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Abstract
This thesis has two aims. The primary aim is to introduce the intersection product method of evaluating
families of Feynman integrals, and to put it into physical and mathematical context. In order to achieve
this, we consider Feynman integrals and IBP relations between such integrals. We then define and consider
a local system and the twisted cohomology of said system, proving multiply properties of either. This
includes the existence of a Morse function which can be used to calculate the cohomology. We then define
the intersection product on the twisted cohomology and consider its properties.

The secondary aim is to judge how well the method does in practice. We compute a few examples
and argue that the method is suitable for Feynman diagrams with a low number of loops, while being
less suitable for higher loop counts.
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1 INTRODUCTION 1

1 Introduction
Before we start with the content, let us first consider the context of this thesis.

1.1 Motivation
At the moment of writing, the best way to test a quantum field theory is by comparing the predictions of
the theory to the experimental data from CERN. Specifically, CERN has the Large Hadron Collider where
they repeatedly measure the output particles of a collision of a known set of input particles (with known
momenta). This allows them to measure the probability of each possible output given the input.

To then test a theory, one has to use the theory to similarly predict the probability of each possible
output given the input. This is done using Feynman diagrams. For any input and output one can determine
infinitely many Feynman diagrams corresponding to said input and output. Calculating the value of each
Feynman diagram gives the scattering amplitude for the output, and squaring the scattering amplitude gives
a likelihood. Normalising this likelihood with the likelihoods of all other outputs gives a probability. This
means we have to calculate the value of each Feynman diagram.

Of course, there are generally infinitely many diagrams. The number of diagrams with N edges is finite for
any N , but the number generally increases as N increases. We therefore may generally only make predictions
in the perturbative regime, i.e. when the value of the diagrams with N edges goes to 0 sufficiently quickly
for N →∞. Even in the perturbative regime, we can only calculate the value of finitely many independent
Feynman diagrams. We therefore have to estimate the value of all complicated Feynman diagrams which
gives an error to the theoretical prediction.

This error might make two different theories indistinguishable if the difference between the predictions is
within the error range. It is therefore of utmost importance that we try to get this error as low as possible.

The value of a Feynman diagram is calculated using the corresponding Feynman integral, which is derived
from the diagram by using the Feynman rules of the quantum field theory. This means that the size of the
error strongly depends on the time it takes to evaluate the Feynman integrals.

It is in this context that we look at a recent technique for evaluating families of Feynman integrals.

1.2 Aims
The technique we consider is the intersection product as described in [Miz20]. The primary aim is to give the
necessary background to understand the technique. This involves studying current methods, investigating
the mathematical background and explaining the technique in detail. The secondary aim is to see how this
new technique performs, by calculating a few examples and comparing it to current techniques.

This document has six sections. The first section is this introduction. The second section describes the
preliminaries which are required to respectively understand the physics and mathematics of this thesis. The
third section describes the current methods used to evaluate families of Feynman integrals, both the main
technique and supplementary techniques. The fourth section sketches the mathematical background for the
intersection product, and the fifth section defines the intersection product itself and shows a few examples.
The final section attempts to answer the secondary aim and discusses possible future research.

1.3 Acknowledgement
I would like to thank my supervisors Eric Laenen and Gil Cavalcanti for guiding me through this project
from start to finish. I also want to thank Sebastian Mizera1 for helpful answers and suggestions.

On a personal level, I would like to thank my parents and friends who offered emotional support during
this lockdown. I could not be at Utrecht University or at Nikhef while working on the thesis, but physical
contact with my parents and online contact with my friends made the year bearable.

Finally I thank the LaTeX project, MiKTeX, TeXStudio and JaxoDraw [BT04] for their open source
software which were used in the writing of this thesis.

1See [Miz20; Miz19; Fre+19a; Fre+19b; MM19; Man+19].
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2 Preliminaries
This thesis assumes a certain level of knowledge in high-energy theoretical physics, differential geometry
and algebraic geometry. In this section we briefly discuss what knowledge is required for the physical and
mathematical parts of this thesis respectively, and where the knowledge can be obtained.

2.1 Physical preliminaries
A field theory is described by its Lagrangian, which is the integral of the Lagrangian density over space
(generally R3). Equivalent descriptions are in terms of the action, which is the integral of the Lagrangian
over time hence the integral of the Lagrangian density over space-time, or the Hamiltonian, which is the
Legendre transform of the Lagrangian. The Lagrangian determines the equation of motion of the physical
system via the Euler-Lagrange equation. See a standard textbook on field theory such as [Sop08] or [Sre07]
for the Lagrangian, Lagrangian density, action, Euler-Lagrange equation and Hamilton’s principle. The
Legendre transform is explained and proven in [MS17].

A quantum field theory is a specific kind of field theory which incorporates canonical quantisation, as
explained in [Sre07]. The Lagrangian density contains a kinetic term for each particle field and interaction
terms. (We see the quadratic self-interaction of any field as part of the kinetic term.) For any quantum
field theory and for each particle field in that theory, one can extract the propagator of that field from the
kinetic part. The form of the propagator depends on the spin of the particle. For spin 0 particle fields the
propagator in momentum representation has the value

1
q2 −m2 ,

where q = (q0, q1, q2, q3) is the four-vector momentum of the particle and m2 is the mass term. These
propagators give the possible edges in the Feynman diagram. The other interaction terms can then be
translated into vertices of the Feynman diagram. For instance, a term λφ2H for λ constant and particle
fields φ and H gives a vertex with value λ connecting two φ propagators and one H propagator. In this way,
the Lagrangian determines which propagators and vertices might appear, hence which Feynman diagrams
appear in the theory.

The Feynman diagram is then turned into a Feynman integral as follows. First we choose a momentum
for each edge, such that the incoming and outgoing momenta at each vertex agree. The choice of external
momenta is fixed, but there is generally some choice for internal momenta. We then replace all edges and
vertices by their values (up to some symmetry factors and similar details) to get an integrand, and integrate
over all possible choices of internal momenta. See [Sre07] for the full procedure and all details.

This then gives us an integral, but this integral typically has issues such as divergences. This is because
the procedure of taking the value of a Feynman diagram implicitly assumes analytical continuations, so
we similarly have to see our integral as the analytic continuation of a well-defined integral rather than the
actual integral we wrote down. This analytic continuation is done using regularisation. We use dimensional
regularisation; this involves formally changing the dimension of our space-time from 4 = 3 + 1 to d = 4− 2ε
for some small ε > 0. The integral over a space of dimension d is not generally mathematically well-defined,
so one typically rewrites the integral before applying this substitution. Dimensional regularisation and other
kinds of regularisation are explained in [Sre07].

Another issue is that 1/(q2 − m2) diverges for q2 = m2, which often occurs in Feynman integrals as
well. In order to solve this we instead use the Feynman propagator 1/(q2 −m2 + iε) for a small ε > 0. We
implicitly see the time direction R as a real contour inside C. This is not the same ε as in the dimensional
regularisation; some literature uses the notation i0 to avoid confusion. The Feynman propagators can also
be found in [Sre07].

Finally, Feynman integrals generally correspond to Feynman diagrams with external particles with non-
zero spin. In that case, the result of the Feynman integral is generally a tensor rather than a scalar. However
any such Feynman integral can be reduced to a sum of scalar Feynman integrals by repeated inner products
with external momenta [Smi06]. We therefore only consider scalar Feynman integrals.

In this thesis we will not evaluate any single given loop diagram such as the bubble, triangle or box
diagram. Instead, we focus on using the outcomes of a few known Feynman integrals in a family of Feynman
integral in order to evaluate the entire family.
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2.2 Mathematical preliminaries
This thesis uses a lot of concepts and results from differential geometry and algebraic topology, as well as
some concepts from algebraic geometry.

As for differential geometry, we assume the reader is familiar with differential forms and related notions.
For physicists, a differential k-form is locally equivalent to a fully anti-symmetric k-tensor as in general
relativity. A differential k-form φ is closed if the derivative dφ is 0.2 A differential form is exact if it is the
derivative of a form. Note that d2 = 0 so each exact form is closed. Details of all these concepts can be found
in [Lee12], while more physics minded explanations are in [Nak03].

For algebraic topology we assume that the reader is familiar with CW-complexes3 and cellular cohomology.
The main idea of CW-complexes is that we can iteratively build a topological space by starting with points
(0-discs), gluing in lines (1-discs), gluing in surfaces (2-discs), etc. The space one obtains after gluing all discs
up to k-discs is known as the k-skeleton. One can then use these glued-in discs (known as cells) to define
the cellular (co)homology. Both CW-complexes and their cellular (co)homology can be found in [Hat05]. We
also assume that the reader knows about the fundamental group of loops up to continuous deformations (also
known as the first homotopy group) and the fundamental groupoid of paths up to continuous deformations
(which is the generalisation of the fundamental group to any homotopy class of paths, not just loops). The
former can be found in [Hat05; FF16] while the latter is in more advanced textbooks such as [May99]. Some
results assume the readers knows of the Serre spectral sequence as discussed in [Hat04] or [FF16] and of
Morse theory as discussed in [Mil16].

Algebraic geometry is used implicitly in the statement of some results and explicitly in the proofs. We
only sketch said proofs for this reason, as going into algebraic geometry was not the aim of this thesis. A
full understanding of the proofs requires knowledge of sheaf theory and algebraic varieties. A geometric
introduction to presheaves can be found in [BT+82]. Details on sheaf theory can be found in [Bre12].

Finally, we assume the reader knows of the Residue Theorem from complex analysis, which can be found
in any modern complex analysis textbook.

Many results in this thesis require that we work on a compact manifold. However, the manifolds we find
are generally not compact. This can be solved by using a physical assumption; since the integrals we consider
come from physics, they have certain properties. The relevant property here is the existence of an ultraviolet
(UV) and infrared (IR) cut-off. We may always cut off the parts where the energy becomes too large or too
small, although they typically have to be restored at the end of a computation by taking the limit of the
lower bound to 0 and of the upper bound to ∞. Mathematically, this simply means that we may assume
there exists a compact manifold with boundary Mc.o. which is a deformation retract of M .

2For k = 2 this can physically be stated as (dφ)µνρ = ∂µφνρ + ∂νφρµ + ∂ρφµν = 0.
3The ‘CW’ stands for ‘closure-finite weak’ complexes, as it is required that the closure of any cell is contained in a finite

union of other cells and the complex is given the weak topology.
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Figure 1: The diagrams of Subsection 3.1 and Example 3.2.1.

3 Evaluating and representing Feynman Integrals
In the Preliminaries we have seen the basic ideas used to evaluate a single Feynman integral. In practice it
is rarely sufficient to calculate a single integral, and we instead need to evaluate entire families. Fortunately
the Feynman integrals are not independent, so there are techniques to evaluate large number of Feynman
integrals at once. The intersection product which we will discuss is one such technique, but there are also
other and complementary techniques.

We discuss a few relevant techniques. We focus on the iterative reduction to master integrals, but we also
discuss compatible techniques such as evaluation using differential equations and different representations of
the Feynman integral.

3.1 Recursively one-loop diagrams
We consider a useful technique which is applicable to diagrams containing a bubble sub-diagram. Consider the
bubble diagram with external momentum q as in Figure 1a. The family of Feynman integrals corresponding
to the diagram is given by

F (λ1, λ2; d) =
∫

ddk 1
[k2]λ1 [(q − k)2]λ2

.

Using Feynman parameters this integral can be evaluated, and the result is [Smi06:A.7]

F (λ1, λ2; d) = iπd/2

[q2]λ1+λ2−d/2
Γ(d/2− λ1)Γ(d/2− λ2)Γ(λ1 + λ2 − d/2)

Γ(λ1)Γ(λ2)Γ(d− λ1 − λ2) =: iπd/2

[q2]λ1+λ2−d/2
G(λ1, λ2; d).

The idea is to apply this result to bubble sub-diagrams of a larger Feynman diagram. Rather than requiring
q to be an external momentum, we allow it to be any linear combination of external momenta and internal
momenta other than k. As such, anytime there is some internal momentum k for which the only k-dependent
terms have the form [k2]−λ1 [(k−q)2]−λ2 , we can replace the integral with a propagator 1/[q2]λ1+λ2−d/2 up to
some constant factor which can be pulled out of the integral. This diagrammatically corresponds to replacing
the bubble diagram by a single line with weight λ1 + λ2 − d/2.

Any diagram which can be iteratively reduced to a one-loop diagram using the above procedure is called
recursive one-loop and the corresponding integral is relatively easy to evaluate. We will see how to use these
recursively one-loop integrals in Example 3.2.2.

3.2 IBP reduction to Basis Integrals
In this subsection we will discuss a way of relating Feynman integrals called the IBP reduction, and use it to
calculate a family as an example. This entire subsection is based on Chapter 5 of [Smi06].

The goal of IBP reduction is to write any element of a family of Feynman integrals in terms of a basis4 of
a few chosen integrals, known as master integrals. The strategy is to use relations which resemble Integration

4Unlike the strict mathematical definition, it is common in physics to be contend with a non-minimal spanning set. For the
intersection product we will have to use minimal bases, but in this section it is sufficient to find any spanning set.
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By Parts (IBP) for general integrals, hence use the product rule of differentiation and Stokes’ theorem. In
particular, we know for an arbitrary orientable manifold with boundary O and differentiable functions f, g
on O that ∫

O

∂f

∂x
g(x) dx+

∫
O

f(x) ∂g
∂x

dx =
∫
O

∂

∂x
(fg) dx =

∫
∂O

f(x)g(x) dx.

If ∂O = Ø, we find that the final term is 0. This gives us a straightforward relation between the two integrals
in the first term. A particular choice is g(x) = x, which then tells us that∫

O

f(x) dx = −
∫
O

∂f

∂x
x dx. (1)

We apply the same idea to Feynman integrals. Remark that this is non-trivial in the case of Feynman
diagrams, since it is unclear what effect dimensional regularisation formally has on the manifold and its
boundary. Fortunately we may still use Equation 1 for dimensionally regularised Feynman integral, which
is shown in Appendix E of [Smi06]. Alternatively, we can instead use the same principle on alternative
representations of the Feynman integral where the dimensional regularisation has no effect on the domain of
integration. Such representations are described in Subsection 3.4.

To explain the method, we first apply it to generic one-loop integrals. Consider a family of integrals

F (a`; pi) =
∫

ddk 1
Ea1

1 . . . EaNN
,

where ` ∈ {1, . . . , N} for N the number of separate terms, and where every E` is of the form

E` = (k − p`)2 −m2
`

where m` is the mass of the corresponding propagator and p` is a linear combination of external momenta
pi. Applying the d-dimensional vector equivalent of Equation 1 we find

d · F (a`; pi) =
∫

ddk d

Ea1
1 . . . EaNN

= −
∫

ddk k · ∂
∂k

(
1

Ea1
1 . . . EaNN

)
= −

N∑
`=1

∫
ddk k

Ea1
1 . . . E

a`−1
`−1 E

a`+1
`+1 . . . EaNN

· −a`
2k − 2p`
Ea`+1
`

=
N∑
`=1

∫
ddk 2a`

k2 − p` · k
Ea1

1 . . . E
a`+1
` . . . EaNN

We can now rewrite k2−p` ·k as a linear combination of E`−p2
` +m2

` = k2−2p` ·k and k2. Assume without
loss of generality that p1 = 0 such that E1 = k2 −m2

1. We then get:

d F (a`; pi) =
N∑
`=1

∫
ddk 2a`

1
2 (E` − p2

` +m2
`) + 1

2 (E1 +m2
1)

Ea1
1 . . . E

a`+1
` . . . EaNN

=
N∑
`=1

∫
ddk a`

(
1

Ea1
1 . . . Ea`` . . . EaNN

+ m2
` − p2

` +m2
1

Ea1
1 . . . E

a`+1
` . . . EaNN

+ 1
Ea1−1

1 . . . E
a`+1
` . . . EaNN

)

= N

N∑
`=1

a` F (a`; pi) +
N∑
`=1

a` F (a1, a2, . . . , a` + 1, . . . , aN ; pi)

+
N∑
`=1

a` F (a1 − 1, a2, . . . , a` + 1, . . . , aN ; pi)

= N

N∑
`=1

a` F (a`; pi) +
N∑
`=1

a` `+F (a`; pi) +
N∑
`=1

a` `+1−F (a`; pi).
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Here we defined `+ to be the operator that raises the value of a` by one. This gives us an IBP relation
between F (a`; pi), `+F (a`; pi) and `+1−F (a`; pi). Note that `+F (a`; pi) has a higher order than the other
two terms. This allows us to iteratively express higher order Feynman integrals in terms of lower order
Feynman integral. In particular, if we know a basis of integrals F (a`; pi) then we can use them to evaluate
any higher-order diagram. It is however clear that we find no useful relations for

N∑
`=1

a` = 0.

This gives a boundary for how far the order of the integrals can be reduced. In order to give intuition and
explicitly describe a basis we look at an example.

Example 3.2.1 (Box diagram). Consider the box diagram with external (incoming) momenta p1, p2, p3 and
p4 such that ∑

i∈{1,2,3,4}

pi = 0, p2
i = 0,

which shows up in massless φ3-theory. See Figure 1b. The corresponding family of Feynman integrals is (up
to some normalising factors depending on convention) of the form

F (a1, a2, a3, a4) := F (a1, a2, a3, a4; p1, p2, p3, p4; d) =
∫ ddk

(k2)a1 [(k + p1)2]a2 [(k + p1 + p2)2]a3 [(k − p4)2]a4
.

We now produce an IBP relation as follows. Our integration domain has no boundaries, hence we have

0 =
∫

ddk ∂

∂k
·
(

k

(k2)a1 [(k + p1)2]a2 [(k + p1 + p2)2]a3 [(k − p4)2]a4

)

= d · F (a1, a2, a3, a4) +
∑

i∈{1,2,3,4}

∫
ddk

−2ai k ·
(
k +

∑
j<i pj

)
(k2)a1 [(k + p1)2]a2 [(k + p1 + p2)2]a3 [(k − p4)2]a4 [(k +

∑
j<i pj)2]

= d · F (a1, a2, a3, a4) +
∑

i∈{1,2,3,4}

∫
ddk

−aik2 − ai
(
k +

∑
j<i pj

)2
+ ai

(∑
j<i pj

)2

(k2)a1 [(k + p1)2]a2 [(k + p1 + p2)2]a3 [(k − p4)2]a4 [(k +
∑
j<i pj)2]

= d · F (a1, a2, a3, a4) +
∑

i∈{1,2,3,4}

−ai + ai

∑
j<i

pj

2

i+ − ai1−i+

 F (a1, a2, a3, a4)

0 =
(
(d− 2a1 − a2 − a3 − a4) + 2a3 p1 · p2 3+ − (a21+2− + a31+3− + a41+4−)

)
F (a1, a2, a3, a4). (2)

Note that we used 1+1−F = F . The IBP relation allows us to reduce a1 + a2 + a3 + a4 as long as a3 6= 0
by using the 3+ term. This iteratively allows us to reduce a3 to 1 when starting with a3 > 1. However, we
then still have a1, a2 and a4 which are not reduced. In order to find more relations, we use a trick: instead
of starting with k, we start with k +

∑
j<i pj corresponding to a propagator, e.g. k + p1 + p2. Since p1 and

p2 are constant in k this does not affect the integration by parts. Since we already did k we still have k+ p1,
k + p1 + p2 and k − p4 = k + p1 + p2 + p3. Going through a similar calculation and similarly completing the
squares as e.g.

−2a3(k + p1) · (k + p1 + p2 + p3) = −a3(k + p1)2 − a3(k + p1 + p2 + p3)2 + a3(p2 + p3)2,

we find:

0 =
(
(d− a1 − 2a2 − a3 − a4) + 2a4 p2 · p3 4+ − (a12+1− + a32+3− + a42+4−)

)
F (a1, a2, a3, a4) (3)

=
(
(d− a1 − a2 − 2a3 − a4) + 2a1 p1 · p2 1+ − (a13+1− + a23+2− + a43+4−)

)
F (a1, a2, a3, a4) (4)

=
(
(d− a1 − a2 − a3 − 2a4) + 2a2 p2 · p3 2+ − (a14+1− + a24+2− + a34+3−)

)
F (a1, a2, a3, a4). (5)



3 EVALUATING AND REPRESENTING FEYNMAN INTEGRALS 7

p p

k

k +p k +p

k

k  − k

1

21

2

1 2

(a) The double triangle diagram.
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k +p1

k  − k1 2

(b) The double triangle with edge 1 collapsed.

Figure 2: The diagrams of Example 3.2.2.

We see that we can reduce any ai > 1 to 1. Therefore, assuming we started with all ai ≥ 0, we find that
any Feynman integral of this family can iteratively be written as a sum of Feynman integrals F (e1, e2, e3, e4)
where ei ∈ {0, 1}. Hence, these integrals are our master integrals.

The iterative reduction can be done systematically and algebraically by a computer using the above
relations. This means we only have to calculate 24 = 16 different Feynman integrals to know all massless φ3

box diagram Feynman integrals with ai ≥ 0. These integrals therefore form a basis for the family. In fact, a
smaller subset is sufficient; for instance, using Equation 4 on F (0, 1, 0, 1) gives

(d− 2)F (0, 1, 0, 1) = F (0, 0, 1, 1) + F (0, 1, 1, 0).

This shows that many of the 16 different Feynman integrals are still related, although via less systemically
applicable equations.

Remark that the relations depend on the external momenta via p1 · p2 and p2 · p3. This means that some
of the relations may break down in the limit p1 · p2 = 0 or p2 · p3 = 0, no longer giving relations between
different values of a1+a2+a3+a4. However, these product of external momenta precisely are the Mandelstam
variables corresponding to the s-channel respectively the t-channel of 2→ 2 scattering [Smi06:pg. 41], so this
limit corresponds to leaving a physical sector. As such, we only lose all our relations in unphysical cases. 4

Of course, any linear combination of the above relations is itself a relation. While this fact is not
immediately useful in the above Example, it is at times needed to rewrite the relations in a form where
e.g. one i+ is isolated, or to invert the relations for negative ai. We considered the massless case p2

i = 0, but
when p2

i 6= 0 more terms appear which can be removed via linear combinations. See [Smi06:pg. 123] for an
example of this using a triangle diagram with two massive legs.

Note that setting ai = 0 for any i is equivalent to contracting the corresponding edge (representing a
propagator) to a point. In particular, Setting a1 = 0 in the box will give a triangle diagram, while also setting
a3 = 0 gives a bubble diagram and finally setting a2 = 0 gives a tadpole diagram. This shows that the basis
we obtained consists of relatively easy integrals.

For a higher number of loops, we correspondingly have more relations. The goal in these cases is to
express all Feynman integrals in terms of a subset for which the diagram simplifies, such that known one-loop
results can be used. This is also the strategy for one-loop diagrams for which the IBP relations do not relate
different values of

∑
i ai. We again look at an example to clarify the method.

Example 3.2.2 (Double triangle). Let us consider the easiest example of a two-loop diagram which does
not decompose into two one-loop diagrams, the double triangle in φ3–theory with external momentum p. See
Figure 2a. Denoting the loop momenta by k1 and k2, the family of Feynman integrals is given by

F (a1, a2, a3, a4, a5) =
∫

ddk1

∫
ddk2

1
[k2

1]a1 [(p+ k1)2]a2 [(k1 − k2)2]a3 [(p+ k2)2]a4 [k2
2]a5

,

where we assume each ai ≥ 0. Note that for a3 = 0 the loops decompose into two bubbles and the integral
into a product of integrals, for which we assume know the answer5. As such, our goal is to write any

5When evaluating higher loop diagrams we assume that the integral of certain one-loop diagrams like bubble and triangle
diagrams are known, see e.g. Equation A.7 from [Smi06] for the bubble diagram solution. These integrals are expressed in terms
of gamma functions or polylogarithms.
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F (a1, a2, a3, a4, a5) in terms of F (e1, e2, 0, e4, e5) for some integers ei ≥ 0; the F (e1, e2, 0, e4, e5) form our
basis.

The IBP are determined as in the one-loop case. For k1 we find three relations corresponding to k1, k1 +p
and k1 − k2 respectively:

0 =
(
(d− 2a1 − a2 − a3) + a2 p

22+ − (a21−2+ + a31−3+ − a35−3+)
)
F (a1, a2, a3, a4, a5) (6)

=
(
(d− a1 − 2a2 − a3) + a1 p

21+ − (a12−1+ + a32−3+ − a34−3+)
)
F (a1, a2, a3, a4, a5) (7)

=
(
(d− a1 − a2 − 2a3)− (a13−1+ − a15−1+ + a23−2+ − a24−2+)

)
F (a1, a2, a3, a4, a5), (8)

where the surprising 5− shows up because of the factor k2
2 = 2k1 · (k1 − k2)− (k1 − k2)2 − k2

1 and similarly
for the 4−. For k2 we similarly have relations corresponding to k2 − k1, k2 + p and k2 respectively:

0 =
(
(d− 2a3 − a4 − a5)− (a43−4+ − a42−4+ + a53−5+ − a51−5+)

)
F (a1, a2, a3, a4, a5) (9)

=
(
(d− a3 − 2a4 − a5) + a5 p

25+ − (a34−3+ + a54−5+ − a32−3+)
)
F (a1, a2, a3, a4, a5) (10)

=
(
(d− a3 − a4 − 2a5) + a4 p

24+ − (a35−3+ + a45−4+ − a31−3+)
)
F (a1, a2, a3, a4, a5). (11)

Clearly, the above six relations allow us to reduce a1, a2, a4 or a5 without much effort from ai ≥ 1 to a sum
of integrals with value ai = 1. However, this does not work for a3, since we do not have any expression with
an isolated 3+. We therefore need to take linear combinations of the above relations to find an expression for
3+. We try a11+ (6) + a22+ (7)− a33+ (8), where we note that any `+ does not commute with the weight
a` in front of a F (a1, a2, a3, a4, a5) and instead shifts the value of the corresponding a` by one when pulled
through. We leave out the F for notational convenience, but remember that this is an equality of operators.
We then find that

0 =a1
(
(d− 2a1 − 2− a2 − a3)1+ + a2 p

2 1+2+ − (a22+ + a33+ − a31+5−3+)
)

+ a2
(
(d− a1 − 2a2 − 2− a3)2+ + a1 p

2 2+1+ − (a11+ + a33+ − a32+4−3+)
)

− a3
(
(d− a1 − a2 − 2a3 − 2)3+ − (a11+ − a13+5−1+ + a22+ − a23+4−2+)

)
=a1(d− 2a1 − 2a2 − 2)1+ + a2(d− 2a1 − 2a2 − 2)2+ − a3(d− 2a3 − 2)3+ + 2a1a2 p

2 1+2+.

Rewriting gives

a3(d− 2a3 − 2)3+ = a1(d− 2a1 − 2a2 − 2)1+ + a2(d− 2a1 − 2a2 − 2)2+ + 2a1a2 p
2 1+2+,

acting on F (a1, a2, a3, a4, a5).
We see a slight problem, at some point we reach the boundary a3(d− 2a3− 2) = 0 and can not reduce a3

further. In dimensional regularisation d is non-integer so we only have to worry about a3 = 0; but that still
implies we can only reduce a3 ≥ 1 to 1, not to 0. Of course, this is not the only relation we can use; we can
also try to use Equations 8 or 9. Unfortunately those Equations don’t solve our fundamental problem: we
aim to write everything in terms of integrals with a3 = 0, but that simply is too small a subset of the family
and does not work as a basis. We will need to include at least some master integral with a3 = 1. For this we
use the recursively one-loop diagrams introduced in Subsection 3.1.

Note that for a1 = 0 the left triangle collapses to some bubble diagram, see Figure 2b. We can use the
evaluation of the bubble diagram as a substitution to get a triangle diagram, for which we know the general
evaluation. As such, we know the value of any integral with a1 = 0. Similarly we know the value for any
integral with a2 = 0. It is therefore sufficient to reduce either a1, a2 or a3 to 0. Moreover, our situation is
symmetric in (1, 2, 3) ↔ (5, 4, 3) so the same holds for a4 and a5. We then can evaluate any integral of the
given family by iteratively using Equations 8, 9, since for any a4 ≥ 1 or a5 ≥ 1 the latter equation reduces
one of a1, a2, a3 to 0, while for a4 = 0 or a5 = 0 we also know the value of the integral. This concludes the
evaluation; we see that in the end we only need prior knowledge of a lower dimension (the triangle diagram
and bubble diagram values) and two IBP relations in order to determine all integrals of this family. 4

In the example above we used two standard techniques: the recursively one-loop diagrams and the triangle
sub-diagrams. The former is very commonly used to a find a manageable basis, while the latter gives
comparatively easy IBP relations. These techniques are rarely sufficient but are nevertheless very helpful
when using IBP relations.
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Remark 3.2.3. In the above examples we always worked with the ai ≥ 0 integers. However, the bubble
diagram evaluation as seen in Subsection 3.1 shows how we may find integrals with ai non-integer. In that
case one can not work with a basis of ai = 0, but instead a basis with ai ≤ 0 is used. Fortunately integrals with
ai < 0 can often still be evaluated using known integrals, see for instance Equation (A.2) in [Smi06:Appendix
A]. Nevertheless, non-integer ai complicate the choice of a basis. One positive side effect of ai non-integer is
that ai − k 6= 0 for any k ∈ Z, so there are typically less boundaries on the IBP relations. •

This concludes our discussion of the IBP relations. We shortly consider two similar relations which are
not sufficient by themselves but can be used along with the IBP relations.

3.2.1 Other relations

We consider two extra relations. The first is called the Lorentz Invariance identity and follows from the
fact that scalar Feynman integrals are invariant under infinitesimal Lorentz transformations of the external
momenta. [Smi06] This tells us that

F (a`; pi) = F (a`; pµi + εµνp
ν
i ),

for ε an infinitesimal transformation. The precise form of this identity differs depending on the shape of
F (a`; pi), but generally this provides a relation between derivatives of F (a`; pi) with respect to the pi. There
is some discussion whether or not the LI relations are just linear combinations of IBP relations, see for
instance [Smi06; Gro11]. However, there is little discussion that the LI relations can be useful.

The second relation uses the dimension of the Feynman integral. Consider the operator d2− which reduces
the dimension of the Feynman integral by two:

d2−F (a`; pi; d) = F (a`; pi; d− 2).

This operator can be written explicitly using the Symanzik polynomial which we will see in Subsection 3.4:

d2− = iL

π
U(z1, . . . , zL)

∣∣∣∣
z` 7→i a` `+

. [Smi06]

This means that if we can calculate F (a`; pi; d+ 2) for all a` then we can derive F (a`; pi; d) as well. This is
useful as it allows us to move boundaries such as the boundary d− 2a3 − 2 in Example 3.2.2.

We have seen multiple identities which linearly relate Feynman integrals in a family. We now look at
an accompanying technique which is typically used after reduction to a basis of integrals to evaluate said
integrals.

3.3 Evaluation using Differential Equations
In this subsection we look into a way of evaluation individual Feynman integrals using the result of the IBP
relations derived above in order to make a system of differential equations (DE). We assume that we have
a family of Feynman integrals and a basis I1, . . . , Ik of master integrals such any element of the family can
be expressed in terms of the basis. Any derivative of a basis integral Ij with respect to external parameters
x = (x1, . . . , x`) (e.g. mass or other Mandelstam invariants of the external momenta) will then again be a
member of the family, hence will give an expression in terms of the Ij . This means that for each external
parameter xi we can find some matrix Axi depending on the external parameters and on the dimension d
such that:

∂

∂xi
Ij(x; d) =

(
Axi(x; d)

)
jj′
· Ij′(x; d).

