
Utrecht University

Institute for Theoretical Physics

Master’s thesis

Quantum quenches in Luttinger
liquids

Author:
Dimitrios Loupas

Supervisor:
Dr. Dirk Schuricht

July 4, 2021





Abstract

It is common in physics to treat 1D system as a toy model in order to test
a physical theory because it is easier to work with low dimensional systems
and find analytical solutions. One naively will say that one-dimensional
models serve as toy models and they do not apply in the real world. But,
one-dimensional systems, e.g quantum wires, exists in nature and have quite
different physics from higher dimensional systems. It is remarkable that, in
1D, an interacting fermionic problem can be turned to a free bosonic theory.
An interesting question to ask is how the system evolves after a change in the
systems internal parameters. This is called a quantum quench. In this thesis
we investigate quantum quenches in the Luttinger liquid model, which is a 1D
model and serves as the analog of the Fermi liquid theory in one dimension.
More specifically, we study the kinetic energy, when we periodically drive the
internal parameters of the system, and the two point correlation function,
after a periodic quench of finite duration.
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Chapter 1

Introduction

In physics it is very common to start analyzing a problem in low dimensions
because it is easier to solve it. One naively will say that one-dimensional
models serve as toy models and they do not apply in the real world. As we
will see in the next section one-dimensional systems exist and also have very
interesting physics [1], which differs from higher dimensional systems.

1.1 Are there 1D systems?

The arrival of Quantum mechanics [2] changed the way that we see the
world. New phenomena, that no one could imagine, was necessary in order
to describe processes that happen at the microscopic level. Quantization of
energy levels was crucial to describe the behaviour of the hydrogen atom and
the black body radiation spectrum. Using quantum mechanics the realization
of a 1D systems is possible. For simplicity we will consider a free particle
inside a 2D box of length L and width d, with L� d.

Figure 1.1: Box of length L and width d.
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The energy of the particle depends on the two wavenumbers kx, ky

E(kx, ky) =
~2k2

x

2m
+

~2k2
y

2m
(1.1)

Because we confine the particle inside a box the wavefunction has to be zero
in the walls, this yields the quantization of the two wavenumbers

kx =
π

L
nx and ky =

π

d
ny (1.2)

where nx, ny ∈ Z+ and the energy takes the form

E(nx, ny) =
~2π2n2

x

2mL2
+

~2π2n2
y

2md2
(1.3)

Using L� d we see that the states in the x-direction have a smaller energy
difference than those in the y-direction and we can classify the energies in
terms of the values ny. Hence, ny = 1 we have

E(nx, 1) =
~2π2n2

x

2mL2
+

~2π2

2md2
(1.4)

for ny = 2

E(nx, 2) =
~2π2n2

x

2mL2
+

~2π24

2md2
(1.5)

and so on. Plotting the energy as a function of nx

Figure 1.2: Energy eigenstates labeled from the quantum number ny. Eigen-
states are only for positive nx.
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where we have different eigenstates for every ny (bands). Now if we include
interactions or temprature we can see that if the distance between the mini-
bands is larger than the temperature or the interaction energy then only one
miniband can be excited (ny = 1). The transverse degrees of freedom are
thus frozen and only kx matters. The system is a one-dimensional quantum
system. One-dimensional system have different physics from higher dimen-
sional systems. We discuss this briefly in the next section.

1.2 Why 1D is special?

To see why 1D is special we will consider interacting fermions. We start with
free fermions in dimensions d > 1, because it is a very well known problem.
From quantum statistical mechanics we know that non-interacting electrons
obey the Fermi-Dirac distribution. At zero temperature the occupation num-
ber nk, for the individual momentum eigenstates is a step function. All states
up to the Fermi energy εF are occupied. The occupation number nk has a
discontinuity of amplitude 1 at the Fermi surface.

Figure 1.3: Fermi-Dirac distribution for free fermions and T = 0.

Excitations of the system consist of adding particles with a well defined
momentum k, having a well defined energy ε(k). The lifetime of the excited
particles are infinite since they are eigenstates of the Hamiltonian. It is
common to define the energy of a particle relative to the chemical potential
µ, as ξ(k) = ε(k) − µ. The excitations are characterized by the spectral
function A(k, ω), which is the probability to find a state with frequency ω
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and momentum k, it is a delta function

A(k, ω) = δ(ω − ξ(k)) (1.6)

Figure 1.4: Spectral function A(k, ω) for free fermions.

This is a consequence of the trivial time evolution eiξ(k)t which does not decay
in time since ξ(k) is an eigen-energy of the system. We would like to know
what happens when we turn on interactions between the fermions. This is
described by Landau’s Fermi liquid theory [3] which states that the properties
of the systems remain similar to those of the free fermions. Instead of free
fermions in Fermi liquid theory we have quasiparticles, which can be thought
of as fermions dressed with the interactions. We mention here briefly two
important differences with the free fermions. First, the occupation nk still
has a discontinuity at the Fermi surface k = kF but with amplitude smaller
than 1.
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Figure 1.5: Fermi-Dirac distribution for Fermi liquid theory.

Second, the spectral function in this case is not a delta function but a
Lorentzian of width 1/τk, where the width becomes smaller for excitations
near the Fermi surface. This means that quasiparticles have a finite life-
time and as we go closer to the Fermi surface they become well defined (the
lifetime is very large).

Figure 1.6: Spectral function A(k, ω) for Fermi liquid theory. The closer to
the Fermi surface the more narrow the Lorentzian becomes

Thus, singe particle excitations near the Fermi surface are still possible when
the interactions are turned on. It can be shown that Fermi liquid theory
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breaks down in 1D using perturbation theory [4], but we can also have a
physical understanding why fails without any calculations. In one dimension
a fermion that tries to propagate has to ”push” its neighbors due to the
interactions. Hence, no individual motion is possible and any individual
excitation has to become a collective one in one dimension. This behaviour
shows that the properties of one dimensional systems differ from those of
higher dimensions. Excitations in one dimensional systems are bosonic in
character and this can be used to map an interacting fermionic system to a
free bosonic theory. The analog of the Fermi liquid theory in one dimension
is the Luttinger liquid theory which is described in this thesis.

1.3 Thesis overview

Interaction in many-body quantum systems is one of the most important
problems in physics. Nowdays, we can implement and simulate the dy-
namics of quantum many-body systems with a high degree of controllability
on the system parameters even under nonequilibrium conditions. Utra-cold
atomic systems can be used for experimental realizations of interacting many-
body quantum system out of equilibrium, such as the Hubbard model [5].
There are a variety of non equilibrium driving protocols. In this thesis we
will consider finite duration quantum quenches and periodic driving in the
Luttinger-Tomonaga model. The term quantum quench was first introduced
for the following procedure: Initially, we prepare a quantum system in some
state |ψ0〉, for example the ground state of a Hamiltonian H0. Then, we
suddenly change one of the systems parameters so that the time evolution
of the system is determined by the new Hamiltonian H, and we study the
dynamics. Sudden quenches have been studied in great detail [6],[7],[8]. The
case of a periodic driving can be viewed as a finite duration quantum quench
where the time of quenching goes to infinity. The outline of this thesis is as
follows. In Chapter 2 we introduce the idea of a quantum quench in more
detail giving two simple examples. In Chapter 3 we present the paramet-
ric driven oscillator and study the stability of such a system. In Chapter 4
we define the Tomonaga-Luttinger model and see how a fermionic problem
can be mapped onto a bosonic one. In Chapter 5, we tackle the problem of
Luttinger liquids out of equilibrium. First, we give the general method of
how to describe a system under a finite duration quantum quench and then
we apply it to calculate the kinetic energy under a periodic driving and the
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fermionc Green’s function under a finite duration periodic quench. Finally,
in Chapter 6 conclude with some brief discussion of our results.
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Chapter 2

Quantum quenches

In this chapter we introduce the idea of a quantum quench. We first describe
what a quantum quench is and we present a simple example for the harmonic
oscillator. After, we consider a quench in a many-particle quantum system in
order to investigate the interesting phenomena that occur. Finally we briefly
discuss various quench protocols.

2.1 What is a quantum quench?

Consider an isolated many-particle quantum system described by a Hamil-
tonian H(g) where g some parameter of the system that can be tuned, such
as an interaction strength in the Hubbard model or external magnetic-field
strength in the transverse-field Ising model. We prepare the system initially
in the ground state |Ψ0〉 of the Hamiltonian H(g0). At t = 0 we suddenly
change the system parameter to new a value g1. The next figure show a
schematic overview of the procedure described.

8



Figure 2.1: Sudden change of the parameter g at t = 0.

This procedure is called quantum quench. The ground state of the pre-quench
Hamiltonian |Ψ0〉 is in general not an eigenstate of the new Hamiltonian, and
it will have a finite overlap with all the new eigenstates making the subsequent
quantum evolution in general not trivial. After the quench the evolution of
the system is governed by the new Hamiltonian H(g1) and the state of the
system at times t > 0 is given by

|Ψ(t)〉 = e−iH(g1)t |Ψ0〉 (2.1)

where we used ~ = 1. We can write the state at time t using the complete
eigenstates of the new Hamiltonian H(g1)

H(g1) |n〉 = En |n〉 , En ≥ E0 (2.2)

as
|Ψ(t)〉 =

∑
n

e−iEnt 〈n|Ψ0〉 |n〉 (2.3)
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Figure 2.2: Hilbert space before and after the quantum quench. The initial
state |Ψ0〉 is not an eigenstate of the new Hamiltonian, H(g1). The system
explores high-energy modes in the Hilbert space and not just states in the
vicinity of the ground state

After the quench we would like to know how observables evovle with time.
Suppose we want to know the value of a certain observable, say O, at time
t. This is given by the expected value

〈Ψ(t)| O |Ψ(t)〉 (2.4)

and using equation (2.3) we obtain

〈Ψ(t)| O |Ψ(t)〉 =
∑
n,m

〈Ψ0|n〉 〈n| O |m〉 〈m|Ψ0〉 e−i(Em−En)t (2.5)

From the above expectation value the exponential term signals quantum
interference effects [9] in the dynamics of the system after the quench. More-
over, we can see that if the initial state |Ψ0〉 is not an eigenstate of the new
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Hamiltonian, H(g1), there is a finite probability for the system to occupy an
excited state of the new Hamiltonian (figure 2.2). Hence, the system explores
high-energy modes in the Hilbert space and not just states in the vicinity
of the ground state [10]. In general, the quantum quench leads to violent
dynamics at short time scales and usually to some kind of steady state at
long times. The nature of the latter strongly depends on the nature of the
Hamiltonian itself, and whether or not it is integrable. We will not go in
detail about this, the interested reader can have a look at [10], [11], and [12].
Finally it should be mentioned that we can start from an initial thermal state
[13], at temperature T , which is described from the density matrix

ρ0 ≡ ρ(t = 0) =
e−H(g0)/kT

Z0

(2.6)

where Z0 = Tr[e−H(g0)/kT ] is the partition function, and then probe how the
system evolves after the quench.

