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Abstract

Increasing landing capacity is important to reduce delays and therefore costs, fuel
burn and emissions. Decreasing separation distances between aircraft is a way to
increase the landing capacity. A safe distance between aircraft depends, among other
things, on the level of turbulence an aircraft experiences. Turbulence can be caused by
wind or weather conditions, but also by wake vortices generated by nearby aircraft.
Therefore, aircraft cannot fly too close behind each other and separation minima
have been established by ICAO. To increase landing capacity, LVNL will implement a
recategorisation and time based separation, a project which is called RECAT-TBS, at
Amsterdam Airport Schiphol by the end of this year to safely decrease these separation
minima.

The goal of this thesis is to implement an algorithm that can detect and measure
wake turbulence in the approach area using Mode S radar data. This can give insight
in a possible increase in the number of wake turbulence encounters or might yield
a warning system when decreasing the separation distances in final approach by the
end of this year. The algorithm that will be analysed is an algorithm proposed in
a paper by Xavier Olive and Junzi Sun [10]. They implemented and analysed the
algorithm for en-route air traffic to detect turbulence. The question is whether this
algorithm can also be used or adapted to be applicable for approaching air traffic and
if it is possible to distinguish wake turbulence encounters.
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Chapter 1

Introduction

Wake turbulence is an important factor for a safe separation between aircraft in
the approach area of an airport. It is caused by wake vortices generated by nearby
aircraft. Dangerous situations can occur when aircraft fly into the wake vortices of
the aircraft in front. Therefore, the International Civil Aviation Organisation (ICAO)
has determined separation minima for safe landings of all aircraft [16].

With a continuing growth in air traffic, increasing airport capacity becomes more
important. Until the COVID-19 pandemic, the number of landings and take-offs
at Amsterdam Airport Schiphol increased from 386.400 in 2010 to 496.800 in 2019
[11]. Air traffic will be back on this level by 2024 at the earliest and will increase
further from there [3]. How to increase airport capacity, especially landing capacity,
is a question that is studied for years now and is important for reducing delays and
therefore also costs, fuel burn and emissions.

Landing capacity can be increased by decreasing separation distances between air-
craft in their final approach. Since ICAO separation minima lead to over-separation
in many situations, Air Traffic Control the Netherlands (LVNL) plans to implement
a recategorisation and time based separation (RECAT-TBS) to safely decrease the
separation minima. Aircraft flying closer behind each other might lead to an increase
in wake turbulence experienced. Hence, being able to detect and measure the turbu-
lence caused by wake vortices is useful to get insight in the number of wake turbulence
encounters. Therefore, the main goal of this research is to see whether it is possible
to detect and measure wake turbulence effects on aircraft during landing.

In a recent study [10], Xavier Olive and Junzi Sun propose a method to detect and
measure turbulence experienced by en-route air traffic based on widely available radar
data. The key parameters used for their method are two different sources for vertical
speed: the barometric vertical rate and the inertial vertical velocity. Due to incom-
plete filtering, the barometric vertical rate contains significant noise which is filtered
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out in the inertial vertical velocity [17]. The main idea of their proposed method is
that turbulence causes a major part of the noise. Therefore, the difference between
noise in the barometric measure and in the inertial measure is analysed and used as
a measure for turbulence.

Where Olive and Sun tested the method on en-route air traffic and detected not
only turbulence caused by wake vortices, in this thesis the proposed method will be
analysed and adapted to be applicable for detecting specifically wake turbulence in
approaching air traffic. The goal of this is to give insight in the number of wake
vortex incidents and possibly yield a warning system for air traffic controllers.

In Chapter 2, we start with a little background literature which is helpful to under-
stand the problem. Next, in Chapter 3, we will describe the method used in this
thesis including a description of the data, the algorithm and validation of the algo-
rithm. Conducted experiments to improve the algorithm, together with its results,
are described in Chapter 4. Finally, we will draw our conclusions, discuss the research
and propose future work in Chapter 5.
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Chapter 2

Background literature

In this chapter, we will give a little background literature which is helpful to under-
stand the problem. First, we explain what wake turbulence is and how the separation
distances between aircraft are based on this. Second, we describe how the data used
for this research is obtained from Mode S radars. At last, we will shortly describe
the approach of an aircraft, since this research will mainly focus on approaching air
traffic.

Figure 2.1: Illustration of wake vortices [15].