By construction, this matrix Axi can be calculated by taking the derivatives with respect to the external
parameters and then using the algorithms described in Subsection 3.2. We can do this for any i, meaning we
know the derivative of Ij(x; d) in each direction. We can then integrate over the derivative to find Ij(x; d).
The steps one needs to take in order to evaluate the Ij are to choose a base point x′, to determine the
boundary conditions to fix Jj′ , and to integrate the exponent of the matrix over a path γ from x′ to x:

Ij(x; d) =
[
π

t∈[0,1]
exp

(∑̀
i=1

γ′i(t) Axi(γ(t); d) dt
)]

jj′

· Jj′ . (12)
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Here π denotes a path-ordered integral or product integral6, i.e.

π
t∈[0,1]

exp(X(γ(t))) := lim
N→∞

N∏
i=1

exp
(
X(γ(ti)) ∆t

)
6= exp

(
lim
N→∞

N∑
i=1

X(γ(ti)) ∆t
)

= exp
(∫

γ:x′ x
X(γ)

)
,

where ti = i/N ∈ [0, 1] for i ∈ {0, 1, . . . , N} and ∆t = 1/N . The product is sorted such that tN is
leftmost and t0 is rightmost. We need to use such an integral since for matrices X, Y we generally have
exp(X + Y ) 6= exp(X) exp(Y ).

The above expression for Ij(x, d) is not uniquely defined, as it depends on the choice of a path γ. This
behaviour is expected, as Feynman integrals generally need branch cuts to be single-valued and we haven’t
chosen branch cuts. After choosing branch cuts in x, the expression no longer depends on the path γ as long
as we demand that the path never crosses a branch cut.

3.3.1 The canonical form

The above path-ordered integral is typically very hard to evaluate, but is very simple for e.g. Axi diagonal or
more generally if the matrix Axi(γ(t)) commutes with Axi(γ(t′)) for all t, t′ ∈ [0, 1]. As such, the difficulty of
the integral strongly depends on the choice of a basis Ij . Indeed the main complication in evaluating using
DE is to find an alternate basis for which the matrix Axi simplifies to an easier form. We will denote one
such easier form as the canonical form [Hen15], that is the form

d #�

I (x; d) = ε
(
dÃ
)
#�

I (x; d), Ã =
∑
k

Ak log(αk(x)),

where d = 4 − 2ε, Ak is a constant matrix and αk(x) is an algebraic expression in x, e.g. x − pk where pk
denotes the k-th singularity of the canonical form. Remark that in the above formula the derivative d only
derives with respect to the parameters x, not the dimension d. The set {αk(x)} is called the alphabet.

In the canonical form Equation 12 becomes:

#�

I (x; d) =
[
π

γ:x′ x
exp(ε dÃ)

]
· #�

J . (13)

Using the work of Carl Miller on exponential iterated integrals [Mil05:Thm.3.2] we can write this path-ordered
integral as a sum of Chen iterated integrals:

#�

I (x; d) =
[∑
n∈N

∫
γ:x′ x

(
ε dÃ

)n] · #�

J =
[∑
n∈N

εn
∫
γ:x′ x

(
dÃ
)n] · #�

J , (14)

where ∫
γ:x′ x

ωn :=
∫

0≤t1<···<tn≤1
γ∗ω(t1) · . . . · γ∗ω(tn).

Note that the exponential has no factor 1/n! since the volume of the integration domain 0 ≤ t1 < · · · < tn ≤ 1
already is 1/n!; equivalently we could allow the ti ∈ [0, 1] to be independent which would require a factor
1/n! and an ordering convention.

Let us stress that Equation 14 is very useful. The equation describes the value of the Feynman integral
as a sum of powers of ε and integrals. In particular, the integrals have no further ε-dependence hence do not
have to be simplified further and can easily be integrated at the end of the calculation (although numerical
integration may require a choice of a branch cut). This means that the canonical form provides a very explicit
value for #�

I (x; d).
Remark that Miller’s exponential iterated integral is not the only way to expand the product integral in

Equation 13. Another useful method is the Magnus expansion [IMN99], which writes the product integral as
an exponential of a sum of commutators:

#�

I (x; d) = exp(Ω) · #�J , Ω =
∑
k∈N

Ωk,

6Other notations for the path-ordered integral π exp(A) include P exp
(∫

A
)
, P exp

[∫
A
]
and

∏
exp(A).
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where

Ω1 = ε1
∫
γ:x′ x

dÃ = ε1
∫
t∈[0,1]

γ∗dÃ(t), Ω2 = 1
2 ε

2
∫

0≤t1<t2≤1
[γ∗dÃ(t1), γ∗dÃ(t2)],

and generally the term Ωk has power εk and contains k− 1 nested commutators. Because of the exponential
exp(Ω) this expansion mixes powers of ε and is hence less useful as an quantitative expansion. The expansions
however has the property that truncations still qualitatively resemble the full expansion. For instance, any
singularity of

∫
γ:x′ x dÃ might give rise to an essential singularity in the product integral. Any truncation

of the expansion in Equation 14 will only give a singularity of finite order, while the first order term of the
Magnus expansion indeed gives an essential singularity.

The result of the repeated integrals is not always expressible in terms of known functions, but will often
be made of logs and iterative integrals over logs such as polylogarithms [Hen15]

Lin(x) =
∑
k>1

xk

kn
, x ∂x Lin(x) = Lin−1(x), Li1(x) = − log(1− x),

or Goncharov polylogarithms [Hen15]

G(a1, . . . , an; z) :=
∫ z

0

dt

t− a1
G(a2, . . . , an; t) n > 1,

G(a1; z) :=
∫ z

0

dt

t− a1
a1 6= 0,

G( #�0 n; z) = 1
n! logn(z).

The questions are now how to determine the #�

J from the boundary conditions and how to generally write the
DE in the canonical form. We will investigate these questions next.

3.3.2 Boundary conditions

We shortly consider the boundary conditions. The only boundaries are given by the points x = pj where the
matrices Axi(x; d) become singular or zero. As such, the boundary conditions are generally specified by the
expansion of matrices around the singularities. This is often enough to specify the boundary condition at
each singularity.

There are unfortunately cases where the matrix of the DE does not fully fix the boundary conditions. In
this case there is a trick, which works as follows. Introduce a new parameter y and replace the occurrences of
the singularity pj by ypj in the master integrals #�

I . For y = 1 the old Feynman integrals #�

I (y = 1) = #�

I are
recovered, while for y = 0 one has a completely different set of Feynman integrals #�

I (0). Now the derivative
with respect to y gives a DE ∂y

#�

I (y), which provides extra restrictions on the form of I(y = 1) and helps
determine the boundary condition. A version of the above trick is often used to compute single-scale integrals.
[Hen15]

One nuance for the limit x → pj is that most generally the limits x → pj and ε → 0 do not commute.
This gives another reason to use a simplified form like the canonical form above, as the separated x and ε–
dependence in the canonical form guarantees that the limits commute. In practice the boundary conditions
are often calculated through first fixing the limit x → 0, then the limit x → ∞ or to other singular points
if necessary, and using the above trick only if the boundary conditions are still not clear. These steps are
generally comparatively easy to do, but are hard to implement in a computer program and are typically done
by hand. See e.g. [PTW16] for more details on calculating boundary conditions by hand.

3.3.3 Transformation into the canonical form

We now look at writing the DE in canonical form. As one might expect from how powerful the form is, it is
hard to rewrite a generic DE into that form. We will only give some generic steps for a DE in a single external
parameter x; see dedicated literature for more details [Hen15; Lee15]. We start with a general expression

∂x
#�

I (x; d) = A · #�I (x; d).
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The first step is to makes the poles of A explicit. Since the singularities of A must correspond to singularities
of the original family of Feynman integrals, we know that the ‘physical’ poles of A are all regular. Here
we emphasize the ‘physical’ to separate them from the ‘spurious’ singularities which may appear due to the
nature of matrix transformations. Moreover, we also know that the eigenvalues of A can only have at most
simple poles, since for any higher order pole at x0 and for any eigenvector #�

f we have [Hen15: 3.23]:

∂x
#�

f = a

(x− x0)m+1
#�

f (x) gives #�

f (x) = exp
(
− a

m (x− x0)m

)
#�

f 0,

which has an essential singularity at x = x0. This can not appear in a Feynman integral as the integrand is
the product of a rational function in x.7 We find that any non-simple poles must be spurious. There exist
logarithms which use this fact to bring the DE in the following form:

∂x
#�

I (x; d) =

 ∑
1≤j≤k

Aj(ε)
x− pj

 · #�I (x; d),

where the Ak(ε) are matrices8, the #�

I have been changed using a basis transformation, and the pk denote the
singularities. [Lee15] In general this form is not possible without introducing a new singular point pk+1 and
matrix Ak+1(ε) to balance out the limit to ∞ [Hen15]; this is to be expected, since we have

A∞(ε)
x−∞

= 0,

so we would lose the information contained in A∞ if we did not ‘back it up’ in another Ak+1.
It should be noted that the algorithm mentioned above can be done with only rational transformations;

meaning the resulting #�

I is still a rational function of x. This is relevant for some of the mathematical
properties of #�

I . In particular, #�

I will still only have regular poles and knowing the explicit form of the DE
above should help when deriving the boundary conditions of the DE.

Note that the above equation already has the right shape in terms of x, since

1
x− pj

dx = d log(x− pj) = d log(αj(x)).

However, the Aj still depend on ε. The next step is to simplify this ε dependence. This is hard [Hen15],
although it seems that large steps have been made in slightly more recent papers [Lee15]. The main idea
here is that we expect the eigenvalues of the Aj(ε) to be linear in ε for the following reason. Near a singular
point pj the DE has a solution

#�

I = P (x, ε) exp(Aj(ε) x) #�

I pj (ε),

where #�

I pj (ε) is a boundary vector at x = pj and P (x, ε) is a matrix polynomial. We see that the scaling
of #�

I near x = pj is determined by exp(Aj(ε) x), hence by the eigenvalues of Aj(ε). But from the Feynman
parameter representation of the Feynman integral (which we will see in Subsection 3.4, Equation 18) we know
that the scaling of #�

I near the poles is given by terms linear in ε, i.e. (x − pj)a ε for some a ∈ R. This tells
us the eigenvalues have to be linear in ε after normalisation.

However, the matrix itself can contain non-linear terms because of the nature of matrix transformations.
As such, we need to transform the matrix to make the ε-dependence explicit and indeed write the differential
equation in canonical form. There are algorithms for that relying on linear algebra [Lee15], but they generally
take an extremely long time to compute as the size of the matrix increases and hence one has to use block-
matrix simplifications. Moreover, it is not clear how to extend this algorithm to multi-variable cases with
more than one x. Henn [Hen15] has proposed other methods of simplifying the ε-dependence by integrating
out the ε0 term, but they are not always usable and therefore hard to turn into an algorithm.

7In the representations in Subsection 3.4 the integrand is no longer purely rational, but it is still the quotient of finite powers
of polynomials hence the integrand still does not have essential singularities.

8The Ak(ε) are not generally linear in ε hence this is not the canonical form; but we will see that the eigenvalues are linear
in ε.
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We see that algebraically reducing the DE is hard, and there are no full generality algorithms. It is for
this reason that Henn [Hen15] introduces a more geometrical manner of looking at the DE using cuts. We will
shortly look at cuts after considering alternative representations of Feynman integrals such as the Feynman
parameter representation we mentioned above.

3.4 Representing Feynman Integrals
Like any integral, the Feynman integral can be put into different forms using substitutions and tricks. Since
the standard loop momentum representation has no straightforward way to implement dimensional regulari-
sation mathematically (as it requires integrating over a space of dimension d for d generally non-integer) we
consider a few alternative representations of the integral with a continuous dependence on the dimension.
These representations also write the Feynman integral in such a manner that intersection theory can easily
be applied to the integrands, as we will see in later chapters.

Below, we consider three representations. For each representation we consider the (up to constant factors)
generic Feynman integral

F (α`; pi) =
∫
· · ·
∫

ddk1 · · · ddkL
1

Dα1
1 . . . DαN

N

.

Here the D` are quadratic expression in the external momenta pi and internal momenta kj . The number
L denotes the number of loop momenta, N denotes the number of lines in the Feynman diagram and the
number of external momenta is E (such that there are E + 1 external lines). Note that in this subsection we
use α for the weights rather than a for (subjective) notational clarity.

3.4.1 Schwinger Parameter Representation

One well-known representation is the Schwinger parameter representation, also known as the alpha parameter
representation. [Smi06] This representation is easy to derive and is often used in the derivation of other
representations such as the Feynman parameter representation in the next subsection. We follow [Smi06;
IZ80] in the derivation of this representation; other sources such as [LP13] use a different convention which
results in different factors i and different signs.

The core idea of the Schwinger parameter representation is to use the identity

1
A

= −i
∫ ∞

0
dα exp(i Aα) = −i

[
exp(i Aα)

i A

]α→∞
α=0

on the propagators D`. Remark that this identity only holds when the imaginary part of A satisfies =A > 0;
this is no issue since we are working with Feynman propagators which means we add i ε to any of the
propagators for a small ε > 0 in order to avoid poles, and we take the ε → 0 limit at the end.9 More
generally, one can take the partial derivative of the above expression with respect to A to derive

1
An

= −in

Γ(n)

∫ ∞
0

dα αn−1 exp(i Aα).

While partial derivatives give the above identity for integer n, it is possible to use the definition of the Gamma
matrix to derive the identity for any n ∈ R, n > 0, where in is replaced with exp(i π n/2).

We will be using the parameters z rather than α, as we α to denote the weights. This gives:

1
Dα1

1 . . . DαN
N

= exp(i π α/2)
Γ(α1)Γ(α2) . . .Γ(αN )

∫ ∞
0

dz1

∫ ∞
0

dz2· · ·
∫ ∞

0
dzN zα1−1

1 . . . zαN−1
N ei

(
D1z1+D2z2 +DNzN

)
,

where

α =
L∑
`=1

α`.

9As we remarked in the Preliminaries, this ε is different from the ε in dimensional regularisation. Unfortunately, it seems
that the common convention is to use ε for this value as well.
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All terms which do not depend on D` commute with the integral over ddkj , so inserting the above identity
into the Feynman integral we find that the integral over ddkj simplifies to∫

· · ·
∫

ddk1 . . . ddkL eiD1z1+iD2z2 ... +iDNzN .

This is simply a product of (complex) Gaussian integrals, and hence something we can make sense of math-
ematically. Indeed we know the usual Gaussian integral over Rl with signature (−+l−1) for any l ∈ N in
terms of exponents and powers:

∫
d(1, l−1)k1 . . . d(1, l−1)kL exp

i
∑

i,j

Aij ki · kj + 2
∑
i

bi · ki + c


= πlL/2 e−iπ L(l−2)/4

det(A)l/2
exp

i c− i∑
i,j

A−1
ij bi · bj

 .
Remark that the signature here is (−+l−1) hence if edge ` has momentum q` and mass m` then D` =
q2
` −m2

` = −(q0
` )2 + ( #�q `)2 −m2

` . This means that the q0
` had to be integrated with a different sign from the

#�q ` part, hence the factor eiπL(l−2)/4 uses (l − 1)− 1 = l − 2 instead of l.
The right hand side is well-defined for arbitrary l > 1, which solves the problem of dimensional regulari-

sation; we can set l = d instead of l = 4. We apply this to

i

∑
i,j

Aij ki · kj + 2
∑
i

bi · ki + c

 = iD1z1 + iD2z2 . . . + iDNzN .

Note that this Aij depends linearly on the z` and consists of product of the form ki · kj , while bj depends
linearly on the z` and consists of product of the form pi ·kj . The term c contains all the masses and products
of external parameters pi ·pj , and is also linear in the z`. It follows that detA is a homogeneous polynomial in
the z` of degree L (as A is an L×L matrix) while

∑
ij A

−1
ij bi · bj is a homogeneous rational function (that is,

the quotient of a homogeneous polynomial by another homogeneous polynomial) of total degree 1. We claim
[LP13] that the product of this homogeneous rational function with detA gives a homogeneous polynomial
of degree L+ 1; in other words, the denominator of the rational function is a divisor of detA. We define

U := detA, V := detA
∑
i,j

A−1
ij bi · bj .

This allows us to rewrite the Feynman integral as

F (α`; pi) = πdL/2 eiπ(α/2−L(d−2)/4)

Γ(α1) · · ·Γ(αN )

∫ ∞
0

dz1 . . .

∫ ∞
0

dzN zα1−1
1 . . . zαN−1

N U−d/2 exp(ic− iV/U). (15)

This is known as the Schwinger Representation. In this derivation we assumed that every propagator is of
the form ∼ 1/(q2−m2); the Schwinger representation can also be extended to more general forms where the
numerator is a polynomial in the loop momenta. [Smi06]

Invariance under ki 7→ ki + qi
Many authors instead use the combination

F = V − c U .

This is because V is not invariant under constant transformations such as ki 7→ ki + qi for some constant
vector qi. The combination F is invariant under this transformation, which can be shown as follows. We
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have ∑
i,j

Aij ki · kj + 2
∑
i

bi · ki + c 7→
∑
i,j

Aij (ki + qi) · (kj + qj) + 2
∑
i

bi · (ki + qj) + c

=
∑
i,j

Aij ki · kj + 2
∑
i

bi +
∑
j

Aijqj

 · ki
+

c+
∑
i,j

Aijqi · qj + 2
∑
i

bi · qi

 .
This shows how bi and c transform under ki 7→ ki+qj ; the matrix Aij does not change. Then the combination∑
ij A

−1
ij bi · bj transforms as

∑
ij

A−1
ij bi · bj 7→

∑
i,j

A−1
ij

(
bi +

∑
k

Aikqk

)
·

(
bj +

∑
l

Ajlql

)
=
∑
i,j

[
A−1
ij bi · bj +Aijqi · qj

]
+ 2

∑
i

bi · qi.

Comparing this to the change in c and recalling that Aij is invariant, it follows directly that F = V − cU is
invariant under ki 7→ ki + qi as well.

One can show [IZ80] (up to convention) that the two polynomials can be written using the structure of
the Feynman diagram as follows,

U =
∑
T∈T 1

∏
6̀∈T

z` (16)

and

F = V − cU =
∑
T∈T 2

−(pT )2
∏
` 6∈T

z`

− U ∑
`

c′` z`. (17)

Here T 1 is the set of subgraphs of the Feynman diagrams that are (maximal) trees (e.g. have no loops and
one connected component), while T 2 is the set of subgraphs consisting of a (maximal) pair of trees that don’t
touch. The complement of a T ∈ T 1 consists of L edges, while the complement of T ∈ T 2 consists of L + 1
edges. The vector pT is the sum of all external momenta that flow into one of the connected components of
the tree T ∈ T 2. This expression does not depend on the choice of component, since the other component has
precisely −pT and we take the square. Finally c′` is the invariant part of the constant term in the propagator
of the edge `. Roughly speaking, c′` contains internal mass term. In particular, if the propagator has a
denominator of the form ak2 + b · k + c where k is a sum of loop momenta then c′` is given by

c′` = c− b · b
4a .

The reason we need this invariant part rather than the entire constant term c is again because c is not
ki 7→ ki + qi invariant, but the product over trees in Equation 17 is.

3.4.2 Feynman Parameter Representation

The Feynman parameter representation strongly resembles the Schwinger parameter representation, but is
slightly different and can be written in a nicer form. The main idea [IZ80] is to reduce the integrals∫ ∞

0
dz` to integrals

∫ 1

0
dz`.

This is achieved by introducing a factor ∫ ∞
0

ds δ
(
s−

∑
`

z`

)
= 1,
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scaling each z` by s, and then integrating over s. This is sensible because U and V are homogeneous, such
that we can extract the obtained factors s explicitly. The derivation is as follows.

F (α`; pi) =πdL/2 eiπ(α/2−L(d−2)/4)

Γ(α1) · · ·Γ(αN )

∫ ∞
0

dz1 . . .

∫ ∞
0

dzN zα1−1
1 . . . zαN−1

N U−d/2 exp(ic− iV/U)

=πdL/2 eiπ(α/2−L(d−2)/4)

Γ(α1) · · ·Γ(αN ) ·∫ ∞
0

ds
∫ ∞

0
dz1 . . .

∫ ∞
0

dzN δ

(
s−

∑
`

z`

)
zα1−1

1 . . . zαN−1
N U−d/2 exp(ic− iV/U).

We now scale z 7→ sz which gives zα`−1
` dz` 7→ sα`zα`−1

` dz` and note that δ
(
s− s

∑
` z`

)
= 1

sδ

(
1−

∑
` z`

)
.

This gives us:

F (α`; pi) =πdL/2 eiπ(α/2−L(d−2)/4)

Γ(α1) · · ·Γ(αN ) ·∫ ∞
0

ds
∫ ∞

0
dz1 . . .

∫ ∞
0

dzN δ

(
1−

∑
`

z`

)
sα−dL/2−1 zα1−1

1 . . . zαN−1
N U−d/2 exp[is(c− V/U)].

We then evaluate the integral over s. This integral has integrand sα−dL/2−1eis(c−V/U), for which it is not a
priori clear that the integral converges. Remark that the c contains the constant parts of the propagators
such as the mass terms, and hence also inherits the iε from the Feynman propagator procedure. This means
that the integrand overall scales as e−εs in the limit s → ∞, hence the integral converges at infinity. On
the other hand, the integral converges at s = 0 if and only if α ≥ dL/2. This is not a significant restraint,
considering that for α < dL/2 we already typically have UV divergences.10 Since we are using dimensional
regularisation, we may ignore this divergence at this point. We as such can evaluate the integral (using the
definition of the Gamma function, partial derivatives and smooth continuations) to obtain:∫ ∞

0
ds sα−dL/2−1 exp[is(c− V/U)] = Γ(α− dL/2)

[
eπ i/2

(
−c+ V

U

)]−α+dL/2
.

Substituting this in, we arrive at the Feynman parameter representation:

F (α`; pi) = πdL/2 eiπL/2
Γ(α− dL/2)

Γ(α1) · · ·Γ(αN )

∫ ∞
0

dz1 . . .

∫ ∞
0

dzN δ

(
1−

∑
`

z`

)
zα1−1

1 . . . zαN−1
N

Uα−d(L+1)/2

Fα−dL/2
,

(18)
where we used F = V − c U as mentioned before. Once again, note that other sources such as [LP13] use
different conventions or definitions resulting in different factors π or eiπ/2.

There is another way to write this integral which was popularised by [LP13], which is also called the
Feynman parameter representation:

F (α`; pi) = πdL/2 eiπL/2 Γ(d/2)
Γ((L+ 1)d/2− α)Γ(α1) · · ·Γ(αN )

∫ ∞
0

dz1 . . .

∫ ∞
0

dzN zα1−1
1 . . . zαN−1

N (F + U)−d/2. (19)

This representation has a very simple integrand for any values of α` and is therefore very suitable for
intersection product calculations. In the rest of this thesis “Feynman parameter representation” refers to this
latter form rather than the earlier form in Equation 18.

The former representation is obtained from the latter by inserting
∫∞

0 ds δ
(
s −

∑
` z`
)

= 1 as before,
scaling z 7→ sz and integrating over s. Note that the different scaling of F and U with respect to s creates a
term of the form

1
U + sF

,

10When α < dL/2 you generally integrate a function which scales as k−2α in the limit k → 0, over L spaces of dimension d.
That integral will diverge at k = 0, which is known as the UV divergence.
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p

k − p

k

p

(a) The (massive) sunrise diagram. This is non-
standard terminology. The dashed line represents the
particle without mass.

p p

k

k

1

2

p − k  − k1 2

(b) The massless sunset diagram.

Figure 3: The sunrise and sunset diagrams. Both are specific cases of what are generally referred to as sunset
diagrams.

which upon integration gives rise to quotient of powers of the two terms.
Let us consider two sunset diagrams as an example.

Example 3.4.1 (Sunrise diagram). We consider the on-shell sunrise diagram with an incoming and outgoing
massive particle with momentum p and mass p2 = m2, see Figure 3a. This sunset diagram has a Feynman
integral of the form:

F (α1, α2; p) =
∫

ddk 1
[k2 −m2]α1 [(k − p)2]α2

.

In order to determine the Feynman parameter representation, we only need to determine U and F . We use
Equations 16 and 17 to determine U and V; there are two 1-trees T ∈ T 1 corresponding to the upper path
and lower path, and one only 2-tree in T 2 consisting of only the two external edges. The only 2-tree has
pT = p. We therefore find

U = z1 + z2, F = −p2 z1z2 − (−m2 z1 + 0 z2)(z1 + z2) = m2z2
1 .

We can then immediately write down:

F (α1, α2;m2) = πd/2 i Γ(d/2)
Γ(d− α1 − α2) Γ(α1) Γ(α2)

∫ ∞
0

dz1

∫ ∞
0

dz2
zα1

1 zα2
2

z1z2 (z1 + z2 +m2z2
1)d/2

. 4

Example 3.4.2 (Sunset diagram). As a two-loop example, we consider the massless sunset diagram of Figure
3b. The Feynman integral for this diagram in the loop momentum representation is

F (α1, α2, α3; p) =
∫

ddk1

∫
ddk2

1
[k2

1]α1 [k2
2]α1 [(p− k1 − k2)2]α3

.

We again have to find U and F , and we us Equations 16 and 17. There are three 1-trees corresponding to
the upper, middle and lower path, and there is one 2-tree consisting of only the external edges. The only
2-tree has pT = p. There are no invariant constant contributions. This gives us:

U = z1z2 + z2z3 + z3z1, F = −p2 z1z2z3.

We thus obtain

F (α1, α2, α3; p) =
−πd Γ(d/2)

Γ(d− α) Γ(α1)Γ(α2)Γ(α3)

∫ ∞
0

dz1

∫ ∞
0

dz2

∫ ∞
0

dz3
zα1

1 zα2
2 zα3

3
z1z2z3 (z1z2 + z2z3 + z3z1 − p2 z1z2z3)d/2

. 4
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3.4.3 Baikov Representation

We finally consider and derive the Baikov representation, following [Gro11; FP17]. Also relevant is the
loop-by-loop approach as described in Appendix A of [Fre+21].

We still consider the Feynman integral

F (α`; p1, . . . , pE) =
∫
· · ·
∫

ddk1 · · · ddkL
1

Dα1
1 . . . DαN

N

.

with D`, pi, L,E and N as before.
We will now assume without loss of generality that N = 1

2L(L + 1) + LE; if N < 1
2L(L + 1) + LE we

can add some D` and set the corresponding α` to 0. Remark that this is the maximal amount of different
propagators assuming the graph has no vertices connecting only one or two edges and assuming each equal
momentum corresponds to the same mass.11 We can always rewrite the Feynman integral such that the
internal momentum parts of the D` are linearly independent, so we assume this as well. Finally, we assume
the Feynman integral is Euclidean so that we have no complications with signs or powers of i; this can be
achieved by means of a Wick rotation.

The core idea of the Baikov Representation is that the value of the Feynman integral does not directly
depend on the external momenta pi and the interal momenta kj , since the value is a scalar rather than a
vector. Moreover, the value can not depend on specific components of the vectors due to Special Relativity
(this is a physical assumption rather than mathematical). Instead, the value only depends on the invariant
products pi · kj , pi · pj and ki · kj . Moreover, the D` precisely consist of sums such expressions and are
therefore invariant. Since the momentum parts of the D` are linearly independent, any product pi · kj or
ki · kj can be written as a sum of some D` and some constant mass term. This means it is possible to write
the integral as an integral over the D`, where the D` = x` are now parameters. Of course this gives us some
Jacobian which we have to determine. This Jacobian will reflect the symmetries between the D` which are
lost when we treat them as independent variables.

To make this explicit, we write each D` as follows:

D` =
∑

1≤i≤j≤L
Aij` ki · kj +

E∑
i=1

L∑
j=1

Bij` pi · kj + f`.

The term f` contains terms not depending on internal momenta, such as internal masses and products of
external momenta. Note that Aij` is an 1

2L(L+ 1)×N–matrix and Bij` is an EL×N–matrix, such that they
can be added to form a N ×N–matrix (AB).

As mentioned before, the D` are chosen such that the internal momentum parts of all D` are linearly
independent. In other words, {D1 − f1, D2 − f2, . . . , DN − fN} is a basis for the space

〈D1 − f1, D2 − f2, . . . , DN − fN 〉 = 〈pi · kj , ki · kj〉.

The matrix (AB) then simply is a transformation between bases. With this in mind, the Baikov representation
is achieved in two steps.

Parameter transformation from kj to pi ·kj , ki ·kj This transformation is achieved by repeatedly using
the Gram determinant of K vectors qi ∈ RK :

G(q1, . . . , qK) = det
(
qi · qj

)
1<i,j<k = ‖q1 ∧ q2 ∧ · · · ∧ qK‖2.

Equivalently, we may write

G(q1, . . . , qK) = det
[
QT (q1, . . . , qK) ·Q(q1, . . . , qK)

]
= det

(
Q(q1, . . . , qK)

)2
11In other words, this holds if we assume that if any two edges of the Feynman diagram both have momentum q, then their

masses are the same. This condition does not generally hold in QCD.
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where Q is the square matrix

Q(q1, . . . , qK) =
(
q1 q2 . . . qK

)
, |detQ(q1, . . . , qK)| = ‖q1 ∧ · · · ∧ qK‖.

This determinant is, by construction, the square of the volume of the parallelotope in RK formed by the
vectors q1, . . . , qK . As such, we can use it to translate between measures.

We split each internal momentum kj into a perpendicular part kj⊥ and parallel part kj‖, where the
parallel part lies in the span 〈pi, kl>j〉. In this case, the parallel part is fully determined by the products
pi · kj and ki · kj . In particular, we have the following.
Lemma 3.4.3. For any vector v = (v1, v2, . . . , vK) ∈ RK and basis {q1, . . . , qK} of RK we have

dv = d(v · q1) d(v · q2) . . . d(v · qK)√
G(q1, . . . , qK)

. (20)

Proof. We use the fact that dv = dv1 dv2 . . . dvK together with vj = v · ej for {ej} the standard basis of
RK . We then apply the transformation matrix Q(q1, . . . , qK), which gives a Jacobian.

dv = dv1 dv2 . . . dvK
= d(v · e1) d(v · e2) . . . d(v · eK)

= d(v · q1) d(v · q2) . . . d(v · qK) · 1
|detQ(q1, . . . , qK)|

= d(v · q1) d(v · q2) . . . d(v · qK)√
G(q1, . . . , qK)

.

This is the required expression.

Applying Equation 20 to kj‖ gives us

dkj‖ = d(kj+1 · kj) d(kj+2 · kj) . . . d(kL · kj) d(p1 · kj) . . . d(pE · kj)√
G(kj+1, . . . , kL, p1, . . . , pE)

.

One remark here is that we have to be slightly careful with the interpretation of vectors and products. The
term d(kj+1 · kj) is not a derivative of kj+1 · kj , but is ds from some parameter s which happens to coincide
with kj+1 · kj . In particular, the two terms are treated as elements of different spaces. Similarly dkj‖ is
treated as an E +L− j form, although is possible for E +L− j to be greater than d, the number of spacial
dimensions.12 Moreover, we treat kj+1, . . . , pE as E + L− j–vectors.13

We now consider the perpendicular part, kj⊥. We may ignore the product of kj with any kl for l < j,
since those products are already covered in dkl‖. (Recall that (dy + adx)dx = dydx for any x, y and a,
since dx ∧ dx = 0.) On the other hand, the product of kj⊥ with any pi or kl with l > j is 0 by definition.
Therefore, the only relevant product of kj⊥ is the product kj⊥ · kj⊥. In particular, this product corresponds
to the norm of kj⊥, hence to a radius. This means we can write dkj⊥ in terms of d‖kj⊥‖ by switching to
radial coordinates and integrating over the sphere Sk−1. This last integral is well-known:

Vol(Snr ) = 2 πn/2

Γ(n/2) r
n−1,

where r denotes the radius of the sphere, n denotes the dimension and Γ is the Euler gamma function. This
formula work for any n, even when n is non-integer, and is therefore usable in our case. We find that

dkj⊥ ∼
2 π(d+j−E−L)/2

Γ((d+ j − E − L)/2) ‖kj⊥‖
d+j−E−L−1 d‖kj⊥‖

∼ π(d+j−E−L)/2

Γ((d+ j − E − L)/2) ‖kj⊥‖
d+j−E−L−2 d(kj⊥ · kj⊥)

12We assumed that the Feynman integral is Euclidean, such that all space-time dimensions are spacial dimensions.
13Remark that this is possible even when E + L − j is greater than d, the number of spacial dimensions, since the vectors

generally depend on external variables and as such should be viewed as abstract objects rather than concrete vectors. In other
words, the span is an abstract vector space rather than a physical one. Compare this to how the vector space of polynomials of
degree ≤ 2 has basis {1, x, x2}, but for any concrete value of x ∈ R this set is degenerate and the subset {1} is sufficient to span
the space.
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where we used that d(r2) = 2r dr and use ∼ to emphasize we ignore any terms such as d(kj · k1).
Finally we want to relate d(kj⊥ · kj⊥) to d(kj · kj) and rewrite ‖kj⊥ in terms of kj , kl for l > j and pi.