2.2 Quantum quench in Simple Harmonic os-

cillator

In this section we give a simple example in order to illustrate the idea of
a quantum quench. We study the simple harmonic oscillator [2],[14] whose
frequency is quenched from ω0 to ω at t = 0. The hamiltonian of the oscillator
before the quench is

H0 =
1

2
p2 +

1

2
ω2

0x
2 (2.7)

whereas after performing the quench it is

H =
1

2
p2 +

1

2
ω2x2 =

(
a†a+

1

2

)
(2.8)

Using the annihilation and creation operators a and a† the energy eigenstates
are denoted with |n〉 and the eigenvalues have the simple form En = (n+ 1

2
)ω,

where n is the number of quanta in the oscillator. We consider that the
system initially is in the ground state |Ψ0〉 of H0 such that a0 |Ψ0〉 ≡ 0, with
a0 the annihilation operator of the pre-quenched Hamiltonian. At time t the
time evolved state is simply
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|Ψ(t)〉 = e−iHt |Ψ0〉 (2.9)

By expanding the state |Ψ0〉 in energy eigenstate, |n〉, of the Hamiltonian H
and using e−iHt |n〉 = e−i(n+1/2)ωt |n〉 we get

|Ψ(t)〉 =
∑
n

e−i(n+1/2)ωt 〈n|Ψ0〉 |n〉 (2.10)

From the above state in can be seen that the evolution of the system is
periodic (quantum recurrence [15]) by doing the substitution t → t + T ,
where T = 2π

ω

|Ψ(t+ T )〉 =
∑
n

e−i(n+1/2)ωte−i(n+1/2)2π 〈n|Ψ0〉 |n〉

=
∑
n

e−i(n+1/2)ωte−i2πne−iπ 〈n|Ψ0〉 |n〉

= − |Ψ(t)〉

(2.11)

Now we would like to calculate various observables in the state |Ψ(t)〉. In
quantum mechanics we are often interested in correlation functions. For
those calculations it is useful to consider the Heisenberg picture of quantum
mechanics, where the operators involve in time instead of states. We calculate
the two point correlation function of the position operator x, which is given
by

Cx(t1, t2) = 〈Ψ0| T {x(t1)x(t2)} |Ψ0〉 (2.12)

and T denotes time ordering. It means that operators are ordered according
to history with the later “times” to the left

T {x(t1)x(t2)} = Θ(t1 − t2)x(t1)x(t2) + Θ(t2 − t1)x(t2)x(t1)

with Θ(t) being the Heaviside theta function.

The time evolution of x and p is given by the Heisenberg equation of motion

dx(t)

dt
= i[H, x(t)],

dp(t)

dt
= i[H, p(t)] (2.13)
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because H(t) = U(t)†HU(t) = H. Computing the commutators using the
canonical commutation relation [x, p] = i

[H, x(t)] =
1

2
[p(t)2, x(t)] =

1

2

(
p(t)[p(t), x(t)] + [p(t), x(t)]p(t)

)
= −ip(t)

[H, p(t)] =
ω2

2
[x(t)2, p(t)] =

ω

2

(
x(t)[x(t), p(t)] + [x(t), p(t)]x(t)

)
= iω2xp(t)

we arrive at the two coupled differential equations for x and p

dx(t)

dt
= p(t),

dp(t)

dt
= −ω2x(t)

which yields the eom for x

d2x(t)

dt2
+ ω2x(t) = 0 (2.14)

with solution

x(t) = x(0) cosωt+ p(0)
sinωt

ω
(2.15)

We therefore have for the correlation function

〈Ψ0|x(t1)x(t2) |Ψ0〉 = 〈Ψ0|
(
x(0) cosωt1 + p(0)

sinωt1
ω

)
·(

x(0) cosωt2 + p(0)
sinωt2
ω

)
|Ψ0〉 =

= 〈Ψ0|x(0)2 |Ψ0〉 cosωt1 cosωt2

+ 〈Ψ0| p(0)2 |Ψ0〉
sinωt1 sinωt2

ω2

+ 〈Ψ0|x(0)p(0) |Ψ0〉 cosωt1
sinωt2
ω

+ 〈Ψ0| p(0)x(0) |Ψ0〉 cosωt2
sinωt1
ω

In order to find an expression for the correlation function we have to calculate
the four amplitudes. This we will do it via the creation and annihilation
operators, a†0 a0, which are related with x and p via

x =

√
1

2ω0

(
a0 + a†0

)
, p = i

√
ω0

2

(
a†0 − a0

)
13



So,

〈Ψ0|x(0)2 |Ψ0〉 =
1

2ω0

〈Ψ0| (a0 + a†0)2 |Ψ0〉

=
1

2ω0

〈Ψ0| (a0a0 + a0a
†
0 + a†0a0 + a†0a

†
0) |Ψ0〉

=
1

2ω0

〈Ψ0| p(0)2 |Ψ0〉 = −ω0

2
〈Ψ0| (a†0 − a0)2 |Ψ0〉

= −ω0

2
〈Ψ0| (a†0a

†
0 − a

†
0a0 − a0a

†
0 + a0a0) |Ψ0〉

=
ω0

2

〈Ψ0|x(0)p(0) |Ψ0〉 = i
1

2
〈Ψ0| (a0 + a†0)(a†0 − a0) |Ψ0〉

= i
1

2
〈Ψ0| (a0a

†
0 − a0a0 + a†0a

†
0 − a

†
0a0) |Ψ0〉

= i
1

2

〈Ψ0| p(0)x(0) |Ψ0〉 = i
1

2
〈Ψ0| (a†0 − a0)(a0 + a†0) |Ψ0〉

= i
1

2
〈Ψ0| (a†0a0 + a†0a

†
0 − a0a0 − a0a

†
0) |Ψ0〉

= −i1
2

where we used that a0 |Ψ0〉 ≡ 0, 〈Ψ0| a†0a
†
0 |Ψ0〉 = 0 and 〈Ψ0| a0a

†
0 |Ψ0〉 = 1.

The correlation function is simplified to

〈Ψ0|x(t1)x(t2) |Ψ0〉 =
1

2ω0

cosωt1 cosωt2 +
ω0

2

sinωt1 sinωt2
ω2

+
i

2
cosωt1

sinωt2
ω

− i

2
cosωt2

sinωt1
ω

=
1

2ω0

cosωt1 cosωt2 +
ω0

2

sinωt1 sinωt2
ω2

− i

2

sin (t1 − t2)

ω

14



by algebraic manipulations the above relation can be cast to the following
form

〈Ψ0|x(t1)x(t2) |Ψ0〉 =
(ω − ω0)2

4ω2ω0

cosω(t1 − t2) +
ω2 − ω2

0

4ω2ω0

cosω(t1 + t2)

+
1

2ω
e−iω(t1−t2)

For the calculation of 〈Ψ0|x(t2)x(t1) |Ψ0〉 we note that under the interchange
t1 ↔ t2 the term of the exponential picks a minus sign. Hence the full
correlation function will be

Cx(t1, t2) =
(ω − ω0)2

4ω2ω0

cosω(t1 − t2) +
ω2 − ω2

0

4ω2ω0

cosω(t1 + t2) +
1

2ω
e−iω|t1−t2|

(2.16)
The last term is the known result of the two point correlation function of the
harmonic oscillator without quench. For ω = ω0 only the last term survives.
The other two terms arise due to the quench. It can be seen that the existence
of the term that depends on (t1 +t2) breaks time translation invariance. This
can be interpret as the system ”remembers” that a quench happened in the
past.

2.3 Quantum quench in linearly coupled os-

cillators

In order to have an idea about quantum quenches in many body quantum
systems we present an example of a quantum quench in a chain of linearly
coupled harmonic oscillators. This system can be described by a general
Hamiltonian of the form

H =
1

2

[∑
i

π2
i +

∑
j

K(i− j)(φi − φj)2

]
(2.17)

where πi and φi are the momentum and position operators for the i-th oscil-
lator. Using the Fourier transform of φi and πi the above Hamiltonian can
become diagonal in the momentum space having the general form

H =
∑
k

1

2
πkπ−k +

1

2
ω2
kφkφ−k (2.18)

15



which is a sum of independent harmonic oscillators (one oscillator for each
mode k). Moreover, we consider the continuum limit, where we replace sums
with integrals, and also a relativistic dispersion relation

ωk = k2 +m2 (2.19)

where we use (c = 1). As we done in the previous section we can perform
a quantum quench in this system. We consider that the system is isolated
and is at the ground state |Ψ0〉. At t = 0 we perform a quantum quench,
by suddenly changing the mass from m0 to m. Again we want to study the
two-point correlation function given by

Cφ(t1, t2, r1 − r2) = 〈Ψ0| T {φ(r1, t1)φ(r2, t2)} |Ψ0〉 (2.20)

where T denotes time ordering as in the previous section and because the
theory is free, due to translational invariance the two point function depends
on r1 − r2. The Hamiltonian (2.18) is a sum of independent harmonic oscil-
lators, one for each mode k. Hence, we can use the result from the previous
section and say that each momentum k oscillator has a two-point function
of the form

Cφ(t1, t2; k) =
(ωk − ω0k)

2

4ω2
kω0k

cosωk(t1 − t2) +
ω2
k − ω2

0k

4ω2
kω0k

cosωk(t1 + t2)

+
1

2ωk
e−iωk|t1−t2|

(2.21)

with ωk =
√
k2 +m2 and ω0k =

√
k2 +m2

0. Thus the computation of the
correlation function amounts to a Fourier transform with respect to k

Cφ(t1, t2, r) =

∫
dk

2π
eikrCφ(t1, t2; k) (2.22)

To simplify our analysis we study the equal time correlation function and
consider m0 →∞. Then, equation (2.21) takes the form

Cφ(t; k) =
m0

4ω2
k

(1− cos 2ωkt) (2.23)

and (2.22)

Cφ(t, r) =

∫
dk

2π
eikr

m0

4ω2
k

(1− cos 2ωkt) (2.24)
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We solve the above integral numerically in order to see the behaviour of the
correlation function. In the figure below is the solution of Cφ(t, r) at fixed r,
for m = r = 1

Figure 2.3: Solution of Cφ(t, r) at r = 1 for m = 1.

