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Abstract

The impact of the COVID-19 pandemic can hardly be overstated. In February 2020, the World
Health Organisation recommended to prioritize extensive testing and contact tracing to contain
the virus. Through bidirectional contact tracing, we can not only find the people infected by
an infectious individual, but the infector of the individual as well. Theoretically, this makes
bidirectional contact tracing an effective countermeasure for diseases where a proportion of
the population is asymptomatic or a super spreader. Due to its recursive nature, it is hard
to incorporate the effects of bidirectional contact tracing into existing analytical models for
infectious diseases. Instead, we built an event-by-event simulation model. Using this simulation
model, we obtain results regarding the effectiveness of bidirectional contact tracing in various
scenarios.
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1 Introduction

On January 15, 2020, the World Economic Forum considered infectious diseases a quite unlikely
risk [27]. Yet, on January 30, 2020, the World Health Organization (WHO) declared the
outbreak of the SARS-CoV-2 virus, also known as COVID-19 virus or Coronavirus, a Public
Health Emergency of International Concern [18], and a pandemic on 11 March 2020 [19]. As of
May 2021, estimates by the WHO show that more then 150 million people worldwide have been
infected by COVID-19 resulting in over 3 million deaths [17]. Aside from that, the COVID-
19 pandemic has had a major impact on hospital admissions. In the United States, hospital
admissions for non-COVID-19 patients were 16% below baseline on average, while admissions for
pneumonia and asthma are estimated to have dropped by 40% or more by September 2020 [20].
In the Netherlands, 23% of treatments in the 12 most frequently provided medical specialties
were cancelled during the initial wave of the epidemic [21]. Furthermore, general well-being
and mental health are affected as well. The review article by Vindegaard and Benros from
October 2020 [23] includes 43 studies investigating the mental health of COVID-19 patients,
health care workers and the general public that show lower psychological well-being and higher
scores of anxiety and depression. In a survey in China from March 2020, 16.5% of people
reported experiencing moderate to severe depressive symptoms, 28.8% reported moderate to
severe anxiety symptoms, and 8.1% reported moderate to severe stress levels [24]. Lastly, the
COVID-19 pandemic will likely have major economic effects [26]. A proportion of COVID-19
infections happens through super spreading events. A list of over 2000 such events has been
complied by the London School of Hygiene and Tropical Medicine [11]. In addition, A study
from Italy [25] shows that a proportion of over 40% of infections happens through infectious
people who have not developed symptoms at the time of infection. Fortunately, vaccination for
COVID-19 has begun. As of June 2021, 2.5 billion vaccines have been administered worldwide
[32]. Still, another pandemic may hit in the future.

The impact of the COVID-19 pandemic has been reduced due to countermeasures employed by
governments. As early as February 2020, the WHO recommended to prioritize extensive testing
and contact tracing in order to contain the spread of the virus [16]. Other countermeasures
include lockdowns, curfews and partial closing of borders. The latter countermeasures apply
to the whole population, while testing and consecutive contact tracing target people who are
already infected specifically: An individual diagnosed with COVID-19 is put in isolation, and
their contacts are traced and tested as well. This creates a chain reaction where infectious
individuals can be found, positively diagnosed, and isolated even before they develop symptoms
or enter their most infectious state.

Through contact tracing one may find the people infected by a diagnosed individual (forward
contact tracing) as well as the infector (backward contact tracing). The combination of the two
we call bidirectional contact tracing [7]. Usually, it takes several days before infected people
become infectious themselves. Moreover, people are usually at their peak infectiousness around
the time they develop symptoms. Hence, for forward tracing, one only needs to screen contacts
in the past few days. For backward tracing on the other hand, one needs to go back several days
to find the infector of a diagnosed individual. Therefore, bidirectional contact tracing requires
more effort than forward contact tracing only. Contact tracing can either be applied manually
or through an application that tracks contacts.

The goal of this project is twofold. First of all, we want to give an indication of how infectious a
disease can be for it to still be controlled by contact tracing. We have the following hypothesis,
in line with the findings of Bradshaw and others [7, 8]:
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H1: Bidirectional contact tracing as a countermeasure can control the spread of
infectious diseases similar to COVID-19.

We have mentioned asymptomatic infections and super spreading events. Asymptomatic indi-
viduals do not develop symptoms for the entirety of their infective period. Super spreaders are
individuals that are significantly more infectious than average, for example because they have
a higher viral load or because they had relatively many contacts during their most infectious
period. We want to measure the effects of bidirectional contact tracing on the development of
an epidemic where a proportion of the population is asymptomatic or a super spreader. We
hypothesize the following:

H2: Bidirectional contact tracing is an effective measure to counteract a disease
where a proportion of the population is asymptomatic or a super spreader.

In all cases, it is clear that bidirectional tracing will at least be as effective as forward tracing
only. However, considering the added effort required, we will compare the performance of
bidirectional tracing with that of forward tracing only so that we can state when the former
has a significant advantage over the latter.

It is almost impossible to update existing analytical frameworks to allow the incorporation
of bidirectional contact tracing. Therefore, an event-by-event based simulation model with
parameter updating is necessary to obtain the measurements we are interested in. In this
thesis we present such a simulation model. Part of the project is dedicated to the optimization
of the efficiency of the simulation model in order to increase practical usability. Thereafter
we use simulations to test our hypotheses H1 and H2. The simulation model is applicable
for epidemics caused by pathogens with epidemiological characteristics similar to those of the
COVID-19 virus.

This thesis is structured as follows. In Chapter 2 we familiarize the reader with the field of
epidemiology. We focus on theory, research and results in the branch of contact tracing. This
Chapter motivates the use of a simulation rather than an analytical framework for the modelling
of the effects of bidirectional contact tracing. In Chapter 3 we present the simulation model.
We state the assumptions upon which the model is built and what we can measure with it. We
also motivate the use of parameter updating. It turns out that this process is similar to the
controlling of a delayed system. In Chapter 4 we present the obtained results. In particular, we
conclude that epidemics similar to COVID-19 can be controlled through bidirectional contact
tracing. Moreover, we show that it is a more effective countermeasure than just forward contact
tracing in case there are asymptomatic carriers of the disease. A step-by-step guide of how the
simulation model works is given in Appendix A. Moreover, we suggest and implement some
adaptations to make it as efficient as possible. Appendix B is a follow-up where we thoroughly
outline the process of parameter updating. We motivate the reader to have a look at these
appendices if they are interested in the fine details of the simulation model. However, the
contents of this thesis can be understood without them.
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2 Epidemiology

The current field of mathematical epidemiology is largely an expansion of the contributions of
Kermack and McKendrick, o.a. [1] and later publications. The publication by Diekmann and
others, [4], gives an excellent overview of [1] with more modern notation, and expands on it
as well. Two primary sources for modern epidemiological studies are Diekmann and others’ [2]
and Murray’s [3]. Throughout this Chapter we will use theory from both works. The starting
point is always a population of susceptibles where an initial population of individuals infected
with a pathogen is introduced. These individuals start infecting susceptibles. This we call an
outbreak. Infected individuals can be removed from the system through recovery or death. In
mathematical epidemiology we try to determine three things:

1. Does the outbreak cause an epidemic?

2. If so, at what rate does the number of infected individuals increase during
the rise of the epidemic?

3. What proportion of the population will ultimately have been infected?

For reasons that will become apparent in Chapter 3, this project focuses on questions 1 and 2.
For the scope of this project we make the assumption that the demographic turnover, i.e. the
introduction of new individuals through birth and disappearance of individuals through natural
death (death not caused by the epidemic), happens at a time scale much larger than the time
scale of the epidemic and therefore does not affect the course of the epidemic.

In Section 2.1 we introduce the basic reproduction number and what this parameter can tell
us regarding questions 1-3. In Section 2.2 we give an example. In Section 2.3 we explore why
it may be convenient to assume a fixed proportion of susceptibles in the total population. We
continue this theory in Section 2.4, where we analyze how countermeasures can result in an
effective reproduction number that is sufficiently low to prevent an epidemic, even if the basic
reproduction number is not. Lastly, in Section 2.5, we discuss why this analytical framework
may not be strong enough to accurately describe the effect of bidirectional contact tracing in
the effective reproduction number and therefore the course of the epidemic. In this case we
recommend using a simulation rather than analysis.

In the sequel, when we speak of a pair of infective individuals i and j where i has infected
j, we say that i is the “parent” of j and j is a “child” of i. In these terms we can consider
the transmission tree of an individual. As an example, see Figure 1. An individual has only
one parent but can have multiple children. Other types of relatives are mentioned in Section
2.5. We expect that it is clear from the context how they relate to the infective individual in
question.

2.1 The basic reproduction number

In this Section and Section 2.2, we assume the population to be finite. Together with the
assumption on demographic turnover, this results in our total population being closed. That
means we can scale the system to the point where we look at proportions of the population.
According to custom we let S(t), I(t) and R(t) respectively denote the proportions of Suscepti-
ble, Infective and Removed individuals at time t. In a closed and scaled system, we must have
S + I + R = 1. The outbreak starts at t = 0, at which point we have S(0) + I(0) = 1 and
R(0) = 0. In the rest of this Chapter we assume that all contacts are random and that the
proportion of newly introduced infectives is small enough that S(0) ≈ 1. We may also consider
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Parent

Known case

ChildChild

Figure 1: Example of a transmission tree of a known case. Dashed lines represent transmissions.

the time before the outbreak and say S(−∞) = 1, i.e. before the introduction of the pathogen,
the entire population is susceptible. Let F (t) denote the force of infection at time t, i.e. the
probability per unit of time that a susceptible becomes infected, at time t. By “incidence” we
mean the rate of increase in number of infections at a given time t. An infection happens when
a susceptible individual is subjected to the force of infection. Thus, we get

incidence = F (t)S(t).

Since we assume our population to be closed, the density of susceptibles only changes due to
incidence. Hence,

Ṡ(t) = −incidence = −F (t)S(t).

Let A(τ) denote the expected contribution to the force of infection by an individual at time τ
after they were themselves infected. A is a combination of contact intensity and probability of
transmission during contact with a susceptible. To be precise,

A : [0,∞) −→ [0,∞)

is assumed to be integrable. Since A constitutes an expectation, it is not dependent on the
individual itself. This is an assumption that will be further discussed in Section 2.5. For now,
we can express the force of infection at time t in terms of past incidence by:

F (t) =

∫ ∞
0

A(τ)F (t− τ)S(t− τ)dτ (1)

and thus

incidence = S(t)

∫ ∞
0

A(τ)F (t− τ)S(t− τ)dτ. (2)

During the outbreak, it is reasonable to assume that all the contacts of an infective individual
are with susceptibles. We define

R0 :=

∫ ∞
0

A(τ)dτ. (3)

Utrecht University 8
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We call R0 the basic reproduction number. It can be interpreted as the expected number of
child cases originating from a newly introduced infective individual, i.e. during the outbreak.
It is an intrinsic property of the pathogen. We expect that if R0 > 1, the outbreak will cause
an epidemic. Conversely, if R0 < 1, we expect that the infective population will go extinct
after the outbreak. We can check this with a standard procedure. Naturally, an epidemic
experiences either exponential growth or exponential decline. Therefore, we can describe the
incidence during the initial outbreak as

incidence(t) ∼ kert, (4)

where r is the growth rate of the epidemic, with r > 0 and r < 0 corresponding to exponen-
tial growth and decline respectively. If we substitute this into equation (2) and assume that
S(0) = 1, we get the identity

1 =

∫ ∞
0

A(τ)e−rτdτ. (5)

Now let φ(r) be the right-hand side of equation (5), then it follows from equation (3) that
φ(0) = R0. Furthermore, φ(r) is strictly decreasing since A(τ) is integrable. Since growth rate
r is the solution to the equation φ(r) = 1, in the case of epidemic growth with r > 0, it follows
that R0 > 1, and similarly in the case of epidemic decline with r < 0 that R0 < 1, as we
expected.

2.2 What we can learn from compartmental models

Let us consider an example. Assume that the force of infection F is directly proportional to
the number of infective individuals, with constant of proportionality β, so that we can write
F (t) = βI(t). Furthermore, assume that infectives have a constant probability per unit of time
α to become removed. Then the probability to still be infectious τ units of time after infection
is equal to e−ατ . It follows that the expected contribution of an individual to the force of
infection τ units of time after being infected is A(τ) = βe−ατ . The system

dS

dt
= −βIS,

dI

dt
= βIS − αI,

dR

dt
= αI,

(6)

models an outbreak with the above assumptions. This system is called the SIR-model (Suscep-
tible Infective Removed). From (6) it follows that d/dt(S+I+R) = 0 and thus our requirement
S + I + R = 1 holds. The SIR model lends itself for some direct computations that illustrate
what we try to do in the general case. To start off, from equation (3) we get

R0 =

∫ ∞
0

βe−ατdτ =
β

α
.