To do the former, we in principle have to determine d(kj‖ · kj‖). However, d(kj‖ · kj‖) only contributes via
terms d(kj · kl) for l > j or d(kj · pi), per construction of kj‖. We therefore find that

d(kj · kj) ∼ d(kj⊥ · kj⊥).

In order to rewrite ‖kj⊥‖ note that

‖kj⊥‖ ‖kj+1 ∧ · · · ∧ kL ∧ p1 ∧ · · · ∧ pE‖ = ‖kj⊥ ∧ kj+1 ∧ · · · ∧ kL ∧ p1 ∧ · · · ∧ pE‖
= ‖kj ∧ kj+1 ∧ · · · ∧ kL ∧ p1 ∧ · · · ∧ pE‖,

where we used that kj⊥ is perpendicular to include it in the norm. We therefore see

‖kj⊥‖ = ‖kj ∧ kj+1 ∧ · · · ∧ kL ∧ p1 ∧ · · · ∧ pE‖
‖kj+1 ∧ · · · ∧ kL ∧ p1 ∧ · · · ∧ pE‖

=

√
G(kj , . . . , kL, p1, . . . , pE)
G(kj+1, . . . , kL, p1, . . . , pE) .

Substituting these two equations in the earlier expression for dkj⊥, we find

dkj⊥ ∼
π(d+j−E−L)/2

Γ((d+ j − E − L)/2)

(
G(kj , . . . , kL, p1, . . . , pE)
G(kj+1, . . . , kL, p1, . . . , pE)

)(d+j−E−L−2)/2
d(kj · kj).

We finally combine this with the equation for dkj‖ to obtain

dkj ∼ Cj
G(kj , . . . , kL, p1, . . . , pE)(d+j−E−L−2)/2

G(kj+1, . . . , kL, p1, . . . , pE)(d+j−E−L−1)/2 d(kj · kj) . . . d(kL · kj) d(p1 · kj) . . . d(pE · kj),

where
Cj = π(d+j−E−L)/2

Γ((d+ j − E − L)/2) .

Remark that the Gram determinant in the denominator and numerator differ by 1, such that the denominator
for j cancels with the numerator for j + 1. This means that the product only contains the numerator for
j = 1 and the denominator for j = L. Using the short-hand notation sij = ki · kj and tij = pi · kj , we find
that

dk1dk2 . . . dkL = C ′ G(k1, . . . , kL, p1, . . . , pE)(d−E−L−1)/2 ds11 ds12 . . . dsL−1,L dt11 . . . tLE ,

where

C ′ = G(p1, . . . , pE)(−d+E+1)/2
L∏
j=1

π(d+j−E−L)/2

Γ((d+ j − E − L)/2) .

Recall that
G(k1, . . . , kL, p1, . . . , pL) = det

(
ki · kj pi · kj
ki · pj pi · pj

)
= det

(
sij tij
tij pi · pj

)
,

so G(k1, . . . , kL, p1, . . . , pL) = G(sij , tij) is a polynomial in sij , tij and the product of external variables pi ·pj .
The integration domain corresponding to this measure is the space of all sij , tij where the Gram deter-

minant is non-zero. (This is a consequence of us treating the vectors pi, kj as independent vectors in RE+L,
which implies the Gram determinant is non-zero.) This was the first and largest step.

Transformation from pi · kj, ki · kj to D` − f` We now have the second step, to transform from the
dsij and dtij to the D` − f`. As mentioned before, the sij , tij span the same (abstract) vector space as the
D` − f`, and the transition matrix from the latter basis to the former is precisely given by (AB). We can
then easily rewrite the measure using a Jacobian:

dk1dk2 . . . dkL = C ′ G(k1, . . . , kL, p1, . . . , pE)(d−E−L−1)/2 ds11 ds12 . . . dsL−1,L dt11 . . . tLE

= C P (D` − f`)(d−E−L−1)/2 dD1 dD2 . . . dDN ,
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where
P (D` − f`) = G(sij , tij)

is the Gram determinant rewritten in terms of of the D` − f` (and hence again a polynomial) and where

C = C ′ det(AB)−1 = G(p1, . . . , pE)(−d+E+1)/2 det(AB)−1 πLd/2−EL/2−L(L−1)/4∏L
j=1 Γ((d+ j − E − L)/2)

.

The usual notation is to write x` for the parameter corresponding to D`. Substituting this into the initial
integral, we find:

F (α`; pi) = C

∫
· · ·
∫ dx1 dx2 . . . dxN

xα1
1 xα2

2 . . . xαNN
P (x` − f`)(d−E−L−1)/2. (21)

This is known as the Baikov representation. The integration domain is all (x1, . . . , xN ) such that the poly-
nomial P (x` − f`) is non-zero.

Loop-by-loop approach In the above, we assumed that each kj · kl for l > j and kj · pi was relevant.
However, there are situations where ki ·kj is not relevant as the loop momenta belong to different loops which
do not touch or intersect, and there are similar situations where pi · kj can be ignored. In that case, there
is one D` whose exponential α` is always zero. It is then unnecessary and not sensible to integrate over the
corresponding parameter x`.

The loop-by-loop approach is a variant of the Baikov representation which keeps this in mind when going
through the reduction of dkj = dkj⊥ dkj‖. In practice, this means that the Baikov representation is applied
to each kj iteratively rather than to all kj at once, in each step treating all other ki as external parameters.
The result is still of the form

C

∫
· · ·
∫
dx1 . . . dxN
xα1

1 . . . xαNN
F (x1, . . . , xN ),

where F (x1, . . . , xN ) is the product of (non-integer) powers of polynomials. However, unlike in Equation 21,
the power is not the same for all polynomials and generally N 6= LE + L(L+ 1)/2.

Remark that the loop-by-loop approach works especially well on families of recursively one-loop Feynman
diagrams as in Subsection 3.1.

Example 3.4.4 (Sunrise). Recall the sunrise integral (see Figure 3a) from Example 3.4.1:

F (α1, α2; p) =
∫

ddk 1
[k2 −m2]α1 [(k − p)2]α2

.

We will write this Feynman integral using the Baikov representation. We have E = 1 and L = 1, so we want
N = 2. The sunrise diagram indeed has two internal edges, so this is satisfied. We then have to determine
C and P (x` − f`), which in turn means we first have to determine Aij` , B

ij
` and f`. We have

D1 = k2 −m2

D2 = k2 − 2p · k + p2,

so we find
Aij` =

(
1
1

)
, Bij` =

(
0
−2

)
, f1 = −m2, f2 = p2.

In other words, (
D1 +m2

D2 − p2

)
=
(

1 0
1 −2

)(
k2

p · k

)
,

(
k2

p · k

)
=
(

1 0
1
2 − 1

2

)(
D1 +m2

D2 − p2

)
.

The inverted matrix gives us P (D1 +m2, D2 − p2):

P (D1 +m2, D2 − p2) = p2 (D1 +m2)−
(

1
2(D1 +m2)− 1

2(D2 − p2)
)2

= p2 k2 − (k · p)2 = G(p, k).
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The calculation for C is more direct:

C = G(p)−d/2+1 det(AB)−1 π(d−1)/2

Γ((d− 1)/2)

= (p2)−d/2+1 · −1
2

π(d−1)/2

Γ((d− 1)/2) .

Putting things together we find

F (α1, α2; p) = −π
(d−1)/2 (p2)−d/2+1

2 Γ((d− 1)/2)

∫ ∫ dx1 dx2

xα1
1 xα2

2

(
p2 (x1 +m2)− 1

4
(
x1 − x2 + 2m2)2)(d−3)/2

,

where we slightly simplified the polynomial using p2 = m2.
We can also explicitly write the measures in the way we described above. We know that ddk splits into

the part dk⊥ orthogonal to p and the part dk‖ parallel to p, hence dk⊥ can be written in terms of d(k · k)
and dk‖ in terms of d(k · p). According to the formula found above, we have:

dk‖ = d(k · p)√
G(p)

= d(k · p)
√
p · p

,

dk⊥ ∼
π(d−1)/2

Γ((d− 1)/2)

(
(k · k)(p · p)− (p · k)2

(p · p)

)(d−3)/2

d(k · k).

We can indeed verify the former directly: we can write k‖ in terms of the basis p as c p, in which case

dk‖ = d(c p) = d(c ‖p‖) = d(c ‖p‖2)
‖p‖

= d(c p · p)
√
p · p

= d(k · p)
√
p · p

.

Since we have found above (using the matrix (AB)) that

d(k · k) = d(D1 +m2) = dD1, d(p · k) = 1
2d(D1 +m2)− 1

2d(D2 − p2) = 1
2dD1 −

1
2dD2,

and since
d(k · k) d(k · p) = dD1

[
1
2dD1 −

1
2dD2

]
= −1

2 dD1 dD2,

we find

ddk = π(d−1)/2

Γ((d− 1)/2) [(k · k)(p · p)− (p · k)2](d−3)/2 (p · p)−d/2+1 d(k · k) d(k · p)

= −π(d−1)/2

2 Γ((d− 1)/2) [(k · k)(p · p)− (p · k)2](d−3)/2 (p · p)−d/2+1 dD1 dD2.

Is it clear that this agrees with the F (α1, α2; p) found above after substituting k · k, k · p and Di with
expressions in xi. 4

Example 3.4.5 (Sunset). We again consider the sunset integral (see Figure 3b) from Example 3.4.2:

F (α1, α2, α3; p) =
∫

ddk1

∫
ddk2

1
[k2

1]α1 [k2
2]α1 [(p− k1 − k2)2]α3

.

This is a two-loop diagram so we can use the regular Baikov method or the loop-by-loop Baikov approach.
We will first consider the regular Baikov and describe the loop-by-loop Baikov at the end. Note that we have
E = 1 and L = 2, so we want N = 2 + 3 = 5. We only have N = 3, so we have to add another two edges. We
do this by stretching the two 4–vertices into pairs of 3–vertices connected with an edge, see Figure 4a. This
adds a fourth and fifth propagator for the momentum p − k1 respectively k1 + k2. We therefore can write
our Feynman integral as

F (α1, α2, α3, α4 = 0, α5 = 0; p) =
∫

ddk1

∫
ddk2

1
[k2

1]α1 [k2
2]α1 [(p− k1 − k2)2]α3 [(p− k1)2]α4 [(k1 + k2)2]α5

,
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p p

k1

k2

p − k  − k1 2

p − k1

1k +k2

(a) The sunset diagram of Figure 3b with 4–vertices
stretched into pairs of 3–vertices.

p p

k1

p − k  − k1 2

k2

p − k1 p − k1

(b) The sunset diagram with 4–vertices stretched in
a different way for the loop-by-loop Baikov approach.
Remark that this is a recursively one-loop diagram.

Figure 4: The stretched sunset diagrams of Example 3.4.5.

with new weights α4 and α5. The matrices Aij` and Bij` are now (we order (ij) as {(11), (12), (22)}):

Aij` =


1 0 0
0 0 1
1 2 1
1 0 0
1 2 1

 , Bij` =


0 0
0 0
−2 −2
−2 0
0 0

 ,

and the constants f` are
f1 = 0, f2 = 0, f3 = p2, f4 = p2, f5 = 0.

In other words,
D1
D2

D3 − p2

D4 − p2

D5

 =


1 0 0 0 0
0 0 1 0 0
1 2 1 −2 −2
1 0 0 −2 0
1 2 1 0 0




k2
1

k1 · k2
k2

2
p · k1
p · k2

 ,


k2

1
k1 · k2
k2

2
p · k1
p · k2

 =


1 0 0 0 0
− 1

2 − 1
2 0 0 1

2
0 1 0 0 0
1
2 0 0 − 1

2 0
− 1

2 0 − 1
2

1
2

1
2




D1
D2

D3 − p2

D4 − p2

D5

 .

We can now find P (x1, x2, x3−p2, x4−p2, x5) by calculating the determinant of the 6×6–matrixG(k1, k2, p)
and replacing all ki · kj and pi · kj using the above inverted matrix. This is trivial for a computer but the
result will not be written as it is not enlightening for humans.

As before we can directly calculate C:

C = G(p)−d/2+1 det(AB) πd−3/2

Γ((d− 2)/2)Γ((d− 1)/2)

= (p2)−d/2+1 8 · πd−3/2

Γ((d− 2)/2)Γ((d− 1)/2) .

This gives us the Baikov representation:

F (α1, α2, α3, α4 = 0, α5 = 0; p) = C

∫
· · ·
∫ dx1 dx2 dx3 dx4 dx5

xα1
1 xα2

2 xα3
3

P (x` − f`)(d−4)/2.

A clear disadvantage of the Baikov representation for this Feynman diagram is the integral over x4 and x5
which are unnecessary. One can integrate over x4 and x5 to obtain an easier representation, [FP17] but these
integrals are generally complicated. The loop-by-loop method attempts to minimize this disadvantage by
changing the construction such that less extra x` are necessary.

In the loop-by-loop Baikov method we first choose one internal momentum to be the internal momentum
and see the other internal momenta as external. This means that L is always 1 in the loop-by-loop Baikov
method. We choose to first represent the integral over k1 using the Baikov method. We turn the 4-vertices
into pairs of 3-vertices connected by edges as in Figure 4b. Then there is a single external momentum on
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the inner loop, given by p− k2. We as such have E = 1 hence N = 1 + 1 = 2, meaning the two propagators
with momenta k1 and p − k2 − k1 which form the loop are sufficient. This means we can apply Baikov to
determine the polynomial P1(x1, x2 − (p − k2)2) (which involves taking the determinant of a 2 × 2–matrix)
and the constant C1. The result will be an integral over some x1 and x2 which linearly span the same space
as k2

1 and k1 · (p− k2). Remark that the polynomial P1 generally depends on product with k2, which means
we have to remember to replace those products in the next step.

We then integrate over k2. We again have L = 1 and the only external momentum is p so E = 1. This
means we again have N = 2 and require two propagators, which will have denominators k2

2 and (p−k2)2; the
former was already in the Feynman integral while the latter appeared when we stretched the 4-vertices into
pairs of 3-vertices. The two corresponding products are k2

2 and p · k2. The translation between the products
and propagators is again a 2× 2–matrix. The result is of the form:

F (α1, α2, α3, α4 = 0; p) = C1 C2

∫
· · ·
∫ dx1 dx2 dx3 dx4

xα1
1 xα2

2 xα3
3

P1(x` − f`)(d−4)/2 P2(x` − f`)(d−3)/2.

The result is slightly more complicated than before, with multiple polynomials, but it also has an integral
less (the integral over x5) and it is easier to calculate as it only contains determinants and inverses of small
matrices rather than the inverse of a 5 × 5–matrix. The loop-by-loop method is not clearly better for this
particular Feynman integral, but the above should give some intuition on how the loop-by-loop method can
be superior in higher loop order calculations. 4

3.5 Cuts
We will shortly consider cuts, as they are very useful in combination with master integrals. The idea of a cut
is to put a chosen edge in the Feynman diagram on-shell. This creates a simpler Feyman integral which can
often be calculated easily. The cut Feynman integral then gives information on the uncut Feynman integral,
which can typically be recovered using another integral. [Smi06:Appendix F] There are also similar methods
which reduce the Feynman integral to an easier form but have no clear diagrammatic interpretation; these
are also referred to as ‘cuts’. [FP17] For our use, however, the most relevant property is the fact that cuts
preserve relations between Feynman integrals. In particular, if F is a Feynman integral, {Ii} is a basis of
master integrals and C[A] denotes a cut version of a Feynman integral A, we find that

F =
∑
i

ci Ii implies C[F ] =
∑
i

ci C[Ii].

This is extremely useful when there is some cut C such that C[Ii] = 0 for most i, as it allows us to more
easily determine the other ci. [Fre+19b] Similarly, a cut version of a Feynman integral satisfies the same DE
as the uncut version, albeit with different boundary conditions. [Hen15]

The most well known example of a cut is the phase space cut, which is the application of Cutkosky’s rule
in the loop momentum representation. Cutkosky’s rule allows one to calculate the discontinuity of a Feynman
integral with respect to a pole. For example, if the Feynman integral has a propagator 1/(p2 −m2) then the
integrand has a pole at p2 = m2 i.e. p2

0 = #�p 2 + m2. We normally solve this by changing the propagator to
a Feynman propagator 1/(p2 −m2 + iε), which guarantees that the integral over p0 evades the pole in the
complex plane. However, this is not always possible in degenerate cases and even if it is we may be interested
how much the outcome of the integral would differ if we would pass by the pole on the other side. This can
be calculated using the rule:

1
p2 −m2 + iε

7→ (−2πi) δ(p2 −m2) θ(p0) =: (−2πi) δ+(p2 −m2),

where θ0 is the Heaviside step function. [Ell+12:Appendix C]
It is possible to cut more than one edge in a diagram, a collection of multiple cuts is still called a cut.

When the cut diagram has no more edges which can be cut, the cut is a maximal cut. The number cuts in
a maximal cut is generally dL corresponding to the d components of each internal momentum; for L = 1
in dimensional regularisation typically at most 5 component cuts are used, 4 for the space-time components
and the final for the decoupled extra components [Ell+12]. Most physical cuts cut multiple components at
once, hence giving a lower number of cuts.
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For us, cuts in the Baikov representation are more useful. In the Baikov representation, a possible cut is
given by the replacement of the integral

∫∞
0 dx` by a loop integral around 0:∫ ∞
0

dx` 7→
∮
x`=0

dx`.

This cut is not identical to the phase space cut and hence is not directly related to the discontinuity of the
Feynman integral, but nevertheless satisfies the above properties of preserving relations between Feynman
integrals and preserving the differential equation. [FP17] Note that the loop integrals can be calculated using
the residue theorem and require no actual integration, making this cut very easy to generally compute.

We have now seen the most important techniques that are currently used in evaluating families of Feynman
integrals. This gives us sufficient context to look at the intersection product from a physics perspective. We
can now consider the mathematical background of the intersection product, which we will do in the next
section.



4 THE TWISTED COHOMOLOGY 26

4 The Twisted Cohomology
We will now consider the twisted cohomology, which gives the mathematical background for the intersection
product. We will define the twisted cohomology and related notions, give a few examples, and consider a
few theorems which are relevant and important. Finally we will shortly discuss higher-dimensional twisted
cohomologies and their relevance and issues.

The main definitions and most results are adapted from the book [Aom+11] with some results from
[FF16]. However, [Aom+11] takes a very algebraic point of view and proves the results for algebraic varieties
rather than differential manifolds in general. We therefore try to give a more geometrical view whenever
possible.

4.1 Definition using Local Systems
Before we can (geometrically) define the twisted cohomology on a connected complex manifold, we first need
to define a specific local system using monodromy. We do this below.

Let M be a connected complex manifold and let M̃ be its universal cover. We use monodromy on M
to construct a local system, then define a connection on the local system in a natural manner and use the
connection to define a cohomology on M . We follow [Miz19] for the general idea and [Aom+11] for the
algebraic details.

Consider a closed 1-form α ∈ Ω1(M) and a loop γ on M . Then the integral
∫
γ
α is a well-defined complex

number, we call this number the monodromy of α on γ. By fixing α, we can make a map

γ 7→
∫
γ

α,

defined on the set of loops on M . This map has two main properties. Firstly, we have that two path-
homotopic loops γ1 ∼ γ2 give the same value. This can be seen as follows: use the homotopy to choose a
surface S ⊆M with as boundary the union of the images of γ1 and γ−1

2 , where we follow γ2 in the opposite
direction. We see that ∫

γ1

α−
∫
γ2

α =
∫
γ1

α+
∫
γ−1

2

α =
∫
∂S

α =
∫
S

dα = 0.

This shows that the integrals indeed agree. Note that we used that α is closed. Secondly, we have that the
concatenation of loops is mapped to the sum of their complex numbers,∫

γ1·γ2

α =
∫
γ1

α+
∫
γ2

α.

These properties imply that the function descends to the fundamental group. Indeed, we have proven the
following proposition.

Proposition 4.1.1. For any 1-form α, the map π1(M)→ C given by

[γ] 7→
∫
γ

α

is a well-defined homomorphism of groups (where C is a group under addition).

We call this homomorphism the monodromy homomorphism of α. We want to use it to define a local
system, and to do that we first want to turn the homomorphism into a representation. Therefore we compose
the integration with the homomorphism exp : C→ C∗ = GL(1;C) to get a representation

π1(M)→ C∗ = GL(1,C) : [γ] 7→ exp
∫
γ

α. (22)

We use the above representation to define a complex line bundle Lα (known as a local system) on M .
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Construction 4.1.2 (Local system). Let M̃ be the universal cover of M . By the definition of a universal
cover, the fundamental group π1(M) has a free action on M̃ such that the quotient of the action is precisely
M . In particular, this means that M̃ is a principal π1(M)–bundle over M . Since we have a principal π1(M)–
bundle and a representation π1(M)→ C∗ we can take the associated vector bundle

(
M̃×C

)
/π1(M)→M ; see

[Nak03] for details of such a construction. Because C∗ = GL(1;C) is a group of 1×1 matrices, the associated
vector bundle is a line bundle. We will call this line bundle Lα → M , where the subscript emphasises that
the construction depends on the choice of α. •

This line bundle is not interesting from a topological standpoint and is in fact trivial. This can be thought
of as follows. Consider the cylinder and Möbius ring as real line bundles over the circle S1. The former is
trivial, while the latter has no global trivialisation since looping around once gives a factor −1 and there is
no smooth way to go from 1 to −1 without passing through 0. The main difference between our case and
the Möbius ring is that we are working with a complex line bundle. In the complex plane there is a smooth
path from 1 to −1 evading 0, e.g. t 7→ eiπ·t for t ∈ [0, 1]. This means we can untwist the complex Möbius
ring by multiplying the entire ring by a position-dependent phase, hence the complex Möbius ring is trivial
and isomorphic to the complex cylinder. We use the same idea below.

Proposition 4.1.3. The line bundle Lα → M constructed above is isomorphic to the trivial line bundle
M × C→M .

Proof. The line bundle M̃×C→ M̃ is trivial by construction, so we can choose a global section s : M̃ → M̃×C
which is nowhere 0. We choose s(x) = (x, 1) as our section. This section does not project down to Lα since
it is not covariant under the action of π1(M). We therefore have to twist it using a phase. However, unlike
the action—which is discrete—the twist must be smooth, so we need to generalise the action in some sense.

We lift the one-form α ∈ Ω1(M) to a one-form α̃ ∈ Ω1(M̃). Then for any path γ̃ on M̃ the expression

exp
∫
γ̃

α̃ ∈ C∗

is a well-defined non-zero complex number. We fix a point x0 ∈ M̃ and we define a new section s′ as follows:

s′(x) = exp
∫
γ̃−1

α̃ · s(x), γ̃ : x0  x,

where γ̃ is an arbitrary path from x0 to x and the multiplication is understood to act on the C part of
s(x). The universal cover M̃ is simply connected so the above definition does not depend on the choice of
a path γ̃ and the section s′ is well-defined. We also see that s′ is smooth, since we can at each point x
strategically choose local paths to show exp

∫
γ̃
α̃ is smooth at said point x, and we can attach smooth paths

after reparametrising.14

We finally have to show that s′ is indeed covariant under the action of π1(M). The action of some loop
γ on some (x1, λ) ∈ M̃ × C is given by

(x1, λ) 7→
(
x2, exp

∫
γ−1

α · λ
)

for x1 a pre-image of γ(0) and x2 the endpoint of the unique lift of γ starting in x1. Letting this act on
s′(x1), we find for any path γ̃01 : x0  x1 that

γ · s′(x1) = exp
∫
γ−1

α · exp
∫
γ̃−1

01

α̃ · s(x2).

Since M̃ is the universal cover of M , we can use M̃ as a parametrisation of M hence the integral of α over
γ−1 is the same as the integral over the lift α̃ over the lifted path γ̃ : x1  x2. We therefore have:

γ · s′(x1) = exp
∫
γ̃−1

α̃ · exp
∫
γ̃−1

01

α̃ · s(x2) = exp
∫

(γ̃01·γ̃)−1
α̃ · s(x2) = s′(x2).

14Here we use the fact that a function is smooth if and only if all its directional derivatives are smooth, and each directional
derivative can be shown to be smooth by choosing γ̃ along the direction.
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We used that γ̃01 · γ̃ is a path from x0 to x2 which is piecewise smooth hence can be made smooth via
reparametrisation.

We conclude that s′ is π1(M)–covariant, hence s′ projects down to a well-defined section s̄′ ∈ Γ(Lα).
Since this section is by construction non-zero, the linear map of bundles sending s̄′ to the constant section
with value 1 on M × C → M gives a bundle isomorphism between Lα and M × C. We find that Lα is
trivial.

As such, the interest in this line bundle comes from the additional (smooth) structures which are natural
to define on the bundle, like the connection. We equip this line bundle with a connection as follows. We
start by choosing the null connection ∇̃ on the trivial line bundle M̃ × C (hence ∇̃ = d locally everywhere),
and we choose the unique flat connection ∇α on Lα =

(
M̃ ×C

)
/π1(M) which pulls back to ∇̃. This unique

flat connection is best described using parallel transport.
Let γ be a loop from q ∈M to itself, and let (q, λ) ∈ Lα. In order to parallel transport (q, λ) along γ, we

lift both to M̃ . The loop γ is lifted to a path γ̃ : q̃1  q̃2 and (q, λ) is lifted to (q̃1, λ). Since we have the null
connection on M̃ × C the parallel transport is simply

(q̃1, λ) γ̃:q̃1 q̃2−−−−−→ (q̃2, λ).

We now want to project this down again to Lα; however, we are now at q̃2 instead of q̃1. In order to return
to q̃1, we apply the action of π1(M) on M̃ :

[(q̃2, λ)] = [γ−1 · (q̃2, λ)] =
[(
q̃1, exp

∫
γ

α · λ
)]

.

Projecting this down to Lα, we find that the parallel transport has result

(q, λ) γ−→
(
q, exp

∫
γ

α · λ
)
.

Remark 4.1.4. We similarly assume that the parallel transport along any path γ : q  q′, i.e. for any
λ ∈ C, is given by:

(q, λ) 7→
(
q′, exp

∫
γ

α · λ
)
.

In particular, the infinitesimal limit shows that ∇α = d + α. This is true in the specific global trivialisation
described in Proposition 4.1.3. However, this is not generally true in any other local trivialisation Lα|U ∼=
U × C. Since the formula does hold in the mentioned global trivialisation, we will write ∇α = d + α for the
connection constructed above. In particular, we get the commutative diagram:

Ωk(M,C) Ωk+1(M,C)

Ωk(M,Lα) Ωk+1(M,Lα).

∼=

∇α=d+α

∼=

d

•

We assumed that α is closed. This allows us to easily check that this connection is flat (i.e. has no
curvature) using the above notation, as follows. For any complex-valued section s we have

∇2
αs = (d + α)2s = d2s+ d(αs) + α ∧ ds+ α ∧ αs = 0 + (dα)s+ 0 + 0 = 0,

where we used the anti-commutativity of d and α in d(αs) = (dα)s− α ∧ ds. We see that the connection is
flat.

Since we have ∇2
α = 0 we also find that d2 = 0 on Lα-valued k-forms

Ωkα := Ωk(M,Lα) := Γ
(

k∧
TM∗ ⊗ Lα

)
.

We therefore find the following (geometrical) definition.
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Definition 4.1.5. Let k ≥ 0 an integer, let α ∈ Ω1(M) be a closed one-form. The vector space

Hk
α := Hk(M,Lα) := ker d : Ωkα → Ωk+1

α

im d : Ωk−1
α → Ωkα

(23)

is called the k-th α-twisted cohomology. •

This definition is hard to work with, so we rewrite it using the global trivialisation. In this trivialisation,
any section of Lα corresponds to a section M → M × C hence corresponds to a smooth function M → C.
As mentioned before, the connection has the form ∇α = d + α in the trivialisation. We therefore find the
following alternate (algebraic) description:

Hk
α = ker(d + α) : Ωk → Ωk+1

im(d + α) : Ωk−1 → Ωk , (24)

using complex-valued k-forms instead of Lα-valued k-forms.
We consider an example, both to investigate how the twisted cohomology can be calculated and to give

some intuition for the results in later subsections.

Example 4.1.6 (d log(z) on the punctured plane C∗). Let the punctured plane C∗ be our manifold and
choose α = λ d log(z) = λ

z dz with λ ∈ C∗ constant. This α is closed and non-exact, since log(z) is not a
(single-valued) function on C∗.

The fundamental group π1(C∗) is generated by a single element, the class of the loop 	0 which circles
once around the puncture z = 0 in the counter-clockwise direction. We can represent this class by the loop

γ : [0, 1]→ C∗, t 7→ e2πi t.

We then have

exp
∫
γ

λ

z
dz = exp

∫ 1

0

λ

e2πi t · 2πi e
2πi t dt = exp

∫ 1

0
2πiλ dt = exp

(
2πiλ

)
.

We see that there is a non-trivial monodromy for non-integer λ. In the following we will assume that λ is
indeed non-integer.

To calculate the zeroth twisted cohomology, we need to characterise all non-zero sections s ∈ Ω0
α = Γ(Lα)

which satisfy
ds = 0.

This is hard to work with. We see that the solutions can not be a ‘constant non-zero function’ because the
monodromy shows that the line bundle is non-trivial, and a constant non-zero function would be a global
section. However, it is more practical to use the (algebraic) description in terms of complex-valued forms.

In that case, we are looking for any non-zero function f : C∗ → C satisfying

df + αf = df + λ

z
· f dz = 0.

We can naively solve this differential equation and find f(z) = z−λ or f(z) = 0. Since λ is not an integer,
the former is not a well-defined (single-valued) function. We find that there are no non-zero f ∈ Ω0 such
that (d + α)f = 0, hence

H0
α = {0}

{0}
∼= 0.

We next want to calculate the first twisted cohomology; we immediately use the description in terms of
differential forms. The image of Ω0

α in Ω1
α is given in terms of forms by {df + λ

z · f dz|f ∈ Ω0} ⊆ Ω1, and the
kernel is given by {φ ∈ Ω1 | dφ + α ∧ φ = 0}. This second set can be simplified by using φ = φ1dz + φ2dz̄.
Since α purely has a dz component, we find that

dφ+ α ∧ φ = 0
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implies

dφ1 ∧ dz + dφ2 ∧ dz̄ = −λ
z
· φ2 dz ∧ dz̄,

hence

−∂φ1

∂z̄
+ ∂φ2

∂z
+ λ

z
φ2 = 0.

Unfortunately, the solutions of this differential equation are difficult to determine. We use a formal trick
which will be explained later: we multiply the entire differential equation with zλ. Note that this can only be
done formally and algebraically, as zλ is not a (geometrically) well-defined function on C∗. This trick gives
us

0 = −zλ ∂φ1

∂z̄
+ zλ

∂φ2

∂z
+ zλ

λ

z
φ2 = −∂(zλφ1)

∂z̄
+ ∂(zλφ2)

∂z
.