2.1 Wake turbulence and aircraft separation

As mentioned before, wake turbulence is caused by wake vortices generated by nearby
aircraft. A wake vortex is defined as the turbulent airflow which follows an aircraft.
It is formed behind the wingtips due to air moving from the high pressure area below
the wing to the low pressure area on top of the wing. An illustration of wake vortices
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is shown in Figure 2.1. Especially during takeoff and landing there is a big difference
in pressure below and on top of the wing which causes strong wake vortices. The
strength of the wake vortex is furthermore affected by the weight and speed of the
aircraft and shape of the wing. The heavier the aircraft or the slower the speed, the
stronger the wake vortices. If the separation distance between aircraft is too small
such that the trailing aircraft ends up in the wake vortex of the leading aircraft, this
can in worst case cause the aircraft to roll over and crash. Therefore, the strength of
the wake vortex is an important factor in determining a minimum separation distance
between aircraft [16].

Due to the difference in wake vortices among different types of aircraft, the minimum
separation distance depends on both the type of the leading and the trailing aircraft.
Till now, aircraft are grouped into four wake turbulence categories (WTC), defined by
the International Civil Aviation Organisation (ICAO): super heavy, heavy, medium
and light. The super heavy category includes only the A380, the largest passenger
aircraft that exists that generates wake vortices much bigger than aircraft in the
heavy category. The minimum separation distances, in nautical mile (NM), for all
combinations of leading and trailing aircraft can be found in Table 2.1 [13]. The
minimum radar separation (MRS) in the terminal manoeuvring area (TMA) is 3.0
NM [14].

Leader/Follower Super Heavy Medium Light
Super MRS 6.0 NM 7.0 NM 8.0 NM
Heavy MRS 4.0 NM 5.0 NM 6.0 NM

Medium MRS MRS MRS 5.0 NM
Light MRS MRS MRS MRS

Table 2.1: Minimum separation distances under ICAO criteria.

Using the ICAO criteria might lead to over-separation. In the past few years, re-
search on wake vortex behaviour by the European Organisation for the Safety of
Air Navigation (EUROCONTROL) made it possible to improve the categorisation.
They developed a re-categorisation of the ICAO wake turbulence categories, named
RECAT-EU. Their research proved that not only weight but also speed and wingspan
are important factors for the strength of the wake vortex and therefore also for the
minimum separation distance. Due to this, aircraft are grouped into six new cat-
egories: super heavy (A), upper heavy (B), lower heavy (C), upper medium (D),
lower medium (E) and light (F). For all new leader and follower combinations, new
separation minima were defined. These are shown in Table 2.2 [13].
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Leader/Follower A B C D E F
A MRS 4.0 NM 5.0 NM 5.0 NM 6.0 NM 8.0 NM
B MRS MRS 4.0 NM 4.0 NM 5.0 NM 7.0 NM
C MRS MRS MRS MRS 4.0 NM 6.0 NM
D MRS MRS MRS MRS MRS 5.0 NM
E MRS MRS MRS MRS MRS 4.0 NM
F MRS MRS MRS MRS MRS MRS

Table 2.2: RECAT-EU minimum separation distances.

In March 2016, RECAT-EU was first implemented at the airport Paris Charles de
Gaulle. It led to a maximum reduction of 30% of separation distances, depending on
the types of aircraft landing in a period. The result is an extra 2-4 aircraft landing per
hour during peak hours [7]. The Netherlands Aerospace Centre (NLR) researched the
benefits for Amsterdam Airport Schiphol. They focused on peak times and concluded
that during morning peak time, when many heavy aircraft land, it would increase the
landings per hour by one. During afternoon peak time, when mostly medium aircraft
land, this increase is less. The lower benefits at Amsterdam Airport Schiphol when
compared to Paris Charles de Gaulle can be explained by the fact that there are more
heavy aircraft landing in Paris [1].

On top of RECAT-EU, EUROCONTROL started researching Time Based Separa-
tion (TBS) to improve the minimum separation distances. Till now, the separation
between aircraft is a distance based separation. TBS is a concept that bases the
minimum separation between aircraft on time instead of distance. Since aircraft take
longer time to fly a certain distance if there is strong headwind, less aircraft are land-
ing per hour in this situation. Strong headwinds are a big cause of delays. However,
although slowing down aircraft, stronger headwind does make wake turbulence dissi-
pate more quickly. This means that a smaller separation distance between aircraft is
safe if headwind is strong. Hence, if minimum separation is based on time, the same
number of aircraft can land per hour, strong headwinds or not [5].

National Air Traffic Services of the UK (NATS) implemented TBS at London Heathrow
Airport in March 2015. At London Heathrow Airport, strong winds caused 44% of
all air traffic flow management delays. TBS reduced these delays already with 62%
and made it possible to land, on average, 20 extra aircraft per day [8]. The goal is
to have implemented TBS by 2023 at many more European airports, including Am-
sterdam Airport Schiphol [5]. Air Traffic Control The Netherlands (LVNL) plans to
implement RECAT-EU together with TBS in 2021, called RECAT-TBS [1].