We now know that an outbreak will cause an epidemic when β/α > 1 and that the growth rate
is then positive. Now we may start wondering about question 3. However, the derivation of
the final size of the epidemic makes more sense when we first try to determine the maximal
proportion of infectives, which we shall denote Imax. In order to do this we must know how the
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proportion of infectives changes with the proportion of susceptibles. If we devide the second
equation from (6) by the first, we obtain

dI

dS
= −1 +

α

βS
. (7)

From equation (7) it follows that I = Imax when S = α/β. Furthermore, if we integrate
equation (7), we see that I + S − α

β lnS is a conserved quantity. If we substitute the situation
before the outbreak into this quantity, it follows that

I + S − α

β
lnS = S(−∞)− α

β
lnS(−∞). (8)

Note that the right-hand side of equation (8) equals 1. Hence, we get

Imax +
α

β
− α

β
ln

(
α

β

)
= 1,

and thus

Imax = 1− α

β

(
1− ln

(
α

β

))
= 1− α

β
(1 + lnR0) .

Now for the final size, we again consider equation (8) and substitute the situation at the end
of the epidemic on the left-hand side. Naturally, we expect there to be no more infectives after
the epidemic, i.e. I(∞) = 0. After some rearranging, we get

lnS(∞) = R0(S(∞)− 1). (9)

The proportion of the total population that was affected by the disease is then 1−S(∞). As it
turns out, we can derive exactly the same formula for S(∞) for general A. Consider equation
(2), substitute F (t− τ)S(t− τ) = −Ṡ(t− τ) and divide both sides by S(t) to obtain

Ṡ(t)

S(t)
=

∫ ∞
0

A(τ)Ṡ(t− τ)dτ.

If we then integrate with respect to t from −∞ (before the epidemic) to +∞ (after the epidemic)
we immediately get equation (9) again. From the above discussion it becomes apparent that
the parameter R0 tells us a lot about the disease, particularly when we try to answer questions
1-3.

The SIR model is the most basic of a class of compartmental models that all have similar
assumptions on A(τ) and therefore describe special cases of the general discussion in this
Chapter. These implicit restrictions on the expected contribution of an individual to the force
of infection are too narrow for the scope of this project. However, we can and will make
use of a compartmental model as a test model for some aspects of the simulation model that
we will build in Chapter 3. This will be the more general SEIR model (Susceptible Exposed
Infective Removed). It includes a latency period where infected individuals are not yet infectious
themselves. We assume that an exposed individual has a constant probability per unit of time
γ to become infectious. Then the probability to still be exposed τ units of time after infection
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is equal to e−γτ , while the probability to be infectious τ units of time after infection is equal
to e−ατ − e−γτ . It follows that

A(τ) = β
γ

γ − α
(e−ατ − e−γτ ).

The system

dS

dt
= −βIS,

dE

dt
= βIS − γE,

dI

dt
= γE − αI,

dR

dt
= αI

(10)

keeps these assumptions [4]. The corresponding basic reproduction number is R0 = β/α.

2.3 A fixed susceptible population

In the remainder of this Chapter, we will assume that the that the number of susceptibles that
an infective individual encounters remains unchanged, i.e. we consider S ≡ 1. That means that
we can remove S from our models, and analyse how the incidence grows or declines in when
there is an unlimited supply of susceptibles. This setting translates to the outbreak phase of
the epidemic discussed in Section 2.1.

Let us formalize our notion of incidence. Let Y (t, 0) denote the rate of people acquiring infection
at time t and let this be our definition of incidence. Generally, we let Y (t, τ) denote the number
of people at time t who were infected time τ ago. We specify the boundary conditions Y (t, τ) = 0
if τ > t and Y (0, 0) = Yinitial. The first condition makes sense; people cannot be infected before
the outbreak. The second condition is just our initial population of infectives. It does not
make sense to think about the final size of the epidemic in this setting, as we do not determine
S(∞). That means we will disregard question 3 from now on. However, we can determine the
cumulative size of the epidemic at time t as

Y (t) =

∫ ∞
0

Y (t, τ)dτ.

From the fact that Y (t+ ∆t, τ) = Y (t, τ −∆t), we arrive at the following relation:

∂Y (t, τ)

∂t
+
∂Y (t, τ)

∂τ
= 0. (11)

We can relate the current incidence to past incidence in a fashion similar to equation (1):

Y (t, 0) =

∫ t

0

A(τ)Y (t, τ)dτ. (12)

Note that A(τ) should be interpreted slightly differently here compared to Sections 2.1 and 2.2.
There, A is implicitly tied to the proportion of susceptibles S, whereas here A is the expected
infectiousness of an infective in a population with an unlimited supply of susceptibles. We still
have

R0 =

∫ ∞
0

A(τ)dτ.
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However, with equation (3) we explicitly stated that R0 is only relevant during the initial out-
break when the proportion of infectives is negligible compared to the proportion of susceptibles.
That is exactly the setting we consider for the entire epidemic in this Section and thus R0 can
be interpreted as the the expected number of people infected by an infective individual, regard-
less of when during the epidemic the individual experiences their infectious period. To show
that the same conditions on R0 hold for epidemic growth or decline as in Section 2.1, we again
note that an epidemic experiences either exponential growth or decline, i.e.

Y (t, τ) ∼ K(τ)ert. (13)

Substituting (13) into equation (11), we get

rK(τ)ert +
dK(τ)

dτ
ert = 0,

and thus K(τ) = K(0)e−rτ . Now substituting (13) into equation (12), we get

K(0)ert =

∫ ∞
0

A(τ)K(τ)ertdτ

=

∫ ∞
0

A(τ)K(0)er(t−τ)dτ,

again giving us the identity

1 =

∫ ∞
0

A(τ)e−rτdτ

from equation (5). The same analysis as in Section 2.1 applies here, although we can now
conclude that for R0 > 1, not only will an outbreak cause an epidemic, but the epidemic will
continue to grow if no countermeasures are taken.

2.4 The effect of countermeasures

It is reasonable to assume that during an epidemic, measures are taken to reduce the force
of infection. For example, when an infected individual develops symptoms, they may go into
isolation, reducing the amount of people they will infect. Furthermore, contacts of this indi-
vidual may be traced and tested, which leads to them potentially going into isolation as well.
Clearly, in the case that measures are in place, an infective individual is expected to infect less
susceptibles than in the no-measure case described in Section 2.3. In other words, we have an
effective reproduction number Reff ≤ R0. The effects of countermeasures can be incorporated in
compartmental type models, see for example [6]. However, we dispute the implicit restrictions
this puts on A(τ).

Fraser and colleagues [5] consider isolation and contact tracing measures in the general setting.
Let B(τ) denote the proportion of individuals not having developed symptoms τ time after
being infected. Note that B should be a decreasing function and B = 1 implies that individuals
never develop symptoms. After developing symptoms, an infective individual is diagnosed and
goes into isolation with efficacy 0 ≤ εd ≤ 1, i.e. the number of potential transmissions caused by
this individual is reduced by the factor (1− εd) after they go into isolation. With this measure
in place, the incidence from (2) becomes

Y (t, 0) =

∫ ∞
0

A(τ)(1− εd + εdB(τ))Y (t, τ)dτ. (14)
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From this we deduce that isolation reduces the effective reproduction number to

Reff =

∫ ∞
0

A(τ)(1− εd + εdB(τ))dτ = (1− εd + εdθ)R0,

where θ denotes the proportion of infections occurring before symptoms develop:

θ =

∫∞
0
A(τ)B(τ)dτ∫∞
0
A(τ)dτ

.

To control an outbreak, we must haveReff < 1. If for example θ = 1/2, this forces εd > 2− 2/R0.
Since εd is a proportion, isolation of diagnosed individuals can only prevent an epidemic if
R0 ≤ 2. Otherwise, it will only slow down the epidemic.

However, we can further reduce the effective reproduction number by performing contact tracing
on the diagnosed individual. For the sake of argument, we start by only considering one-step
forward contact tracing. That is, we assume that only people infected earlier by a symptomatic
individual can be found. We will summarize Fraser’s [5] continued analysis here. We make the
unrealistic assumption that isolation and contact tracing are independent. In reality, contact
tracing is only performed on symptomatic (and thus isolated) individuals. Let Y (t, τ, τ ′) denote
the number of people at time t who were infected time τ ago by people who were themselves
infected time τ ′ ago. Similar to equation (11), we have

∂Y (t, τ, τ ′)

∂t
+
∂Y (t, τ, τ ′)

∂τ
+
∂Y (t, τ, τ ′)

∂τ ′
= 0. (15)

Furthermore, let εf denote the efficacy of isolation after being contact traced. Then the incidence
becomes:

Y (t, 0) =

∫ ∞
0

A(τ)(1− εd + εdB(τ))

∫ ∞
τ

(
1− εf + εf

B(τ ′)

B(τ ′ − τ)

)
Y (t, τ, τ ′)dτ ′dτ. (16)

The factor B(τ ′)/B(τ ′ − τ) is the proportion of people whose parent has not yet developed
symptoms while they themselves have not yet developed symptoms either. Let us substitute
ρ = τ ′ − τ , the infection generation time, i.e. the time elapsed between onset of symptoms in
the parent case and onset of symptoms of the child case. We get

Y (t, 0) =

∫ ∞
0

A(τ) (1− εd + εdB(τ))

∫ ∞
0

(
1− εf + εf

B(ρ+ τ)

B(ρ)

)
Y (t, τ, ρ+ τ)dρdτ. (17)

If we again make an unlikely assumption, namely that the time to onset of symptoms is expo-
nential, i.e. B(τ) = e−ντ , then B(ρ+ τ)/B(ρ) = B(τ) and equation (17) reduces to

Y (t, 0) =

∫ ∞
0

A(τ) (1− εd + εdB(τ))

∫ ∞
0

(1− εf + εfB(τ))Y (t, τ, ρ+ τ)dρdτ

=

∫ ∞
0

A(τ) (1− εd + εdB(τ)) (1− εf + εfB(τ))Y (t, τ)dτ,

and thus

Reff =

∫ ∞
0

A(τ) (1− εd + εdB(τ)) (1− εf + εfB(τ)) dτ

= [(1− εd)(1− εf) + εd(1− εf)θ + εf(1− εd)θ + εdεfψ]R0,
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where ψ denotes the proportion of infections caused by asymptomatic individuals whose parents
have not yet developed symptoms either:

ψ =

∫∞
0
A(τ)B(τ)2dτ∫∞
0
A(τ)dτ

.

Let us again consider the example where θ = 1/2. In addition, assume that ψ = θ2 = 1/4 and
that εd = εf = ε. Then the outbreak is controlled when

1− ε+
1

4
ε2 <

1

R0
.

This forces ε > 2− 2
√

1/R0. Again, ε is a proportion, thus isolation of diagnosed and forward
traced individuals under these circumstances can be effective when R0 < 4. Note that this is
already a lot better than when individuals go into isolation only after symptom onset.

2.5 Discussion

In this Section we will review the assumptions we had to make to build the analytical framework
in this Chapter. Although these assumptions were necessary to simplify the analysis to a point
where it is workable, we have sacrificed some accuracy. To start off, the models in this Chapter
do not take into account differences between individuals. In reality, we can expect that some
groups of people are more likely to get infected or are more infectious. Factors that may play a
role in this are age, health, social status, etc. We mentioned in the Introduction that we want
to distinguish at least two non-standard groups of people. Super spreaders are individuals
who are expected to infect an amount of people high above the average. In other words, their
expected contribution to the force of infection during their infectious period is higher than
normal. Asymptomatic individuals do not develop symptoms for their entire infective period,
or do not go into isolation after developing symptoms, for example because they mistake them
for another disease.

Secondly, when considering the effect of contact tracing, we made the necessary assumption
that there is no correlation between isolation and contact tracing. Our equations (14) and
(16) only tell us what happens at time t. We cannot know who infected whom and thus we
cannot say exactly who can be found through contact tracing. However, such information can
be relevant. For example, if a super spreader is tested and positively diagnosed, we expect to
find a greater number of child cases through contact tracing.

Thirdly, we only considered one-step forward contact tracing, i.e. parent → child. However,
the addition of backward contact tracing has a significant advantage over just forward tracing.
When backward contact tracing is performed, the parent of a diagnosed individual may be
found as well as their children. Moreover, if forward contact tracing is then performed on the
parent, its other children may be found and be put into isolation as well. The added benefit
of bidirectional contact tracing over just forward tracing is illustrated in Figures 2 and 3. This
becomes especially important if we consider asymptomatic individuals. Through bidirectional
contact tracing, we can find asymptomatic individuals that would normally not be found, as
shown in Figure 3.