This is a much easier condition. We change the image of the 0-forms in the same manner:{
df + λ

z
· f dz | f ∈ Ω0

}
= {z−λd(zλf) | f ∈ Ω0}.

We now have the equations in a form similar to that of the untwisted (complex) de Rham cohomology, and
can as such take the same steps. For any closed φ = φ1 dz + φ2 dz̄ we can integrate zλφ1 with respect to z
to find zλf for some well-defined f such that

zλφ− d(zλf) = zλ
(
φ2 −

∂(zλf)
∂z̄

)
dz̄

has no dz component. In the usual (untwisted complex) de Rham cohomology this is not possible for all φ1
but the factor zλ lets us avoid cases like φ1(z) = 1

z . This means that any class [φ] of the twisted cohomology
group contains an element φ′ = φ′2 dz̄ with zero dz component. Looking back at the differential equation,
we see that ∂(zλφ′2)/∂z = 0, so zλφ′2 purely depends on z̄.

We do the same in the dz̄ component. Note that zλφ′2 can not contain a term of the form 1/z̄ since z−λ/z̄
is not a single-valued function. Therefore, we can integrate zλφ′2 over z̄ to find zλg for some well-defined g
such that

zλφ′ = zλ φ′2 dz̄ = d(zλg).

This shows that φ′ is d +α–exact, hence φ was exact. We find that every class in H1
α is of the form [0], hence

H1
α = 0.
Finally, we consider H2

α. Since C∗ retracts to the circle S1 we know we will find H2
α = 0, but we still

compute it as practice. Since all of Ω2 is d +α–closed, we consider some f(z, z̄) dz ∧ dz̄ and want to find out
when it is exact. For this, we use the radial decomposition of the punctured plane as follows.

We use coordinates (dr, dθ) instead of (dz,dz̄). Remark that θ is a multi-valued function, but dθ is
well-defined. On the other hand, r is well-defined and positive on all of C∗. Any closed 2-form ψ will now be
of the form

ψ = f(r, θ) dr ∧ dθ.

This form can be directly be written as

ψ = d
([∫ r

1
f(r′, θ)dr′

]
dθ
)

which tells us ψ is d–exact. However, we need it to be d+α–exact, or equivalently we need zλψ to be d–exact
over one-forms multiplied by zλ. We have zλ = rλeλiθ, so this gives

zλψ = d
([∫ r

1
f(r′, θ) · r′λeλiθdr′

]
dθ
)

= d
([∫ r

1
f(r′, θ) · r′λdr′

]
eλiθ dθ

)
.
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Since r is a strictly positive function on C∗, this integral over r′ is well-defined (algebraically, not geometri-
cally) and we find that ψ is d + α–exact. Since this holds for any closed 2-form ψ, we find that H2

α = 0.
We conclude that

H0
α = 0, H1

α = 0, H2
α = 0.

Therefore, this twisted cohomology agrees with the (untwisted) cohomology of a topologically contractible
space. This is intuitively somewhat expected because the cohomology ring of C∗ is generated by α = λ d log(z)
and contains no other elements.

As a final remark, for integer λ = k ∈ Z we find that f(z) = z−k is well-defined on C∗, hence H0
α = {[z−k]}

is non-empty and of the same dimension as H0. In this case it similarly turns out that H1
α
∼= H1 and

H2
α
∼= H2 = 0, with the isomorphisms given by [φ] 7→ [φz−k]. This is part of a more general fact which we

explore in Proposition 4.2.1. 4

We see that the twisted cohomology of a manifold can be 0, even when the (untwisted) cohomology is non-
zero. We generally expect the `–th twisted cohomology to have a smaller dimension than the `–th untwisted
cohomology, as we will see in Theorem 4.2.5. Also note that the fundamental group of C∗ is generated by
a single loop around the origin, and the monodromy of α on this loop is non-zero. This means that the
subgroup of trivial monodromy {[γ] ∈ π1(M) | exp

∫
γ
α = 1} is trivial for this M and α. While we do not

prove an equivalent of the Hurewicz theorem (see [Hat05]) for twisted cohomology (and there exists no such
theorem as far as the author is aware), this still suggests that H1

α = 0 is the expected outcome.

4.2 Relevant Results
We will now discuss some relevant and important results relating to the twisted cohomology. Our first result
involves closed differential forms β ∈ Ω1 with the property that

∫
γ
β ∈ Z is an integer for any loop γ on M .

Such a differential form is called integral and its cohomology class is called an integral class. Note that any
exact differential 1-form df is integral since

∫
γ

df = 0 for any loop γ.

Proposition 4.2.1. Let M be a connected complex manifold, let α ∈ Ω1(M) be closed, let β ∈ Ω1(M) be
integral, and let α′ = α+ 2πi β. Then for any integer k ≥ 0 we have

Hk
α
∼= Hk

α′ . (25)

Proof. We first show that the statement holds for β exact, i.e. α′ = α+df for a smooth function f ∈ C∞(M).
We will define a map hdf : Ωk → Ωk and show it induces a well-defined map h : Hk

α → Hk
α′ on the twisted

cohomologies, then we show the map gives an isomorphism. We define h to be the linear map

hdf : Ωk → Ωk, φ 7→ e−fφ.

Note that this map is a linear bijection with inverse φ 7→ efφ.
We first need to show that any φ ∈ Ωk is d + α–closed if and only if h(φ) is d + α′–closed, then show a

similar statement for d + α–exact respectively d + α′–exact. For the first statement, note that

(d + α′∧)(e−fφ) = e−f (d + α ∧+df∧)φ+ (de−f ) ∧ φ
= e−f (d + α∧)φ+ e−f (df − df) ∧ φ = e−f (d + α∧)φ.

Since e−f is invertible we find that φ is d + α–closed if and only if hdf (φ) is d + α′–closed. For the second
statement, let φ = (d + α)χ for some (k − 1)-form χ. Then we have

e−fφ = e−f (d + α∧)χ = e−f (d + α ∧+df∧)χ− e−fdf ∧ χ = (d + α ∧+df∧)(e−fχ).

We see that hdf (φ) = e−fφ is d + α′–exact. Following the same equation in the opposite direction we see
that φ is (d + α)–exact if and only if hdf (φ) is (d + α′)–exact. Therefore, the map hdf is well-defined on the
level of cohomologies:

hdf : Hk
α → Hk

α′ , [φ] 7→ [e−fφ].

The same holds for the inverse map φ 7→ efφ, hence hdf is a bijection on the cohomology groups. Since hdf
is also linear, we conclude it is an isomorphism.
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We secondly show that the statement holds for α′ = α+ 2πi β. While we can not generally write β = dg,
we can still define an equivalent of e−g by using the integral property. By the definition of the integral
property we know that for any loop γ on M , the monodromy of β on γ is an integer. Thus we have for any
loop γ on M that

exp
(∫

γ

2πi β
)

= exp
(
2πi kγ

)
= 1,

for some kγ ∈ Z. As a consequence we have that for any p, q ∈M the complex number

exp
(∫

p q
2πi β

)
∈ C∗

is well-defined as it does not depend on the choice of a path p  q. This means we define an equivalent of
eg as follows. We choose a basepoint z0 ∈M and set

G : M → C, z 7→ exp
(∫

z0 z
2πi β

)
.

This is again smooth, following the same argument as we used in Proposition 4.1.3 for s′(x). Note that G
takes values in C∗, so it has a well-defined smooth inverse G−1. This inverse will be our equivalent of e−g.

We define hG by
hβ : Ωk → Ωk, φ 7→ G−1φ.

Using the fact that
dG = 2πi β G hence dG−1 = −2πi β G−1,

we similarly see that the induced map hβ : Hk
α → Hk

α′ is a well-defined isomorphism.
We find that Hk

α
∼= Hk

α′ for any α′ = α+ 2πi β.

Remark 4.2.2. The converse of the above theorem does not hold true: the cohomologies of α and α′ can
agree even if their difference is non-exact and non-integral. We saw this in Example 4.1.6 on C∗, as 1

2 d log(z)
and 1

3 d log(z) give the same cohomology but their difference 1
6 d log(z) is not exact or integral. •

Remark 4.2.3. One might wonder whether the above maps hdf , hβ : Ωk → Ωk also induces a isomorphism
on the cohomology ring. However, the twisted cohomology does not actually form a ring under multiplication,
as the wedge of two d + α–closed differential forms is generally not d + α–closed:

(d + α)φ ∧ θ = dφ ∧ θ + (−1)kφ ∧ dθ + α ∧ φ ∧ θ = [(d + α)φ] ∧ θ + (−1)kφ ∧ dθ = (−1)kφ ∧ dθ 6= 0,

for θ ∈ Ωk and φ ∈ Ωl for some k, l both d + α–closed.
Instead, the wedge product of a d+α–closed φ and d–closed θ will be d+α–closed, which we also see from

the above computation. This gives an action of the untwisted cohomology H∗ on the twisted cohomology
H∗α, making the latter into a H∗–module. The map hdf does give an isomorphism of H∗–modules because
the map intertwines the action of H∗:

[θ ∧ (e−fφ)] = [e−fθ ∧ φ]

for representatives of classes [θ] ∈ H∗, [φ] ∈ H∗α. •

The map hβ : Ωk → Ωk is not well-defined for non-integral β ∈ Ω1. Nevertheless, we can try to define
it and see what happens to form intuition. Following Example 4.1.6, we take α = λ · d log(z) on C∗ with λ
non-integer. We then have “f = λ log(z)” hence

hλ·d log(z)(φ) = e−λ log(z)φ = z−λφ.

Indeed z−λ is not a single-valued well-defined function for non-integer λ, so the map hλ·d log(z) is not well-
defined. However, this does tell us that we can think of the cohomology classes of Hk

λ·d log(z) as classes [z−λφ]
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for some d-closed φ ∈ Ωk. For example, instead of seeing H0
λ·d log(z) as {f ∈ Ω0(C∗)|df +λf d log(z) = 0} we

can describe the same cohomology as

H0
λ·d log(z) = {z−λf | df = 0, z−λf ∈ Ω0(C∗)} = {g | d(zλg) = 0, g ∈ Ω0(C∗)}.

From the former description it follows that any f must be locally constant and fz−λ must be smooth and
single-valued; the only f satisfying both conditions is f = 0 hence H0

λ·d log(z) = 0 like we found above.
Similarly for higher k, we have the (formal algebraic) expression

Hk
λ·d log(z)

∼= {z−λφ | z−λφ ∈ Ωk, dφ = 0}/{z−λdψ | z−λψ ∈ Ωk−1}. (26)

This generally simplifies the differential equation for the kernel, but can make solutions more complicated.
The formula is equally true forM0,n as the steps in the derivation do not depend on the used manifold.

In the physics context we will typically be looking at 1-forms such as

α =
∑
i

λi d log(Pi),

where λi is constant (or only depends on external parameters) and each Pi is a polynomial defined on Cn.
Mirroring the steps in Example 4.1.6 it is clear that we will be assuming that there is some i such that λi 6∈ Z,
since any integer term k d log(Pi) can be scaled away using a smooth, well-defined factor P−ki . One might
wonder what happens if e.g. λ1 is non-integer but λ2 is integer or vice versa (integer respectively non-integer)
or both non-integer; are the twisted cohomologies in each case isomorphic? To illustrate these cases, we look
at another example.

Example 4.2.4 (Twice punctured plane). We consider the twice punctured plane C∗∗ := C \ {0, 1}. Note
that C = CP1 \ {∞}, so we can see manifold as CP1 \ {0, 1,∞} as well. We look at the twisted cohomology
with respect to a one-form

α = λ1 d log(z) + λ2 d log(z − 1),

in three different cases: λ1 ∈ Z, λ2 6∈ Z or λ1 6∈ Z, λ2 ∈ Z or finally λ1, λ2 6∈ Z.
Before we calculate the twisted cohomologies, recall the untwisted cohomology: the zeroth cohomology is

H0(C∗∗) ∼= C which is the space of constant functions, while the first cohomology H1(C∗∗) ∼= C2 is spanned
by d log(z) and d log(z − 1). All higher cohomology groups are 0.

Integer λ1, non-integer λ2. We first assume λ1 ∈ Z. By Proposition 4.2.1 we may set λ1 = 0, giving
us the one form α = λ2 d log(z − 1). Similarly to Example 4.1.6 we look at the space of differential forms
multiplied with exp(λ2 log(z − 1)) = (z − 1)λ2 .

The zeroth twisted cohomology consists of all well-defined and smooth functions f such that (z − 1)λ2f
is constant. Since (z − 1)λ2 is not well-defined and constant functions are, we have a contradiction unless
f = 0. We find

H0
λ2 d log(z−1) = 0.

We move on to the first cohomology group. We use the same idea as we did in Example 4.1.6. Let φ =
φ1 dz+φ2 dz̄ a closed 1-form. We try to find a primitive of (z− 1)λ2φ1 with respect to z. If we can find such
a primitive f , then adding df to φ gives a new 1-form φ′ = φ′2 dz̄. It then follows that (z − 1)λ2 φ′2 purely
depends on z̄, but that means that φ′2 is of the form (z − 1)−λ2 g(z̄) for some function g, and demanding
that this is single-valued means that g(z̄) contains no terms 1/z̄ hence can be integrated. This means that
φ′ is exact.

We therefore have to find when a primitive of (z − 1)λ2φ1 with respect to z exists. While in Example
4.1.6 the only problem was 1/z, we now have 1/z and 1/(z− 1) which may give a multi-valued contribution,
as they have a non-zero residue around z = 0 and z = 1 correspondingly. The latter is solved by the factor
(z − 1)λ, which means we can find a primitive in that case. However, the former persist. This means that
the only 1-forms which we can not reduce to exact terms can be written in the form

φ = a

z
dz.
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As such, we find that

H1
λ2 d log(z−1)

∼= C ·
[

1
z

dz
]

= C[d log z]

is one dimensional.
Finally we look at the second cohomology and higher. Since C∗∗ deformation retracts to the wedge of

two circles S1 ∧ S1, we know that the higher cohomology groups are all 0. The H2
λ2 d log(z−1) = 0 case can

also be explicitly calculated analogously to Example 4.1.6.

Non-integer λ1, integer λ2. This case is very similar to the previous case, except the roles of z and z− 1
have been swapped. We find:

H0
λ1 d log(z) = 0, H1

λ1 d log(z)
∼= C[d log(z − 1)], Hk

λ1 d log(z) = 0 k ≥ 2.

Non-integer λ1 and λ2. This appears to be a very different case, since both d log(z) and d log(z − 1)
contribute. However as we will see, in fact little has changed compared to the first case.

We remark that the algebraic scale factor corresponding to the trick in Equation 26 is zλ1(z− 1)λ2 . Since
the product of this factor with a smooth function will never be constant, we find

H0
λ1 d log(z)+λ2 d log(z−1) = 0.

We can also again remark that the second cohomology group should be 0, so as in the previous cases the
main goal is to calculate the first cohomology group. Since zλ1(z − 1)λ2 does not depend on z̄, the same
argument as in the first case tells us that the α2dz̄ part of any 1-form α can be removed using exact terms,
giving a part dz in return. As such, we may restrict our search for closed forms to 1-forms α = α1dz. In that
case, we have to solve

0 = d
(
zλ1(z − 1)λ2α1 dz

)
= zλ1(z − 1)λ2

∂α1

∂z̄
dz̄ ∧ dz.

Again, this is solved by ∂α1/∂z̄ = 0. This means the closed forms are given by

α = α1(z) dz.

We have to find out for which α1 this is non-exact. We again do this by integrating zλ1(z − 1)λ2α1. We see
that the integration is not well-defined for α1 = 1/z but also not for α1 = 1/(z − 1). However, we do know
that the integration is well-defined for at least one linear combination of the two:

zλ1(z − 1)λ2

[
cλ1

z
+ cλ2

z

]
dz = d

(
zλ1(z − 1)λ2c

)
for c a constant. For any other linear combination of 1/z and 1/(z − 1) the integration fails. Since λ1 6=
0, λ2 6= 0 we find that

[d log(z)] = −λ2

λ1
[d log(z − 1)] ,

such that we can take either of the two and either linear combination which is not of the form above as the
representative. We conclude that

H1
λ1 d log(z)+λ2 d log(z−1)

∼= C[d log(z − 1)] = C[d log(z)].

We have found that the cohomology groups are actually isomorphic for different values of λ1 and λ2, assuming
at least one is non-integer. 4

We see that C∗∗ only has a single twisted cohomology. Later theorems, the Middle Dimension Theorem
4.2.10 and Euler characteristic 4.3.9, will tell us that this is typically what we expect. Before we look at
those theorems, we first attempt to compare the twisted cohomology to the untwisted cohomology.



4 THE TWISTED COHOMOLOGY 35

Theorem 4.2.5. Let M be a connected complex manifold and let α be a closed 1-form on M . Assume that

im
[
d : Ωk(M)→ Ωk+1(M)

]
∩ ker

[
α∧ : Ωk(M)→ Ωk+1(M)

]
= im

[
α ∧ d : Ωk−1(M)→ Ωk(M)

]
for all k. Then we have an isomorphism of graded H∗–modules,

ker [[α]∧ : H∗ → H∗]
im [[α]∧ : H∗ → H∗]

∼= H∗α, (27)

where H∗ is the cohomology ring, [α]∧ : H∗ → H∗ is the ring product with [α] ∈ H1, and H∗α is the twisted
cohomology module.

Proof. We will prove this isomorphism by sending a map from the kernel ker [[α]∧ : H∗ → H∗] to H∗α, then
proving it is surjective and has kernel im [[α]∧ : H∗ → H∗]. In order to construct the map we need the
following lemma.

Lemma 4.2.6. Let
I∗α = {φ ∈ Ω∗(M) | α ∧ φ = 0} = {α ∧ φ | φ ∈ Ω∗(M)}

be the differential ideal generated by α and let ψ be a k–form such that dψ ∈ Ik+1
α . Then there exist

φ ∈ Ωk−1(M) and χ ∈ Ωk(M) such that

ψ = α ∧ φ+ χ, dχ = 0.

Proof. This follows from the assumption on im d ∩ ker(α∧) = im(α ∧ d). The form dψ is per definition in
im d and per assumption in ker(α∧), hence there is some β ∈ Ωk−1 such that

dψ = α ∧ dβ = −d(α ∧ β).

This shows that ψ = −α ∧ β + χ for some closed χ, hence choosing φ = −β gives

ψ = α ∧ φ+ χ,

as required.

Construction We use the lemma to construct a map from ker([α]∧) to H∗α. Let [ψ] ∈ ker([α]∧) be
represented by ψ ∈ Ωk(M), then dψ = 0 and [α ∧ ψ] = [0] hence α ∧ ψ = dχ for some χ ∈ Ωk(M). Now
dχ ∈ Ik+1

α , so using the lemma we can write χ = α ∧ χ′ + ξ with dξ = 0. This gives us

(d + α∧)ψ = dχ = −α ∧ dχ′,

so
(d + α∧)(ψ + dχ′) = −α ∧ dχ′ + α ∧ dχ′ = 0.

We see that ψ + dχ′ is (d + α)–closed, hence defines a class in Hk
α. This gives a map from ker([α]∧) to H∗α.

Well-definedness We first have to check this map is well-defined. Remark that we did not use ξ in the
construction and ξ can absorb any exact terms, so the map does not depend on the choice of ψ and we only
need to show the map does not depend on the choice of χ. To show this, we choose another χ2 such that
α ∧ ψ = dχ2. We can again use the lemma to split χ2 = α ∧ χ′2 + ξ2 with dξ2 = 0. We then have

−α ∧ dχ′ = dχ = α ∧ ψ = dχ2 = −α ∧ dχ′2.

This shows that α ∧ (dχ′ − dχ′2) = 0, hence there exists some ζ ∈ Ωk−1(M) such that

dχ′ = dχ′2 + α ∧ ζ.

Note that dχ′ and dχ′2 are both closed, hence α ∧ dζ = 0. Again using the lemma we find ζ ′, β such that

ζ = α ∧ ζ ′ + β, dβ = 0.

This finally tells us
dχ′ = dχ′2 + α ∧ β = dχ′2 + (d + α∧)β,

hence
[ψ + dχ′] = [ψ + dχ′2] ∈ Hk

α.

We see that the map does not depend on the choice of χ, hence is well-defined.
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Surjectivity We next have to show surjectivity. Let ψ ∈ Hk
α. Then dψ = −α ∧ ψ ∈ Ik+1

α , so using the
lemma we can find φ ∈ Ωk−1(M) and χ ∈ Ωk(M) such that

ψ = α ∧ φ+ χ, dχ = 0.

Then [χ] ∈ Hk and we have
[α] ∧ [χ] = [α ∧ χ] = [α ∧ ψ] = [−dψ] = [0].

Therefore, [χ] ∈ ker([α]∧). We show that this class is mapped to [ψ] ∈ Hk
α.

We have
dχ = 0, α ∧ χ = α ∧ ψ = −dψ

where we recall that
ψ = α ∧ φ+ χ.

The map then sends [χ] ∈ ker([α]∧) to [χ− dφ] ∈ Hk
α. This class is precisely [ψ]:

[χ− dφ] = [χ− dφ+ (d + α∧)φ] = [χ+ α ∧ φ] = [ψ].

We see that the map is surjective.

Kernel We now consider the kernel of the map; we want to show this kernel is precisely im([α]∧) using
mutual inclusion. Let [α ∧ ψ] ∈ im([α]∧) be represented by α ∧ ψ for ψ ∈ Ωk−1(M). Then α ∧ (α ∧ ψ) = 0,
so [α∧ψ] is simply mapped to [α∧ψ] ∈ H∗α. However, we know d(α∧ψ) = 0 hence α∧ dψ = 0, hence using
the lemma we can find ψ′ and χ such that

ψ = α ∧ ψ′ + χ, dχ = 0.

Now
α ∧ ψ = α ∧ χ = (d + α∧)χ,

so we find that
[α ∧ ψ] = [(d + α∧)χ] = [0] ∈ Hk

α.

We find that im([α]∧) lies in the kernel.
Now assume we have [ψ] ∈ ker([α]∧), ψ ∈ Ωk(M) such that [ψ] is mapped to [0] ∈ Hk

α. Then after choosing
χ, χ′ and ξ as in the construction we find that [ψ+ dχ′] = [0]. This implies there is some φ ∈ Ωk−1(M) such
that

ψ + dχ′ = dφ+ α ∧ φ.

But then in particular
ψ = α ∧ φ+ dφ− dχ′, [ψ] = [α ∧ φ].

Now note that
α ∧ dφ = α ∧ (ψ + dχ′ − α ∧ φ) = 0,

so we can use the lemma to find φ′, β such that

φ = α ∧ φ′ + β, dβ = 0.

Then finally
[ψ] = [α ∧ φ] = [α ∧ β] = [α] ∧ [β],

hence [ψ] ∈ im([α]∧). We see that the kernel is precisely im([α]∧).
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Intertwines ring action To show that the two spaces are isomorphic as H∗–modules, we also have to show
the map intertwines the action of H∗. We show this directly: let [ψ] ∈ Hk be represented by ψ ∈ Ωk(M), let
[φ] ∈ H` be represented by φ ∈ Ω`(M) and let χ, χ′, ξ such that

α ∧ ψ = dχ, χ = α ∧ χ′ + ξ, dξ = 0.

The map sends
[ψ] 7→ [ψ + dχ′].

We then also have

α ∧ (φ ∧ ψ) = d(φ ∧ χ), φ ∧ χ = (−1)`α ∧ (φ ∧ χ′) + φ ∧ ξ, d(φ ∧ ξ) = 0.

Therefore, the map sends

[φ] ∧ [ψ] = [φ ∧ ψ] 7→ [φ ∧ ψ + (−1)`d(φ ∧ χ′)] = [φ ∧ (ψ + dχ′)].

We see that the map intertwines the action of H∗ on both modules.

Conclusion We have constructed a surjective intertwining map from ker([α]∧) to H∗α with kernel im([α]∧).
We conclude that

ker [[α]∧ : H∗ → H∗]
im [[α]∧ : H∗ → H∗]

∼= H∗α

as graded H∗–modules.

This theorem is very useful, as it gives us a concrete way of calculating the twisted cohomology if we
already know the cohomology ring. The cohomology ring can be calculated using the de Rham cohomology
but also with other cohomology theories and results such as the Künneth formula and the Mayer-Vietoris
Sequence can be used; the same is not true for the twisted cohomology.

We first see two important corollaries before we shortly discuss the strange condition im d ∩ ker(α∧) =
im(α ∧ d).

Corollary 4.2.7 (Euler Characteristic). Let M and α be as in the Theorem and again assume that

im
[
d : Ωk(M)→ Ωk+1(M)

]
∩ ker

[
α∧ : Ωk(M)→ Ωk+1(M)

]
= im

[
α ∧ d : Ωk−1(M)→ Ωk(M)

]
for all k. Then we have

∞∑
i=0

(−1)i dimHi
α =

∞∑
i=0

(−1)i dimHi = χ(M),

where χ(M) is the Euler characteristic.

Proof. We have the following:
∞∑
i=0

(−1)i dimHi
α =

∞∑
i=0

(−1)i
(

dim ker([α]∧ : Hi → Hi+1)− dim im([α]∧ : Hi−1 → Hi)
)

=
∞∑
i=0

(−1)i
(

dim ker([α]∧ : Hi → Hi+1) + dim im([α]∧ : Hi → Hi+1)
)

=
∞∑
i=0

(−1)i dimHi.

Corollary 4.2.8. Let M and α be as in the Theorem and again assume that

im
[
d : Ωk(M)→ Ωk+1(M)

]
∩ ker

[
α∧ : Ωk(M)→ Ωk+1(M)

]
= im

[
α ∧ d : Ωk−1(M)→ Ωk(M)

]
for all k. Then we have

dimHk
α ≤ dimHk,

for any k ≥ 0.
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The above two corollaries tell us a lot about the structure of the twisted cohomology, which can be useful
when combined with other results such as the Middle Dimension Theorem 4.2.10 or the Morse Theory of
Subsection 4.4.

Discussion 4.2.9. The above Theorem 4.2.5 and its corollaries have a non-standard assumption:

im
[
d : Ωk(M)→ Ωk+1(M)

]
∩ ker

[
α∧ : Ωk(M)→ Ωk+1(M)

]
= im

[
α ∧ d : Ωk−1(M)→ Ωk(M)

]
.

This condition states that if there are ψ, φ ∈ Ωk(M) such that

dψ = α ∧ φ,

then there is some χ ∈ Ωk−1(M) such that

dψ = α ∧ dχ = α ∧ φ.

We needed to assume this since we found no way to generally prove this and since the condition is not true
for all M and α, although we do know that it is true in certain cases. One can for instance easily verify that
it is true for the twice punctured plane in Example 4.2.4.

If M is closed (compact without boundary) and α is exact and nowhere vanishing, then it is most likely
possible to prove the condition using the Atiyah-Singer index theorem, but whenM is only compact it already
becomes more difficult since the Atiyah-Patodi-Singer index theorem might not behave well on the boundary.
This means we can not prove the condition for bounded cut-off of M either, so there is no clear way to argue
that this condition should be true due to physical assumption. •

4.2.1 Middle Dimension Theorem

We have another Theorem which is useful and often true, but not generally. This is the Middle Dimension
Theorem. It states:

Theorem 4.2.10 (Middle Dimension Theorem). Let M be a connected complex manifold and α a closed,
non-exact 1-form on M such that α is not 2πi times an integral closed form (i.e. U is multi-valued). Assume
that one of the following conditions is satisfied:

• The dimension of M is dimCM = 1.

• The 1-form satisfies α =
∑
i αi d logPi for a finite number of polynomials {Pi} such that the highest

homogeneous components P j satisfy Assumption 2 of [Aom+11:pg.84], and such that
∑
i αi degP i 6∈ Z.

Moreover, M is the algebraic variety defined as the complement of the zero set of the Pj in Cn.

• There are finitely many zeroes of α and all zeroes are non-degenerate, and there exists a cut-off of M
such that the boundary has zero twisted cohomology.

Then we have
Hk
α = 0 for k 6= n = dimC(M).

Proof sketch. At this point we will not prove the theorem, but we will give the main idea of each scenario.
The theorem can be proven directly under the assumption dimCM = 1 by using that

H0
α = {f : M → C | d(Uf) = 0} = 0,

since a function f can never be single-valued on M if it is of the form cU−1 for c constant. One then finds
H2
α = 0 using a duality theorem (see Subsection 4.3) together with the (physical) fact that M has a compact

cut-offMc.o. such that H2
α(M) = H2(Mc.o.,Lα|Mc.o.

). This proves directly that only H1
α is generally non-zero.

When the second possible condition is true, the proof from [Aom+11] can be used; see pages 60 to 84
of the book for all details. The main idea is as follows. Let D be the union of the sets of zeroes of the Pj .
Instead of all smooth differential forms (which one considers in de Rham theory) we can limit the twisted
cohomology to only forms which are rational functions with poles in D, or even only forms which diverge at
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most logarithmic in D (hence which are a product of polynomials and logarithms). Denoting the rational
k–forms by Ωk(∗D) and the logarithmic k–forms by Ωk(logD), we clearly have

Ωk(logD) ⊂ Ωk(∗D) ⊂ Ωk.

These subcomplexes respect d + α, in the sense that the image of Ωk(logD) under d + α lies entirely inside
Ωk+1(logD), and similarly for Ωk(∗D). This means it is sensible to take the cohomology over a subcomplex
rather than the whole complex. It turns out that the cohomology over Ω•(∗D) is isomorphic to the regular
twisted cohomology over Ω•, while the cohomology over Ω•(logD) is generally different. However we also
have

Ω•(∗D) =
∑
k≥0

P−kΩ•(logD),

so using the rescaling α 7→ α− k · d logP and using Proposition 4.2.1 we see that the cohomology of Ω•(∗D)
can be computed using the cohomology over Ω•(logD).

To now show that the cohomology is zero for k 6= n we use the degree of each logarithmic form. Since
a logarithmic form is rational it has a well-defined degree. It turns out15 that each logarithmic k–form (for
k ≤ n−1) of a certain degree can be written as the sum of an exact form plus a form of strictly lower degree.
Inductively reducing the forms then shows that all logarithmic k–forms are exact, hence the cohomology is
0.

Finally let us consider the third condition, the finitely many zeroes of α are non-degenerate and M has a
compact cut-off whose boundary has zero twisted cohomology. In this case, the theorem is true due to Morse
Theory which we will discuss in Subsection 4.4. The Morse function allows us to construct a CW-structure
on M relative to the cut-off boundary. If the cut-off boundary has zero twisted cohomology, this implies the
twisted cohomology of M is precisely the twisted cohomology of the CW-complex. But general Morse theory
on complex manifolds [Mil16] tells us that the CW-complex only has cells of dimension dimCM , so only the
middle dimension twisted cohomology can be non-zero.

We see that the Theorem holds for several different and seeming unrelated conditions. This is not very
satisfactory, but we do now know of a general proof. At least conditions 1 and 2 guarantee that the Theorem
will hold for any physical system where all poles have been properly regularised, as we will see in Section 5.

4.3 The Twisted Homology and Duality Theorems
In this subsection we will consider two duality theorems: the de Rham duality which relates the twisted
cohomologyHk

α to the twisted homologyH⊗Uk , and the Poincaré duality which relates the twisted cohomology
Hk
α to the inversely twisted cohomology H2n−k

−α . We first discuss the de Rham duality. To do this, we first
need to define the twisted homology. Throughout this section we will use U to denote the multi-valued
function M̃ → C such that α = d logU .

There are multiple different but isomorphic definitions of the homology, such as the singular homology of
a topological space, simplicial homology of a topological space or the cellular homology of a CW complex.
[Hat05] Since every manifold has the homotopy type of a CW complex [Mil16] we can use either definition.
We therefore choose to use the cellular homology since it is the easiest to compute. Remark that [Aom+11]
instead uses the simplicial homology.

