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Abstract
In this thesis, we study the relation between heterotic string theory and generalized geometry. First
we construct consistent superstring theories with a focus on the heterotic versions. Then we define
Courant algebroids and show their basic properties. Then we examine reduction of Courant algebroids
and show that heterotic Courant algebroids can be obtained through the reduction of exact Courant
algebroids. After that, we introduce geometric structures on Courant algebroids, including generalized
metrics, generalized connections and generalized complex structures. Next we examine the low energy
limit of heterotic string theory called heterotic supergravity. When compactified on a 6-dimensional
internal space, we obtain the Strominger system. Using the geometric structures introduced earlier,
we can formulate the Killing spinor equations on a heterotic Courant algebroid. We will then show
that the Strominger system is equivalent to the Killing spinor equations, meaning that solutions to
the Strominger system are preserved under Courant algebroid isomorphisms. Finally we explore the
concept of T-duality. We show that two T-dual torus bundles have isomorphic Courant algebroids.
We find the Buscher rules and show how they can be obtained from a canonical transformation.
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1 Introduction

In the beginning of the twentieth century, two major theories of physics emerged. The first is general
relativity, which describes gravity and the structure of spacetime on the largest scales. The second
is quantum mechanics, which describes physics at the smallest scales. Both theories have shown
remarkable results, but they are not compatible with each other. General relativity is a classical field
theory like electromagnetism. However, unlike electromagnetism, there is no corresponding quantum
field theory. This is because gravity is perturbatively nonrenormalizable.
To unite quantum mechanics and general relativity, we need a theory of quantum gravity. There are
several candidates for this. The main candidates are string theory and loop quantum gravity, but there
are more alternatives. Here we will focus on string theory.
The simplest version of string theory is bosonic string theory, which describes relativistic strings moving
through an ambient space. Bosonic string theory has several shortcomings. The first problem is that
it contains a tachyon in the spectrum, which is a state with a negative squared mass. This leads to
inconsistencies in the theory. Another problem is that there are no fermions in the theory. Since we
have observed many fermions like quarks and electrons in nature, a complete theory of physics should
include fermions.
Starting from bosonic string theory, we add fermionic degrees of freedom to the action. After adding
fermionic degrees of freedom the theory is reformulated in superspaces, which adds Grassmann variables
to the coordinates. Like with bosonic string theory, the fermions need to satisfy certain constraints
imposed by setting the conserved supercurrent and the energy momentum tensor to 0.
An analysis of the boundary conditions for the fermions leads to 2 possible options. The first option
is to have periodic boundary conditions, which was first studied by Ramond in 1971 [18]. The second
option is to have antiperiodic boundary conditions, which was first studied by Neveu and Schwarz
in 1971 [16]. These different boundary conditions lead to different generators for the super Virasoro
algebra. With the super Virasoro algebra, we quantize the theory. The super Virasoro algebra is also
used to determine the critical dimension D and the normal ordering constant a. The theory so far still
contains a tachyon. The tachyon is removed by imposing the GSO conditions, first proposed in 1977
by Gliozzi, Scherk and Olive[8].
Adding fermionic degrees of freedom doesn’t lead to a unique theory. Instead, there are choices
involved, leading to 5 different versions of superstring theory. These versions are called Type I, Type
IIA, Type IIB, Heterotic SO(32) and Heterotic E8 × E8.
The focus of this thesis is on heterotic string theories. The right and left moving fermions decouple
in the action and heterotic string theories only impose supersymmetry on the right moving fermions.
For the left moving part the heterotic theories introduce 32 fermions without supersymmetry. The
internal symmetry group of the left moving part can be either SO(32) or E8 × E8.
The five superstring theories are not completely separated. There are dualities relating the different
versions called S-duality and T-duality. T-duality relates both type II theories to each other and both
heterotic theories to each other. The theories are compactified on a torus and conceptually the radius
of the torus gets inverted. In the case of circle bundles we find the Buscher rules. The Buscher rules can
also be obtained using canonical transformations, showing that both systems are physically equivalent.
Heterotic string theory has infinitely many states, most of which have very high masses. Even the
lowest nonzero mass of a state is too high to measure experimentally. Thus we examine heterotic
supergravity; the low energy limit of heterotic string theory. This theory has only massless fields. We
formulate the action and compute the equations of motion and the supersymmetry transformations.
Then we compactify this theory on a 6-dimensional internal space. In order to keep supersymmetry,
the internal space needs to satisfy certain constraints. These constraints were formulated in 1986 by
Strominger and are called the Strominger system [21].
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The Strominger system is the following set of differential equations

ΛωFh = 0, F 0,2
h = 0 ,

ΛωR∇ = 0, R0,2
∇ = 0 ,

d∗ω − dclog(||Ω||ω) = 0 ,

ddcω − α(Tr(R ∧R)− Tr(Fh ∧ Fh)) = 0 .

The first two lines describe Hermite-Yang-Mills connections. The third equation is called the dilatino
equation and describes a conformally balanced metric. The last equation is called the Bianchi identity,
and it couples the structure of the first 3 equations into one equation.
The mathematical language to describe this system is differential geometry. Differential geometry is
the study of smooth manifolds and geometric structures on them. Examples of geometric structures
include a Riemannian metric, a symplectic structure, a complex structure and a connection.
The Riemannian metric is the central object of study in Riemannian geometry, the natural language
of studying general relativity. Symplectic geometry is useful for the study of Hamiltonian mechanics.
As such, these structures naturally provide a language for many areas of theoretical physics. While
these and other geometric structures play a role in the Strominger system, we will consider a different
kind of geometric structure here.
In this thesis, we explore how a subfield of differential geometry known as generalized geometry can
help us better understand the Strominger system. This area of study focuses on a mathematical object
known as a Courant algebroid. The simplest example of a Courant algebroid over a manifold M is
TM ⊕ T ∗M .
To better understand the bundle TM ⊕ T ∗M , we first consider the double of a vector space V which
is given by V ⊕ V ∗. This vectorspace has a natural bilinear pairing

〈X + α, Y + β〉 =
1

2
(β(X) + α(Y )) .

Then we take this a step further and consider for a manifold M the double of the tangent bundle, given
by TM ⊕ T ∗M . Pointwise this is the double of the tangent space and there is a natural projection ρ
to the tangent bundle itself. Together with a Dorfman bracket given by

[X + α, Y + β] = [X,Y ] + LX(β)− ιY dα ,

this is the first example of a Courant algebroid. The Dorfman bracket is analogous to the Lie bracket
of vector fields. This is an example of an exact Courant algebroid. If a Lie group G acts on the
manifold M , we can perform reduction to get a heterotic Courant algebroid. This is the type of
Courant algebroid that is the most interesting for our purposes.
In generalized geometry we study geometric structures on these Courant algebroids. The first structure
we introduce is the generalized metric, which is a bundle automorphism of the Courant algebroid.
This bundle automorphism turns the pairing into a positive definite bilinear map. For both exact and
heterotic Courant algebroids the generalized metric can be characterized in terms of more well-known
objects. Next we consider generalized connections which behave similar to normal connections. We
are particularly interested in generalized connections which are torsion free and compatible with the
generalized metric. Unlike in Riemannian geometry, such a generalized connection is no longer unique.
The third structure we study is a generalized complex structure. This is a simultaneous generalization
of complex en symplectic strutures. We then combine multiple structures to get generalized Kähler
and generalized SKT structures.
On a heterotic Courant algebroid we construct a family of torsion free generalized connections which
are compatible with a given generalized metric. This generalized connection gives rise to a Dirac
operator on spinors. With these Dirac operators, we formulate the Killing spinor equations:

Dϕ
+η = 0 ,

/D
ϕ
−η = 0 .
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Solutions of these equations are preserved under Courant algebroid isomorphisms. We will show that
these Killing spinor equations are equivalent to the Strominger system, meaning that solutions of one
system translate to solutions of the other system. This means that the Strominger system is a natural
system of equations on a heterotic Courant algebroid.
This thesis is organised as follows:
Section 2 gives an introduction to superstring theory and heterotic superstring theory. Section 3 intro-
duces Courant algebroids. In section 4 we study several geometric structures on Courant algebroids.
In section 5 we formulate the Strominger system and the Killing spinor equations and prove their
equivalence. In section 6 we study T-duality in relation to generalized geometry and as a canonical
transformation.
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2 Superstring Theory

2.1 Introduction

This section follows the book Superstring Theory: Volume 1, Introduction, by Green, Schwarz and
Witten [12]. Recall the Polyakov action for bosonic string theory:

SP = − 1

4πα′

∫
d2σ
√
−hhαβ∂αXµ∂βX

νηµν .

In two dimensions every (pseudo-)metric is conformally flat. This means that locally we can write
hαβ = e2fηαβ for a particular choice of coordinates and a particular smooth function f . This choice
of coordinates is called conformal gauge. In conformal gauge this action simplifies to:

SP = − 1

4πα′

∫
d2σ∂αXµ∂

αXµ .

We modify this action by including D fermions ψµA(σ, τ) transforming in the vector representation of
the Lorentz group SO(D − 1, 1). Thus the new action becomes

S = − 1

4πα′

∫
d2σ(∂αXµ∂

αXµ − iψ̄µρα∂αψµ) ,

where ρα is a two dimensional Dirac matrix given by

ρ0 =

(
0 −i
i 0

)
, ρ1 =

(
0 i
i 0

)
.

These Dirac matrices satisfy the Clifford algebra {ρα, ρβ} = −2ηαβ . The components of ψµ are given
by

ψµ =

(
ψµ−
ψµ+

)
.

Since the ρα are imaginary, the operator iρα∂α is real. Hence it makes sense to demand that the
components of ψµ are real as well. In this basis of Dirac matrices charge conjugation corresponds
to complex conjugation. This means that the requirement for the spinors to be real is equivalent to
requiring the spinors to be invariant under charge conjugation. These two-component real spinors are
called Majorana spinors.
The equal τ commutation relations for the bosonic coordinates are given by [Xµ(σ, τ), Ẋν(σ′, τ)] =
iπηµνδ(σ−σ′). Similarly, the equal τ commutation relation for the fermions is given by [ψµA(σ, τ), ψνB(σ′, τ)] =
πηµνδABδ(σ − σ′). Since the Lorentz pseudometric ηµν is not positive definite, the oscillators of X0

will have negative norm squared. These states are called ghosts. In the critical dimension for bosonic
string theory, D = 26, the Virasoro algebra can be used to decouple the ghosts from the theory. For
the fermions the same problem occurs with ψ0. In order to get a theory without ghosts the fermions
also admit a certain symmetry. This symmetry is superconformal symmetry.
Let ε be a constant anticommuting spinor. The action S is invariant under the infinitesimal transfor-
mations

δXµ = ε̄ψµ ,

δψµ = −iρα∂αXµε .

These transformations are known as the supersymmetry transformations.

Lemma 2.1.1. Let Xµ and ψµ be the bosonic and fermionic fields and assume that ψµ is on-shell.
Then the commutator of two supersymmetry transformations with different values of ε will generate a
spacetime translation in the fields Xµ and ψµ.
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Proof. The parameter for the translation is given by

aα = 2iε̄1ρ
αε2 .

First we consider the bosonic field Xµ:

[δ1, δ2]Xµ = δ1δ2X
µ − δ2δ1Xµ

= δ1(ε̄2ψ
µ)− δ2(ε̄1ψ

µ)

= −iε̄2ρ
α∂αX

µε1 + iε̄1ρ
α∂αX

µε2

= (−iε̄2ρ
αε1 + iε̄1ρ

αε2)∂αX
µ

= (2iε̄1ρ
αε2)∂αX

µ

= aα∂αX
µ .

Now consider the fermionic field ψµ. Since ψµ is on-shell it satisfies the Dirac equation ρα∂αψ
µ = 0.

In components this equation is given by:

∂0ψ
µ
+ = ∂1ψ

µ
+

∂0ψ
µ
− = −∂1ψ

µ
− .

This allows us to work out an expression for [δ1, δ2]ψµ:

[δ1, δ2]ψµ = δ1δ2ψ
µ − δ2δ1ψµ

= −iδ1ρα∂αXµε2 + iδ2ρ
α∂αX

µε1

= i∂α(ε̄2ψ
µραε1 − ε̄1ψ

µραε2)

= (ε2−∂0ψ
µ
+ − ε2+∂0ψ

µ
−)

(
−iε1+

iε1−

)
+ (ε1+∂0ψ

µ
− − ε1−∂0ψ

µ
+)

(
−iε2+

iε2−

)
+ (ε2−∂1ψ

µ
+ − ε2+∂1ψ

µ
−)

(
iε1+

iε1−

)
+ (ε1+∂1ψ

µ
− − ε1−∂1ψ

µ
+)

(
iε2+

iε2−

)
= 2i

(
ε1+ε2+∂0ψ

µ
− − ε1+ε2+∂1ψ

µ
−

ε1−ε2−∂0ψ
µ
+ + ε1−ε2−∂1ψ

µ
+

)
= 2i

(
(ε1+ε2+ + ε1−ε2−)∂0ψ

µ
− + (ε1−ε2− − ε1+ε2+)∂1ψ

µ
−

(ε1+ε2+ + ε1−ε2−)∂0ψ
µ
+ + (ε1−ε2− − ε1+ε2+)∂1ψ

µ
+

)
= aα∂αψ

µ .

Using the Noether method we can find the conserved supercurrent and the energy momentum
tensor. In the supersymmetry transformations ε is a constant. If ε is not a constant, the action is not
invariant. The variation of the action will then be of the form

δS =
2

π

∫
d2σ(∂αε̄)J

α .

This means that Jα is the conserved supercurrent satisfying ∂αJ
α = 0. This method will give

Jα =
1

2
ρβραψ

µ∂βXµ .

Using this method for the translations where δσα is a constant gives the energy momentum tensor

Tαβ = ∂αXµ∂βX
µ +

i

4
ψ̄µ(ρα∂β + ρβ∂α)ψµ .

Since the energy momentum tensor is traceless, the off-diagonal entries in lightcone coordinates vanish.
Because of the identity ραρβρα = 0 for Dirac matrices in two dimensions, the supercurrent also satisfies
the condition ραJα = 0.
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2.2 Superspace

Bosonic string theory lives on a worldsheet Σ. Superstring theory introduces a new superspace called Σ̄.
Besides the wordsheet coordinates, the superspace also contains two Grassmann variables θA forming
a two-component Majorana spinor. A general function Y µ in superspace is of the form

Y µ(σα, θA) = Xµ(σα) + θ̄ψµ(σα) + ψ̄µ(σα)θ +
1

2
θ̄θBµ(σα) .

This is the most general power series expansion in powers of θA. Higher orders in θA vanish since it
is an anticommuting variable. Such a function is called a superfield. In superspace, supersymmetry is
generated by the generator

QA =
∂

∂θ̄A
+ i(ραθ)A∂α .

Instead of this generator, it is often convenient to introduce an anticommutating εA and work with
ε̄Q instead. This will then generate the following transformations of the superspace coordinates:

δθA = [ε̄Q, θA] = εA ,

δσα = [ε̄Q, σα] = iε̄ραθ .

On the coordinates of superspace the commutator of these transformations is given by [δ1, δ2]Y µ =
−(2iε̄1ρ

αε2)∂αY
µ = −aα∂αY µ. Using the two dimensional Fierz identity

θAθ̄B = −1

2
δAB θ̄CθC ,

we find that the transformation δY µ = ε̄QY µ leads to

δXµ = ε̄ψµ ,

δψµ = −iραε∂αXµ +Bµε ,

δBµ = iε̄ρα∂αψ
µ .

In the case of Bµ = ρα∂αψ
µ = 0, this reduces to the previous supersymmetry transformations. In order

to write interesting Lagrangians, we need a derivative operator which is invariant under supersymmetry.
The operator which satisfies this is given by

DA =
∂

∂θ̄A
− i(ραθ)A∂α .

This operator is called the superspace covariant derivative. It anticommutes with Q so {DA, QB} = 0.
This means that covariant derivatives of superfields transform in the same way as the superfields
themselves. The superspace covariant derivative has self anti-commutation relation

{DA, D̄B} = 2i(ρα)AB∂α .

Like the derivative we also need an integral to write down a theory. In superspace this integral is given
by ∫

d2σd2θ .

where d2θ is the Berezin integral for Grassmann variables. An important property of this integral
is that it is invariant under supersymmetry transformations, meaning that for any superfield Y with
action

S =

∫
d2σd2θY .
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we get

δS =

∫
d2σd2θε̄QY = 0 .

Note that the Bµ field is the only contributor to the Berezin integral. Since this field transforms as a
total derivative under the supersymmetry transformation, the integral over a closed manifold will be
0.
Using superspace formalism we can build a new action for a string in D dimensions. It is given by

S =
i

4π

∫
d2σd2θD̄Y µDYµ .

The covariant derivatives are

DY µ = ψµ + θBµ − iραθ∂αXµ +
i

2
θ̄θρα∂αψ

µ ,

D̄Y µ = ψµ +Bµθ̄ + i∂αX
µθ̄ρα − i

2
θ̄θ∂αψ̄

µρα .

Since the Berezin integral only keeps terms proportional to θ̄θ, we need to compute the coefficient in
front of θ̄θ in the expansion of D̄Y µDYµ. This coefficient is given by

(−∂αXµ∂
αXµ + iψ̄µρα∂αψµ +BµBµ)θ̄θ .

Since θ̄θ = −2iθ1θ2, the Berezin integral picks up another factor of −2i. Hence after the Berezin
integral is performed, the action reduces to

S =
1

2π

∫
d2σ(∂αXµ∂

αXµ − iψ̄µρα∂αψµ −BµBµ) .

The equation of motion for Bµ is Bµ = 0, meaning that the new field drops out of the theory and
we recover the previous action. This shows how the previous theory can be obtained from the most
general superfield, despite the lack of Bµ-term in the action.

2.3 Constraints

The commutator of two supersymmetry transformations is a translation. In bosonic string theory the
translations are generated by L0 and L̃0. Like L0 and L̃0 we need to extendQA to an infinite component
supersymmetry. The equations of motion for the fermion fields are ρα∂αψ

µ = 0. In components, this
is given by (

∂

∂σ
+

∂

∂τ

)
ψµ− = 0 ,(

∂

∂σ
− ∂

∂τ

)
ψµ+ = 0 .