Lastly, we have not considered the recursive aspect of contact tracing. Looking back at equation
(16), we implicitly stated that an individual can either go into isolation because they have
themselves developed symptoms, or because their parent has developed symptoms and they
are found through forward contact tracing. This is inaccurate. After all, an individual can
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also be forward traced from their grandparent; when the grandparent is diagnosed and forward
contact tracing is applied, the parent can be found, after which forward contact tracing is
applied again, which reveals the child case.

Now let’s think about what it would entail to incorporate these aspects into our analysis. First
of all, let us say that we consider n different groups of people. The cumulative size of the
epidemic within group i can be denoted by Yi. Of course we must have

Y = Y1 + Y2 + · · ·+ Yn.

The expected contribution to the force of infection by an individual in group i can be denoted
Ai. We will need to consider the interaction between the different groups. Let pi,j denote the
probability that an individual in group i interacts with an individual in group j. We require

n∑
i=1

pi,j = 1,

n∑
j=1

pi,j = 1.

Without considering contact tracing, equation (12) turns into the system

Y1(t, 0) =

∫ t

0

p1,1A1(τ)Y1(t, τ) + p1,2A2(τ)Y2(t, τ) + · · ·+ p1,nAn(τ)Yn(t, τ)dτ,

Y2(t, 0) =

∫ t

0

p2,1A1(τ)Y1(t, τ) + p2,2A2(τ)Y2(t, τ) + · · ·+ p2,nAn(τ)Yn(t, τ)dτ,

...

Yn(t, 0) =

∫ t

0

pn,1A1(τ)Y1(t, τ) + pn,2A2(τ)Y2(t, τ) + · · ·+ pn,nAn(τ)Yn(t, τ)dτ,

We can continue our analysis from here, albeit with a lot more effort. If the reader is interested,
we recommend [2] as an excellent source. Instead, we halt the analysis here and go back to
equation (16). We will try to expand it to account for multi-step bidirectional contact tracing.
In that case, an infective individual can then be found even if neither they nor their parent
have developed symptoms, as long as one of their “siblings” has developed symptoms. We now
have to consider all possible ways that people can be found through contact tracing, along with
their respective proportions, rather than just through one step forward tracing, with proportion
1 − B(τ ′)/B(τ ′ − τ) as in (16). Furthermore, we have to keep in mind that we only consider
the earliest possible moment that an individual can be found through tracing. An individual
can be traced multiple times, but can only go into isolation once. For example, the proportion
of people at time t who were infected time τ ago by people who were themselves infected time
τ ′ ago that can be found through backward- and then forward tracing, i.e. sibling → parent →
child is then ∫ τ ′

0

(1−B(τ ′ − ν))
B(τ ′)

B(τ ′ − τ)
dν.

To describe the proportion of the population that can be found through two-step forward
contact tracing, i.e. grandparent → parent → child, we are required to consider Y (t, τ, τ ′, τ ′′),
the number of people at time t who were infected time τ ago by people who were infected time
τ ′ ago by people who were infected time τ ′′ ago. Going on from here will become increasingly
more difficult. Moreover, there is no definitive point where we can stop adding terms to our
equations due to the recursive nature of the tracing process.
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We conclude our discussion here with the remark that incorporating multistep bidirectional
contact tracing into the analytical framework built in this Chapter is hard. Instead, we built a
simulation model to study its effect on the containment of infectious diseases.

Asymptomatic case

Known case

Isolated
Traced but 

isolated
too late

Isolated Isolated Prevented
case

Figure 2: Multi-step forward contact tracing only. White nodes represent individuals that
are not found through tracing. Arrows show the direction of tracing. Dashed lines represent
(potential) transmissions.

Asymptomatic case

Known case

Isolated
Traced but 

isolated
too late

Isolated Isolated

Isolated

Prevented
case

Prevented
case

Prevented
case

Prevented
case

Isolated

Figure 3: Multi-step bidirectional contact tracing. Arrows show the direction of tracing. Dashed
lines represent (potential) transmissions.
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3 Simulating bidirectional contact tracing

From the discussion in Section 2.5, we conclude that the existing analytical framework has
not sufficiently incorporated the effects of bidirectional contact tracing in order to provide
qualitative answers to the questions this project poses. Moreover, updating the analytical
framework is unfeasible, especially due to the recursive nature of (bidirectional) contact tracing.
Instead, we built a simulation model. This simulation model is described in Appendix A,
Sections A.1-A.3. It is based on a simulation model by Bradshaw and others [7, 8]. Primarily,
the simulation model we built simulates the spread of an infectious disease with characteristics
similar to COVID-19. It can be used to obtain results regarding our hypotheses H1 and H2
in the context of questions 1 and 2. The simulation model has various input parameters that
together describe a scenario. It runs an event-by-event simulation that produces a cumulative
list of people that were infected, along with their infection times and their infector. The
simulation model takes an initial list of infectives with corresponding events. Units of time in
the simulation model correspond to days. The simulation model can do the following:

1. For a given scenario, predict the resulting Reff and the growth of the infective
population over time.

2. For a given scenario with R0 free, determine a critical region for R0 where
contact tracing is a sufficient measure for inducing epidemic control.

The simulation model can be used with bidirectional contact tracing or with forward contact
tracing only, thus allowing us to compare the two. The simulation model helps us get around
some of the restricting assumptions from the analytical framework. However, it is itself not
built without any assumptions. We start this Chapter by explicating the assumptions made
in the construction of the simulation model. In Section 3.2 we discuss some features of the
simulation model as well as some difficulties. Most importantly, it turns out that predictions
made by the simulation with regards to 1 are not always reliable. We need the freedom given
by 2 to say anything with certainty.

3.1 Assumptions

While building the simulation model we make three significant assumptions. These assumptions
are necessary for the simulation model to work in the way we want to while still being able to
adequately perform the intended functions.

First and foremost, we assume that the course of the epidemic is not affected by the relative
proportions of susceptibles and infectives in the population. In other words, the number of
contacts of infective individuals with susceptibles remains unchanged. This assumption is in
line with what we discussed in Section 2.3.

Secondly, we assume that contacts are random. In reality, infective individuals naturally infect
people that are close to them in a spatial sense, for example housemates, as well as in a relational
sense, such as family or friends. Nevertheless, the simulation model does not consider spatial
dimensions, so individuals are neither “moving”, nor can we pin down their “location”. The
simulation model also does not keep track of relations between individuals, other than trans-
missions. We feel that the omission of these effects will not drastically change any conclusions
drawn.

Lastly, we assume that contact tracing and resulting isolation is the only countermeasure that
affects the workings of the simulation model directly. This assumption allows us to look at the
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effect of contact tracing in a vacuum without other influences. In reality, other countermeasures
such as curfews and lockdowns will further decrease the effective reproduction number. We will
therefore treat the input parameter R0 in the simulation model as the reproduction number for
a disease given any countermeasures besides contact tracing are in place. This interpretation
becomes especially advantageous in Section 3.3.

We also make a lot of minor assumptions. We list them below for completeness although we
feel that not much is lost if the reader skips over these. How these assumptions appear in the
simulation model is explained in Section A.2.

1. Demographic turnover does not affect
the course of the epidemic.

2. The initial infective population does not
have parents that initiate contact trac-
ing.

3. transmission times are independent of
the time of day.

4. There is only one type of super spreader.

5. There is only one type of asymptomatic
individual.

6. An individual can be both a super
spreader and asymptomatic.

7. There is no correlation between be-
ing asymptomatic and being a super
spreader.

8. There is no contact correlation between
groups.

Let Ps be the proportion of super spreaders.
Let Cs and Cr be constants such that

CsPs + Cr(1− Ps) = 1.

9. We have Ps ≤ 0.4.

10. Regular infective individuals are ex-
pected to infect CsR0 other individuals.

11. Super spreaders are expected to infect
CrR0 other individuals.

12. The asymptomatic status does not affect
the expected number of infections.

13. The actual number of infections is Pois-
son distributed around the expected in-
fectiousness.

14. The incubation time of an individual is
normally distributed around some aver-
age, but no earlier than their infection
time and no later than their recovery
time.

15. The transmission times of an individual
are normally distributed around some
average, but no earlier than their infec-
tion time and no later than their recovery
time.

16. The delay for testing and tracing the
parent and children of a diagnosed indi-
vidual are normally distributed around
some average, but no earlier than the
time of diagnose of that individual.

17. This delay for testing and tracing can be
considered as one delay.

18. Contact tracing is not applied to an in-
dividual who is already in isolation.

In assumptions 14-15, if the generated normally distributed time stamp is earlier then the
infection time, we set it equal to the time of infection. If the generated normally distributed
time stamp is later then the recovery time, we set it equal to the recovery time. In assumption
16, if the generated normally distributed time stamp is earlier then the time of diagnose of the
initiating individual, we set it equal to the time of diagnose.
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3.2 Features of the simulation model

Let us first discuss in what way a disease should be similar to COVID-19 in order for its course
to be accurately described by the simulation model. The COVID-19 virus is mainly transmitted
on short-range contact between any group of individuals through aerosols in their breath [17].
Therefore, transmissions can effectively be reduced by isolating infective individuals. These
characteristics are key to the accuracy of the simulation model. This excludes for example
sexually transmittable diseases. Additionally, the average incubation time, i.e. the time be-
tween infection and symptom onset of an individual, should be in the order of days or weeks.
Likewise, the average serial interval, i.e. the time between successive cases should also be no
more than a few weeks. Contact tracing over longer periods of time will be less accurate and
therefore not a consistent countermeasure. Furthermore, effective tests for the disease that can
also identify presymptomatic or asymptomatic individuals should be available.

Having identified the types of diseases that can be modelled using the simulation model, we
move on to the features that we have incorporated. We especially focus on the aspects lacking
in the analytical framework. First of all, in order to distinguish between different groups of
individuals, a simulation archives the relevant characteristics of each individual in its respective
i-state (see Section 6.1 in [2]). The i-state includes an entry that indicates the parent of the
individual. Therefore, the simulation can keep track of the transmission tree through the i-
states. When incorporating contact tracing, this feature ensures the direct correlation between
a diagnosed individual and the resulting tracing process, since it can target the “relatives” of
the diagnosed individual directly. Additionally, this feature enables the simulation to perform
recursive contact tracing. That is, when the contacts of a diagnosed individual are traced and
diagnosed as well, we can apply contact tracing again simply by following the transmission tree.
The i-state also includes a status entry that can mark the individual as a super spreader or as
being asymptomatic.

Epidemiological Parameters
Description Name Value
Basic reproduction number R0 3
Average incubation time Tincubation 5.5 days
Average serial interval Tserial 5.5 days
Average recovery time Trecovery 16.5 days
Proportion of the population that remains asymptomatic Pa 0.3
Proportion of the population that is a super spreader Ps 0.1

Measure Parameters
Description Name Value
Isolation efficacy ε 0.8
Probability to be contact traced Ptrace 0.8
Average tracing delay Tdelay 0.5 days

Table 1: Relevant parameters in the simulation model.

The detailed characteristics of the disease under scrutiny can be approximated through the
setting of a set of epidemiological parameters. Similarly, the projected effectiveness of bidi-
rectional contact tracing can be varied through the setting of a set of measure parameters.
These parameters with chosen values form a scenario. We have some standard values for these
parameters that we use, unless stated otherwise, in examples moving forward. See Table 1.

Essentially, one simulation boils down to a stochastic process. Due to coincidence, two sim-
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Figure 4: Infective population sizes N over days resulting from 7 simulations with the exact
same parameter inputs (regular parameter values except ε = 0.93).

ulations running with the same given set of epidemiological- and measure parameter values
can predict different outcomes in terms of epidemic control as described in Section A.5, see
Figure 4. If one parameter is free and the others are fixed, then there exists a region for the
free parameter where the unpredictability of the outcome becomes more pronounced. There is
some value for the free parameter where we the simulation is as likely to predict growth as it
is to predict decline. We call this the critical parameter value.