Nevertheless, our definition is based on the definition of a twisted homology by Aomoto and Kita
[Aom+11]. The main idea in either definition is that simplexes and cells are contractible to a point, so
one can choose a branch of U on the simplex/cell. This turns U into a single-valued function on the sim-
plex/cell. The main difference between our cellular definition and the simplicial definition by Aomoto and
Kita is then that they consider all possible branch cuts for each simplex, while we fix a single possible branch
cut for each cell. The latter approach uses complex multiplication, so we work over C while Aomoto and
Kita work over Z.

This section assumes familiarity with the (untwisted) cellular homology, see for instance [Hat05]. We define
the k-th chain complex as the abstract complex span of the k-cells rather than as the relative homology of
the k and k − 1-skeletons for simplicity. This is equivalent. [Hat05:Lemma 2.34]

15This fact requires a long and complicated proof, which among other things uses the Euler vector field, Lie derivatives, and
the graded complex of a fibration.
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The definition of the twisted cellular cohomology we use is also shortly discussed in Section 22.2 of [FF16].

4.3.1 Definition

As mentioned above, the main idea of the twisted CW-complex is to choose a branch for each cell.
Let M be a manifold endowed with a CW-structure and let {σ1

k : Dk → e1
k, . . . , σ

`
k : Dk → e`k} denote

the k-cells of M . Then the multi-valued function U : M̃ → C is not generally single-valued on a k-cell eik.
However, the domain of the cell is a k-disc hence simply connected, so we can choose a branch of U on the
cell. We call this choice U ik : Dk → C, and we denote the pair by

eik ⊗ U ik :=
(
σik : Dk → eik, U

i
k : Dk → C

)
.

Definition 4.3.1 (Twisted CW-structure). Given a manifold M and a multi-valued map U : M̃ → C. A
twisted CW-structure is a CW-structure together with a choice of a branch U ik for every cell eik. •

To define the twisted cellular homology from the twisted CW-structure, we do two things. We start with
the usual cellular chain complex. First of all we change the chain complex to not only be the integer multiples
of cells, but any complex multiple;

〈e1
k, . . . , e

`
k〉Z 7→ 〈e1

k, . . . , e
`
k〉C.

Secondly we replace the cells eik by pairs eik ⊗ U ik. This gives us the following chain groups.

C⊗Uk (M) := 〈e1
k ⊗ U1

k , . . . , e
`
k ⊗ U `k〉C.

We then have to change the boundary map. Recall the untwisted boundary map,

∂k : Ck(M)→ Ck−1(M), eik 7→
∑
j

dijk ejk−1,

where the degree dijk is the number of how often the cell ejk−1 appears in the boundary of the cell eik weighted
with orientation.16 The twisted boundary map is mostly similar, but with one remark. The cells are replaced
by eik ⊗ U ik and ejk−1 ⊗ U

j
k−1, but generally U ik and U jk−1 will not belong to the same branch. Let us make

this statement more precise.
Let ejk−1 ⊆ ∂eik and consider the pre-image (σik)−1(ejk−1) ⊆ ∂Dk. The pre-image consists of finitely many

connected components, each isomorphic to Dk−1. Let D refer to one such connected component and let
φ : D → Dk−1 be the isomorphism φ = (σjk−1)−1 ◦ σik|D. Then we have U jk−1 on Dk−1 and U ik on D, so we
can compare the two functions via the isomorphism φ. Both functions are branches of U on Dk−1, hence
they differ by some constant factor u in the monodromy. In that case our boundary map has a contribution
udeg φ rather than a contribution deg φ, where deg φ = 1 if φ preserves the orientation and deg φ = −1 if φ
changes the orientation.

We can repeat the above for each of the finitely many connected components of (σik)−1(ejk−1). We use
this to define the twisted boundary map.

Definition 4.3.2 (Twisted boundary map and twisted homology). Given a twisted CW-structure. Define

dijk =
∑

D⊆(σi
k
)−1ej

k−1

deg(φ)
U ik
∣∣
D

U jk−1 ◦ φ
∈ C,

where the sum is over connected components of (σik)−1ejk−1 and for each D we have the isomorphism φ :
D → Dk−1. Then the twisted boundary map is the map

∂⊗Uk : C⊗Uk (M)→ C⊗Uk−1(M), eik ⊗ U ik 7→
∑
j

dijk · e
j
k−1 ⊗ U

j
k−1.

16This dij
k

is often defined abstractly via a map χij
k

: Sk−1 → Sk−1, but that does not generalise well for our use so we have
to use a concrete counting definition. This is no problem mathematically since each cell is compact hence the sum only consist
of finitely many addends.
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The twisted cellular homology is the homology of the twisted chain complexes with the twisted boundary
map,

H⊗Uk (M) :=
ker ∂⊗Uk : C⊗Uk (M)→ C⊗Uk−1(M)
im ∂⊗Uk+1 : C⊗Uk+1(M)→ C⊗Uk (M)

.

•

Remark 4.3.3. The above definition is well-defined. The boundary map satisfies ∂⊗Uk ◦ ∂⊗Uk+1 = 0 by the
usual proof [Hat05]; the complex numbers don’t affect the proof since uij · ujl = uij

′ · uj′l for any (k+ 1)-cell
eik+1, k-cells e

j
k and ej

′

k and (k−1)-cell elk−1. Moreover, the choice of a branch for each cell does not influence
the outcome since the boundary map commutes with complex multiplication by a scalar, and change the
choice of a branch corresponds to multiplying with an element of the monodromy. •

To fix a branch U ik over a cell it is sufficient to fix U ik at a chosen point p0 of the cell eik with a chosen
pre-image x0 ∈ Dk, p0 = σik(x0). The value of U ik at some other point y can then be calculated by choosing
a path γ : x0  y, mapping the path to eik using σik and following the path to find the value of U at the
endpoint.

4.3.2 Examples

While the above definition strongly resembles the definition of the untwisted cellular cohomology, we look at
2 examples to further clarify the details. We look at the circle S1 and at the wedge of circles S1 ∨ S1.

Example 4.3.4 (S1). Consider the manifold S1 with the (generally) multi-valued function z 7→ zλ for some
λ ∈ R. Note that for this U we have α = λ d log(z).

We endow S1 with the simplest CW-structure: one 0-cell p and one 1-cell a, hence both endpoints of the
1-cell are at p. We assume without loss of generality that p corresponds to the point 1 ∈ S1. To make this
CW-structure into a twisted CW-complex we need to choose a branch of zλ for each of the cells.

• For p = 1, the possible values of zλ are exp(k · λ 2πi) for any integer k. For the sake of simplicity we
choose the branch with k = 0, so the value 1.

• The branch of a can be defined in a few ways, for instance by fixing the value of U at −1 ∈ a. The
possible values are exp((2k + 1) · λ πi) for integer k. We choose k = 0 to get exp(λ πi). Note that in
this branch the clockwise value of p is 1, while the counter-clockwise value is exp(λ 2πi).

We then calculate the only boundary map, ∂⊗U1 a. Note that p once appears in the boundary map with same
orientation and once with opposite orientation, so in the untwisted case we would have dij1 = 1− 1 = 0. We
chose 1 as the value of p, but the boundary of a has value 1 on one side and exp(λ 2πi) on the other. For
the former we find uap = 1, for the latter uap = exp(λ 2πi). This gives us (up to an overall minus depending
on the choice of the orientations)

∂⊗U1
(
a⊗ Ua

)
= (1− exp(λ 2πi)) ·

(
p⊗ Up

)
=
(
1− eλ 2πi)(p⊗ Up).

There are now two significantly different options, depending on whether λ is integer or not.

λ is integer In that case, we find that 1− eλ 2πi = 0. Therefore ∂⊗U1 (a⊗ Ua) = 0 and we find that a is in
the kernel of the boundary map. Therefore the 1-st homology is non-zero:

H⊗U1 (M) = 〈a⊗ Ua〉C ∼= C.

Furthermore the image of ∂⊗U1 is 0, so we similarly find

H⊗U0 (M) = 〈p⊗ Up〉C ∼= C.

This is identical to the untwisted case.
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λ is non-integer In that case, 1 − eλ 2πi 6= 0. That implies that a is not in the kernel of the boundary
map, hence

H⊗U1 (M) = 0.

Moreover, the image of the boundary map is spanned by (1− eλ 2πi)p⊗Up. Since the pre-factor is non-zero,
this has the same span as p⊗ Up. We therefore find

H⊗U0 (M) = 〈p⊗ Up〉C
〈(1− eλ 2πi) p⊗ Up〉C

= 0.

We see that in this case all homology groups are 0. 4

Example 4.3.5 (S1 ∨S1). The wedge of two circles S1 ∨S1 is two circles attached at one point. This is not
a manifold, but it is a deformation retract of the twice punctured plane C∗∗ so we will use it to calculate the
twisted homology of C∗∗.

We recall C∗∗ = C \ {0, 1} and choose the multi-valued function z 7→ zλ1(z − 1)λ2 . Note that this gives
α = λ1 d log(z) + λ2 d log(z − 1), as in Example 4.2.4. We embed S1 ∨ S1 into C∗∗ as

S1 ∨ S1 =
{
z ∈ C∗∗ | |z − 0| = 1

2 or |z − 1| = 1
2

}
.

We make it into a CW-complex with one 0-cell p at z = 1/2 and two 1-cells a and b, both starting and ending
at p. We choose that a passes through z = −1/2 while b passes through z = 3/2. We choose the following
branches.

• For p we can choose any value∣∣∣∣12
∣∣∣∣λ1+λ2

· exp(k · λ1 2πi+ (2`+ 1) · λ2πi).

We choose k = ` = 0, giving us |1/2|λ1+λ2 · exp(λ2 πi). This fixes Up.

• The branch of a is fixed by choosing the value at z = −1/2. We can choose any∣∣∣∣12
∣∣∣∣λ1

·
∣∣∣∣32
∣∣∣∣λ2

· exp((2k + 1) · λ1πi+ (2`+ 1) · λ2πi).

We choose k = ` = 0, giving us |1/2|λ1 |3/2|λ2 · exp((λ1 + λ2) πi).
The clockwise boundary value of p for this branch is |1/2|λ1+λ2 ·exp(λ2 πi), while the counter-clockwise
value is |1/2|λ1+λ2 · exp((2λ1 + λ2) πi).

• The branch of b is fixed by choosing the value at z = 3/2. We can choose any∣∣∣∣32
∣∣∣∣λ1

·
∣∣∣∣12
∣∣∣∣λ2

· exp(k · λ1 2πi+ ` · λ2 2πi).

We choose k = ` = 0 to get |3/2|λ1 |1/2|λ2 · 1.
The clockwise value of p for this branch is |1/2|λ1+λ2 · exp(−λ2 πi), while the counter-clockwise value
is |1/2|λ1+λ2 · exp(λ2 πi).

We can directly write down the boundary map using the values:

∂⊗U1
(
a⊗ Ua

)
=
(
1− exp(λ1 2πi)

) (
p⊗ Up

)
,

∂⊗U1
(
b⊗ Ub

)
=
(

exp(−λ2 2πi)− 1
) (
p⊗ Up

)
.

We see that the coefficients are 1 − eλ1 2πi and e−λ1 2πi − 1. This gives us in total 4 cases, as λ1 can be an
integer or not and λ2 can be an integer or not. However, there are only 2 true cases.
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Both λ1, λ2 are integer In this case, we find that both a and b are in the kernel of the boundary map,
and that the image of the boundary map is 0. In that case we find the usual homology

H⊗U1
∼= C2, H⊗U0

∼= C.

At least one is non-integer In this case, we find that either a or b is not in the kernel of the boundary
map, hence the image of the boundary map is non-zero. Since there is only one 0-cell, this image has
dimension 1. Since the space spanned by a and b has dimension 2, we find that the first cohomology has
dimension 2− 1 = 1 and the first cohomology has dimension 1− 1 = 0:

H⊗U1
∼= C, H⊗U0 = 0. 4

Remark that the twisted homology found in Example 4.3.4 corresponds to the twisted cohomology found
in Example 4.1.6 while the same holds for Example 4.3.5 and Example 4.2.4. This is not a coincidence, and
is a consequence of the de Rham duality. We will now discuss this duality.

4.3.3 De Rham duality

We want to show that the twisted cellular homology defined above is dual to the twisted de Rham cohomology
in the same way that the (untwisted) cellular homology is dual the the (untwisted) de Rham cohomology,
i.e. using de Rham’s theorem. Recall de Rham’s theorem: [Lee12]

Hk(M ;R) ∼= Hom(Hk(M),R), [ω] 7→
(

∆ 7→
∫

∆
ω

)
,

where Hk(M ;R) is the k-th de Rham cohomology with real coefficients, Hk(M) is the k-th cellular homology
with coefficients in Z, and ∆ is a cell of the CW-structure seen as a subset of M . Using the linearity of
homomorphisms, this isomorphism implies an isomorphism

Hk(M ;C) ∼= HomC(Hk(M ;C),C),

where all coefficients are now complex. Our goal is to adapt this to an isomorphism

Hk
α(M)

?∼= HomC(H⊗Uk (M),C),

of the twisted cohomology and twisted homology.
To obtain an isomorphism, we need to give a map from Hk

α(M) to HomC(H⊗Uk (M),C) and then show it
is surjective and injective.

We first need to define our equivalent of the integral on the chain groups. For a twisted cell eik ⊗ U ik and
a twisted k-form ψ we define ∫

ei
k
⊗Ui

k

U ψ :=
∫
Dk

U in (σik)∗ψ.

Note that both functions on the right-hand-side are single-valued, so this is a well-defined integral. We
linearly extend this definition to any linear combinations of twisted cells,∫

σ⊗Uσ
U ψ =

∑
i

ci

∫
ei
k
⊗Ui

k

U ψ, for σ ⊗ Uσ =
∑
i

ci e
i
k ⊗ U ik.

We next have to check that this definition satisfies Stokes’ theorem with respect to the boundary ∂⊗U
and the differential ∇α, so it descends to the (co)homology. Remark that α = d logU and U ik is the pull-back
of a branch of U , such that

U ik (σik)∗∇α
(
. . .
)

= d
(
U ik . . .

)
,

where (σik)∗∇α = d + (σik)∗α is the pull-back of ∇α from M to Dk. We then have:∫
ei
k
⊗Ui

k

U ∇αψ =
∫
Dk

U ik (σik)∗
(
∇αψ

)
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=
∫
Dk

U ik (σik)∗∇α
(
(σik)∗ψ

)
=
∫
Dk

d
(
U ik (σik)∗ψ

)
=
∫
∂Dk

U ik (σik)∗ψ

=
∑
j

∑
D⊆(σi

k
)−1ej

k−1

∫
D

U ik (σik)∗ψ

=
∑
j

∑
D⊆(σi

k
)−1ej

k−1

U ik|D
U jk−1 ◦ φ

∫
D

(
U jk−1 ◦ φ

)
(σik)∗ψ

=
∑
j

∑
D⊆(σi

k
)−1ej

k−1

deg(φ) U ik|D
U jk−1 ◦ φ

∫
Dk−1

U jk−1 (σjk−1)∗ψ

=
∑
j

∑
D⊆(σi

k
)−1ej

k−1

deg(φ) U ik|D
U jk−1 ◦ φ

∫
ej
k−1⊗U

j
k−1

U ψ

=
∑
j

dijk

∫
ej
k−1⊗U

j
k−1

U ψ∫
ei
k
⊗Ui

k

U ∇αψ =
∫
∂⊗U
k

(ei
k
⊗Ui

k
)
U ψ.

We see that an equivalent of Stokes’ theorem holds for the twisted (co)homology as well, which tells us
that indeed the defined integral map descends to a map

Hk
α(M)→ HomC(H⊗Uk (M),C).

Finally, we need to show that the map is injective and surjective. This is very hard to do directly, so we
use another space as an intermediate step. We will define Hk

⊗U (M), show that Hk
⊗U
∼= HomC(H⊗Uk (M),C)

and finally show that Hk
α(M) ∼= Hk

⊗U (M). The space we need to define is the twisted cellular cohomology.

Definition 4.3.6 (Twisted Cellular Cohomology). Given a twisted CW-structure, let (C⊗U• , ∂⊗U• ) be the
chain complex of the twisted cellular homology. Then we can take the dual complex by applying the covariant
exact functor HomC(•,C). This gives a cochain complex,

(C•⊗U , (∂∗⊗U )•).

The cohomology with respect to this cochain complex is the twisted cellular cohomology,

Hk
⊗U :=

ker(∂∗⊗U )k : Ck⊗U → Ck+1
⊗U

im(∂∗⊗U )k−1 : Ck−1
⊗U → Ck⊗U

.

•

The above definition uses the dual cochain complex. This is a standard construction, see [Hat05] for more
details.

We now first need to show that Hk
⊗U
∼= HomC(H⊗Uk (M),C). This follows directly from Lemma 2 of

[Aom+11] upon applying C• = C⊗U• . We show this Lemma below.

Lemma 4.3.7. Let (C•, ∂•) a chain complex of complex vector spaces. Then there exists a natural isomor-
phism,

Hk(HomC(C•,C))
∼=−→ HomC(Hk(C•),C).
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Proof. By the definition of a chain complex, we have for each Ck an exact sequence:

0→ ker ∂k ↪→ Ck
∂k
� im ∂k → 0.

Here the first arrow is given by inclusion. Remark that ker ∂k ⊆ Ck and im ∂k ⊆ ker ∂k−1 ⊆ Ck−1. We
define Zk = ker ∂k and Bk = im ∂k. Since this definition works for any k and since ∂k(Zk) = 0 ⊆ Zk−1 and
∂k−1Bk = 0 ⊆ Bk−1, we can define new chain complexes (Z•, ∂•) and (B•, ∂•+1). Remark, however, that
these chain complexes have ∂• = 0.

We now have a short exact sequence of chain complexes,

0→ Z• → C•
∂•−→ B• → 0.

Applying the contravariant exact functor HomC(•,C) to each chain complex, we get another short exact
sequence:

0→ B•
(∂∗)•−−−→ C• → Z• → 0.

This short exact sequence of cochain complexes implies a long exact sequence of their cohomologies. However,
we know that ∂• = 0 on Z• and on B•+1. Therefore, we similarly have that ∂∗ is zero on Z• and B•+1. We
therefore simply have

Hk(Z•) = Zk = HomC(Zk,C),
Hk(B•) = Bk = HomC(Bk,C).

Moreover, the connecting homomorphism

δ∗k : Zk = Hk(Z•) → Hk+1(B•) = Bk+1

in the long exact sequence precisely coincides with the dual of the inclusion map of Bk+1 ⊆ Zk. Since the
inclusion map is injective and Bk, Zk are both vector spaces over C, the dual is surjective. This implies the
long exact sequence is cut into multiple shorter exact sequences,

0→ Hk(C•)→ Hk(Z•)→ Hk+1(B•)→ 0,

for each integer k ≥ 0. Using the cohomologies of Z• and B•, this simply gives

0→ Hk(C•)→ Zk → Bk+1 → 0.

Finally, note that the homology Hk(C•) is defined as quotient of the kernel of ∂k by the image of ∂k+1,
hence it satisfies the following short exact sequence:

0→ Bk+1 → Zk → Hk(C•)→ 0.

Taking the dual of this short exact sequence by applying HomC(•,C) gives

0→ HomC(Hk(C•),C)→ Zk → Bk−1 → 0.

Comparing this short exact sequence to the sequence we obtained above, one finds that there exists a natural
isomorphism

Hk(C•) ∼= HomC(Hk(C•),C).

We still have to show that Hk
⊗U (M) ∼= Hk

α(M), and write the isomorphism explicitly. For this part, we
will assume M is compact or use a compact cut-off of M if it is not. We will later shortly discuss what
happens when M is not compact.

Proposition 4.3.8 (De Rham Duality). Let M be a connected complex compact manifold (possibly with
boundary) and let α be a closed 1-form on M . Let U be a complex map on the universal cover M̃ of M such
that α = d logU . Consider the twisted (de Rham) cohomology Hk

α and twisted cellular cohomology Hk
⊗U .

Then the map

Hk
α 3 [φ] 7→

[∫
•
U φ : σ 7→

∫
σ

U φ

]
∈ Hk

⊗U

is an isomorphism for each k.
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Proof sketch. We do not give all the details, see Section 2.2 of [Aom+11] for the precise details. Remark that
the usual proof with the Mayer-Vietoris sequence will not work since we do not generally have an equivalent
of the Mayer-Vietoris sequence for twisted (co)homology. We therefore need a significantly different proof.

This proof unfortunately requires the twisted singular cohomology rather than the twisted cellular coho-
mology, although they are equivalent. [Hat05] The difference is that cellular (co)homology considers a few
fixed cells (which makes computations much easier) while singular (co)homology simultaneously considers all
possible ‘cells’ one could have chosen (which makes proofs much easier).

The idea behind the proof is that rather than only considering the singular cochain complex with complex
coefficients, C• = HomC(C•,C), one can also consider cochain complexes such as C•(ΩkM ) = HomC(C•,ΩkM ),
where ΩkM is the collection of all smooth k–forms up to local equivalence classes in the sense that two elements
of Ωk are equivalent at a point p if their expansions at the point p are the same.17 These ΩkM have the property
that there is an exact sequence:

0 −→ C −→ Ω0
M

d−→ Ω1
M

d−→ Ω2
M

d−→ . . .

This sequence is to be understood as that each closed k–form is everywhere locally equivalent to an exact
k–form for k > 0, and each closed function is everywhere locally constant. This sequence respects Lα and
we have the commutative diagram

ΩkM Ωk+1
M

ΩkM ⊗ Lα Ωk+1
M ⊗ Lα,

∼=

∇α

∼=

d

hence we find a new exact sequence

0 −→ Lα −→ Ω0
M

∇α−−−→ Ω1
M

∇α−−−→ Ω2
M

∇α−−−→ . . .

Since this sequence is exact, it splits into many short exact sequences of the form

0 −→ ∇αΩkM
⊆−−→ Ωk+1

M
∇α−−−→ ∇αΩk+1

M −→ 0.

This gives corresponding short exact sequences on the cochain complexes of the form HomC(C•,∇αΩkM ) and
of the form HomC(C•,ΩkM ), and hence long exact sequences on their cohomologies.

The big trick is now that the cohomologies of the chain with coefficients in Lα are the usual twisted singular
cohomologies (as choosing map e` ⊗ U` 7→ a ∈ C for each ` is equivalent to choosing a map e` 7→ U` a ∈ Lα
for each `), while the 0-th cohomologies with coefficients in ΩkM correspond to closed or exact k-forms, hence
a quotient of these cohomologies gives the twisted (de Rham) cohomology. Using that certain cohomologies
are 0 and working with multiple long exact sequence, one can finally proof

Hk
⊗U
∼= Hk(HomC(C•,Lα)) ∼= Hk

α.

This is a very useful result, as it shows the duality between Hk
α and H⊗Uk . In particular, this Proposition

implies that the bilinear product

Hk
α ×H⊗Uk → C, [φ], [σ]→

∫
σ

U φ

is non-degenerate, hence can be used as an inner product. This is however not yet the inner product we want
to use, as it requires the explicit computation of H⊗Uk . We will instead use this to show yet another duality
which we may use to induce an inner product on Hk

α, but we first consider a Corollary.

Corollary 4.3.9. Let M and α be as in the Proposition, then∑
i

(−1)i dimHi
α = χ(M).

17This is a commonly used equivalence relation in algebraic geometry, and the set of all such equivalence classes is called the
germ.
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Proof. This follows from the fact that Hk
α
∼= Hk

⊗U
∼= HomC(H⊗Uk ,C), since this shows that dimHk

α =
dimH⊗Uk . We then note that∑
i

(−1)i dimH⊗Uk =
∑
i

(−1)i
[

dim ker ∂⊗Uk : C⊗Uk (M)→ C⊗Uk−1(M)− dim im ∂⊗Uk+1 : C⊗Uk+1(M)→ C⊗Uk (M)
]

=
∑
i

(−1)i
[

dim ker ∂⊗Uk : C⊗Uk (M)→ C⊗Uk−1(M) + dim im ∂⊗Uk : C⊗Uk (M)→ C⊗Uk−1(M)
]

=
∑
i

(−1)i dimC⊗Uk

=
∑
i

(−1)i dimCk.

This is valid since M is compact hence each Ck is of finite dimension. This last expression is precisely the
Euler characteristic χ(M), which can be shown by using the duality of (untwisted) cohomologies.

This gives us another and more general way to show Corollary 4.2.7. Remark that this only works for M
indeed compact, since dimCk may be infinite for a general (complex connected) manifold. We now consider
another duality.

4.3.4 Poincaré Duality

The above duality was written as Hk
α
∼= HomC(H⊗Uk ,C), but since we are working with finite dimensional

(complex) vector spaces we know that the dual of a dual is isomorphic to the original space. We therefore
similarly have

HomC(Hk
α) ∼= H⊗Uk ,

where the isomorphism sends [σ] ∈ H⊗Uk to
∫
σ
U • : Hk

α → C.
Given a class [ψ] ∈ H2n−k

−α , we know that for any [φ] ∈ Hk
α we have [ψ ∧ φ] ∈ H2n. In particular, ψ ∧ φ

is a top form hence can be integrated over M . This integral gives a complex number since M is compact.
Therefore, we find that for a fixed [ψ] ∈ H2n−k

−α ,

Hk
α → C, [φ] 7→

∫
M

ψ ∧ φ

gives a homomorphism on Hk
α. Then by the above, this must correspond to some element of H⊗Uk . This fact

is the core of the Poincaré duality. It turns out that this correspondence is an isomorphism.

Fact 4.3.10 (Poincaré Duality). Let M be a compact manifold, let U be a complex multi-valued function on
M , and let α = d logU be well-defined. The map

H2n−k
−α → H⊗Uk

is an isomorphism.

This fact is much more difficult to prove than the de Rham duality, as the trick with germs does not work.
A proof assuming that M is an “n-dimensional weak homology manifold over Lα” can found in [Bre12:Ch.
V. 9]. The conditions that M is an “n-dimensional weak homology manifold over Lα” is satisfied whenever
the Middle Dimension Theorem 4.2.10 applies, which makes it sufficiently general for us to assume it as a
fact.

Remark that the Poincaré duality tells us the bilinear product

Hn
α ×Hn

−α → C, [φ], [ψ] 7→
∫
M

φ ∧ ψ

is non-degenerate. This product is known as the intersection product in physics, and is what we will use to
define an inner product on Hn

α . Before we can move to apply this result to physics, we first have a short look
at Morse theory and at the generalisation of the twisted cohomology to vector bundles rather than the line
bundle Lα.
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Remark 4.3.11. In the above, we have used the cut-off to make sure we always integrate over a compact
space. However, our manifold M is not generally compact. In that case, the Poincaré duality does not relate
generic forms to generic forms, but demands that one of the two spaces contains compactly supported forms
instead. A form φ is compactly supported if there is some compact K ⊆M such that φ = 0 on M \K.

The space of compactly supported k-forms is usually denoted by a subscript c, hence the cohomology is
also denoted

Hk
c,α.

The de Rham duality relates compactly supported k-forms to locally finite elements of H⊗Uk . The elements
of H⊗Uk are generally infinite linear combinations of cells in the CW complex, since a non-compact manifold
can have an infinite CW complex. Such an infinite linear combination of cells is locally finite if for each
compact subset K ⊆M , the number of cells with intersection with K is finite. •

4.4 Morse Theory
By the previous sections it has become clear that the Euler characteristic is highly relevant in the discussion
of the twisted cohomology. Fortunately, the twisted cohomology itself often gives us a Morse function which
we can use to determine the Euler Characteristic.

Consider the following multi-valued function. We choose a base-point z0 ∈ M̃ and define

G : M̃ → C, z 7→
∫
z0 z

α̃,

where z0  z is any smooth path from z0 to z and we recall α̃ is a lift of α. Following similar arguments as
in the definition of the representation (Equation 22), we see that G is well-defined and smooth. We want to
investigate the real part <(G) of G, and show that it becomes a Morse function on M for certain α.

We first have to demand that <(G) descends to M .

Lemma 4.4.1. Let M be a connected complex manifold and let α be a closed one-form on M . Let the map
G : M̃ → C be defined as above. Then the following are equivalent:

1. <(G) : M̃ → R descends to a well-defined function <(G) : M → R.

2. For any x1, x2 ∈ M̃ projecting to the same x ∈M , we have

exp(G(x1))/ exp(G(x2)) ∈ S1.

3. The monodromy representation π1(M)→ C∗ induced by α takes values in S1.

4. The absolute value |U | : M̃ → R of the map

U : M̃ → C, U(z) = exp(G(z)) = exp
∫
z0 z

α̃

descends to a map |U | : M → R.

Proof. We first prove 1. and 2. are equivalent. Per definition, <(G) descends to M if and only if for any two
x1, x2 ∈ M̃ with the same projection x ∈M we have G(x1)−G(x2) ∈ iR. Taking the exponent of both sides
gives us exp(G(x1))/ exp(G(x2)) ∈ exp(iR) = S1. Note that exp and log are both well-defined single valued
on M̃ since the latter is simply connected, so the function exp is invertible and we conclude that 1. holds if
and only if 2. is true.

We secondly prove 3. is also equivalent with the previous two. Assume 3. is true and let x1, x2 ∈ M̃
project to the same x ∈M . Then

exp(G(x1))/ exp(G(x2)) = exp(G(x1)−G(x2)) = exp
∫
x1 x2

α̃.

Since α̃ is defined as the lift of α, the latter integral is the same as the integral over α of the projected path.
However x1 and x2 both project to x, so the resulting path is a loop. We find that the integral must be equal
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to the integral of α over a loop, hence the right-hand-side is precisely the representation of that loop. We
conclude that

exp(G(x1))/ exp(G(x2)) = exp
∫
x1 x2

α̃ ∈ S1.

Conversely let γ be a loop on M . Then we can choose a base-point and lift the loop to a path in M̃ , starting
at a chosen x1 and ending at some x2. Then we have

exp
∫
γ

α = exp
∫
x1 x2

α̃ = exp(G(x1))/ exp(G(x2)) ∈ S1.

The loop γ was arbitrary, so we see that the representation π1(M)→ C∗ takes values in S1.
Finally we prove 4. is equivalent to 2. The map |U | descends to M if and only if for any two x1, x2 ∈ M̃

projecting to x ∈M we have U(x1)/U(x2) ∈ S1. That is precisely the statement of 2.

Generally the above conditions are not satisfied. However in physics we are interested in α which have
the form α = λ d log(P ) for some λ ∈ R and some polynomial P , or a finite sum of such expressions. We will
therefore consider that form for the rest of this subsection.

In that case we find

G = λ log(P ), U = exp(G) = Pλ, |U | = |P |λ,

from which it is immediately clear that condition 4. is satisfied. We see that for α = λ d log(P ), the function

<(G) = <(λ log(P )) : M → R (28)

is well-defined.
We then have to determine whether <(G) : M → R is Morse. Recall that a Morse function is a smooth

real-valued function on a compact manifold which has no degenerate critical points, i.e. every critical point
of the function has a non-singular Hessian matrix. [Mil16] In particular, the compactness of M together with
the non-degeneracy of each critical point implies there are only finitely many critical points.

Because of the Cauchy-Riemann equations, the critical points of <(G) on M precisely lift to the critical
points of G on M̃ , hence are given by dG = 0. By the construction of G, that is simply equal to α = 0. This
gives us an easy classification of the critical points of <(G). However, we have to check the critical points
are non-degenerate and that the manifold is compact.

The latter is problematic, as the manifold is very clearly non-compact in even simple cases (such as the
punctured plane, see Example 4.1.6). We will instead have to use a compact subset of M which has the same
topology. We could use the existence of a cut-off to find some Mc.o. which is compact with boundary, but
we don’t want to deal with a generic boundary. Instead, we will define a specific cut-off which respects the
function <(G).