Writing ∂± = 1
2 (∂τ ± ∂σ), the fermionic part of the action can be written as

SF =
i

π

∫
d2σ(ψµ−∂+ψµ− + ψµ+∂−ψµ+) .

This means that the positive and negative chirality components of the spinor are decoupled. The
equations of motion for the fermionic components are similar to the equations of motion of the bosons.
We have ∂+ψ

µ
− = ∂+(∂−X

µ) = 0 and the same for + and − reversed. Supersymmetry is the symmetry
between ψµ− and ∂−X

µ or between ψµ+ and ∂+X
µ. This decoupling can be used to simplify expressions

for the supersymmetry current and the energy momentum tensor. The conserved supercurrent has
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4 component. In lightcone coordinates these are written as J++, J+−, J−+ and J−−. Here the first
index denotes the lightcone coordinate and the second index denotes the chirality. The components
J+− and J−+ vanish, so we will write J+ and J− for the nonvanishing components. These are given
by

J+ = ψµ+∂+Xµ ,

J− = ψµ−∂−Xµ .

These currents satisfy ∂−J+ = ∂+J− = 0. We want to know what algebra these J+ and J− generate.
Recall that the nonvanishing equal τ (anti)commutation relations of ψµ± and ∂±X

µ are given by

{ψµ±(σ), ψν±(σ′)} = πδ(σ − σ′)ηµν ,

[∂±X
µ(σ), ∂±X

ν(σ′)] = ± iπ
2
δ′(σ − σ′)ηµν .

With this, we find the equal τ anticommutation relations for J+ and J−:

{J+(σ), J+(σ′)} = πδ(σ − σ′)T++(σ) ,

{J−(σ), J−(σ′)} = πδ(σ − σ′)T−−(σ) ,

{J+(σ), J−(σ′)} = 0 .

In lightcone coordinates, the energy momentum tensor is given by

T++ = ∂+X
µ∂+Xµ +

i

2
ψµ+∂+ψµ+ ,

T−− = ∂−X
µ∂−Xµ +

i

2
ψµ−∂−ψµ− .

In bosonic string theory the constraints T++ = T−− = 0 solved the problem of the timelike component
X0. We may try a similar approach and demand that T++ = T−− = 0 for string theory. Since the
energy momentum tensor appears in the anticommutation relations of J+ and J−, it is natural to
demand J+ = J− = 0 as well. The derivation of the constraints is a lot more rigorous than this simple
guess for superstring theory. A more rigorous approach for superstring theory confirms this guess.

2.4 Boundary conditions

We start by analyzing the possible boundary conditions in the unconstrained theory. For the bosonic
coordinates Xµ, the boundary conditions from bosonic string theory still apply. The diffferent bound-
ary conditions give rise to open and closed strings. For the fermionic degrees of freedom a surface term
arises in the variation of the Lagrangian. This surface term vanishes when ψ+δψ−−ψ−δψ+ = 0 at the
boundary. Here the index is supressed, but this equation should hold for each µ independently. This
constraint is satisfied by setting ψµ+ = ±ψµ− at each end of the string. Since the overall signs of ψ− and
ψ+ are not physical, we can set ψµ+(0, τ) = ψµ−(0, τ) without loss of generality. The sign at the other end
now becomes physically meaningful. The Ramond boundary conditions impose ψµ+(π, τ) = ψµ−(π, τ).
These conditions lead to the following mode expansion:

ψµ−(σ, τ) =
1√
2

∑
n∈Z

dµne
−in(τ−σ) ,

ψµ+(σ, τ) =
1√
2

∑
n∈Z

dµne
−in(τ+σ) .

The Neveu-Schwarz boundary conditions impose ψµ+(π, τ) = −ψµ−(π, τ). They lead to the following
mode expansions:

ψµ−(σ, τ) =
1√
2

∑
r∈Z+ 1

2

bµr e
−ir(τ−σ) ,
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ψµ+(σ, τ) =
1√
2

∑
n∈Z+ 1

2

bµr e
−ir(τ+σ) .

The strings with Ramond boundary conditions turn out to describe spacetime fermions whereas the
strings with Neveu-Schwarz boundary conditions describe spacetime bosons. For closed strings the
boundary conditions are periodicity and antiperiodicity for the separate components. The mode ex-
pansions for this are given by

ψµ−(σ, τ) =
∑
n∈Z

dµne
−2in(τ−σ) ,

or
ψµ−(σ, τ) =

∑
r∈Z+ 1

2

bµr e
−2ir(τ−σ) ,

and
ψµ+(σ, τ) =

∑
n∈Z

d̃µne
−2in(τ+σ) ,

or
ψµ+(σ, τ) =

∑
n∈Z+ 1

2

b̃µr e
−2ir(τ+σ) .

In super string theory the Virasoro algebra gets expanded to the super-Virasoro algebra. Like in the
bosonic case, it contains the Lm modes which are given by

Lm =
1

π

∫ π

0

dσ(eimσT++ + e−imσT−−) =
1

π

∫ π

−π
dσeimσT++ .

Depending on the boundary conditions for the fermionic degrees of freedom we define a different set
of generators. In the case of Ramond boundary conditions, we define for each integer m ∈ Z the
generator

Fm =

√
2

π

∫ π

0

(eimσJ+ + e−imσJ−) =

√
2

π

∫ π

−π
dσeimσJ+ .

In the case of Neveu-Schwarz boundary conditions, we define for each half integer r ∈ Z + 1
2 the

generator

Gr =

√
2

π

∫ π

0

(eirσJ+ + e−irσJ−) =

√
2

π

∫ π

−π
dσeirσJ+ .

For closed strings there are two sets of generators of the super-Virasoro algebra. One set contains the
mode of T++ and J+ and the other contains the modes of T−− and J−. Classically all modes should
vanish, but in the quantum theory this is more subtle. This will become clear in the quantization of
the super string.

2.5 Covariant quantization

The equal τ commutation relations for the bosonic coordinates is given by

[Ẋµ(σ, τ), Xν(σ′, τ)] = −iπδ(σ, σ′)ηµν .

From this, we easily calculate the commutation relations for the coefficients of the mode expansion:

[αµm, α
ν
n] = mδm+nη

µν .

These relations remain the same in super string theory. For the closed string the same relations hold
for the α̃µm. For the fermionic degrees of freedom we have the equal τ anticommutation relation

{ψµA(σ, τ), ψνB(σ′, τ)} = πδ(σ, σ′)δABη
µν .

12



From this we deduce that the coefficients bµr and dµn of the mode expansion satisfy

{bµr , bνs} = ηµνδr+s ,

and
{dµm, dνn} = ηµνδm+n .

The mass shell condition for the Virasoro constraints states that

α′M2 = N + constant .

The constant comes from normal ordering. The number operator N decomposes as N = Nα +Nd or
N = Nα +N b, where Nα, Nd and N b are given by

Nα =

∞∑
n=1

α−n · αn ,

Nd =
∞∑
n=1

nd−n · dn ,

N b =

∞∑
r= 1

2

rb−r · br .

The ground state is the state which is annihilated by all αµn and dµn with positive n or by all αµn and bµr
with positive n and r. Acting with αµ−n or dµ−n on a state raises the value of α′M2 by n units, while
acting with bµ−r will raise the value by r units. The generalized Virasoro algebra generators decompose

similarly. For the Ramond boundary conditions we have Lm = L
(α)
m +L

(d)
m and for the Neveu Schwarz

boundary conditions we have Lm = L
(α)
m + L

(b)
m . Here

L(α)
m =

1

2

∑
n∈Z

: α−n · αm+n : ,

like in bosonic string theory, and

L(d)
m =

1

2

∑
n∈Z

(n+
1

2
m) : d−n · dm+n : ,

L(b)
m =

1

2

∑
r∈Z+ 1

2

(r +
1

2
m) : b−r · bm+r : .

The normal ordering is only needed in the case n = 0. The fermionic generators are given by

Fm =
∑
n∈Z

: α−n · dm+n : ,

Gr =
∑
n∈Z

: α−n · br+n : .

The super-Virasoro algebra in the bosonic (NS) sector is given by

[Lm, Ln] = (m− n)Lm+n +
1

8
D(m3 −m)δm+n ,

[Lm, Gr] = (
1

2
m− r)Gm+r ,

{Gr, Gs} = 2Lr+s +
1

2
D(r2 − 1

4
)δr+s .
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In the fermionic (R) sector, it is given by

[Lm, Ln] = (m− n)Lm+n +
1

8
Dm3δm+n ,

[Lm, Fn] = (
1

2
m− n)Fm+n ,

{Fm, Fn} = 2Lm+n +
1

2
Dm2δm+n .

In the R sector, the entire algebra is generated by F0, L−1 and L1. In the NS sector, the linear span
of L−1, L0, L1, G− 1

2
and G 1

2
forms a subalgebra known as OSP (1|2). Now we impose the constraints

on the quantum theory by requiring the physical states to be annihilated by the positive-frequency
components of the super-Virasoro algebra. In particular, a physical bosonic state |φ〉 should satisfy

Lm|φ〉 = 0 ,

Gr|φ〉 = 0 ,

(L0 − a)|φ〉 = 0 .

for all n, r > 0 and some constant a which will be determined later. The conditions for all n, r > 0
all follow from the cases r = 1

2 and r = 3
2 . This means that it is sufficient for a state |ψ〉 to satisfy

(L0 − a)|φ〉 = G 1
2
|φ〉 = G 3

2
|φ〉 = 0. Now we want to find the critical values for a and D. In bosonic

string theory, these parameters represented the boundary between ghosts and no ghosts, which resulted
in a variety of extra zero-norm states. We can study this by looking at the ground state |0; k〉. This

state is on-shell for k2

2 = a. The excited state |φ〉 = G− 1
2
|0; k〉 is on-shell for k2

2 = a − 1
2 . For a = 1

2

this state satisfies G 1
2
|φ〉 = 0 and the state has zero norm. For higher values of a the state will have a

negative norm. Because a = 1
2 sits at this boundary, it is the critical value.

With a = 1
2 there is a family of zero norm states given by G− 1

2
|φ̃〉, where |φ̃〉 in annihilated by G 1

2
,

G 3
2

and L0. For the critical dimension we follow a similar approach. We construct a family of zero
norm states of the form

|φ〉 = (G− 3
2

+ λG− 1
2
L−1)|φ̃〉 ,

where |φ̃〉 satisfies
G 1

2
|φ̃〉 = G 3

2
|φ̃〉 = (L0 + 1)|φ̃〉 = 0 .

Using the commutation and anticommutation relations we find

G 1
2
|φ〉 = (2− λ)L−1|φ̃〉 ,

G 3
2
|φ〉 = (D − 2− 4λ)|φ̃〉 .

This means that |φ〉 is physical for λ = 2 and D = 10, since these are the only values for which |ψ〉 is
annihilated by G 1

2
and G 3

2
simultaneously. Thus we conclude that D = 10 is the critical dimension.

In the fermionic sector any physical state has to satisfy Fn|ψ〉 = Ln|ψ〉 = 0 for any n > 0. The zero
mode also gives the condition (F0 − µ)|ψ〉 = 0. From this we find that

(F0 + µ)(F0 − µ)|ψ〉 = (F 2
0 − µ2)|ψ〉 = (L0 − µ2)|ψ〉 = 0

The arbitrary constant µ does not arise from a normal ordering ambiguity when passing from the
classical to the quantum theory. Since F0 is anticommuting, a non-zero value of µ would cause the
operator (F0−µ) to be neither commuting nor anticommuting. The positive frequency super-Virasoro
algebra is generated by L0 and F1. States of the form |ψ〉 = F0|ψ̃〉 with L0|ψ̃〉 = F1|ψ̃〉 = 0 have zero
norm, but they are only on-shell for µ = 0. This is the first family of zero-norm states. The second
family is given by |ψ〉 = F0F−1|ψ̃〉 where F1|ψ̃〉 = (L0 + 1)|ψ̃〉 = 0. These states satisfy F0|ψ〉 = 0. In
order for this to be a physical state, it also has to be annihilated by L1. Using the (anti-)commutation
relations, we find L1|ψ〉 = ( 1

4D−
5
2 )|ψ̃〉, from which we conclude that D = 10 is the critical dimension

for the fermionic sector as well.
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2.6 Vertex Operators

We now turn our attention to vertex operators. First we consider the boson emission from a bosonic
state. A physical vertex operator needs to have conformal dimension J = 1 in order to map physical
states to physical states. For super strings this is still a necessary but no longer a sufficient condition.
The vertex operator must have the right commutation relations with the Gr’s as well.
Let V = V (τ = 0) be a candidate for a physical vertex operator, and assume that there is another
vertex operator W such that for each r ∈ Z + 1

2 we get

V (0) = [Gr,W (0)] .

This works ifW is a bosonic vertex operator. In the case of a fermionic vertex operator, the commutator
should be replaced by an anticommutator.
Since G2

r = L2r, we find that {Gr, V (0)} = [L2r,W (0)]. Now V (τ) is given by

V (τ) = eiL0τV (0)e−iL0τ .

And by definition of conformal dimension J we get

[Lm, V (τ)] = eimτ (−i d
dτ

+mJ)V (τ) .

From this we deduce that V has conformal dimension J = 1 if and only if W has conformal dimension
J = 1

2 . As a first example, we consider the operator

W (0) =: eik·X(0) : ,

which has conformal dimension J = 1
2 for k2 = 1. This is the mass-shell condition for the bosonic

tachyon. The corresponding operator is given by

V (0) = [Gr,W (0)] = k · ψ(0) : eik·X(0) : ,

at τ = 0 and
V (τ) = k · ψ(τ) : eik·X(τ) : ,

for general τ . Here ψµ(τ) is given by

ψµ(τ) =
1√
2

∑
r∈Z+ 1

2

bµr e
−irτ .

This vertex operator has conformal dimension J = 1 since both factors have J = 1
2 and they commute.

Thus V is the vertex operator for the emission of the tachyon. The first excited state is the massless
vector of polarization ζµ and momentum kµ and is given by ζ · b− 1

2
|0; k〉. The G 1

2
condition requires

ζ · k = 0 for this state to be physical. For the construction of the vertex operator corresponding to
this state we consider the operator

W1(0) = ζ · ψ(0)eik·X(0) ,

which has conformal dimension J = 1
2 for k2 = 0. The corresponding vertex operator is given by

V1(0) = {Gr,W1(0)} = (ζ · Ẋ(0)− ζ · ψ(0)k · ψ(0))eik·X(0) .

The vertex operators are seperated into two groups. One group has an even number of ψ excitations
and the other group has an odd number of ψ excitations. If W is a bosonic operator then the
commutator [Gr,W ] gives a fermionic vertex operator V while if W is a fermionic operator then the
anti-commutator {Gr,W} gives a bosonic vertex operator. String states corresponding to a fermionic
vertex operator V correspond to Fock states with an even number of b excitations and are called states
of odd G-parity. These states lead to anomalies at the one-loop level, so they will be removed from
the spectrum. One of the removed states is the tachyon.
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2.7 The GSO conditions

The model we discussed so far is called the RNS-model after Ramond, Neveu and Schwarz. Even for
D = 10 and a = 1

2 (NS sector) or a = 0 (R sector), this is an inconsistent quantum theory. Additional
conditions need to be imposed on the model in order to get a consistent quantum theory. These con-
ditions were proposed by Gliozzi, Scherk and Olive and are known as the GSO conditions.
One reason why the current theory needs further restrictions on the spectrum is that it contains a
tachyon. The theory can only have the potential to describe nature if it doesn’t predict tachyons.
The second reason is that the theory has anti-commuting operators ψµ which map bosons to bosons.
While this is not contradictory, it is still unnatural. It is preferred to have only commuting operators
which map bosons to bosons. The proposal is to simply discard all states which are obtained by acting
with an odd number of ψµ-operators on the good states. To do this, we introduce the operator (−1)F ,
which acts as (−1)FXµ = Xµ, (−1)Fψµ = −ψµ. We give the massless vector positive sign. The GSO
projection is obtained by removing the −1-eigenspace of the operator (−1)F .
The third reason for introducing this GSO projection is that the theory in the 10-dimensional ambient
space becomes supersymmetric. This means that both the 2-dimensional wordsheet theory and the
10-dimensional spacetime theory become supersymmetric, which results in a more elegant theory.
The massless part of the spectrum contains a vector and a spinor. The massless vector is given by
b− 1

2
|0; k〉. The massless spinor is given by |a; k〉ua(k), where ua(k) satisfies the massless Dirac equation

and a is a spinor index. Unbroken supersymmetry requires that each masslevel contains a supersym-
metric pair. The massless vector has 8 independent transverse degrees of freedom. For even dimensions
D, spinors have 2

D
2 complex components. In 10 dimensions, this means 32 complex components. By

simultaneously imposing Weyl and Majorana constraints, the number of degrees of freedom can be
reduced to a quarter of the original number, which is 16 real components in this case. These degrees
of freedom need to satisfy the Dirac equation, which relates half of the degrees of freedom to the other
half. Thus both the massless vector and the massless spinor have 8 degrees of freedom which means
they can form a supersymmetry pair.
The Majorana condition states that the fermion fields are real. This is the result of a choice of basis in
which the intertwiner is real. In general a fermion ψ is a Majorana fermion if it satisfies ψ = ψc, where
ψc is the charge conjugate of ψ. In order for this to make sense, the Dirac matrices all have to be
real or completely imaginary. A representation where all Dirac matrices are either real or imaginary
is called a Majorana representation. We will work with a representation in which the Dirac matrices
are purely imaginary. We write Γµ for these 32× 32 imaginary Dirac matrices.
For even dimensions D there is a matrix analogous to γ5 in 4 dimensions. In D = 10 we introduce
Γ11 = Γ0 . . .Γ9. Like γ5, this matrix satisfies {Γ11,Γ

µ} = 0, (Γ11)2 = Id32. Spinors with eigenvalue 1
are called spinors of positive chirality and spinors with eigenvalue −1 are called spinors with negative
chirality. The operators 1

2 (Id32 ± Γ11) project spinors of definite chirality, called Weyl spinors. Re-
stricting to spinors of positive chirality or to spinors of negative chirality is called a Weyl condition.
In a Majorana representation the matrix Γ11 is real. This means that the positive chirality and the
negative chirality parts of real fermions are also real. Thus the Majorana condition and the Weyl
condition are compatible and we can impose both conditions simultaneously. These conditions are not
compatible in 4 dimensions, since γ5 is imaginary. It is only possible to impose both conditions at the
same time in D ≡ 2(mod8) and spinors satisfying both conditions are called Majorana-Weyl spinors.
We can generalize this to states which have mass by the operator

Γ̄ = Γ11(−1)NΓ ,

where NΓ is given by

NΓ =

∞∑
n=1

d−n · dn .

