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Abstract 

With an increase in public interest towards climate science and the high demand for chronological markers correla ting 

palaeoclimatological data from proxies, an accurate timescale is imperative. In this thesis, attention is drawn to 

tephrochronology: the use of volcanic ashes from known eruptions that act as time equivalent stratigraphic markers. Here, a 

tephrochronological research on lacustrine sediments from the Svalbard archipelago is outlined. A careful collection was 

made based on expected tephra horizons. Floating sediments were prepared into microscope slides, in which they were 

counted. To make use of a secondary independent proxy, diatom fragments were counted with respect to the particle 

density. An age depth model was constructed on which a loss of ignition profile was plotted. Shard count was plotted 

relative to this age model, reconstructed from C14 dates. Several tephra and corresponding diatom peaks were found and 

interpreted: The Hekla-1104, Öraefajökull-1362, Hekla-3 and other not yet interpreted tephra peaks around 850-900 AD 

and 1400-1500 AD. The resulting LOI-curve reflects the arctic climate of the past 2000 years quite good, indicating that 

the interpreted ages of tephra peaks are likely to be correct. Possible suggestions were given on the relative abundance of 

tephra in Higher LOI sections, likely related to warmer climate. The weather pattern footprint on tephra distribution was used 

to connect periods in time when tephra deposition on Svalbard would be more likely (due to change of average wind 

direction). More tephrochronological research in Svalbard will be needed, before this region becomes an important trans-

arctic correlating region. This implies that the Svalbard could connect cryptotephra from different source areas (Asia, Europe 

and North-America). 
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1.0 Introduction 

Visualizing the course of the more recent past is of great relevance. A look at the daily CO2 charts visualizes that climate is 

changing. The question remains why is it changing, and has it always been changing? In fact, the climate of the earth consists 

of change upon change upon change… it is simply not stable. Solar cycles, for example, show a distinct climatic signal found 

all over the world. However, in the arctic this signal can be interpreted differently. Climate signals are amplified here into 

abrupt and clearly visible, sometimes critical, changes. The reconstruction of Svalbard’s Holocene climate is heavily dependent 

on dating methods, which can be provided by different methods such as;  annual laminations, C14-dating,  Optically Stimulated 

Luminescence or Tephrochronology. In this study one of these dating methods, C-14 dating, is used to reconstruct the other, 

tephrochronology, a chronological record of microscopic ash particles deposited by fallout and washout from the sky after 

being emitted by a volcano elsewhere. 

1.1 A brief introduction to tephrochronology 

Tephrochronology is a method, relying on the occurrence of volcanic glass particles in sedimentary records. Glass particles 

which are emitted during relatively short volcanic events create regional to continental, time equivalent markers. By using 

several of these markers a chronology can be set-up, this method of constructing a chronology is called Tephrochronology 

and it is becoming increasingly popular. It proves (Gale, 2009; Lowe et al., 2007) to be a promising dating method, especially 

when used in late quaternary ice cores (due to clearly visible annual laminae) and limnic cores. This popularity may be related 

to the societal call for climate data but most probably originates from the scientific interest to correlate and understand the 

interaction between different climatic archives especially, ice core, marine and terrestrial records and the supporting 

chronological methods. Tephrochronology supports an age framework that, in many cases, supports another climate related 

data set. Using tephrochronology to reconstruct a stratigraphical framework relies on two rather basic assumptions: “the law 

of superposition” and age or date transferring by mineralogical matching of certain tephras. This study however will only focus 

on the first of the latter, pinpoint at tephra layers and match them in accordance to “the law of superposition”.  Tephras are 

perfect candidates to produce isochronous marker beds within age reconstructions (Lowe, 2011) because they are erupted 

and deposited during a, sometimes given or known, short period rarely lasting beyond two years. Note, the time scale matters, 

using distal (crypto)tephras with a multiple month margin for studies regarding ENSO or NAO cycles can be criticized, however, 

on the timescale discussed here a maximal error of two years, with respect to other dating methods, can be considered rather 

low. Additionally, fallout rates for tephra are relatively quick (Mills, 2000; Rose & Durant, 2009); their settling time is proven 

to be rapid (Manville and Wilson, 2004; Wiesner et al., 1995), which reduces the marine or lacustrine residence time, meaning 

there is less time to possibly modify the tephra particles (Carey, 1997). Besides, tephras are widespread and can travel over 

vast distances, especially cryptotephras (Blockley et al., 2007a; van der Bilt et al., 2017; Zielinski et al., 1997). Possible 

difficulties regarding this tephronological method are outlined in the next section. 

1. Reworking and external input is proposed as one of the main contributors to errors in the tephroch ronological method 

(Boygle 1999; Dugmore et al. 2004; Gehrels et al. 2006; Payne and Gehrels 2010). If tephrochronological layers 

are reworked by secondary processes, they would create diachronous instead of isochronous surfaces. Fluvial, rain 

flushing, aeolian reworking as well as slumping and redeposition can cause faulty age reconstructions (Manville and 

Wilson 2004; Shane et al. 2006). Cryoturbation, soil formation and bioturbation can cause the lacustrine layer cake 

to be disturbed or tephra to be concentrated into lenses (Froese et al., 2009; Sanborn et al., 2006). This can be 

due to Snow cover inclusion effects, especially when cold summers with little melt occur (Bergman et al., 2004; 

Davies et al., 2007). Indicators of reworking can be: roundness, blurry crystals or other stratigraphically cooccurring 

proxies, such as pollen, that do not fit with the reconstructed time from the tephra.  

2. Wrong age interpretation, caused by “multiple or non-unique fingerprints” due to magma variability during eruptive 

events (Brendryen et al., 2010; Shane et al., 2008). This mostly applied on difficulties regarding correlating events 

geochemically. 

3. Wrong existing frame work correlation can occur due to the lack of other stratigraphic indicators or the incompleteness 

of the tephronological record (Davies et al., 2004; Fiske et al., 2009; Newton et al., 2007). 

4. If secondary effects related to volcanic eruptions and the tephra deposition , such as diatom blooms, acidic events or 

sulphate peaks, are used as a tephra indicator instead. If these proxies are connected to the tephra, regardless the 

lag such events might have on the actual depositional event, the age reconstruction could be considered off-date 

(Lowe and Higham, 1998; de Silva and Zielinski, 1998; Traufetter et al., 2004). 
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5. Changes in tephra thickness and distribution inside the catchment can differ laterally, also in lacustrine environments, 

due to climate changes. In a detailed study from Pyne-O’donnell (2011) glacial ashes were found closer to the inlets 

than Holocene ashes, indicating a tephra sorting effect within the lake morphology. Secondary tephra deposits from 

inlets can be separated by measuring the abundance of another catchment dependent mineral, indicating external 

sediment influx. External sedimentary input also possibly contains tephra from older stratigraphic horizons. 