Let us consider an example. Figure 4 suggests that the critical parameter value for ε for the
standard values of the epidemiological- and measure parameters is near 0.93. An experiment
where we run 100 simulations with the simulation parameters at the values in Figure 4 and
ε = 0.93, we get the predictions specified in Table 2 in terms of epidemic control. For a
reference guide on how we determine these observations, see Section A.5. We see that under
these conditions, 78% of the simulations predicts extinction of the infective population, while
18% results in a stability and 4% results in epidemic growth. This seems like a fine result.
However, note that we have considered an initial population of 20 infective individuals for
each simulation. In reality, we should translate this result to saying that on an initial infective
population of say 2000 individuals, we expect that at least 8 of these individuals starts a growing
branch of offspring. Ultimately, contrary to what the results suggest at first glance, epidemic
growth is is still likely to occur under these conditions. We must conclude that near critical
parameter values, the predictions made by the simulation are unreliable.

We could circumvent this stochasticity by increasing the initial population. However, we then
run into another complication with the simulation model. It frequently employs the Quicksort
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Prediction Frequency
Growth of infective population 4
Stable infective population 18
Extinction of infective population 78

Table 2: Frequency of predicted outcomes in 100 simulations. Parameter values as described
above.

algorithm for ordering lists. The Quicksort algorithm is of time complexity O(n log(n)), where
n is proportional to the infective population size. Despite its name, this regular sorting makes a
simulation increasingly time consuming as the infective population increases. This is especially
detrimental when simulating a scenario that induces epidemic growth. In Section A.3 we discuss
some adaptations that we made to the basic simulation model in order to reduce the frequency at
which this algorithm is invoked, as well as the length of the list that must be ordered. However,
these adaptations do not decrease the time complexity by more then a constant factor. Both
problems can be solved simultaneously. We discuss our approach in Section 3.3.

3.3 Control of a delayed system

With the observations from the previous Section in mind, it would be useful if we could deter-
mine critical parameter values. We choose to try to find the critical value for R0, which could
then be interpreted as the maximal reproduction number that can still be controlled under the
given scenario, i.e. under the conditions described by the other parameter values. Ideally, we
would only have to run one simulation in order to determine a critical value for R0. Moreover,
considering the time complexity of the simulation model, we would like the infective popula-
tion to remain within some reasonable bound throughout the simulation. We accomplish this
setting by continually updating the parameter R0. These updates depend on the growth or
decline of the infective population. The details can be found in Appendix B. Incidentally, this
approach also solves the difficulties observed in the previous Section. Because the simulation
model is stochastic, the updated values of R0 will not converge, but they will remain within
some region. We call the interval where the middle 90% of the updated values of R0 end up
the critical region for R0. We ignore the first 30 update values because the initial population
cannot be found through forward contact tracing. Hence, contact tracing will seem less effective
at the start of a simulation.

Remarkably, the process of parameter updating comes down to the control of a delayed system,
as it takes time for the effects of an updated R0 to kick in because of the serial interval. There
can be some debate as to how and when we choose to update R0. The PID (proportional-
integral-derivative) algorithm is a control loop mechanism that is widely used to control delayed
systems, for example in industrial control systems or cruise control. However, for reasons that
are further explored in Section B.2, this algorithm is hard to implement in our simulation
model. Instead we use a more naive approach that still works. This approach is also discussed
in Section B.2. It comes in two variations. The first requires the user to have a broad upper
bound for the permissible basic reproduction number, while the second demands that the user
has some idea of where the critical region is.

Considering the third major assumption discussed in Section 3.1, we can interpret this updating
of R0 as the effects of other countermeasures. In that sense, the simulation model with pa-
rameter updating outputs a critical region for the reproduction number that must be achieved
through other countermeasures in order for the contact tracing to induce epidemic control. The
lower bound of the critical region is the reproduction number that should be aimed for.
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4 Results

In this Chapter, we consider several scenarios for an outbreak. In Chapter 3 we noted that we
can use the simulation model to determine a critical region of the reproduction number for a
given scenario. We use this feature as a basis for our conclusions. We will divide our results
into two Sections. We first consider hypothesis H1, namely that bidirectional contact tracing
can control the spread of infectious diseases similar to COVID-19. Furthermore, we explore the
added benefit of bidirectional contact tracing over forward contact tracing only. Then we move
on to hypothesis H2 and see if bidirectional contact tracing is an effective measure to counteract
a disease where a proportion of the population is asymptomatic or a super spreader. We will
test bidirectional contact tracing under scenarios with varying proportions of asymptomatic
individuals and super spreaders.

It should be noted that we run the majority of our simulations were parameter updating is
active until a predetermined termination time, which we will set at 3000 or 5000 days. This
does not mean that we expect an epidemic to persist for this period of time. It is just for
simulation purposes that we continue a simulation for such an extended time. Firstly, it gives
the the system time to settle after the intitial overshoot. Secondly, it provides us with more
data which means the critical region for R0 can be determined more precisely.

4.1 Setting the epidemiological parameters

For the sake of relevance, we want to describe COVID-19 as closely as possible. We do this
using the epidemiological parameters from Table 1. Note that we leave R0 free, as we try to
determine a critical region for this parameter. It is worth mentioning that pinning down a
value for this parameter is very hard. Estimates found in [13, 16, 29, 30] range from 1.71-3.58.
Additionally, the introduction of new variants of the disease will vary the reproduction number
as well.

There are no sound sources on the proportions of asymptomatic individuals or super spreaders
within the population. However, considering that we want to test hypothesis 2, we will vary the
parameters Pa and Ps. As a starting point, we will take Pa = 0.3 and Ps = 0.1, where the first
is slightly lower than in [8]. We feel that the proportions presented there are an overestimation
due to the inclusion of presymptomatic individuals in the consulted sources. This distinction
is made clearly in [31]. Their estimated proportion supports our starting value of Pa. Findings
from [30] and other references in [8] suggest that asymptomatic carriers have no difference in
viral loads compared to their symptomatic counterparts. Therefore, we do not consider them
less infectious in our simulation model. The value for Ps is assumed.

In [13, 29, 30] we find estimates for the remaining parameters. We find mean incubation times
of 5.7-7.4 days and mean serial intervals of 5.2-6.9 days. There is some significance as to
where the onset of symptoms occurs with respect to the mean serial interval. If the mean
incubation time is much longer then the mean serial interval, then it reduces the effectiveness
of contact tracing, as most infections happen presymptomatically. However, we feel that they
are similar enough to consider them equal, in which case about 50% of potential infections
happen presymptomatically. This number seems to be supported by [13, 29, 30]. We therefore
set Tincubation = Tserial = 5.5. Less research is focused on the recovery time. In [30] the time
to viral clearance, i.e. the time from the earliest positive test for an individual that was tested
more than once, to the earliest negative test, is determined to be 9.3 days on average. However,
it is likely that such an individual was infected a few days before their first positive test. To be
safe, we set Trecovery = 16.5.
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4.2 Bidirectional contact tracing vs forward contact tracing

In this Section, we take the epidemiological parameter values determined in Section 4.1 and
run simulations with varying measure parameters to determine corresponding critical regions
for R0. We also compare bidirectional contact tracing with forward contact tracing only to
demonstrate its added potency.

We consider eight scenarios. First, we look at scenarios where the isolation of diagnosed indi-
viduals is slack; only 80% of potential infections will be prevented through isolation. Then we
increase the isolation efficacy to 95%. In both cases, we increase the effectiveness of contact
tracing in four stages. We increase tracing probability from 50% to 80% and decrease the av-
erage tracing delay from 2 days to 1 day. We feel that these numbers are achievable, especially
when using tracing applications. The results are presented in Table 3. We give an estimate
for the critical R0 value in the given scenario; the average of the updated values excluding the
first 30 values. We also give the critical region for R0. We reiterate that the critical region
is the interval where the 90% of the updated values end up, excluding the top 5% extremes
and bottom 5% extremes, as well as the first 30 values. The plots of the updated R0 values
are supplemented in Appendix C. In the table, we reference the figures upon which the critical
regions are based. In Table 3, as well as the other tables displaying critical regions in this
Chapter, the width of the critical regions increases with the average R0. This is due to how
the parameter updating works (for details, see Section B.2).

From Table 3, we can conclude that infectious diseases similar to COVID-19 but with a low
enough basic reproduction number can be controlled by contact tracing alone. Bidirectional
contact tracing is more effective than froward contact tracing only. This benefit is amplified as
the effectiveness of the countermeasures is increased. For COVID-19 specifically, considering
the pessimistic estimate of 3.58 for its basic reproduction number, we see that it may still
be controlled under the strictest bidirectional contact tracing. If this effectiveness cannot be
achieved, other countermeasures have to be employed as well.

The observed amplified effectiveness of bidirectional contact tracing in case of increased tracing
effectiveness is of interest. We do some follow-up simulations to see if further improvements in
the tracing process should focus on increasing the tracing probability or on reducing delay. We
consider the ideal theoretical scenarios with a tracing probability of 100% or a delay of 0 days.
In practice, we deem it unlikely that this level of effectiveness will ever be achieved, but it may
give some insight.

We see clearly in Table 4 that increasing the probability of being contact traced is more ben-
eficial than reducing the tracing delay. This result confirms observations from Bradshaw an
colleagues [8]. From this we conclude that in the case of an infectious disease outbreak, the
focus should be on tracing as many contacts of a diagnosed individual, rather than on speeding
up the tracing process. In the case that an application is available for digital tracing, it should
be used by as many people as possible. Hybridized tracing, i.e. a combination of digital- and
manual tracing is recommended.

4.3 Bidirectional contact tracing vs asymptomatic individuals and
super spreaders

In this Section, we have a closer look at how super spreaders and asymptomatic individuals
affect the effectiveness of bidirectional contact tracing. To test this, we start by considering
scenarios where there are no super spreaders or asymptomatic individuals. Then we increase
the proportions of super spreaders and asymptomatics separately. We consider only scenarios
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Estimate for critical value Estimate for critical value
Scenario and critical region for R0 with and critical region for R0 with

bidirectional contact tracing. forward contact tracing only.
ε = 0.8,
Ptrace = 0.5, 1.6985 [1.6300, 1.7935] (10a) 1.6772 [1.6001, 1.7659] (13a)
Tdelay = 2 days.
ε = 0.8,
Ptrace = 0.6, 1.8166 [1.7135, 1.9615] (10b) 1.7616 [1.6656, 1.8772] (13b)
Tdelay = 1.5 days.
ε = 0.8,
Ptrace = 0.7, 1.9364 [1.8641, 2.0270] (10c) 1.8314 [1.7354, 1.9324] (13c)
Tdelay = 1 days.
ε = 0.8,
Ptrace = 0.8, 2.0938 [1.9621, 2.2531] (10d) 1.9098 [1.8220, 2.0003] (13d)
Tdelay = 1 days.
ε = 0.95,
Ptrace = 0.5, 2.0812 [1.9639, 2.2605] (11a) 2.0146 [1.8720, 2.2333] (12a)
Tdelay = 2 days.
ε = 0.95,
Ptrace = 0.6, 2.3339 [2.1666, 2.5918] (11b) 2.1187 [1.9995, 2.2859] (12b)
Tdelay = 1.5 days.
ε = 0.95,
Ptrace = 0.7, 2.7522 [2.5731, 3.0398] (11c) 2.2679 [2.1367, 2.4700] (12c)
Tdelay = 1 days.
ε = 0.95,
Ptrace = 0.8, 3.2085 [3.0009, 3.4263] (11d) 2.4994 [2.3330, 2.7462] (12d)
Tdelay = 1 days.

Table 3: Performance of bidirectional contact tracing compared to forward contact tracing only
in various scenarios.

were the isolation efficacy is at 95%. Since isolation is then almost perfect, this puts more
emphasis on the tracing process itself.

We conclude that the effectiveness of contact tracing in general is not noticeably affected by
the proportion of super spreaders. In the case of forward tracing, this makes sense, because the
average number of people infected by an infectious individual does not change, and therefore
we do not expect to find fewer or more cases in total when there are super spreaders. In the
case of bidirectional contact tracing this result is a bit surprising. A super spreader is more
likely to be detected presymptomatically through one of their children, which would result in
a larger branch of the transmission tree being screened. Note that this is unlikely, because it
requires the child case to have developed symptoms before the parent. However, in extreme
cases, this could result in a slight increase in the effectiveness of bidirectional contact tracing.
We do not observe such an increase in effectiveness however.

Secondly, we conclude that the effectiveness of contact tracing in general decreases if there
are people who will remain asymptomatic. This is unsurprising; branches of the transmission
tree initiated by these asymptomatic individuals can only be found after diagnoses of later
generations in those branches. However, if we compare Tables 5 and 6, we can see that in
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Estimate for critical value Estimate for critical value
Scenario and critical region for R0 with and critical region for R0 with

bidirectional contact tracing. forward contact tracing only.
ε = 0.95,
Ptrace = 0.8, 3.4807 [3.2634, 3.7721] (14a) 2.4642 [2.2868, 2.6896] (14b)
Tdelay = 0 days.
ε = 0.95,
Ptrace = 1, 4.4462 [4.1589, 4.7456] (14c) 2.8994 [2.7132, 3.1710] (14d)
Tdelay = 1 days.