This operator satisfies {Γ̄, dµn} = 0. Since ψµ(σ, τ) is linear in the coefficients dµn, we also get
{Γ̄, ψµ(σ, τ)} = 0. The operator Γ̄ represents (−1)F in the R sector. The corresponding notion in
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the NS sector is given by
G = −(−1)NG ,

where NG is given by

NG =

∞∑
r= 1

2

b−r · br .

2.8 Heterotic string theory

With the Chan-Patton method it is possible to place charges at the ends of an open string. This is
possible due to the existence of special points on the strings; the ends. For closed strings there are no
such special points. Hence if we wish to place charges on them, the only way to do so is by distributing
them over the entire string. So far we have added fermionic fields with a spacetime index µ to the
string. We will now consider adding fermionic fields with more internal quantum numbers, which
will introduce internal symmetry groups. As we have seen before, the components of the Majorana
fermions in the action decouple. Therefore it is possible to include left moving modes of one type and
right moving modes of another type. We will take the right moving modes to be the supersymmetric
fermions we have discussed so far. The left moving modes will be non-supersymmetric Majorana-Weyl
fermions λA, with 1 ≤ A ≤ n for some n. These carry internal symmetry groups and will be discussed
later. The action for this theory in conformal gauge is given by

S =
−1

2π

∫
d2σ

(
9∑

µ=0

(∂αXµ∂
αXµ − 2iψµ−∂+ψµ−)− 2i

n∑
A=1

λA+∂−λ
A
+

)
.

The right moving part of the theory is supersymmetric and leads to a critical dimension of D = 10.
Since the left-moving part is not supersymmetric, it will have the same ghost fields as the bosonic
string theory. These ghost fields have a central charge of −26, which is cancelled by 26 bosonic fields.
We only have 10 bosonic fields, so the rest of the cancelation has to come from the left-moving fermions
λA. Since Majorana-Weyl fermions contribute 1

2 to the central charge, we need 32 Majorana fermions
for the cancelation of the Weyl anomaly.

2.8.1 Heterotic SO(32)

If all λA satisfy the same boundary conditions, their symmetry group is SO(32). The first option is
to assign periodic boundary conditions to all fermions. This is known as the periodic sector (P sector)
and is analogous to the Ramond sector. The fermions have a mode expansion given by

λA(σ+) =
∑
n∈Z

λAn e
−2inσ+

.

The second option is to assign antiperiodic boundary conditions to all fermions, which is known as the
antiperiodic sector (A sector) and is analogous to the Neveu-Schwarz sector. The mode expansion is
given by

λA(σ+) =
∑

r∈Z+ 1
2

λAr e
−2irσ+

.

The canonical anticommutation relations for these are given by {λAn , λBm} = δABδn+m and {λAr , λBs } =
δABδr+s.
The left-moving modes give rise to a different Virasoro algebra. The Virasoro constraints for the
right-moving modes is given by Lm|ψ〉 = (L0 − a)|ψ〉 = 0 for all m > 0 and for some normal ordering
constant a. These operators are the same as before. For the left-moving modes we also get the Virasoro
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constraints L̃m|ψ〉 = (L̃0 − ã)|ψ〉 = 0 for all m > 0, but for different operators L̃m and a different

normal ordering constant ã. The operator L̃0 is given by L̃0 = p2

8 + Ñ , where Ñ is given by

Ñ =

∞∑
n=1

(α̃−n · α̃n + nλA−nλ
A
n )

in the P sector and

Ñ =

∞∑
n=1

α̃−n · α̃n +

∞∑
r= 1

2

rλA−rλ
A
r

in the A sector. For the right-moving modes a = 0. The contribution of a bosonic coordinate to the
normal ordering constant is 1

24 . We have 8 transverse bosonic degrees of freedom, giving a contribution
of 8

24 or 1
3 . Fermionic degrees of freedom with integer modes give a contribution of − 1

24 , while fermionic
degrees of freedom with half-integer modes give a contribution of 1

48 . Hence for the P sector and for
the A sector we find different values for the normal ordering constant:

ãP =
8

24
− 32

24
= −1 ,

ãA =
8

24
+

32

48
= 1 .

With this we find that in the P sector, the mass is given by 1
4M

2 = N + Ñ + 1, whereas in the A

sector it is given by 1
4M

2 = N + Ñ −1. The mass-shell condition from the right-moving modes implies

N = Ñ + 1 in the P sector and N = Ñ − 1 in the A sector. Since N and Ñ are non-negative, the P
sector has no massless states. In the A sector, the massless states are given by N = 0, Ñ = 1.
For the right-moving modes, the operator N is always an integer. The condition N = Ñ − 1 in the A
sector means that Ñ also has to be an integer. This implies that we need to remove all states with an
odd number of λA excitations. This is analogous to the GSO conditions for the right-moving modes.
A natural thing to do is to also apply a GSO-like condition on the P sector. This turns out to be
necessary for unitarity at one-loop level.
The operator (−1)F in the P sector is given by

(−1)F = λ̄0(−1)Nλ ,

where

Nλ =

∞∑
n=1

λA−nλ
A
n ,

and
λ̄0 = λ1

0λ
2
0 . . . λ

32
0 .

The states with Ñ = 0 in the P sector are given by Spin(32) spinors |a〉 satisfying the condition
λ̄0|a〉 = |a〉. All excited states can be obtained by acting with an even number of λA excitations on
such states to ensure they satisfy the GSO-like condition.

2.8.2 Heterotic E8 × E8

So far we assigned the same boundary conditions to all left-moving Majorana-Weyl fermions. We
will now explore what happens when we take mixed boundary conditions into account. As a first
impression this gives a lot of new possibilities at the cost of losing symmetry.
We will consider the case where some of the fermions satisfy periodic boundary conditions and the rest
of the fermions satisfy antiperiodic boundary conditions. If we take n fermions with periodic boundary
conditions, then the normal ordering constant will be given by

ã = 1− n

16
.
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Recall that N has integer eigenvalues. In the P sector Ñ also has integer eigenvalues. In the A sector
Ñ has integer and half integer eigenvalues, but by level matching we discarded the states with half
integer eigenvalues. It turns out that half integer values for ã lead to one-loop anomalies, so we won’t
consider those cases. This leaves us with the natural choice of n = 16, with ã = 0 and symmetry group
Spin(16)× Spin(16).
Since ã = 1 in the A sector, massless states are obtained by acting with two λA− 1

2

operators on the

ground state. These states are given by

λA− 1
2
λB− 1

2
|0〉L .

Under the action of the group Spin(16)× Spin(16), these states transform as:

(120,1) for 1 ≤ A,B ≤ 16 ,

(1,120) for 17 ≤ A,B ≤ 32 ,

(16,16) for 1 ≤ A ≤ 16, 17 ≤ B ≤ 32 .

Here 16 and 120 denote the vector representation and the adjoint representation of SO(16). Together
they form the adjoint representation of SO(32) given by 496 = 120⊕ 120⊕ (16⊗ 16).
In the case of 16 fermions with periodic boundary conditions and 16 antiperiodic boundary conditions
we get ã = 0. Because of this, there are new massless states. If we denote the two spinor representa-
tions of Spin(16) as 128 and 128’, then the massless states transfrom as either (128,1) ⊕ (128′,1)
or (1,128) ⊕ (1,128′), depending on whether the first 16 fermions satisfy periodic or antiperiodic
boundary conditions.
Again we will need to impose GSO conditions on these states. Now there are two candidates for (−1)F .
The first candidate, (−1)F1 , anticommutes with the first 16 fermions and commutes with the last 16
fermions. The second candidate, (−1)F2 , commutes with the first 16 fermions and anticommutes with
the last 16 fermions. We will keep those states which have eigenvalue 1 for both (−1)F1 and (−1)F2 .
We impose that the groundstate of the A sector |0〉L is even under both operators. The allowed states
can be constructed by acting on the ground state with two fermions that are either both from the first
group of 16 or both from the second group of 16. The allowed states transform as:

(120,1)⊕ (1,120) .

The two spinor representations have opposite signs under (−1)F , so we only keep one representation
from each pair. This leaves us with two copies of 120⊕ 128. These form the exceptional Lie algebra
e8, the Lie algebra of the exceptional Lie group E8. Thus the gauge group becomes E8 × E8.

2.8.3 The bosonized approach to the heterotic string

Instead of 32 fermions we will now consider 16 additional bosons in the left moving part of the theory.
The 16 new dimensions introduced in this way will be compactified on a suitable torus. The suitable
torus will be the one which correctly describes the bosonized fermions with boundary conditions.
For the 16 newly introduced bosons we write the mode expansion as

XI
L(σ+) = xIL + pIL(τ + σ) +

i

2

∑
n 6=0

1

n
aIne
−2in(τ+σ) .

For bosons with both a left moving part and a right moving part, we have a center of mass coordinate
xI and momentum pI . The canonical commutation relations for xI and pI are given by

[xI , pJ ] = iδIJ .

The left moving parts and right moving parts both contribute half of this relation, such that for xIL
and pIL the commutation relations are

[xIL, p
J
L] =

i

2
δIJ .
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Upon quantization, the left moving momentum operator becomes pIL = − i
2

∂
∂xIL

.

We construct the torus by taking 16 linearly independent vectors eIi , where the lower index denotes
different vectors and the upper index denotes the coordinates of the vector. We define Γ to be the
lattice consisting of all points of the form

∑
ni
nie

I
i . We consider the torus T 16 = R16/πΓ. We

introduce the metric

gij =

16∑
I=1

eIi e
I
j .

We consider the case where this matrix has integer entries and 2 on all diagonal entries. The momenta
KI are required to give a well defined value for

e2iK·x ,

since this quantity is observable. This is satisfied when KIeIi is an integer for all 1 ≤ i ≤ 16. This
means that K lies in the dual lattice Γ̄, consisting of integer multiples of e∗Ii satisfying

16∑
I=1

e∗Ii e
I
j = δij

In order to ensure that XL only has left-moving modes, K also needs to lie in Γ. The requirement that
the entries of gij are integers ensures that Γ ⊂ Γ̄. If Γ = Γ̄ then the lattice is said to be self-dual. if the
entries of gij are integers, the lattice is called an integral lattice. If on top of that the diagonal entries
are even, the lattice is said to be an even lattice. All v ∈ Γ have even norm squared: 〈v, v〉 ∈ 2Z.
Lattice sites with K2 = 2 correspond to massless states.
Even self-dual lattices only exist in dimensions d ≡ 0(mod8). In d = 8, the only even self-dual lattice
is Γ8, the root lattice of E8. In d = 16, the only even self-dual lattices are Γ8 × Γ8 and Γ16, which
contains the root lattice of SO(32) as a sublattice. Choices for either Γ8×Γ8 or Γ16 correspond to the
gauge groups E8 × E8 and SO(32).
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3 Courant Algebroids

We will now turn our attention to a new topic. This section will be the first introduction to Courant
algebroids. We will use these results in section 4 to introduce geometrical structures on Courant
algebroids. In section 5 we will show the interplay between Courant algebroids and superstring theory
through the Strominger system.

3.1 Introduction

Let V be a real n-dimensional vector space. The double of V is defined as V ⊕V ∗. It is equipped with
a canonical non-degenerate bilinear form of signature (n, n) given by

〈X + α, Y + β〉 =
1

2
(β(X) + α(Y )) ,

for X,Y ∈ V and α, β ∈ V ∗. In addition, the double comes with a canonical orientation. For the
choice of orientation, first note that Λ2n(V ⊕ V ∗) ' Λn(V ) ⊗ Λn(V ∗). With this identification we
define the map Λ2n(V ⊕ V ∗)→ R, (u1 ∧ · · · ∧ un)⊗ (u1 ∧ · · · ∧ un) 7→ det(ui(uj)). The orientation is
given by the bases which map to R+.
The symmetry group of the double is SO(V ⊕V ∗) ' SO(n, n), the indefinite special orthogonal group.
This group is given by

SO(n, n) = {A ∈ End(V ⊕ V ∗) | 〈Ax,Ay〉 = 〈x, y〉 ∀x, y ∈ V ⊕ V ∗, det(A) = 1}

This is a subgroup of the split orthogonal group O(n, n). The Lie algebra of SO(n, n) is given by

so(n, n) = {T ∈ End(V ⊕ V ∗) | 〈Tx, y〉+ 〈x, Ty〉 = 0} .

The extended double is given by H = V ⊕ g ⊕ V ∗, where g ' Rm is equipped with a bilinear form c
of arbitrary signature. The extended double has a canonical bilinear form given by

〈X + s+ α, Y + t+ β〉 =
1

2
(β(X) + α(Y )) + c(s, t)

Similar to the double we can define a symmetry group and its Lie algebra. The extended double can
be oriented once an orientation on g is chosen.

3.2 Clifford algebras and spinors

Let V be a real n-dimensional vector space with a non-degenerate bilinear form of arbitrary signature.
Its Clifford algebra is given by

C`(V ) = ⊗•V/(u2 − 〈u, u〉)

Here ⊗•V denotes the free tensor algebra. The Clifford algebra contains the spin group as a subgroup.
The spin group is given by

Spin(V ) = {v1 · · · · · v2k|vi ∈ V, 〈vi, vj〉 = ±δij} .

The spin group is the double cover of SO(V ) through the map ρ : Spin(V ) → SO(V ), ρ(x)(v) =
x · v · x−1, where v ∈ V , x ∈ Spin(V ).

3.3 Courant Algebroids

This section follows the approach of [1]. Let M be an n-dimensional manifold. Consider the double
of the tangent bundle, i.e., TM ⊕ T ∗M . Since this is pointwise the double of a vector space, it comes
with a non-degenerate bilinear form of signature (n, n). It also has a projection π : TM ⊕ T ∗M →
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TM,X + α 7→ X called the anchor. We will equip this with the structure of a bracket similar to the
Lie bracket for vector fields. Vector fields act on differential forms through the interior product:

X(ϕ) = ιX(ϕ) ,

where X ∈ X(M), ϕ ∈ Ω•(M). This is a map of degree −1. There is also a canonical map of degree 1,
namely the exterior derivative. The Lie bracket of two vector fields is the unique vector field satisfying

ι[X,Y ]ϕ = [LX , ιY ]ϕ = [[ιX , d], ιY ]ϕ ,

where X,Y ∈ X(M), ϕ ∈ Ω•(M). The brackets denote the supercommutator of graded algebras, which
is given by

[A,B] = A ◦B − (−1)|A|·|B|B ◦A .

This approach to the Lie bracket will be used in defining the Dorfman bracket. The double bundle
TM ⊕ T ∗M acts on differential forms through the Clifford action:

(X + α)(ϕ) = ιXϕ+ α ∧ ϕ ,

where X ∈ X(M), α ∈ Ω1(M) and ϕ ∈ Ω•(M). This action has mixed degree, but both degrees are
odd. With this, we can define the Dorfman bracket of two sections e1, e2 ∈ Γ(TM ⊕ T ∗M) as the
unique section satisfying

[e1, e2](ϕ) = [e1, [d, e2]](ϕ) ,

where ϕ ∈ Ω•(M) and [·, ·] denotes the supercommutator. Explicitly, this bracket is given by

[X + α, Y + β] = [X,Y ] + LX(β)− ιY dα .

This bracket is no longer skew-symmetric, but it does satisfy a Jacobi-like identity

[e1, [e2, e3]] = [[e1, e2], e3] + [e2, [e1, e3]] .

The structure (TM ⊕ T ∗M, [·, ·], π, 〈·, ·〉) is the first example of a Courant algebroid.

Definition 3.3.1. A Courant algebroid is a 4-tuple (E, [·, ·], ρ, 〈·, ·〉) consisting of a vector bundle
E → M , a bilinear bracket [·, ·] : Γ(E)⊗ Γ(E) → Γ(E), a bundle map ρ : E → TM and a symmetric
non-degenerate bilinear form 〈·, ·〉 on E, such that the following conditions hold for all e1, e2, e3 ∈ Γ(E):

• [e1, [e2, e3]] = [[e1, e2], e3] + [e2, [e1, e3]]

• 〈[e1, e2] + [e2, e1], e3〉 = d〈e1, e2〉(ρ(e3))

• ρ(e1)(〈e2, e3〉) = 〈[e1, e2], e3〉+ 〈e2, [e1, e3]〉

We call [·, ·] the Dorfman bracket, ρ the anchor and 〈·, ·〉 the pairing of E.

Lemma 3.3.2. Let E be a Courant algebroid. Then we have the following identities:

• [e1, fe2] = f [e1, e2] + ρ(e1)(f)e2

• ρ([e1, e2]) = [ρ(e1), ρ(e2)], where the right hand side denotes the Lie bracket for vectorfields.

Proof. For the first identity consider the expression ρ(e1)〈fe2, e3〉. Using the axioms of Courant
algebroids, we can express this as

ρ(e1)(〈fe2, e3〉) = 〈[e1, fe2], e3〉+ 〈fe2, [e1, e3]〉 .

By linearity of the pairing, we can take the function f in front of the pairing and use the Leibniz rule
to get

ρ(e1)(f〈e2, e3〉) = ρ(e1)(f)〈e2, e3〉+ fρ(e1)〈e2, e3〉 .
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Using the axioms of Courant algebroid, this becomes

ρ(e1)(f〈e2, e3〉) = ρ(e1)(f)〈e2, e3〉+ f〈[e1, e2], e3〉+ f〈e2, [e1, e3]〉 .

Comparing these expressions, we find

[e1, fe2] = f [e1, e2] + ρ(e1)(f)e2 .