Besides reconstructing an age framework, tephras can also be investigated to produce an explosive volcanism record, which 

might allow for time-space relations which can be used to prevent natural hazard danger in the future. Distal studies on 

cryptotephras will contribute significantly, constructing this interhemispheric to global tephra record, since multiple eruptive 

sources can be aligned if found in the same core (Lowe et al., 1999; Molloy et al., 2009; Shane et al., 2006). Due to the 

rise in attention for cryptotephras, the geographical distributions had to be revised in many cases (Blockley et al., 2007; 

Coulter et al., 2009; Davies et al., 2008; Lowe et al., 2007; Payne et al., 2008), Broad distribution of tephras can be 

underlined by studies of modern eruptions ranging as far as ~8000 km from the source (Davies et al., 2010; Walker, 1981). 

Note that 1982 El Chichón spread out ~10,000 km from source (Zielinski et al., 1997), whereas 1883 Krakatau spread 

~12,000 km (De Silva & Zielinski, 1998). However, weather conditions in the weeks/months after the eruption may 

significantly effect distribution patterns of cryptotephras (Davies et al., 2010). Furthermore, Pyne-O’donnell (2011) supported 

the theory that rainfall events and sea ice cover also effects the distribution of tephras, as was observed in Finland after the 

Hekla 1947 eruption. That ice rafting can influence the distribution of marine tephras has been proven by Austin et al. (2004) 

and Shane and Froggatt (1992). Tephras have been reported that fell on the sea ice and were deposited with a decadal to 

millennial scale lag. 

Knowing the extent of volcanic ash clouds can be of basal implication for further studies regarding evolutionary patterns, as 

has been shown to be the case with the Laacher See tephra (Riede & Bazely, 2009), but also for studies regarding respiratory 

health. From studies on modern eruptions, like the Eyjafjöll eruption in 2010, an increasing amount of knowledge arises on 

the distal effects of volcanic eruption on the respiratory health of the affected people (Davies et al., 2010; Newnham et al., 

2010).  

With all of this being said it can be questioned why there is not more knowledge on tephrochronology of the arctic? This 

report tries to contribute to these questions by asking the following research questions:  

• Which ash clouds did reach Svalbard within the last 4000 years, and are there observable trends within the frequency 

of ash clouds over Svalbard?  

• Which mechanisms are responsible for these trends? Additionally this thesis aim to explore the value and validity of 

the method of simple tephra counting? 

2.0 Geographical setting  

2.1 Svalbard archipelago 

The archipelago of Svalbard consists of many islands, of which Spitsbergen, Edgeøya, Barentsøya and Nordaustlandet are the 

largest. This thesis is focused on the same coring site as used by Woelders et al. (2018) in Andsjøen Sundneset on Barentsøya. 

Other limnological studies of importance which have been used for comparison are done on the Spitsbergen island at 

Kongessvatnet (D’Andrea et al., 2012) and lake Hajeren (van der Bilt et al., 2017, 2018), and the Lomonosovfonna ice cap 

(figure 1). The Sundneset lake is situated on the southern tip of Barentsøya, and is relatively isolated from stream runoff 

inlets. Although sheet like surface runoff is probably still a main contributor to the sedimentary influx into the lake, the lack of 

main channelized inlets makes this lake unique. Aeolian transported sediments are likely one of the main contributors to the 

sedimentary influx into the lake. Furthermore, the lake is surrounded by small “Salix polaris” plants, which allow for the 

construction of an independent time scale construction by C-14 dating. The scarcity of data (especially limnological data) from 

eastern Svalbard can be explained by its inaccessibly and its geology (Woelders et al., 2018). The geology of eastern Svalbard 

consists of easily erodible sedimentary rock in which small catchment basins are rare. However, the bedrock of the catchment 

around the Sundneset lake is different and consist of intrusive dolerite material of the Diabasodden suite (Dallmann et al., 

2015). The formation of this intrusive suite is dating back to the late cretaceous high arctic large igneous activity (Senger et 
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al., 2014). Important to notice is that the dolerite is of basaltic origin and will not contaminate the collected float , containing 

the volcanic glasses.  

Climatically, the Svalbard archipelago, being located where the little oceanic heat left from the gulf stream meets co ld arctic 

waters, can be considered as an important study area for climate scientist . Consequently, during the summer, Svalbard marks 

a boundary of the major conduits of atmospheric heat and is, during warmer periods, (also in winter) more exposed to the 

distinct, jet stream related, airmass boundary (Francis & Vavrus, 2012, 2015). The connection to the Atlantic regime is 

illustrated by the agreement between the precipitation patterns in Svalbard and the trend of fluctuations in the mode of the 

North Atlantic oscillation (NAO)(Dickson et al., 2000). Svalbard is an unique area to arctic climate science, because relatively 

much is known of its climate due to its easy accessibility within the arctic region. A record of the past 100 year exists for 

Longyearbyen (Nordli et al., 2014), which shows important warming trend in climate as can be expected, given the course of 

the last decadal carbon dioxide concentrations. Furthermore, the influence of solar activity might be recognised on a decadal 

scale. An hypothesis is that this  pattern is aligning with the long term NAO changes. Several climatic studies done on ice caps 

(Divine et al., 2011; Grinsted et al., 2005) were presented as the demand for climatic understanding raised by the day. To 

understand how natural climatic rhythms function and shed their light upon Svalbard and its environmental conditions, one 

should try to get a grasp of climatic fluctuations, including a (multiple) millennial time span. In this study this is accomplished 

by working with two independent timescales based on C-14 and tephrochronology, lasting up to ±4000 cal. BP, which can 

ideally create a time frame with a decadal resolution on which climate indicators can be plotted. Major climatic events following 

volcanic events may then also be recognised, as they effect the high arctic climate.  

As suggested by D’Andrea et al. (2012), temperature reconstructions from Svalbard do not line up with reconstructions from 

the rest of the arctic. This might be due to the slower/less significant response  of the arctic region to changes in meridional 

heat flux from the gulf stream, compared to Svalbard. The same miscorrelation was found for “the little ice age”(LIA) period. 

To reflect on the disagreement between the trends indicating a rather warm LIA (D’Andrea et al., 2012; Spielhagen et al., 

2011) and a rather cold arctic LIA (Humlum et al., 2005; Kaufman et al., 2009), a longer term LOI curve can be expected 

from the Andsjøen lake.  

  

Figure 1: The geographic distribution of the studied field sites within and 
around Svalbard. Lomonosovfonna & Holtedahlfonna (Divine et al. 2011); 
Kongressvatnet (D’Andrea et al. 2012); Lake Hajeren (van der Bilt et al. 
2016, 2017); Foraminiferal records from the Fram strait (Spielhagen et al. 
2011) and Andsjøen, Sundneset (this study & Woelders et al. 2018) 

Andsjøen 
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2.2 Hypothesised tephra peaks on Svalbard (0-4000 years ago) 

For the construction of a tephrochronological framework, it is important what  tephra fall-out, from which volcanic source area, 

can be expected on Svalbard. The closest tephronological sources recorded are from Iceland , which is already quite far away. 