Let ` be a real number and consider the equation <(G) = `, or equivalently |U | = e`. Notate the set of
z ∈ M satisfying this equation by V`. Choose ` such that for every critical point p, we have <(G(p)) > `;
this is possible as there are only finitely many critical values. Then by the implicit function theorem we find
that V` is an (n − 1)-dimensional submanifold of M . Remark that generally ` � 0, so the cut-off |U | = e`

corresponds to an UV cut-off in physics.
Choose similarly Λ such that Λ > <(G(p)) for each critical point p, and define VΛ as solutions to the

equation <(G) = Λ. Then VΛ is also an (n − 1)-dimensional submanifold of M . Generally Λ � 0, so the
cut-off |U | = eΛ corresponds to a IR cut-off in physics.

Definition 4.4.2 (Cut-off). Let M be a connected complex manifold and let α a closed one-form on M .
Assume M and α satisfy the condition of Lemma 4.4.1. The cut-off of M with is the manifold triad
(Mc.o., V`, VΛ) where

Mc.o. := <(G)−1([`,Λ]).

The spaces V` and VΛ are referred to as the cut-off boundaries. •
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The cut-off of M is a manifold triad, which means it is a manifold with boundary. The choice of ` and Λ
ensures that all critical points of <(G) still lie inside Mc.o.. This means we have not lost any of the topology,
and indeed the (co)homology of Mc.o. must agree with the (co)homology of M .

We can always do this construction for a given function <(G). However, this does not guarantee that
Mc.o. is compact. For a manifold M ⊆ CN for some N , we know that M is compact if and only if M is
bounded and closed as a subset of CN , i.e. there are no paths to ‘infinity’ and there are no holes such as
punctures. In order for Mc.o. to be bounded, the polynomial should contain no factors such as x− y2, whose
zero set is clearly not bounded. If such a factor does occur we can for instance move from CN to CPN and
extend the polynomial by making it homogeneous, which gives us a compact Mc.o. ⊆ CPN . In that case,
however, we have to be more careful as the extension from CN to CPN may change the Euler characteristic.

In order to guarantee that Mc.o. has no holes we have to similarly demand that the UV cut-off excludes
any closed holes in M . This is not generally true, as it depends on the choice of M . In particular, if p ∈M
then M \ {p} is again a manifold but the new manifold clearly has a problematic hole at p. We will therefore
always choose M (and occasionally tweak U) such that there are no remaining unbounded holes, see Section
5.

After making sure M is compact, we still have to make sure that each critical point is non-degenerate
and in particular whether there are only finitely many points. If the polynomial P is known then it is highly
trivial to determine this; solve α = 0 and for each critical point calculate all second partial derivatives and
determine the eigenvalues of the matrix of said second partial derivatives. We can not make any general
statements about this, but the computation is trivial for computers hence can be determined for any α. In
particular, for α = λd log(P ) we find that

α = λ

N∑
i=1

1
P

∂P

∂zi
dzi,

such that α = 0 at some z = p only when each derivative is zero at p. The equation

∂P

∂zi
= 0

will generally be satisfied for a codimension 1 subspace of M and there are dimCM such equations, hence
we typically expect that the solution to α = 0 is a dimension 0 subspace. This suggests the condition that
the critical points are non-degenerate is not impossible, at the very least.

Assuming the compactness and non-degeneracy are satisfied, we apply Morse theory to the function <(G)
on Mc.o.. According to Morse theory, we can write M as V0 with various cells attached. [Mil16] We can
describe the homology of M assuming we known the homology of V0 and the glue maps of the various cells
as follows:

• Consider a k-cell. The glue map sends the boundary of the k-cell to the union of V0 with other cells.
If the image of the boundary is contractible in this union, then we can contract it to a single point in
Vλ, hence we would wedge the k-cell to the earlier union. This means we simply add one dimension to
the k-th homology.

• If the image of the boundary is not contractible, then [∂ek] must be a non-zero class in the (k − 1)-th
homology of the union. Most generally that means [∂ek] is the sum of some class in Hk−1(V`) with a
linear combination of (k− 1)-cells which have been previously attached via gluing. This means we can
easily calculate the change in cohomology when we glue the k-cell; either dimHk−1 changes by −1 or
dimHk changes by 1 depending on [∂ek] ?= [0] before gluing.

• We can use the above two options to inductively compute the homology of M , and in particular the
Euler characteristic of M is equal to the characteristic of Vλ plus the alternating sum of the number of
cells.

Because M is a complex manifold, it is a standard result that the index of any critical point of <(G) is equal
to the (complex) dimension of M . [Mil16] This means we can always up to homotopy assume the boundary
∂ein lies entirely within Vλ, and in particular the boundary is a linear combination of classes in Hk−1(V`).
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We conclude that in our case, Hk(M) = Hk(V`) for k 6= n − 1, n; while Hn(M) and Hn−1(M) depend on
Hn−1(V`) and on the boundary maps of the n-cells.

In particular, we see that χ(M) = χ(V`) + (−1)nKn where Kn is the number of critical points of the map
<(logU). A final question is then what χ(V`) is. That will strongly depend on M and U , but we state some
expectations. For M a submanifold of C we know that V` will be a finite union of circles S1. The Euler
characteristic of a circle is χ(S1) = 0 and the Euler characteristic of a finite union is the sum of the Euler
characteristics of the parts, so in that case we find that

χ(M) = (−1)nKn.

More generally, if M is of the form Cn \ S with S a discrete set of finitely many points, then we expect that
the boundary will be a union of spheres S2n−1, which still have Euler characteristic χ(S2n−1) = 0. On the
other hand, if M is Cn \ ` with a single real line ` removed, then the boundary around the line will be a
cylinder S2n−2 × R, which instead has Euler characteristic χ(S2n−2 × R) = 2.

Assuming the critical points are non-degenerate and the ‘holes’ Mc.o. are taken care of (both of which
we will need to determine case-by-case), we have found that <(G) : M → R is Morse. As such, the Morse
inequalities immediately tell us that the Euler characteristic of M is equal to the Euler characteristic of V`
plus or minus the number of critical points of <(G), i.e. the dimension of the twisted cohomology is equal to
the number of zeroes of α. We have proven the following.

Theorem 4.4.3. Let M be a connected complex manifold and let α be a closed one-form on M such that
Lemma 4.4.1 is satisfied. Let G be defined by

G : M̃ → C, z 7→
∫
z0 z

α̃

and let <(G) : M̃ → R be the real part of G. Then

• if the representation π1(M)→ C∗ only takes values in S1 ⊆ C∗, then <(G) descends to M → C;

• if additionally the critical points of G are non-degenerate and Mc.o. is compact, then the Euler charac-
teristic is equal to the Euler characteristic of V` plus or minus the number of zeroes of α.

The first condition is satisfied for α = λ d log(P ) for λ ∈ R and P a polynomial on M ⊆ Cn, the second
condition is to be checked for each individual case.

This Theorem is particularly potent when V` is a union of spheres and the manifold M and function U
are well-behaved, as in that case we find the following Corollary.

Corollary 4.4.4. Let M , U and α be such that the Middle Dimension Theorem 4.2.10, De Rham Duality
Theorem 4.3.8 and Morse Theorem 4.4.3 are satisfied. Assume moreover that V` is a union of spheres. Then:

dimHn
α = #{α(z) = 0}, Hk

α = 0 for k 6= n. (29)

We above corollary tells us everything we need to calculate the twisted cohomology. However, we still
need slightly more information on how to calculate the intersection product without having to integrate
over Mc.o.. The calculation can be simplified slightly using vector bundle twisted cohomology and spectral
sequences. We will discuss this next.

4.5 Twisted Cohomology of a Fibration
It is well known [Hat04; BT+82] that for a Serre fibration M π−→ B with fibres Fx = π−1(x), the cohomology
of M can be calculated from the cohomologies of B and F• via the Serre-Leray spectral sequence

Ep,q2 = Hp(B,Hq(F•))⇒ Hp+q(M).

We would like to find a similar spectral sequence for the twisted cohomology. It turns out that such a spectral
sequence indeed exists. [FF16] In order to describe this spectral sequence, we first have to generalise the
notion of a local system from line bundles to vector bundles.
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4.5.1 Generalisation to Vector Bundles

We defined the local system as the associated vector bundle of M̃ →M where the action of π1(M) on C was
given by the representation π1(M)→ C∗ = GL(1,C), and we further endowed this associated vector bundle
with parallel transports. This definition can be generalised as follows; we include the parallel transports into
the definition immediately for clarity.

Definition 4.5.1. Let M be a smooth manifold with universal cover M̃ . A local system of dimension m is
a pair (

E, ρ : Π1(M)→ GL(m,C)
)

of a vector bundle and a representation, where E is an associated vector bundle

E = (M̃ × Cm)/π1(M)→M,

and where the action of π1(M) on Cm is given by the representation ρ : Π1(M)→ GL(m,C). •

We see that E is trivial as a topological vector bundle, since we can use ρ to untwist it. The interesting
structure is again the smooth structure: parallel transport and the connection.

The representation of the fundamental groupoid described the parallel transport; for any path γ : x0  x1
the equivalence class [γ] ∈ Π1(M) is send to some ρ([γ]) ∈ GL(m,C) which describes that the parallel
transports sends v ∈ Cm at x0 to

γ · (x0, v) =
(
x1, ρ([γ]) · v

)
.

In our earlier definition, the representation ρ : Π1(M)→ C∗ was given by

[γ] 7→ exp
∫
γ

α.

This indeed describes both the parallel transport and the representation π1(M)→ C∗.

Remark 4.5.2. An equivalent definition is possible where one does not take the associated vector bundle but
rather the associated principal bundle (M̃ × GL(m,C))/π1(M), such that the result is a GL(m,C)–bundle
over M . This definition is used in [FF16:Section 22.2]. Taking the associated vector bundle of that definition
gives our definition, while taking the fibre bundle of our definition returns their definition.

Furthermore remark that our definition is not the most general; instead of taking a representation ρ it is
also possible to take a function which sends any homotopy class of paths a  b to a homomorphism from
the fibre over a to the fibre over b. •

We would like to again have some A ∈ Ω1(M,Matm(C)) (where Matm(C) denotes the space of complex
m×m–matrices) such that ρ can be written as the exponential of an integral over A. However, we run into
the same problem as in Subsection 3.3: the exponent of an integral is not the same as a path integral, and
for some multi-valued function U : M̃ → GLn(C) we generally have

U−1 dU 6= dU U−1 6= d logU.

Given A, we could define
U =π

γ
exp(A),

such that
dU = A · U, A = dU · U−1.

Unfortunately, this means that for any k-form φ we have

d(U · φ) = A · U · φ+ U · dφ 6= U · (A · φ+ dφ).

This is problematic, so we instead define U with the opposite ordering. Since U−1 has the opposite ordering
compared to U , the easiest way to define U is as follows.



4 THE TWISTED COHOMOLOGY 53

Definition 4.5.3. Let M be a smooth manifold and let A ∈ Ω1(M,Matm(C)). Then the (generally multi-
valued) source of A is defined as U : M̃ → GLn(C) such that

U−1(z) = π
γ:z0 z

exp(−A),

for some fixed point z0 ∈M . •

We then see that the source of A satisfies:

−U−1 · dU · U−1 = dU−1 = −A · U−1, dU = U ·A.

In particular, we have
d(U · φ) = U (A · φ+ dφ).

The question is whether for any representation ρ we can find some A such that parallel transport using
ρ is locally given by d + A, hence such that ρ corresponds to U . Since M is manifold, we know that any
homotopy class [γ] ∈ Π1(M) contains a smooth path γ′ ∈ [γ]. Now for any t ∈ (0, 1] the restriction of γ′ to
[0, t] gives a new path up to rescaling by a factor t. Each of these paths has a corresponding value ρ([γ′[0,t]]).
Then A exists only if t 7→ ρ([γ′[0,t]]) is smooth in t. In particular, A exists only if the same holds for any class
[γ] and any smooth path γ′ ∈ [γ]. This is of course not generally true.

We will therefore put this as a specific assumption: we assume that A exists such that

ρ([γ]) =π
γ

T
exp(A),

where we use the T to denote that we take the opposite ordering. We then notate the local system by LA
and we indeed have the connection ∇A = d +A on Ωk(M,Cm) satisfying

Ωk(M,Cm) Ωk+1(M,Cm)

Ωk(M,LA) Ωk+1(M,LA).

∼=

∇A

∼=

d

We can then define the twisted cohomology over M with coefficients in LA. Let ΩkA = Ωk(M,LA) and
Ωkm = Ωk(M,Cm). Then we have.

Definition 4.5.4. Let M be smooth manifold and let LA be a local system in the sense of Definition 4.5.1.
The twisted cohomology over M with coefficients in LA is

Hk
A := Hk(M,LA) := ker d : ΩkA → Ωk+1

A

im d : Ωk−1
A → ΩkA

= ker(d +A) : Ωkm → Ωk+1
m

im(d +A) : Ωk−1
m → Ωkm

. (30)
•

If M has a CW structure, we can also again define the cellular homology H⊗Uk as in Definition 4.3.2 and
cellular cohomology Hk

⊗U as in Definition 4.3.6, except that we have to use m–tuples of cells as elements eki
of the chain complex and that the quotient of two matrices is not well-defined so that we instead have to use

dijk =
∑

D⊆(σi
k
)−1ej

k−1

deg(φ)
(
U jk−1 ◦ φ

)−1 · U ik
∣∣
D
∈ Matm(C).

We can again use Lemma 4.3.7 to see that

Hk
⊗U
∼= HomC(H⊗Uk ,C).

Remark 4.5.5. The proofs of the de Rham Duality Theorem 4.3.8 [Aom+11] and of Poincaré Duality 4.3.10
[Bre12] both use complicated sheaf theory. However, this has the advantage that the proofs generalise to
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cohomologies with coefficients in any sheaf. In particular, the former proof can directly be adapted to higher
dimensions by instead using the exact sequence of sheaves

0 −→ Cm −→ Ω0
M ⊗ Cm d−→ Ω1

M ⊗ Cm d−→ Ω2
M ⊗ Cm d−→ . . .

as a starting point and noting that Ω1
M ⊗ Cm = Ω1(M,Cm), while the latter is completely agnostic of the

dimension of the local system. This means that both dualities apply to the generalised twisted cohomology
as well. •

Corollary 4.5.6. Let M be a connected complex manifold and let A be a matrix of closed one-forms corre-
sponding to a local system LA. If dimCM = 1 and the source U is multi-valued, then H0

A = 0 and H2
A = 0.

Proof. Similarly to the m = 1 case, we know that H0
A is the vector space all d + A–closed m–tuples of

functions. In particular, that implies that H0
A consists of functions of the form U · c, where c is a constant

m–tuple. But that can never be a single-valued function for c 6= 0, hence we find that

H0
A = 0.

Now Poincaré duality implies that H2
A = 0 as well.

This gives us an effective Middle Dimension Theorem for dimCM = 1.
With the definitions and properties defined, we can finally look at the Serre-Leray spectral sequence.

4.5.2 Serre-Leray Spectral Sequence

We will discuss the idea here from a mathematical point of view, see the next section for the physical details.
Let M π−→ B be a Serre fibration with fibres F•. Let moreover U : M̃ → C∗ a multi-valued function on

M such that α = d logU ∈ Ω1 is well-defined. Then we have a local system Lα →M .
We first have to find the twisted equivalent of the Serre-Leray spectral sequence before we can prove it.

Let us shortly consider the original. We recall: [Hat04]

Theorem 4.5.7 (Serre-Leray Spectral Sequence). Let F• → M → B be a Serre fibration with B path-
connected and π1(B) acting trivially on H∗(F•). Then there is a spectral sequence {Ep,qr , dr} such that:

• dr : Ep,qr → Ep+r,q−r+1
r+1 and

Ep,qr+1 =
ker dr : Ep,qr → Ep+r,q−r+1

r+1

im dr : Ep−r,q+r−1
r+1 → Ep,qr

.

• The stable terms Ep,k−p∞ are isomorphic to successive terms F kp /F kp+1 of a filtration

0 ⊆ F kk ⊆ F kk−1 ⊆ · · · ⊆ F k0 = Hk(M).

• Ep,q2
∼= Hp(B,Hq(F•)).

This stylised as
Ep,q2

∼= Hp(B,Hq(F•))⇒ Hp+q(M).

The main obstacle in generalising this to twisted cohomologies is the action of π1(B) on H∗(F ). This
would generalise to the action of π1(B) on the twisted cohomology of F . This action has to be trivial.
However, we know that the action of π1(M) on C is not trivial, as it is given by the representation

[γ] 7→ exp
∫
γ

α.

This means we cannot expect the action of π1(B) to be trivial on the twisted cohomology of F if we see the
latter as Cm for some m. Instead, we have to treat the twisted cohomology similarly to Lα, since we do know
that the action of π1(M) is trivial on Lα. In other words, we have to treat the twisted cohomology of F into
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a (generalised) local system using the action of π1(B). With this in mind, we can replace each term with a
twisted version to create the twisted Serre-Leray spectral sequence.

The right-hand-side is simple, we replace

Hp+q(M) 7→ Hp+q(M,Lα) = Hp+q
α .

The left-hand-side is non-trivial. We first need to find a local system on F• for the twisted cohomology on
F , and then we have to interpret the twisted cohomology over F• as local coefficients of the cohomology over
B.

Construction 4.5.8. The local system Lα restricts to a local system on each fibre F•. In particular, let F
one such fibre. Then U |F is a (multi-valued or single-valued) function on F and Lα|F → F ⊂ M is a local
system. This local system is then given by Lα′ , where α′ ∈ Ω1(F ) is the restriction of α ∈ Ω1(M) to F ,
hence the pull-back of α under the inclusion map i : F ⊂ M . This gives us a unique local system Lα′ → F
of which we can determine the cohomology in the usual sense. We find the twisted cohomology Hk(F,Lα′).
We can repeat this for any fibre F .

Now consider the base B. Since Hk(F•) can be replaced with Hk(F•, i∗•Lα) we have to find out what a
cohomology over B with coefficients in Hk(F•, i∗•Lα) means. It turns out that

{Hk(F•, i∗•Lα)}• → B

is indeed a generalised local system over each connected component of B.18 For any fibre F the space
Hk(F, i∗Lα) is a finite dimensional vector space over C, and the action ρ : Π1(M) → GL(m,C) for m =
dimHk(F, i∗Lα) is given as follows.

Let γ : x0  x1 for x0, x1 ∈ B. Then the fibres Fx1 and Fx2 are weakly homotopy equivalent, with the
weak homotopy equivalence given by conjugation with γ. [FF16:pg. 114] Since the fibres are the pre-image
of a singleton under a projection, the fibres are submanifolds of M , hence they have the homotopy type of
a CW-complex [Mil16] so by Whitehead’s Theorem [Hat05] the fibres are in fact homotopy equivalent. This
tells us that γ induces a linear isomorphism

Hk(Fx0 , i
∗
x0
Lα)→ Hk(Fx1 , i

∗
x1
Lα).

The precise isomorphism is induced by the parallel transport of a k–form from Fx0 to Fx1 along the path γ
with respect to the connection d + α.

However, both sides are isomorphic to Cm. This means that the linear isomorphism corresponds to a
linear isomorphism Cm → Cm, hence it corresponds to an element of GL(m,C). The map ρ sends [γ] to the
corresponding element of GL(m,C). •

With these definitions, we can now write down the Serre-Leray spectral sequence for twisted cohomologies.

Theorem 4.5.9. Let F• → M → B be a Serre fibration with B path-connected and π1(B) acting trivially
on H∗(F•), let α be a closed one-form on M defining a local system. Then there exists a spectral sequence
with second page

Ep,q2 = Hp
(
B,Hq(F•, i∗•Lα)

)
which converges to Hp+q(M,Lα). [FF16; Hat04]

Proof sketch. We adapt the proof of the usual Serre Spectral sequence to the twisted case, see [Hat04:Ch. 5.1]
for details. The proof uses several claims which are generalisations of results from usual (co)homologies but
which we haven’t shown in this Thesis, such as the long exact sequence of a CW-complex and a subcomplex,
and excision of relative twisted (co)homologies. The proof works with cellular (co)homologies, so we implicitly
use the de Rham duality to proof the result for de Rham cohomology as well.

Choose a CW-complex structure on B and pull-back the skeleta Bp for a filtration Mp = π−1(Bp) on
M , then for any successive pair (Mp,Mp+1) there is a long exact sequence with coefficients in Lα. This long

18This means that the cohomology forms a local system over each connected component of B, but the local systems for different
connected components may have different dimension. The cohomology is a generalised local system over all of B whenever B is
connected.
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exact sequence can be used to make a staircase diagram. Upon defining exact couples and derived couples in
the usual way, one finds a spectral sequence which converges to a filtration of Hp+q

⊗U (M), and the first page
of this spectral sequence is given by the relative twisted cohomology

Ep,q1 = Hp
⊗U (Mq,Mq−1).

One then finally has to show that the second page of of the spectral sequence is indeed

Ep,q2
?∼= Hp

(
B,Hq(F•, i∗•Lα)

)
.

One finds an isomorphism of chain complexes

. . . Hp+q
⊗U (Mp,Mp−1) Hp+q+1

⊗U (Mp+1,Mp) . . .

. . . HomC(Hp(Bp, Bp−1;C), Hq(F•, i∗•Lα)) HomC(Hp+1(Bp+1, Bp;C), Hq(F•, i∗•Lα)) . . .

d1 d1 d1

∂∗ ∂∗

Ψ ∼=

∂∗

Ψ ∼=

where the map Ψ is constructed and shown to be an isomorphism. This involves a lot of diagram chasing,
using the CW-structure and excision to write relative (twisted) cohomologies as finite sums of easier (twisted)
cohomologies, and using the homotopy lifting property. Using Lemma 4.3.7 on the bottom row gives the
required twisted cohomologies

HomC(Hp+1(Bp+1, Bp;C), Hq(F•, i∗•Lα)) ∼= Hp
(
B,Hq(F•, i∗•Lα)

)
.

We see that the second page is indeed given by Hp
(
B,Hq(F•, i∗•Lα)

)
.

Corollary 4.5.10. Let F• →M → B be a Serre fibration with B path-connected and π1(B) acting trivially
on H∗(F•), let α be a closed one-form on M defining a local system. If dimCB = 1, then

Hk+1(M,Lα) ∼= H1(B,Hk(F•, i∗•Lα)
)
.

Proof. Since the dimension of B is 1, we can use the Middle Dimension Theorem to note that

H0(B,Hk(F•, i∗•Lα)
)

= 0, H2(B,Hk(F•, i∗•Lα)
)

= 0.

This means that the page Ep,q2 is only non-zero for p = 1. But the map dl sends

dl : Ep,ql → Ep+l,q−l+1
l ,

so for l ≥ 2 the map dl always maps to or from 0. This means that the kernel at (p, q) = (1, k) is everything
while the image is 0, so we have

E1,k
l+1 = E1,k

l

and all other elements of El+1 are 0. This inductively implies that

E1,k
∞
∼= E1,k

2
∼= H1(B,Hk(F•, i∗•Lα)

)
are the only non-zero elements of E∞. We therefore find that

Hk+1(M,Lα) =
k⊕
j=0

Ej,k+1−j
∞ = E1,k

∞
∼= H1(B,Hk(F•, i∗•Lα)

)
.

This is a useful Corollary if we can find a Serre fibration to a space of dimension 1. A similar results
holds when dimC F = 1 instead. The Corollary implies that knowing the Euler characteristic of B (or F ) and
knowing the twisted cohomology of the other is sufficient to know the twisted cohomology of M . Of course,
if we just want to know the dimension of the twisted cohomology of M it is sufficient to use Corollary 4.4.4.
But Corollary 4.5.10 can be used to find a basis, assuming we know a basis on the fibre.

We will see in the next section that the above Theorem can be very useful when doing the integration in
the intersection product.
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5 The Intersection Product
We can now define the intersection product. The intersection product is about applying the dualities of
Subsection 4.3 to families of Feynman integrals written in a suitable representation. In Subsection 3.4
we have seen the Schwinger Parameter Representation (Equation 15), Feynman Parameter Representation
(Equation 19) and Baikov Representation (Equation 21). These representations have in common that they
all write the Feynman integral in the form

F = c

∫
C

U φ,

where c is some constant, C is some real domain of integration, U is a function which is generally multi-valued
due to dimensional regularisation, and φ is a rational function which depends on the Feynman diagram. In
particular, we have:

Schwinger Parameter: U = z−1
1 . . . z−1

N U−d/2 exp(ic− iV/U), φ = zα1
1 . . . zαNN dz1 . . . dzN ,

Feynman Parameter: U = z−1
1 . . . z−1

N (F + U)−d/2, φ = zα1
1 . . . zαNN dz1 . . . dzN ,

Baikov: U = P (x` − f`)(d−E−L−1)/2, φ = dx1 dx2 . . . dxN
xα1

1 xα2
2 . . . xαNN

.

Of course, we still have to determine what the corresponding manifold is on which this U is defined. This
is not clear for the Schwinger Parameter Representation, but for the other two Representations we can define
the manifold as follows. We know that F + U is an polynomial, and similarly for P (x` − f`). When using
the loop-by-loop Baikov Method we instead find that U is a product of powers of polynomials Pλ1

1 · · ·P
λk
k ,

in that case we consider the polynomial P1 · · ·Pk. For either Representation, we obtain a polynomial in N
variables. We can therefore determine the zero set of this polynomial in CN , we call this zero set D. Then
the manifold is defined as:

M = CN \D.
Remark that this manifold M is an algebraic variety, since if we denote the polynomial by P then

M = {(z1, . . . , zN ) ∈ CN | P (z) 6= 0} ∼= {(z1, . . . , zN , t) ∈ CN+1 | P (z) · t− 1 = 0, }

where the isomorphism sends (z1, . . . zN ) to (z1, . . . , zN , 1/P (z)). This manifold no longer contains any zeroes
of the polynomial nor does it contain infinities (since a polynomial can not become infinite on CN ), hence
the function U is everywhere locally well-defined on the manifold and indeed U is a well-defined function on
the universal cover M̃ .

This definition is however not completely satisfactory, since any φ in Baikov representation has a pole at
xi = 0, but generally xi = 0 is not contained in D. This means that our φ are not well-defined on M . We
solve this by slightly changing P to also include the factor x1 x2 . . . xN , which corresponds to picking some
δ1, δ2, . . . , δN > 0 and changing U to

U = P (x` − f`)(d−E−L−1)/2 xδ1
1 xδ2

1 . . . xδNN .

This process is essentially another regularisation on top of dimensional regularisation; [Miz20] refers to this
process as regularising relative boundaries. A similar step is required in Feynman Parameter Representation
when one allows αi < 0 as well.

After this step, we see that U is locally well-defined and each φ is globally well-defined. This means that
we have now reached a point that we can apply mathematical theorems to the physical situation. First of all,
we define α = d logU which (generally) gives us an exact 1-form. We now have M and α, hence there exists
the twisted cohomology Hk

α. The above definition of M makes it plausible that condition 2 of the Middle
Dimension Theorem 4.2.10 is satisfied, indeed we will generally assume this is true. This tells us that only
the N -th cohomology HN

α is relevant.
Now consider some physical N–form φ. While the function U is multi-valued on M , we can make is

single-valued on the real integration domain C. We therefore find that∫
C

U φ
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is well-defined. Moreover, we can use Stoke’s law and the fact that C has no boundary in M , ∂C = Ø, to
find

0 =
∫
∂C

U ψ =
∫
C

d(U ψ) =
∫
C

U (d + α)ψ,

where ψ is any N − 1–form on M . Therefore, the integral over φ only depends on the value of φ modulo
terms of the form (d + α)ψ for a N − 1–form ψ. Moreover, φ and α only depend on z1, . . . , zN and not on
the complex conjugates z̄1, . . . , z̄N . Therefore, dφ and α∧ φ are both 0 for any physical φ. We therefore find
that φ is d +α–closed and that the integral over φ only depends on φ up to exact terms; this means that the
integral only depends on the class

[φ] ∈ HN
α .

In other words, if we can evaluate ∫
C

U [φ]

for any class
[φ] ∈ HN

α ,

we can evaluate any Feynman integral in the family.
The twisted cohomology HN

α is finite whenever Theorem 4.2.5 or Theorem 4.3.8 is satisfied, since HN
α is

±χ(M). This means that one only needs to know how to evaluate the integral over finitely many classes in
Hk
α in order to determine all Feynman integrals in the family. This is not too surprising, since that idea was

also the idea behind calculating Feynman integrals using the IBP relations and master integrals.
What is new, however, is that we can use the duality theorems from Subsection 4.3 in order to directly

write any Feynman integral in terms of the master integrals. The Poincaré duality gives a non-degenerate
bilinear product between HN

α and HN
c,−α, which we can use to define an inner product on Hk

α. This means
we no longer have to inductively reduce any Feynman integral in terms of the master integrals, but we can
project its integrand onto the integrands of the master integrals.

We will introduce this inner product on Hk
α in the following Subsection. The inner product is known as the

intersection product. Unfortunately, the intersection product is not trivial to compute. We will therefore use
rest of the Subsections to discuss the computation of the intersection product and consider a few examples.

5.1 The Intersection Product
As we have seen in Remark 4.2.3, the cohomology classes with coefficients in Lα do not form a ring, but we
instead have that the wedge product gives a map

Hn
α ×Hm

β → Hn+m
α+β , (φ, ψ) 7→ φ ∧ ψ.

In particular, if the manifold M has complex dimension n then there is a product

Hn
α ×Hn

−α → H2n.

This product is not useful to us, since our manifold M is generally non-compact. We therefore limit Hn
−α to

compactly-supported forms, which we denote by a subscript c. That then gives a product

Hn
α ×Hn

c,−α → H2n
c .

The latter space contains compactly-supported top-dimensional forms which can be integrated over M to
give a complex number. It is the composition of the wedge product and integration

Hn
α ×Hn

c,−α → C, (φ, ψ) 7→ 〈φ, ψ〉 :=
∫
M

φ ∧ ψ

which we refer to as the intersection product. This bilinear form is non-degenerate according to Fact 4.3.10.
Since it is non-degenerate it can be used as an inner product, and indeed we will use this inner product

to expand an arbitrary element of Hn
α in terms of a given basis.
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This bilinear product is between two different spaces which slightly complicates expansions. For any basis
{h1, h2, . . . , hk} of Hn

c,−α and for any basis {e1, e2, . . . , ek} of Hn
α the expansion of an element φ in terms of

the ei is given by

φ =
k∑
i=1

φi ei, φi =
k∑
j=1

[〈ei, hj〉]−1
ij 〈φ, hj〉,

where [〈ei, hj〉]−1
ij denotes the inverse of the square matrix [〈ei, hj〉]ij .

5.2 Explicit Evaluation
We now see how to actually calculate the intersection product for 1-forms and more general n-forms. Instead
of integrating over M , which is generally difficult, we use a version of Stokes’ Theorem and the Residue
Theorem, and only calculate expansions and residues. We follow [Fre+19b] for the explicit definitions and
[Aom+11] for the mathematical background.

Throughout this chapter we assume that the manifold M and the 1-form α satisfy the conditions of the
Middle Dimension Theorem, see Subsection 4.2.1.

5.2.1 One-forms

We start with 1-forms, corresponding to M having complex dimension 1. Using Stoke’s Theorem and the
Residue theorem the above form is equivalent to

〈φ, ψ〉 :=
∑
p∈P

Res
z=p

[φ Ψ], (31)

where φ ∈ H1
α, ψ ∈ H1

c,−α, P is the collection of poles of α and Ψ is a local primitive of ψ:

(d− α)Ψ = ψ.

Proposition 5.2.1 (Cho, Matsumoto 1995). For φ ∈ H1
α and ψ ∈ H1

c,−α on a complex manifold M with
dimCM = 1 we have ∫

M

φ ∧ ψ ∼ c
∑
p∈P

Res
z=p

[φ Ψ],

where c is a fixed constant, P denotes the poles of α together with α, and Ψ is a local primitive of ψ at each
point p. [MM19]

Proof. We first use the Morse function (or a similar construction) to find a compact cut-off Mc.o. ⊆M which
is a manifold with boundary and has the same (co)homology as M . Note that the intersection product over
Mc.o. is then equivalent to that over M , so we may use that instead.19

Since M is of complex dimension 1, the boundary of Mc.o. must be of real dimension 1. Since Mc.o. is
also compact, we find that the boundary must be a finite union of circles S1.