Moreover, we sketch the full solution of the correlation function for 0 ≤ r ≤
10 and 0 ≤ t ≤ 10 as can be seen in the next figure.
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Figure 2.4: Contour plot of Cφ(t, r) for m = 1. The red line r = 2t cor-
responds to the horizon. The colored values correspond to the value of the
correlation between the origin and a given point at distance r at time t.

where the red line corresponds to r = 2t. From the solution we can see
some interesting features. It is clear from figure 2.4 that there is a horizon
at r = 2t. By taking a point at a distance r we have to wait a time t = r/2
in order to become correlated with the origin. Before this time there is no
correlation between them. This feature, which is a direct consequence of
the causality principle, is the light cone effect where first was introduced by
Calabrese and Cardy [7], [6]. The physical interpretation goes as follows: at
time t = 0, the initial state |Ψ0〉 is a superposition of the energy eigenstates
of the new Hamiltonian after the quench. Hence, the initial stete acts as

18



a source of quasi-particles. Those quasi-particles are entangled and they
are generated at every point in space with equal and opposite momentum
moving ballistically. If the quasi-particle dispersion relation is E(p), they
move with velocity v(p) = dE/dp. Thus, if a pair of quasi-particle produced
in position x, then after a time t the right moving quasi-particle will be at
position x1 = x + v(p)t and the other left moving at x2 = x − v(p)t, and
the total distance between them will be |x1 − x2| = 2v(p)t. Because those
quasi-particles are entangled the two point x1 and x2 will become correlated
at time t. The above procedure is represented in the following figure.

Figure 2.5: Schematic view of correlations induced by quasi-paricles. At
t = 0 we have creation of quasi-particle at every point moving with equal and
opposite momentum. After some time t, a pair of quasi-particles, created at a
point x, arrive at the points x1 and x2 and the two points become correlated.

2.4 Quench protocols

So far we mentioned only a sudden change in the systems parameter, but in
general we can have a quantum quench that has some finite duration time,
say τ . Then, the evolution of the system in time breaks into two parts.
First, we determine the evolution of the system during the quench, t < τ
and then the evolution after the quench, t > τ . This kind of problem we will
consider in Chapter 5. Depending on how the systems parameter changes
during the quench, the system will have different time evolution. This is
called a quench protocol. There are various studied protocols in different
models [16], the simplest one being the linear one [17]. In the figure below
we can see different kinds of quench protocols of finite duration τ , over which
the parameter g varies.
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Figure 2.6: Different quench protocols for time duration τ . The solid blue
line corresponds to a linear quench, the black line to cosine quench while the
red to periodic quench.

Moreover, we can have a protocol of adiabatic quench, where the quench
time τ → ∞. In this case the state of the system after the quench is again
the ground state of the new Hamiltonian. In this thesis we will investigate
periodic quenches of finite duration time τ and also we will examine the case
where we periodically drive the system without stopping, meaning that there
is no quench.
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Chapter 3

Parametric oscillator

In this chapter we introduce the parametric oscillator [18]. Essentially a
parametric oscillator is an oscillator where an intrinsic parameter is time-
dependent. This is important because later we will consider a system where
we periodically drive it and the same equation of motion will arise.

3.1 Mathieu equation

To illustrate the idea of parametric resonance we consider a one dimensional
pendulum, without damping, of length l with point mass m in a gravitational
field g. The equation of motion of the pendulum, for small oscillations around
the origin (θ � 1), is

d2θ

dt2
+
g

l
θ = 0 (3.1)

Now imagine that we sinusoidally oscillate vertically the suspension point of
the pendulum such that y0(t) = −A cos (Ωt), with A being the amplitude,
Ω the driving frequency and y0 denotes the position of the suspension point
(figure 3.1).
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Figure 3.1: Pendulum with oscillating suspension point.

Using Langrangian formalism we can derive the equation of motion of this
system. Performing our analysis in the x− y plane, the position of the mass
m, at time t, is given by:

x(t) = l sin θ(t), y(t) = y0(t)− l cos θ(t)

and the corresponding velocities are:

ẋ(t) = lθ̇ cos θ, ẏ(t) = ẏ0(t) + lθ̇ sin θ

The Lagrangian of the system is

L = T − V =
1

2
m(ẋ2 + ẏ2)−mgy

=
1

2
m
(
l2θ̇2 cos2 θ + (ẏ0 + lθ̇ sin θ)2

)
−mgy0 +mlg cos θ

=
ml2θ̇2

2
+mlθ̇ẏ0 sin θ +mlg cos θ +

mẏ2
0

2
−mgy0

(3.2)

and for the equation of motion we use Euler-Lagrange equation

∂L

∂θ
− d

dt

(
∂L

∂θ̇

)
= 0 (3.3)

with
∂L

∂θ
= mlθ̇ẏ0 cos θ −mlg sin θ,

∂L

∂θ̇
= ml2θ̇ +mlẏ0 sin θ
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d

dt

(
∂L

∂θ̇

)
= ml2θ̈ +mlÿ0 sin θ +mlẏ0θ̇ cos θ

From (3.3) we get

θ̈ +

(
ÿ0 + g

l

)
sin θ = 0 (3.4)

By considering small oscillations near θ = 0 we can linearize the above equa-
tion using sin θ ≈ θ, thus

θ̈ +

(
ÿ0 + g

l

)
θ = 0 (3.5)

substituting ÿ0 = AΩ2 cos (Ωt) we find

θ̈ + ω2
0[1 + h cos (Ωt)]θ = 0 (3.6)

with ω2
0 = g/l and h = A

g
Ω2. If we define g(t) = ÿ0 + g we see that equa-

tion (3.5) is the same as (3.1) but with a time-dependent gravitational field.
Hence, the problem that we have considered is equivalent to have the pendu-
lum in a time-varying gravitational field. This is called a ”parametric” pendu-
lum because the motion depends on a time-dependent parameter. Equation
(3.6) describes a driven harmonic oscillator but the driving force depends on
the amplitude θ and is called Matheiu equation. Moreover, the driving force
has a period given by T = 2π

Ω
whereas the natural period of the oscillator is

T0 = 2π
ω0

. An interesting question to ask is about the stability of this system,
this will be investigated in the last section of this chapter.

Another useful form of the above equation can be obtained by changing
the time variable to τ = Ωt

2
in order to make the equation dimensionless.

With this transformation we have

τ =
Ωt

2
→ dτ =

Ω

2
dt

Ω2

4
θ̈ +

g + AΩ2 cos (2τ)

l
θ = 0

and by defining two new parameters ε and h as

ε =

(
2ω0

Ω

)2

, h =
AΩ2

g
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we finally obtain,
θ̈ + ε[1 + h cos (2τ)]θ = 0 (3.7)

To investigate the stability of this system, we would like to know the form
of the solutions it has. This is done in the next section where we consider
Floquet theory [19].

3.2 Brief introduction to Floquet theory

We consider a first-order linear ordinary differential equation having periodic
coefficient, which has the general form

θ̇(t) = A(t)θ(t) (3.8)

where A is periodic, A(t+ T ) = A(t). We will make use of the following two
observations:

• The coefficients are periodic, with period T , so if θ(t) is a solution of
the differential equation so is θ(t+ T )

• The differential equation is linear and second order, so any solution
θ(t) can be written as a liner combination of two linearly independent
solutions θ1(t) and θ2(t):

θ(t) = Aθ1(t) +Bθ2(t) (3.9)

where A, B are determined from the initial conditions.

From periodicity, θ1(t + T ) and θ2(t + T ) are also solutions which we can
write them in terms of θ1(t) as and θ2(t)

θ1(t+ T ) = αθ1(t) + βθ2(t), θ2(t+ T ) = γθ1(t) + δθ2(t)

Hence, from (3.9) we have

θ(t+ T ) = Aθ1(t+ T ) +Bθ2(t+ T )⇒
θ(t+ T ) = A(αθ1(t) + βθ2(t)) +B(γθ1(t) + δθ2(t))⇒
θ(t+ T ) = (Aα +Bγ)θ1(t) + (Aβ +Bδ)θ2(t)⇒
θ(t+ T ) = A′θ1(t) +B′θ2(t)

(3.10)
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where [
A′

B′

]
=

[
α γ
β δ

] [
A
B

]
Choosing the vector

[
A
B

]
to be an eigenvector of the 2 × 2 matrix with

eigenvalue λ, then A′ = λA and B′ = λB and

θ(t+ T ) = λθ(t) (3.11)

we observe that θ(t) is periodic with a scale factor λ. Depending on the
magnitude of λ the solution may be stable or unstable. For stable solution
we must have |λ| < 1, whereas for unstable |λ| > 1. Introducing

µ =
ln |λ|
T
→ λ = eµT

then for all t, θ(t) takes the form

θ(t) = eµTφ(t)

where φ(t) is a periodic function φ(t + T ) = φ(t) and stability depends on
the sign of µ. Thus we found that the solutions of Mathieu equation have
the form of an exponential factor multiplied with a periodic function.

3.3 Stability of the parametric pendulum

We now determine the conditions for parametric resonance to occur. The
Mathieu equation is

θ̈ + ω2
0[1 + h cos (Ωt)]θ = 0 (3.12)

We take the driving frequency, Ω, to be close to the natural frequency of the
oscillator Ω = 2ω0 + ε, where ε � ω0, and we assume that h � 1. Then we
write

θ̈ + ω2
0[1 + h cos (2ω0 + ε)t]θ = 0 (3.13)

and we seek a solution of the form

θ(t) = a(t) cos

[(
ω0 +

1

2
ε

)
t

]
+ b(t) sin

[(
ω0 +

1

2
ε

)
t

]
(3.14)
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where a(t) and b(t) are functions of time which they change slowly in com-
parison with the trigonometric functions. The stability of the solution will
depend on whether the functions a(t) and b(t) grow or decay exponentially.
We proceed by substituting equation (3.14) in (3.13) and we keep terms linear
in h and ε.

θ̈ =ä(t) cos

[(
ω0 +

1

2
ε

)
t

]
− 2ȧ(t)

(
ω0 +

1

2
ε

)
sin

[(
ω0 +

1

2
ε

)
t

]
− a(t)

(
ω0 +

1

2
ε

)2

cos

[(
ω0 +

1

2
ε

)
t

]
+ b̈(t) sin

[(
ω0 +

1

2
ε

)
t

]
+ 2ḃ(t)

(
ω0 +

1

2
ε

)
cos

[(
ω0 +

1

2
ε

)
t

]
− b(t)

(
ω0 +

1

2
ε

)2

sin

[(
ω0 +

1

2
ε

)
t

]
neglecting ε2 terms and also dropping the ä(t) and b̈(t) terms, because those
functions are slowly varying, we arrive at

θ̈ =− 2ȧ(t)

(
ω0 +

1

2
ε

)
sin

[(
ω0 +

1

2
ε

)
t

]
− a(t)

(
ω2

0 + ω0ε
)

cos

[(
ω0 +

1

2
ε

)
t

]
+ 2ḃ(t)

(
ω0 +

1

2
ε

)
cos

[(
ω0 +

1

2
ε

)
t

]
− b(t)

(
ω2

0 + ω0ε
)

sin

[(
ω0 +

1

2
ε

)
t

]
The above expression must be equal with

−ω2
0[1 +h cos [(2ω0 + ε) t]]