However, one closer volcano exists of which tephras have been found in Ireland, where they linked the MOR-T2 tephra to a 

Jan Mayen eruption. This tephra has, however, not yet been found elsewhere. Table 1 (and the connected figure 3) shows 

some estimations of distances from Sundneset. Note also that direction matters because of wind patterns transporting the 

tephra, especially when the distance to the source is higher than 1000 km (Davies et al., 2010).  

When combining the tephrostatigraphy from Europe and Greenland, since they are closest to Svalbard, an idea of which 

eruptions can be expected in the lacustrine sediments of Barentsøya can be formed. However it is noteworthy that the main 

wind direction on Svalbard can be characterised as easterly, with minor phases (related to jet fluctuations) of wind from the 

south-west (figure 2). This limits the reliability of correlating tephras based on timing without doing any further geochemical 

characterization, especially regarding tephra horizons that have yet not been correlated to a volcanic event. Since Icelandic 

volcanoes alone already produced close to 150 tephra layers in one millennium (Larsen & Eiríksson, 2008) a selection was 

made among tephra layers that were assumed as relevant. The following tephras can be expected based on their distribution 

and known literature. 

Area’s Distance from 

Sundneset (km) 

Lofoten 1100 S 

Jan Mayen 1160 SW 

NGRIP, NEEM 1500 W 

Iceland 2000 SSW 

  

GRIP, GISP2 2000 WSW 

Swedish lakes 2000 S 

UK, NL, Ireland 3000 S 

S-Alaska 4800 N 

Kamchatka 5000 NE 

Figure 2: A windrose, reflecting the bidirectional 
wind distribution around Longyearbyen, Svalbard. 

Note there is influence of valley induced wind 
direction but in general it reflects wind direction 

distribution over Svalbard 

Figure 3 & Table 1: The location of volcanic 
sources around the arctic; figure was modified 
from van der Bilt et al. 2017. Table 1 outlines 

source areas (blue & black) and catchment areas 
where tephra was found (red & pink) and gives 

an indication of the distances 
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Hekla-1947 

This tephra has been reported to the south of Iceland on ships and has mainly been observed in the Baltic states and Finland 

(Thorarinsson, 1954). Another southerly lobe existed (figure 10), based on records from three bogs in Ireland (Kirkbride & 

Dugmore, 2003; Swindles, 2006). The identification of shards from this eruption event in North-Western Canada, however, 

raises extra awareness to this study. The finding of this tephra in Yukon suggests a transpolar pathway possibly passing over 

Svalbard (Yalcin et al. 2003). 

Grímsvötn-1903 

10 Tephra particles from this eruption have been documented in Svalbard in a study of the Lomonosovfonna ice cap (figure 

10)(Isaksson et al. 2001). TiO2 concentrations are described between 2.8-3.2% with a FeOtot around 13%. Kekonen et al. 

(2005) based an age model on two other reference layers in the Svalbard ice: the Laki 1783 tephra and a radioactive layer , 

constructed with the (Nye, 1963) relation, based on the radio- activity peaks (connected to nuclear tests) that were found in 

that core, which appear in 1962-63 and 1954 (Pinglot et al., 1999). The Grímsvötn and laki tephras were stratigraphically 

aligned to these peaks, to construct an age depth model. Additionally, a north-easterly dispersal has been always been assumed 

for the tephra from this eruption as an ash cloud was also observed from a ship to the north-east of Iceland. 

Askja-1875 

Although the Askja 1875 eruption is not the largest tephra emitting event of Icelandic origin, it is unique, since it has mainly 

been described on northern locations like the Lofoten Norway and Sweden (Persson 1966, 1967; Pilcher et al., 2005; 

Wastegård and Davies, 2009). This tephra was emitted relatively fast in a matter of a few hours (Sigvaldason, 2002) making 

its proximal impact on north-eastern Icelandic communities very significant and documented (Pilcher et al., 2005). This tephra 

has a relatively high MgO and TIO2 content (Davies et al., 2007; Larsen et al., 1999).  

Laki-Grímsvötn eruptions-1783:  

Tephra from this eruption has been retrieved from the Lomonosovfonna ice cap, where the tephra was used to add proof on 

the sulphuric event that occurred in the aftermath of this eruption (Kekonen et al., 2005). The Laki-Grímsvötn eruption is 

known to have produced mayor amounts of aerosols and has therefore always been studied because of its 

continental/hemispheric climatic impact, causing large scale crop failures in Europe and health effects on Europe (Durand & 

Grattan, 1999; Grattan & Charman, 1994). So-called dry fogs and a significant cooling event, as well as a sulphuric event, 

are associated with this eruption across north western Europe including the Netherlands (Gastron, 1997), where it also 

occurred as a visible tephra horizon (Cremer et al., 2010). 

Veidivötn-1477 

The Veidivötn-1477 eruption can be considered as one of the most explosive events in Icelandic history . Tephra from this 

eruption has been found on the north Icelandic shelf (Larsen et al. 2002), central Sweden (Davies et al., 2007) and western 

Ireland (Chambers et al. 2004). Tephra from this eruption has a tholeiitic composition and originates from the Veidivötn 

fissure swarm. It is possible that this tephra reached Svalbard, since it has a relatively large north -easterly dispersal (Larsen 

et al. 2002; Davies et al. 2007). 

Jan Mayen-ca.1400 (MOR-T2 & PMG-5)  

Eruptions from mt. Beerenberg have been reported in 1732, 1818 and 1970 (Sylvester, 1975). Jan Mayen eruptions are 

proposed as a potential source for the mysterious tephra layers MOR-T2 and PMG-5 in Irish lakes (Chambers et al., 2004; 

Hall & Pilcher, 2002). Since the location of Jan Mayen is favourably close to Svalbard one should keep a close eye on  

possibilities of tephra correlation with the geochemical composition of mt. Beerenberg.  (Na2O & K2O is high). The tephra 

could easily have reached Svalbard under the influence of summertime south -westerly winds.  

Öræfajökull-1362: Svalbard 

The Öræfajökull 1362 eruption was the most voluminous Icelandic eruption of the Icelandic volcanic record (Palais et al., 

1991; Thorarinsson, 1958). Cryptotephra from this eruption has been identified at many places across Europe and was also 

found on the GRIP coring site in Greenland (Coulter et al., 2012; Pilcher et al., 1996). This makes the Öræfajökull 1362 
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tephra a useful isochronous marker across Europe. The tephra can be geochemically identified by its high Na 2O and very low 

MgO composition (Larsen et al., 1999). Its dispersal was northerly with a small southerly lobe as depicted in figure 10. 

Hekla-1158 

This VEI 4 eruption occurred just decades after the large VEI 5 Hekla-1104 eruption. Nonetheless, its composition differs 

significantly enough to be distinguished from its older twin. TiO2 concentrations are lower than the Hekla-1 and FeOtot 

concentrations are higher (Larsen et al., 1999). The Hekla 1158 eruption has a north-easterly dispersal (Thorarinsson, 1967) 

which is confirmed by the findings of this tephra in Lofoten lakes (Pilcher et al. , 2005). Tephra from a similar composition 

has also been found in Ireland (Hall and Pilcher, 2002).  