For the second identity we consider how both sides act on a function 〈e3, e4〉. First we consider
ρ([e1, e2])〈e3, e4〉:

ρ([e1, e2])〈e3, e4〉 = 〈[[e1, e2], e3], e4〉+ 〈e3, [[e1, e2], e4]〉 ,
= 〈[e1, [e2, e3]], e4〉 − 〈[e2, [e1, e3]], e4〉+ 〈e3, [e1, [e2, e4]]〉 − 〈e3, [e2, [e1, e4]]〉 .

Now we consider [ρ(e1), ρ(e2)]〈e3, e4〉:

[ρ(e1), ρ(e2)]〈e3, e4〉 = ρ(e1)ρ(e2)〈e3, e4〉 − ρ(e2)ρ(e1)〈e3, e4〉 ,
= ρ(e1)〈[e2, e3]e4〉+ ρ(e1)〈e3, [e2, e4]〉 − ρ(e2)〈[e1, e3], e4〉 − ρ(e2)〈e3, [e1, e4]〉 ,
= 〈[e1, [e2, e3]], e4〉+ 〈[e2, e3], [e1, e4]〉+ 〈[e1, e3], [e2, e4]〉+ 〈e3, [e1, [e2, e4]]〉
− 〈[e2, [e1, e3]], e4〉 − 〈[e1, e3], [e2, e4]〉 − 〈[e2, e3], [e1, e4]〉 − 〈e3, [e2, [e1, e4]]〉 ,
= 〈[e1, [e2, e3]], e4〉 − 〈[e2, [e1, e3]], e4〉+ 〈e3, [e1, [e2, e4]]〉 − 〈e3, [e2, [e1, e4]]〉 .

Thus we conclude that ρ([e1, e2])〈e3, e4〉 = [ρ(e1), ρ(e2)]〈e3, e4〉. By non-degeneracy of the pairing
it is always possible to find e3, e4 such that 〈e3, e4〉 doesn’t vanish locally. By linearity in the first
argument of the pairing we can multiply e3 by a function such that 〈e3, e4〉 can be an arbitrary
function locally. Since both vectorfields have the same action on any arbitrary function, we conclude
that ρ([e1, e2]) = [ρ(e1), ρ(e2)].

Using the pairing and the anchor, we can produce a map Γ(T ∗M)→ Γ(E). A 1-form α ∈ Ω1(M)
is mapped to α′ = 1

2ρ
∗(α) ∈ Γ(E) such that for all e ∈ Γ(E) the equation 〈α′, e〉 = 1

2α(ρ(e)) holds.
A Courant algebroid is called transitive if the anchor is surjective. It is called exact if the following
sequence is exact:

0 T ∗M E TM 0 .
1
2ρ
∗

ρ

For transitive Courant algebroids the map 1
2ρ
∗ is injective. Since we will be concerned with transitive

Courant algebroids only, we will identify 1-forms with their image under the map 1
2ρ
∗. An isotropic

splitting for E is a section s : TM → E of ρ such that the image s(TM) is isotropic with respect to
the pairing. Such an isotropic splitting gives an identification E ' TM ⊕ T ∗M , where the anchor is
the projection and the pairing is given by 〈X + α, Y + β〉 = 1

2 (β(X) + α(Y )). There exists a closed
3-form H such that the Dorfman bracket can be written as [20]:

[X + α, Y + β] = [X,Y ] + LX(β)− ιY dα+ ιY ιXH .

This 3-form is explicitly given by the equation

H(X,Y, Z) = 〈[s(X), s(Y )], s(Z)〉 ,

for all X,Y, Z ∈ X(M). A different choice of the splitting results in a different 3-form H ′, but the
difference between H and H ′ is exact. Hence the cohomology class [H] ∈ H3(M) is independent of
the choice of the splitting and is called the Ševera class. Conversely, any closed 3-form H defines an
exact Courant Algebroid structure on E = TM ⊕ T ∗M . The bracket is called the H-twisted Dorfman
bracket. This gives a bijection between the set of equivalence classes of exact Courant algebroids on
M and H3(M).
After the introduction of the objects of study, the next question is always what the maps between
those objects are. This is where the notion of a Courant algebroid isomorphism comes in.
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Definition 3.3.3. Let (E, [·, ·], ρ, 〈·, ·〉) and (E′, [·, ·]′, ρ′, 〈·, ·〉′) be two Courant algebroid structures on
M . A Courant algebroid isomorphism ϕ : E → E′ consists of a diffeomorphism f : M →M and a
bundle isomorphism ϕ : E → E′ covering f , such that the induced map of sections ϕ∗ : Γ(E)→ Γ(E′)
given by ϕ∗(e) = ϕ ◦ e ◦ f−1 interchanges the Courant algebroid structures. This means that the
following equations hold for all e1, e2 ∈ Γ(E):

• ϕ∗([e1, e2]) = [ϕ∗e1, ϕ∗e2]

• ρ′(ϕ∗e1) = f∗ρ(e1)

• 〈ϕ∗e1, ϕ∗e2〉 = (f−1)∗〈e1, e2〉

The corresponding infinitesimal notion is given by derivations.

Definition 3.3.4. A derivation D : E → E consists of a bundle endomorphism D : E → E and a
vector field X such that:

• D[e1, e2] = [De1, e2] + [e1, De2]

• X(〈e1, e2〉) = 〈De1, e2〉+ 〈e1, De2〉

holds for all e1, e2 ∈ Γ(E).

From the second condition it becomes clear that X is uniquely determined by D. For this reason
we write ρ(D) = X. The space Der(E) of derivations forms a Lie algebra.
Derivations satisfy two important identities. For all D ∈ Der(E), e ∈ Γ(E) and F ∈ C∞(M) the
following relations hold:

• D(fe) = fD(e) + ρ(D)(f)e

• ρ(De) = [ρ(D), ρ(e)]

The first identity motivates why these endomorphisms are called derivations. The map ρ : Der(E)→
X(M) is a homomorphism of Lie algebras. The adjoint action defined by ade1(e2) = [e1, e2] is a
derivation for all e1 ∈ Γ(E). Derivations of this form are called inner derivations.

3.4 Courant algebroid reductions

Let M be a manifold and G a Lie group which acts on M on the right by diffeomorphisms. Let g be
the Lie algebra of G defined using left invariant vector fields on G. By differentiation the right action
of G determines a Lie algebra homomorphism ψ : g→ X(M).
A lifted action of G on E is a right action of G on E by automorphisms covering the right action of
G on M . A lifted infinitesimal action is a Lie algebra homomorphism ψ̃ : g → Der(E) covering the
homomorphism ψ : g→ X(M). This means that the following diagram commutes:

g Der(E)

X(M) .

ψ̃

ψ
ρ

Consider a lifted action of G on E and assume that M is a principal G-bundle. This turns the quotient
space E/G into a vector bundle over M/E. There is a canonical identification between Γ(E/G) and
Γ(E)G, the set of G-invariant sections of E. If e1, e2 ∈ Γ(E) are G-invariant, then both [e1, e2] and
〈e1, e2〉 are also G-invariant. We define the anchor ρG as the composition

Γ(E/G) ' Γ(E)G Γ(TM)G Γ(T (M/G)) .
ρ
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Definition 3.4.1. The Courant algebroid (E/G, [·, ·], ρG, 〈·, ·〉) constructed above is called the simple
reduction of E by the lifted action of G.

Another notion of an action is the extended action introduced in [4]. Let G be a compact, connected,
semisimple Lie group with an action on M and a lifted action G→ Aut(E). Differentiating this lifted
action gives the lifted infinitesimal action µ : g→ Der(E). Let ad : Γ(E)→ Der(E) denote the adjoint
action of the sections of E. If the image of µ lies in the set of inner derivations, we can lift the action
of µ to an action g→ Γ(E). However, this doesn’t necessarily respect the different bracket structures
of g and Γ(E). In the case of interest this is not the case, so we will look at trivially extended actions
only.

Definition 3.4.2. Let G be a Lie group acting on the manifold M with induced infinitesimal action
ψ : g → X(M) and E a transitive Courant algebroid over a manifold M . A trivially extended
action α : g→ Γ(E) is an action α satisfying ρ ◦ α = ψ which integrates to an action of G on E.

The case of compact Lie groups G and exact Courant algebroids E can be characterized in terms of
the Cartan complex of equivariant cohomology. Since G is compact there exists a G-invariant splitting
s : TM → E. Let H be the associated 3-form of this splitting. We can compute the action of g on
E in two different ways. Firsly, for every e ∈ g we get e(X + θ) = Lψ(e)(X + θ). Secondly, writing
α(e) = ψ(e) + ξ(e), we get

e(X + θ) = [α(e), X + θ] = Lψ(e)(X + θ) + ιY (ιψ(e)H − dξ(e)) .

By comparing these two expressions we conclude that

dξ(e) = ιψ(e)H .

Furthermore, the condition that α is a Lie algebra homomorphism is given by

α([e1, e2]) = ψ([e1, e2]) + ξ([e1, e2])

= [ψ(e1) + ξ(e1), ψ(e2) + ξ(e2)]

= [ψ(e1), ψ(e2)] + Lψ(e1)ξ(e2)− ιψ(e2)(ιψ(e1)H − dξ(e1))

= ψ([e1, e2]) + Lψ(e1)ξ(e2) ,

from which we conclude that Lψ(e1)ξ(e2) = ξ([e1, e2]). If we view ξ as a g∗-valued 1-form then this
means that it is equivariant.

Definition 3.4.3. The Cartan complex of equivariant forms is the differential graded algebra of
equivariant polynomials g→ Ω•(M). In degree k, it is given by

ΩkG(M) =
⊕

2p+q=k

(Spg∗ ⊗ Ωq(M))G ,

where Sp denotes the symmetric algebra of degree p. The equivariant derivative dG is given by

dG(ϕ)(e) = d(ϕ(e))− ιψ(e)ϕ ,

with ϕ ∈ ΩkG(M) and e ∈ g.

We consider the element ϕ given by ϕ(e) = H + ξ(e). Its equivariant derivative is given by
dGϕ(e) = −〈α(e), α(e)〉. We introduce the bilinear form c(e) = −〈α(e), α(e)〉 and write this equation
as dGϕ = c. An extended action of this form acts on E = TM ⊕T ∗M by Lie derivative, so there is no
obstruction to integrating this to a G-action on E.
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Definition 3.4.4. Two extended actions are equivalent if they are related by an automorphism.

If two extended actions are equivalenttheir corresponding equivariant 3-forms differ by a dG-exact
term. A different invariant splitting leads to the addition of an exact term ϕ → ϕ + dGβ, with
β ∈ Ω2(M)G. This leads to theorem 2.13 of [4]:

Theorem 3.4.5. Let G be a compact Lie group. Then trivially extended G-actions on a fixed exact
Courant algebroid with prescribed quadratic form c(e) = −〈α(e), α(e)〉 are up to equivalence in bijection
with solutions to the equation dGϕ = c, with ϕ(e) = H + ξ(e) and H a representative of the Ševera
class of E.

3.4.1 Reduction by extended actions

An extended action α : g → Γ(E) is called non-degenerate if for every x ∈ M the bilinear form
cx(a, b) = −〈α(a)x, α(b)x〉 is non-degenerate. We denote the image of α by K and its annihilator by
K⊥. Both K and K⊥ are G-invariant. The action of G on P is free, so the rank of K is equal to the
dimension of G. Both K⊥ and K ∩K⊥ also have constant rank. We consider the vector bundle

Ered =
K⊥

K ∩K⊥
/G .

Taking the quotient ensures that the induced pairing is non-degenerate. If we take e1, e2 ∈ Γ(K⊥),
then for every x ∈ g we get

〈α(x), [e1, e2]〉 = ρ(e1)〈α(x), e2〉 − 〈e2, [e1, α(x)]〉 .

The first term vanishes because α(x) ∈ K and e2 ∈ K⊥. The second term can be rewritten as

−〈e2, [e1, α(x)]〉 = −ρ(e2)〈e1, α(x)〉+ 〈e2, [α(x), e1]〉 .

The first term vanishes again for the same reason. The second term contains [α(x), e1], which is the
action of x on e1. By G-invariance this term also vanishes. We conclude that for e1, e2 ∈ Γ(K⊥) we
get [e1, e2] ∈ Γ(K⊥). This means that Ered with the induced structures is a Courant algebroid.
Let e1, . . . , en be a basis for g. Take X ∈ X (P ), then X ∈ Γ(ρ(K⊥)) if there exists an β ∈ Ω1(P ) such
that for all 1 ≤ i ≤ n we get

〈X + β, ψ(ei) + ξ(ei)〉 =
1

2
(ξ(ei)(X) + β(ψ(ei)) = 0 .

Since ψ(ei) are nowhere vanishing and dim(P ) > dim(g), we can always find solutions for β. This
means that ρ, when restricted to K⊥, is surjective. Thus we conclude that the Courant algebroid
obtained through this reduction procedure is transitive.
For non-degenerate extended actions we get K ∩K⊥ = {0}, so we get

Ered = K⊥/G .

3.5 Lie Algebroids

Definition 3.5.1. A Lie algebroid L over M is a vector bundle L together with a skew-symmetric
bilinear form [·, ·] : Γ(E)⊗ Γ(E)→ Γ(E) and a bundle map π : L→ TM such that for all e1, e2, e3 ∈
Γ(L), f ∈ C∞(M) we get:

• [e1, [e2, e3]] = [[e1, e2], e3] + [e2, [e1, e3]]

• π([e1, e2]) = [π(e1), π(e2)]
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• [e1, fe2] = π(e1)(f)e2 + f [e1, e2]

A Lie algebroid is called regular if π has constant rank and transitive if π is surjective. A transitive
Lie algebroid A is called quadratic if V = Ker(π) is equipped with a non-degenerate bilinear pairing
〈·, ·〉 which is preserved in the sense that for all a ∈ Γ(A), b, c ∈ Γ(V ) we get:

π(a)(〈b, c〉) = 〈[a, b], c〉+ 〈b, [a, c]〉 .

Definition 3.5.2. Let G be a Lie group and P → M a principal G-bundle. The quotient of TP by
the action of G defines a vector bundle A = TP/G, such that sections of A can be identified with
G-invariant vectorfields on P . The Lie bracket of two G-invariant vectorfields is again G-invariant, so
this turns A into a Lie algebroid called the Atiyah algebroid of P .

We will assume that G is compact, connected and semisimple. Let g be the Lie algebra of G
and equip it with a G-invariant, non-degenerate bilinear form c(·, ·) = 〈·, ·〉. For any principal bundle
P →M with Atiyah algebroid A the kernel V of the anchor π can be identified with the adjoint bundle
gP = P ×G g. The pairing 〈·, ·〉 is G-invariant, so it induces a pairing on gP which we will also call
〈·, ·〉. With this pairing the Atiyah algebroid is a quadratic Lie algebroid.

3.6 Heterotic Courant Algebroids

Let H be a transitive Courant algebroid. The anchor ρ dualises to an injective map 1
2ρ
∗ : T ∗M → H.

Lemma 3.6.1. The quotient A = H/T ∗M carries the structure of a quadratic Lie algebroid.

Proof. The three relations between the bracket and the anchor are automatically satisfied since they
already hold for any Courant Algebroid. Hence we only need to show that the Dorfman bracket is
skew-symmetric on sections of A. For any 3 sections e1, e2, e3 of H we have the following identity:

〈[e1, e2] + [e2, e1], e3〉 = d〈e1, e2〉(ρ(e3)) .

Setting e2 = e1, we get

〈[e1, e1], e3〉 =
1

2
d〈e1, e1〉(ρ(e3)) .

This means that

[e1, e1] =
1

2
ρ∗(d〈e1, e1〉) .

Hence in the quotient A = H/T ∗M we find [e1, e1] = 0 and the bracket is skew-symmetric. Thus A
carries the structure of a Lie algebroid. The condition for the pairing is automatically satisfied for any
Courant algebroid.

Definition 3.6.2. A heterotic Courant algebroid is a transitive Courant algebroid H such that
there exists a principal G-bundle P for which A = H/T ∗M is isomorphic to the Atiyah algebroid of
P as quadratic Lie algebroids.

Let H be a heterotic Courant algebroid associated to the Atiyah algebroid A ' H/T ∗M . Let K be
the kernel of ρ and gP be the adjoint bundle. We get the exact sequence

0 K H TM 0
ρ

.

An isotropic splitting s splits the sequence above. The subspace s(TM) ∩ K gives a lift of gP to K
orthogonal to T ∗M . As such, it also splits the following sequence:

0 T ∗M K gP 0 .
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This determines a decomposition H = TM ⊕ gP ⊕ T ∗M where the anchor is the projection onto TM
and the paring is given by

〈X + s+ α, Y + t+ β〉 =
1

2
(β(X) + α(Y )) + 〈s, t〉 .

Not all quadratic Lie algebroids A associated to a principal G-bundle P → M come from a quotient
of transitive Courant algebroids H by the cotangent bundle. Let A be a connection with curvature
F . The closed 4-form 〈F, F 〉 represents the first Pontryagin class of P . The quadratic Lie algebroid A
comes from a transitive Courant algebroid if and only if the first Pontryagin class vanishes [4].

Theorem 3.6.3. Let P → M be a principal G-bundle with Atiyah algebroid A and a connection ∇
with curvature F . Let H0 be a 3-form such that dH0 = 〈F, F 〉. This pair determines a heterotic
Courant algebroid H such that H/T ∗M ' A. The bundle decomposes as H = TM ⊕ gP ⊕ T ∗M , the
anchor is given by the projection and the pairing is given by:

〈X + s+ α, Y + t+ β〉 =
1

2
(β(X) + α(Y )) + 〈s, t〉 .

The bracket is given by

[X + s+ α, Y + t+ β] = [X,Y ] +∇Xt−∇Y s− [s, t]− F (X,Y )

+ LXβ − ιY dα+ ιY ιXH
0 + 2〈t, ιXF 〉

− 2〈s, ιY F 〉+ 2〈∇s, t〉 .
(1)

Conversely, for a heterotic Courant algebroid with splitting s : TM → H there is a pair (∇, H0) with
dH0 = 〈F, F 〉 with the bracket given above.

Proof. The proof for this follows from the classification of transitive Courant algebroids [22].

Let H = TM ⊕ gP ⊕ T ∗M be a heterotic Courant algebroid. For a 2-form B we define the B-shift
as

eB(X + s+ α) = X + s+ α+ ιXB .

