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Abstract

In this thesis an understanding of the motion of spinning eggs is developed. First
the movement of a freely rotating egg is studied and after that the interesting forced
rise of a spinning egg is investigated.

A mathematical description of the egg and its rotation is established to model both
situations. From those the equations of motion are derived separately and multiple
simulations are performed with different initial conditions. For the freely rotating
egg the numerically solved model accurately describes the expected motion. In the
case of an egg, approximated as ellipsoid, constrained to move on a table where
friction plays its role, the numerical solution describes rolling and/or slipping ef-
fects realistically. The full rising effect, however, does not follow out of the model
because of limits in its complexity.

Despite the fact that the full rising effect does not follow from our model, this
thesis develops an interpretation about the behaviour of the rolling and slipping
ellipsoid with the derivation and numerical solution of the equations governing its
motion.
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1 INTRODUCTION 1

1 Introduction

There are interesting things going on when spinning objects in a three dimensional space.
Some of these things can be perceived as strange at first glance, but they can be perfectly
described and explained by physics and its theories. Currently, a vast amount of infor-
mation about the behaviour of rotating objects can be found on the internet, including
illustrating videos. An example of this is the phenomena of the unstable rotation along
the intermediate principal axis of an object which is explained by the intermediate-axis
theorem, more commonly known as the tennis racket theorem [Ashbaugh et al., 1991].
This theorem describes the fascinating behaviour of the ’Dancing T-handle in zero g’i.
Other phenomena where spin is involved are, among others: the balancing spinning topii,
the wobble of an American football or frisbeeiii, the balance of a bicycle wheeliv. These
phenomena follow from an important law in physics: the conservation of angular mo-
mentum. Also a well known object that makes use of this conservation law and which
has lots of applications in different fields is the gyroscopev. Now that some fascinating
phenomena about spinning objects are introduced let us come to the subject of this thesis.

In this thesis the spinning of a very specific object is studied. As the title already
suggests this object is an egg. There are two different aspects of a spinning egg that will
be investigated in this thesis. The first is about the dynamics of a freely rotating egg.
Imagine someone standing on the ground throwing a boiled egg freely into the air. Fun
fact: there are actually world championships of who can throw the egg the farthest while
another person aims at catching it without breaking the shellvi. Of course the egg will
rise and after a while will fall down to the earth, but apart from that the egg will also
rotate. How it rotates depends on the initial conditions, thus the motion the thrower
applies to the egg. This leads us to the research question of the first problem:

How does an egg behave if it is thrown freely into the air? Can we solve the equation
governing its motion and simulate its translation and rotation, which follow from the
initial conditions?

This first problem is a stepping stone towards the second one. The second problem con-
cerns itself with the remarkable forced rise of a spinning egg. It is described as follows:
suppose one has a boiled chicken egg and spins it rapidly on a table with its symmetry-
axis horizontal, the symmetry-axis from the egg will then rise from horizontal to vertical.
This phenomenon is generally experienced as counter intuitive, which makes it an inter-
esting phenomenon to conduct research on. A slow-motion video of this phenomena with
an Easter egg is added in the footnote, serving as an example to aid understanding. vii.
This phenomenon is mentioned by Moffatt and Shimomura [2002], who also give a short
solution to the problem. In this thesis we aim to develop a better understanding of this
phenomenon, making it clearer by actually solving the equations of motion numerically
and providing additional insight by making animations that follows from this numerical
solution. This leads us to the research question of the second problem:

iDancing T-handle in zero g: https://www.youtube.com/watch?v=1n-HMSCDYtM
iiSpinning top: https://www.youtube.com/watch?v=Mekf0oycidk
iiiWobbling football: https://www.youtube.com/watch?v=sgR2cmo2uB4
ivBalancing wheel: https://www.youtube.com/watch?v=8H98BgRzpOM
vGyroscope: https://www.youtube.com/watch?v=cquvA_IpEsA
viEgg throwing championships: https://www.youtube.com/watch?v=C-quyjYmGIY
viiRise of the egg: https://www.youtube.com/watch?v=NnTHvTv4374

https://www.youtube.com/watch?v=1n-HMSCDYtM
https://www.youtube.com/watch?v=Mekf0oycidk
https://www.youtube.com/watch?v=sgR2cmo2uB4
https://www.youtube.com/watch?v=8H98BgRzpOM
https://www.youtube.com/watch?v=cquvA_IpEsA
https://www.youtube.com/watch?v=C-quyjYmGIY
https://www.youtube.com/watch?v=NnTHvTv4374
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Can we understand the physics of the rise of the spinning egg on a table and describe
and simulate its movement by solving the derived equation of motion numerically?

The remainder of this thesis is organized as follows. First, the mathematical description
of the egg, the calculation of its moments of inertia and the description of the orienta-
tion of the egg relative to a fixed coordinate frame are explained in section 2. Secondly,
in section 3 the differential equation governing the motion of the freely rotating egg is
derived and numerically solved. In this same section the results for this first problem are
obtained and discussed. Thirdly, in section 4 the same is done for the motion of an egg
constrained to roll and/or slide on a table, from which, with the right initial conditions,
the rising effect should occur. In this second problem the shape of the egg is actually
changed to that of an ellipsoid, which is explained in this section as well. Fourthly a
conclusion is drawn for both problems in 5. Lastly, some of the Python code that I wrote
and used is attached in the appendices.
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2 Preliminaries

2.1 Size and mass egg

There is need for a mathematical description of a three-dimensional egg. In this the-
sis, we make use of the mathematical curve that is studied by and named after Fritz
Hügelschäffer. The parametrization and construction of the Hügelschäffer egg are de-
scribed on the website mentioned as a footnote viii. Some additions to this parametrization
are made to get to our three dimensional mathematical egg. First, the parametrization
is made, as needed, three-dimensional around the egg’s symmetry-axis. Second, the or-
thogonal axes are named 1 (x1), 2 (x2) and 3 (x3), where the 3-axis is the symmetry-axis
and due to axis-symmetry, the 1-axis can be freely chosen. Third, the parametrization is
shifted along the symmetry-axis by x3,shift such that the origin is at the centre of mass of
the egg, where the calculation of the centre of mass is shown later in this chapter. The
parametrization, in terms of Cartesian coordinates, reads

((x3 + x3,shift)− d)2

a2
+
x22 + x21
b2

(
1 +

2d(x3 + x3,shift)− d2

a2

)
= 1 (1)

and

x1 = b sin(α) cos(β) (2a)

x2 = b sin(α) sin(β) (2b)

x3 =

(√
a2 − d2 sin2(α) + d cos(α)

)
cos(α)− x3,shift (2c)

where α = [0, π〉 , β = [0, 2π〉

If d = 0 in the equations, the parameterization is the same as that of an ellipsoid with
a the semi-major axis and b the semi-minor axis and x3, shift = 0 due to symmetry. So
d ensures that the ’ellipsoid’ is no longer symmetrical in the 1 3-plane and therefore gets
its egg shape. Let us for example consider a chicken egg, which is shown in Figure 1a
with the value of the parameters mentioned in the caption and illustrated in Figure 1b.

