr+ = r2

+ + a2. This gives us:

dφ− Ωdu = dφ− Ωdv −
ΩH(r2

+ + a2)

∆
dr + 2Ω

r2 + a2

∆
dr

= dφ− Ωdv +
−ΩH(r2

+ + a2) + 2Ω(r2 + a2)

∆
dr

The singularity can be avoided if Ω = 2−1ΩH . Since ΩH depends linearly on a, we get that it was
correct to approach Ω as a term which is linear in a.

7.4.4 Energy and Angular Momentum Extracted

So now that we have argued that the electromagnetic fields around the black hole are in first order
correctly described by the Michel’s monopole, we can compute the energy extracted from the
black hole. The problem is that we cannot use equations (69) and (7.3.3) to compute the energy
extracted near the black hole. This has to do with the fact that we have derived these equations
in the context of the Schwarzschild metric and not in the context of the Kerr metric.

The solution to this is that we can use them if we are far away enough from the black hole because
note that in the gtφ component in equation (73) vanishes if r becomes large enough. More general,
the Kerr metric becomes flat far away from the black hole. So this allows us to compute the
amount of energy extracted far away from the rotating black hole:

PE(t) =
8π

3
q2
m(

1

2
ΩH)2 =

2π

3
q2
mΩ2

H
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8 Conclusion

As one can see, the Blandford-Znajek process is a huge programme and understanding every
component of it requires a lot of background knowledge in general relativity, plasma physics and
electrodynamics. In this thesis we have attempted to familiarise the reader with at least the general
relativity and electrodynamics aspect of it. We have not been able to offer an in-depth introduction
regarding the plasma outside the black hole. A systematic ordering of that aspect might offer a
better understanding about the feasibility of the Blandford-Znajek process. As far as the writer
is aware, no experimental data has been presented regarding the presence of a plasma around a
rotating black hole which satisfies the force-free condition. Finding such a plasma, might offer
the best evidence in support of the Blandford-Znajek process, but is a highly non-trivial feat to
accomplish

Furthermore, questions regarding the efficiency and feasibility of the Blandford-Znajek process are
still open. Following Blandford and Znajek, in this thesis we have offered a model of the energy
extracted from a black hole computed through a perturbation of the Michel’s rotating magnetic
monopole. This approach has two problems: it only works for slowly rotating black holes as
well as it presumes the existence of magnetic monopoles. Computing higher order terms in the
perturbation will not offer us the analytic insight necessary to understand the feasibility of the
Blandford-Znajek process. The other problem is in nature most black holes are fast spinning. I
do not believe that the most efficient way of approaching these fast spinning black holes is by
computing higher order terms certainly because for convergence one needs to compute very high
order terms.

The problem regarding the magnetic monopole are clear: no magnetic monopole has ever been
observed in nature. Brute force solutions which split the monopole have been proposed which are
probably nearer to describing the reality. Sadly though, we have not been able to go into any
detail regarding these split monopoles. Studying these might be a good starting point for a reader
wishing to go into even more detail regarding the Blandford-Znajek process.

Of course, one should mention that the Blandford-Znajek process is classical and the amount of
energy that can be extracted is bound by the irreducible mass of the black hole. For a more
complete overview of this process, quantum electrodynamics has to be applied. As of the time of
writing, the writer is not aware of any paper attempting to create a quantum equivalent of the
Blandford-Znajek process. While understandable due to the fact that the physics is not even able
to model a fast spinning black hole, attempting to link this might offer a new class of solutions
which allow for easier generalisation to the fast spinning case. This is an extremely difficult feat
and closely related to the Holy Grail of physics: the formulation of a quantum gravity.
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9 Appendix A: Energy and Angular Momentum Conserva-
tion

In this appendix we will prove that the following formulas give us conserved quantities in Kerr
spacetime:

E = −ds2(∂t, u
ν), L = ds2(∂φ, u

ν) (86)

To this end, let us look at the proper time between two events A and B which is defined as:

τAB =

∫ B

A

(−gµν(x)dxµdxν)1/2 (87)

Suppose we have some parameter σ such that the four coordinates xµ vary from σ = 0 at A and
σ = 1 at B, then we can write the proper time as:

τAB =

∫ 1

0

(−gµν
dxµ

dσ

dxν

dσ
)1/2dσ (88)

So now we can define the Lagrangian L as:

L(xα,
dxα

dσ
) = (−gµν(x)

dxµ

dσ

dxν

dσ
) (89)

Then the proper time is minimalised if the Lagrangian satisfies the Euler-Lagrange equations:

− d

dσ
(
dL
ddx

α

dσ

) +
dL
dxα

= 0 (90)

So now we choose xα equal to xt. Since in Kerr spacetime the metric does not depend on time,
we get that the second term on the left-hand side of the above equation equals 0. So now we
have:

− d

dσ
(
dL
ddx

t

dσ

) = 0 (91)

So an easy computation gives us:
dL
ddx

t

dσ

= −gtν
1

L
dxν

dσ
(92)

By definition of the proper time, we also have that:

L =
dτAB
dσ

(93)

If we plug this into equation (92) we get:

dL
ddx

t

dσ

= −gtν
dxν

dτAB
(94)

We note that dxν

dτAB
is a component of the four-velocity of a particle. So this now gives us:

dL
ddx

t

dσ

= −ds2(∂t, u
ν) (95)

Now since the derivative with respect to σ is zero, we get that this is a conserved quantity. We
define this conserved quantity to be the energy per unit rest mass of a particle. Analogously one
could show the case for the angular momentum of a particle.
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10 Appendix B: Some Mathematics

The goal of this appendix is to offer some background for some mathematical objects discussed in
this thesis.