Table 4: Performance of bidirectional contact tracing compared to forward contact tracing only
in scenarios with no tracing delay or perfect tracing.

Estimate for critical value Estimate for critical value Estimate for critical value
Scenario and critical region for R0 and critical region for R0 and critical region for R0

with Ps = 0, Pa = 0. with Ps = 0.25, Pa = 0. with Ps = 0, Pa = 0.5.
ε = 0.95,
Ptrace = 0.5, 3.3160 [3.1279, 3.5745] 3.2408 [3.0264, 3.6364] 1.6267 [1.5279, 1.8015]
Tdelay = 2 days. (15a) (16a) (17a)
ε = 0.95,
Ptrace = 0.6, 3.8648 [3.5562, 4.3501] 3.8205 [3.5510, 4.3376] 1.7647 [1.6709, 1.8937]
Tdelay = 1.5 days. (15b) (16b) (17b)
ε = 0.95,
Ptrace = 0.7, 4.4627 [4.2106, 4.7883] 4.4099 [4.1433, 4.7997] 2.0014 [1.8816, 2.1540]
Tdelay = 1 days. (15c) (16c) (17c)
ε = 0.95,
Ptrace = 0.8, 5.1823 [4.8616, 5.7840] 5.2603 [4.8646, 5.9033] 2.3237 [2.1793, 2.4746]
Tdelay = 1 days. (15d) (16d) (17d)

Table 5: Performance of bidirectional contact tracing in scenarios with no asymptomatics or
super spreaders, super spreaders only and asymptomatics only.

scenarios with asymptomatics, bidirectional tracing did noticeably outperform forward tracing.
With bidirectional contact tracing, siblings of a diagnosed individual may still be found through
their parent, even if the parent was asymptomatic, as demonstrated in Figure 3. This will
prevent some additional cases. This explains why bidirectional contact tracing does better in
the scenarios with a large proportion of asymptomatics.

These conclusions put our findings in the previous Section in a new light. The superiority of
bidirectional tracing over forward tracing in the case of COVID-19 is due to the fact that a
proportion of the population consists of asymptomatic individuals.

4.4 Discussion

The biggest discussion point to address here is the fact that in order for a simulation to run
smoothly, we must have a somewhat accurate upper bound for the critical R0 region in the
given scenario to use as initial guess. Otherwise, the simulation might result in extinction of the
infective population before an equilibrium is attained. Ideally, such a result would be prevented
by the simulation itself.
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Estimate for critical value Estimate for critical value Estimate for critical value
Scenario and critical region for R0 and critical region for R0 and critical region for R0

with Ps = 0, Pa = 0. with Ps = 0.25, Pa = 0. with Ps = 0, Pa = 0.5.
ε = 0.95,
Ptrace = 0.5, 3.2806 [3.1516, 3.4499] 3.2857 [3.0545, 3.6045] 1.5685 [1.4946, 1.6880]
Tdelay = 2 days. (18a) (19a) (20a)
ε = 0.95,
Ptrace = 0.6, 3.8091 [3.5911, 4.0782] 3.7822 [3.5528, 4.1474] 1.5892 [1.5234, 1.6964]
Tdelay = 1.5 days. (18b) (19b) (20b)
ε = 0.95,
Ptrace = 0.7, 4.4252 [4.2035, 4.7835] 4.4640 [4.0518, 5.2208] 1.6801 [1.6152, 2.7708]
Tdelay = 1 days. (18c) (19c) (20c)
ε = 0.95,
Ptrace = 0.8, 5.2796 [4.9316, 5.7307] 5.1969 [4.7616, 5.7717] 1.7722 [1.6938, 1.8695]
Tdelay = 1 days. (18d) (19d) (20d)

Table 6: Performance of forward contact tracing only in scenarios with no asymptomatics or
super spreaders, super spreaders only and asymptomatics only.

Secondly, we have noted that the width of the critical R0 regions increases with their average.
It can be argued that they are too wide regardless. Although complete convergence cannot
be achieved due to the stochasticity of the simulation model, it might be feasible to narrow
them until we observe some predetermined deviation from the average. Improvements on this
part might for example result in better indications of how much, if at all, bidirectional contact
tracing increases in effectiveness because of super spreaders.

Thirdly, some of our assumptions for the simulation model can be disputed. We use normal
distributions to determine our time stamps, although other distributions have been suggested
in [8]. This could be an issue mainly for the amount of presymptomatic infections we expect to
occur. However, we feel that the choice for normal distributions does not have a major effect as
long as we can somewhat accurately determine the incubation time and serial interval. Also, it
is conceivable that super spreaders are more likely to be in contact with other super spreaders.
We expect that this correlation would increase the effectiveness of contact tracing even more,
since we will intercept more super spreaders after diagnosing a super spreader.

Lastly, we want to emphasize that when the basic reproduction number for an infectious disease
is within the critical region for a certain set of measure parameter values, we still recommended
to have other countermeasures in place as well. After all, the critical region indicates that the
infective population will remain stable. If the infective population is already relatively large
when contact tracing is initiated, it will remain that large.

4.5 Synopsis

We have built a simulation model that simulates the effect of contact tracing on the spread
of infectious diseases similar to COVID-19. This simulation model circumvents some of the
difficulties that we encounter if we approach this analysis analytically. Through simulations
we have been able to conclude that bidirectional contact tracing has a greater effect than just
forward contact tracing if there are asymptomatic individuals in the population. This advantage
becomes more pronounced when the probability to be traced increases.
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[6] Traoré, A., Konané, F.V. Modeling the effects of contact tracing on COVID-19 transmission.
Adv Differ Equ 2020, 509 (2020). https://doi.org/10.1186/s13662-020-02972-8

[7] William J. Bradshaw, Ethan C. Alley, Jonathan H. Huggins, Alum L. Lloyd, Kevin M.
Esvelt, Bidirectional contact tracing is required for reliable COVID-19 control, medRxiv,
May 10, 2020. https://www.medrxiv.org/content/10.1101/2020.05.06.20093369v2.

[8] William J. Bradshaw, Ethan C. Alley, Jonathan H. Huggins, Alum L. Lloyd, Kevin M.
Esvelt, Bidirectional contact tracing dramatically improves COVID-19 control, medRxiv,
July 14, 2020. https://www.medrxiv.org/content/10.1101/2020.05.06.20093369v2.

[9] Jacob E. Lemieux et. al. Phylogenetic analysis of SARS-CoV-2 in Boston highlights the
impact of superspreading events, Science 10 Dec 2020. DOI:10.1126/science.abe3261

[10] Yang Liu, Rosalind M Eggo, and Adam J Kucharskia, Secondary attack rate and super-
spreading events for SARS-CoV-2, Lancet. 2020 14-20 March; 395(10227): e47. Published
online 2020 Feb 27. doi:10.1016/S0140-6736(20)30462-1

[11] London School of Hygiene and Tropical Medicine, SARS-CoV-2 Superspreading Events
from Around the World, Google Docs, retrieved December 2020.
https://docs.google.com/spreadsheets/d/1c9jwMyT1lw2P0d6SDTno6nHLGMtpheO9xJyGHgdBoco/

edit#gid=1812932356

[12] Ramanan Laxminarayan, Brian Wahl, Shankar Reddy Dudala, K. Gopal, Chandra Mohan
B, S. Neelima, K. S. Jawahar Reddy, J. Radhakrishnan, Joseph A. Lewnard, Epidemiology
and transmission dynamics of COVID-19 in two Indian states, Science 06 Nov 2020: Vol.
370, Issue 6517, pp. 691-697. https://science.sciencemag.org/content/370/6517/691.

[13] Shujuan Ma, Jiayue Zhang, Minyan Zeng, Qingping Yun, Wei Guo, Yixiang Zheng, Shi
Zhao, Maggie H. Wang, Zuyao Yang, Epidemiological parameters of coronavirus disease
2019: a pooled analysis of publicly reported individual data of 1155 cases from seven coun-
tries, medRxiv, March 24, 2020.
https://www.medrxiv.org/content/10.1101/2020.03.21.20040329v1.

Utrecht University 28

https://doi.org/10.1073/pnas.0307506101
https://doi.org/10.1186/s13662-020-02972-8
https://www.medrxiv.org/content/10.1101/2020.05.06.20093369v2
https://www.medrxiv.org/content/10.1101/2020.05.06.20093369v2
 10.1126/science.abe3261
 10.1016/S0140-6736(20)30462-1
https://docs.google.com/spreadsheets/d/1c9jwMyT1lw2P0d6SDTno6nHLGMtpheO9xJyGHgdBoco/edit#gid=1812932356
https://docs.google.com/spreadsheets/d/1c9jwMyT1lw2P0d6SDTno6nHLGMtpheO9xJyGHgdBoco/edit#gid=1812932356
https://science.sciencemag.org/content/370/6517/691
https://www.medrxiv.org/content/10.1101/2020.03.21.20040329v1


Master Thesis by Jim Vollebregt Page 29

[14] Mizumoto, Kenji and Kagaya, Katsushi and Zarebski, Alexander and Chowell, Gerardo,
Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on
board the Diamond Princess cruise ship, Yokohama, Japan, 2020, Eurosurveillance, 25,
2000180 (2020), https://doi.org/10.2807/1560-7917.ES.2020.25.10.2000180

[15] Großmann G., Bortolussi L., Wolf V. (2020) Rejection-Based Simulation of Non-Markovian
Agents on Complex Networks. In: Cherifi H., Gaito S., Mendes J., Moro E., Rocha L. (eds)
Complex Networks and Their Applications VIII. COMPLEX NETWORKS 2019. Studies
in Computational Intelligence, vol 881. Springer, Cham.
https://doi.org/10.1007/978-3-030-36687-2_29

[16] World Health Organization, Report of the WHO-China Joint Mission on Coronavirus
Disease 2019 (COVID-19). February 2020.

[17] World Health Organisation, WHO Coronavirus (COVID-19) Dashboard, retrieved May 13,
2021. https://covid19.who.int/table

[18] World Health Organization, Statement on the second meeting of the International Health
Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-
nCoV), 30 January 2020.

[19] World Health Organization, WHO Director-General’s opening remarks at the media brief-
ing on COVID-19—11 March 2020, 11 March 2020.

[20] John D. Birkmeyer, Amber Barnato, Nancy Birkmeyer, Robert Bessler, Jonathan Skinner,
The Impact Of The COVID-19 Pandemic On Hospital Admissions In The United States,
HealthAffairs, VOL.39, NO.11, September 24, 2020.

[21] RIVM, Impact van de eerste COVID-19 golf op de reguliere zorg en gezondheid: Inven-
tarisatie van de omvang van het probleem en eerste schatting van gezondheidseffecten, pub-
lished December 15, 2020.

[22] Worldometer, active cases, retrieved March 17, 2021. https://www.worldometers.info/
coronavirus/

[23] Nina Vindegaard, Michael Eriksen Benros, COVID-19 pandemic and mental health conse-
quences: Systematic review of the current evidence, Brain, Behaviour and Immunity, Vol.89,
pp. 531-542, October 2020.

[24] Cuiyan Wang, Riyu Pan, Xiaoyang Wan, Yilin Tan, Linkang Xu, Cyrus S. Ho, Roger
C. Ho, Immediate Psychological Responses and Associated Factors during the Initial Stage
of the 2019 Coronavirus Disease (COVID-19) Epidemic among the General Population in
China, EIJERPH, Vol.17, Issue 5, February 28, 2020.

[25] Lavezzo E, Franchin E, Ciavarella C, et al. Suppression of COVID-19 outbreak in the
municipality of Vo, Italy. medRxiv. 2020; published online April 18. DOI:10.1101/2020.
04.17.20053157.

[26] Ramelli, Stefano, and Alexander Wagner. What the stock market tells us about the conse-
quences of COVID-19. Mitigating the COVID Economic Crisis: Act Fast and Do Whatever
63 (2020).

[27] World Economic Forum, The Global Risks Report 2020, January 15, 2020. http://www3.
weforum.org/docs/WEF_Global_Risk_Report_2020.pdf

Utrecht University 29

https://doi.org/10.2807/1560-7917.ES.2020.25.10.2000180
https://doi.org/10.1007/978-3-030-36687-2_29
https://covid19.who.int/table
https://www.worldometers.info/coronavirus/
https://www.worldometers.info/coronavirus/
10.1101/2020.04.17.20053157
10.1101/2020.04.17.20053157
http://www3.weforum.org/docs/WEF_Global_Risk_Report_2020.pdf
http://www3.weforum.org/docs/WEF_Global_Risk_Report_2020.pdf


Master Thesis by Jim Vollebregt Page 30

[28] Kiam Heong Ang; Chong, G.; Yun Li (2005). PID control system analysis, design, and
technology. IEEE Transactions on Control Systems Technology. 13 (4): 559–576. doi:10.
1109/TCST.2005.847331.