(a) (b)

Figure 1: Hügelschäffer egg parameterization, with a = 30 mm, b = 22 mm and d = 5
mm

viiiHügelschäffer egg: https://mathcurve.com/courbes2d.gb/oeuf/oeuf.shtml

https://mathcurve.com/courbes2d.gb/oeuf/oeuf.shtml
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The volume of this egg is found by calculating the volume integral

V =

∫∫∫
V

dV =

∫ a+d

−a+d

∫ (
b2(a2−(x3−d)2)

a2−d2+2dx3

) 1
2

−
(

b2(a2−(x3−d)2)

a2−d2+2dx3

) 1
2

∫ (
b2(a2−(x3−d)2)

a2−d2+2dx3
−x22

) 1
2

−
(

b2(a2−(x3−d)2)

a2−d2+2dx3
−x22

) 1
2
dx1 dx2 dx3 (3)

Although this integral is analytically solvable, its expression is quite long. Therefore, it
is chosen to leave it in its original form as shown above. The centre of mass of any rigid
body is found by an integration over the volume as [Fowless and Cassiday, 2005]:

x3,cm =

∫∫∫
V
ρ x3 dV∫∫∫
V
ρ dV

=

∫∫∫
V
x3 dV

V
(4)

Here, ρ is the mass density. In these problems we consider the mass density to be
approximately homogeneous within the egg, so that it cancels out. The centre of mass
of the egg is positioned somewhere on the x3-axis, because this is the symmetry-axis and
therefore x1,cm = x2,cm = 0 already. As stated before, we want the centre of mass to be
at the origin so we impose x3,cm = 0 to find the value for x3,shift in equations (1) and (2).
Its value for the example in Figure 1b is x3,shift = 3.0 mm.

2.2 Moments of inertia

Now that the size and mass of the egg are known, we can calculate the principal mo-
ments of inertia. These are the moments of inertia about the 1-, 2- and 3-axis, also called
the principal axes. Every rotation around an axis perpendicular to the symmetry-axis is
symmetrically the same, this means it has the same moment of inertia. Let us choose the
following notation as in Analytical Mechanics [Fowless and Cassiday, 2005]: Is = I3 and
I = I1 = I2. So here Is is the moment of inertia about the symmetry axis of the egg and
I is the moment of inertia about an axis normal to the symmetry axis.

The principal moments of inertia are defined and calculated as follows:

Is =

∫∫∫
V

ρ (x21 + x22) dV (5a)

I =

∫∫∫
V

ρ (x21 + x23) dV =

∫∫∫
V

ρ (x22 + x23) dV (5b)

2.3 Description of the rotation

To describe the rotation of the egg relative to an observer which is standing on the ground
watching the egg, we need to specify the orientation of the egg as a function of time in
space with respect to a fixed coordinate system. There are different ways to do that, but
in this thesis we make use of the Euler angles φ, θ and ψ. These angles can describe the
orientation of every object in three dimensional space. Let us define the Euler angles in
general first and then specify them for the case of an egg. The angles are also illustrated
in Figure 2.

We define the fixed coordinate system Oxyz, this coordinate system does not rotate
with the object and the z-axis is pointing upwards opposite to the gravitational pull.
We also have, as already defined for the egg in section 2.1, the O123 coordinate system,
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which consists of the principal axes of the object and thus rotates with the object. When
all the Euler angles are zero the objects 3-axis is aligned with the z-axis, the 2-axis with
the y-axis and the 1-axis with the x-axis. We can start from this orientation to define
step by step the Euler angles (φ, θ and ψ) as the following:

1. An anti-clockwise rotation of an angle φ around the z-axis, the 1-axis is not anymore
aligned with the x-axis now, but with a new axis named x′.

2. An anti-clockwise rotation of an angle θ around the x′-axis, making the x′-axis
the intersection between the x y-plane and the 1 2-plane, named ’the line of nodes’
[Fowless and Cassiday, 2005].

3. An anti-clockwise rotation of an angle ψ around the 3-axis, so the 1-axis makes an
angle ψ with the x′-axis now.

Figure 2: Euler angles φ, θ and ψ

There is another coordinate system which can be defined, namely Ox′y′z′. Here z′ is
in the same direction as the 3-axis, the x′-axis is the earlier named line of nodes and
the y′-axis is such that we have a orthogonal right-handed coordinate system. The only
difference between the Ox′y′z′ system and the O123 system is that the Ox′y′z′ system
does not rotates with ψ around the 3-axis.

For the egg the 3-axis (z′-axis) is its symmetry-axis. The 1- and 2-axis can be chosen
arbitrarily in the plane perpendicular to the 3-axis (and of course right-handed perpen-
dicular to each other), because, as stated earlier in section 2.2, every rotation around
an axis perpendicular to the symmetry-axis is symmetrically the same. So there is no
preferred principal 1- and 2-axis in this plane, but when picked they of course rotate with
the rotation of the egg.
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3 First problem: The freely rotating egg

In this problem we look at an egg that is free to rotate in space, there are no constraints
or torques acting on the egg. That is why this problem is known as the freely rotating
egg.

3.1 Equation of motion

The Euler angles are defined and the calculation of the moments of inertia is known, now
we can start deriving the equation of motion for the case of a freely rotating egg. This
can be done in different ways, in this problem we derive it from the fundamental equation
of motion in a rotating system [Fowless and Cassiday, 2005]:

N =

(
dL

dt

)
fixed

=

(
dL

dt

)
rot

+ ω′ × L (6)

N is the torque on the object in the rotating frame, L is the angular momentum of the
object in the rotating frame and ω′ is the angular velocity of the rotating frame.

Let us choose a rotating coordinate system for the egg in which the moments of in-
ertia about the axes do not depend on time. Of course the O123 coordinate system will
suffice, but we choose a more convenient one, the Ox′y′z′ coordinate system. This does
not matter for the requirement that the moments of inertia about the axes of the system
needs to be time-independent, because, the moment of inertia about any axis perpendic-
ular to the symmetry axis of the egg always has the same value I, as aforementioned.

Now we need to express the torque and angular momentum in the Ox′y′z′ system and the
angular velocity of the Ox′y′z′ system in terms of the Euler angles. The torque is N = 0
here, because we study a freely rotating egg. The angular velocity ω of the egg is given
by ω = φ̇+ θ̇+ ψ̇. While the angular velocity ω′ of the Ox′y′z′ system is described only
by the rotations φ̇ and θ̇, ω′ = φ̇ + θ̇. The components of φ̇, θ̇ and ψ̇ in the Ox′y′z′

coordinate system are

φ̇x′ = 0 θ̇x′ = θ̇ ψ̇x′ = 0

φ̇y′ = φ̇ sin(θ) θ̇y′ = 0 ψ̇y′ = 0 (7)

φ̇z′ = φ̇ cos(θ) θ̇z′ = 0 ψ̇z′ = ψ̇

From this, we get the expression for angular velocity of the Ox′y′z′ system as

ω′ =

 θ̇

φ̇ sin(θ)

φ̇ cos(θ)

 (8)

and the angular velocity of the egg in the Ox′y′z′ system as

ω =

 θ̇

φ̇ sin(θ)

φ̇ cos(θ) + ψ̇

 (9)



3 FIRST PROBLEM: THE FREELY ROTATING EGG 7

Now we only need the expression for the angular momentum L of the egg in the Ox’y’z’
system. This follows from the angular velocity of the egg in this system

L =

Ix′ ωx′Iy′ ωy′
Iz′ ωz′

 =

 Iθ̇

Iφ̇ sin(θ)
IsS

 (10)

S = φ̇ cos(θ) + ψ̇ is called the spin of the egg, it is the total angular velocity around the
symmetry-axis.