Hekla-1104 

The Hekla-1104 eruption (or Hekla-1) can be considered as a very important isochronous marker in the European 

tephrochronology  (Boygle, 1999; Chambers et al., 2004; Vorren et al., 2007). The main dispersion is northly (figure 10) 

which can be concluded from the many north Icelandic marine studies (Eiríksson et al., 2000; Kristjánsdóttir et al., 2007); 

findings in Scandinavia, Faroe islands and Svalbard (D’Andrea et al., 2012; Pilcher et al., 2005; Vorren et al., 2007; Wastegård 

et al., 2001). A southerly lobe must also have existed as suggested by findings in from Irish lakes (Chambers et al., 2004; 

Hall, 2003; Pilcher et al., 1996) The occurrence of the Hekla-1 tephra coincides with wet environments, such as western 

Norway and Ireland, suggesting a distributional relation with precipitation patterns by the time of eruption (Langdon et al., 

2003).  

Landnám tephra-875: 

The Landnám tephra is thus far recognised in the Lofoten, Swedish lakes and GRIP ice cores (Pilcher et al., 2005; Wastegård 

et al., 2003 Grönvold et al., 1995). All these areas surround the Svalbard archipelago and suggest a northerly distribution of 

this tephra. The tephra is the result of a double eruption of the Veidivötn volcanic system. Two different magma chambers 

erupted, which resulted in the production of basaltic and rhyolitic tephra components. On the Greenland ice sheet this tephra 

has been dated and correlated to sulphuric horizons (Grönvold et al., 1995; Zielinski et al., 1997) 

White river ash-AD860 

This tephra has first been described in the Sluggan Bog in Northern Ireland , where its data was defined by wiggle matching 

to AD-860 (Pilcher et al., 1995). Nowadays, the tephra is known from Northern Germany and Ireland and has been proposed 

to be found on Svalbard (Plunkett and Pilcher, 2018), where its source was proposed to be the Alaskan Churchill mountain. 

The White river ash had a northern lobe, which might be represented in Kongressvatnet, Svalbard, (D’Andrea et al., 2012). It 

seems to be likely that this ash also made it into Europe, with new insights suggesting an easterly lobe extending all the way 

into Poland and Scandinavia (Watson et al., 2017). Besides, tephra from an older mt. Churchill eruption, named the Hall 

tephra, has been found in Northern Ireland, interfingering with the Hekla-4 Tephra.  

Kamchatkan tephras: SH3 (650 AD) & KS1-200 AD 

Since the first finding of Kamchatkan tephra on the Svalbard archipelago  dates back to approximately 7000 cal. yr. BP (van 

der Bilt et al., 2017), a new option for interhemispheric/transarctic tephra correlation opens up. Earlier ashes have been 

correlated to Kamchatkan sources in Ireland, where a small number of tephras correlated positively with geochemistry of the 

Shiveluch produced tephra, as described by Ponomareva et al. (2015, 2017). Tephra from eruptions that can be expected in 

Svalbards record are the Ksudach 1, Shiveluch 2 and 3 as defined by Braitseva et al. (1997).  

Hekla-3 (1087-1006 BC) 

The Hekla 3 tephra is much discussed, because its hypothesized climatic impact in the 1100’s BC (Baillie & Munro, 1988). 

The tephra is not much studied yet, since its known distribution is limited to Northern Germany, Scandinavia and Northern 

Icelandic shelf (Van Bogaard and Schmincke, 2002; Dugmore et al., 1995; Plunkett, 2006). This may indicate a two lobe 

distribution of ash clouds: a northern lobe and a south-eastern lobe. This northern lobe may have reached Svalbard, but since 

no tephra from this period of time has yet been found in the arctic region (Pilcher et al., 2005), no conclusions were made. 

Typical about this tephra is that its magnitude is not well known and it is one of the few tephras that is virtually absent in the 

Faroe and British isles. 
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3.0 Methods 

Samples were taken in the Andsjøen lake on the island of Barentsøya, Svalbard (figure 1) during the 2015 SEES.NL expedition. 

The sedimentary record is a composite which consist of 5 different core  segments. Two of the cores were gravity cores (SN-

I, SN-II) which were taken at two locations some 5 meter apart, in the lake. At the location of Gravity Core SN-I,  two 

subsequent piston cores (SN-III and SN-IV) and one gauge SN-V have been obtained. The gravity cores and gauge core were 

described and sampled in the field. Every centimeter was sampled and taken to the lab for geo/eco(chemical) analysis. The 

piston cores remained closed in the field and were only opened in the laboratory. The lake was chosen because of its 

accessibility - given that the SEES.NL expedition went alongside Sundneset - and depth, as a 3+ meter water depth was 

expected to be sufficient for liquid water to remain at the bottom of the lake during winter and for the sediment not to be 

cryoturbated. Another criteria was elevation, meaning that the lake is not connected to the sea and is slowly being elevated 

due to glacio-isostatic rebound, but on the other hand is not too high to be directly influenced by a glaciers or a glacial rivers. 

The occurrence of the Salix polaris around the lake, appeared to be of crucial importance to obtain a good chronology fo r the 

cores. Salix leaves were abundantly present in the cores and sampled for C-14 dating to construct an age depth model. In 

this study one main dating method was consciously used (C-14) to construct and check the reliability of another dating 

method. However because the age estimations used for tephra preparation were based on C -14 dates the two cannot be 

considered as independent proxies. In this way tephrochronological ages may visibly confirm or contrast with the retrieved C-

14 dates. If age reconstructions turn out to align well then one might be more confident on the composite LOI graph , which 

shows the first results of this research project, as presented on the “EGU general assembly” (Hoek et al., 2016). This results 

in the possibility of aligning trends between LOI and tephra layers, as was also done by Gehrels et al. (2006, 2008) and 

Payne and Gehrels (2010)  

To identify tephra layers within the Sundneset sediments, a certain interval of sediments must be captured and analyzed in 

the laboratory. Known methods to differentiate between silicic fractions: diatomic, phytolithic, volcanic (crypto, micro and 

macro tephra) and quarzitic are described by Blockley et al. (2005), Lowe (2011), Plunkett and Pilcher (2018). 

The Sampled sediments were handled and prepared according to the following procedure: 

1. Small Salix polaris leaves were taken for AMS C-14 analysis 

2. Samples of 1cc were dried  at 150 and ashed on 550 degrees to produce a LOI & moisture profile 
3. From the C-14 dates, a sedimentation rate could be determined and a continuous estimation of age depth correlation 

was constructed (figure 4). 

4. Known eruptions were correlated to depth, after which the ashed samples were taken for further analysis 

5. Samples were washed with HCL to dissolve the CaCO3 components and remove some of the iron coating on the 

grains. 