[
a(t) cos

[(
ω0 +

1

2
ε

)
t

]
+ b(t) sin

[(
ω0 +

1

2
ε

)
t

]]
using the trigonometric identities

cos a cos b =
1

2
[cos (a+ b)+cos (a− b)], sin a sin b =

1

2
[sin (a+ b)+sin (a− b)]

we write

cos

(
ω0 +

1

2
ε

)
cos (2ω0 + ε) =

1

2
cos

[
3

(
ω0 +

1

2
ε

)
t

]
+

1

2
cos

[(
ω0 +

1

2
ε

)
t

]
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and a similar expression fo the sin. The term with frequency 3
(
ω0 + 1

2
ε
)
t is

higher order with respect to h so we drop it. Hence we have

θ̈ = −2 ˙a(t)

(
ω0 +

1

2
ε

)
sin

[(
ω0 +

1

2
ε

)
t

]
− a(t)

(
ω2

0 + ω0ε
)

cos

[(
ω0 +

1

2
ε

)
t

]
+ 2 ˙b(t)

(
ω0 +

1

2
ε

)
cos

[(
ω0 +

1

2
ε

)
t

]
− b(t)

(
ω2

0 + ω0ε
)

sin

[(
ω0 +

1

2
ε

)
t

]
= −ω2

0a(t) cos

[(
ω0 +

1

2
ε

)
t

]
− ω2

0b(t) sin

[(
ω0 +

1

2
ε

)
t

]
− ω2

0

1

2
ha(t) cos

[(
ω0 +

1

2
ε

)
t

]
+ ω2

0

1

2
hb(t) sin

[(
ω0 +

1

2
ε

)
t

]
canceling the zero order terms and collecting the terms sin

(
ω0 + 1

2
ε
)
t and

cos
(
ω0 + 1

2
ε
)
t we get(

−2ȧ+ bε+
1

2
hω0b

)
ω0 sin

(
ω0 +

1

2
ε

)
+

(
2ḃ− bε+

1

2
hω0b

)
ω0 cos

(
ω0 +

1

2
ε

)
= 0

For this expression to be valid for all t, the coefficients of both cos and sin
must equal zero, thus

−2ȧ+ bε+
1

2
hω0b = 0

2ḃ− bε+
1

2
hω0a = 0

(3.15)

which a system of first order differential equations. We want solutions of the
form a(t) = aeµt and a(t) = beµt and putting them in (3.15)

µa+
1

2
b

(
ε+

1

2
hω0

)
= 0

1

2
a

(
ε− 1

2
hω0

)
− µb = 0
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Which can be written in matrix form as

Ax = 0 (3.16)

with

A =

[
µ 1

2

(
ε+ 1

2
hω0

)
1
2

(
ε− 1

2
hω0

)
−µ

]
x =

[
a
b

]
In order to have a solution the determinant of the matrix A must be zero, so

det(A) = 0⇒ µ2 =
1

4

[(
1

2
hω0

)2

− ε2
]

To have instability µ must be real and positive, because then the function
a(t) and b(t) grow exponentially. Consequently this will occur when

−1

2
hω0 < ε <

1

2
hω0 (3.17)

We deduce that a resonance occurs provided that the driving frequency is
sufficiently close to twice the natural frequency with the range being pro-
portional to the natural frequency itself. For larger amplitudes, the range of
frequencies that we can have resonance grows. This features are summarized
in the next phase diagram.
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Figure 3.2: Phase diagram for parametric resonance. In the diagram are
shown the regions where the oscillator becomes unstable.
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Chapter 4

Luttinger liquids

In this chapter we discuss Luttinger liquids. First, we introduce the Tomon-
aga model for interacting fermions on a ring and then we move to Luttinger-
Tomonaga model. The main result of this chapter is that a fermionic inter-
acting problem can be mapped to a bosonic one. This is important because
we can express fermionic field operators in terms of bosonic operators and
calculate correlation functions. We present the main features of the model
by following [20]. More on Luttinger liquids can be found on [1], [21]. In our
analysis we use ~ = 1.

4.1 Tomonaga model

Tomonaga [22] studied spinless fermions on a ring. He considered that the
fermions are non-relativistic and worked in the high density limit, where the
spatial range of the two-body interaction is much larger than the interparticle
distance. The Hamiltonian of interacting fermions is given by

Ĥ = T̂ + V̂ =
N∑
i=1

p̂2
i

2m
+

1

2

∑
i 6=j

V (x̂i − x̂j) (4.1)

and in second quantization [23], using position representation, takes the form

H =

∫
dxψ̂†(x)

(
− 1

2m

∂2

∂x2

)
ψ̂(x)

+
1

2

∫ L/2

−L/2
dx

∫ L/2

−L/2
dx′ψ̂†(x)ψ̂†(x′)V (x− x′)ψ̂(x′)ψ̂(x)

(4.2)
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where ψ̂(x) and ψ̂†(x) are field operators, which destroy and create a particle
at position x respectively and satisfy the canonical anticommutation relations

{ψ̂(x), ψ̂(x′)} = 0, {ψ̂†(x), ψ̂†(x′)} = 0, {ψ̂(x), ψ̂†(x′)} = δ(x− x′) (4.3)

for x, y ∈ [−L/2, L/2]. Using the Fourier transform of the field ψ̂(x) in the
momentum basis

ψ̂(x) =
1√
L

∑
n

eiknxĉn (4.4)

with kn being quantized, due to the periodic boundary conditions, and equal
to kn = 2πn/L with n ∈ Z, ĉn is the annihilation operator in momentum
space and using a similar expression for ψ̂†(x) we can express the Hamiltonian
in the momentum representation. The operators ĉn, ĉ†n obey the canonical
anticommutation relations

{ĉm, ĉn} = 0, {ĉ†m, ĉ†n} = 0, {ĉm, ĉ†n} = δm,n (4.5)

Next we expand the potential V (x− x′) in Fourier series

V (x− x′) =
1

L

∑
n

eikn(x−x′)v(kn) (4.6)

with the inverse being

v(kn) =

∫ L/2

−L/2
V (x)e−iknxdx (4.7)

If V (0) exist, we can write V̂ in terms of the particle density operator defined
as

ρ̂(x) =
N∑
i=1

δ(x− x̂i) = ψ̂†(x)ψ̂(x) (4.8)

where x̂i is the position operator of the i-th particle. Then, from (4.3) we
have

{ψ̂(x), ψ̂(x′)} = 0⇒ ψ̂(x)ψ̂(x′) = ψ̂(x′)ψ̂(x)

{ψ̂†(x), ψ̂†(x′)} = 0⇒ ψ̂†(x)ψ̂†(x′) = ψ̂†(x′)ψ̂†(x)

{ψ̂(x), ψ̂†(x′)} = δ(x− x′)⇒ ψ̂†(x′)ψ̂(x) = ψ̂(x)ψ̂†(x′)− δ(x− x′)
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and V̂ can be written as

V̂ =
1

2

∫ L/2

−L/2
dx

∫ L/2

−L/2
dx′ψ̂†(x)ψ̂†(x′)V (x− x′)ψ̂(x′)ψ̂(x)

=
1

2

∫ L/2

−L/2
dx

∫ L/2

−L/2
dx′V (x− x′)ψ̂†(x)ψ̂†(x′)ψ̂(x)ψ̂(x′)

=
1

2

∫ L/2

−L/2
dx

∫ L/2

−L/2
dx′V (x− x′)ψ̂†(x)ψ̂(x)ψ̂†(x′)ψ̂(x′)

− 1

2

∫ L/2

−L/2
dx

∫ L/2

−L/2
dx′V (x− x′)ψ̂†(x)δ(x− x′)ψ̂(x′)

Hence,

V̂ =
1

2

∫ L/2

−L/2
dx

∫ L/2

−L/2
dx′V (x− x′)ρ̂(x)ρ̂(x′)− 1

2
V (0)N (4.9)

where N ≡
∫ L/2
−L/2 dxρ̂(x) is the particle number operator. The Fourier de-

composition of density operators is

ρ̂(x) =
1

L

∑
n

ρ̂ne
iknx (4.10)

with inverse

ρ̂n =

∫ L/2

−L/2
dxρ̂(x)e−iknx (4.11)

We can get an expression of ρ̂n from ρ̂(x) = ψ̂†(x)ψ̂(x) using (4.4) as follows

ψ̂†(x)ψ̂(x) =
1

L

∑
n,m

eix(km−kn)ĉ†nĉm

Hence,

ρ̂l =
1

L

∫ L/2

−L/2
dx
∑
n,m

eix(km−kn)ĉ†nĉme
−iklx

=
1

L

∑
n,m

∫ L/2

−L/2
dxeix(km−kn−kl)ĉ†nĉm

=
∑
n,m

δm,n+lĉ
†
nĉm =

∑
n

ĉ†nĉn+l
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After relabelling indices,

ρ̂n =
∑
m

ĉ†mĉm+n (4.12)

where we used ∫ L/2

−L/2
dxeix(km−kn−kl) = Lδm,n+l (4.13)

Moreover, it is easy to show that the following commutation relation holds

[ρ̂n, ρ̂m] = 0 (4.14)

The operator (4.12) given an n, destroys a particle from the state m+n and
create it in the state m, meaning that creates particle-hole pairs (figure 4.1).

Figure 4.1: Schematic view of particle-hole excitations.

For n = 0 it counts the total number of particles in the system. Now we can
rewrite the interaction V̂ in terms of ρ̂n. By substitution of (4.10) in (4.9)
and using (4.13) we obtain

V̂ =
1

2

1

L

∑
n

v(kn)ρ̂nρ̂−n −
1

2
V (0)N (4.15)

V (x) being real implies

V (x) = V (x)∗ ⇒ v(kn) = v(−kn) (4.16)

thus we have, by splitting the summations in (4.15)

V̂ =
1

2

1

L

∑
n>0

v(kn)ρ̂nρ̂−n +
1

2

1

L

∑
n<0

v(kn)ρ̂nρ̂−n +
1

2

1

L
v(0)ρ̂0ρ̂0 −

1

2
V (0)N

(4.17)
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Relabelling the second term n→ −n and with the help of (4.16) and (4.14)
becomes equal with the first term

1

2

1

L

∑
n>0

v(−kn)ρ̂−nρ̂n =
1

2

1

L

∑
n>0

v(kn)ρ̂nρ̂−n

so,

V̂ =
1

L

∑
n>0

v(kn)ρ̂nρ̂−n +
1

2L
v(0)N 2 − 1

2
V (0)N (4.18)

We consider a momentum cut-off kc, where above it the Fourier transform
v(k), of the two-body potential V (x), decays exponentially. In figure 4.2
there are three examples of possible potentials v(k)

vbox(k) =

{
v for |k| ≤ kc

0 for |k| > kc
, vgauss(k) = ve−(k/kc)2/2 , vexp(k) = ve−|k|/kc

Figure 4.2: Example of potentials v(k) with v = 1.