[29] Balram Rai, Anandi Shukla, Laxmi Kant Dwivedi, Estimates of serial interval for COVID-
19: A systematic review and meta-analysis, Clin Epidemiol Glob Health. 2021 January-
March; 9: 157–161. Published online 2020 Aug 26. doi: 10.1016/j.cegh.2020.08.007.

[30] Lavezzo, E., Franchin, E., Ciavarella, C. et al. Suppression of a SARS-CoV-2 outbreak in
the Italian municipality of Vo’. Nature 584, 425–429 (2020). https://doi.org/10.1038/
s41586-020-2488-1.

[31] Diana Buitrago-Garcia and others, Nicola LowOccurrence and transmission potential of
asymptomatic and presymptomatic SARS-CoV-2 infections: A living systematic review and
meta-analysis, PLOS Medicine, Published: September 22, 2020, https://doi.org/10.

1371/journal.pmed.1003346.

[32] Our World in Data, retrieved June 18, 2021.

Utrecht University 30

10.1109/TCST.2005.847331
10.1109/TCST.2005.847331
10.1016/j.cegh.2020.08.007
https://doi.org/10.1038/s41586-020-2488-1
https://doi.org/10.1038/s41586-020-2488-1
https://doi.org/10.1371/journal.pmed.1003346
https://doi.org/10.1371/journal.pmed.1003346


Master Thesis by Jim Vollebregt Page 31

A The simulation model

We simulate using MatLab. The simulation model is based on the one created by Bradshaw
and others [8], with one key difference: the simulation model used in this project runs an event-
by-event simulation instead of a generation-by-generation simulation. This type of simulation
model was suggested by Großman and others [15]. A simulation is real-time in the sense that
it runs events in chronological order. The simulation model assumes an infinite population of
individuals that can potentially be infected. As noted in Section 2.3, this assumption only affects
the accuracy of the simulation model if in reality, a significant proportion of the population
is infected at any point in time, which we do not expect to happen for diseases similar to
COVID-19. However, this approach does imply that we will not be able to achieve any results
regarding question 3 from Chapter 2.

In this Appendix we discuss a total of 3 versions of the simulation model. We start off by stating
all the important parameters in the simulation model in Section A.1. Then in Section A.2 we
give a detailed overview of the basic idea of the simulation model and we present version 1.
Lastly, in Section A.3 we adapt the simulation model to make it more time-efficient. We present
the alternative versions 2 and 3 and we compare their performance to the original version. The
rest of the Appendix is dedicated to the details of how we obtain results from a simulation. In
Section A.4 we describe how we deduce the effective reproduction number for a given set of
parameters from the data provided by a simulation. In Section A.5 we explicate what other
conclusions can be drawn from a simulation and how. With that, we have accomplished function
1 of the simulation model. We describe how the model works for bidirectional contact tracing.
When we consider forward contact tracing only, we remove backward contact tracing from the
simulation model.

A.1 Parameters

The simulation model depends on three types of parameters; epidemiological parameters, mea-
sure parameters and simulation parameters. The epidemiological parameters are intrinsic to the
pathogen and must be approximated through research. On the other hand, measure parameters
depend on the effectiveness of counteractive measures employed by society. These parameters
can be varied to determine how strict counteractive measures should be, depending on the
characteristics of the pathogen, in order to control the epidemic. By a scenario, we mean a set
of values for the epidemiological- and measure parameters. Lastly, the simulation parameters
are necessary to determine a starting point and a termination point. Unless stated otherwise,
we will use some standard values for the epidemiological- and measure parameters. We specify
the simulation parameters when we feel that they are of note. The relevant parameters for the
simulation model with their standard values can be found in Table 7 below. Units of time in
the simulation model correspond to days in reality. Thus, time dependent parameter values are
given in days as well.

We have discussed the basic reproduction number in Section 2.1. The incubation time is the
time between infection and symptom onset. The recovery time is the time between infection and
complete recovery. The asymptomatic and super spreader groups are not mutually exclusive;
an individual can belong to both.

Since we assume that the only counteractive measure in place is that people go into isolation
after having symptoms or after being contact traced (see Chapter A), we have a limited number
of measure parameters that are relevant. To start off, ε will be used to update the isolation
efficacy of a detected infective individual. Potential infections by this individual will afterwards
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Epidemiological Parameters
Description Name Value
Basic reproduction number R0 3
Average incubation time Tincubation 5.5 days
Average serial interval Tserial 5.5 days
Average recovery time Trecovery 16.5 days
Proportion of the population that remains asymptomatic Pa 0.3
Proportion of the population that is a super spreader Ps 0.1

Measure Parameters
Description Name Value
Isolation efficacy ε 0.8
Probability to be contact traced Ptrace 0.8
Average tracing delay Tdelay 0.5 days

Simulation Parameters
Description Name Value
Initial population size Ninitial –
Maximal cumulative size of the epidemic Cmax –
Termination time Tmax –

Table 7: Relevant parameters in the simulation model.

be rejected with probability ε. Next, Ptrace is the probability that an individual can be found
through tracing. Lastly, Tdelay is the average of a combination of the delay for being traced
and the delay for obtaining test results. It is therefore the average time between the diagnose
of an individual and the isolation of their parent and children.

A.2 Basics of the simulation model

A simulation starts with an initial population of infected individuals of size Ninitial with known
i-states stored in a list called People. For each individual we determine beforehand their time
of symptom onset, their time of recovery, the potential number of people they will infect, and
the potential infection times. These time stamps and corresponding events are stored in an
ordered Events list (the Event queue in [15]). The simulation continually takes the first event
in the list and processes its outcome. Throughout the simulation, new individuals with i-states
can be added to the People list and new events can be added to the Events list. Below, (18)
depicts the i-state of an individual.

[Number; Number of parent; Infectiousness; Isolation efficacy; Status; Infection time]. (18)

To each individual we assign a number that helps us keep track of the branching process. The
personal numbers are assigned chronologically, i.e. a higher personal number means a later
infection time. This excludes the initial population, which we assume to have been infected
simultaneously at time 0. In (18), infectiousness is a first estimator of the number of other indi-
viduals this individual will infect. The infectiousness depends on whether or not the individual
is a super spreader. The isolation efficacy in (18) is is a number between 0 and 1 representing
the probability that a potential infection initiated by the concerned individual is rejected. It
is subject to change under the conditions of an “symptom onset” event (depending on some
measure parameters, see Table 7). The status is an indicator of the type of individual. It can
take four values:

Utrecht University 32



Master Thesis by Jim Vollebregt Page 33

• Status 0: Individual has no special properties.

• Status 1: Individual is a super spreader.

• Status 2: Individual remains asymptomatic.

• Status 3: Individual is a super spreader and remains asymptomatic.

The infection time is the time stamp at which the individual was infected. An example of the
i-state of an individual is:

[2; 1; 3; 0.75; 2; 1.0345]. (19)

This individual has personal number 2. Hence, we know that it was the second individual
to be infected in this simulation. This individual was infected by individual 1. Individual 2
will potentially infect approximately 3 other individuals. A potential infection by individual 2
will be rejected with probability 0.75. Individual 2 will remain asymptomatic while contagious.
Individual 2 was infected at time 1.0345. Note that the initial population does not have parents.
Thus, for all individuals in the initial population, we set the number of parent entry to −1.
Since the individual with number −1 does not actually exist, they cannot be found by backward
contact tracing.

Next, (20) depicts an event.

[Time stamp; Number of individual initiating the event; Event type]. (20)

The event type in (20) is a number corresponding to a type of event. We distinguish four types
of events:

• Type 1: Potential infection.

• Type 2: Symptom onset.

• Type 3: End of infectivity.

• Type 4: Contact traced.

An example of an event is:
[2.1543; 2; 1]. (21)

This event indicates that at time 2.1543, individual 2 will potentially infect another individual.
For each individual, we generate precisely one event of Type 3. We only generate a Type 2 event
for individuals with status 0 or 1, since by definition the individuals who remain asymptomatic
do not develop symptoms.

Version 1 of the simulation model has the following schematic:

1. Take the first event in the Events list.

2. Determine the type of event and process its outcome.

2.1. If the event is Type 2 or 4, the initiating individual goes into isolation. Its isolation
efficacy of the initiating individual is updated. We also apply bidirectional contact
tracing: new Type 4 events initiated by the parent and children of the initiating
individual are be added to the Events list with probability ptrace.

2.2. If the event is Type 1, the isolation efficacy ε of the initiating individual is consulted.
A new individual is infected with probability 1− ε. The new individual is generated
with its i-state and added to the People list, and new Type 1, 2 and 3 events are
generated for this individual and added to the Events list.
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2.3. If the event is Type 3 the simulation knows the initiating individual is no longer
infective.

3. Remove the processed event from the Events list.

4. If new events were added to the Events list, re-sort the Events list with respect to the
time stamps.

5. Go back to 1.

When a new individual is added to the simulation as part of the initial population or in step
2.2, say at time T , we immediately determine their i-state and events initiated by them (apart
from tracing events). Their time of symptom onset is T+T1, where T1 is a normally distributed
number centered around T+Tincubation. If the generated time stamp is earlier then the infection
time of the initiating individual, we set it equal to the time of infection. If the generated time
stamp is later then the recovery time of the initiating individual, we set it equal to the recovery
time. An individual is marked as asymptomatic with probability Pa. The time of symptom
onset of an individual is always determined. However, we do not generate a corresponding Type
2 event in the case that the individual has the asymptomatic status. The end of infectivity
time is exactly T + Trecovery.

A newly generated individual is marked as a super spreader with probability Ps ≤ 0.4. In this
case the infectiousness Rs of the individual is set to 2.5R0. Otherwise, their infectiousness is
set to

R =
1− 2.5Ps

1− Ps
R0,

so that
(1− Ps)R+ PsRs = R0.

The actual number of potential infections is determined as a Poisson random number n centered
around the infectiousness of the individual. The potential infection times are T+Tj , j = 1 . . . n,
where the Tj are normally distributed around T+Tgeneration. If a generated time stamp is earlier
then the infection time of the initiating individual, we set it equal to the time of infection. If
a generated time stamp is later then the recovery time of the initiating individual, we set it
equal to the recovery time.

In step 2.1, the parent and each of the children of an individual initiating a Type 2 or 4 event
has the potential to be traced. Let S be the time of the event and let m denote the number of
people traced from this individual. The potential tracing times are S + Tj , j = 1 . . .m, where
the Tj is normally distributed around S + Tdelay. If a generated time stamp is earlier then the
time of diagnose of the initiating individual, we set it equal to the time of diagnose. Tracing
happens when the parent/children satisfy two conditions: they are not already in isolation, and
they were infected no earlier than time S−Trecovery time before the event. If these conditions are
met, the individual is traced with probability Ptrace, in which case a Type 4 event is generated.
The initiating individuals of the Type 4 events are always the individuals that are being found
through tracing.

Note that we make a lot of minor assumptions here. There can be some debate as to how we
choose the symptom onset times, the infection times and the tracing times, as well as the factor
by which the infectiousness of super spreaders is increased. We feel that a normal distribution
for the former three matches reality close enough. As for the factor of increased infectiousness
for super spreaders, there is no way to reasonably determine a “correct” factor. Actually, each
individual has a different infectiousness. This is reflected in the simulation model through the
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number of potential infections of an individual being poison distributed around their expected
infectiousness. For the scope of this project, we just want the super spreaders to be a group of
people who are expected to be more infectious on average. This factor is therefore completely
arbitrary.

The simulation terminates when one of three conditions is met: the cumulative number of
individuals in People exceeds Cmax, the Events list is empty, or the first time stamp in the
Events list exceeds Tmax. After termination of the simulation we are left with a list of People
and a list of Events, which allows us to plot infective population curves over time, see for
example Figure 5.
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Figure 5: Simulated infective population size N over days for different values of ε. Other
parameter values at standard values. These plots were made using version 3 of the simulation.

A.3 Adaptations

A simulation regularly employs the time-consuming procedure of ordering the potentially long
Events list. Modifications to improve efficiency should focus on this part. By default, Mat-
Lab employs the Quicksort algorithm for ordering lists. This algorithm is of time complexity
O(n log(n)), where in this case n is the number of events. We do not dispute the the strength
of this algorithm. Instead, we look elsewhere for improvement. We can take two approaches.
Either we reduce the amount of times we have to re-order the whole Events list, or we somehow
make sure the length of the Events list stays within reasonable bounds.