6. Sodium dithionite was added to dissolve the remains of the iron coating that was still on the samples after the 

oxidation of iron during ashing 

7. Samples were sieved through a 30 μm mesh. The residue was kept, since it is reported that the size of tephra shards 

mostly ranges between 10-100 μm (Wastegård, 2004) 

8. The residue was further sieved through a 8 μm sieve to still have access to the 8 – 30 μm fractions. Smaller (<8 

μm) siliceous fractions were washed away. 

9. Sodium poly-tungstate SPT liquid was used to separate the quartzic and rhyolitic & felsic components at a density of. 

2.5 kg/l  

10. The samples were centrifuged for 10 min on 2500 rpm to separate the floating fraction from the sinking fraction 

properly. This step was done 3 times over to make sure all the float was captured . 

11. The SPT fluid was recycled by adding distilled water, reducing the concentration of the heavy liquid and centrifuging 

on 2500 rpm for 10 m three times. 

12. Samples were prepared for microscopic analysis on glass slides (with glycerine and parafine). 

Simple counting using a a Leitz polarizing microscope with a  500x magnification was used as a method to quantify the tephra 

inside every centimeter of sample (see below).  
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To identify and characterize tephra particles in the given sample, glass shard morphology and isotropy was analyzed. Assuming  

that the glass composition has a direct relation with the magma composition , one could expect tephra particles to have a 

nearly unique fingerprint. However, for some Icelandic tephras this is disproven, since the corresponding volcanic events have 

near similar fingerprints (Larsen & Eiríksson, 2008). Typical characteristics are: 

1. Disappear under microscopic cross-polarizing light (Lowe, 2011) 

2. Tephras may look stretched and are most often glassy. 

3. Particles may contain a bubble wall 

4. Particles can be vesicular 

5. The angularity of the shards can, if not modified by secondary processes, give an indication of the eruption 

characteristic (Hamann et al., 2010) 

Quantifying the amount of tephra inside a 1 cm sample was rather difficult since there was a lot of floating target fraction 

captured. Therefore, a fractional estimation was made that one slide contains a representative pallet of particles. Since the 

goal of this pilot study is restricted to roughly locate tephra horizons, for some sampled cm where tephra was expected, a 

microscope slide was made which was scanned through for tephra particles. The total amount of tephra must give an indication 

whether certain peaks might be present in the record, accordingly to the aim of this research. This would help further research 

to be done on this core more directly. Tephra can be picked at the approximate horizons from the untreated core material and 

used for XRF or laser-ablation geochemical analysis. Besides rational counting, a sense of the tephra particle density was 

made by counting in representing circular area’s on the thin section.  At these area’s diatoms were also counted by assuming 

that a diatom bloom will arise from the silicic input of a tephra peak (Hamme et al., 2010; Harper & Mc Leod, 1986; Merkt 

et al., 1993). A more or less random selection of 2 to 4 representative areas per thin -section were scanned on diatom 

(fragments). This allows us to use a secondary indirect proxy on finding the stratigraphic position of tephra peaks.   
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4.0 Results 

4.1 Constructing an age depth model 

The age depth model for the Sundneset composite core log was made via an extrapolation of the C-14 dates that were 

retained from Salix polaris leaves in the core. Deposition rate was determined by:  

𝑆𝑒𝑑𝑖𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 (
𝑐𝑚

𝑦𝑟
) = 𝑑𝑧

𝑑𝑡⁄ =  
𝑑2 − 𝑑1

𝐶14
𝑑2 − 𝐶14

𝑑1
⁄  

Following up on this is the time captured in one cm of deposited sediment whi ch is accordingly; (𝑆𝑒𝑑𝑖𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒)−1. An 

age depth correlation was constructed (Figure 4). The graph shows a three stage model of the sedimentation in the lake. The 

constructed composite is not linear, indicating differences over time within depositional rate. Therefore, the core was subdivided 

into 3 depositional stages. Stage I represents rather slow and continuous deposition, stage II has a more variable and faster 

deposition rate and stage III has a high deposition rate. Furthermore, the age depth model visualizes that within a taken cored 

section the depth correlation is not linear, except SN-V, which seems to be linear. The other cores, however, visualise that the 

depositional stages are not related to the cored sections, which underlines the quality of the composite. A similar age depth 

relation (Figure 4, orange) was made for the core taken at Kongressvatnet (West-Spitsbergen)(D’Andrea et al., 2012). 
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Figure 5: The combined, tephrochonological and C-14 date, age depth model is plotted with the grey line. The moisture content of 
the composite is plotted with the dotted line, data points are given with the + signs.  

Figure 4: An age depth model, based on C-14 dates retained from samples of salix polaris leaves, from the Andsjoen composite is 
presented in grey. The age depth model from Kongressvatnet (figure 1) is presented in organe. Furthermore the cores are assigned 
with SN-I, III, IV and V and the stage model is outlined by three blue lines reflecting the general trend.  
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A two stage linear diagram was constructed. Although the time depth correlation at Kongressvatnet is a bit younger and was 

cored less deep, the trend visualises the same as found in Andsjøen. The top 15 cm of the Andsjøen composite is made up 

by sediment obtained with a gravity corer, which was fairly saturated with water. 

To get a sense of the correspondence between moisture and sedimentation rate, the two are plotted in figure 5. Even though 

the moisture content and the depth to age model show the similar trends over time, It is important to keep in mind that 

moisture content is also dependent on sediment type and organic content.  The start of the distinct rise in moisture around 

the 1400 AD does not coincide with the lowering of the sedimentation rate, which already starts around 400 AD. Another 

deficit between the two parameters occurs around 2000 BC where the moisture content remains relatively high and the 

sedimentation rate is also already quite high. Note the inverse relation between sedimentation rate and time captured in a unit 

of depth. The overall trend, however, outlines the same level of decline. The latter is supported by the data presented in figure 

6 where the moisture content is plotted against the invert of the sedimentation rate. The general trend in decline of moisture 

is visualized by a trendline with the apparent formulae denoted in the graph. Even though the linear relation between these 

parameters is not fitting perfectly, it displays that they are closely related.  

4.2 Quantifying: a tephra count & tephra layers 

Throughout this thesis an introduction based on literature was given, after which a methodology was described. The same 

structural set up helped finding tephra peaks. Most of the core was not prepared into microscope slides, since there was a 

limitation of time and thus a careful selection of sample depths was made, based on the C-14 dated age model. The likelihood 

of tephra peaks existing in cored sections was taken into account when selecting samples for further analysis in thin -sections. 

Subsequently, these thin sections were scanned for tephra particles, as was also done in the first written-section of Pilcher et 

al. (2005). Multiple tephra horizons were found. Shards of different sizes, but always larger than 30  μm, were recorded. The 

tephra was qualified as tephra solely by looking at typical tephra characteristics, the relief, brightness, sharpness and fading 

with cross-directional light. A shard graph was constructed (figure 8a) to visualize the tephra peaks. Visible tephra was found 

throughout almost all of the scanned sections.  