By doing this essentially we allow only low-energy interactions an thus we
consider only the low-energy properties of the system. We can now use first
order perturbation theory [2] in order to find an approximate expression for
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the ground state of the interacting system. This will be helpful to understand
the physics. The ground state of N (odd) non-interacting fermions on a ring
of length L, is given by the Fermi state |F 〉, where the electrons occupy
momentum states from −kF to kF , with kF = 2πnF/L and nF = (N − 1)/2,
where kF is the Fermi momentum (fig with momentum states). Using first
order perturbation theory in V̂ we can write for the interacting ground state
|Ψ〉

|Ψ〉 = |F 〉+
Q̂

E(0) − T̂
V̂ |F 〉+ . . . (4.19)

where Q̂ = Î − |F 〉 〈F | is a projector on the subspace of excited states of
the system and E(0) is the total kinetic energy of the Fermi state. Because,
when V̂ acts to |F 〉 gives a state which is orthogonal to |F 〉 and two states
proportional to |F 〉 from

Q̂V̂ |F 〉 = V̂ |F 〉 − 〈F | V̂ |F 〉 |F 〉

remains only

Q̂V̂ |F 〉 =
1

L

∑
n>0

v(kn)ρ̂nρ̂−n |F 〉 (4.20)

The state ρ̂nρ̂−n |F 〉, using the physical interpretation of ρ̂n as stated above,
is an excited state of the system with two particles and two holes. From our
assumption that v(kn) is zero for kn � kc, only states ρ̂nρ̂−n |F 〉 with n of
the order nc = kcL/2π or smaller contribute to the above expression. Hence,
only low energy excitations are important. The density operator ρ̂−n, for
nc > n > 0 creates a particle-hole pair around the right Fermi point k = kF
whereas ρ̂n creates a particle-hole pair around the left Fermi point k = −kF .
We can rewrite (4.20) by considering low-energy excitations as

Q̂V̂ |F 〉 =
1

L

∑
n>0

v(kn)

−nF +1∑
m=−nF−n

nF +n∑
l=nF +1

ĉ†mĉm+nĉ
†
l ĉl−n |F 〉 (4.21)

To find the interacting ground state |Ψ〉 we need also the kinetic energy of

the two-particle two-holes state ĉ†mĉm+nĉ
†
l ĉl−n |F 〉, which equals E(0) + εm−

εm+n+ εl− εl−n, where εn = (2πn/L)2/2m. The excitations of the system are
in the neighbourhood of the two Fermi points and by linearizing the parabolic
dispersion relation around those points we get two linear branches, one for
left moving (−) fermions and one for right moving (+) (figure 4.3).
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Figure 4.3: Linearization around the two Fermi points.

By doing this we have

εn,+ = εF + vF (n− nF )2π/L, n > 0

εn,+ = εF − vF (n+ nF )2π/L, n < 0

where εF = k2
F/2m is the Fermi energy and vF = kF/m the Fermi velocity.

Now the calculations of energies E(0)+εm−εm+n+εl−εl−n are straightforward
and equal to E(0) + 2knvF and the ground state |Ψ〉, up to first order, takes
the form

|Ψ〉 = |F 〉 − 1

L

∑
n>0

v(kn)

2knvF

−nF +1∑
m=−nF−n

nF +n∑
l=nF +1

ĉ†mĉm+nĉ
†
l ĉl−n |F 〉+ . . . (4.22)

with dots denoting higher order terms which are multiple particle-hole pairs
states. The analysis that we did shows that there are three types of elec-
trons. Right moving electrons near the Fermi point k ≈ kF with velocities
approximately vF , left moving electrons near the Fermi point k ≈ −kF with
velocities approximately −vF and the electrons deep in the Fermi sea, which
do not contribute because we consider only low energy excitations. In the
next section we will consider the Tomonaga-Luttinger model which is an
extension of Tomonaga’s model.
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4.2 Tomonaga - Luttinger model (TLM)

Luttinger used the basic properties of the Tomonaga model to further modify
it. He consider linear dispersion around the Fermi points but he extended
the range of k-values for both the right and left movers to 2πn/L with n
positive and negative integer. Essentially instead of the parabolic dispersion,
in Luttinger model we have a Dirac cone (figure 4.4).

Figure 4.4: linear dispersion of Luttinger model.

This assumption simplifies the dispersion of the electrons, but introduces
infinitely many negative energy electron states (”Dirac sea”), which have to
be filled in the ground state. To proceed our analysis, we will consider finite
instead of infinite negative energy electron states by introducing a band cut-
off, kB = 2πm0/L ≥ 0. Thus, we consider states with k ≥ −kB for right
movers and k ≤ kB for left movers. This is done to avoid mathematical
subtleties. Then Luttinger model corresponds to kB → ∞. The kinetic
energy operator now takes the form

T̂TL =
∑
n∈I+

vFknĉ
†
n,+ĉn,+ +

∑
n∈I−

(−vFkn)ĉ†n,−ĉn,− (4.23)
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where I+ = {−m0,−m0 + 1, . . . ,∞} and I− = {−∞, . . . ,m0 − 1,m0}. The
first term counts the kinetic energy in the right sector whereas the second
in the left. We have two kinds of annihilation and creation operators, one
for right movers (+) and one for left movers (−) which satisfy the following
canonical anti-commutation relations

{ĉm,α, ĉn,β} = 0, {ĉm,α, ĉ†n,β} = δn,mδa,β (4.24)

where α, β = ± denotes the right or left branch. We replace ρ̂nρ̂−n by
(ρ̂n,+ + ρ̂n,−)(ρ̂−n,+ + ρ̂−n,−) in the two-body interaction V̂ (4.18), where

ρ̂n,α ≡
∑
m

wαm,m+nĉ
†
m,αĉm+n,α (4.25)

with

wαm,m+n =

{
1 for m,m+ n ∈ Iα
0 else

(4.26)

are density operator for right and left moving electrons and V̂ takes the form

V̂ =
1

L

∑
n>0

v(kn) [(ρ̂n,+ρ̂−n,+ + ρ̂n,−ρ̂−n,−) + (ρ̂n,+ρ̂−n,− + ρ̂n,−ρ̂−n,+)] (4.27)

where we dropped terms containing N because they are irrelevant to our
considerations. Moreover, we have splitted the interaction potential in this
way in order to distinguish the two kinds of interactions that we have. The
first parenthesis corresponds to intra-branch scattering where the electrons
stay on the same branch (figure 4.5), whereas the second term corresponds
to inter-branch scattering where the electrons change branch (figure 4.6).

Figure 4.5: Schematic view of intra-branch interactions.
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Figure 4.6: Schematic view of inter-branch interactions.

An important observation is that the commutation relations of ρ̂m,α are not
all zero as was for ρ̂m. Using the anti-commutation relations (4.24), we have

[ρ̂m,+, ρ̂n,−] = 0 (4.28)

and

[ρ̂m,α, ρ̂n,α] =
∑
k,q

[ĉ†k,αĉk+m,α, ĉ
†
q,αĉq+n,α]wαk,k+mw

α
q,q+n

=
∑
k,q

(
δq,k+mĉ

†
k,αĉq+n,α − δk,q+nĉ

†
q,αĉk+m,α

)
wαk,k+mw

α
q,q+n

=
∑
k

(
wαk,k+m − wαk,k+n

)
wαk,k+m+nĉ

†
k,αĉk+m+n,α

(4.29)

From (4.29) we can see that the commutator is zero when m and n have
the same sign. For example, by considering right movers (α = +) and n,m
positive, then w+

k,k+m+n is only non zero when k ≥ −m0 and k+m+n ≥ −m0.

This implies also that k + m ≥ −m0 and k + n ≥ −m0, hence w+
k,k+m = 1

and w+
k,k+n = 1 and the commutator is zero. For n = −m with m > 0 and

α = + we have

[ρ̂m,+, ρ̂−m,+] =
∑
k

(
w+
k,k+m − w

+
k,k−m

)
w+
k,kĉ

†
k,+ĉk,+

=

−m0+m−1∑
k=−m0

ĉ†k,+ĉk,+ ≡ N+(m)

(4.30)

where N+(m) counts the number of right moving fermions on the lowest
m states. Because the interaction v(k) drops of rapidly for |k| > kc, only
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low energy eigenstates contribute to the interacting ground state, excitations
of electrons deep in Fermi sea is not possible. In this subspace of the total
Hilbert space it is an excellent approximation, which becomes asymptotically
exact for m0 → ∞ to replace N+(m), by mÎ on (4.30). For m,n having
different sign we obtain

[ρ̂m,+, ρ̂−n,+] =

−m0−n−1∑
k=−m0

ĉ†k,+ĉk+m−n,+ = −
−m0−n−1∑
k=−m0

ĉk+m−n,+ĉ
†
k,+ ≡ 0 (4.31)

where we use the anticommutation relation of fermions. The above commu-
tator is zero because ĉ†k,+ tries to create an electron in an occupied state deep
in the Fermi sea. Same arguments apply to the left moving electrons and
putting all together we arrive at

[ρ̂m,α, ρ̂n,β] = αmδα,βδm,−n (4.32)

The above commutation relations looks like bosonic commutation relations
with a normalization factor. By defining new operators b̂n, b̂†n as

b̂n ≡
1√
|n|

{
ρ̂n,+ for n > 0

ρ̂n,− for n < 0
and b̂†n ≡

1√
|n|

{
ρ̂−n,+ for n > 0

ρ̂−n,− for n < 0
(4.33)

where we used ρ̂†n,α = ρ̂−n,α, then (4.32) implies the following commutation
relations between b’s

[b̂m, b̂n] = 0 , [b̂†m, b̂
†
n] = 0 and [b̂m, b̂

†
n] = δm,n (4.34)

which are the familiar bosonic commutation realations of the creation and
annihilation operators. Now the kinetic energy operator T̂TL (4.23), using
the Kronig identity [20] can be written in terms of the bosonic operators as

T̂TL =
∑
n6=0

vF |kn|b̂†nb̂n =
∑
n>0

vFkn

(
b̂†nb̂n + b̂†−nb̂−n

)
(4.35)

and the two-body interaction (4.27) takes the form

V̂TL =
∑
n>0

v(kn)n

L

(
b̂†nb̂n + b̂†−nb̂−n + b̂†nb̂

†
−n + b̂−nb̂n

)
=
∑
n>0

v(kn)kn
2π

(
b̂†nb̂n + b̂†−nb̂−n + b̂†nb̂

†
−n + b̂−nb̂n

) (4.36)
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where we used kn = 2πn/L and we dropped terms proportional to particle
number operators. Finally, the total Hamiltonian of the Tomonaga-Luttinger
model is

ĤTL =
∑
n>0

{
kn

(
vF +

v(kn)

2π

)(
b̂†nb̂n + b̂†−nb̂−n

)
+
knv(kn)

2π

(
b̂†nb̂
†
−n + b̂−nb̂n

)} (4.37)

We can see that initially the Hamiltonian of the system was in terms of
fermionic operators whereas now it is expressed in terms of bosonic opera-
tors. Thus, we have mapped fermions to bosons. This is called bosonization.
The Hamiltonian (4.37) can be diagonalized by a Bogoliubov transforma-
tion. It is common to distinguish between intra and inter-branch scattering
processes, this is done by replacing the potential v(kn) in the first term of
the Hamiltonian (4.37) by a function g4(kn) and that in the second term by
g2(kn). So the general form is