Let us first consider the approach of reducing the frequency of re-ordering the Events list. We
introduce a new element to the simulation; the Queue list of upcoming events. The idea is that,
once a potential infection is accepted and new events are generated, rather then immediately
adding them to the Events list, we place them in this Queue and re-order the Queue. Only
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when the first event in the Queue has a time stamp earlier than the first event in the Events list
do we merge the two and do a large re-ordering. The hope is that the Queue list will remain
relatively short compared to the Events list. On the other hand, we do not want the Queue
merging too often with the Events list.

Version 2 of the simulation model has the following schematic:

1. Take the first event in the Events list.

2. Compare the time stamp of this event with the first event in the Queue.

3. If the time stamp of first event in the Events list is lower than the first event in the Queue,
proceed as follows; otherwise go to 4.

3.1. Determine the type of event and process its outcome.

3.1.1. If the event is Type 2 or 4, the initiating individual goes into isolation. Its isola-
tion efficacy of the initiating individual is updated. We also apply bidirectional
contact tracing: new Type 4 events initiated by the parent and children of the
initiating individual are be generated with probability ptrace and sorted. If the
lowest time stamp in the newly generated events is lower then the lowest time
stamp in the Queue list, place all new events at the beginning of the Queue list.
Otherwise, place them at the end.

3.1.2. If the event is Type 1, the isolation efficacy ε of the initiating individual is
consulted. Moreover, we consider potential updates to the basic reproduction
number. A new individual is infected with probability 1−ε. The new individual
is generated with its i-state and added to the People list, and new Type 1, 2 and
3 events initiated by this individual are generated and sorted. If the lowest time
stamp in the newly generated events is lower then the lowest time stamp in the
Queue list, place all new events at the beginning of the Queue list. Otherwise,
place them at the end.

3.1.3. If the event is Type 3 the simulation knows the initiating individual is no longer
infective.

3.2. Remove the processed event from the Events list.

3.3. Go back to 1.

4. If the time stamp of first event in the Events list is higher than the first event in the
Queue, proceed as follows:

4.1. Add the Queue to the Events list.

4.2. re-sort the Events list.

4.3. Go back to 1.

As an alternative to this version, we have Version 3 of the simulation model. In that version,
whenever we add events to the Queue in step 3.1.1 or 3.1.2, we just put them at the end without
sorting them beforehand. Instead, we sort the whole Queue after the new events were added.
The advantage of Version 2 is that we only have to sort very short lists of events regularly.
A disadvantage is the fact that the Queue is continually updated which is almost as time-
consuming. It is of note that versions 2 and 3 do not require additional assumptions on the
development of the epidemic compared to version 1.
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Let us compare the performance of the three versions of the simulation model we have discussed
in this Chapter. Both from what we expect and from experience it follows that the simulation
takes much longer when a scenario is processed where the infective population grows expo-
nentially, as the Events list will grow very large very quickly and is still growing when the
simulation terminates. On the other hand, if the scenario leads to a controlled or extinct infec-
tive population, the simulation is much faster. Therefore we want to compare the performance
of the three versions in both outcomes. To accomplish this, we set our parameters to values
which we know for certain lead to the desired circumstance. From experience we see that if we
take the regualr parameter values but set ε = 0.5, the outbreak will always cause an epidemic
with exponential growth (outcome 1). On the other hand, if we choose ε = 1, the outbreak will
always lead to extinction (outcome 2). These are therefore logical test examples to consider.
There are two more factors that affect the simulation time: the simulation parameters Ninitial,
Tmax and, in the case of exponential growth, Nmax. For this comparison we fix the following
values for the simulation parameters:

Ninitial = 20, Cmax = 20000, Tmax = 1000.

For each scenario we run each version of the simulation model 100 times and compare the
averages of their run times. See the table below:

Version Scenario 1 Scenario 2
1 67.606 1.727 · 10−2

2 18.284 1.397 · 10−2

3 25.137 1.442 · 10−2

Table 8: Performance comparison of the three versions of the simulation model. The data
shown is the average simulation time in seconds over 100 simulations.

Considering theses performance results, we present version 2 as the definitive version.

A.4 Measuring the effective reproduction number

Given a scenario, we want to determine the resulting effective reproduction number. Let us first
consider the level of a single simulation. We noted in Section A.1 that units of time correspond
to days. Let Tend be the time stamp of the last processed event, then Tend ≤ Tmax. We measure
the effective reproduction per unit of time K, where

K = [k, k + 1], 0 ≤ k ≤ bTendc,

by RKeff = Nc/Np. Here Np is the number of individuals with time stamps in K and Nc is the
number of child cases originating from these individuals. We determine Nc by counting how
often one of these individuals is listed as the parent in the i-state of another individual in the
People list.

In Section A.2 we have noted that the initial population does not have parents that are them-
selves in the simulation. Therefore, the initial population cannot be found via forward contact
tracing. This means that the measured effective reproduction number per unit of time at the
start of the epidemic is overestimated. On the other hand, when the simulation terminates,
there may still be individuals who will potentially infect others after the last run event. These
new individuals and their corresponding events will never be generated. Due to this the mea-
sured effective reproduction number per unit of time at the end of the epidemic plummets
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to 0 and is thus underestimated. Other than that we expect that the effective reproduction
number per unit of time will average out to some constant. Experimentally it turns out that
this number fluctuates a lot, especially in the case of a low total infective population. However,
trends show that it is indeed almost constant, see Figure 6. The effective reproduction number
predicted by a single simulation is then the average of the effective reproduction numbers per
unit of time for the units K with dTrecoverye ≤ k ≤ bTend − Trecoveryc.
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Figure 6: Simulated effective reproduction number Reff over days for different values of ε.
Other parameter values at standard values. These plots corrsepond to the population curves
in Figure 5

A.5 Measuring epidemic control

For a given scenario, some simulations may predict growth of the infective population while
others predict extinction. In fact, a third outcome may occur: after the initial outbreak,
we could have a more or less stable population. After measuring the effective reproduction
number as described in Section A.4, we still want to know in more detail what happened during
the simulation. In particular, we want to distinguish between the three outcomes described
above. Therefore, we save for each simulation the termination time Tend, the final number of
infectives Nend and the peak number of infectives over the course of the simulation Nmax. If a
simulation has Nend = 0 we say that the simulation resulted in extinction. If Tend = Tmax or
Nend ≤ 0.95Nmax 6= 0, we say the simulation resulted in a stable population. In all other cases
we say the simulation resulted in exponential growth of the infective population.

The factor 0.95 is somewhat arbitrary; we want to avoid marking growing populations as stable
populations. It can be that around Tend, a large group of individuals has reached their recovery
time. Thus, even for a population that is growing overall, it can be that Nend 6= 0.95Nmax. We
feel that a 5% margin is safe here.
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B Parameter updating

Notwithstanding our adaptations to the basic idea of the simulation model presented in Section
A.3 and the resulting increased efficiency, a simulation still becomes significantly slower as the
number of events increases. Moreover, as discussed in Section 3.2, the predictions made by a
simulation are unreliable when we are in a critical region of parameter values. In this Appendix,
we show how we use parameter updating in order to obtain a critical region for R0 in a given
scenario. This accomplishes function 2 of the simulation model.

B.1 Controlling the infective population

The idea is that we force a simulation into a state where the infective population size N is
relatively stable. Ideally, we make sure N stays within some bound where the simulation can
still handle the resulting amount of events in a reasonable time frame. The example in Section
3.2 shows that this will not work if we fix all our parameter values. Instead, we let R0 be
“free” in the sense that we update it depending on the state of the simulation. The idea behind
this approach is twofold. On one hand, we circumvent the time complexity of the simulation
model by controlling the infective population size. On the other hand, because the infective
population size will controlled, it must be that Reff will be close to 1, and this implies that
R0 is in its critical region. How we determine our updated values for R0 will be discussed in
Section B.2.

Since R0 is no longer a constant parameter, let’s use the notation R0(t), the basic reproduction
number at the time t of an event. Let R̄0 be an upper bound for R0(t) which we know
from experiments certainly induces epidemic growth under the given scenario. By the process
described in Section A.2, the number of potential infections initiated by an individual is based
on R̄0. However, the potential infection itself happens at time t, and it may be that R(t) 6= R̄0.
We have to account for this. Considering how we set R̄0, we should certainly have R(t) ≤ R̄0.
When the basic reproduction number is equal to 1, the infective population is always controlled,
hence we can also require R(t) ≥ 1. Then, when a Type 1 event is processed at time t, we reject
it with probability 1 − R(t)/R̄0 to account for the fact that the basic reproduction number is
now different from the one that the creation of the event was based on. Updates happen every
predetermined time step σ. After an update, we want to give the simulation time to adjust
before we do another update. Therefore, we set σ = 15, close to the standard recovery time.

In the simulation model, we can easily incorporate these updates as events. We will give them
the Event Type 5 and similar to the chosen number of the parent in the initial population,
we choose the “initiating individual” of these events to be −1. One Type 5 event needs to be
added to the list of initial events, and a Type 5 event needs to trigger another Type 5 event
one time step σ later. The schematic of the simulation model developed from version 2 then
becomes:

1. Take the first event in the Events list.

2. Compare the time stamp of this event with the first event in the Queue.

3. If the time stamp of first event in the Events list is lower than the first event in the Queue,
proceed as follows; otherwise go to 4.

3.1. Determine the type of event and process its outcome.

3.1.1. If the event is Type 2 or 4, the initiating individual goes into isolation. Its isola-
tion efficacy of the initiating individual is updated. We also apply bidirectional
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contact tracing: new Type 4 events initiated by the parent and children of the
initiating individual are be generated with probability ptrace and sorted. If the
lowest time stamp in the newly generated events is lower then the lowest time
stamp in the Queue list, place all new events at the beginning of the Queue list.
Otherwise, place them at the end.

3.1.2. If the event is Type 1, the isolation efficacy ε of the initiating individual is
consulted. Moreover, we consider potential updates to the basic reproduction
number. A new individual is infected with probability (1 − ε)(R0(t)/R̄0). The
new individual is generated with its i-state and added to the People list, and
new Type 1, 2 and 3 events initiated by this individual are generated and sorted.
If the lowest time stamp in the newly generated events is lower then the lowest
time stamp in the Queue list, place all new events at the beginning of the Queue
list. Otherwise, place them at the end.

3.1.3. If the event is Type 3 the simulation knows the initiating individual is no longer
infective.

3.1.4. If the event is Type 5, update Rnew and generate a new event of Type 5 with
time stamp σ time after that of the initiating event. If the time stamp of the
newly generated event is lower then the lowest time stamp in the Queue list,
place it at the beginning of the Queue list. Otherwise, place it at the end.

3.2. Remove the processed event from the Events list.

3.3. Go back to 1.

4. If the time stamp of first event in the Events list is higher than the first event in the
Queue, proceed as follows:

4.1. Add the Queue to the Events list.

4.2. re-sort the Events list.

4.3. Go back to 1.

When initiating a simulation, it is reasonable to set Ninitial equal to Noptimal. If we wish to
exclude the parameter updating from the simulation process, we need only remove the initial
Type 5 event from the initial events.

B.2 How to update

In this Section we discuss how and how often we update R0. As discussed in Section 3.3, we
are basically attempting to control a delayed system. We make a small tangent by discussing
the PID controller algorithm that is often used to control similar systems. Ultimately, we find
that our simulation model is not suited for the implementation of this algorithm. Instead, we
take another approach that can be used in two variations. We have not been able to find other
studies that take a similar approach. However, our attempt works reasonably well and we
therefore feel that it is unnecessary to take a different approach that requires a lot more effort.

Two phenomena are worth pointing out when considering the control of a delayed system. To
start off, the controlling mechanism can be unstable, i.e. its output diverges. The risk of this
happening is increased with larger delays. Secondly, even if stability is achieved, there may still
be an initial overshoot in the system. In our setting, this translates to an infective population
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that grows rapidly before it can be controlled. This can make the simulation slow despite our
efforts.

As a preparation for the rest of this Section, let N(t) denote the infective population size at
the time t of an event. Moreover, let Noptimal be a predetermined number around which we
want the infective population size to oscillate. This should be a number of infective individuals
that can be handled by the simulation in a timely manner while its development is not too
dependent on coincidence.