10.1 Semi-Riemannian Geometry

Semi-Riemannian geometry if the foundation for general relativity. Giving an overview of all the
relevant aspects of it, goes outside the scope of this appendix and this thesis. So a lot is considered
to be background knowledge, but we will refer the reader who wishes to extend his background on
semi-Riemannian geometry to the following sources: [2] chapter 2 for a brief overview of all the
important aspects, [12] for a more in depth mathematical treatment and [15] for a treatment of
semi-Riemannian geometry which also touches on a lot of subjects in physics.

10.2 Killing Vectors

An object which is needed to analyse the symmetries of the metric are the Killing vectors.

Definition 10.1. Suppose we are given a semi-Riemannian manifold (M, g) and a vector Xp in
TpM for some p ∈ M . Xp is called a Killing vector if the local flow φtXp defines a bijective
isometry between TpM and TφtXp (p)M . A vector field X is called a Killing vector field if at

every point p ∈M , Xp is a Killing vector.

So what this definition tells us is that in an infinitesimal neighbourhood around p ∈M , any tangent
space which can be expressed as TφtXp (p)M , for some t in the domain of the local flow φXp , are

equivalent in the sense that the length of vectors is preserved. Or to put it in more physical terms:
spacetime is invariant under translation along X.
This is a bit of an abstract definition, but it appears that there is an equivalent characterization
of Killing vectors. This one tells us that if we move an infinitesimal distance along Xp, then the
metric is unchanged. To put it formally:

Lemma 10.2. X is a Killing vector field if and only if the Lie derivative of the metric g along X
is zero i.e. LXg = 0.

Proof. We note that the Lie derivative of the metric is defined as:

LXg(V,W ) =
d

dt
|t=0g(dφtX(V ), dφtX(V ))

where V and W are vector fields defined on M . From this it follows that:

d

dt
|t=t0g(dφtX(V ), dφtX(V )) =

d

dt
|t=t0g(d(φt−t0X ◦ φt0X)(V ).d(φt−t0X ◦ φt0X)(W ))

=
d

dt
|t=t0g(dφt−t0X dφt0X(V ).dφt−t0X dφt0X(W ))

=
d

dt
|s=0g(dφsXdφ

t0
X(V ).dφsXdφ

t0
X(W ))

=LXg(dφt0X(V ), dφt0X(W ))

If we take t0 = 0, then we note that the flow φt0X = φ0
X is just the identity. Now if LXg = 0

it follows that the metric is constant. This is precisely what an isometry requires. The bijective
condition follows from the properties of the flow. Thus X is a Killing vector field.
Conversely we see that if X is a Killing vector field, the metric is constant and the left hand side
of the equation is zero. Since this holds for any V and W it follows that LXg = 0.

The following corollary to this lemma allows us to easily compute if a vector field is a Killing vector
field.
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Corollary 10.3. Let (M, g) be a n-dimensional semi-Riemannian manifold. Let X be a vector
field on M. X is a Killing vector field if and only if, for every local coordinate chart (∂i)

n
i=1, it

satisfies:
Xk∂kgij + gjk∂iX

k + gik∂jX
k = 0 (96)

where we have that X = Xk∂k and g = gijdx
idxj, where gij = g(∂i, ∂j).

Proof. This lemma amounts to an application of corollary 12.33 from [11]. This corollary gives us
that we can write the Lie derivative of gij as:

(LXg)(∂i, ∂j) = X(gij)−g([X, ∂i], ∂j)−g(∂i, [X, ∂j ]) = Xk∂kgij−g([Xk∂k, ∂i], ∂j)−g(∂i, [X
k∂k, ∂j ])

Since Xk ∈ C∞(M), it follows by property of the Lie brackets that [Xk∂k, ∂i] = −(∂iX
k)∂k −

Xk[∂i, ∂k]. Furthermore, since we are working with coordinate charts we get that [∂i, ∂k] = 0.
Hence the above equation simplifies to:

(LXg)(∂i, ∂j) = Xk∂kgij − g(−(∂iX
k)∂k, ∂j)− g(∂i,−(∂jX

k)∂k)

Since the metric is linear over smooth functions, we get that:

(LXg)(∂i, ∂j) = Xk∂kgij + gjk∂iX
k + gik∂jX

k

Now it follows that, if X is a Killing vector field, then the left hand side of the equation is zero. If
the right hand side of the equation is zero for all local coordinate charts, then we must have that
LXg = 0 and hence a Killing vector field.
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