And for the gP -valued 1-form A we define the A-transform

eA(X + s+ α) = X + s−AX + α+ 〈2s−AX,A〉 .

Both of these transforms preserve the anchor and the pairing. If we write the dependence of the bracket
on ∇ and H0 explicitly, i.e., [·, ·] = [·, ·]∇,H0 , then the A-shift and the B-shift transform the bracket
as follows:

[eBu, eBv]∇,H0 = eB [u, v]∇,H0+dB ,

[eAu, eAv]∇,H0 = eA[u, v]∇+A,H0+2〈A,F∇〉+〈A,d∇A〉+ 1
3 〈A,[A,A]〉 .

Heterotic Courant algebroids can be obtained by reduction of exact Courant algebroids. Let σ : P →M
be a principal G-bundle. Every exact Courant algebroid is associated to a closed G-invariant 3-form
H. The Courant algebroid is then given by E = TP ⊕ T ∗P with the projection as anchor, the usual
pairing and the H-twisted Dorfman bracket. The action of G on P extends to an action of G on E
since H is G-invariant. As mentioned earlier, trivially extended actions α : g → Γ(E) correspond, up
to equivalence, to solutions to the equation dGϕ = c. Here ϕ(e) = H + ξ(e) and c(e) = −〈α(e), α(e)〉.
We will consider the case where the pairing is given by c, i.e., 〈e1, e2〉 = c(e1, e2) = −〈α(e1), α(e2)〉.
This leads to proposition 3.3 of [1]:
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Theorem 3.6.4. Equivalence classes of solutions to the equation dG(H + ξ) = c = 〈·, ·〉 correspond
to pairs (H0, A), where H0 is a 3-form on M and A a connection on P with curvature F satisfying
dH0 = 〈F, F 〉. The corresponding solution has H, ξ given by

H = σ∗(H0)− CS3(A) ,

ξ = −cA ,

where we view c as a map g→ g∗. Here CS3(A) is the Chern-Simons 3-form of A given by

CS3(A) = c(A,F )− 1

3!
c(A, [A,A]) .

Proof. We write the extended action α : g→ Γ(E) as α(x) = ψ(x)+ξ(x). Since c is non-degenerate, we
can write ξ = −cA′ for some g-valued 1-form A′. From the G-invariance of ξ and c we get that A′ has
to be G-invariant as well. With α(x) = ψ(x)− c(A′, x) the condition c(x, y) = −〈α(x), α(y)〉 becomes
2c(x, y) = c(A′(ψ(x)), y) + c(A′(ψ(y)), x). We choose a basis e1, . . . , en of g with corresponding dual
basis e1, . . . , en of g∗. Let A0 = Ai0ei be a connection 1-form on P , where Ai0(ψ(ej)) = δij . We can
write A′ as

A′ = aijA
jei +Biei ,

for some G-invariant functions aij and some 1-forms Bi ∈ Ω1(M) satisfying Bi(ψ(ej)) = 0. Note that
we left out pull-back notation. In this basis, the constraint 2c(x, y) = c(A′(ψ(x)), y) + c(A′(ψ(y)), x)
reads

2cij = aki cjk + akj cik .

Hence aki cjk = cij + βij , where βji = −βij . This means that aji = δji + cjkβki. Substituting this gives

A′ = A0 +Biei + βikc
kjAi0ej .

We define the connection A by A = A0 +Biei. With this notation, ξ is given by ξ = −cA− βijAi0ej .
If ϕ = H + ξ is a solution to dGϕ = c, then we can construct another solution ϕ′ = ϕ− dG( 1

2βijA
i
0A

j
0)

= H ′+ ξ′, with H ′ = H−d(βijA
i
0A

j
0) and ξ′ = ξ+βijA

i
0e
j = −cA. This shows that up to equivalence

every solution of dG(H + ξ) = c is given by an extended action ξ = −cA for some connection A.
We now need to find the closed invariant 3-form H for which the condition dG(H−cA) = c is satisfied.
We write the connection A as A = Aiei. We can now decompose H as

H = H0 +H1
i A

i +
1

2
H2
ijA

i ∧Aj +
1

6
H3
ijkA

i ∧Aj ∧Ak .

Note that pull-back notation is again suppressed. We write the structure constants with respect to
the basis as ckij , meaning that [ei, ej ] = ckijek. We also write cijk = clijclk. The curvature of A is given

by F iei with F k = dAk + 1
2c
k
ijA

i ∧ Aj . With this notation, the condition dG(H − cA) = c becomes

dGH − cijF iej + 1
2cijkA

i ∧ Ajek = 0. By comparing coefficients we find H3
ijk = cijk, H2

ij = 0 and

H1
i = −cijF j . We recognize this as H = H0 − CS3(A). Since H has to be closed and dCS3(A) =

c(f, F ), we get dH0 = c(F, F ). Conversely any pair (H0, A) satisfying dH0 = c(F, F ) gives a solution
to dG(H − cA) = c, where H = H0 − CS3(A).
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4 Generalized geometry

4.1 Generalized metrics

Definition 4.1.1. A generalized metric on a Courant algebroid E is a self-adjoint orthogonal bundle
automorphism G : E → E which satisfies

〈Gex, ex〉 > 0

for all non-zero vectors ex ∈ Ex.

Since G is self-adjoint and orthogonal it squares to the identity. It has eigenvalues 1 and −1 and
we denote the eigenspaces by V+ and V−. This means that G restricted to V± gives ±Id. Therefore a
generalized metric is completely determined by its eigenspaces V+ and V−. For this reason the choice
of an eigenspace V+ is equivalent to the generalized metric G.

Lemma 4.1.2. The restriction ρ± of ρ to V± is surjective.

Proof. Assume that there is an X ∈ X(M) which does not lie in the image of ρ+. Consider α ∈ Ω1(M)
such that α(X) 6= 0. As an element of E, α is orthogonal to V+, so it has to be a section of V−.
However, it has zero norm, contradicting the fact that 0 is the only element of zero norm in V−.
Therefore we conclude that ρ+ is surjective. The same proof applies to ρ−.

Theorem 4.1.3. Let E be an exact Courant algebroid over a manifold M . A generalized metric G is
equivalent to a metric g on M and an isotropic splitting s : TM → E.

Proof. First we assume there is a generalized metric G with eigenspaces V+ and V−. The signature
of the pairing of E is (n, n) and ρ− is surjective by lemma 4.1. By dimension counting ρ− is an
isomorphism. Denote the inverse of ρ− by λ such that λ : TM → E, λ = (ρ−)−1. This induces a
Riemannian metric g on M given by

g(X,Y ) = −〈λ(X), λ(Y )〉 .

We define the splitting s : TM → E by s(X) = λ(X) + g(X). For vectorfields X,Y ∈ X(M) we get

〈s(X), s(Y )〉 = 〈λ(X) + g(X), λ(Y ) + g(Y )〉

= 〈λ(X), λ(Y )〉+
1

2
(ιρ(λ(X))g(Y ) + ιρ(λ(Y ))g(X))

= 〈λ(X), λ(Y )〉+
1

2
(g(Y,X) + g(X,Y ))

= 0 .

Hence this splitting is indeed isotropic. Now assume we have a metric g on M and an isotropic
splitting s : TM → E. We use the splitting to identify E ' TM ⊕ T ∗M . With this identification, the
eigenspaces are given by

V+ = {X + g(X)|X ∈ TM} ,

V− = {X − g(X)|X ∈ TM} .

These eigenspaces uniquely determine the generalized metric G. Since the eigenspaces are orthogonal
complements either V+ or V− would already give enough information to reconstruct G.
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Note that a choice of splitting s corresponds to a choice of a 3-form H representing the Ševera class
of E. This means that a generalized metric corresponds to a pair (g,H), where g is a metric on M
and H is a representative of the Ševera class of E.
A different choice of the splitting leads to a B transform. Therefore, in a general splitting the
eigenspaces have the form

V+ = {X + g(X) + ιXB|X ∈ TM} ,

V− = {X − g(X) + ιXB|X ∈ TM} .

For heterotic Courant algebroids the situation is very similar. We can identify H ' TM ⊕ gP ⊕ T ∗M
using a splitting s : TM → H. The pairing is the canonical pairing and the bracket is given by Equation
1. Hence this identification corresponds to a choice of connection and a choice of representative of the
Ševera class. With the identification, the eigenspaces are given by

V+ = {X + t+ g(X)|X ∈ TM, t ∈ gP } ,
V− = {X − g(X)|X ∈ TM} .

This shows that a generalized metric on H is equivalent to a triple (g,∇, H), where g is a metric on
M , ∇ a connection on gP and H a representative of the Ševera class of H. If we denote the projections
to gP and T ∗M by πgP and πT∗M , the connection ∇ and the 3-form H are given by

∇Xa = πgP ([X, a]H) ,

ιY ιXH = πT∗M ([X,Y ]H) .

A different choice of splitting now leads to a (B,A)-transform. Therefore, in a general splitting the
eigenspaces have the form

V+ = {X + t−AX + g(X) + ιXB + 〈2t−AX,A〉|X ∈ TM, t ∈ gP } ,
V− = {X −AX − g(X) + ιXB − 〈AX,A〉|X ∈ TM} .

For any Courant algebroid E with generalized metric G we define the projections Π± : E → V±,
Π± = 1

2 (Id∓ G). We will use the notations e+ = Π+e and e− = Π−e.

4.2 Generalized connections

Definition 4.2.1. A generalized connection D on a Courant algebroid E is a bundle map

D : Γ(E)→ Γ(E∗ ⊗ E) ,

satisfying the Leibniz rule
De1fe2 = ρ(e1)fe2 + fDe1e2 ,

and which is compatible with the pairing:

ρ(e1)〈e2, e3〉 = 〈De1e2, e3〉+ 〈e2, De1e3〉 ,

for all e1, e2, e3 ∈ Γ(E), f ∈ C∞(M).

Generalized connections always exist. We can construct one by taking any normal connection ∇E
on E compatible with the pairing and define

De1e2 = ∇Eρ(e1)e2 .

The torsion TD ∈ Λ3(E∗) is defined as

TD(e1, e2, e3) = 〈De1e2 −De2e1 − [[e1, e2]], e3〉+
1

2
(〈De3e1, e2〉 − 〈De3e2, e1〉) ,
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where [[e1, e2]] = 1
2 ([e1, e2] − [e2, e1]) is the skew-symmetrization of the Dorfman bracket. The diver-

gence of a section e ∈ Γ(E) with respect to a generalized connection D is defined as

divD(e) = Tr(De) =

n∑
i=1

〈Deie, e
i〉 ,

where e1, . . . , en is a basis of E and e1, . . . , en is the dual basis. For normal metrics there is a unique
connection which is both torsion free and compatible with the metric, known as the Levi-Civita con-
nection. However, in the generalized setting uniqueness is lost. The divergence satisfies the Leibniz
rule

divD(fe) = ρ(e)(f) + fdivD(e) ,

for all e ∈ Γ(E), f ∈ C∞(M). A generalized connection D is compatible with a generalized metric G
if it preserves the eigenspaces, meaning

D(Γ(V±)) ⊂ Γ(E∗ ⊗ V±) .

For sections e+
1 ∈ Γ(V+), e−2 ∈ Γ(V−) we define the generalized curvature as

GR(e+
1 , e
−
2 ) = De+1

De−2
−De−2

De+1
−D[[e+1 ,e

−
2 ]] .

Explicit calculations of the generalized curvature can be found in [10].

4.3 Generalized complex geometry

Generalized complex geometry was first introduced by Nigel Hitchin [15] and later developed by Marco
Gualtieri [14].

Definition 4.3.1. Let V be a real vector space. A generalized complex structure on V is an
endomorphism J of V ⊕ V ∗ satisfying J 2 = −Id and J ∗ = −J .

Here V ⊕ V ∗ is identified with its dual by the canonical pairing.
Any generalized complex structure is orthogonal, meaning that J ∗J = Id. Let J be a linear complex
structure on V and define

JJ =

(
−J 0
0 J∗

)
.

The endomorphism JJ satisfies J 2
J = −Id and J ∗J = −JJ , meaning that it is a generalized complex

structure.
Let ω be a linear symplectic structure, viewed as a map V → V ∗. Then we define

Jω =

(
0 −ω−1

ω 0

)
.

The endomorphism Jω satisfies J 2
ω = −Id and J ∗ω = −Jω, meaning that it is a generalized complex

structure. Thus a linear generalized complex structure is a generalization of both linear complex and
linear symplectic structures.
A generalized linear complex structure on V is equivalent to a maximal isotropic linear subspace
L ⊂ (V ⊕ V ∗) ⊗ C of real index 0, meaning that L ∩ L̄ = {0}. The subspace L is given by the
i-eigenspace. For x, y ∈ L, we find 〈J x,J y〉 = 〈x, y〉 by orthogonality of J , but since x, y ∈ L we also
get 〈J x,J y〉 = 〈ix, iy〉 = −〈x, y〉. Hence we get 〈x, y〉 = 0, meaning that L is indeed isotropic. Now
L̄ is the −i-eigenspace, so L⊕ L̄ = (V ⊕V ∗)⊗C and L∩ L̄ = {0}, which means that L is a maximally
isotropic subspace of real index 0.
For a given subspace L, we can define J to be multiplication by i on L and multiplication by −i on
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L̄. The real transformation then defines a linear generalized complex structure J on V .
We can define complex and symplectic structures on manifolds. These structures correspond to
smoothly varying linear complex and symplectic structures together with an integrability condition.
For complex structures the integrability condition is the vanishing of the Nijenhuis tensor. For sym-
plectic structures the integrability condition is closedness of the symplectic form. Generalized complex
structures follow the same approach.

Definition 4.3.2. A generalized almost complex structure J on a manifold M is a smoothly
varying linear generalized complex structure J ∈ Γ(End(TM⊕T ∗M)). A generalized almost complex
structure is integrable if the i-eigenspace L ⊂ (TM ⊕ T ∗M) ⊗ C in involutive under the Dorfman
bracket. An integrable generalized almost complex structure is called a generalized complex structure.

We decompose (TM⊕T ∗M)⊗C = L⊕ L̄ and define the projection E = ρ(L) ⊂ TM⊗C, satisfying
E⊕Ē = TM⊗C. The type of a generalized complex manifold at a point x ∈M is the real codimension
of Ex in TxM⊗C. This type may or may not be constant over the manifold M . For generalized complex
structures of constant type, the two extremal cases of type 0 and type n = dim(M) correspond to
symplectic and complex structures.
The generalized complex structure Jω induced by the symplectic form ω is of constant type 0 and
given by

Jω =

(
0 −ω−1

ω 0

)
.

The maximal isotropic subbundle L is given by

L = {X − iω(X)|X ∈ TM ⊗ C} .

This subbundle is involutive for a non-twisted Dorfman bracket if and only if dω = 0.
The generalized complex structure JJ induced by the complex structure J is of constant type n and
given by

JJ =

(
−J 0
0 J∗

)
.

The maximal isotropic subbundle L is given by

L = T 0,1M ⊕ T 1,0∗M .

This subbundle is involutive for a non-twisted Dorfman bracket if and only if J is integrable as an
almost complex structure.
Each maximal isotropic subbundle L ⊂ (TM ⊕ T ∗M)⊗ C corresponds to a line bundle K ⊂ Λ•T ∗M
[5]. The bundle L is the annihilator of K with respect to Clifford multiplication:

L = {X + α ∈ (TM ⊕ T ∗M)⊗ C|(X + α) ·K = 0} .

The bundle K is called the canonical bundle. We can explicitly construct it as follows:
First, for any vector space V , subspace E ⊂ V and ε ∈ Λ2E∗ we define

L(E, ε) = {X + α ∈ E ⊗ V ∗|α|E = ιXε} .

Claim 1. This subspace is maximally isotropic. Moreover, any maximally isotropic subspace L is of
this form.

To show this, consider the projection π : V ⊗ V ∗ → V and define E = π(L). Since L is isotropic
we have L∩ V ∗ ⊂ Ann(E), and since L is maximally isotropic we get an equality. For any X + α ∈ L
we define ε(X) = [α] ∈ V ∗/Ann(E) ' E∗. Now every element of L can be written as X + ιXε + β,
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where β ∈ Ann(E). Since X + ιXε+ β ∈ L(E, ε), we conclude that L ⊂ L(E, ε). By the maximality
of L, we conclude that L = L(E, ε).
For any nonzero spinor ϕ ∈ Λ•V ∗ the null space is defined as

Lϕ = {e ∈ V ⊕ V ∗|e · ϕ = 0} .

For any nonzero spinor this null space is isotropic. If in addition it is maximal, the spinor is called
a pure spinor. This means that pure spinors are elements of canonical bundles of maximal isotropic
subspaces.

Lemma 4.3.3. The canonical bundle of L(E, ε) is given by K = exp(ε)·det(Ann(E)), where det(Ann(E))
is the determinant bundle of Ann(E) and exp(ε) · ϕ = ϕ− ε ∧ ϕ for any ϕ ∈ U .

Proof. First we note that L(E, ε) = exp(ε)L(E, 0), where exp(ε) denotes the ε-transform. Now if X+α
annihilates ϕ, then exp(ε)(X+α) = X+α+ ιXε annihilates exp(ε) ·ϕ. Hence we can restrict ourselves
to the case ε = 0. Take any nonzero ϕ ∈ K = det(Ann(E)), then (X + α) · ϕ = ιXϕ + α ∧ ϕ = 0
holds if and only if ιXϕ = 0 and α ∧ ϕ = 0. This means that X ∈ E and α ∈ Ann(E), showing that
L(E, 0) = Lϕ.

With this, we can define an alternative grading on the complex of differential forms. We define
U0 = K and Uk = ΛkL̄ · U0 for 1 ≤ k ≤ 2n. Thus we decompose Λ•T ∗M ⊗ C as

Λ•T ∗M ⊗ C = U0 ⊕ · · · ⊕ U2n .

Clifford multiplication by sections of L has degree −1 and Clifford multiplication by sections of L̄ has
degree 1. Furthermore, we have the symmetry Ūk = U2n−k.
In complex geometry the exterior derivative splits in the Dolbeault operators, d = ∂ = ∂̄. In generalized
complex geometry it is also possible to define operators ∂, ∂̄ analogous to the Dolbeault operators.
Explicitly, they are given by:

∂ = πk−1 ◦ d : Γ(Uk)→ Γ(Uk−1) ,

∂̄ = πk+1 ◦ d : Γ(Uk)→ Γ(Uk+1) .