The PID controller is an example of an algorithm that is often used in similar delayed systems.
It continually computes an error value e(t) as the difference between a set point value, in this
case Noptimal and a process variable, in this case N(t), i.e. e(t) = Noptimal −N(t). This error
is then used to define the control function

u(t) = Kpe(t) +Ki

∫ t

0

e(t)dt+Kd
de(t)

dt
, (22)

where Kp, Ki and Kd are the coefficients for the proportional, integral and derivative terms
respectively. These coefficients must be tuned until the system reaches its reference in a rea-
sonable time frame. However, there are some risks of degrading stability or increased overshoot
[28]. We should then set

R0(t) = R0(t− σ) + u(t).

Unfortunately, the outputs of our simulation model do not allow us to easily approximate
integrals or derivatives of the error function. We would have to add a whole new process to
the model. Instead, we update R0 using some easily determined factors. Experimentally, we
observe the same setbacks regarding stability and overshoot.

The first updating variant is to use the predetermined number Noptimal. We let R0(0) = R̄0.
It is also natural to set Ninitial = Noptimal. At the time t of an update, we increase or decrease
R0(t−σ) by some factor ρ1 = ρ1(t) depending on the ratio N(t)/Noptimal. Furthermore, we take
into account the growth of the infective population at time t. If, for example, the population
is growing while still below the optimal number, we want to mitigate the update by a second
factor ρ2 = ρ2(t) depending on the ratio N(t)/N(t− σ). With this method, we set

R0(t) = R0(t− σ)ρ1(t)ρ2(t).

There can be some debate as to how we choose the settings of ρ1(t) and ρ2(t). We could naively
set them to

ρ1(t) =
N(t)

Noptimal
and ρ2(t) =

N(t)

N(t− σ)

respectively. However, experimentally, we find that the resulting updates are too severe; they
become unstable. Due to the hard boundaries that we put on R0(t) in the previous Section,
R0(t) will bounce between 1 and Rinitial. After some more experiments, we find that setting

ρ1(t) = 32

√
N(t)

Noptimal
and ρ2(t) = 32

√
N(t)

N(t− σ)

does result in a narrowing of the critical region, although some oscillation still occurs. We
should also be somewhat careful when choosing R̄0. If we set it too high, the initial overshoot
is so large that we either reach Nmax and the simulation terminates before we reach a stable
state, or the updating process overcompensates to the point where R0(t) is decreases too far and
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the infective population goes extinct. On the other hand, if we set R̄0 too low, it may already
be near the critical region in which case R0(t) may not have enough freedom to oscillate.

The second variant does away with Noptimal. We set R0(0) = Rinitial. It is convenient if Rinitial

is near the critical region for R0. Furthermore, we set R̄0 = 1.2Rinitial. At the time t of an
update, we increase or decrease R0(t− σ) based only on the growth of the infective population
at time t, i.e. by some factor ρ = ρ(t) depending on the ratio N(t)/N(t− σ). We set

R0(t) = R0(t− σ)ρ(t).

Experimentally, we find that

ρ(t) = 8

√
N(t)

N(t− σ)

is optimal for achieving the goal of the simulation model. It is advised that the second variant
of the updating process is used when the user has some idea of the critical region; for example
if they have done some test simulations beforehand.

We have tested both variants of the updating process using a deterministic SEIR model (see
Section 2.2, equation (10)). Here, we update the parameter β which is proportional to R0. We
find that R0(t) as well as N(t) converge for both variants. Figure 7 below shows the resulting
population curves and the parameter β over days under the updating process. Since our simu-
lation model is stochastic rather then deterministic, we cannot expect complete convergence of
N(t) and R0(t) to some fixed value. However, as noted before, we will be able to determine a
critical region for R0. Since the parameter updating is multiplicative, the critical regions will
widen as the average R0 increases.

Figures 10 and 11 in Appendix C show plots of R0(t) for different scenarios with bidirectional
contact tracing. From these Figures, we can infer critical regions for R0. These plots were
made using the first variant of parameter updating. Figures 8 and 9 show the corresponding
population curves. Initial overshoots in the infective population can clearly be observed. It
should be noted that the majority of the simulations producing these plots runs until the
termination time Tmax = 5000. This does not mean that we expect an epidemic to persist for
this period of time. It is just for simulation purposes that we continue a simulation for such an
extended time. First, it gives the the system time to settle after the intitial overshoot. Second,
it provides us with more data which means the critical region for R0 can be determined more
precisely.
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Figure 7: The first variant of parameter updating described in this Section induces convergence
of population curves and the free parameter β in the deterministic SEIR model.
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(a) Measure parameters at ε = 0.8, Ptrace = 0.5 and Tdelay = 2.
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(b) Measure parameters at ε = 0.8, Ptrace = 0.6 and Tdelay = 1.5.
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(c) Measure parameters at ε = 0.8, Ptrace = 0.7 and Tdelay = 1.
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(d) Measure parameters at ε = 0.8, Ptrace = 0.8 and Tdelay = 1.

Figure 8: Simulated infective population size N over days for different settings of the measure
parameters. Other parameter values at standard values. Bidirectional contact tracing.

Utrecht University 44



Master Thesis by Jim Vollebregt Page 45

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Days

0

100

200

300

400

500

600

700

800

900

N

(a) Measure parameters at ε = 0.95, Ptrace = 0.5 and Tdelay = 2.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Days

0

100

200

300

400

500

600

700

800

900

1000

N

(b) Measure parameters at ε = 0.95, Ptrace = 0.6 and Tdelay = 1.5.
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(c) Measure parameters at ε = 0.95, Ptrace = 0.7 and Tdelay = 1.
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(d) Measure parameters at ε = 0.95, Ptrace = 0.8 and Tdelay = 1.

Figure 9: Simulated infective population size N over days for different settings of the measure
parameters. Other parameter values at standard values. Bidirectional contact tracing.
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(a) Measure parameters at ε = 0.8, Ptrace = 0.5 and Tdelay = 2.
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(b) Measure parameters at ε = 0.8, Ptrace = 0.6 and Tdelay = 1.5.
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(c) Measure parameters at ε = 0.8, Ptrace = 0.7 and Tdelay = 1.
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(d) Measure parameters at ε = 0.8, Ptrace = 0.8 and Tdelay = 1.

Figure 10: Basic reproduction number R0 resulting from updates over days for different settings
of the measure parameters. Other parameter values at standard values. Bidirectional contact
tracing. These figures correspond to those in Figure 8.
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(a) Measure parameters at ε = 0.95, Ptrace = 0.5 and Tdelay = 2.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Days

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

R
0

(b) Measure parameters at ε = 0.95, Ptrace = 0.6 and Tdelay = 1.5.
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(c) Measure parameters at ε = 0.95, Ptrace = 0.7 and Tdelay = 1.
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(d) Measure parameters at ε = 0.95, Ptrace = 0.8 and Tdelay = 1.

Figure 11: Basic reproduction number R0 resulting from updates over days for different settings
of the measure parameters. Other parameter values at standard values. Bidirectional contact
tracing. These figures correspond to those in Figure 9.
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(a) Measure parameters at ε = 0.95, Ptrace = 0.5 and Tdelay = 2.
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(b) Measure parameters at ε = 0.95, Ptrace = 0.6 and Tdelay = 1.5.
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(c) Measure parameters at ε = 0.95, Ptrace = 0.7 and Tdelay = 1.
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(d) Measure parameters at ε = 0.95, Ptrace = 0.8 and Tdelay = 1.

Figure 12: Basic reproduction number R0 resulting from updates over days for different settings
of the measure parameters. Forward contact tracing only. Other parameter values at standard
values.
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(a) Measure parameters at ε = 0.8, Ptrace = 0.5 and Tdelay = 2.

0 500 1000 1500 2000 2500 3000

Days

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

R
0

(b) Measure parameters at ε = 0.8, Ptrace = 0.6 and Tdelay = 1.5.
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(c) Measure parameters at ε = 0.8, Ptrace = 0.7 and Tdelay = 1.
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(d) Measure parameters at ε = 0.8, Ptrace = 0.8 and Tdelay = 1.

Figure 13: Basic reproduction number R0 resulting from updates over days for different settings
of the measure parameters. Forward contact tracing only. Other parameter values at standard
values.
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(a) Measure parameters at ε = 0.8, Ptrace = 0.5 and Tdelay = 2.
Bidirectional contact tracing.
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(b) Measure parameters at ε = 0.8, Ptrace = 0.6 and Tdelay = 1.5.
Forward contact tracing only.
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(c) Measure parameters at ε = 0.8, Ptrace = 0.7 and Tdelay = 1.
Bidirectional contact tracing.
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(d) Measure parameters at ε = 0.8, Ptrace = 0.8 and Tdelay = 1.
Forward contact tracing only.

Figure 14: Basic reproduction number R0 resulting from updates over days for extreme settings
of the measure parameters. Other parameter values at standard values.
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(a) Measure parameters at ε = 0.95, Ptrace = 0.5 and Tdelay = 2.
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(b) Measure parameters at ε = 0.95, Ptrace = 0.6 and Tdelay = 1.5.
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(c) Measure parameters at ε = 0.95, Ptrace = 0.7 and Tdelay = 1.
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(d) Measure parameters at ε = 0.95, Ptrace = 0.8 and Tdelay = 1.

Figure 15: Basic reproduction number R(t) resulting from updates over days for different
settings of the measure parameters with Ps = 0 and Pa = 0. Other parameter values at
standard values. Bidirectional contact tracing.

Utrecht University 51



Master Thesis by Jim Vollebregt Page 52

0 500 1000 1500 2000 2500 3000

Days

2.8

3

3.2

3.4

3.6

3.8

4

R
0

(a) Measure parameters at ε = 0.95, Ptrace = 0.5 and Tdelay = 2.
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(b) Measure parameters at ε = 0.95, Ptrace = 0.6 and Tdelay = 1.5.
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(c) Measure parameters at ε = 0.95, Ptrace = 0.7 and Tdelay = 1.
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(d) Measure parameters at ε = 0.95, Ptrace = 0.8 and Tdelay = 1.

Figure 16: Basic reproduction number R(t) resulting from updates over days for different
settings of the measure parameters with Ps = 0.25 and Pa = 0. Other parameter values at
standard values. Bidirectional contact tracing.
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(a) Measure parameters at ε = 0.95, Ptrace = 0.5 and Tdelay = 2.
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(b) Measure parameters at ε = 0.95, Ptrace = 0.6 and Tdelay = 1.5.

0 500 1000 1500 2000 2500 3000

Days

1.7

1.8

1.9

2

2.1

2.2

2.3

R
0

(c) Measure parameters at ε = 0.95, Ptrace = 0.7 and Tdelay = 1.
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(d) Measure parameters at ε = 0.95, Ptrace = 0.8 and Tdelay = 1.

Figure 17: Basic reproduction number R(t) resulting from updates over days for different
settings of the measure parameters with Ps = 0 and Pa = 0.5. Other parameter values at
standard values. Bidirectional contact tracing.
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(a) Measure parameters at ε = 0.95, Ptrace = 0.5 and Tdelay = 2.
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(b) Measure parameters at ε = 0.95, Ptrace = 0.6 and Tdelay = 1.5.
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(c) Measure parameters at ε = 0.95, Ptrace = 0.7 and Tdelay = 1.
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(d) Measure parameters at ε = 0.95, Ptrace = 0.8 and Tdelay = 1.

Figure 18: Basic reproduction number R(t) resulting from updates over days for different
settings of the measure parameters with Ps = 0 and Pa = 0. Other parameter values at
standard values. Forward contact tracing only.
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(a) Measure parameters at ε = 0.95, Ptrace = 0.5 and Tdelay = 2.
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(b) Measure parameters at ε = 0.95, Ptrace = 0.6 and Tdelay = 1.5.
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(c) Measure parameters at ε = 0.95, Ptrace = 0.7 and Tdelay = 1.
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(d) Measure parameters at ε = 0.95, Ptrace = 0.8 and Tdelay = 1.

Figure 19: Basic reproduction number R(t) resulting from updates over days for different
settings of the measure parameters with Ps = 0.25 and Pa = 0. Other parameter values at
standard values. Forward contact tracing only.
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(a) Measure parameters at ε = 0.95, Ptrace = 0.5 and Tdelay = 2.
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(b) Measure parameters at ε = 0.95, Ptrace = 0.6 and Tdelay = 1.5.
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(c) Measure parameters at ε = 0.95, Ptrace = 0.7 and Tdelay = 1.
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(d) Measure parameters at ε = 0.95, Ptrace = 0.8 and Tdelay = 1.

Figure 20: Basic reproduction number R(t) resulting from updates over days for different
settings of the measure parameters with Ps = 0 and Pa = 0.5. Other parameter values at
standard values. Forward contact tracing only.
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