Filling equations (8) and (10) in to the equation of motion (6), gives us the differen-
tial equation of the freely rotating egg in terms of our defined Euler angles

0 = Iθ̈ + IsSφ̇ sin(θ)− Iφ̇2 cos(θ) sin(θ) (11a)

0 = I
d

dt
(φ̇ sin(θ))− IsSθ̇ + Iθ̇φ̇ cos(θ) (11b)

0 = IsṠ (11c)

Equation (11c) shows that the angular momentum along the z′-axis (symmetry axis) is
constant, so this equation can also be written as

Lz′ = IsS = constant (12)

multiplying equation (11b) by sin(θ) and using equation (12), it follows that

0 =
d

dt
(Iφ̇ sin2(θ) + IsS cos(θ)) (13)

the term in brackets happens to be exactly the angular momentum around the fixed z-
axis from the Oxyz frame, namely Lz = Lz′ cos(θ) + Ly′ sin(θ). So eventually equation
(11b) can be written as

Lz = Iφ̇ sin2(θ) + IsS cos(θ) = constant (14)

Now we are left with only a second-order differential equation for θ, with constants of
motion Lz and Lz′ :

θ̈ =
−Lz′φ̇ sin(θ) + Iφ̇2 cos(θ) sin(θ)

I

= − Lz′
(
Lz − Lz′ cos(θ)

I2 sin(θ)

)
+

(
(Lz − Lz′ cos(θ))2

I2 sin3 θ)

)
cos(θ) (15)

here φ̇ and S are filled in, they follow directly from equations (12) and (14)

φ̇ =
Lz − Lz′ cos(θ)

I sin2(θ)
(16)

and ψ̇ follows from the definition of the spin

ψ̇ =
Lz′

Is
− φ̇ cos(θ) (17)
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The three equations (15), (16) and (17) describe the motion of the freely rotating egg.
Before numerically solving it, let us develop a bit more understanding of them. In the fixed
coordinate system Oxyz, the angular momentum L remains constant in direction and
magnitude, because no torque acts on the egg. The direction of the angular momentum
vector L in our case can be determined by of course the components Lz and Lz′ , but also
by Lx′ = Iθ̇ which is not a constant. So the direction of the angular momentum vector
L depends on our choice of the constants of motion Lz and Lz, and the initial condition
of θ̇. Lz′ is only constant in magnitude in the fixed coordinate system Oxyz, but as it
is the component in the z′-direction, it means that the z′-axis is only allowed to rotate
with a constant angle around the angular momentum vector L. In our case it means
that the symmetry-axis of the egg is only allowed to trace out a cone around the angular
momentum vector L. From equation (10), where the angular momentum is expressed in
the Ox′y′z′ coordinate system, it can be seen that the z′-axis, the angular momentum
vector and the angular velocity vector lie in the same plane. Thus also ω is only allowed
to rotate with (another) constant angle around L with the same frequency as the z′-
axis does. The surface traced out by ω about L is called the space cone in Analytical
Mechanics [Fowless and Cassiday, 2005]. The motion of ω and the symmetry-axis can be
visualized by the ’body cone’ rolling along the space cone [Fowless and Cassiday, 2005].

3.2 Description of the numerical code

As stated in section 3, the freely rotating motion of the egg is described by the differ-
ential equations (15), (16) and (17). The way these equations are numerically solved is
described shortly in this section.

The second order differential equation (15) can be written as two coupled first order
differential equations:

d2θ

dt2
= f(θ) →


dθ

dt
= θ̇

dθ̇

dt
= f(θ) (18)

There are several numerical methods to solve first order differential equations. A popular
one, that is also used in this thesis, is the fourth-order Runge-Kutta method [Cheever,
2005]. If we write a coupled set of first-order differential equation as

dy

dt
= g(y, t) (19)

this method is defined as follows:

y(t+ ∆t) = y(t) +
1

6
(k1 + 2k2 + 2k3 + k4) (20)
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where

k1 = ∆t g(y, t)

k2 = ∆t g(y +
1

2
k1, t+

1

2
∆t)

k3 = ∆t g(y +
1

2
k2, t+

1

2
∆t)

k4 = ∆t g(y + k3, t+ ∆t)

In our case, we define the equations (15), (16) and (17) as a coupled set of first order
differential equation, so

y(t) =


φ(t)

θ(t)

θ̇(t)

ψ(t)

 and f(y, t) =



Lz−Lz′ cos(θ)

I sin2(θ)

θ̇(t)

−Lz′ φ̇ sin(θ)+Iφ̇2 cos(θ) sin(θ)

I

Lz′
Is
− φ̇ cos(θ)

 (21)

So to solve this differential equation, there is need for the four initial conditions y(0) =(
φ0, θ0, θ̇0, ψ0

)T
and the constants of motion Lz and Lz′ .

3.3 Simulations

All the useful information to do simulation on a freely rotating egg is explained in previous
sections. Let us give the values of the parameters we use and point out what simulations
we are going to do in this section.

The values a, b and d as shown in Figure 1a (section 2.1) are used, which were chosen
because it represents the ordinary size of a chicken egg. For a = 30 mm, b = 22 mm and
d = 5 mm the calculated volume of the egg, using scipy.integrate in Python, is V ≈ 60.5
mL. This is the volume of an average European large egg ix which has a mass of around
m = 63 g. From this the mass density is obtained: ρ = 1041.6 kg m−3. The calculated
value of x3,shift, for shifting the parametrization such that the centre of mass is at the
origin, is then x3,shift = 3.0 mm. The moments of inertia I and Is are determined as in
section 2.2. They are, as well calculated using scipy.integrate in Python: Is ≈ 1.22 ∗ 10−5

kg m2 and I ≈ 1.75 ∗ 10−5 kg m2.

Two simulations with different rotational initial conditions and constants of motion are
performed. One where the angular momentum vector L points exactly in the fixed z-axis
direction, so Lz = L, Lz′ = L cos(θ) and θ̇0 = 0. This because this case is analytically
solvable as done in Analytical Mechanics [Fowless and Cassiday, 2005], so we can check
whether we get the expected solution. For the other simulation we choose the values of
the initial conditions and the constant of motion arbitrarily but physically possible, as if
someone throws the egg in the air without a preconceived plan. Because Lz and Lz′ are
in the order of the moments of inertia times a angular velocity, these have to be in the

ixChicken egg sizes: https://gi-ovo.com/wp-content/uploads/2018/12/Chicken-egg-sizes.

pdf

https://gi-ovo.com/wp-content/uploads/2018/12/Chicken-egg-sizes.pdf
https://gi-ovo.com/wp-content/uploads/2018/12/Chicken-egg-sizes.pdf
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order of around 10−5 kg m2 s−1, as the calculated moments of inertia.

The chosen values of the initial conditions and the constant of motion of the simula-
tions are:

Simulation 1 Simulation 2

φ0 0 rad π/4 rad

θ0 π/5 rad π/3 rad

ψ0 0 rad 0 rad

θ̇0 0 rad s−1 π/2 rad s−1

Lz 6 ∗ 10−5 kg m2 s−1 −14 ∗ 10−5 kg m2 s−1

Lz′ cos(θ0)Lz ≈ 4.0 ∗ 10−5 kg m2 s−1 8 ∗ 10−5 kg m2 s−1

Table 1: Rotational initial conditions and constants of motion

In a third simulation we want to give an impression of the full motion, translation and
rotation, of the egg relative to an observer standing on earth throwing the egg in the
air. There is need for another coordinate system that translates in time with the throw-
velocity and the gravity: the coordinate system Oxtransytransztrans. We choose the ytrans-
axis to be aligned with the throw direction. The Oxtransytransztrans coordinate system is
then defined as follows

xtrans = x (22a)

ytrans = y + v0 cos(ε)t (22b)

ztrans = z + v0 sin(ε)t− 1

2
gt2 + z0 (22c)

v0 is the throw-velocity, ε is the the angle between the ground and the direction in which
the egg is thrown, z0 is the height at which the thrower let go of the egg, g is the gravi-
tational acceleration and t is the time.
In the third simulation we use the same rotational initial condition and constants of mo-
tion as in the second simulation. The chosen values for the translational initial conditions
are based on a child throwing an egg underhand into the air, these are given by:

Simulation 3

v0 3.2 m s−1

ε 2π/5 rad

z0 0.8 m

Table 2: Translational initial conditions
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3.4 Results

3.4.1 Simulation 1

The results obtained from the first simulation are expressed in the Figures below. Figure 4
is a snapshot from the animation of the rotating egg, a link to the animation is provided
in the caption.

(a) The Euler angles as a function of time. (b) Position of the tip of the egg during rotation
indicated in blue. The red dot is the origin (centre
of mass) and the green line indicates the initial
state. The yellow line indicates a cross section of
the space cone.