ĤTL =
∑
n>0

{
kn

(
vF +

g4(kn)

2π

)(
b̂†nb̂n + b̂†−nb̂−n

)
+
kng2(kn)

2π

(
b̂†nb̂
†
−n + b̂−nb̂n

)} (4.38)

4.3 Bosonization of field operators

In the previous section we saw that a fermionic problem was mapped to a
bosonic one. In general bosons are more easy to handle and we would like
also to express the fermionic field operators in terms of bosonic operators.
Then we can calculate correlation functions in a straightforward manner.
We will do it for right moving fermions, same reasoning applies also for left
moving. The starting point is a simple relation which holds for the bosonic
operators b̂†, b̂

[b̂, eλb̂
†
] = λeλb̂

†
(4.39)

The proof is very simple and goes as follows. We define an operator as a
function of a parameter λ, b̂(λ) ≡ e−λb̂

†
b̂eλb̂

†
and we take the derivative with
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respect to λ

db̂(λ)

dλ
= −e−λb̂† b̂†b̂eλb̂† + e−λb̂

†
b̂b̂†eλb̂

†

= e−λb̂
†
(
b̂b̂† − b̂†b̂

)
eλb̂
†

= Î

where we used [b̂, b̂†] = Î and [b̂†, eλb̂
†
] = 0. So we have that

b̂(λ) = b̂+ λÎ

and also
b̂+ λÎ = e−λb̂

†
b̂eλb̂

† ⇒ [b̂, eλb̂
†
] = λeλb̂

†

where we multiplied from the left with eλb̂
†
. Next we define the following

operators which are linear combinations of the boson operators b̂n, b̂
†
n

Â+ ≡
∑
n 6=0

λnb̂
†
n , B̂− ≡

∑
n6=0

µnb̂n (4.40)

with arbitrary constants λn and µn. Generalizing (4.39) the following com-
mutation relations hold

[b̂m, e
B̂−eÂ+ ] = λme

B̂−eÂ+ , [b̂†m, e
B̂−eÂ+ ] = −µmeB̂−eÂ+ (4.41)

Considering fermionic operators Ŝ which obey

[b̂m, Ŝ] = −λmŜ , [b̂†m, Ŝ] = µmŜ

the operator Ô ≡ ŜeB̂−eÂ+ commutes with all b̂m and b̂†m,

[b̂m, Ô] = [b̂m, Ŝe
B̂−eÂ+ ] = [b̂m, Ŝ]eB̂−eÂ+ + Ŝ[b̂m, e

B̂−eÂ+ ]

= −λmŜeB̂−eÂ+ + λmŜe
B̂−eÂ+ = 0

and same for b̂†m. We therefore write

Ŝ = ÔeÂ+eB̂− (4.42)

Ô is such that both sides of (4.42) yield identical matrix elements and pre-
serves the anticommutation relations of the fermionic operator Ŝ. Now we
want to write the fermionic field operator in terms of bosonic operators. We
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will do it for right moving fermions, the analysis of left moving being similar.
We define an auxiliary fermionic field operator for right moving fermions as
a linear combination of ĉn,+, which creates a right moving fermion in mo-
mentum state n

ψ̃+(x) ≡
∑
n∈I+

einxĉn,+ =
∞∑

n=−∞

einxĉn,+ (4.43)

where we took the limit m0 →∞. The ĉm,+ obey the following commutation
relations [20], [24]

[b̂m, ĉn,+] = − 1√
m
ĉn+m,+ , [b̂†m, ĉn,+] = − 1√

m
ĉn−m,+ (4.44)

Then the operator ψ̃+(x) obeys the same commutation relations as the op-
erator Ŝ above

[b̂m, ψ̃+(x)] = − 1√
m
e−imxψ̃+(x) , [b̂†m, ψ̃+(x)] = − 1√

m
eimxψ̃+(x) (4.45)

Hence we have
ψ̃+(x) = Ô+(x)eiφ̂

†
+(x)eiφ̂+(x) (4.46)

where iφ̂+(x) is given by

iφ̂+(x) =
∞∑
n>0

einx√
n
b̂n (4.47)

Ô(x) is called Klein factor and has the property to lower the fermion number
by one when is acting in a state with N fermions and commutes with all
boson operators. More details about the Klein can be found on [21] ,[20].
The physical field operators ψ̂+(x) are related to the auxiliary field operators
by

ψ̂+(x) =
1√
L
ψ̃+

(
2πx

L

)
(4.48)

Equations (4.46), (4.47) and (4.48) will be very useful for calculating a two-
point correlation function in the next chapter. In our analysis we considered
spinless fermions, including spin leads to a phenomenon called ”spin-charge
seperation”, for details see [20].
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Chapter 5

Non-equilibrium Luttinger
liquids

In this chapter we will examine the Luttinger-Tomonaga model out of equilib-
rium. First, we will consider a finite duration quantum quench and we will
derive the equations governing the dynamics during and after the quench
[25]. Then, having the general formalism we will examine two cases. In the
first case, we will periodically drive the system [26] and compute its kinetic
energy as a function of time, which means that the duration of the quench,
τ →∞. In the second case we will consider a finite duration periodic quench
and calculate the fernionic Green’s function of the right moving fermions.

5.1 Time-dependent Tomonaga-Luttinger model

We consider the time-dependent Luttinger-Tomonaga model defined by the
Hamiltonian

ĤTL(t) =
∑
n>0

{
kn

(
vF +

g4(kn, t)

2π

)(
b̂†nb̂n + b̂†−nb̂−n

)
+
kng2(kn, t)

2π

(
b̂†nb̂
†
−n + b̂−nb̂n

)} (5.1)

where kn = 2πn/L, n ∈ Z is the momentum and L the length of the system,
vF is the Fermi velocity and the coupling functions g2, g4 depend also on time.
The operators b̂n and b̂†n destroy and create bosonic modes at momentum kn
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and satisfy the commutation relations

[b̂m, b̂n] = 0 , [b̂†m, b̂
†
n] = 0 and [b̂m, b̂

†
n] = δm,n (5.2)

It is useful to define the following dimensionless coupling functions

ĝ2(kn, t) =
g2(kn, t)

2πvF
, ĝ4(kn, t) =

g4(kn, t)

2πvF
(5.3)

and the Hamiltonian takes the form

ĤTL(t) =
∑
n>0

{
knvF (1 + ĝ4(kn, t))

(
b̂†nb̂n + b̂†−nb̂−n

)
+ knvF ĝ2(kn, t)

(
b̂†nb̂
†
−n + b̂−nb̂n

)} (5.4)

Having a time dependent Hamiltonian we would like to know the time evolu-
tion of the system. We will consider the dynamics of the Tomonaga-Luttinger
model after a quantum quench of finite duration τ . We suppose that at t = 0
the coupling functions have a certain value ĝ2/4(kn, 0). Then for t < τ they
depend on time ĝ2/4(kn, t) and after the quench, t > τ they have another value
ĝ2/4(kn, τ). In order to specify the dynamics we have to split the problem in
two regimes, the during quench evolution and the post quench evolution. By
doing this we will obtain a general scheme which can be used for different
kinds of quench protocols.

Evolution during the quench, t < τ

In order to find the time evolution of various observables we have to solve
the Heisenberg equations of motion for the bosonic operators

i
d

dt
b̂n(t) = [b̂n(t), ĤTL(t)] and i

d

dt
b̂†n(t) = [b̂†n(t), ĤTL(t)] (5.5)

we will do it for b̂n(t), the case of b̂†n(t) being similar. For simplicity we will
refer to ĤTL as Ĥ. Using b̂n(t) = Û †(t)b̂nÛ(t) we can write the commutator
as

[b̂n(t), Ĥ(t)] = Û †(t)[b̂n, Ĥ(t)]Û(t) (5.6)

Moreover we can write Ĥ as

Ĥ(t) =
∑
n>0

Ĥn(t)
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with,

Ĥn(t) = knvF (1 + ĝ4(kn, t))
(
b̂†nb̂n + b̂†−nb̂−n

)
+knvF ĝ2(kn, t)

(
b̂†nb̂
†
−n + b̂−nb̂n

)
Thus,

[b̂m(t), Ĥ(t)] =
∑
n>0

Û †(t)[b̂m, Ĥn(t)]Û(t)

where,

[b̂m, Ĥn(t)] = knvF (1 + ĝ4(kn, t)) [b̂m, b̂
†
nb̂n + b̂†−nb̂−n]

+ knvF ĝ2(kn, t)[b̂m, b̂
†
nb̂
†
−n + b̂−nb̂n]

(5.7)

[b̂m, b̂
†
nb̂n + b̂†−nb̂−n]

[b̂m, b̂
†
nb̂n + b̂†−nb̂−n] = [b̂m, b̂

†
nb̂n] + [b̂m, b̂

†
−nb̂−n]

= b̂†n[b̂m, b̂n] + [b̂m, b̂
†
n]b̂n + b̂†−n[b̂m, b̂−n] + [b̂m, b̂

†
−n]b̂−n

= δm,nb̂n + δm,−nb̂−n

[b̂m, b̂
†
nb̂
†
−n + b̂−nb̂n]

[b̂m, b̂
†
nb̂
†
−n + b̂−nb̂n] = [b̂m, b̂

†
nb̂
†
−n] + [b̂m, b̂−nb̂n]

= b̂†n[b̂m, b̂
†
−n] + [b̂m, b̂

†
n]b̂†−n + b̂−n[b̂m, b̂n] + [b̂m, b̂−n]b̂n

= δm,−nb̂
†
n + δm,nb̂

†
−n

[b̂m, Ĥn(t)] = knvF (1 + ĝ4(kn, t)) δm,nb̂n + knvF ĝ2(kn, t)δm,nb̂
†
−n (5.8)

where the terms having δm,−n do not contribute. Hence,

i
d

dt
b̂n(t) = knvF (1 + ĝ4(kn, t)) b̂n(t) + knvF ĝ2(kn, t)b̂

†
−n(t) (5.9)

We define

ωn(t) = |kn|vF (1 + ĝ4(kn, t)) , λn(t) = |kn|vF ĝ2(kn, t) (5.10)

and equation (5.9) takes the form

i
d

dt
b̂n(t) = ωn(t)b̂n(t) + λn(t)b̂†−n(t) (5.11)
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For b̂†(t) we get

i
d

dt
b̂†n(t) = −ωn(t)b̂†n(t)− λn(t)b̂−n(t) (5.12)

Now by making the ansatz

b̂n(t) = un(t)b̂n + vn(t)∗b̂†−n (5.13)

b̂†n(t) = un(t)∗b̂†n + vn(t)b̂−n (5.14)

where the operators on the right-hand side are time independent, and plug-
ging those on (5.11), (5.12) we get differential equations for the unknown
functions un(t) and vn(t),

i
d

dt

(
un(t)
vn(t)