Here πk is the projection onto Uk. The generalized almost complex structure J is integrable if and
only if d = ∂ + ∂̄. The proof can be found in [14]. Just as in complex geometry, we find ∂2 = ∂̄2 = 0
and ∂∂̄ = −∂̄∂ as a consequence of d2 = 0. This is because ∂2, ∂̄2 and ∂∂̄+ ∂̄∂ all map into a different
Un.
For a generalized complex structure JJ associated to a complex structure J , the new grading is well
known. Here U0 = Λn,0T ∗M and

Uk =
⊕
p

Λn−p,k−pT ∗M ,

for k ≥ 1. The operators ∂ and ∂̄ are the Dolbeault operators and dJJ = dc.

4.4 Generalized Kähler structure

We want to combine the notion of generalized complex structures with that of a generalized metric. For
this, we impose the condition that J leaves the eigenspaces V+ and V− invariant. This implies that G
and J commute. From this we find that (GJ )2 = −Id and (GJ )∗ = J ∗G∗ = −JG = −GJ , meaning
that GJ defines a new generalized almost complex structure. Imposing that this new generalized
complex structure is integrable leads to the notion of generalized Kähler structures.
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Definition 4.4.1. A generalized Kähler structure is a pair (J1,J2) of commuting generalized
complex structures for which G = −J1J2 is a generalized metric.

Any Kähler structure (g, ω, J) defines a generalized Kähler structure by taking J1 = JJ and
J2 = Jω. The corresponding generalized metric is given by

G =

(
0 g−1

g 0

)
.

Let (J1,J2) be a generalized Kähler structure. Write the generalized metric G = −J1J2 as follows:

G =

(
A g−1

σ A∗

)
.

If we square this, we get

G2 =

(
A2 + g−1σ Ag−1 + g−1A∗

σA+A∗σ σg−1 + (A∗)2

)
=

(
IdTM 0

0 IdT∗M

)
.

Now we define the 2-form b = −gA. Using the equation above, we can write

G =

(
−g−1b g−1

g + bg−1b bg−1

)
.

From this we see that a generalized Kähler metric is completely determined by a Riemanian metric
g and a 2-form b. In terms of these maps, the eigenspaces V± are given as the graph of b ± g. The
2-form b is not necessarily closed. The torsion of a generalized Kähler structure is the 3-form h = db.

4.4.1 Relation to Bi-Hermitian geometry

The restrictions of the anchor ρ± = ρ|V± are isomorphisms V± ' TM . We can use these isomorphisms

to transform geometric structures on V± to geometric structures on TM . By compatibility with the
generalized metric we find J1|V+

= J2|V+
and J1|V− = −J2|V− . Because of this we only need to

transform J1. This results in two almost complex structures J± on TM which are compatible with
the induced generalized metric g.
The generalized Kähler structure (J1,J2) is equivalent to the quadruple (g, b, J+, J−) of a Riemannian
metric g, a 2-form b and two almost complex structures J± compatible with the metric g. This
quadruple is subject to integrability conditions.
We first note that ρ[e1, e2] = [ρ(e1), ρ(e2)], since ρ is the anchor. This means that subbundles closed
under the Dorfmann bracket get projected onto subbundles closed under the Lie bracket. This implies
that the almost complex structures J± are integrable turning (g, J−, J+) into a bi-Hermitian structure.
We define the 2-forms ω± by

ω±(X,Y ) = g(J(X), Y ) .

Let T 1,0
± be the i-eigenbundle of J± and L±1 = (ρ|V± )−1T 1,0

± be the preimage under the restriction of

the anchor. These are explicitly given as

L+
1 = {X + (b+ g)(X)|X ∈ T 1,0

+ }
= {X + (b− iω+)(X)|X ∈ T 1,0

+ } ,

L−1 = {X + (b− g)(X)|X ∈ T 1,0
− }

= {X + (b+ iω−)(X)|X ∈ T 1,0
− } .
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Now we can find the integrability conditions for these bundles from Proposition 6.16 from [13]: A
subbundle F ⊂ (TM ⊕ T ∗M)⊗ C given by

F = {X + c(X)|X ∈ E} .

For some complex 2-form c and a subbundle E is Courant integrable if and only if E is Lie integrable
and c satisfies

ιXιY dc = 0 ,

for all X,Y ∈ E.
This means that J± are integrable almost complex structures and

db = dc−ω− = −dc+ω+ ,

where dc± is the dc-operator associated with J±.

4.5 SKT structures

Definition 4.5.1. A strong Kähler structure with torsion, or SKT structure, is a Hermitian
structure (g, J) on an manifold M for which the corresponding Hermitian 2-form ω satisfies ddcω = 0.

In the context of Courant algebroids, this definition generalizes to the following [6]:

Definition 4.5.2. A SKT structure on an exact Courant algebroid E is a generalized metric G with
a complex structure J on the positive eigenspace V+ which is orthogonal with respect to the pairing
and for which the i-eigenspace is involutive.

Since ρ+ : V+ → TM is an isomorphism interchanging the brackets, we can use J to define a
complex structure J on M by setting J = J ◦ ρ−1

+ . Integrability of J implies the integrability of J .

We take the metric g to be the one induced by ρ+, meaning that g(X,Y ) = 〈ρ−1
+ (X), ρ−1

+ (Y )〉. In fact,
this metric is the same as the metric induced by ρ−. Now (g, J) defines an SKT structure on M [6].
Furthermore, H = dcω represents the Ševera class of E.

Definition 4.5.3. A hyper KT structure on a Riemannian manifold (M, g) is a triple I, J,K of
complex structures which are Hermitian with respect to g satisfying IJ = K and

dcIωI = dcJωJ = dcKωK = H .

for a closed 3-form H.

This also has an analogous definition for exact Courant algebroids:

Definition 4.5.4. A hyper KT structure on an exact Courant algebroid E is a generalized metric
G together with 3 generalized complex structures I, J and K on V+ satisfying IJ = K.
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5 The Strominger system and Killing spinors

5.1 Supergravity

Heterotic string theory leads to a spectrum of massless states and higher excited massive states. The
massless states consist of the spacetime metric g, the field strength H, the dilaton ϕ and the gauge
connection A. The higher excited states have masses associated to the string scale α′. This scale has
to be close to the Planck scale in order to give Newtonian gravity in the low energy limit. This energy
scale is so high that there is currently no hope to approach it in experiments. Because of this, we
will consider the low energy limit of the theory. The resulting effective field theory is called heterotic
supergravity. This theory only contains the massless fields having truncated out all the massive fields.
The action of the supergravity theory with these fields can be constructed using the Noether method
[24]. The bosonic part of the action of heterotic supergravity is given by [17]:

S =

∫
M10

e−2ϕ

(
R− 4|dϕ|2 +

1

12
|H|2 +

α′

4
(Tr(|F |2 − Tr|R|2)

)
dvol .

Here R is the Ricci scalar of g, F the curvature of the gauge connection of the SO(32) or E8 × E8

gauge bundle and R is the curvature with respect to g. The field strength H is given by

H = dB +
α′

4
(CS3(A)− CS3(∇)) ,

with ∇ a connection constructed as follows. Let ∇LC be the Levi-Civita connection of g. Then we
define a new connection ∇ by

∇XY = ∇LCX Y +
1

2
g−1(ιY ιXH) .

The norm of a differential form α is given by |α|2dvol = α ∧ ∗α, where ∗ is the Hodge star operator.
By varying this action with respect to the inverse metric gµν , the Kalb-Ramond field B, the gauge
connection A and the dilaton ϕ, we get the equations of motion:

Rµν −∇µ∇νϕ−
1

4
HµαβH

αβ
ν + α′(Tr(FµαF

α
ν )− Tr(RµαRαν )) = 0 ,

d∗(e−2ϕH) = 0 ,

d∗A(e−2ϕF ) +
e−2ϕ

2
∗ (F ∧ ∗H) = 0 ,

R− 4∆ϕ− 4|dϕ|2 − 1

2
|H|2 − α′(Tr(|F |2 − Tr|R|2) = 0 .

The supersymmetric partners of the bosonic fields are the gravitino ψM , the dilatino λ and the gaugino
χ. We denote the 10-dimensional gamma matrices by ΓM for 0 ≤ M ≤ 9. The supersymmetry
transformations of these fields are given by

δψM = (∇LCM +
1

8
HMNPΓN ∧ ΓP )ε ,

δλ = ( /∇ϕ+
1

12
HMNPΓM ∧ ΓN ∧ ΓP )ε ,

δχ = −1

2
FMNΓM ∧ ΓNε .

Once we have a solution which extremizes the action, we need to impose that the transformations
vanish, δψM = δλ = δχ = 0, in order to satisfy supersymmetry.
We consider the theory on a compactified space M ×X, where M is 4-dimensional Minkowski space
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and X is a compact 6 dimensional manifold known as the internal space. These constraints impose
certain restrictions on the geometry of the internal space which were first formulated by Strominger
[21]. The conditions δψM = δλ = 0 imply the existence of spinors η± satisfying ∇+η± = 0 which we
will assume to be normalized. With these spinors we can define

JNM = iη†+g
NPΓM ∧ ΓP η+ . (2)

This tensor J satisfies J2 = −Id, which means that it is an almost complex structure. In addition the
Nijenhuis tensor vanishes, meaning that the almost complex structure is integrable [21]. If the 2-form
ω defined by ω(X,Y ) = g(J(X), Y ) is closed, the manifold is Kähler. The field strength H is given
in terms of ω as H = dcω = i(∂̄ − ∂)ω, where ∂ and ∂̄ are the Dolbeault operators. The restrictions
on the geometry of the space are combined in the form of a system of differential equations called the
Strominger system.

5.2 The Strominger system

For this section we will use the formulation of the Strominger system given by Mario Garcia Fernandez
in his lectures on the Stominger system [9].

Definition 5.2.1. A topological Calabi Yau manifold is a pair (X,Ω) consisting of a complex
manifold X of dimension n and a nowhere vanishing section Ω of the bundle ΛnT ∗X.

A hermitian metric on X is a metric g which is compatible with the almost complex structure J ,
meaning that g(J(X), J(Y )) = g(X,Y ) for all X,Y ∈ X(X). We will write g(J(X), Y ) = ω(X,Y ) for
all X,Y ∈ X(X). We denote by Λω : Ωk(X)→ Ωk−2(X) the operator

ψ 7→ ιω#ψ = ∗(ω ∧ ∗ψ) ,

which in coordinates is given by ωi1i2ψi1...in , where ωij = (ω−1)ij . The norm ||Ω||2ω is given by

||Ω||2ω
ωn

n!
= (−1)

n(n−1)
2 inΩ ∧ Ω̄ .

The dilatino equation for a hermitian metric g on (X,Ω) is given by

d∗ω = dclog(||Ω||ω) .

This equation is equivalent to the conformally balanced equation

d(||Ω||ωωn−1) = 0 .

Let g be a balanced metric on X, meaning that dωn−1 = 0. Let E be a holomorphic vector bundle
over X of rank r and write Ωp,q(E) for the E-valued (p, q)-forms. The holomorphic structure on E is
equivalent to a Dolbeault operator

∂̄E : Ωp,q(E)→ Ωp,q+1(E) ,

satisfying ∂̄2
E = 0. For a hermitian metric h on E, there is an associated unitary Chern connection A.

This is the unique connection satisfying

d0,1
A = ∂̄E ,

d(s, t)h = (dAs, t) + (s, dAt) ,

where s, t ∈ Γ(E) and dA is the covariant derivative associated to A. The curvature of the unitary
Chern connection is the End(E)-valued (1, 1)-form

Fh = d2
A .
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For a hermitian metric h on E, the Hermite-Einstein equation is given by

ΛωFh = iλId ,

for a real constant λ. A unitary connection is called a Hermite-Yang-Mills connection if

ΛωFA = iλId ,

F 0,2
A = 0 .

We now have all the ingredients for the Strominger system.

Definition 5.2.2. Let (X,Ω) be a topological Calabi-Yau manifold with E → X a holomorphic vector
bundle and g, h hermitian metrics on TX and E respectively. Let A be a unitary connection on (E, h)
and ∇ a unitary connection on (TX, g, J). Then the Strominger system is given by

ΛωFh = 0, F 0,2
h = 0 ,

ΛωR∇ = 0, R0,2
∇ = 0 ,

d∗ω − dclog(||Ω||ω) = 0 ,

ddcω − α(Tr(R ∧R)− Tr(Fh ∧ Fh)) = 0 ,

where α is a real constant.

The first two equations are the condition that both A and ∇ are Hermite-Yang-Mills connections.
The third equation is the dilatino equation. The last equation is called the Bianchi identity and couples
two Hermite-Yang-Mills connections A and ∇ to a conformally balanced metric g with induced 2-form
ω.

5.3 Killing spinors

For a given generalized metric we can define the Gualtieri-Bismut connection [13]. Let C+ denote the
orthogonal complement of gP in V +, meaning

C+ = g⊥P ⊂ V + .

If we restrict ρ to C+, we get an isomorphism

ρ|C+ : C+ ∼−→ TM .

With this, we define the map

C = ρ|−1
V−
◦ ρ ◦Π+ + ρ|−1

C+ ◦ ρ ◦Π− .

This map sends V− to C+ and V+ to V−. In the splitting E ' TM ⊕ gP ⊕ T ∗M , this map is given by

C(X + g(X) + t) = X − g(X) ,

C(X − g(X)) = X + g(X) ,

for X ∈ X(M), t ∈ gP and induced metric g seen as a map TM → T ∗M .

Definition 5.3.1. Let E be a transitive Courant algebroid with generalized metric G. The Gualtieri-
Bismut connection DB associated to the generalized metric G is given by

DB
e1e2 = [e1−, e2+]+ + [e1+, e2−]− + [C(e1+), e2+]+ + [C(e1−), e2−]− .
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The torsion of DB is denoted by TDB . From this, we construct the canonical generalized Levi-Civita
connection DLC . For e1, e2, e3 ∈ Γ(E), the generalized connection DLC is given by

〈DLC
e1 e2, e3〉 = 〈DB

e1e2, e3〉 −
1

3
TDB (e1, e2, e3) .

In Riemannian geometry the Levi-Civita connection is the unique torsion free connection which is
compatible with the metric. In the generalized case, uniqueness is lost. We can deform this generalized
connection by a Weyl term, which keeps the generalized connection torsion free and compatible with
the generalized metric. For ϕ ∈ E∗, the Weyl term χϕ is given by

〈χϕe1e2, e3〉 = ϕ(e2)〈e1, e3〉 − ϕ(e3)〈e1, e2〉 .

All Weyl terms are of this form. With respect to the eigenspaces of the generalized metric, we write

χϕ±±±e1 e2 = Π±χ
ϕ

e±1
e±2 .

Using this, we define a new torsion free generalized connection which is compatible with the generalized
metric as follows:

Dϕ = DLC +
1

3(rank(V+)− 1)
χϕ+++ +

1

3(rank(V−)− 1)
χϕ−−− .

Explicit calculations for these connections come from [11].
We will now assume that M is a spin manifold of dimension 6. Since rank(V−) = 6, we can decompose
the spin bundle in positive and negative half spinor bundles

Spin(V−) = Spin−(V−)⊕ Spin+(V−) ⊂ C`(V−) .

For ψ ∈ C∞(M), we take the generalized connection Dϕ associated to V+ and the 1-form

ϕ = 6dψ .

We will write
Dϕ
± : Γ(V−)→ Γ((V−)⊗ V ∗±)

for the induced differential operators. These operators work on spinors as

Dϕ
± : Γ(Spin+(V−))→ Γ(Spin+(V−))⊗ V ∗±) .

This gives rise to an associated Dirac operator

/D
ϕ
− : Γ(Spin+(V−))→ Γ(Spin−(V−)) .

Definition 5.3.2. Let M be a spin manifold of dimension 6, E a heterotic Courant algebroid over M ,
G a generalized metric and η ∈ Spin+(V−) a positive chirality spinor. The Killing spinor equations
are given by

Dϕ
+η = 0 ,

/D
ϕ
−η = 0 .

Solutions to the Killing spinor equations are respected by Courant algebroid isomorphisms. This
means that if η is a solution to the Killing spinor equations obtained from V+ and ψ and (ϕ, f) is an
isomorphism, then ϕ∗η satisfies the Killing spinor equations for ϕ(V+) and f∗ψ.
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Recall that a generalized metric on a heterotic Courant algebroid is equivalent to a triple (g,∇θ, H).
We define the connections ∇± in terms of the Levi-Civita connection ∇LC and H by

g(∇±XY, Z) = g(∇LCX , Y, Z)± 1

2
H(X,Y, Z) .

Consider the following sections of E:

a+ = X + s+ g(X) ,

b− = Y − g(Y ) ,

c+ = Z + t+ g(Z) ,

d− = W − g(W ) .

The Bismut-Gualtieri connection for these sections is given by

DB
a+
c+ = 2Π+

(
∇+
XZ + g−1c(ιXF, t)

)
+∇θXt− F (X,Z) ,

DB
b−c+ = 2Π+

(
∇+
Y Z + g−1c(ιY F, t)

)
+∇θY t− F (Y, Z) ,

DB
a+
d− = 2Π−

(
∇−XW + g−1c(ιWF, s)

)
,

DB
b−d− = 2Π−

(
∇−YW

)
.

Now we consider the generalized connection D′ = ∇g ⊕∇θ ⊕∇g−1

on E = TM ⊕ gP ⊕ T ∗M , where
∇g and ∇g−1

denote the Levi-Civita connection and the induced Levi-Civita connection respectively.
On e1 = X + s+ α and e2 = Y + t+ β, the generalized connection D′ acts as

D′e1e2 = ∇gXY +∇θXt+∇g
−1

X β .

When comparing this expression to the expressions for DB , we see that a couple of terms are missing.
For e = X + s+ α, we construct the following endomorphisms to make up for this difference:

χ′e =

 0 0 0
−ιXF −c−1(c(s, [·, ·])) 0

ιXH − 2c(F, s) 2c(ιXF, ·) 0

 ,

and

χ′Ce =

 0 0 0
−ιXF 0 0
ιXH 2c(ιXF, ·) 0

 .