We consider the (generally multi-valued) primitive Ψ of ψ on each of the circles in the boundary. Remark
that

d(φΨ) = (dφ) Ψ− φ ∧ dΨ = −α ∧ φΨ− φ ∧ dΨ = −φ ∧ (dΨ− αΨ) = −φ ∧ ψ.

We therefore find that ∫
Mc.o.

φ ∧ ψ = −
∫
Mc.o.

d(φΨ) = −
∫
∂Mc.o.

φΨ.

Since ∂Mc.o. is a union of circles, the integral over each of these circles can be expressed as a residue over the
interior (here the ‘interior’ refers to the subset of M bounded by the circle and in the complement of Mc.o.).

19Remark that we can use the intersection product over M or over Mc.o. to get equivalent results, but we cannot mix
intersection products from both. In practice, we will always use Mc.o. as it is easier to integrate over compact sets.
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The Morse function has isolated critical points hence the poles of α are isolated as well. This implies that
Mc.o. can be chosen such that the interior of each circle contains exactly one pole of α. Moreover, φ and ψ
are smooth on M , so the only poles of φΨ can be poles of α. Therefore, the residues are precisely residues
over the poles of α. We conclude that∫

Mc.o.

φ ∧ ψ = −
∫
∂Mc.o.

φΨ = −2πi
∑
p∈P

Res
z=p

[φΨ].

Remark that we have to add ∞ to P since one circle in ∂Mc.o. will be the upper cut-off, which can be
interpreted in CP1 as a circle around ∞.

Note that the poles of α all lie outside the interior of M per definition of α, so to make full sense of the
above expression we may need to have a suitable embedding of M into the compact manifold CP1. Since P
can be explicitly determined and since the expansion Ψ around each z = p can be calculated, we see that
the above definition can be programmed in Python or Mathematica to largely automate the calculation. We
consider a few examples calculated this way.

Remark 5.2.2. In practice we integrate over Mc.o., which is compact. We therefore can use any differential
form ψ ∈ H1

−α and do not have to worry about making the differential form compactly supported. •

Example 5.2.3 (Euler Beta). The Euler Beta integrals are defined by [AS64:Sec. 6.2]

β(a, b) :=
∫

(0,1)
za−1 (1− z)b−1 dz.

We consider a = n+ γ + 1 and b = 1 + γ to get the integrals

In :=
∫

(0,1)
Bγ zn dz,

where B = z(1− z) is a polynomial, γ is a non-integer real number and n is an integer. We want to use the
intersection product to relate the integrals to each other. For this, we first have to determine the manifold
and the relevant twisted cohomology.

Since B is a polynomial, we can use Bγ to construct the one-form; we will choose the one-form

α = d log(Bγ) = γ d log(z(1− z)) = γ

(
1
z

+ 1
z − 1

)
dz.

From the log, it is clear the one-form α is singular in the limits to 0, 1 and ∞. We find the manifold
C \ {0, 1} = CP1 \ {0, 1,∞}.

Our next step is to determine the twisted cohomology of C \ {0, 1} with respect to α. In this case, we can
use the result from Example 4.2.4 to immediately conclude that

H0
α = 0, H1

α
∼= C, H2

α = 0.

We therefore have to choose one master integral. We only have to be careful we choose a non-zero integral,
otherwise we can choose anything. We choose the integral I0 as the master integral. This gives us z0 dz = dz
as the relevant integrand, as we remove the integral and the multi-valued Bγ . Remark that I0 is generally
non-zero because dz is non-exact.

Since the cohomology has dimension 1 and integration is linear, there should be some cn such that
In = cn · I0 for any n ∈ N. We will determine c1, the other coefficients are calculated similarly. To calculate
c1, we have to intersect dz and z1 · dz = z dz with some (compact) one-form in H1

c,−α. The form dz is in
H1
−α and is simple, and is compactly supported on any cut-off submanifold (with boundary) of C \ {0, 1}.
We can then start to calculate the intersection 〈dz,dz〉 first. Using Equation 31 we know:

〈dz,dz〉 =
∑

p=0,1,∞
Res
z=p

[1 dz ·Ψ]
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where [
d− γ

(
1
z

+ 1
z − 1

)
dz
]

Ψ = dz.

We have to solve for Ψ near the poles 0, 1 and ∞, so we solve Ψ as a power series in z, z − 1 and w = 1/z
respectively.

We start by calculating the residue near p = 0. The power series for Ψ is given by

Ψ =
∞∑

k=−∞
ck z

k

for some ck ∈ C. Note that
1

z − 1 = −1− z − z2 − z3 − . . .

for |z| < 1. Substituting the power series into the differential equation, we locally find:

∞∑
k=−∞

ck k zk−1 − γ ck zk−1 + γ
∑
l≥0

ck−l z
k

 = 1 · z0.

Shifting the k of the rightmost term by one, we find

ck k − γ ck + γ
∑
l≥0

ck−l−1 = δk1,

for any k. We can iteratively solve this as follows. The lowest contribution on the right-hand-side is at k = 1,
so we can set ck = 0 for any k ≤ 0. We then start with k = 1, which gives us

c1 − γ c1 = 1, hence c1 = 1
1− γ .

We then calculate c2, we similarly have

2 c2 − γ c2 + γ c1 = 0, hence c2 = −γ c12− γ = −γ
(1− γ)(2− γ) .

The higher orders are calculated in the same way, as are the expansion around z = 1 and z = ∞. For the
latter we used w = 1/z with dz = −1/w2 dw and instead expand around w = 0 for simplicity.

We find respectively: (remark that Mastrolia used a different convention in his MathAmp2019 talk, which
is equal to replacing γ with −γ)

Ψ|0 = 0 z−1 + 0 z0 + 1
1− γ z

1 − γ

(1− γ)(2− γ) z
2 − 2γ

(2− γ)(3− γ) z
3 + . . .

Ψ|1 = 0 (z − 1)−1 + 0 (z − 1)0 + 1
1− γ (z − 1)1 + γ

(1− γ)(2− γ) (z − 1)2 − 2γ
(2− γ)(3− γ) (z − 1)3 + . . .

Ψ|∞ = 1
1− 2γ w

−1 − 1
2(1− 2γ) w

0 + γ

2(−1− 2γ)(1− 2γ) w
1 + γ

4(−1− 2γ)(1− 2γ) w
2

− 2γ + γ2

4(−3− 2γ)(−2− 2γ)(−1− 2γ) w
3 + . . .

We can now directly determine the residues of Ψ|p dz at p = 0, 1 and ∞. For the first two we clearly have

Res
z=0

[Ψ|0 dz] = c−1 = 0, Res
z=1

[Ψ|1 dz] = Res
z=1

[Ψ|1 d(z − 1)] = c−1 = 0.

For z = ∞, we have to be more careful since dz 6= dw. We instead have to transform the dz to −1/w2 dw,
which gives:

Res
z=∞

[Ψ|∞ dz] = Res
w=0

[
Ψ|∞ · −

1
w2 dw

]
= −c1 = −γ

2(−1− 2γ)(1− 2γ) .
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We conclude that
〈dz,dz〉 = −γ

2(−1− 2γ)(1− 2γ) .

We similarly determine 〈z dz,dz〉. We again write Ψ as a power series near 0, 1 and ∞; we can actually use
the same Ψ as in the above since we didn’t change the dz. We calculate

〈z dz,dz〉 =
∑

p=0,1,∞
Res
z=p

[z dz ·Ψ|p]

for the same Ψ|0,Ψ|1 and Ψ|∞. In particular, the residues of Ψ|p · z dz are respectively:

Res
z=0

[Ψ|0 · z dz] = c−2 = 0,

Res
z=1

[Ψ|1 · z dz] = Res
z=1

[Ψ|1 · (z − 1) d(z − 1) + Ψ|0 · 1 d(z − 1)] = c−2 + c−1 = 0,

Res
z=∞

[Ψ|∞ · z dz] = Res
w=0

[
Ψ|0 · −

1
w3 dw

]
= −c2 = −γ

4(−1− 2γ)(1− 2γ) .

We conclude that
〈z dz,dz〉 = −γ

4(−1− 2γ)(1− 2γ) .

By the linearity of multiplication and integration and the linearity of the intersection product, we now know
that

I1
I0

= 〈z dz,dz〉
〈dz,dz〉 = −γ

4(−1− 2γ)(1− 2γ)/
−γ

2(−1− 2γ)(1− 2γ) = 1
2 .

We found I1 = 1
2I0. We can similarly compute I−1 in terms of I0. We first take the new residues

Res
z=0

[
Ψ|0 · z−1 dz

]
= c0 = 0,

Res
z=1

[
Ψ|1 · z−1 dz

]
= Res

z=1

Ψ|1 ·
∑
l≥0

(−1)l (z − 1)l d(z − 1)

 =
∑
l≥0

(−1)l c−1−l = 0,

Res
z=∞

[
Ψ|∞ · z−1 dz

]
= Res
w=0

[
Ψ|0 · −

1
w

dw
]

= −c0 = 1
2(1− 2γ) .

We then find 〈z−1 dz,dz〉 = 1/(2(1− 2γ)) hence

I−1

I0
= 〈z

−1 dz,dz〉
〈dz,dz〉 = 1

2(1− 2γ)/
−γ

2(−1− 2γ)(1− 2γ) = 1 + 2γ
γ

, I−1 = 1 + 2γ
γ

I0.

To confirm that these results are correct, we compare them to know results. We know [AS64] that

In = Γ(1 + γ) Γ(1 + γ + n)
Γ(2 + 2γ + n) .

Here Γ is the Euler gamma function. Putting the values for n = −1, 0, 1 into the formula and using Γ(x+1) =
xΓ(x), we directly confirm that our above calculations are correct. 4

The above example had no external parameters, making it easy to determine the manifold. Moreover,
the twisted cohomology had dimension 1 such that is was easy to choose a basis. These things are not true
for the next example.

Example 5.2.4 (Hypergeometric 2F1). We consider an Euler integral representation of a product of the
Euler Beta function and the Gauss 2F1 hypergeometric function:

f(a, b, c;x) := β(b, c− b) 2F1(a, b, c;x) =
∫ 1

0
zb−1 (1− z)c−b−1 (1− x z)−a dz.
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For any fixed a, b, c the integrand has two variables, x and z. Here z is an internal variable and x is an
external variable. We assume that a, b and c− b are all fixed non-integers and determine a relation between
f(a, b, c;x) and f(a+ n, b+m, c+ k;x) for some integers n,m, k. Note that the latter can be rewritten as

f(a+ n, b+m, c+ k;x) =
∫ 1

0
u · zm(1− z)k−m(1− x z)−n dz, u(z) = zb−1 (1− z)c−b−1 (1− x z)−a.

We therefore choose the one-form

α = d log u =
(
b− 1
z

+ c− b− 1
1− z + −a

1− x z

)
dz.

Since we also allow the integers n,m, k to be negative, we can assume without loss of generality that a < 0,
b > 1 and c > b+ 1.

We use this one-form to determine the manifold. It is clear that α is singular at z = 0, z = 1, z =∞ and
at x z = 1. We have two variables, so our manifold becomes

M = C2 \ {(z, x) | z = 0 or z = 1 or z x = 1}.

Note that M can be embedded into CP2 by adding a new variable t into the polynomial u such that the
result is homogeneous,

uhom(z, x, t) = zb−1(t− z)c−b−1(t2 − x z)−a.

Then the singularities at z = ∞ become singularities at t = 0 instead as [x : ∞ : 1] = [0 : 1 : 0] for x ∈ C.
The singularities of α are no longer isolated poles, but instead form lines in CP2.

We are not interested in the entire manifold, as our integral does not integrate over x. We therefore want
to look at the submanifolds obtained by choosing a fixed x. For most values of x this gives 4 isolated poles.
However for x = 0, 1,∞ we find only 3 distinct poles, with one of the poles being on the intersection of two
of the lines described above. We therefore expect that the coefficient relating f(a + n, b + m, c + k;x) to
f(a, b, c;x) will have singular behaviour at x = 0, x = 1 and x =∞.

With these considerations in mind, we assume x 6= 0, 1,∞. In that case the submanifold for z is

M = C \ {0, 1, 1/x} = CP1 \ {0, 1, 1/x,∞}.

We haven’t already calculated the twisted cohomology of this (sub)manifold, so we use the Morse theory
from Subsection 4.4.

We first determine the cut-off boundaries. We have

< log u(z) = (b− 1) log |z|+ (c− b− 1) log |1− z| − a log |1− xz|,

so the precise boundaries depend on the values of a, b, c. We assumed before that a < 0, b > 1 and c > b+ 1.
In particular, that means that the coefficient in front of each log is strictly positive. We therefore get compact
cut-off boundaries. For ` � 0 sufficiently small the space < log u(z) = ` will consist of three circles around
z = 0, z = 1 and z = 1/x. This can be seen by the fact that the points on a sufficiently small circle around
z = 0 will always have approximately the same distance to z = 1 and z = 1/x, at distances 1 and 1/x
respectively. Therefore, the solutions of < log u(z) = ` can be approximated by

(b− 1) log |z|+ (c− b− 1) log |1| − a log
∣∣∣∣x · 1

x

∣∣∣∣ = `.

Since log |1| = 0, we find that the equation is approximately solved by |z| = e`/(b−1) which gives a circle
around 0 with radius e`/(b−1) � 1. Similarly, small circles around z = 1 and z = 1/x also provide solutions.
Therefore, the lower cut-off boundary consists of three circles.

Note that the upper cut-off boundary is approximately a large circle around z = 0 since for Λ � 0 and
and for z � 0 we can approximate |1− z| ∼ |z| and |1− xz| ∼ |x| |z|. That gives us

(b− 1) log |z|+ (c− b− 1) log |z| − a log(|x| |z|) = Λ,



5 THE INTERSECTION PRODUCT 64

hence solutions |z| = exp
(
Λ/(c− a |x| − 2)

)
. This gives us a circle with a large radius.

We then need to determine the cohomology of the lower cut-off boundaryM`. Since the circles are disjoint,
their twisted cohomology is simply the sum of the twisted cohomologies of each circle. Each of the circles
is a special case of Example 4.1.6, so we simply find that H0

α(M`) = 0 and H1
α(M`) = 0 for a, b and c − b

non-integer. This is indeed what we expected, since the each circle corresponds to a loop and the monodromy
of α along any loop around z = 0, z = 1 or z = 1/x is non-zero.

In that case, our manifold has H0
α = 0, H2

α = 0, and the first cohomology class is given by the number of
zeroes of α. The equation

0 = z(1− z)(1− xz) · α =
[
(b− 1)(1− z)(1− xz) + (c− b− 1) z (1− xz)− a z (1− z)

]
dz

is a quadratic polynomial in z, and has two distinct roots. We find that H1
α
∼= C2 and we have to find two

linearly independent 1-forms to form a basis.
There are multiple possible bases. We first try the basis {dz, z dz} in analogy to Example 5.2.3. Remark

that dz corresponds to f(a, b, c;x) and z dz to f(a, b+ 1, c+ 1;x). We similarly have to choose 2 elements of
H1
c,−α to intersect with; we again choose dz and z dz. We then get the following:

〈dz | dz〉 =
∑

p=0,1,1/x,∞

Res
z=p

[dz ·Ψ|p]

〈z dz | dz〉 =
∑

p=0,1,1/x,∞

Res
z=p

[z dz ·Ψ|p]

〈dz | z dz〉 =
∑

p=0,1,1/x,∞

Res
z=p

[dz ·Ψ′|p]

〈z dz | z dz〉 =
∑

p=0,1,1/x,∞

Res
z=p

[z dz ·Ψ′|p].

Here Ψ|p is the local solution at p of the equation (d−α)Ψ = dz, while Ψ′|p similarly solves (d−α)Ψ′ = z dz.
To see whether {dz, z dz} for H1

α and {dz, z dz} for H1
c,−α are indeed bases we calculate the above four

intersections; the two sets are bases if and only if the matrix formed by the four intersections has non-zero
determinant. The calculations themselves are identical to the calculation in Example 5.2.3. We calculate a
power series expansion for Ψ and Ψ′ at each point before taking the residues. This gives the following.

〈dz,dz〉 =
a
(
(b+ 1)x2 − 2(b+ 1)x− c(x− 1)2 + 2

)
− (b− 1)x2(b− c+ 1)

x2(a− c+ 1)(a− c+ 2)(a− c+ 3)

〈dz, z dz〉 =

[
a2(x− 1)2x(b− c+ 1) + a

( (
−2b2 + b+ 3

)
x3 +

(
3b2 + b− 2

)
x2 + c(x− 1)2((2b− 3)x− 5)

− 5(b+ 1)x+ c2(x− 1)2 + 6
)

+
(
b2 − 3b+ 2

)
x3(b− c+ 1)

]
x3(a− c+ 1)(a− c+ 2)(a− c+ 3)(a− c+ 4)

〈z dz,dz〉 =

a2(x− 1)2x(b− c+ 1) + a
(
−
(
2b2 + b− 1

)
x3 + c(x− 1)2((2b− 1)x− 3)

+ 3b(b+ 1)x2 − 3(b+ 1)x+ c2(x− 1)2 + 2
)

+ (b− 1)bx3(b− c+ 1)


x3(a− c)(a− c+ 1)(a− c+ 2)(a− c+ 3)

〈z dz, z dz〉 =


− a3(x− 1)2x2(b− c+ 1) + a2(x− 1)2x(b− c+ 1)(3(b− 1)x+ 2c− 4)

+ a
(
c(x− 1)2 ((3b2 − 6b+ 2

)
x2 + (6− 8b)x+ 11

)
+ 4b

(
b2 − 1

)
x3

+
(
−3b3 + 3b2 + 4b− 2

)
x4 + 2c2(x− 1)2((b− 1)x− 3)− 6b(b+ 1)x2

+ 8(b+ 1)x+ c3(x− 1)2 − 6
)

+ b
(
b2 − 3b+ 2

)
x4(b− c+ 1)


x4(a− c)(a− c+ 1)(a− c+ 2)(a− c+ 3)(a− c+ 4)

Writing the above values into a matrix and calculating the determinant gives

〈dz,dz〉〈z dz, z dz〉 − 〈dz, z dz〉〈z dz,dz〉 = − a(b− 1)(1 + b− c)(x− 1)2

(a− c)(1 + a− c)(2 + a− c)(3 + a− c)(4 + a− c)x4 ,
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which is indeed generally non-zero. In particular, the expression is 0 only if x = 1 or x = ∞, and diverges
for x = 0. We already predicted singular behaviour at x = 0, x = 1 and x =∞ so this is no surprise.

We see that the {dz, z dz} can form a basis for H1
α and for H1

c,−α. That means that we can now express
any element of H1

α in terms of dz and z dz via the intersection product. We will do this later, we first consider
another basis.

The above basis works, but clearly gives rather large intersection products. This is because α has poles
which are not present in dz and z dz, such that the poles instead appear in the intersection product. To
avoid this we can choose a basis whose form is more reminiscent of α, such as{

1
z

dz − 1
z − 1dz, 1

z − 1dz − x

xz − 1dz
}

= {d log(z)− d log(z − 1),d log(z − 1)− d log(xz − 1)}.

This is an example of a dlog basis. Note that this basis is degenerate at x = 1 and at x =∞. We will show
the basis is indeed a proper basis for any other value of x by calculating the intersection product. After
solving a local power series equation and summing the residues one finds the following.

〈d log(z)− d log(z − 1),d log(z)− d log(z − 1)〉 = 1
1− b −

1
c− b− 1

〈d log(z)− d log(z − 1),d log(z − 1)− d log(xz − 1)〉 = 1
c− b− 1

〈d log(z − 1)− d log(xz − 1),d log(z)− d log(z − 1)〉 = 1
c− b− 1

〈d log(z − 1)− d log(xz − 1),d log(z − 1)− d log(xz − 1)〉 = 1
a
− 1
c− b− 1 .

These intersection numbers are clearly easier to work with, although they are not easier to compute. The
determinant is now(

1
1− b −

1
c− b− 1

)(
1
a
− 1
c− b− 1

)
−
(

1
c− b− 1

)(
1

c− b− 1

)
= c− a− 2
−a(b− 1)(c− b− 1) .

We have assumed a < 0 and c > b + 1 > 2, so this is non-zero. The dlog basis is therefore indeed a good
basis.

Before we calculate the intersection of another element with respect to these bases, we first note that so
far we have used the same basis for H1

α and H1
c,−α. This is not necessary, we could for instance take {dz, z dz}

for H1
α and {d log(z)− d log(z − 1),d log(z − 1)− d log(xz − 1)} for H1

c,−α as that gives:

〈dz,d log(z)− d log(z − 1)〉 = −1
c− a− 1

〈dz,d log(z − 1)− d log(xz − 1)〉 = x− 1
(c− a− 1)x

〈z dz,d log(z)− d log(z − 1)〉 = a− ax+ bx

(a− c)(c− a− 1)x

〈z dz,d log(z − 1)− d log(xz − 1)〉 = (x− 1)(c− 1 + bx− ax)
(c− a)(c− a− 1)x2 .

These intersection products are still quite simple and indeed the determinant is(
−1

c− a− 1

)(
(x− 1)(c− 1 + bx− ax)

(c− a)(c− a− 1)x2

)
−
(

x− 1
(c− a− 1)x

)(
a− ax+ bx

(a− c)(c− a− 1)x

)
= x− 1

(c− a)(c− a− 1)2x2 ,

which is zero only for x = 1 or x =∞ and singular only for x = 0.
We now have seen three possible pairs of bases, and we will use to find relations. To do so, we first have

to determine to which integrals the chosen forms correspond. We find
dz ⇒ f(a, b, c;x) = β(b, c− b) 2F1(a, b, c;x)

z dz ⇒ f(a, b+ 1, c+ 1;x) = β(b+ 1, c− b) 2F1(a, b+ 1, c+ 1;x)
d log(z)− d log(z − 1)⇒ −f(a, b− 1, c− 2;x) = −β(b− 1, c− b− 1) 2F1(a, b− 1, c− 2;x)

d log(z − 1)− d log(xz − 1)⇒ f(a+ 1, b+ 1, c;x) = β(b+ 1, c− b− 1) 2F1(a+ 1, b+ 1, c;x),
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where we used
1
z
− 1
z − 1 = −1

z(z − 1) ,
1

z − 1 −
1

xz − 1 = (x− 1)z
(z − 1)(xz − 1) .

We will express f(a, b + 2, c + 2;x) = β(b + 2, c − b) 2F1(a, b + 2, c + 2;x) in terms of f(a, b, c;x) and
f(a, b+ 1, c+ 1;x), and in terms of −f(a, b− 1, c− 2;x) and f(a+ 1, b+ 1, c;x). Note that f(a, b+ 2, c+ 2;x)
corresponds to the integrand z2 dz. We write

f(a, b+ 2, c+ 2;x) = c1 · f(a, b, c;x) + c2 · f(a, b+ 1, c+ 1;x),

where the coefficients c1, c2 are calculated using the intersection product,(
c1
c2

)
=
(
〈dz | φ1〉 〈dz | φ2〉
〈z dz | φ1〉 〈z dz | φ2〉

)−1
·
(
〈z2 dz | φ1〉
〈z2 dz | φ2〉

)
.

Here {φ1, φ2} is a basis for H1
c,−α; the choice of a basis should not matter. We will use {dz, z dz} and

{d log(z)− d log(z − 1),d log(z − 1)− d log(xz − 1)} to confirm this.
For {dz, z dz} the rightmost vector becomes too long to write down , but generally has the form

〈z2 dz,dz〉 = polynomial in a, b, c and x
(c− a+ 1)(c− a)(c− a− 1)(c− a− 2)(c− a− 3)x4

〈z2 dz, z dz〉 = another polynomial in a, b, c and x
(c− a+ 1)(c− a)(c− a− 1)(c− a− 2)(c− a− 3)(c− a− 4)x5 .

Inverting the intersection matrix and doing a matrix multiplication, we find(
c1 c2

)T =
(

−b
(c− a+ 1)x

c+ (b− a+ 1)x
(c− a+ 1)x

)T
.

We conclude that

f(a, b+ 2, c+ 2;x) = −b
(c− a+ 1)x · f(a, b, c;x) + c+ (b− a+ 1)x

(c− a+ 1)x · f(a, b+ 1, c+ 1;x).

This gives a useful contiguity relation for f(a, b, c;x).
We repeat the procedure for the {d log(z)− d log(z − 1),d log(z − 1)− d log(xz − 1)} basis, which should

give the same answer. We have

〈z2 dz,d log(z)− d log(z − 1)〉 = a2 x(1− x)− b(b+ 1)x2 − a(1− x)(c+ x+ 2bx)
(c− a+ 1)(c− a)(c− a− 1)x2

〈z2 dz, z d log(z − 1)− d log(xz − 1)〉 =

[
(1− x)(c2 + c((1− 2a+ b)x− 1)− x(a2x+ a(1 + b− x− 2bx)

+ (1 + b)(bx− 1)))

]
(c− a+ 1)(c− a)(c− a− 1)x3 .

Again inverting the intersection matrix and doing matrix multiplication, we find(
c1 c2

)T =
(

−b
(c− a+ 1)x

c+ (b− a+ 1)x
(c− a+ 1)x

)T
.

Indeed, we find the same coefficients. We can similarly write f(a, b+2, c+2;x) in terms of −f(a, b−1, c−2;x)
and f(a + 1, b + 1, c;x). The only difference is in the intersection matrix, not in the intersection itself. We
have already calculated the matrix elements and the intersections above. We write

f(a, b+ 2, c+ 2;x) = d1 · −f(a, b− 1, c− 2;x) + d2 · f(a+ 1, b+ 1, c;x),

then we find (using either basis for H1
c,−α)

d1 =

(b− 1)(−a2(c− b− 1)(x− 1)2x− b(1 + b)(c− b− 1)x3

− a(c2(x− 1)2 + c(x− 1)2(2bx+ x− 1)
− (1 + b)x(1− (2 + 3b)x+ (1 + 2b)x2)))


(c− a+ 1)(c− a)(c− a− 1)(c− a− 2)x3
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and

d2 =

a(c3(x− 1)− c2(x− 1)(3− (1 + b− 2a)x) + c(x− 1)(2− 3(1 + b)x
+ 2a(2 + b)x+ (−a+ a2 + b− 2ab+ b2)x2)− (1 + b)x(2− 2(1 + b)x
+ a2(x− 1)x+ b(1 + b)x2 − a(x− 1)(2bx+ x− 2)))


(c− a+ 1)(c− a)(c− a− 1)(c− a− 2)x3 .

This again gives us a contiguity relation.
Both contiguity relations we found were for f(a, b+ 2, c+ 2;x) since they were calculated using z2 dz. We

can similarly express any f(a + n, b + m, c + k;x) using the more complicated integrand zm(1 − z)k−m(1 −
x z)−n dz by taking the intersection product. This means that we do not have to inductively use contiguity
relations, but we can express f(a+ n, b+m, c+ k;x) more directly. 4

5.2.2 Bases

In the above Examples we have seen bases of the form

{dz, z dz, z2 dz, . . . }

and the basis of the form

{d log(a0(z))− d log(a1(z)),d log(a1(z))− d log(a2(z)),d log(a2(z))− d log(a3(z)), . . . }

where the ak are linear functions in z. The basis we have seen are examples of two general classes of bases
which are often used.

• The monomial basis.
A monomial basis is of the form {dz, z dz, z2 dz, . . . }. These 1-forms have no poles and are therefore
typically easy to take the primitive or the residue of. However, this also means that any relevant pole
must instead appear in the intersection product, such that the expressions for the intersection products
are typically large.

• The dlog basis. [MM19; Hen15]
As the name implies, the dlog basis has elements of the form d log(a`(z)).Here a` is a linear or rational
function of z chosen such that a`(p) = 0 or ∞ at some critical point p of α. More generally dlog can
refer to elements of the form d log(q(z)) where q is a rational function of polynomials in z.
The dlog basis can be seen as the natural counterpart of the twisted cycle description of the twisted
homology, and as such most of the information of α (such as poles) and be reconstructed from the basis.
The basis also has applications in the theory of differential equations for Feynman integrals, where it
is related to the canonical form discussed in Subsection 3.3.

In the above Example we have seen that the basis for H1
α and the basis of H1

c,−α do not necessarily have
to be induced by the same 1-forms. This is known as ‘mixed bases’. [Man+19] Mixing bases can be useful as
the roles of the bases differ. The basis {φ1, φ2, . . . , φk} of H1

α should be chosen such that the outcome of the
corresponding Feynman integrals Fi are usable. On the other hand, the basis {ψ1, . . . , ψk} of H1

c,−α should
be chosen such that the computation of the intersection with ψi takes the least time. In particular, we are
not interested in the corresponding Feynman integrals but only in the corresponding local primitives Ψi.

However, there are also advantages to using the dlog basis for both spaces. For instance, when both φ
and ψ are dlog, the intersection product can be further simplified; see [Fre+19a:Section 3.5]. According to
[Miz20] the general question of when which basis is optimal has yet to be answered.

5.2.3 Higher forms

For higher forms, the calculation stays similar in principle but becomes inductively more difficult. Since
we want to use residues, we can only integrate over one dimension at a time. This means we have to split
an integral over n variables z1, . . . , zn into n integrals over one variable zi each. We do this inductively by
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choosing an ‘internal dimension’ and integrating over that dimension. Formally speaking this means we turn
our manifold into the total space of a fibration and integrate over the fibre, using Corollary 4.5.10. We start
with n = 2 for simplicity and clarity. This section is loosely based on [Fre+19a].

Since we have n = 2, we know that M ⊆ C2. We split the space into fibres such that each value of z2
denotes a fibre and the coordinate along the fibre is z1, so the projection is the restriction of M to

C2 → C, (z1, z2)→ z2.

We denote B for the image of M in this projection, such that the fibration is M → B. We denote the fibres
by F•. For clarity, B ⊆ C corresponds to z2 and F• to elements (z1, •) for any • ∈ B.

Then α = α1 dz1 +α2 dz2 induces α1dz1 on the fibre, giving rise to a twisted cohomology Hk(F•,Lα1dz1).
The fibre is a manifold of dimension 1, so we can calculate the intersection along the fibre using the theory
described above.

Let {e1, . . . , ek} be a basis of H1(F•,Lα1dz1) on the fibre, and {h1, . . . , hk} a basis of H1
c (F•,L−α1dz1)

also on the fibre. We want to calculate the inner product (2)〈φ, ψ〉 for φ ∈ H2
α and ψ ∈ H2

c,−α on the entire
manifold. The main idea will be much like the intersection of 1-forms: we want to use residues. However,
the product φ ∧ ψ is now a 4-form, so even if we take a local primitive of either we still have a 3-form. We
need a 1-form in order to use the residue.

The main trick is to turn every 2-form into a product of a 1-form of the form dz1 and a 1-form of the
form dz2 by using Corollary 4.5.10. Then the two dz1 terms can be intersected and the two dz2 terms can
be intersected, giving a single function as a result. This means that our calculation has the following steps.

0. Choose a basis {e1, . . . , ek} for H1(F•,Lα1dz1) and {h1, . . . , hk} for H1
c (F•,L−α1dz1) and determine

their intersection product.

1. Start with φ ∈ H2
α and ψ ∈ H2

c,−α of which you want to determine the intersection product.

2. Compute a local primitive of the 4-form φ ∧ ψ by determining an 1-form Ψ such that

(d− α)Ψ = ψ, d(φ ∧Ψ) = (−1)2 φ ∧ ψ.