)
=

(
ωn(t) λn(t)
−λn(t) −ωn(t)

)(
un(t)
vn(t)

)
(5.15)

with initial conditions
un(t) = 1 , vn(t) = 0 (5.16)

because at t = 0 we want b̂n(0) = b̂n and b̂†n(0) = b̂†n. In our analysis we will
consider ĝ2(kn, t) = ĝ4(kn, t), where exact solutions are possible for specific
time dependences. Now we write un(t) and vn(t) in terms of an auxiliary
function an(t) as

un(t) =
1

2
an(t) +

i

2vF |kn|
d

dt
an(t) (5.17)

vn(t) =
1

2
an(t)− i

2vF |kn|
d

dt
an(t) (5.18)

Substitution to (5.15) gives the following two equations

i
d

dt
un(t) = ωn(t)un(t) + λn(t)vn(t)⇒

⇒ i

2

d

dt
an(t)− 1

2vF |kn|
d2

dt2
an(t) =

1

2
ωn(t)an(t) +

ωn(t)i

2vF |kn|
d

dt
an(t) +

1

2
λn(t)an(t)− λn(t)i

2vF |kn|
d

dt
an(t)

(5.19)
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and

i
d

dt
un(t) = ωn(t)un(t) + λn(t)vn(t)⇒

⇒ i

2

d

dt
an(t) +

1

2vF |kn|
d2

dt2
an(t) =

− 1

2
λn(t)an(t)− λn(t)i

2vF |kn|
d

dt
an(t)− 1

2
ωn(t)an(t) +

ωn(t)i

2vF |kn|
d

dt
an(t)

(5.20)

Subtraction of (5.19), (5.20) gives

− 1

vF |kn|
d2

dt2
an(t) = [ωn(t) + λn(t)] an(t) (5.21)

For ĝ2(kn, t) = ĝ4(kn, t)

ωn(t) + λn(t) = vF |kn|(1 + ĝ2(kn, t))

and (5.21) takes the form

d2

dt2
an(t) + v2

Fk
2
n[1 + ĝ2(kn, t)]an(t) = 0 (5.22)

with initial conditions

an(0) = 1 ,
d

dt
an(t)

∣∣∣
t=0

= −ivF |kn| (5.23)

Evolution after the quench, t > τ

After the quench (t > τ) the system (5.15) has constant coefficients and is
easy to solve. The two equations are

i
d

dt
un(t) = ωn(τ)un(t) + λn(τ)vn(t) (5.24)

and

i
d

dt
vn(t) = −λn(τ)un(t)− ωn(τ)vn(t) (5.25)

Differentiation with respect to time of the first yiels

i
d2

dt2
un(t) = ωn(τ)

d

dt
un(t) + λn(τ)

d

dt
vn(t)
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and using (5.25) we get

i
d2

dt2
un(t) = ωn(τ)

d

dt
un(t) + iλ2

n(τ)un(t) + iλn(τ)ωn(τ)vn(t) (5.26)

Plugging now (5.24) to the above equation gives

d2

dt2
un(t) + (ω2

n(τ)− λ2
n(τ))un(t) = 0 (5.27)

with solution
un(t) = An cos (εnt) +Bn sin (εnt) (5.28)

where
εn =

√
ω2
n(τ)− λ2

n(τ)

assuming ωn(τ) > λn(τ) and vn(t) can be found from (5.24)

vn(t) =
i

λn(τ)

d

dt
un(t)− ωn(τ)

λn(τ)
(5.29)

The two constants An and Bn are obtained from the initial conditions at
t = τ and are given by

An = −iλn(τ)

εn
sin (εnτ)un(τ)− i

εn
[iεn cos (εnτ)+ωn(τ) sin (εnτ)]vn(τ) (5.30)

Bn = i
λn(τ)

εn
cos (εnτ)un(τ)− i

εn
[iεn sin (εnτ)− ωn(τ) cos (εnτ)]vn(τ) (5.31)

Now we have the full machinery to calculate the dynamical evolution of
observables for any quench scenario that we want. Moreover, we can study
the dynamics of the system for quench times τ → ∞ by considering only
the equations mentioned in the evolution during the quench. We will do
this in the next section, where instead of a quantum quench we periodically
drive the system without stopping and we calculate the kinetic energy of the
system. Later, we will consider a periodic quench scenario to calculate the
fermionic Green function.
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5.2 Periodically driven Luttinger liquid

We consider the Hamiltonian (5.4) with ĝ2(kn, t) = ĝ4(kn, t) where the inter-
action strength is varied periodically with driving frequency Ω. The coupling
function has the form

ĝ2(kn, t) =
g2(kn, t)

2πvF
=
U(kn, t)

2πvF

where U(kn, t) is a time dependent potential and we denote g2 as U and the
Hamiltonian takes the form

Ĥ(t) =
∑
n>0

{
ωn(t)

(
b̂†nb̂n + b̂†−nb̂−n

)
+ kn

U(kn, t)

2πvF

(
b̂†nb̂
†
−n + b̂−nb̂n

)}
(5.32)

with ωn(t) = knvF

(
1 + U(kn,t)

2πvF

)
. Assuming repulsive interaction potential,

U(kn, t) > 0, and that the system is initially in the ground state |ψ0〉. The
state |ψ0〉 is the ground state of a Hamiltonian with a constant interaction
at times t < 0 such that U(kn, t < 0) = V (kn)(1+ν). Then at time t = 0 the
periodic driving starts and we assume the following form of the interaction
potential

U(kn, t) = V (kn)(1 + ν cos (Ωt)) (5.33)

The dimensionless coupling ν of the periodic driving is always ν < 1 to ensure
that the potential is repulsive at all times. In our analysis we consider a
momentum cut-off kc above which the interaction decays exponentially. In
the numerical simulations we use a Gaussian one

V (k) = V0e
−(k/kc)2 (5.34)

In order to find the evolution under the periodic driving we use the analysis
that we did, for the evolution during the quench, in the previous section.
The equation that we have to solve is (5.22), where in our case is

d2

dt2
an(t) + v2

Fk
2
n

[
1 +

U(kn, t)

2πvF

]
an(t) = 0 (5.35)

Using the transformation time τ = Ωt/2 in order to make the equation
dimensionless and (5.33) we have

τ =
Ωt

2
→ dτ =

Ω

2
dt
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Ω2

4

d2

dτ 2
an(τ) + v2

Fk
2
n

[
1 +

V (kn)(1 + ν cos (2τ))

2πvF

]
an(τ) = 0⇒

d2

dτ 2
an(τ) +

4v2
Fk

2
n

Ω2

(
1 +

V (kn)

πvF

)[
1 +

νV (kn)

πvF + V (kn)
cos (2τ)

]
an(τ) = 0

Hence,
d2

dτ 2
an(τ) + ε2n [1 + 2γn cos (2τ)] an(τ) = 0 (5.36)

where

εn =
2vFkn

Ω

√(
1 +

V (kn)

πvF

)
(5.37)

is the ”natural frequency” of the oscillator and

γn =
νV (kn)

2πvF + 2V (kn)
(5.38)

the coupling strength of the periodic perturbation. The initial conditions
are given by (5.23). Equation (5.36) is the Mathieu equation as we found in
Chapter 3. Hence, calculating the time evolution in the periodically driven
Luttinger liquid is equivalent to a set of parametrically driven harmonic os-
cillators (one for each mode n). From the analysis that we did in Chapter 3
we have that equation (5.36) shows an instability with exponentially grow-
ing amplitudes in the case of parametric resonance which occurs for that
particular mode n∗ for which εn∗ = 1. So the driving frequency equals

Ω = 2vFk
∗
n

√(
1 +

V (k∗n)

πvF

)
(5.39)

for parametric resonance. In the following we distinguish between slow and
fast driving. The two regimes are determined from the energy scale Ω∗

Ω∗ = vFkc (5.40)

Using the results from Chapter 3 we have the following. For slow driving Ω�
Ω∗ the bosonic mode n∗ where parametric resonance happens is determined
by

k∗n
kc
→ 1√

1 + 2α

Ω

2Ω∗
(5.41)
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where α = V0/2πvF . And for the rate of the associated exponential growth
in time we have

Γ =
1

4

αν

1 + 2α
Ω (5.42)

The time scale t∗ for the onset of the instability is

t∗ = Γ−1 (5.43)

For fast driving Ω� Ω∗ the resonant mode

k∗n
kc
→ Ω

2Ω∗
(5.44)

is independent of the interaction potential up to corrections suppressed by
the cutoff kc and the rate is given by

Γ =
1

4
ΩνV (k∗n) (5.45)

The behaviour for Ω � Ω∗ depends on the details of the large momentum
behavior of the interaction potential. As we mentioned earlier we will use a
Gaussian interaction potential.

5.2.1 Kinetic energy density

Now we calculate the dynamical evolution of the kinetic energy. The kinetic
energy operator is defined from the Hamiltonian (5.4) of our model for t < 0
by considering the diagonal part of it. Thus we have :

Ĥkin =
∑
n>0

ωn(t < 0)(b̂†nb̂n + b̂†−nb̂−n) (5.46)

where ωn(t) = knvF

(
1 + U(kn,t)

2πuF

)
and U(kn, t) = V (kn)(1 + ν cos(Ωt)) and

for t < 0 we have U(kn, t < 0) = V (kn)(1 + ν).

The kinetic energy of the periodically driven Luttinger liquid system at time
t is given by

Ekin(t) = 〈ψ0(t)| Ĥkin |ψ0(t)〉 (5.47)

with |ψ0(t)〉 = Û(t) |ψ0〉 being the state at time t. In order to calculate this
expectation value we first compute Û(t)†ĤkinÛ(t) and then we take the aver-
age value in the state |ψ0〉 which is the ground state of the full Hamiltonian
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at times t < 0.