These endomorphisms are precicely constructed such that

DB = D′ + (χ′C)+++ + (χ′)−−− + (χ′)−+− + (χ′)+−+ . (3)

Using Lemma 3.5 of [10] we can now easily compute the torsion of DB . The torsion of DB is given by

TDB (e1, e2, e3) = 〈χBe1+
e2+, e3+〉+ 〈χBe1−e2−, e3−〉 .

Here χB is given by

χBe =

 0 0 0
−ιXF c−1(c(s, [·, ·])) 0

2ιXH − 2c(F, s) 2c(ιXF, ·) 0

 ,

with e = X + s+ α. From this we get an explicit expression for DLC , namely:

DLC = DB − 1

3
(χB)+++ − 1

3
(χB)−−− .
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Now we introduce new connections ∇± 1
3 on TM given by

g(∇±
1
3

X Y, Z) = g(∇LCX Y,Z)± 1

6
H(X,Y, Z) .

The generalized Levi-Civita connection now acts on a+, b−, c+ and d− as

DLC
a+
c+ = 2Π+

(
∇+ 1

3

X Z +
2

3
g−1c(ιXF, t) +

1

3
g−1c(ιZF, s)

)
+∇θXt−

2

3
F (X,Z)− 1

3
c−1(c(s, [t, ·])) ,

DLC
b− c+ = 2Π+

(
∇+
Y Z + g−1c(ιY F, t)

)
+∇θY t− F (Y,Z) ,

DLC
a+
d− = 2Π−

(
∇−XW + g−1c(ιWF, s)

)
,

DLC
b− d− = 2Π−

(
∇−

1
3

Y W
)
.

Lastly, we are able to explicitly compute Dϕ for 1-forms ϕ. This generalized connection is given by

Dϕ
a+
c+ = DLC

a+
c+ +

1

3(rank(V+)− 1)
Π+ (ϕ(Z)a+ − 2(g(X,Z) + c(s, t))ϕ) ,

Dϕ
b−
c+ = DLC

b− c+ ,

Dϕ
a+
d− = DLC

a+
d− ,

Dϕ
b−
d− = DLC

b− d− +
1

3(rank(V−)− .1)
Π− (ϕ(W )b− − 2g(Y,W )ϕ)

(4)

Now we can formulate the Killing spinor equations more explicitly.

Lemma 5.3.3. The Killing spinor equations are equivalent to the following set of equations:

F · η = 0 ,

∇−η = 0 ,

(H + 2dψ) · η = 0 ,

dH − c(F ∧ F ) = 0 .

Note that the anchor provides an isomorphism ρ|V− between V− and TM , which we use to identify

Spin(V−) with Spin(TM). The differential forms F,H and dϕ act on Spin(TM) as sections of
Λ•(T ∗M) ⊂ C`(TM) = End(Spin(TM)).

Proof. Let {e1, . . . , en} be a local orthonormal frame with respect to g and let {e1, . . . , en} be the dual
frame. We can write any A ∈ End(TM) as

A = g(Aei, ej)e
i ⊗ ej .

Since ei⊗ej−ej⊗ei embeds as 1
2e
jei in C`(TM), any skew symmetric A ∈ End(TM) acts on C`(TM)

as

A =
1

2

∑
i<j

g(Aei, ej)e
jei .
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Now we can compute Dϕ
+η as follows:

Dϕ
+η = DLC

+ η

= D′+η + χ′−+−η

= ∇gη +
1

2

∑
i<j

g(χ′−+−ei, ej)e
jei · η

= ∇gη − 1

2

∑
i<j

H(ei, ej , ·)ejei · η +
∑
i<j

c(F (ei, ej), ·)ejei · η

= ∇−η − c(F · η, ·) .

Here the first line follows from equation 4 and the second line follows from equation 3. This shows
that the equation Dϕ

+η = 0 is equivalent to the first two equations. Now we compute Dϕ
−η:

Dϕ
−η = DLC

− η +
1

15
(χϕ)−−−η

= D′−η + χ′−−−η − 1

3
(χB)−−−η +

1

15
(χϕ)−−−η

= ∇gη +
1

2

∑
i<j

g((χ′−+− − 1

3
(χB)−−−)ei, ej)e

jei · η +
1

30
g((χϕ)−−−ei, ej)e

jei · η

= ∇gη − 1

6

∑
i<j

H(ei, ej , ·)ejei · η

+
1

30

∑
i<j

(6dψ(ei)e
jei · η ⊗ ej − 6dψ(ej)e

jei · η ⊗ ei)

= ∇gη − 1

2

∑
i<j

H(ei, ej , ·)ejei · η +
1

3

∑
i<j

H(ei, ej , ·)ejei · η

+
1

5

∑
i<j

(dψ(ei)e
jei · η ⊗ ej − dψ(ej)e

jei · η ⊗ ei)

= ∇−η +
1

3

∑
i<j

H(ei, ej , ·)ejei · η +
1

5

∑
i<j

(dψ(ei)e
jei · η ⊗ ej − dψ(ej)e

jei · η ⊗ ei) .

Since ∇−η = 0, we get

/D
ϕ
−η =

1

3

∑
i<j

H(ei, ej , ek)ekejei · η +
1

5

∑
i<j

(dψ(ei)e
kejei · η ⊗ ej(ek)− dψ(ej)e

kejei · η ⊗ ei(ek))

= −1

6

∑
H(ek, ej , ei)e

kejei · η +
1

5

∑
i<j

(dψ(ei)e
kejei · ηδjk + dψ(ej)e

keiej · ηδik + 2dψ(ej)e
kδijηδik)

= −(H + 2dψ) · η .

Hence this gives us the third equation. The last equation holds for any heterotic Courant algebroid.
Conversely, the last equation can be used to reconstruct the generalized metric and hence the gener-
alized connections.

Lemma 5.3.4. Let H ∈ Ω3(M) and ϕ ∈ C∞(M), then a solution (g, η) with nonvanishing η ∈
Spin+(V−) to the system

∇−η = 0 ,

(H + 2dϕ) · η = 0 ,
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is equivalent to a Calabi-Yau structure (ω,Ω), consisting of a 2-form ω, an integrable almost complex
structure J and a holomorphic volume form Ω satisfying

H = dcω ,

ϕ = −1

2
log||Ω||ω − κ ,

d∗ω = dclog||Ω||ω ,

for some constant κ [21].

Proof. Here we follow the proof of [11]. Let (g, η) be a solution to the equations. Define J as in
equation 2 and define ψ by

ψNMP = η†−ΓN ∧ ΓM ∧ ΓP η− .

Then ψ is a parallel completely holomorphic 3-form and the Nijenhuis tensor of J vanishes [21]. The
antiholomorphic vectorfields can be characterized as follows:

T 0,1M = {X ∈ TM ⊗ C|ιXψ = 0} .

The 2-form ω is the corresponding parallel Kähler form defined by ω(X,Y ) = g(JX, Y ) for all X,Y ∈
X(M). Using the SU(3) structure, we find a isomorphic bundle for the half spinor bundle Spin+(V−),
namely the Clifford module Spin+(V−) ' Ω0,even(M). We also get the isomorphism Spin−(V−) '
Ω0,odd. The Clifford action is given by

α · σ =
√

2(ιg−1α1,0 + α0,1 ∧ σ) .

This Clifford action sends Spin±(V−) to Spin∓(V−). For SU(3), the space of even parallel spinors
is 1-dimensional and η is identified with a non-vanishing function which we take to be the constant
function 1 for simplicity [23]. We choose a basis {dzj , dz̄j} of 1-forms such that locally

g = δijdzi · dz̄j .

In this basis, we get

dzj · 1 = 0 ,

dz̄j · 1 =
√

2dz̄j ,

dzi ∧ dzj ∧ dz̄k · 1 = 0 ,

dz̄i ∧ dz̄j ∧ dzk · 1 =
√

2(δikdz̄j − δjkdz̄i) .

Now the second equation becomes

(H + 2dϕ) · 1 = 2
√

2

H0,3 +
∑
i<j

(H1,2
īji
dz̄j −H1,2

ījj
dz̄i) + ∂̄ϕ

 .

From this we find that H0,3 = 0 and iΛωH
1,2 = −2∂̄ϕ, since the sum here is exactly iΛωH

1,2. From
the equation ∇−J = 0 we get H = dcω [21], which implies

Λωdω = 2dϕ .

Now we define Ω = e−2ϕψ. Then

ϕ = −1

2
(||Ω||ω − ||ψ||ω) ,

which gives κ = − 1
2 ||ψ||ω. Using that Λωdω = Jd∗ω ([9]), we get

d∗ω = dclog(||Ω||ω) .

We get the opposite direction by defining η = 1 in the Spin+(V−) model induced by the SU(3)
structure.
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This brings us to theorem 1.2 of [11]:

Theorem 5.3.5. The Strominger system is equivalent to the Killing spinor equations on a heterotic
Courant algebroid.

Proof. Assume that we have solutions to the Killing spinor equations. This gives rise to a topological
Calabi-Yau structure on M with conformaly balanced Kähler form ω and H = dcω. Additionally, we
have F · η = 0, which implies that both A and ∇ are Hermite-Yang-Mills [23]. On top of that, the
equation dH − c(F ∧ F ) = 0 combined with H = dcω gives the Bianchi identity.
Conversely, for a solution to the Strominger system we define θ = ∇⊕A, H = dcω and ϕ as before. Now
the half spinor determined by ω and the complex structure satisfies the Killing spinor equations.

As a consequence, the Strominger system is a natural system of equations in generalized geometry,
meaning, solutions are exchanged under isomorphisms of Courant algebroids.
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6 T-duality

T-duality, short for target space duality, is a duality between two string theories described on different
target spaces. It relates a theory on a torus bundle M → B to a theory on a torus bundle M̃ → B,
both over the same base manifold B. Both torus bundles are equipped with a 3-form H and H̃. Here
we follow the approach of [7].

Definition 6.0.1. Let M and M̃ be two T k bundles over a base manifold B and H ∈ Ω3
Tk(M),

H̃ ∈ Ω3
Tk(M̃) be two invariant closed 3-forms. Consider the fiber product M ×B M̃ with projections

p : M ×B M̃ →M and p̃ : M ×B M̃ → M̃ . Now M and M̃ are T-dual if there exists a T 2k-invariant
2-form F ∈ Ω2

T 2k(M ×B M̃) such that

• dF = p∗H − p̃∗H̃

• F : tkM × tk
M̃
→ R is non-degenerate

where tkM (tk
M̃

) is the tangent space to the fiber of p̃(p).

In the literature one often imposes that H and H̃ represent integral cohomology classes and that

(F (∂θi , ∂θ̃j )) ∈ GL(k,Z) ,

where {∂θi} ({∂θ̃j}) is a basis of invariant period 1 elements of tkM (tk
M̃

). This last conditions means

that F is unimodular. Consider the filtration

Ωk(B) = F0 ⊂ · · · ⊂ Fk = ΩkTk(M) ,

with F i = Ann(Λi+1tkM ). For T-dual bundles M and M̃ we find that H ∈ F1, which follows from the
equation dF = p∗H − p̃∗H̃.

Theorem 6.0.2. Given a principal T k-bundle M over B and an invariant 3-form H ∈ F1 ⊂ Ω3
Tk(M)

representing an integral cohomology class, there is another principal T k-bundle M̃ over B with 3-form
H̃ dual to M [3].

Proof. The 3-form H is given by
H = 〈c̃, θ〉+ h ,

where h ∈ F0, c̃ ∈ Ω2(B, tk∗M ), θ ∈ Ω1(M, tkM ) a connection and 〈·, ·〉 denotes the pairing between tkM
and its dual tk∗M . We take M̃ to be a principal T k-bundle over B with Chern class [c̃]. Closedness of c̃

follows from the closedness of H. Let θ̃ ∈ Ω1(M̃, tk∗M ) be a connection such that dθ̃ = c̃. Then define
c = dθ and

H̃ = 〈c, θ̃〉+ h .

Now we find that
p∗H − p̃∗H̃ = 〈c̃, θ〉 − 〈c, θ̃〉 = 〈dθ̃, θ〉 − 〈dθ, θ̃〉 = −d〈θ, θ̃〉 .

Hence F = −〈θ, θ̃〉 is unimodular and M and M̃ are T-dual.

This brings us to a theorem relating the twisted cohomology of the T-dual bundles.
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Theorem 6.0.3. Let (M,H) and M̃, H̃) be two T-dual bundles over B with F such that dF =
p∗H − p̃∗H. Then the map τ : Ω•Tk(M)→ Ω•Tk(M̃) given by

τ(ϕ) =

∫
Tk
eF ∧ ϕ

gives an isomorphism of twisted differential complexes (Ω•Tk(M), dH) and (Ω•Tk(M̃), dH̃). Here the
domain of the integral consists of the fibers of p̃ and dHϕ = dϕ+H ∧ ϕ for differential forms ϕ. [2]

Proof. Invertibility of τ follows from the non-degeneracy of F . The fact that τ intertwines the differ-
entials follows from the following calculation:

dH̃τϕ =

∫
Tk
dH̃(eF ∧ ϕ)

=

∫
Tk
deF ∧ ϕ+ eF ∧ dϕ+ H̃ ∧ eF ∧ ϕ

=

∫
Tk

(H − H̃) ∧ eF ∧ ϕ+ eF ∧ dϕ+ H̃ ∧ eF ∧ ϕ

=

∫
Tk
eF ∧ (dϕ+H ∧ ϕ)

= τdHϕ .

The isomorphism τ can be seen as a composition of a pull-back, a B transform and a push-forward,
which are all operations on the Clifford module of T k-invariant forms. In order to turn τ into an
isomorphism of Clifford modules, we need to specify how it acts on T k-invariant sections. In other
words, we need to find a map ϕ : (TM ⊕ T ∗M)/T k → (TM̃ ⊕ T ∗M̃)/T k such that

τ(v · ρ) = ϕ(v) · τρ

holds for all v ∈ (TM ⊕ T ∗M)/T k and ρ ∈ Ω•Tk(M). We want to apply the same approach to ϕ as for
τ , namely to define it as a composition of a pull-back, a B-transform and a push-forward. However,
this is not directly well-defined, so we have to make some choices. Consider X + α ∈ TM ⊕ T ∗M/T k.
Now p∗α is well-defined, but this doesn’t hold for X. For X we get a lift X̃ ∈ T (M ×B M̃ , which is
unique up to vectors in the fiber of p. Applying a B-transform with filed −F now yields X̃+p∗α−ιX̃F .

We want to take the push-forward of this section to get a section of (TM̃∗M̃)/T k. This is dependent
on the choice of lift for X̃. Also, the push-forward of p∗α − ιX̃F is only defined if this form is basic,
meaning that

p∗α(Y )− F (X̃, Y ) = 0

must hold for all Y ∈ tkM . Fortunately, by the non-degeneracy of F , there is a unique lift X̃ of X for
which this holds. For this choice of X̃, we define

ϕ(X + α) = p̃∗X̃ + p∗α− ιX̃F

Now ϕ satisfies τ(v · ρ) = ϕ(v) · τ(ρ). Using this equation, we can prove the following theorem:

Theorem 6.0.4. Let (M,H) and (M̃, H̃) be two T-dual bundles over a common base B. Then ϕ is an
isomorphism of the Courant algebroids M and M̃ with the H-twisted and H̃-twisted Dorfman brackets
[7].
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Proof. Let v1, v2 ∈ TM ⊕ T ∗M , ρ ∈ Ω•Tk(M), then

〈v1, v1〉τ(ρ) = τ(〈v1, v1〉ρ) = τ(v1 · (v1 · ρ)) = ϕ(v1) · (ϕ(v1) · τ(ρ)) = 〈ϕ(v1), ϕ(v1)〉τ(ρ) .

Hence 〈v1, v1〉 = 〈ϕ(v1), ϕ(v1)〉. For the bracket, we get

ϕ([v1, v2]H) · τ(ρ) = τ([v1, v2]H · ρ)

= τ([[dH , v1], v2] · ρ)

= [[dH̃ , ϕ(v1)], ϕ(v2)] · τ(ρ)

= [ϕ(v1), ϕ(v2)]H̃ · τ(ρ) .

Hence ϕ([v1, v2]H) = [ϕ(v1), ϕ(v2)]H̃ .

We can write the T k-invariant double bundles as

(TM ⊕ T ∗M)/T k ' TB ⊕ T ∗B ⊕ tkM ⊕ tk∗M ,

(TM̃ ⊕ T ∗M̃)/T k ' TB ⊕ T ∗B ⊕ tk∗M ⊕ tkM .

In this splitting the map ϕ simply interchanges the tk∗M and tkM coordinate [7]. This means that
any T k-invariant geometric structure can be transported to the T-dual space using ϕ and τ . For a
pair of T-dual spaces (M,H) and (M̃, H̃), and a generalized complex structure JM on M , we get a
corresponding generalized complex structure JM̃ on M̃ . This means that for the grading of differential
forms UkM and Uk

M̃
and generalized Dolbeault operators ∂M and ∂M̃ we get

τ(UkM ) = Uk
M̃
,

τ(∂Mψ) = ∂M̃τ(ψ) ,

τ(∂̄Mψ) = ∂̄M̃τ(ψ) .

Since ϕ interchanges the tangent and cotangent direction, the properties of T-dual geometric structures
may differ. See [7] for how different structures change under T-duality.
The relation between T-duality and exact Courant algebroids gives different perspectives on T-duality.
The first perspective is that of a different reduction of the same base space. This is described by
Theorem 6.4 of [7]:

Theorem 6.0.5. Let (M,H) be the total space of a principal T k × T̃ k-bundle and let Ψ : tk × t̃k →
Γ(TM⊕T ∗M) be a lift of of the T k× T̃ k action for which the pairing on Ψ(tk× t̃k) is non-degenerate,
of split signature, and such that Ψ(tk) and Ψ(̃tk) are isotropic. Then the spaces M and M̃ obtained by
reducing M by the action of T k and T̃ k are T-dual and all T-dual pairs arise from such a reduction.