For a safe use of RECAT-TBS, it is useful to know whether wake turbulence experi-
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enced by aircraft increases when flying closer behind each other. Aircraft are able to
measure turbulence themselves, but this information is rarely available for air traffic
controllers. Therefore, this research uses data that is widely available obtained from
Mode S radars.

2.2 Mode S radars

In air traffic control, two types of radars are used: primary surveillance radars and
secondary surveillance radars. A primary radar system measures the position of
a target by using reflections of radio signals. The radar sends a pulse, the aircraft
reflects this pulse and the radar detects this reflection. Using the time between sending
the pulse and detecting the reflection, together with the position of the radar, the
two-dimensional position of the aircraft can be determined. A secondary surveillance
radar is a radar system that uses interrogators and transponders to obtain information
from the aircraft. The ground-based interrogator sends pulses that include a request.
These are received by the transponder aboard the aircraft. The transponder decodes
the request, obtains the requested information and transmits a coded reply signal
containing the requested information back to the radar.

Mode S is a secondary surveillance radar technique which is required for aircraft
transponders and radars since 2008. It contributes to the safety of Dutch airspace
since aircraft with Mode S transponders are visible for the Airborne Collision Avoid-
ance System (ACAS) and at the radar display for air traffic controllers. Mode S
is a selective radar system which means that it can send requests, using the same
technique as conventional radars, to specific aircraft instead of to the whole airspace
reachable for the radar. To be able to do this, all aircraft are assigned a unique
24-bit address, the ICAO address. Information requested by Mode S radars comes in
aircraft Comm-B Data Selector (BDS) registers. A BDS code in the radar request
determines which register with its content has to be transmitted. If a Mode S radar
sends a request for a BDS register, the transponder transmits a coded message con-
taining all parameters contained in this BDS register. The surveillance information
is coded using the ASTERIX data format. ASTERIX, short for All purpose Struc-
tured Eurocontrol Surveillance Information Exchange, was developed for surveillance
data transmission and has different categories, each category dealing with a different
type of information [2]. ASTERIX coded messages are decoded in ARTAS, a EU-
ROCONTROL system that processes surveillance data and distributes the processed
information to many user systems used by air traffic controllers. ARTAS merges data
obtained from many radars, each with its own update rate. The processed informa-
tion contains data with an update for every four seconds, which means that every
four seconds the latest obtained radar information is added.
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Mode S contains two most used services, Elementary Surveillance (ELS) and En-
hanced Surveillance (EHS). ELS has four BDS codes (1.0, 1.7, 2.0, and 3.0) and is
used to request information such as call sign or altitude. EHS contains three BDS
codes (4.0, 5.0 and 6.0) and provides additional information. The parameters in-
cluded in these registers are listed in Table 2.3 [9, 17] and will be explained briefly.

BDS register Parameter
4.0 Selected altitude

Barometric pressure setting
5.0 Roll angle

True track angle
Ground speed

Track angle rate
True airspeed

6.0 Magnetic heading
Indicated airspeed

Mach number
Barometric vertical rate
Inertial vertical velocity

Table 2.3: Content of EHS BDS registers 4.0, 5.0 and 6.0.

The selected altitude can be seen as the target altitude the pilot is flying to. It is based
on the barometric altitude, which is the altitude based on air pressure measurements
and corrected for the barometric pressure setting. The barometric pressure setting
should be the same for all aircraft flying above a certain altitude and differs on lower
altitudes depending on the air pressure in an area.

The roll angle is the rotation around the longitudinal axis, which is high if the aircraft
makes a steep turn. The track of an aircraft is the path of the aircraft on the ground
and the heading is the direction in which the longitudinal axis is pointed. Wind can
cause a difference between the heading and track. The true track angle is the angle
between the track and the true North, the magnetic heading is the angle between
the heading and the magnetic North. The difference between the true and magnetic
North is called magnetic declination and changes per location and (slightly) over time.

Ground speed is the speed of the aircraft with respect to the ground, while the true
airspeed and indicated airspeed are speeds with respect to the air. The difference
between indicated and true airspeed is that the true airspeed is corrected for tem-
perature and pressure altitude. The mach number is another indicator for speed, it
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is the speed relative to the speed of sound. Finally, the barometric vertical rate and
the inertial vertical velocity are two measures for vertical speed and the basis for the
method in this research.