An indication of diatom/diatom fragment density was produced by counting the amount of diatoms respectively to the shard 

concentration. The results of the found diatom peaks support the earlier suggested link with effective silicic production and 

verify the existence of certain tephra peaks. (in blue, figure 8a) 

Correlating tephras to the known tephrochronology 

Between, 314-324 cm, expected to be late medieval times: Tephra was found throughout all of the sampled section, although 

not always in large quantities. The expected peaks were the Hekla-1510, Veidivotn-1477, MOR-T2 Jan Mayen related tephra 

Figure 6: Moisture content is plotted to the inverse of the sedimentation rate; Altought the scatter is high there is a linear correl ation extractable 
meaning that the two parameters are closely related and so moisture content is responsible for certain trends in the age depth model. Scattered points 

that are out of line, highlighted in red, may represent failure/uncertain areas within the age depth model.  
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and at the very bottom the 1362 Öræfajökull tephra (revised dispersal maps, figure 10). The distribution of three peaks was 

found with two peaks near the top and bottom being the most pronounced in tephra count. Both peaks are as well linked to 

distinct diatom assemblage peaks. The most likely eruptions related are suggested to be the Veidivotn-1477, MOR-T2 

(uncertain) and 1362 Öræfajökull. 

Between, 330-334 cm, around 1100 AD: There were two main tephra horizons visible in this section although the existence 

of the second peak is not certain and there might have been some external influence on the thin-section, devaluating the 

count result. The main peak is expected to represent tephra from the VEI 5 Hekla-1104 eruption, since this was found in the 

Arctic and north Atlantic region before (D’Andrea et al. , 2012; Pilcher et al., 2005; Wastegård et al., 2001; Vorren et al., 

2007)(dispersal map, figure 10). The possible second peak may correspond with the smaller VEI 4 Hekla -1158 eruption. 

Between, 335-349 cm, expected to be around 1000-500 AD: No distinct tephra horizons were encountered. However, clear 

evidence of tephra particles was found throughout all sections with the main peaks at depths 340-341 and 344-345. These 

peaks may represent tephra from the same unknown horizons found at Borge (Lofoten, Norway). Tephra from these depths 

was, in Svalbard, suggested to correlate to the Sn-1 tephra (D’Andrea et al., 2012). other options might be the Landnám 

tephra (Wastegård et al., 2003; Grönvold et al., 1995) or the White river ash (Plunkett and Pilcher, 2018). Geochemical 

microprobe analysis is needed to correlate tephras to eruptions and get clarity on this discussion.  

Between, 371-376 cm, expected to be around 1000-1200 BC: one distinct tephra peak was found with other thin sections 

containing significantly less tephra as the peak. The peak is hypothesised to represent the Hekla-3 tephra. This tephra was 

not found in the Lofoten but a northerly dispersal is suggested by findings in Scandinavia and the northern Iceland shelf 

(Dugmore et al., 1995; Plunkett,  2006). The connection to climate forcing may be observable in figure 15 where a decline 

in LOI follows up on the Hekla-3 tephra peak. 

The main peaks were thus found at certain depths. A judgement of value was added based on tephra peak quality : 

1. SN-III, 315-316: 21 shards,  Veidivotn 1477  having a relatively high chance of finding a tephra peak 

2. SN-III, 319-320: 9 shards,  MOR-T2   having a relatively low chance of finding a tephra peak 

3. SN-III, 322-323: 14 shards,  Öræfajökull 1362  having a relatively high chance of finding a tephra peak 

4. SN-III, 330-331: 27 shards, Hekla-1158  having a relatively low chance of finding a tephra peak 

5. SN-III, 332-333: 77 shards,  Hekla-1104  having a relatively high chance of finding a tephra peak 

6. SN-III, 340-341: 14 shards,  Landnam/White river/Sn-1  having a relatively low chance of finding a tephra peak 

7. SN-III, 344-345: 20+ shards,  650 AD unknown  having a relatively high chance of finding a tephra peak 

8. SN-IV, 374-375: 47 shards,  Hekla-3 tephra  having a relatively high chance of finding a tephra peak 
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The amount of tephra shards was also plotted 

against the C-14 reconstructed age (figure 8b). 

This visualizes the proposed position in time of 

certain tephra peak horizons. The most likely 

correlation to certain tephras was made, based on 

these proposed ages. After correlation a tephra 

related time-depth model was setup (figure 7). 

The peaks that seemed to be coinciding with key 

events in the European tephrochronological 

record such as, the Hekla-1 and Hekla-3 

eruptions and the 875AD Landnám tephra which 

might also be the AD860 tephra (Plunkett and 

Pilcher, 2018), were used for this age-depth 

model. However, since the correlation is only 

based on shard counts, there are large 

uncertainties in the constructed age model, 

Nonetheless, the age-depth model can be used to 

test on the reliability of the suggested tephra 

peaks. Future research and particularly 

geochemical microprobe analysis must prove the 

existence of these exact tephra horizons at these 

depths, but is seems likely based on their 

expected isochronous position. Moisture and loss 

of ignition were measured visualizing a trend from 

marine to lacustrine to contaminated within the 

sediment (figures 5 and 15). The loss of ignition 

profile serves as an ecological record representing 

the length of the growth season and therefore 

climate. The three stage loss of ignition model 

that was found for this core, does coincide with 

the timing of the three stages of the age-depth 

model described above. 

  

Figure 8 a and b (left): Tephra peak distribution with depth 
(left) and with C-14 based time (right). Diatom 
concentration is given in blue in the left figure, Note that at 
depths 340-350 this diatom density was not accurately 
sampled. The peak correlation depth to time is given with 
the dotted lines. 
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5.0 Discussion 

In the previous section a suggested tephrochronology for the Svalbard archipelago of the last 4000 years  has been outlined. 

Here a comparison will be made to previous literature and an reflection will be made on the obtained results. The contribution 

of this study to current discussions regarding arctic tephras and climate reconstruction will be addressed. The combined age 

depth model will be introduced. The amount of time captured in a centimetre is shown to be dependent on the moisture 

content of the sampled centimetre (figure 5). A lower moisture content may have caused a small depth deficit between the 

results from Kongressvatnet and Andsjøen.  

5.1 Matching E-Svalbard tephras to mainland relatives 

With the suggested higher ash cloud frequency over north western Europe (Watson et al. 2017) and almost all the tephra 

reported and linked to events (Plunkett and Pilcher, 2018) it is likely that , also in Svalbards sediments, a diversity of tephra 

has been recorded. Its geographical position may not be as perfect as Ireland, which collects the most of the volcanic 

cryptotephra (Lawson et al., 2012) but, its position as being downwind of Iceland during the summer months allows for  at 

least a seasonal deposition. A seasonal exposure to Icelandic sources is also the case for Scandinavian catchments , where 

mainly the autumn and winter months are dominated by steady westerlies  (Lacasse, 2001). Additionally, Svalbard has a closer 

position to trans-arctic sources like Kamchatka and Alaska range. The distance (table 1) is however still very considerable and 

thus dependent on the altitude of the ash clouds and wind patterns across the arctic. The fact that trans-hemispheric tephra 

can be found in Europe enlightens new opportunities for constructing a more detailed tephra record.  Tephra count results 

from Pilcher et al. (2005) were modified into graphs, with depth and time, which are supplied in figure 13a and 14a.  