Figure 3

Figure 4: Animation of a freely rotating egg following from simulation 1:
https://youtu.be/zjugc00FL98

https://youtu.be/zjugc00FL98
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3.4.2 Simulation 2

The results obtained from the second simulation are expressed in the Figures below.
Figure 6 is a snapshot from the animation of the rotating egg, a link to the animation is
provided in the caption.

(a) The Euler angles as a function of time (b) Position of the tip of the egg during rotation
indicated in blue. The red dot is the origin (centre
of mass) and the green line indicates the initial
state. The yellow line indicates a cross section of
the space cone.

Figure 5

Figure 6: Animation of a freely rotating egg following from simulation 2:
https://youtu.be/nf0MIBTihxc

https://youtu.be/nf0MIBTihxc
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3.4.3 Simulation 3

Figure 7 is a snapshot from the animation of the rotating and translating egg, a link to
the animation is provided in the caption. The animation is slowed down 5 times to give
a better view of the simultaneous rotation and translation of the egg.

Figure 7: Animation of a freely rotating and translating egg following from simulation 3:
https://youtu.be/84bN6A-oMw8

3.5 Discussion

From the result of simulation 1, Figure 3a it can be seen that θ stays constant as the
symmetry axis (z′-axis) rotates around the angular momentum L which is, in this sim-
ulation, aligned with the z-axis. When θ stays constant, φ̇ and ψ̇ are constant as well,
following from equations (16) and (17), so φ and ψ are growing linearly in time as seen in
Figure 3a. The constant rotation around L, given by φ̇, is called precession [Fowless and
Cassiday, 2005]. Also the angular velocity ω is precessing around the angular momentum
L, the surface traced out by ω is known as the space cone as explained in 3.1, the line in
yellow in Figure 3b indicates a cross section of the space cone. In the result of simulation
2 the same precessional motion is seen, not around one of the fixed axes, but still around
the angular momentum vector L, as visualised in Figure 5b.

In section 3.1 we derived the equation of motion relative to the fixed coordinate sys-
tem Oxyz, where the z-axis points opposite to the gravitational pull. When another
fixed coordinate system was chosen, where the z-axis is always aligned with the direc-
tion of the angular momentum L (as in simulation 1), the obtained differential equation
would be analytically solvable [Fowless and Cassiday, 2005]. We expect the ability to
solve a differential equation analytically cannot depend on the choice of the coordinate
system, thus the differential equations (15), (16) and (17) should also be analytically
solvable after some substitutions and transformations. One can say that analytically
solvable differential equations are preferable to ones that can only be solved numerically,
so that makes it a point of discussion. The reason that we settled for the differential
equation in our chosen coordinate system is because we otherwise had to define yet an-
other coordinate system, instead of already being in the right coordinate system (from
the observer standing on the ground), in which we can solve for different situations. The
main reason that we did not solve the differential equation analytically in this thesis has
to do with the aim of this project. The aim is to develop an understanding of the motion
of an egg, in this case a freely rotating one. This understanding is also achieved when

https://youtu.be/84bN6A-oMw8
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solving the differential equation numerically and we can use the analytical solution given
in Analytical Mechanics [Fowless and Cassiday, 2005] to confirm the correctness of this
solution. Furthermore, the knowledge obtained in this problem is a very useful stepping
stone towards problem two. In that problem there is no possibility for an exact analytical
solution, so we can use our numerical method for solving differential equations there.
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4 Second problem: Forced rise of the rotating egg

In this problem we look at an egg that is constrained to move on a horizontal plane, the
table. It can roll or slide depending on the roughness of the table and it experiences a
torque due to gravity. That is why this problem is called ’forced’.

4.1 Lagrange equations

The derivation of the equation of motion in this problem is done using the Lagrangian
and the Lagrange equations [Fowless and Cassiday, 2005]. The Lagrangian is defined as

L = Trot + Ttrans − V (23)

where Trot is the rotational kinetic energy, Ttrans the translational kinetic energy and V
the potential energy. These energies are independent of the coordinate system and are
expressed as:

Trot =
1

2
ω · I · ω (24a)

Ttrans =
1

2
mv2cm (24b)

V = mgh (24c)

The angular velocity ω in the Ox′y′z′ coordinate system is expressed in equation (9) from
section 3.1. The corresponding moment of inertia tensor I in this coordinate system is
defined as

I =

I 0 0

0 I 0

0 0 Is

 (25)

so Trot can already be expressed.

The expression of the centre of mass velocity vcm still needs to be found in a certain
coordinate system, this is explained in section 4.4. There is also need for an expression
of the height of the centre of mass above the table h, this follows first from section 4.3.
When all these expressions are found the full Lagrangian is expressed in section 4.5, from
which the full equation of motion will be derived.

4.2 Ellipsoid

In this problem the egg is slightly simplified to an ellipsoid, so d = 0 in equations (1) and
(2) from section 2.1. The parametrization is then given by

x1 = b sin(α) cos(β) (26a)

x2 = b sin(α) sin(β) (26b)

x3 = a cos(α) (26c)

where α = [0, π〉 , β = [0, 2π〉

The main reason of this simplification is that the rising effect also occurs when spinning
an ellipsoid. The rise has nothing to do with the shift of symmetry of the ellipsoid to the



4 SECOND PROBLEM: FORCED RISE OF THE ROTATING EGG 16

egg. This is tested by spinning objects with a symmetrical 1 2-plane, like (most of the)
small chocolate Easter eggs one can buy during Easter in the supermarket. By doing so,
the effect for the ellipsoid can be derived first, before potentially generalizing it to more
complicated objects.

The ellipsoid makes thing a lot easier, because now there exists an analytical expres-
sion of the, earlier named, height of the centre of mass above the table h, so there is no
need for estimating or fitting as there would be if we had the egg shape.

4.3 Contact point

The height of the centre of mass above the table h is the vertical distance from the con-
tact point of the egg with the table to the center of mass of the egg. To find this vertical
distance, we need an expression of the contact point. Let us call the contact point P .
There is need for one other coordinate system to find an expression for the contact point
P . Let us call this coordinate system OXY Z.

The Y Z plane of the OXY Z coordinate system lies in the same plane as the y′z′ plane
from the Ox′y′z′ coordinate system. The difference is that the OXY Z coordinate system
rotates with the Euler angle φ only and not with θ as Ox′y′z′. In the Figure 8 below the
OXY Z coordinate system is illustrated with respect to the Ox′y′z′ coordinate system by
only showing the overlapping coordinate plane. The contact point P is indicated as well.

Figure 8: Y Z- and y′z′-plane of the ellipsoid, P indicates the contact point with the table

The parametrization of the ellipse in the y′ z′-plane is given by:

y′ = b sin(α) (27a)

z′ = a cos(α) (27b)

where α = [0, 2π〉

in the Y Z-plane the parametrization is then given by a rotation over θ:

Y = y′(α) cos(θ)− z′(α) sin(θ) = b sin(α) cos(θ)− a cos(α) sin(θ) (28a)

Z = y′(α) sin(θ) + z′(α) cos(θ) = b sin(α) sin(θ) + a cos(α) cos(θ) (28b)
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In the OXY Z frame the contact point P is given by:

−→
OPOXY Z =

 0

YP

ZP

 (29)

where ZP can be expressed as the earlier named, height of the centre of mass, ZP = −h.