Besides EHS and ELS, a third Mode S service is the interrogation of meteorological
reports. The information on turbulence as measured by the aircraft itself can be trans-
mitted through the Meteorological Routine Air Report (MRAR) and Meteorological
Hazard Report (MHR). However, in contrast to ELS and EHS, the meteorological
reports are not mandated to be transmitted and therefore only a small number of
aircraft have transponders that are able to reply to these requests. Conclusion is that
MRAR and MHR can be very useful in detecting and measuring turbulence but the
information is rarely available [10].

However, turbulence is not only caused by wake vortices. Rising air due to an increase
in surface temperature can cause thermal turbulence, air flow hitting obstacles such
as mountains can cause mechanical turbulence and sudden changes in wind direction
or speed can cause shear turbulence. The method proposed by Olive and Sun does
not distinguish between these types of turbulence. Moreover, we are interested in
turbulence experienced by approaching air traffic instead of en-route air traffic.

2.3 Approach

An aircraft’s descent or approach can be split up in four segments. First the arrival
segment, which is the part of descent between cruise and the TMA. Aircraft enter the
TMA at an initial approach fix (IAF). At this point, aircraft should have reached flight
level 100 or less. Flight level is an aircraft’s altitude above sea-level in hundreds of
feet. Amsterdam Airport Schiphol has three IAFs: ARTIP, above Lelystad, SUGOL,
above the North Sea, and RIVER, above Rotterdam. Once aircraft entered the TMA,
they fly the initial approach segment ending at the intermediate fix (IF), followed by
the intermediate approach segment ending at the final approach fix (FAF) and the
final approach segment. The intermediate approach segment is not always included
in the approach procedure, in that case the initial approach segment is followed by
the final approach. The final approach segment is the final segment where the aircraft
is lined up with the runway for landing.

We will not analyse the entire descent of aircraft but concentrate on the approach in
the TMA of Amsterdam Airport Schiphol, starting at one of the IAFs. In particu-
lar, focus lies on final approach where separation between aircraft is minimised and
RECAT-TBS will be implemented.
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Chapter 3

Method and validation

In this chapter, we will explain the method used in this thesis. First, we will explain
the algorithm in more detail. Then, we introduce the data used. We will describe
the implementation and show the output of the algorithm. Finally, we describe the
validation of the algorithm for both en-route and approaching air traffic.

3.1 The algorithm

We use the algorithm to detect and measure turbulence experienced by en-route air
traffic based on available Mode S radar data as proposed by Olive and Sun [10].
Parameters in BDS register 6.0 are used. A register which is, in Europe, frequently
requested by Mode S radars and frequently transmitted by transponders. The key
parameters used for their method are two different sources for vertical speed: the
barometric vertical rate and the inertial vertical velocity. The barometric vertical rate
is a measure derived from barometer measurements provided by the air data system.
The barometer measures air pressure and converts this to an altitude. This altitude
is converted to the barometric vertical rate. Due to incomplete filtering it contains
significant noise, mainly caused by turbulence [17]. The inertial vertical velocity
is computed by the inertial navigation system. This system combines data from
multiple sources such as the inertial reference system and the barometric altimeter.
The inertial reference system uses signals from gyroscopes and accelerometers to
measure the vertical acceleration. Using sensor fusion on the inertial acceleration and
the barometer altitude, noises are filtered out and therefore a better estimation of
vertical velocity is provided [12].

We use vb to define the barometric vertical rate and vi to define the inertial vertical
velocity. Noise in vb differs over time since aircraft experiencing turbulence will show
more noise in barometric vertical rate. Therefore, the volatility of vb and vi over time
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is analysed and the difference in volatility is used as a measure for turbulence. To
analyse the volatility, the standard deviation of both parameters is computed over
time. The available data is grouped into groups of one minute. In each group j,
the standard deviations σvb,j and σvi,j are computed for vb and vi, respectively. The
absolute difference

∆σj = |σvb,j − σvi,j |

is used to detect turbulence.

Besides noise differing over time, noise patterns also differ across different aircraft
and transponders. Therefore, no general minimum value for ∆σj exists that indicates
turbulence. For each flight, a threshold is computed using the mean and standard
deviation of ∆σ, the column containing all ∆σj. The assumption made is that all
aircraft experience some turbulence during their flight and no turbulence will last the
entire flight. Based on a large-scale data, the authors define the following threshold:

∆σj ≥ ∆σ + 1.2 · σ(∆σ). (3.1)

This means that all values higher than the mean plus 1.2 times the standard deviation
are labeled as turbulence.