To find this Ψ, use that
H2
c (M,L−α) ∼= H1

c

(
B,H1

c (F•,L−α1dz1)
)

to see ψ as an element of the right-hand-side, then locally integrate over B (hence over z2) using a
series expansion. The result is a H1

c (F•,L−α1dz1)–valued function Ψ over B, hence indeed a 1-form
over M

3. Write Ψ in terms of the basis hj , so Ψ =
∑
j Ψjhj . Since Ψ was a function with values inH1

c (F•,L−α1dz1),
the coefficients Ψj are (generally multi-valued) functions over B. This gives

d

∑
j

Ψj φ ∧ hj

 = (−1)2 φ ∧ ψ.

4. Calculate the intersection product of φ with the hj over the fibre (hence over z1). During this calculation
we temporarily ignore that φ has a dz2 part, and simply take the intersection over the dz1 parts (along
the fibre). In particular, we calculate a local primitive Hj of the 1-form hj and take the residue over
z1: ∫

F•

(−1)2φ ∧ ψ = 2πi
∑
j

Ψj Res
z1

[φHj ].

Here we use the residue over z1 to denote the sum of residues over poles in z1, given by C \ F• and ∞.
The result of the intersection is a 1-form of the form dz2, not a function.

5. We find that ∫
M

φ ∧ ψ =
∫
B

∫
F•

φ ∧ ψ =
∫
B

(−1)2(2πi)
∑
j

Ψj Res
z1

[φHj ]
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is a 1-form of the form dz2. We take the z2–residue of that expression and find a function.∫
M

φ ∧ ψ =
∫
B

(−1)2(2πi)
∑
j

Ψj Res
z1

[φHj ] = (−1)2(2πi)2 Res
z2

[∑
j

Ψj Res
z1

[φHj ]
]
.

Again, the residue over z2 refers to the residue over the poles of z2 hence the points of C \B and ∞.

6. Collecting the above expressions, we find∫
M

φ ∧ ψ = (−2πi)2 Res
z2

∑
j

Ψj Res
z1

[φHj ]

 = (−2πi)2
∑
j

Res
z2

[
Ψj Res

z1
[φHj ]

]
.

7. Finally, the functions Ψj were functions over B and do not depend on F•. Therefore, we can move the
Ψj inside the residue for the slightly easier expression∫

M

φ ∧ ψ = (−2πi)2
∑
j

Res
z2

[
Res
z1

[φHj Ψj ]
]
.

Based on the above, we define the intersection product on M as follows:

(2)〈φ, ψ〉 :=
∑
p2∈P2

∑
p1∈P1

k∑
i=1

Res
z2=p2

Res
z1=p1

[φ Hi Ψi] , (32)

where k = dimH1
α1 dz1

,

dΨi − Â(2)
ij dz2 Ψj =

k∑
l=1

[〈ei, hj〉]−1
il 〈el, ψ〉,

dHi − α1dz1 Hi = hi,

and

Â
(2)
ij = −

k∑
l=1

[〈ei, hj〉]−1
il 〈el, (∂z2 − α2)hj〉.

We see that we do not need to know Ψ for the intersection product, as long as we know Ψj . This means we
do not have to explicitly use the isomorphism H2(M,Lα) ∼= H1(B,H1(F•,Lα1dz1)

)
, we only use it implicitly.

In this formula we have made the poles of the residues explicit, using P2 = C \ B and P1 = C \ F•.
However, we still have to find these sets, and P1 generally depends on the corresponding base point z2. The
set P1 is the set of poles in z1 on the fibre, hence P1 is the set of poles of α1 dz1 for the fixed value of z2. On
the other hand, P2 is a bit more complicated. It turns out that Â(2)

ij (a matrix of 1-forms) takes over the role
of α on the base space, and the poles P2 are precisely the poles of Â(2)

ij . Note that the above formula for Ψi

treats Â(2)
ij as a replacement for α.

Indeed, it turns out that the local system H1
c (F•,L−α1dz1) over B is the local system LA corresponding

to A = Â(2) as in Subsubsection 4.5.1.
In order to explain the formula for Ψi and give more context for Ψ and Â(2)

ij , we consider the following.
We found that taking the primitive of φ inH2

c,−α gives some

Ψ =
k∑
j=1

Ψj hj .

Here Ψj is a (generally multi-valued) function on B, and was given by locally taking the primitive of ψ with
respect to z2. We therefore have the equation

dΨ− α2 Ψ = ∂z2Ψ dz2 − α2Ψ = ψ.
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We want to express this in terms of the Ψj . We find

k∑
j=1

[(
∂z2Ψj

)
hj + Ψj∂z2hj − α2Ψj hj

]
= ∂z2

k∑
j=1

Ψj hj − α2

k∑
j=1

Ψj hj = ψ.

We finally have to remove the hj from the equation. To do this, we take the intersection product of both
sides with el and then multiply both sides with [〈ei, hj〉]−1

il and sum over l. Note that Ψj does not depend
on z1, so we can move it out of the intersection product. This gives:

∂z2Ψj +
k∑
l=1

[〈ei, hj〉]−1
il 〈el, ∂z2hj〉Ψj −

k∑
l=1

[〈ei, hj〉]−1
il 〈el, α2 hj〉Ψj =

k∑
l=1

[〈ei, hj〉]−1
il 〈el, ψ〉.

Gathering the second and third terms, we indeed find the earlier expression for Â(2)
ij :

Â
(2)
ij = −

k∑
l=1

[〈ei, hj〉]−1
il 〈el, (∂z2 − α2)hj〉.

This shows that the local system Hk
c (F•,L−α1dz1) is indeed the local system generated by Â(2).

We can now in theory calculate 2-forms. We first generalise the above the n-forms before looking at an
example.

Higher forms
For higher n-forms we inductively repeat the above process of splitting off one dimension. To be precise,
given the n–intersection we choose bases {e(n)

1 , . . . , e
(n)
` } and {h

(n)
1 , . . . , h

(n)
` } for the n-th intersection product

and define Â(n+1) as

Â
(n+1)
ij = −

∑̀
l=1

[
(n)〈e

(n)
i , h

(n)
j 〉
]−1
il (n)〈e

(n)
l , (∂zn+1 − αn+1)h(n)

j 〉.

We then define Pn+1 as the set of poles of Â(n+1), use it to determine the local primitive and calculate the
residue at every pole to find the (n+ 1)–intersection:

(n+1)〈φ(n+1), ψ(n+1)〉 :=
∑
pn∈Pn

Res
zn=pn

∑̀
i=1

[
(n)〈φ(n+1), h

(n)
i 〉 Ψ(n+1)

i

]
,

where

dΨ(n+1)
i − Â(n+1)

ij Ψ(n+1)
j dzn+1 =

∑̀
l=1

[
(n)〈e(n)

a , h
(n)
b 〉
]−1

il
〈e(n)
l , ψ(n+1)〉.

In words, Ψ(n+1)
i is the

(
d− Â(n+1)

ij

)
–primitive of the projection of ψ(n+1) in terms of the h(n)

i . Inductively
expanding the (n+ 1)–intersection one finds (we use a summation convention for clarity)

(n+1)〈φ(n+1), ψ(n+1)〉 :=
∑
pn∈Pn

· · ·
∑
p2∈P2

∑
p1∈P1

Res
zn=pn

. . . Res
z2=p2

Res
z1=p1

[
φ(n+1)Ψ(n+1)

in
H

(n)
inin−1

. . . H
(2)
i2i1

H
(1)
i1

]
,

where the H(k)
ikik−1

are the primitives of the h(k)
ik

, where {h(k)
1 , . . . , h

(k)
νk } is a basis at the k-th step of the

induction. Note that the above makes mathematical sense due to iterated applications of Theorem 4.5.9.
This gives

Hn(M,L−α) ∼= H1(B(n), {Hn−1(F(n−1),L−α1 dz1−···−αn−1 dzn−1)}zn)
∼= H1(B(n), {H1(B(n−1), {Hn−2(F(n−2),L−α1 dz1−···−αn−2 dzn−1)}zn−1)}zn)
∼= H1(B(n), {H1(B(n−1), {. . . , {H1(F(1),L−α1 dz1)}z2 . . . }zn−1)}zn),
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where the Serre fibration M → B(n) has fibre F(n−1) of dimension n− 1, the fibration F(n−1) → B(n−1) has
fibre F(n−2) of dimension n − 2, etc. Note that one has to make sure all these projections are indeed Serre
fibrations.

The above formula is very useful, but it perhaps not the most intuitive. We will now look at an example
to build intuition.

5.2.4 Higher form example

It is clear that the calculation becomes more complicated quickly when n > 2, so we will look at an example
where n = 2. We do the same example as in Section 3.3 of [Fre+19a] but with a slightly different method;
we only use the spectral sequence to write the 2-form in H2

c,−α as a ‘(1-form)-valued 1-form’, while Frellesvig
et al. also write the 2-form in H2

α in that form.

Example 5.2.5. We start with
U(z1, z2) :=

(
z1 z2 (1− z1 − z2)

)γ
,

for non-integer γ. This is not directly related to any common integral such as the Euler Beta function or the
Gamma function, but is a generalisation of the Euler Beta function from Example 5.2.3. Setting α = d logU
as usual gives

α = γ

(
1
z1
− 1

1− z1 − z2

)
dz1 + γ

(
1
z2
− 1

1− z1 − z2

)
dz2.

Note that our manifold will be

M = C2 \ {z ∈ C2 | z1 = 0 or z2 = 0 or z1 + z2 = 1}.

Therefore we have basis
B = C \ {z2 ∈ C | z2 = 0},

and for each z2 ∈ B the fibre over z2 is

Fz2 = C \ {z1 ∈ C | z1 = 0 or z1 = 1− z2}.

Note that the projection M → B is ramified at z2 = 1; the fibre F1 only has one puncture z1 = 0 = 1 − z2
while all other fibres have two. This means M → B is not a Serre fibration. We therefore have to remove
the line z2 = 1 from the manifold, and remove the point z2 = 1 from B. We then get a new M and B:

M = C2 \ {z ∈ C2 | z1 = 0 or z2 = 0 or z2 = 1 or z1 + z2 = 1},

B = C \ {z2 ∈ C | z2 = 0 or z2 = 1}.

We have changed M , so we generally have to change U as well such that M is again the complement of
the zero set of U . This can be achieved by multiplying U with (1 − z2)δ for some non-integer δ > 0, and
correspondingly adding −δ/(1− z2) dz2 to α.

However, this change is not required in this specific case. This is because the cut-off boundary around
the line z2 = 1 is a cylinder with zero twisted cohomology, which can be seen in the same way as Example
4.1.6. This means that in this particular example we can add this cut-off manifold by hand without changing
U . We will do this to improve the clarity of the equations. Finally remark that the intersection products we
find will differ slightly from the ones we would have found with the factor (1 − z2)δ, since our intersection
products generally do not depend on δ. The values will agree in the limit δ → 0.

The new projection M → B is a Serre fibration, and we have P1 = {0, 1 − z2,∞} and P2 = {0, 1,∞}.
Note that α = 0 has only one solution, z1 = z2 = 1/3, and the solution is non-degenerate so we can use the
Morse theory to find that

dimH2
α = 1.

The other twisted cohomologies are 0 by the Middle Dimension Theorem 4.2.10, using the third case.
In this example, we will calculate

(2)〈dz1 ∧ dz2,dz1 ∧ dz2〉.
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This is one of the easiest intersection products to calculate, but any other intersection product can be
calculated similarly. We first have to calculate the intersection product on H1(F•, i∗•Lα). For any fixed z2
we simply have

i∗z2
Lα = Lα1dz1 , α1 = γ

(
1
z1
− 1

1− z1 − z2

)
.

This α1dz1 has a single zero at (1− z2)/2, and this zero is non-degenerate. Another Morse function therefore
implies that dimH1(F•,Lα1dz1) = 1, hence in particular also dimH1

c (F•,Lα1dz1) = 1.
We can directly see that the 1-form z1 dz1 is (d − α1 dz1)–closed, and we claim it is non-exact. Then

{z1 dz1} is a basis for H1(F•,L−α1dz1). We here drop the condition that the 1-form has to be compactly
supported by implicitly using the compact cut-off Mc.o.; in the end our intersection is defined using residues,
such that it is no longer problematic if the integral over M diverges. We similarly take {z1 dz1} as a basis
for H1(F•,Lα1dz1).

To then calculate (2)〈dz1 ∧ dz2,dz1 ∧ dz2〉 we need to know Hi and Ψi (see Equation 32), and for the
former we need to know Â

(2)
ij . Let us calculate these in turn. We have e1 = z1 dz1 and h1 = z1dz2, so we

have
Â

(2)
11 = −〈z1 dz1, z1 dz1〉−1〈z1 dz1,

(
∂z2 − γ

(
1
z2
− 1

1− z1 − z2

))
z1 dz1〉.

Here the 1-form intersection on F• can be calculated using Equation 31, so we need to find a local (d−α1dz1)–
primitive H1 of h1 = z1 dz1 on F• as well as the local primitive of(

∂z2 − γ
(

1
z2
− 1

1− z1 − z2

))
z1 dz1 = −γ

(
z1

z2
− z1

1− z1 − z2

)
dz1.

Moreover, we do not need just one primitive but a primitive at each point of P1 = {0, 1 − z2,∞}. Using
Mathematica to calculate local series expansions iteratively, we find for H1:

H1|z1=0 = z2
1

2− γ + z3
1 γ

(z2 − 1)(3− γ)(2− γ) + z4
1 (3γ − 2γ2)

(z2 − 1)2(4− γ)(3− γ)(2− γ) +O(z5
1),

H1|z1=1−z2 = − (z1 − 1 + z2) (z2 − 1)
1− γ + (z1 − 1 + z2)2

(2− γ)(1− γ) + (z1 − 1 + z2)3 γ

(z2 − 1)(3− γ)(2− γ) +O((z1 − 1 + z2)5),

H1|z1=∞ = z2
1

2(1− γ) + z1 (1− z2)γ
2(1− γ)(1− 2γ) −

(1− z2)2

4(1− 2γ) −
γ(1− z2)3

z1 4(1− 2γ)(1 + 2γ)

− γ(1− z2)4

z2
1 8(2γ − 1)(2γ + 1) +O

(
1
z3

1

)
.

We get a similar set of expansions for the primitive of −α1 z1dz1, which we denote by G:

G|z1=0 = z2
1 (2z2 − 1)γ

(z2 − 1)z2(2− γ) +O(z3
1),

G|z1=1−z2 = (1− z2) + (z1 − 1 + z2) (z2 − 1)γ
z2(1− γ) +O((z1 − 1 + z2)2),

G|z1=∞ = − z2
1 γ

2z2(1− γ) + z1 (3γ2z2 − 2γz2 − γ2)
2z2(1− γ)(1− 2γ) + 2z2 − 2z2

2 + γ − 4z2γ + 3z2
2γ

4z2(1− 2γ)

+ (z2 − 1)2γ(2z2 + γ − 3z2γ)
z1 4z2(1− 2γ)(1 + 2γ) − (z2 − 1)3γ(2z2 + γ − 3z2γ)

z2
1 8z2(1− 2γ)(1 + 2γ) +O

(
1
z3

1

)
.

We now have:

〈z1 dz1, z1 dz1〉 = Res
z1=0

[H1|z1=0 z1 dz1] + Res
z1=1−z2

[H1|z1=1−z2 z1 dz1] + Res
z1=∞

[H1|z1=∞ z1 dz1]

= 0 + 0 + γ(1− z2)4

8(2γ − 1)(2γ + 1)

= γ(1− z2)4

8(2γ − 1)(2γ + 1) ,
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where we note that in the calculation of the residue at z1 = 1− z2 we expanded z1 = (z1 − 1 + z2) + (1− z2)
and that the residue at ∞ is given by minus the 1/z1 term.20 Similarly, we have

〈z1 dz1,−α1 z1 dz1〉 = Res
z1=0

[G|z1=0 z1 dz1] + Res
z1=1−z2

[G|z1=1−z2 z1 dz1] + Res
z1=∞

[G|z1=∞ z1 dz1]

= 0 + 0 + −(z2 − 1)3γ(2z2 + γ − 3z2γ)
8z2(1− 2γ)(1 + 2γ)

= −(z2 − 1)3γ(2z2 + γ − 3z2γ)
8z2(1− 2γ)(1 + 2γ) .

We therefore find that

Â
(2)
11 = −8(2γ − 1)(2γ + 1)

γ(1− z2)4 · −(z2 − 1)3γ(2z2 + γ − 3z2γ)
8z2(1− 2γ)(1 + 2γ) = −2z2 + γ − 3z2γ

(z2 − 1)z2
.

We see that A is singular at z2 = 0 and at z2 = 1, which agrees with P2 = {0, 1,∞}.
The calculations so far have been about the cohomology of F•, and are the same no matter which 2-form

we started with. We now recall that we are computing the intersection product of [dz1 ∧ dz2] ∈ H2
α with

[dz1 ∧ dz2] ∈ H2
−α. We start by calculating the Ψi.

We know that

dΨi − Â(2)
ij dz2 Ψj =

k∑
l=1

[〈ei, hj〉]−1
il 〈el, ψ〉.

Since the only el is e1 = z1 dz1 and the only hj is h1 = z1 dz1, we find that there is only one Ψ1, which is
given by

dΨ1 − Â(2)
11 dz2 Ψ1 = 〈z1 dz1, z1 dz1〉−1〈z1 dz1,dz1 ∧ dz2〉.

We therefore first have to compute 〈z1 dz1,dz1 ∧ dz2〉. Computing 〈z1 dz1,dz1〉 as above, we find

〈z1dz1,dz1 ∧ dz2〉 = 〈z1 dz1,dz1〉 dz2 = (z2 − 1)3γ

16γ2 − 4 dz2.

We already knew 〈z1 dz1, z1 dz1〉 hence we find

〈z1 dz1, z1 dz1〉−1〈z1 dz1,dz1 ∧ dz2〉 = 8(2γ − 1)(2γ + 1)
γ(1− z2)4 · (z2 − 1)3γ

16γ2 − 4 dz2 = −2
z2 − 1 dz2.

We then have to find the local [d− Â(2)
11 ]–primitive of the right-hand-side. We are fortunate here since Â(2)

11
is just 1 by 1 matrix; generally it can be any k × k–matrix which means it is much harder to iteratively find
the local primitive. Using the same algorithm as for the 1-form intersection product, we find

Ψ1|z2=0 = z2 · 2
1− γ +O(z2

2),

Ψ1|z2=1 = −1
1− γ −

(z2 − 1) γ
(1− γ)(3− 2γ) +O((z2 − 1)2),

Ψ1|z2=∞ = −2
2− 3γ + 2γ

z2 (2− 3γ)(1− 3γ) + 2(1 + γ)
z2

2 3(2− 3γ)(1− 3γ)

+ 2(2 + 3γ + γ2)
z3

2 3(2− 3γ)(1− 3γ)(1 + 3γ) + 2(6 + 11γ + 6γ2 + γ3)
z4

2 3(2− 3γ)(1− 3γ)(1 + 3γ)(2 + 3γ) +O
(

1
z5

2

)
.

This tells us that

(2)〈dz1 ∧ dz2,dz1 ∧ dz2〉 = Res
z2=0,1,∞

Res
z1=0,1−z2,∞

dz1 ∧ dz2 ·Ψ1 ·H1.

20This is because for w = 1/z1 we have dz1 = −1/w2 dw, and the residue at z1 =∞ is the residue at w = 0, hence the 1/w
term.
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This gives us a total of 9 double residues. However, the only non-zero residue in z1 is at z1 = ∞, which we
can directly find since Ψ1 has no z1 dependence. We therefore find:

(2)〈dz1 ∧ dz2,dz1 ∧ dz2〉 = Res
z2=0,1,∞

dz2 ·Ψ1 ·
γ(1− z2)3

4(1− 2γ)(1 + 2γ) .

We now only have a power series in z2 left. The factor (1− z2)3 only raises the powers at z2 = 0 and z2 = 1,
hence those have no residue. However there is a residue at z2 = ∞. The factor (1 − z2)3 means that terms
of Ψ1 of order −1 to −4 all get mixed. Calculating the product and taking the −1st coefficient, we find

(2)〈dz1 ∧ dz2,dz1 ∧ dz2〉 = γ2

3(2− 3γ)(1− 3γ)(1 + 3γ)(2 + 3γ) .

Remark that [Fre+19a] arrives at the same outcome via a slightly different computation. Also remark that
if we had multiplied U by (1− z2)δ we would instead have found

(2)〈dz1 ∧ dz2,dz1 ∧ dz2〉 = γ2 (−1 + 2γ + δ)(2γ + δ)(1 + 2γ + δ)
2(2− 3γ + δ)(1− 3γ + δ)(3γ + δ)(1 + 3γ + δ)(2 + 3γ + δ) (−1 + 2γ)(1 + 2γ) ,

which indeed gives the same value in the limit δ → 0.
Let us also consider how the intersection product (2)〈zk1 zl2 dz1 ∧ dz2,dz1 ∧ dz2〉 can be computed. In

principle, we already have the primitives H1 and Ψ1, so this calculation merely requires us to calculate the
residues. However, we have only calculated H1 and Ψ1 up to a certain order at each point; we will now have
to calculate more orders depending on the value of k and l. When k > 1 we will need to calculate H1|z1=∞
to a higher order, and similarly for l > 1 and Ψ1|z2=∞. On the other hand, if k < 0 we will need to calculate
both H1|z1=0 and H1|z1=1−z2 to a higher order, and similarly for Ψ|z2=0 and Ψ|z2=1.

This shows that we generally have to compute H1 and Ψ1 to rather high orders if we want to compute
the other intersection product, and the order increases linearly with the degree of the integrand. This
unfortunately means that we can not easily compute very high orders without computing the primitive to
very high orders, which requires a large amount of time. 4

The above Example can be generalised to higher forms and cases where Â(2) truly is a matrix rather
than just a single number. This generalisation should be rather easy, but the author of this thesis ran into
computer algebra issues in the latter cases, where Mathematica would not find any local solutions of Ψi such
that

dΨi − Â(2)
ij dz2 Ψj =

k∑
l=1

[〈ei, hj〉]−1
il 〈el, ψ〉.

This problem should be solvable if given some more time.
To finally see how the intersection product can be applied to calculate actual Feynman diagrams, we

borrow an example from [Fre+19b].
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Example 5.2.6 (Appendix B of [Fre+19b]). Consider a massless box diagram with a self-energy insertion,
see Figure 5. This diagram has 7 internal edges, but edges 6 and 7 have the same momentum hence the same
propagator. This means we effectively only have 6 internal edges, while we have E = 3 and L = 2 hence
LE + 1

2L(L + 1) = 9. This means we can’t use the Baikov representation without introducing several new
edges. Frellesvig et al. therefore instead use the loop-by-loop Baikov approach.

The loop-by-loop Baikov representation gives

U(z1, z2, z3, z4, z5, z5) = B1−d/2
1 Bd/2−3/2

2 Bd/2−5/2
3 ,

where (for t = (p2 + p3)2 = (p1 + p4)2 and s = (p1 + p2)2 = (p3 + p4)2)

B1 = z6,

B2 = 2(z5 + z6)z4 − z2
4 − (z5 − z6)2,

B3 = t2z2
1 + s2z2

2 = 2tz1
(
(2s+ t)z3 = s(t− z2 − z6)

)
− 2sz2(st− tz3 + (s+ 2t)z6) + (tz3 + s(z6 − t)).

Here B2 is the Baikov polynomial corresponding to the loop consisting of edges 4 and 5 with 6 as the external
edge, and B3 is the Baikov polynomial corresponding to the leftover loop over edges 1, 2, 3 and the new edge
which replaced the first loop. The factor B1 is not a Baikov polynomial, but appears because we replaced
the self-energy insertion with a propagator; this is comparable to the power λ1 + λ2 − d2 in the formula for
recursively one-loop diagrams as seen in Subsection 3.1.

We now have U hence can calculate α and calculate the intersection product using the iterative method.
However, the Feynman diagrams are 6 forms, which means the calculation requires six expansions around
poles per tuple of poles. This calculation is rather inefficient. Instead, Frellesvig et al. used the cuts of
[FP17] to reduce the problem to easier cases.

They first determine the master integrals. They assume each master integral only has weights 0 and 1,
with at least one weight 1. This gives 26 − 1 = 63 possible master integrals. For each potential master
integral they determine the corresponding cut. Taking the cut, they get another U ; then using Morse theory
tells them which cuts correspond to a non-zero sector. They find that the non-zero cases are F (1, 1, 1, 1, 1, 0),
F (1, 0, 1, 1, 1, 0) and F (0, 1, 0, 1, 1, 0). These will therefore be their master integrals. They then use two cuts:
the cut {1, 3, 4, 5} and the cut {2, 4, 5}. Note that the former sends F (0, 1, 0, 1, 1, 0) to 0 as it has no edges 1
or 3, while the latter sends F (1, 0, 1, 1, 1, 0) to 0 as it has no edge 2.

Now either cut gives a twisted cohomology for which we can compute the intersection product. The
{1, 3, 4, 5} cut leaves edges 2 and 6 hence gives 2-forms, the {2, 4, 5} cut leaves edges 1, 3 and 6 hence gives
3-forms. Frellesvig et al. choose bases for each and can finally compute the intersection product.

They then consider a specific element of the family to calculate the intersection products of. They consider
F (1, 2, 1, 1, 1, 1) and write in terms of the master integrals using coefficients c1, c2 and c3 as in Figure 6. Since
the cuts do not change the coefficients, the coefficients can be determined on the cuts. See Figures 7a and
7b for an illustration of the cuts.

Frellesvig et al. then use their bases they chose before to calculate the coefficients, and find

c1 = −3(3d− 16)(3d− 14)(2s+ t)
2(d− 6) st3 ,

c2 = −3(3d− 16)(3d− 14)(3d− 10)(2ds− 10s− t)
4(d− 6)(d− 5)(d− 4) s2t3

,

c3 = 3(3d− 16)(3d− 14)(3d− 10)(3d− 8)
2(d− 6)2(d− 4) st4 .

They claim the results agree with IBP decomposition. 4
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Figure 5: The massless box with self-energy considered in Example 5.2.6.

= c + c1 2 + c3

Figure 6: The specific Feynman diagram with weights (1, 2, 1, 1, 1, 1) considered in Example 5.2.6.

= c + c1 2

(a) The {1, 3, 4, 5} cut.

= c1 + c3

(b) The {2, 4, 5} cut.

Figure 7: The cuts used in Example 5.2.6.
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6 Discussion
We summarise observations that have been made during this thesis project and add the personal view of the
author.

6.1 Observations and Thoughts
We have seen the twisted cohomology and the intersection product. The twisted cohomology is nearly trivial
to compute because of Corollary 4.4.4, so that gives us no trouble. However, the intersection product is
quite hard to evaluate. For dimCM = 1 the calculation merely requires that one calculates M and α, then
solves α(z) = 0, chooses a basis of the cohomology and the Poincaré dual, determines the local primitives
of the dual basis to sufficiently high order, and calculates the relevant residue. Important here is that as
the integrand increases in complexity, the more orders of the local primitive are required. In particular, in
Example 5.2.3 we see that calculating the intersection product

〈zk dz,dz〉

requires the local primitive of dz at ∞ to be calculated to order 1/zk+1. This shows that we can generally
expect the calculation for the intersection product to increase linearly with the complexity of the integrand
of the relevant Feynman integral. In the same Example, calculating I2 or I3 in terms of I0 is simple, but
calculating I30 is already very slow.

However, the different intersection products use the same dual basis, hence the local primitives can be
reused. In particular, if the local primitive of dz is calculated to order 1/zk+1 then we can use that primitive
to calculate not only 〈zk dz,dz〉 but any 〈z` dz,dz〉 for 0 ≤ ` ≤ k. The latter calculation now only requires
taking the residue of a product over each pole and adding the residues; this should be a very quick process.

It is for this reason that the author of this thesis thinks that the intersection product might become a
useful technique in the actual calculation of Feynman integrals.

However, the situation quickly becomes worse as dimCM increases. Not only is there more work needed
to write M as a fibration and determine (dual) bases and their primitives, but even if we know all relevant
primitives we still have to calculate dimCM residues for each intersection product. Each residue has to be
taken over a number of poles (generally more than 1), hence the total amount of combinations of residues can
grow exponentially (in the worst case). This may cause memory issues for larger Feynman integrals. Since
the number dimCM corresponds to the number of edges in Feynman Parameter or Baikov representation,
this number quickly become larger for higher loop orders.

Moreover, we have to calculate the primitives before we can use them. There might be very efficient
algorithms to find the local primitives, but the author of this thesis could only find iterative methods. This
means that the setup to use the intersection product takes rather long.

The author therefore thinks that the intersection product in its current form is not (yet) suitable for
higher loop calculations. The intersection product will have to be combined with the theory of cuts or a
similar supplementary technique to become viable.

6.2 Further Research
There are then multiple things which could be considered in further research.
• The influence of the choice of representation: Is the intersection product generally easier to compute
in the Feynman Parameter representation than in the (loop-by-loop) Baikov representation? Is there
another representation which is even better?

• The influence of the choice of a fibration: For dimCM > 1 there are multiple possible choices of a
fibration. Changing the fibration might give an easier to calculate intersection product. If so, is there
any way to determine the best fibration effectively?

• Differential Equations on the fibration: It is well known that the 1-form α is related to the matrices Ax
from Subsection 3.3, as for any external parameter x, x-independent φ and Feynman integral F =

∫
C
Uφ

we have
∂xF = ∂x

∫
C

Uφ =
∫
C

∂x(Uφ) =
∫
C

U(∂xφ+ α(∂x) φ) =
∫
C

U α(∂x) φ,
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hence Ax is just (plus or minus) the contraction α(∂x) in terms of the master integrals. The same
can then be done at any step in the calculation of the intersection product for higher forms; the Serre
fibration M → B gives a local system Hk(F•, i∗•Lα) over B, which has some generating Â. This Â
should similarly give a differential equation. Perhaps this could be used to derive properties of the local
system, or maybe the differential equation could even help calculate the intersection product itself.

• Cuts: Intersection theory can be used in combination with cuts. Cuts reduce the twisted cohomology
to a smaller twisted cohomology. How do cuts affect the twisted cohomology precisely? Can we
mathematically predict which cuts give the best result and can we construct cuts dual to the basis of
HN
α ? Are cuts related to the twisted homology?

There are also a few questions which are not directly related to the intersection product itself, but rather to
the twisted cohomology. These questions are most likely less useful physically, but can still be studied out of
mathematical interest:

• Homotopy groups and the Hurewicz theorem: Assume dimCM = 1. Is there an equivalent of the
Hurewicz theorem for twisted cohomologies where the fundamental group is replaced with the trivial
monodromy subgroup {

[γ] ∈ π1(M) | exp
∫
γ

α = 1
}
6 π1(M)?

If there is, can we similarly find a theorem for dimCM > 1 using higher homotopy groups? The latter
might require the generalisation of monodromy to spheres; can this be achieved?
When dimCM = 2 and α = α1 dz1 + α2 dz2 it might be tempting to define the monodromy using the
integral of α1 α2 dz1∧dz2 over elements of π2(M). Is this well-defined, or is it at the very least possible
to use this to define the subgroup of π2(M) of spheres with trivial monodromy?
Would this definition respect the long exact sequence of homotopy groups in the case of a Serre fibration,
such that the the sequence descends to a sequence of trivial monodromy subgroups?
Remark that works by M. Yoshinaga and R. Randell have already partially answered a related question
in the context of arrangements of hyperplanes and (n − 1)–connected topological pairs respectively.
However, they use a map

π`(M)⊗Z Lα → H`(M,Lα)

instead. This map does not seem to generalise to e.g. Example 4.1.6 hence is not generally applicable
to the twisted cohomology of smooth manifolds. A question is whether a Hurewicz theorem can be
created which is applicable even when the Middle Dimension Theorem 4.2.10 does not hold.

• The condition in Theorem 4.2.5: Can we say more about this condition? It is generally true, or are
there easy counterexamples? The condition strongly resembles the ddc–lemma from complex geometry,
but it should be much easier to classify the condition because we know more about the map α∧.
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