To find an expression of the contact point in terms of θ, one needs to minimize the
expression of Z as in equation (28) with respect to parametrization angle α. This mini-
mum can be found by setting

dZ

dα

∣∣∣∣
α=αP

= 0 ,
d2Z

dα2

∣∣∣∣
α=αP

> 0 (30)

from this we get
b cos(αP ) sin(θ)− a sin(αP ) cos(θ) = 0 (31)

and after some algebra, where we take into account that d2Z
dα2

∣∣∣
α=αP

> 0, we are left with

sin(αP ) =
−b sin(θ)

(a2 cos2(θ) + b2 sin2(θ))
1
2

(32a)

cos(αP ) =
−a cos(θ)

(a2 cos2(θ) + b2 sin2(θ))
1
2

(32b)

fill this in to equation (28b), to find

h = −ZP = −b −b sin(θ)

(a2 cos2(θ) + b2 sin2(θ))
1
2

sin(θ)− a −a cos(θ)

(a2 cos2(θ) + b2 sin2(θ))
1
2

cos(θ) (33)

from which we get the elegant equation

h(θ) = (a2 cos2(θ) + b2 sin2(θ))
1
2 (34)

The expression for YP can also be obtained now, by filling equations (32a) and (32b) in
equation (28a). After some algebra this becomes

YP (θ) =
1

2

(a2 − b2) sin(2θ)

(a2 cos2(θ) + b2 sin2(θ))
1
2

(35)

from this we can seen that

YP (θ) = −dh
dθ

(36)

This could have be obtained earlier by the fact that dh
dθ

= − dZ
dθ

∣∣
α=αP

and using equation

(28) and (30).

Eventually the contact point in the OXY Z coordinate system from equation (29) is
written as

−→
OPOXY Z =

 0

−dh
dθ

−h

 (37)

with h given in equation (34).
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4.4 Partial slip

The rise of the ellipsoid results from the frictional force between the ellipsoid and the
table. When the ellipsoid is spun, this force causes a torque which apparently lift the
ellipsoid. To model this frictional force let us introduce partial slip. This means the
ellipsoid is not perfectly rolling and not only slipping. By perfect rolling is meant that
the translational velocity of the object is exactly opposite to the rotational velocity at
the contact point of the object with the table, so the net velocity of the objects contact
point is zero relative to the table. We define ’perfect slipping’. By this is meant that
there is no relation between the rotational velocity of the objects contact point and the
translational velocity of the object, the object is only slipping over the perfectly smooth
surface. In our case, the ellipsoid is only given rotational initial conditions, this means
that when perfectly slipping the object translational velocity components parallel to the
table would remain zero.

For partial slipping, the total velocity of the ellipsoids contact point vP is unequal to
zero and unequal to only rotational velocity, which means unequal to perfect rolling and
unequal to perfect slipping respectively. The total velocity is somewhere in between. The
translational velocity is the centre of mass velocity vcm. The rotational velocity at the
contact point follows from the angular velocity ω and the location of the contact point−→
OP . The frictional force only has components in the X and Y direction so in this di-
rections the partial slipping occurs. We define the partial slipping of the ellipsoid in the
OXY Z coordinate system as

vP =

vcm,Xvcm,Y

vcm,Z

+ ω×−→OP =

µ (ω×−→OP )X

µ (ω×−→OP )Y

0

 (38)

so vcm,Xvcm,Y

vcm,Z

 =

(µ− 1) (ω×−→OP )X

(µ− 1) (ω×−→OP )Y

−(ω×−→OP )Z

 (39)

The parameter µ is defined as the slipping parameter. When µ = 0 perfect rolling occurs
and when µ = 1 perfect slipping occurs. For our definition of partial slipping, the value
of µ is somewhere between 0 and 1.

Now there is need for an expression of ω in the OXY Z coordinate system. This ex-
pression is obtained from equation (9)

ω =

 ωx′

ωy′ cos(θ)− ωz′ sin(θ)

ωy′ sin(θ) + ωz′ cos(θ)

 =

 θ̇

(φ̇ cos(θ)− S) sin(θ)

φ̇ sin2(θ) + S cos(θ)

 (40)

filling this and equation (37) in equation (39) gives usvcm,Xvcm,Y

vcm,Z

 =

(µ− 1)
(

(S − φ̇ cos(θ)) sin(θ)h+ (φ̇ sin2(θ) + S cos(θ))dh
dθ

)
(µ− 1) θ̇h

θ̇ dh
dθ

 (41)
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4.5 Equation of motion

From the above sections, all terms have been derived to describe the complete Lagrangian

L =
1

2
(Iθ̇2 + I(φ̇ sin(θ))2 + IsS

2)

+
1

2
m

(
θ̇2
(

(µ− 1)2h2 +
(dh
dθ

)2 )
+ (µ− 1)2

(
(S − φ̇ cos(θ)) sin(θ)h+ (φ̇ sin2(θ) + S cos(θ))

dh

dθ

)2)
−mgh (42)

from this the equations of motion are derived using the Lagrange equations. With the
Euler angles as the generalized coordinates, the Lagrange equations are defined as follows

dL

dθ
=

d

dt

(
dL

dθ̇

)
(43a)

dL

dφ
=

d

dt

(
dL

dφ̇

)
(43b)

dL

dψ
=

d

dt

(
dL

dψ̇

)
(43c)

Equation (43a) yields the differential equation for θ

θ̈

(
I +mh2(µ− 1)2 +m

(
dh

dθ

)2
)

=

− θ̇2m
(
h
dh

dθ
(µ− 1)2 +

dh

dθ

d2h

dθ

)
+ Iφ̇2 sin(θ) cos(θ)

− ISSφ̇ sin(θ) +mvcm,X
dvcm,X
dθ

−mgdh
dθ

(44)

where vcm,X given in equation (41) and his derivative to θ given by

dvcm,X
dθ

= (µ− 1)

(
(S − φ̇ cos(θ)) cos(θ)h+ (φ̇ sin2(θ) + S cos(θ))

d2h

dθ2

)
(45)

From equations (43b) and (43c) the constants of motion are derived as

dL

dφ̇
= Iφ̇ sin2(θ) + IsS cos(θ) +mvcm,X(µ− 1)

dh

dθ
= constant = Lz (46)

dL

dψ̇
= IsS +mvcm,X(µ− 1)

(
cos(θ)

dh

dθ
+ sin(θ)h

)
= constant = Lz′ (47)

As φ̇ and ψ̇ indicates a rotation around the z-axis and the z′-axis respectively, these
constants of motion are the components of the angular momentum L along these axes.
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Equations (46) and (47) can be written as

f11(θ)φ̇+ f12(θ)S = Lz (48a)

f21(θ)φ̇+ f22(θ)S = Lz′ (48b)

where the functions fij are given by:

f11(θ) = I sin2(θ) +m(µ− 1)2
dh

dθ

(
sin2(θ)

dh

dθ
− cos(θ) sin(θ)h

)
(49a)

f12(θ) = Is cos(θ) +m(µ− 1)2
dh

dθ

(
sin(θ)h+ cos(θ)

dh

dθ

)
(49b)

f21(θ) = m(µ− 1)2
(

sin(θ)h+ cos(θ)
dh

dθ

)(
sin2(θ)

dh

dθ
− cos(θ) sin(θ)h

)
(49c)

f22(θ) = Is +m(µ− 1)2
(

sin(θ)h+ cos(θ)
dh

dθ

)2
(49d)

Now we can write φ̇ and S as a function of θ only

φ̇ =
Lzf22(θ)− Lz′f12(θ)

f22(θ)f11(θ)− f21(θ)f12(θ)
(50)

S =
Lz′f11(θ)− Lzf21(θ)

f22(θ)f11(θ)− f21(θ)f12(θ)
(51)

4.6 Description of the numerical code

Similar as in problem 1, we have a second order differential equation for θ (now given
in equation (44)) from which we obtain θ(t). From this we get φ̇(t) and ψ̇(t) (see
equations (50) and (51)), from which then φ(t) and ψ(t) can be obtained. Addition-
ally vcm(t) can be derived from this (see equation (41)), from which the position of
the center of mass xcm(t) can be obtained. In the numerical code, all this is done in
one coupled differential equation, similar as described in problem 1 section 3.2. Here
we also make use of the fourth-order Runge-Kutta method for solving this coupled
differential equation. To solve the equation, there is need for the initial conditions

y(0) =
(
θ0, θ̇0, φ0, ψ0, x0, y0, z0

)T
and the constants of motion Lz and Lz′ .