Calculation of Û(t)†ĤkinÛ(t):

Û(t)†ĤkinÛ(t) =Û(t)†

(∑
n>0

ωn(t < 0)(b̂†nb̂n + b̂†−nb̂−n)

)
Û(t)

=
∑
n>0

ωn(t < 0)
(
Û(t)†b̂†nb̂nÛ(t) + Û(t)†b̂†−nb̂−nÛ(t)

)
=
∑
n>0

ωn(t < 0)
(
b̂†n(t)b̂n(t) + b̂†−n(t)b̂−n(t)

)
Using b̂n(t) = un(t)b̂n+vn(t)∗b̂†−n and b̂†n(t) = un(t)∗b̂†n+vn(t)b̂−n we calculate
the four terms in the previous equation.

b̂†n(t)b̂n(t)

b†n(t)b̂n(t) =(un(t)∗b̂†n + vn(t)b̂−n)(un(t)b̂n + vn(t)∗b̂†−n)

= |un(t)|2b̂†nb̂n + un(t)∗vn(t)∗b̂†nb̂
†
−n + vn(t)un(t)b̂−nb̂n

+ |vn(t)|2b̂−nb̂†−n

b̂†−n(t)b̂−n(t)

b̂†−n(t)b̂−n(t) =(un(t)∗b̂†−n + vn(t)b̂n)(un(t)b̂−n + vn(t)∗b̂†n)

= |un(t)|2b̂†−nb̂−n + un(t)∗vn(t)∗b̂†−nb̂
†
n + vn(t)un(t)b̂nb̂−n

+ |vn(t)|2b̂nb̂†n

Plugging in the above expressions in the kinetic energy and acting with the
state |ψ0〉 in the operator only the terms of the form b†b and bb† contribute.
Thus we arrive at

Ekin(t) = 2
∑
n>0

knuF

(
1 +

V (kn)(1 + ν)

2πuF

)(
|un(t)|2 + |vn(t)|2

)
(5.48)

We calculate the kinetic energy density numerically for different driving
frequencies Ω for slow and fast driving. The energy scale Ω∗ associated

53



with the crossover between the two limits is set by Ω∗ = vFkc. The ki-
netic energy is in units E∗ = kcΩ

∗. For our results we use ν = 1/5 and
V (k)/(2πvF ) = α exp{−(k/kc)

2} with α = 1/2. Furthermore we go to the
continuum limit by converting the sum to integral with∑

n>0

→ L

2π

∫ ∞
0

dk

and

Ekin(t)

L
=

1

π

∫ ∞
0

dk kuF

(
1 +

V (k)(1 + ν)

2πuF

)(
|u(k, t)|2 + |v(k, t)|2

)
(5.49)

Below we present the results for slow and fast driving. In the figures we show
the kinetic energy density as a function of time.

Figure 5.1: Evolution of kinetic energy density for Ω = 0.4Ω∗ with ν = 1/5
and α = 1/2.
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Figure 5.2: Evolution of kinetic energy density with ν = 1/5 and α = 1/2.

Figure 5.3: Evolution of kinetic energy density with ν = 1/5 and α = 1/2.
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From the above figures we see that periodically driven systems can develop
stationary states. For fast driving Ω� Ω∗ the unstable mode k∗n of the para-
metric resonance becomes unstable at large times. After the initial transient
dynamics the system settles to a stationary state. The rate Γ is small, which
implies that the system will develop the instability at large times, t > t∗.
Hence, this state is meta-stable. On the other hand, as we lower the driv-
ing frequency the rate of the instability Γ grows, so the instability starts at
smaller times t∗. As Ω approaches Ω∗, the resonant mode becomes unstable
for small times and there is no meta-stable state. Decreasing the driving
frequency more, the unstable mode k∗n of the parametric resonance becomes
unstable at large times and a meta-stable state becomes again possible.

5.3 Correlation function of right moving

fermions

We now turn to the calculation of the fermionic Green’s function after a
periodic quench of finite duration. We consider that the system is initially,
at t = 0, in the ground state |ψ0〉, where now |ψ0〉 is the ground state of the
boson operatos b̂n, such that b̂n |ψ0〉 = 0 for all n. The equal time Green’s
function of the right movers is defined as

GF (x, y, t) = 〈ψ̂†+(x, t)ψ̂+(y, t)〉 (5.50)

In the previous chapter we mentioned that the bosonization of an auxiliary
field operator is

ψ̃+(x) = Ô+(x)eiφ̂+(x)†eiφ̂+(x) (5.51)

with

iφ̂+(x) =
∞∑
n>0

einx√
n
b̂n (5.52)

and Ô(x) commutes with all boson operator. We will use those operators to
calculate the Green function. It can be shown that the operators Ô(x)Ô(y)
lead to a factor e−iN+(x−y) [20], with N+ the number operator of right movers.
Hence we have the following

ψ̃†+(x, t)ψ̃+(y, t) = e−iφ̂
†
+(x,t)e−iφ̂+(x,t)eiφ̂

†
+(y,t)eiφ̂+(y,t)e−iN+(x−y) (5.53)
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Using the indentity

eÂeB̂ = eB̂eÂe[Â,B̂] (5.54)

we get

ψ̃†+(x, t)ψ̃+(y, t) = e−i(φ̂
†
+(x,t)−φ̂†+(y,t))e−(iφ̂+(x,t)−φ̂+(y,t))e[φ̂+(x,t),φ̂†+(y,t)]e−iN+(x−y)

(5.55)
Computation of the commutator gives

[φ̂+(x, t), φ̂†+(y, t)] =
∑
n,m

einx√
n

eimy√
m

[b̂n(t), b̂†m(t)] =
∑
n,m

einx√
n

eimy√
m
δn,m

=
∞∑
n=1

ein(x−y)

n
= lim

η→0

∞∑
n=1

ein(x−y+iη)

n

= − lim
η→0

[
ln
(
1− ei(x−y+iη)

)]
(5.56)

where we added a convergence factor e−knη in order to make the series to
converge and then take the limit η → 0. Thus,

ψ̃†+(x, t)ψ̃+(y, t) =
e−iN+(x−y)

1− ei(x−y+i0)
e−i(φ̂

†
+(x,t)−φ̂†+(y,t))e−i(φ̂+(x,t)−φ̂+(y,t)) (5.57)

The next step is to take the expectation value of the above operator. First,
we calculate the operators in the exponents

i(φ̂+(x, t)− φ̂+(y, t)) =
∑
n>0

einx − einy√
n

b̂n(t)

=
∑
n>0

einx − einy√
n

(un(t)b̂n + vn(t)∗b†−n)

(5.58)

and acting with |ψ0〉 gives

e−i(φ̂+(x,t)−φ̂+(y,t)) |ψ0〉 = e
−

∑
n>0

einx−einy
√
n

vn(t)∗b̂†−n |ψ0〉 (5.59)

where we used that b̂n |ψ0〉 = 0. Similar for the other exponent we get

i(φ̂†+(x, t)− φ̂†+(y, t)) = −
∑
n>0

e−inx − e−iny√
n

(un(t)∗b̂†n + vn(t)b̂−n) (5.60)
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and acting to 〈ψ0| gives

〈ψ0| e−i(φ̂
†
+(x,t)−φ̂†+(y,t)) = 〈ψ0| e

∑
n>0

e−inx−e−iny
√
n

vn(t)b̂−n (5.61)

where we used that 〈ψ0| b̂†n = 0. We define

Â =
∑
n>0

e−iknx − e−iny√
n

vn(t)b̂−n (5.62)

B̂ = −
∑
n>0

eiknx − einy√
n

vn(t)∗b̂†−n (5.63)

and we write the correlation function as

〈ψ̃†+(x, t)ψ̃+(y, t)〉 =
e−iN+(x−y)

1− ei(x−y+i0)
〈ψ0| eÂeB̂ |ψ0〉 (5.64)

Using (5.54), only the exponent with the commutator contributes

〈ψ̃†+(x, t)ψ̃+(y, t)〉 =
e−iN+(x−y)

1− ei(x−y+i0)
〈ψ0| e[Â,B̂] |ψ0〉 (5.65)

and calculation of [Â, B̂] yields

[Â, B̂] = −
∑
n,m

e−inx − e−iny√
n

eimx − eimy√
m

vn(t)vm(t)∗[b̂−n, b̂
†
−m]

= −
∑
n,m

e−inx − e−iny√
n

eimx − eimy√
m

vn(t)vm(t)∗δn,m

= −
∑
n

2− e−inxeiny − e−inyeinx

n
|vn(t)|2

= −2
∑
n>0

(1− cos [n(x− y)])

n
|vn(t)|2

(5.66)

equation (5.65) takes the form

〈ψ̃†+(x, t)ψ̃+(y, t)〉 =
e−iN+(x−y)

1− ei(x−y+i0)
exp

(
−2
∑
n>0

(1− cos [n(x− y)])

n
|vn(t)|2

)
(5.67)
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Going to the physical fields using (4.48) and taking the continuum limit, for
y = 0, yields

GF (x, t) =
i

2π

e−ikF x

x+ i0
exp

(
−1

2
FF (x, t)

)
(5.68)

where

FF (x, t) = 4

∫ ∞
0

dk

k
[1− cos (kx)]|v(k, t)|2 (5.69)

encodes the deviation of the Green function from the non-interacting result.

5.3.1 Correlation function after periodic quenches

We now consider a periodic quench and calculate (5.69). The two coupling
functions have the form

g2(k, t) = g4(k, t) =
g2(k)

2

[
1− cos

νπt

τ

]
, ν ∈ Z (5.70)

where again we consider a Gaussian momentum cut-off of the coupling func-
tion

g2(k) = g0 exp
{
−(k/kc)

2/2
}

(5.71)

In our analysis we use g0 = 2πvF and consider a quench time τ = 10/(vFkc).
To calculate (5.69) we have to split the problem to two regimes, during the
quench and after the quench, thus it has the form

•
FF during(x, t) = 4

∫ ∞
0

dk

k
[1− cos (kx)]|v(k, t)during|2 (5.72)

•
FF post(x, t) = 4

∫ ∞
0

dk

k
[1− cos (kx)]|v(k, t)post|2 (5.73)

The calculation of the function v(k, t) in the two regimes is given by the
analysis that we explained in previous section. Below we present how (5.69)
evolves in time for ν = 9.
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Figure 5.4: Function (5.69) for fixed separations x as a function of time t.
We consider a periodic quench with quench time τ = 10/(vFkc) and final
interaction strength g0 = 2πvF .

To analyse the light-cone effect in the fermionic Green function we consider
the time dependence at fixed separations x. It is clear from the figure a prop-
agation of a wave, which corresponds to the propagation of the correlations.
Two main features can be distinguished from the propagating pulse. The
first feature is the initial propagating ”bump” while the second is the prop-
agation of the wave-packet. We can extract the velocities of those features
which for late times, follows a linear relation v = x/(2t).

features velocities

bump 1.71563vF
wave-packet 0.91959vF

Table 5.1: Velocities of the two features for periodic quench with quench
time τ = 10/(vFkc) and final interaction strength g0 = 2πvF .
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From the table we can see that the two features move with different veloc-
ities. The ”bump” moves faster than the wave packet. We tried to find
why this happens but the way we attacked the problem couldn’t describe
this behaviour, concluding that some other mechanism, more complicated, is
responsible for this difference in the velocities.
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Chapter 6

Conclusions

In this thesis we studied the dynamics of a Luttinger liquid under periodically
driving of the internal parameters and also under a periodic quench, of finite
duration. We saw that in the case of periodic driving the system develops an
instability due to the parametric resonance. Calculating the kinetic energy
density we found that meta-stable states can form for fast and slow driving
until some characteristic time t∗, beyond which the system goes unstable
again. Moreover, we calculated the equal time correlation function of the
right moving fermions under a periodic quench. Clearly the light-cone effect
is present, but further investigation of the correlation function is needed in
order to explain why certain features move with different velocities.
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