As a consequence, the Courant algebroid of T k-invariant sections of TM ⊕ T ∗M and the Courant
algebroid of T̃ k-invariant sections of TM̃ ⊕ T ∗M̃ are isomorphic, since both are isomorphic to the
reduction of M by the action of T k × T̃ k.
A second perspective on T-duality is as a generalized submanifold.

Definition 6.0.6. For a pair (N ,H), withN a manifold andH a 3-form, a generalized submanifold
is a pair (M, F ) of a submanifold M and a 2-form F , such that dF = ι∗H.

This gives rise to the notion of a generalized tangent bundle:

τF = {X + α ∈ TM⊕ T ∗N|α|M = ιXF} .

Theorem 6.5 of [7] provides a description of T-dual spaces in terms of generalized submanifolds:

Theorem 6.0.7. Let (M,H) and (M̃, H̃) be two principal T k bundles over a base manifold B. Define
(N ,H) = (M × M̃,H − H̃) and M = M ×B M̃ . Then M and M̃ are T-dual if and only if there
exists a 2-form F on M such that (M, F ) is a generalized submanifold of (N ,H) and such that τF is
everywhere transversal to TM ⊕ T ∗M and to TM̃ ⊕ T ∗M̃ .
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6.0.1 Heterotic T-duality

Heterotic Courant algebroids come from a reduction of an exact Courant algebroid by a principal
G-bundle. Recall that G is a compact, connected, semisimple Lie group. With an exact Courant
algebroid on the total space we get a heterotic Courant algebroid on the reduced space. This raises
the question of what happens with T-dual Courant algebroids after reduction to a heterotic Courant
algebroids. For this, consider a principal G × T k-bundle P over a base manifold M . We define
projections σ : P → P/G = X, π : P → P/T k = P0, π0 : X → M and σ0 : P0 → M , resulting in a
commutative diagram

P P0

X M

π

σ σ0

π0

Let H ∈ F1(P ) be a 3-form representing an integral cohomology class. This means that there is a
T-dual space (P̃ , H̃) over the base P0. We need to lift the G-action on P0 to a G-action on P̃ which
commutes with the T k-action. This is possible whenever P̃ is the pullback of a T̃ k-bundle σ̃ : X̃ →M
by σ0. This turns out to always be case. Thus we have a commutative diagram

P P0 P̃

X M X̃

π

σ σ0

π̃

σ̃

π0

π̃0

Let θ be a principal connection for the T k-bundle X → M , then σ∗θ is a G-invariant connection on
P . Take H to be G× T k-invariant such that it decomposes as

H = 〈c̃, θ〉+ h ,

with h ∈ F0 and c̃ ∈ Ω2(P, tkP ). Let ψ and ψ̃ be the actions of g on P and P̃ coming from the G-action.
This gives a commuting diagram

Γ(P ) Γ(P0) Γ(P̃ )

g

π

π̃

ψ
ψ0

ψ̃

Theorem 6.0.8. The heterotic Courant algebroids X/T k and X̃/T k described above are isomorphic.

Proof. Since the map ϕ corresponding to the T-duality is independent of splitting we can show the
desired property in a certain splitting corresponding to specic extended actions. This is easiest done
by using pullback connections.
Let θ ∈ Ω1(X, tk) and θ̃ ∈ Ω1(X̃, t̃k) be torus connections on X and X̃ and pull them back to P and
P̃ and let A ∈ Ω1(P0, g) be G connection which we pull back to P and P̃ . We can find G × T k and
G× T̃ k invariant representatives of the Ševera classes written as

H = σ∗h− CS3(A) ,

H̃ = σ̃∗h̃− CS3(A) .

Since H and H̃ are T-dual we can find a G× T k × T̃ k-invariant 2-form F on P ×P0
P̃ such that

H − H̃ = h− h̃ = dF ,
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where we omit pullback notation. As before, we can further rewrite this to

H = H0 + 〈c̃, θ〉 − CS3(A) ,

H̃ = H0 + 〈c, θ̃〉 − CS3(A) .

The extended actions are given by ξ = −cA, so the corresponding G-equivariant forms are given by

Φ = H + ξ = H0 + 〈c̃, θ〉 − CS3(A)− cA ,
Φ̃ = H̃ + ξ = H0 + 〈c, θ̃〉 − CS3(A)− cA .

On the correspondence space we get Φ − Φ̃ = dF = dGF , since the torus connections are basic. We
use the splitting

(TP ⊕ T ∗P )/T k ' TP0 ⊕ T ∗P0 ⊕ tk ⊕ tk∗ ,

(T P̃ ⊕ T ∗P̃ )/T k ' TP0 ⊕ T ∗P0 ⊕ tk∗ ⊕ tk .

In this splitting, ψ : g→ TPTk ' TP0 ⊕ tk is given by

ψ(x) = (ψ0(x), ιψ(x)θ) = (ψ0(x), 0) ,

and similar for ψ̃. Hence the extended actions are given by

α(x) = (ψ0(x),−c(A, x), 0, 0) ,

α̃(x) = (ψ0(x),−c(A, x), 0, 0) .

Since ϕ simply interchanges the tangent and cotangent directions, we get ϕ ◦ α = α̃, hence X/T k and
X̃/T̃ k are isomorphic.

6.0.2 Buscher rules

Now we consider the case of a circle bundle. Let (M,H) and (M̃, H̃) be T-dual circle bundles over
the base manifold B. M and M̃ are endowed with connections θ and θ̃ with F = −θ ∧ θ̃. These
connections give splittings TM/S1 ' TB ⊕ 〈∂θ〉, t∗M/S1 ' T ∗B ⊕ 〈θ〉 and similar for M̃ . Here TB
is the space of invariant horizontal vector fields and ∂θ is an invariant period 1 generator of the circle
action. A general section of (TM ⊕ T ∗M)/S1 can be written as

X + f∂θ + α+ gθ ,

with X horizontal and α basic. A pullback of this section is given by

X + f∂θ + h∂θ̃ + α+ gθ ,

where we will need to find h later. The B-field transform by F is given by

X + f∂θ + h∂θ̃ + α+ gθ + fθ̃ − hθ .

Now we require α + gθ + fθ̃ − hθ to be basic for M × M̃ →B M̃ , which means that h = g. Now we
take the push forward of this section to M̃ to get

ϕ(X + f∂θ + α+ gθ) = X + g∂θ̃ + α+ fθ̃ . (5)

With this concrete formula for ϕ we can compute how a generalized metric transforms under T-duality.
Let G be an invariant generalized metric with positive eigenspace V+. We can write V+ as the graph
of g + b, with g a Riemannian metric and b a 2-form. Since both g and b are S1-invariant, we can
decompose them as

g = g0θ · θ + g1 · θ + g2 ,

b = b1 ∧ θ + b2 ,
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with gi and bi basic tensors of degree i. A general section of V+ can be written as

X + f∂θ + (ιXg2 + fg1 + ιxb2 − fb1) + (g1(X) + fg0 + b1(X))θ .

Using equation 5 we compute the image of this section under ϕ:

X + (g1(X) + fg0 + b1(X))∂θ̃ + (ιXg2 + fg1 + ιxb2 − fb1) + fθ̃ .

This is the graph of g̃ + b̃ with

g̃ = g̃0θ̃ · θ̃ + g̃1 · θ̃ + g̃2 ,

b̃ = b̃1 ∧ θ̃ + b̃2 ,

where g̃i and b̃i are given by

g̃0 =
1

g0
,

g̃1 = − b1
g0
,

g̃2 = g2 +
b1 · b1 − g1 · g1

g0
,

b̃1 = −g1

g0
,

b̃2 = b2 +
g1 ∧ b1
g0

.

These transformations are known as the Buscher rules. There is also a dilaton shift, given by

ϕ̃ = ϕ− 1

4
log

(
G00

G̃00

)
.

6.1 T-duality as a canonical transformation

A T-duality transformation can be seen as a canonical transformation [19]. We consider a bosonic
string in flat space with 1 compactified dimension of radius R. The Lagrangian density for the scalar
associated with the compactified dimension is given by

L =
R2

2α′
(θ̇2 − θ′2) ,

where θ is the scalar and θ̇ and θ′ denote the partial derivatives with respect to τ and σ respectively.
With the canonical momentum

Pθ =
∂L
∂θ̇

=
R2

α′
θ̇ ,

we get the Hamiltonian density

H =
α′

2R2
P 2
θ +

R2

2α′
θ′2 .

Now we apply the transformation to the dual variables

θ̃′ = −Pθ ,
Pθ̃ = −θ′ .

(6)
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This transformation preserves the Poisson bracket, so it is a canonical transformation. The Hamiltonian
density in terms of these dual variables is given by

H =
R2

2α′
P 2
θ̃

+
α′

2R2
θ̃′2 .

And similarly, the Lagrangian density is given by

L =
α′

R2
(̇̃θ2 − θ̃′2) .

This Lagrangian density is the same as before the transformation but with a new radius R̃ = α′

R .
Since the transformation was a canonical transformation, both Lagrangian densities describe the same
physical system, which shows that the T duality transformation R̃ = α′

R holds.
Next consider the bosonic σ-model with Lagrangian density

L =
1

2
GMN ( ˙xM ˙xN − x′Mx′N ) +

1

2
BMN (ẋMx′N − ẋNx′M ) .

By applying a Legendre transform to the compactified coordinate x0 = θ we get a Routhian. A
Routhian is a mixed version of the Lagrangian and the Hamiltonian, which is a function of coordinates
and both velocities and momenta. We apply the transformation of equation 6 again. This results in a
similar Lagrangian, but with new metric and 2-form. The new tensors are again given by the Buscher
rules:

G̃00 =
1

G00
,

G̃0i =
B0i

G00
,

G̃ij = Gij −
G0iG0j −B0iB0j

G00
,

B̃0i =
G0i

G00
,

B̃ij = Bij −
G0iB0j −B0iG0j

G00
.

Additionally there is a shift for the dilaton. This shift is given by

ϕ̃ = ϕ− 1

4
log

(
G00

G̃00

)
.

This approach of the bosonic σ-model can be extended to the heterotic string. The transformations
for GMN and BMN remain the same. Additionally, the gauge fields A0 and Ai transform as: [19]

Ã0 = − A0

G00
,

Ãi = −Ai +A0
G0i −B0i

G00
.

However, this leads to wrong results due to the possible appearance of anomalies at the one-loop level.
Now we consider a compact scalar θ coupled to a U(1) Wilson line. The degrees of freedom are θ
and a scalar y associated to a U(1) gauge symmetry satisfying the constraint equation ẏ = y′. The
Lagrangian density for this system is

L =
1

2
G(θ̇2 − θ′2) +

1

2
(ẏ2 − y′2) +A(ẏθ′ − y′θ̇) .
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Here G = R2

α′ and A represents a Wilson line along S1. The constraint ẏ = y′ will be required for the
equations of motion. The canonical momenta are given by

Pθ = Gθ̇ −Ay′ ,
Py = ẏ +Aθ′ .

The corresponding Hamiltonian is given by

H =
1

2
G−1(Pθ +Ay′)2 +

1

2
(Py −Aθ′)2 +

1

2
Gθ′2 +

1

2
y′2 .

In these coordinates the constraint is given by

Py −Aθ′ − y′ = 0 .

Now we need to find a canonical transformation. This transformation needs to leave the Dirac bracket
invariant[19]. We consider the following tranformation:

θ̃′ = −Pθ +APy ,

ỹ′ = −(1 +AÃ)Py + ÃPθ ,

Pθ̃ = −(1 +AÃ)θ′ − Ãy′ ,
Pỹ = −y′ −Aθ′ .

(7)

Here Ã is the dual Wilson line. For any Ã this transformation has period 2, meaning that applying the
transformation twice result in the original coordinates. However, the transformation is not a canonical
transformation for arbitrary Ã. Hence we determine Ã by requiring equation 7 to be a canonical
transformation. This leads to the following relations:

G̃ =
G

(G+A2)2
,

Ã = − α′A

G+A2
.

And since G = R2

α′ (G̃ = R̃2

α′ ), these relations can also be expressed as

R̃ =
α′

R(1 + α′A2

R2 )
,

Ã = − A

R2(1 + α′A2

R2 )
.

This approach can be generalized. Instead of taking 1 compact dimension and 1 gauge field, we can
consider n toroidal dimensions and several gauge fields. For multiple dimensions with several gauge
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fields, inverting a single radius leads to the following transformations: [19]

G̃00 =
G00

(G00 +A2
0)2

,

G̃0i =
G00B0i +A2

0G0i −A0 ·AiG00

(G00 +A2
0)2

,

G̃ij = Gij +
G0iG0j −B0iB0j

G00 +A2
0

,

+
1

(G00 +A2
0)2

(G00(B0iA0 ·Aj +B0jA0 ·Ai − (A0 ·Ai)(A0 ·Aj)) ,

+A2
0((G0i −B0i)(G0j −B0j) +G0iA0 ·Aj +G0jA0 ·Ai)) ,

Ãa0 = − Aa0
G00 +A2

0

,

Ãai = −Aai +Aa0
G0i −B0i +A0 ·Ai

G00 +A2
0

,

B̃0i =
G0i +A0 ·Ai
G00 +A2

0

,

B̃ij = Bij −
(G0iA0 ·Ai)B0j − (G0jA0 ·Aj)B0i

G00 +A2
0

,

ϕ̃ = ϕ+
1

4
log

(
det(G̃)

det(G)

)
.

For inverting all radii you need to introduce canonical momenta for all coordinates θM and self dual
gauge scalars ya. This way you end up with the correct T duality transformations for general toroidal
compactifications and arbitrary Wilson lines and a constant background for the Kalb-Ramond B-field.
We can choose a gauge in which the couplings between the scalars θM and ya vanish. In this gauge,
we find

G̃MN = GMN +AM ·AN ,
B̃MN = BMN .

The transformation of AM is determined by the constraint

Dτy
a = ẏa +AM θ̇

M = y′a +AMθ
′M = Dσy

a .

6.2 Comparison of T-duality between string theory and Courant algebroids

We have discussed two notions of T-duality so far. The first notion was T-duality in Courant algebroids.
The first step here is to understand T-duality for exact Courant algebroids. Two torus bundles over
the same base manifold with closed invariant 3-forms are T dual if the fiber product of the bundles
satisfies some conditions. By theorem 6.5 of [7] we found that this condition is equivalent to the
statement that the fiber product of the torus bundles is a generalized submanifold of the Cartesian
product of the torus bundles. There is an isomorphism of Courant algebroids between two T-dual torus
bundles. Heterotic Courant algebroids arise from reducing exact Courant algebroids by the action of
a principal G bundle. We have shown that T-dual exact Courant algebroids give an isomorphism
of heterotic Courant algebroids after reduction. We found this by interchanging the tangent and
cotangent coordinates in a particular splitting, up to a sign difference.
The second notion of T-duality is the T-duality of string theory. First we considered a string theory
with 1 compactified dimension of radius R. This system is equivalent to a system where the radius
is inverted. We showed this by showing that this corresponds to a canonical transformation. In this
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transformation we interchanged the momenta with the spatial derivatives, up to a sign difference. For
the heterotic case we considered compact scalars coupled to Wilson lines. This approach was needed in
order to get the right α′ corrections, since the simpler model would lead to anomalies at the one-loop
level.
In both cases of T-duality the spaces are equivalent. In mathematics this is called an isomorphism
of Courant algebroids, in physics we say the systems are related by a canonical transformation. For
Courant algebroids there is no unique T-dual torus bundle. However, with a particular construction we
arrive at the Buscher rules. In string theory the T-dual is unique. We can find α′ corrections for string
theory, but there is no analogous construction on the Courant algebroid side for the α′ corrections. In
a sense, heterotic Courant algebroids only describe the low energy limit of the heterotic string.
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7 Conclusion and outlook

This thesis has covered two seemingly unrelated areas of study. On one side there is heterotic super-
string theory. String theory combines quantum mechanics and general relativity, which leads to extra
dimensions and higher excited energy states. The higher excited states have masses comparable to the
Planck scale, so we truncated the theory to end up with only massless states. The resulting theory
is called heterotic supergravity. We then compactified the theory to 4 non-compact dimensions and 6
compact dimensions. This lead to a system of equations for the internal space called the Strominger
system.
On the other side there is generalized geometry. The central object of study of generalized geometry is
the Courant algebroid. The simplest example is that of an exact Courant algebroid. If a Lie group acts
on the manifold, we can use a reduction procedure to obtain a heterotic Courant algebroid. We then
introduced several structures, such as generalized metrics and generalized connections. With these
structures we formulated the Killing spinor equations. These equations are equivalent to the Stro-
minger system, showing that the Strominger system is a natural system of equations in generalized
geometry.
Then we considered T-duality. T-duality is a relation between different torus bundles over the same
base manifold. We showed that two T-dual bundles over the same base manifold have isomorphic exact
Courant algebroids. Then we showed that reducing T-dual bundles by the action of a Lie Group G
results in two isomorphic heterotic Courant algebroids. For two T-dual bundles we can transform gen-
eralized geometric structures from one bundle to the other. When transforming a generalized metric
over a T-dual circle bundle we obtained a new generalized metric. This transformation is described by
the Buscher rules.
There is another way to obtain the same Buscher rules. We showed that the same transformations
arise from a coordinate transformation. Since this particular coordinate transformation preserves the
Poisson brackets, it is called a canonical transformation. Canonical transformations describe the same
physical system, which means that T-dual bundles describe equivalent physical systems.

We have found a connection between two different areas of study. At first sight there seems to be
no relation between heterotic string theory and generalized geometry, but when we looked deeper we
found multiple interactions between these areas. However, we first need to remove the higher energy
states from the theory in order for this connection to emerge. Thus generalized geometry provides a
useful description of heterotic string theory at low energy, but it is unable to describe the full theory.
In this way, it gives an infinitesimal or low energy approximation to heterotic string theory.
In mathematics there are many structures with an infinitesimal counterpart. Lie groups have Lie alge-
bras, Lie groupoids have Lie algebroids and so on. We say that the infinitesimal structure integrates to
the global counterpart. We could wonder if Courant algebroid should also be seen as infinitesimal ob-
jects. Perhaps integrating Courant algebroids to their (currently unknown) global counterparts could
help understand the higher energy behaviour of heterotic string theory. This could be the subject of
further study.
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