4.7 Simulations

Let us now solve the derived equations numerically and simulate the motion of the ellip-
soid. First we need to specify the values a an b for the size of the ellipsoid. We choose this
values the same as in problem 1, so the size of the ellipsoid is around the size of a chicken
egg: a = 30 mm an b = 22 mm (d = 0 now). From this the volume is calculated as
V = 4

3
πb2a ≈ 6.08 ∗ 10−5 m3. Let us take the same mass as used in problem 1, so m = 63

g. From this the mass density is obtained: ρ = 1035.8 kg. m−3. The moments of inertia
I and Is are determined as in section 2.2. They are, calculated using scipy.integrate in
Python: Is ≈ 1.22 ∗ 10−5 kg m2 and I ≈ 1.74 ∗ 10−5 kg m2.
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After doing so, the initial values and constants of motion can be chosen for our sim-
ulations. First, three test-simulations are done to check whether the ellipsoid moves as
expected with the given initial conditions and constants. Secondly, three simulations are
done for which we predict the ellipsoid to perform the rising effect. In all simulation the
value of the following initial conditions are: ψ0 = 0, x0 = 0, y0 = 0 and z0 = 0. The other
values are given in the table below. Because Lz and Lz′ are in the order of the moments
of inertia times a angular velocity, these have to be in the order of around 10−5 kg m2

s−1, as the calculated moments of inertia.

Simulation 1 Simulation 2 Simulation 3

φ0 0 rad 0 rad 0 rad

θ0 π/10 rad π/3 rad π/3 rad

θ̇0 0 rad s−1 0 rad s−1 0 rad s−1

Lz 0 kg m2 s−1 1 ∗ 10−5 kg m2 s−1 1 ∗ 10−5 kg m2 s−1

Lz′ 0 kg m2 s−1 2 ∗ 10−4 kg m2 s−1 2 ∗ 10−4 kg m2 s−1

µ 0 0 0.9

Table 3: Rotational initial conditions and constants of motion of three test simulations

Simulation 4 Simulation 5 Simulation 6

φ0 0 rad π/4 rad π/4 rad

θ0 π/2 + π/40 rad π/2 + π/40 rad π/2 + π/40 rad

θ̇0 0 rad s−1 0 rad s−1 0 rad s−1

Lz 5.5 ∗ 10−4 kg m2 s−1 1 ∗ 10−3 kg m2 s−1 1 ∗ 10−3 kg m2 s−1

Lz′ 0 kg m2 s−1 0 kg m2 s−1 0 kg m2 s−1

µ 0 0 0.5

Table 4: Rotational initial conditions and constants of motion of three simulations for
which the rising effect is predicted

Simulation 1 represents an ellipsoid that is standing close to its unstable equilibrium-
point, θ = 0, with no components of the angular momentum in the z- and z′-direction,
Lz = Lz′ = 0. The value of the slipping parameter is chosen, µ = 0, so perfect rolling
should occur. We expect θ to oscillate around the ellipsoids stable equilibrium-point,
θ = π/2, when this happens of course also the height of the center of mass, zcm, oscil-
lates. Because the ellipsoid is perfectly rolling, the ellipsoid should also translate in the
y-direction, so we expect an oscillation of ycm as well.

Simulation 2 represents an more advanced situation, but still perfect rolling µ = 0. In
this simulation we still expect θ to oscillate around the ellipsoids stable equilibrium-point
θ = π/2, but with smaller oscillations because the value is chosen closer to the ellipsoids
stable equilibrium-point. Because Lz′ is larger than Lz, we expect the ellipsoid to roll
around its symmetry-axis faster and therefore start translating in the −x-direction. Since
the angular momentum also has a component on the z-axis, it is expected that the rolling
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and oscillating ellipsoid makes an anti-clockwise turn around the z-axis.

Simulation 3 is the same as simulation 2 except that the value of the slipping parameter
is µ = 0.9. This simulation tests the effects of partially slipping on the movement of the
ellipsoid. If µ = 1 (perfect slipping), we would expect the ellipsoid to not translate. In
this simulation we expect the ellipsoid to slip and translate, but less translation then in
simulation 2. We also expect θ to oscillate faster around the ellipsoids stable equilibrium-
point θ = π/2, then in simulation 2, because the ellipsoid is slipping over the table more,
so less ’energy’ is lost in pushing the ellipsoid to also translate.

In the other three simulations 4,5 and 6 we try to adapt the initial conditions and con-
stants of motion such that the rising effect should occur. So in all these simulations the
ellipsoid is lying with only a small offset from θ = π/2. The angular momentum compo-
nent in the z-direction has a non-zero value and the component in the z′-direction has a
value of zero. In simulation 4 and 5 the slipping parameter µ = 0. The difference between
these simulations is that the value of Lz in simulation 5 is a lot greater, we expect the
ellipsoid to rise faster in this case. Simulation 6 is almost the same as simulation 5, except
that the value of the slipping parameter µ = 0.5. When the rising occurs, ψ̇ should grow
as the ellipsoid starts rotating around its symmetry-axis.
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4.8 Results

4.8.1 Simulation 1

(a) Euler angle θ as a function of time (b) Euler angles φ and ψ as a function of time

Figure 9

(a) Translational displacement components in the
Oxyz coordinate system

(b) Animation of a perfect rolling ellipsoid fol-
lowing from simulation 1:
https://youtu.be/uOqfvpkoUc8

Figure 10

This simulation runs for a time of 4 seconds. As you can see, the ellipsoid acts as we
expected.

https://youtu.be/uOqfvpkoUc8
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4.8.2 Simulation 2

(a) Euler angle θ as a function of time (b) Euler angles φ and ψ as a function of time

Figure 11

(a) Translational displacement components in the
Oxyz coordinate system

(b) Animation of a perfect rolling ellipsoid fol-
lowing from simulation 2:
https://youtu.be/IrepnPLFlvU

Figure 12

This simulation runs for a time of 2.7 seconds. As you can see, the ellipsoid acts as we
expected.

https://youtu.be/IrepnPLFlvU
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4.8.3 Simulation 3

(a) Euler angle θ as a function of time (b) Euler angles φ and ψ as a function of time

Figure 13

(a) Translational displacement components in the
Oxyz coordinate system

(b) Animation of a partially slipping ellipsoid
following from simulation 3:
https://youtu.be/kIBBUll1wko

Figure 14

This simulation runs for a time of 2.7 seconds. As you can see, the ellipsoid acts as we
expected.

https://youtu.be/kIBBUll1wko
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4.8.4 Simulation 4

(a) Euler angle θ as a function of time (b) Euler angle φ as a function of time

Figure 15

(a) Euler angle ψ as a function of time (b) Animation of a rotating ellipsoid following
from simulation 4. The time is slowed down 3
times in this animation:
https://youtu.be/pEIgdPF4sAo

Figure 16

This simulation runs for a time of 1 second. As you can see, the ellipsoid does not
oscillate around θ = π/2 and some of the rising occurs. But the ellipsoid keeps falling
back. The value of the Euler angle ψ behaves not as we expect, it is grows very slow in the
negative direction, which means a clockwise rotation around the symmetry-axis, while
we expect in to grow in the same direction as φ, an anti-clockwise rotation around the
z-axis. Compared to the fast rotation of φ, the rotation of ψ from this result is negligible.

https://youtu.be/pEIgdPF4sAo
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4.8.5 Simulation 5

(a) Euler angle θ as a function of time (b) Euler angle φ as a function of time

Figure 17

(a) Euler angle ψ as a function of time (b) Animation of a rotating ellipsoid following
from simulation 5. The time is slowed down 3
times in this animation:
https://youtu.be/xYQUHNKOEA0