Peaks that were found in lake Andsjøen around 1500-1400 AD seem not to be corresponding with the Norwegian findings. 

The peaks of the Hekla-1158 and Hekla-1104 are coinciding (in time and depth) with the Borge tephra record. Other 

tephra peaks that are coinciding are the AD-875 and AD-650 tephra peak layers. The correlation of the Öræfajökull, 

however, is not straightforward since it is not clearly and separately identified within the Borge section. In the Andsjøen core 

the Öræfajökull tephra horizon is suggested to be located around the 322-323 depth (see results section). This 

interpretation may be wrong because underlying the suggested peak an uninvestigated section starts. The peak thus may lie 

deeper then suggested. Translating the tephras found by D’Andrea et al. (2012) to the Sundneset age model as is done in 
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figure 9(black arrows) puts question marks to the suggested correlation to the Sn -1 tephra. The proposed correlation to the 

AD-860 tephra and white river ash, as marked by a light grey arrow in figure 9, makes more sense (Plunkett and Pilcher, 

2018; Watson et al. 2016). New dispersal patterns of certain eruptions that have been suggested based on this study, are 

depicted in figure 10. 

 

5.2 Analysis of single tephra shards 

Most of the tephra was found within a certain elevated layer in the thin sections since it has (in general) a high relief. (figure 

11) Most of the tephra was subsequently found on the outer ring of the thin sections (figure 11). However it did not appear 

to be the very edge of the thin section that hosted the most of the tephra either. Tephra was most depleted in the middle and 

on the edge. All different sizes of tephra were counted, if noticed, while scanning through the slides. The size differed a lot, 

some tephra was larger than other tephra as is clear from compari son of figure 12a and b. Some tephra contained clearly 

formed air pockets. However, not all tephra particles contained air pockets as is visible from figure 12 and in SEM-pictures of 

tephra captured from the more recent eruption of the Eyjafjöll in 2010 (Davies et al., 2010). 

 

  

Figure 12: Pictures taken from samples of tephra retrieved from the Andsjøen sediments, Svalbard. Pictures 
are taken through a 500x Leitz lens on a mineralogical microscope 

Figure 10: Tephra distribution 
implications of the new findings on 
Svalbard. This figure was modified 
from Wastegård and Davies, 2009. 

New tephra findings on Svalbard with 
suggested dispersal patterns are given 

in figures a and b. 

= Outer ring 

= Normal grain 

= Tephra grain 

Schematic of thin-section Figure 11: A schematic thin-section, 
representing the most commonly 

observed position of tephra respecively 
to other particles. 
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5.3 Reliability of the use of tephra for a chronological framework 

As is the case for most of temporal records, dating is uncertain. The amount of time captured in a sampled centimeter of 

Andsjøen lake sediment contains multiple years, ranging from 2 years at the top to 130 years at the bottom. As a result the 

resolution of the record diminishes with depth. However, this is a problem that occurs to all dating methods relying on sampled 

core material, and is still one of the main problems within quaternary climate reconstruction (Pilcher et al. , 2005). Other 

encountered problems are reworking of the sediment and the meteorological control on the dispersal patterns of tephra. The 

exact dating of certain tephras from specific eruptions is sometimes considered uncertain. The resolution of the defined dates 

of most tephras, however, are/is in the sense of months or maximum +/- 1 year. The resolution deficit of the core does exceed 

the resolution deficit of the dated tephra which makes the latter uncertainty inappropriate.  

Site specific processes may have been of large influence on the timing of the tephra peaks in the Andsjøen sediments. Studies 

(Pyne-O’Donnell et al., 2008) have shown that tephra deposition in lacustrine environments is highly sensitive to reworking, 

bioturbation or downward migration (Beierle & Bond, 2002; Davies et al., 2007). Another uncertainty in the implication of 

lacustrine arctic tephra might be the effect of snow and ice, favouring aeolian redeposition before ending up in the lake. Tephra 

may end up being scatted around in wind determined patches (Davies et al. 2007).  

Distal cryptotephrochronolgy is limited to certain, only of the largest category, eruptions (Larsen & Eiríksson, 2008). Whereas 

other erupted tephras, from less energetic eruptions, may be more limited to weather conditions (Dugmore et al., 1996; 

Thorarinsson, 1981). Tephra horizons were suggested for the Andsjøen lake that favour a basaltic composition, like the 

candidate Veidivötn-1477 tephra at depth 315-316. If this was proven to be truly a tephra from the Veidivötn-1477 eruption 

it would be extra unique. That is, tephra has a strong bias to rhyolitic composition with respect to basaltic. Possible explanations 

for the scarcity of basaltic tephra at more distal sites may be (Larsen and Eiríksson , 2008):  

1. The difference in specific weight 

2. The most commonly known preparation method favours rhyolitic extraction 

3. The degradation rate within certain high organic environments like peat bogs 

4. The difference in eruption type between basaltic eruptions and rhyolitic eruptions. Rhyolitic eruptions can be 

considered more violent and explosive, correlating to a fast eruptive events. Basaltic eruptions on the other hand are 

lasting longer and therefore have a lower intensity.  

Visual inspection has proven not to be a good method to record tephra. An example from the north Icelandic shelf (Eiríksson 

et al., 2004; Søndergaard, 2005) shows that 27 layers out of 34 have yet not been identified. In proximal areas however 

micro- and macroscopic tephra characteristics, such as sharpness and brightness, are more valid and can be used to distinguish 

tephras (Larsen and Eiríksson, 2008). In this study the careful results retrieved from the tephra counting match quite well 

with the constructed age depth model from C-14 dates, (figure 7). Furthermore, it seems to be possible to correlate the 

tephra peaks to peaks found in other areas. The LOI curve, based on a combined C-14 and tephrochronological age model, 

seems to be portraying logical and correct trends in climate related biological production. Additionally, although Icelandic 

eruptions provide a good maker framework for the northwest European tephra record, not all eruptions have characteristic 

geochemical fingerprints on which they can be distinguished from others (Larsen et al., 1999). Magma composition is 

sometimes constant over time, as is the case for the Veidivötn, Grímsvötn, Hekla, Öræfajökull, Askja Snaefellsjökull. However , 

it can occur that older tephra is re-ejected into the atmosphere during the most violent first phase of the eruption. Indicating 

that geochemical analysis may even add in extra uncertainty with regard to linking tephra deposits to certain eruptions.  
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5.4 Climate and tephra 

The similarity within peak distribution, according to age, between the Lofoten (Pilcher et al., 2005) and Svalbard (this research; 

van der Bilt et al., 2016; D’Andrea et al., 2012) reflects the climatic affinity between the two regions. As has been described 

before, the climatic control on tephra distribution is high, which immediately raises the question whether tephra distribution 

can be used as a climate indicator. The likelihood of certain wind patterns changes when climate changes. Since warmer 

hemispheric periods favour an enhanced warming of the arctic, hence with sea ice albedo feedback, seems to favour a wavier 

lower stratospheric jet (Cohen et al., 2014; Francis and Vavrus, 2012, 2015; Jaiser et al., 2012; Tang et al., 2013, 2014). 