Figure 18

This simulation runs for a time of 1 second. As you can see, the ellipsoid does not oscillate
around θ = π/2 here. It rises higher then in simulation 4. But the ellipsoid keeps falling
back in this simulation as well. Again the Euler angle ψ does not behave as we expect.
The rotation of ψ from this result is still negligible compared to the fast rotation of φ.

https://youtu.be/xYQUHNKOEA0
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4.8.6 Simulation 6

(a) Euler angle θ as a function of time (b) Euler angle φ as a function of time

Figure 19

(a) Euler angle ψ as a function of time (b) Animation of a rotating ellipsoid following
from simulation 6. The time is slowed down 3
times in this animation:
https://youtu.be/752jzOJwmX0

Figure 20

This simulation runs for a time of 1 second. As you can see, the ellipsoid does oscillate
around θ = π/2 here. There is no rising effect. The value of the Euler angle φ is growing
faster then in simulation 5.

https://youtu.be/752jzOJwmX0
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4.9 Discussion

The results of simulations 1, 2 and 3 are in accordance with the expectations listed in
section 4.7. The perfect rolling happens in simulation 1 and 2 as expected and when the
slipping parameter µ is close to 1, as in simulation 3, the ellipsoid starts slipping and less
translation happens. But with the value of µ between 0 and 1, the ellipsoid is not slowed
down during its rolling and slipping, while in reality this slowing down would happen
due to the friction between the ellipsoid and the table. That this does not happen in our
model has to do with the defined Lagrangian. In the Lagrangian we modeled the fric-
tional force as a constant constraint on the velocity of the contact point of the ellipsoid.
This constant constraint does not model the dynamical friction. Dynamical friction is
not absorbable in the Lagrangian in this way.

The results from simulation 4 and 5 show some of the rising effect, but the ellipsoid
keeps falling back. Let us discuss why the full rising effect does not occur in our simula-
tions. It can directly be seen from our constants of motion Lz and Lz′ that the full rising
is not possible in our model. When the ellipsoid is standing, so θ = 0 or θ = π, the z-axis
and the z′-axis are aligned. As the constants of motion are components of the angular
momentum along these axes, their absolute value have to be the same in this situation.
As they are ’constants’ of motion, they do not change, so for example in simulation 5, Lz′
stays zero and as Lz has a non-zero value here, the z-axis and the z′-axis are not allowed
to align. This is a direct explanation of why the full rising effect cannot occur following
our model, there are too many conserved quantities.

5 Conclusions

In this thesis we looked at two different situation of a spinning egg. For the two situations
the equations of motion are derived and different simulations are performed. For both
problems the results are obtained and discussed. An overall conclusion is drawn in this
section.

First a freely rotating egg is studied. It has been identified that in this case the ro-
tation and translation of an egg can be perfectly described by numerically solving the
equation governing its motion. As mentioned at the bottom of section 3.1, from the con-
stants of motion Lz and Lz′ , it could be obtained that the symmetry-axis is only allowed
to rotate with a constant angle around the angular momentum vector L. Thus these
constants of motion reduce the degrees of freedom of the rotation and already give us an
understanding of the rotational movement.

In the second problem we looked at a spinning egg constrained to move on a table
and experiencing frictional force depending on the roughness of the table. The friction is
modeled as a constant constraint on the velocity of the contact point of the ellipsoid with
the table. From the Lagrange equations the equation governing the motion of the ellip-
soid and the constants of motion are obtained. The equations of motion are numerically
solved for different initial conditions. Several simulation show realistic behaviour of the
motion of the ellipsoid. Some of the rising effect is obtained from simulations, but unfor-
tunately not the full effect. The reason for this is the lack of complexity of the model used.
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To describe the full rising effect an improvement for the model is needed. This im-
provement could be achieved by implementing a more elaborate friction model. Despite
the fact that the full rising effect does not follow from our model, a deeper understanding
about the behaviour of the rolling and slipping ellipsoid is developed with the derivation
and numerical solution of the equations of motion.
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A Appendices

A.1 Runge-Kutta Python code

This is the Python code I wrote for solving the differential equations numerically using
the fourth order Runge-Kutta method. In this case, as an example, that of the rolling
ellipsoid on a table with the initial conditions and constants of motion from simulation 2
denoted in section 4.7.

import numpy as np

# This func t i on re turns the d e r i v a t i v e s f o l l ow i n g from the
# d i f f e r e n t i a l e qua t i ons .
def d e r i v a t i v e s ( s ta te , t ) :

#s t a t e = [ the ta , phi , ps i , t h e t a d e r i v ]
theta = s t a t e [ 0 ]
phi = s t a t e [ 1 ]
p s i = s t a t e [ 2 ]

t h e t a d e r i v = s t a t e [ 3 ]

xcm = s t a t e [ 4 ]
ycm = s t a t e [ 5 ]
zcm = s t a t e [ 6 ]

h = np . s q r t (b∗∗2∗np . s i n ( theta )∗∗2+a∗∗2∗np . cos ( theta )∗∗2)
h de r i v = −((a∗∗2−b∗∗2)∗np . s i n (2∗ theta ) )/

(2∗np . s q r t (b∗∗2∗np . s i n ( theta )∗∗2+a∗∗2∗np . cos ( theta )∗∗2 ) )
h d e r i v d e r i v = −((a∗∗2−b∗∗2)∗

( a∗∗2∗np . cos ( theta )∗∗4−b∗∗2∗np . s i n ( theta )∗∗4) )/
( ( b∗∗2∗np . s i n ( theta )∗∗2+a∗∗2∗np . cos ( theta )∗∗2)∗∗ (3/2 ) )

f11 = I ∗np . s i n ( theta )∗∗2 + m∗(mu−1)∗∗2∗ h de r i v ∗
(np . s i n ( theta )∗∗2∗ h de r i v − np . cos ( theta )∗np . s i n ( theta )∗h)

f12 = I s ∗np . cos ( theta ) + m∗(mu−1)∗∗2∗ h de r i v ∗
(np . s i n ( theta )∗h + np . cos ( theta )∗ h de r i v )

f21 = m∗(mu−1)∗∗2∗(np . s i n ( theta )∗h + np . cos ( theta )∗ h de r i v )∗
(np . s i n ( theta )∗∗2∗ h de r i v − np . cos ( theta )∗np . s i n ( theta )∗h)

f22 = I s + m∗(mu−1)∗∗2∗(np . s i n ( theta )∗h + np . cos ( theta )∗ h de r i v )∗∗2

p h i d e r i v = ( Lz∗ f22−Lz p∗ f 12 )/ ( f22 ∗ f11−f 21 ∗ f 12 )
S = ( Lz p∗ f11−Lz∗ f 21 )/ ( f22 ∗ f11−f 21 ∗ f 12 )
p s i d e r i v = S−p h i d e r i v ∗np . cos ( theta )

vcmX = (mu−1)∗((S−p h i d e r i v ∗np . cos ( theta ) )∗ np . s i n ( theta )∗h +
( p h i d e r i v ∗np . s i n ( theta )∗∗2+S∗np . cos ( theta ) )∗ h de r i v )

vcmY = (mu−1)∗ t h e t a d e r i v ∗h
vcmZ = t h e t a d e r i v ∗ h de r i v
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vcmX deriv = (mu−1)∗((S − p h i d e r i v ∗np . cos ( theta ) )∗ np . cos ( theta )∗h
+ ( p h i d e r i v ∗np . s i n ( theta )∗∗2+S∗np . cos ( theta ) )∗ h d e r i v d e r i v )

vcmx = vcmX∗np . cos ( phi ) − vcmY∗np . s i n ( phi )
vcmy = vcmX∗np . s i n ( phi ) + vcmY∗np . cos ( phi )
vcmz = vcmZ

f i r s t = −t h e t a d e r i v ∗∗2∗m∗(h∗(mu−1)∗∗2+ h d e r i v d e r i v )∗ h de r i v
second = I ∗ p h i d e r i v ∗∗2∗np . s i n ( theta )∗np . cos ( theta )
th i rd = −I s ∗S∗ p h i d e r i v ∗np . s i n ( theta )
four th = m∗vcmX∗vcmX deriv
f i f t h = −m∗g∗ h de r i v

t h e t a d e r i v d e r i v = ( f i r s t+second+th i rd+four th+f i f t h )/
( I + m∗h∗∗2∗(mu−1)∗∗2 + m∗ h de r i v ∗∗2)

return np . array ( [ the ta de r i v , ph i de r i v , p s i d e r i v , t h e t a d e r i v d e r i v ,
vcmx , vcmy , vcmz ] )

# This func t i on re turns the new s t a t e t ha t f o l l ow s from the o ld s t a t e
# us ing Runge−Kutta ’ s method
def runge kutta ( s tate , t , dt , d e r i v a t i v e s ) :

k1 = d e r i v a t i v e s ( s ta te , t )∗ dt
k2 = d e r i v a t i v e s ( s t a t e + ( 0 . 5 ∗ k1 ) , t + 0 .5 ∗ dt )∗ dt
k3 = d e r i v a t i v e s ( s t a t e + ( 0 . 5 ∗ k2 ) , t + 0 .5 ∗ dt )∗ dt
k4 = d e r i v a t i v e s ( s t a t e + k3 , t + dt )∗ dt

state new = s t a t e + ( k1 + 2∗k2 + 2∗k3 + k4 ) / 6 .

return s tate new

# Chosen and c a l c u l a t e d va l u e s o f used parameters
m = 65e−3 #kg
g = 9.81 e3 #mm sˆ−2
a=31 #mm
b=22 #mm
d=0 #mm
x cm = Moment of Inert ia 3Degg . x cm #mm
I = Moment of Inert ia 3Degg . Iycm #mmˆ2 kg
I s = Moment of Inert ia 3Degg . I z z #mmˆ2 kg

# Chosen cons tan t s o f motion
Lz = 10 #mmˆ2 kg sˆ−1
Lz p = 200 #mmˆ2 kg sˆ−1
mu=0.

# Chosen i n i t i a l cond i t i ons , where s t a t e i s g i ven by :
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# s t a t e = [ the ta , phi , ps i , t h e t a d e r i v , xcm , ycm , zcm ]
s t a t e 0 = [ np . p i /3 , 0 , 0 , 0 , 0 , 0 , 0 ]
s t a t e = np . array ( [ s t a t e 0 ] )

# Time and time s t e p s
dt =0.001
t end = 1
t = np . arange (0 , t end , dt )

# For−l oop in which from every prev ious s t a t e the new s t a t e i s ob ta ined
for i , time in enumerate ( t [ 1 : ] ) :

s tate new = runge kutta ( s t a t e [ i , : ] , time , dt , d e r i v a t i v e s )
s t a t e = np . vstack ( ( s ta te , s tate new ) )

A.2 Animation Python code

This is the Python code I wrote for making the rotating egg animations.

import numpy as np
import matp lo t l i b . pyplot as p l t
import matp lo t l i b . animation as animation
import m p l t o o l k i t s . mplot3d . axes3d as p3

# Functions f o r r o t a t i n g around a c e r t a i n a x i s
def r o t z ( pos , alpha ) :

x = pos [ 0 ]
y = pos [ 1 ]
z = pos [ 2 ]
x rx = np . cos ( alpha )∗x − np . s i n ( alpha )∗y
y rx = np . s i n ( alpha )∗x + np . cos ( alpha )∗y
z rx = z
return ( x rx , y rx , z rx )

def r o t y ( pos , beta ) :
x = pos [ 0 ]
y = pos [ 1 ]
z = pos [ 2 ]
x rx = np . cos ( beta )∗x + np . s i n ( beta )∗ z
y rx = y
z rx = −np . s i n ( beta )∗x + np . cos ( beta )∗ z
return ( x rx , y rx , z rx )

def r o t x ( pos , gamma ) :
x = pos [ 0 ]
y = pos [ 1 ]
z = pos [ 2 ]
x rx = x
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y rx = np . cos (gamma)∗y − np . s i n (gamma)∗ z
z rx = np . s i n (gamma)∗y + np . cos (gamma)∗ z
return ( x rx , y rx , z rx )

f rn = len ( t ) # frame number o f the animation

# Define a 3D matrix f o r the p o s i t i o n and o r i e n t a t i on o f the egg in time
posx = np . z e r o s ( ( len ( x [ 0 , : ] ) , len ( x [ : , 0 ] ) , f r n ) )
posy = np . z e r o s ( ( len ( y [ 0 , : ] ) , len ( y [ : , 0 ] ) , f r n ) )
posz = np . z e r o s ( ( len ( z [ 0 , : ] ) , len ( z [ : , 0 ] ) , f r n ) )

# Euler ang l e s and the p o s i t i o n o f the cen ter o f mass
# from the s o l u t i o n o f the numerical method
theta = s t a t e [ : , 0 ]
phi = s t a t e [ : , 1 ]
p s i = s t a t e [ : , 2 ]
xcm = s t a t e [ : , 4 ]
ycm = s t a t e [ : , 5 ]
zcm = s t a t e [ : , 6 ]

# For−l oop trough time f i l l i n g in the p o s i t i o n and o r i e n t a t i o n o f the egg
for i , hoeken in enumerate (np . t ranspose ( [ ps i , theta , phi ] ) ) :

p s i = hoeken [ 0 ] #3−ax i s r o t a t i on
theta = hoeken [ 1 ] #x’− ax i s r o t a t i on
phi = hoeken [ 2 ] #z−ax i s r o t a t i on

posx [ : , : , i ] = r o t z ( r o t x ( r o t z ( ( x , y , z ) , p s i ) , theta ) , phi ) [ 0 ] + xcm [ i ]
posy [ : , : , i ] = r o t z ( r o t x ( r o t z ( ( x , y , z ) , p s i ) , theta ) , phi ) [ 1 ] + ycm [ i ]
posz [ : , : , i ] = r o t z ( r o t x ( r o t z ( ( x , y , z ) , p s i ) , theta ) , phi ) [ 2 ] + zcm [ i ]

# Function t ha t s e t s the new animation frame
def update ( i , posx , posy , posz , egg animat ion ) :

egg animat ion [ 0 ] . remove ( )
egg animat ion [ 0 ] = ax . p l o t s u r f a c e ( posx [ : , : , i ] , posy [ : , : , i ] ,

posz [ : , : , i ] , c o l o r=” navajowhite ” )

# Figure in which the animation i s p l o t t e d
f i g = p l t . f i g u r e (111)
ax = p3 . Axes3D( f i g )
egg animat ion = [ ax . p l o t s u r f a c e (x , y , z , c o l o r=” navajowhite ” ) ]
ax . s e t x l im3d (−80 , 60)
ax . s e t y l im3d (−80 , 60)
ax . s e t z l im3d (−50 , 50)
ax . s e t x l a b e l ( ’ $x$ (mm) ’ )
ax . s e t y l a b e l ( ’ $y$ (mm) ’ )
ax . s e t z l a b e l ( ’ $z$ (mm) ’ )
ax . v i e w i n i t ( e l e v =30,azim=2)
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# Animation i s made
ani = animation . FuncAnimation ( f i g , update ,

f a r g s =(posx , posy , posz , egg animat ion ) , frames=frn , i n t e r v a l =1,
b l i t=False )

# Animation i s saved
# fp s=in t (1/(3∗ dt ) ) means t ha t time runs 3 t imes s lower then normal
ani . save ( ’ 3 D e l l i p s o i d t e s t 5 .mp4 ’ , w r i t e r=’ ffmpeg ’ , f p s=int (1/(3∗ dt ) ) )
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