With a decreasing meridional gradient so-called ‘Rossby waves’ in the jet stream can advect more warmth towards the arctic 

(Liu et al., 2012). Exactly these high atmospheric variations cause a more diverse wind direction in Svalbard. It is highly likely 

that more south-westerly winds come with warmer periods and more easterly winds come with colder periods. It can thus be 

expected that Icelandic tephra preservation rate is highest during warmer periods.  

When looking at figure 15, where the loss of ignition profile of the Andsjøen lake is outlined,  two warmer phases can be 

recognized, based on high organic contents. The first, before and around the 1000 AD warm period (Kaufman et al., 2009), 

corresponding with the increased summer temperatures on Svalbard in Kongressvatnet (D’Andrea et al. , 2012) and offshore 

Svalbard (Spielhagen et al., 2011). The second warm period is the recent historical industrial times. Winter temperatures on 

the Lomonovsfonna ice cap do not show such trends (Divine et al. , 2011), a gradual decline until the 19 th century can here 

be observed. LOI values were found to be relatively high between 500-1000 AD followed by a period of lower LOI that was 

associated with glaciation and low temperatures around 1250 AD (Baranowski & Karlén, 1976; Werner, 1993). The drop 

within LOI around the 18th century can be associated with the little ice age (figure 15). Whether the temperature is the leading 

parameter in this drop remains a question. It has been suggested that winter precipitation caused the glacial advance 

associated with the little ice age period on Svalbard (D’Andrea et al. , 2012; Spielhagen et al., 2011). Since a correlation was 
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proved between NAO and winter precipitation over Svalbard and Scandinavia (Dickson et al., 2000; Nesje et al., 2008). The 

high summer temperatures may correlate with the high amount of tephra found within the 500-1100 AD period. The winds 

may have been longer blowing from the southwest causing a longer growth season (LOI) and more ash depositional potential. 

Furthermore, high ash preservation on Svalbard can be expected 1550-1700 and 1900-recent, as these periods also mark 

high LOI periods. 

5.5 Future research 

The tephras found and discussed in this study show an example on the difficulty of correlating arctic tephras. Yet, constructing 

a tephrochronology of the arctic is of great importance especially when one would like to deal with the underutilization of 

tephrochronology over large areas (Machida, 2002). Especially in the organic depleted arctic, where radiocarbon dating is not  

always possible, tephrochronology can provide a valuable age-depth model. From Kekonen et al. (2005) it is clear that 

sulphate horizons may lag tephra layers by several months. Similar connections to other proxies have been proven with 

diatoms (Hamme et al., 2010; Harper & Mc Leod, 1986; Merkt et al., 1993) and Lycopodium spores (Gehrels et al., 2006). 

Gehrels et al. 2006 added Lycopodium spores to tephra samples, it turned out that the number of shards that occurred per 

100 spores was representative, so the relation between spores and tephra  was defined as: 

𝑠ℎ𝑎𝑟𝑑𝑠 𝑝𝑒𝑟 𝑚𝑖𝑙𝑖𝑔𝑟𝑎𝑚 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 =
𝑎𝑑𝑑𝑒𝑑 𝑙𝑦𝑐𝑜𝑝𝑜𝑑𝑖𝑢𝑚 ∙ 𝑠ℎ𝑎𝑟𝑑 𝑐𝑜𝑢𝑛𝑡

𝑙𝑦𝑐𝑜𝑝𝑜𝑑𝑖𝑢𝑚 𝑐𝑜𝑢𝑛𝑡 ∙ 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡
 (Gehrels et al., 2006). In this study a diatom bloom was 

used as an independent record, indicating tephra peak horizons. It will be such secondary indicators that can contribute to the 

quality of determinations of tephra peaks in the future. Since the arctic is a crucial geographical region for climate research 

where climate changes are always amplified (arctic amplification, Cohen et al. 2014 and references therein), it is no surprise 

that current demand for isochronous markers contributing to a regional chronology is high. Therefore , an aim should be to 

reconstruct a circum-arctic tephrochronological records using systematic name coding for eruptive events that does sufficient 

justice to existing nomenclatures of tephra in Europe, Asia and North America.  Furthermore, a full gechemically supported 

analysis from tephra layers on multiple locations in Svalbard  should give a boost to constructing this tephrochronological 

record.  
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6.0 Conclusions 

In this research a possible tephrochronology, of the last 4000 years, for the Svalbard archipelago is outlined, opening up the 

construction of a trans-arctic tephrochronology. Certain tephra peaks were implied, based on shard counts and diatom bloom 

peaks. The Hekla 1104 tephra peak has most certainly been found. Other tephras like: Öraefajökull-1362, Landnám tephra, 

Veidivötn-1477 have been suggested as possible candidates. Tephra origin from Icelandic systems have been assumed based 

on the similarities between the produced data and findings from the Lofoten area (figure 13 and 14). Based on the age depth 

model it is likely that the third tephra found at Kongressvatnet is part of the AD 860 tephra and, therefore, can be correlated 

to the white river ash (Watson et al., 2017). The presented data should, however, be used with caution. Tephra 

characterization is not certain due to the lack of geochemical analysis and arctic lacustrine uncertainties, such as: reworking, 

aeolian redistribution on ice and snow and downward migration . However, when comparing the two constructed age depth 

models, only a slight difference is recognized. It can be concluded that, even without employing an expensive and time 

consuming tephra characterization, there is still a lot that can be learned from volcanic glass occurrences in sediment layers. 

Counting of tephra shards can thus be considered as a valid implication to get a sense of the broad distribution of tephra 

within a cored section. Implications have been suggested regarding the effects of weather patterns on tephra distribution. It 

is likely that tephra dispersal patterns are influenced by large scale climate variations. Clear evidence is however not yet 

provided, also within the Andsjøen composite there is little evidence for such relations. With further implication of trans -arctic 

tephrochronology the Svalbard archipelago will become an important linking region bridging the in formation from Asia, Europe 

and North-America. A first pillar to start building on this tephrostratigraphy may be dispensed from the three lakes that are 

already cored. If one aims to construct a proper foundation for further use of tephrochronology,  close cooperation and data 

sharing would be necessary. A complete arctic tephrostratigraphy is still missing and logically more data would be needed, 

also, to start using the tephrochronology as a primary Holocene dating method in Svalbard.   
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