3.2 Data

For this research, a large amount of data is used. Firstly, multiple data sets con-
taining aircraft and flight information. Secondly, a data set containing reports of
wake turbulence encounters. Lastly, multiple data sets containing wind and weather
information.

3.2.1 Aircraft data set

The main data used for this thesis is LVNL and contains ARTAS processed surveil-
lance data collected by 15 radars, including radars at Amsterdam Airport Schiphol.

For the analysis of the algorithm, data of flights in an area of approximately 40
kilometers around the Netherlands is used. For the first analysis, seven days of data
is made available. The time range of the data is the range from 27-10-2020 12:00:00
to 02-11-2020 23:59:00. This data is mainly used to validate the algorithm.

To be able to distinguish wake turbulence from other detected turbulence, it is useful
to analyse situations where pilots reported wake turbulence. Therefore, we have also
used data sets containing information on flights at specific dates to analyse these
incidents. These specific dates come from the wake vortex reports which will be
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explained hereafter. This data is mainly used for the experiments to improve the
algorithm.

As mentioned before, the data contains ARTAS processed surveillance data with
updates every four seconds. A track that is observed for one hour already leads
to 3600/4=900 rows of surveillance information. Besides the required parameters
from BDS register 6.0, the data sets contain more columns which will be useful for
validating the algorithm and to distinguish wake turbulence. All useful parameters
and their units are listed below [4].

1. Time of request (UTC)

2. Latitude (degree)

3. Longitude (degree)

4. Callsign

5. Flight level (25 ft)

6. Magnetic heading (degree)

7. True airspeed (knots)

8. Barometric vertical rate (ft/min)

9. Inertial vertical velocity (ft/min)

10. Roll angle (degree)

11. Track angle (degree)

12. Groundspeed (NM/s)

As we analyse wake vortex effects in approach, we are interested in the sequence in
which aircraft landed to know which aircrafts wake vortices might have caused wake
turbulence for the trailing aircraft. Since heavier aircraft generate stronger wake
vortices than lighter aircraft, this is helpful for analysis of the wake vortex incident.
The landing sequence data contains per aircraft landed the date and time of arrival,
callsign, aircraft type, WTC, origin of flight, runway where it landed and IAF where
it entered the TMA.

In addition to knowing the sequence, the time of arrival is also useful for pre-processing
the ARTAS data set. Unreliable measures of barometric vertical rate and inertial
vertical velocity measured after landing are included in the data. These measures
affect the algorithm, hence need to be filtered out. The time of arrival is used to filter
out this unreliable data after landing.

3.2.2 Wake vortex reports

Since we are specifically interested in wake turbulence, it is useful to have data of
situations where wake turbulence was reported by the pilot. If pilots believe turbu-
lence is caused by wake vortices, they can report this. For the implementation of
RECAT-TBS at Amsterdam Airport Schiphol, LVNL analysed wake vortex incidents
reported in 2019. The data used for this research is a summary of their analysis.
Note that pilots report wake turbulence if they believe that turbulence was caused
by wake vortices. This means that it is still not a hundred percent sure that these
situations where indeed the result of wake vortices.
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Per incident it contains the date, a short summary of the incident, the runway where
the trailing aircraft (should have) landed, the aircraft types, WTC of both leading
and trailing aircraft, the distance between and altitude of the aircraft at time of the
incident and the intensity. The intensity is estimated based on the pilot report and
roll angle and can be weak, moderate or severe depending on the altitude. An equal
roll angle can be classified as weak turbulence for higher altitudes while it is classified
as moderate turbulence on a lower altitude.

3.2.3 Weather data

To be able to distinguish wake vortex turbulence from other turbulence, for example
caused by heavy weather circumstances, we use data provided by LVNL and the Royal
Netherlands Meteorological Institute (KNMI). LVNL provided a data set containing
wind speed and direction measured, inconsistently, every 30 to 90 seconds per runway.
Data provided by the KNMI contains Meteorological Aerodrome Reports (METARs)
from Amsterdam Airport Schiphol. A METAR is a weather report formulated by the
weather service at an airport every half an hour. It contains coded weather infor-
mation of for example the wind speed and direction, sight, cloud layers, temperature
and rainfall.

3.3 Implementation

The algorithm is implemented in Python. The pseudocode of the algorithm is given
in Algorithm 1. The input for the algorithm is a data set as described in Section
3.2.1. Data on many flights is included in the data set. It contains one row per flight
per four seconds.

Turbulence is measured per flight, thus the algorithm iterates over all call signs present
in the data set. The first step is to filter out outliers from the data by using a moving
median. We apply a rolling window of size three, as used by Olive and Sun [10],
which means that for every observation, the median of the previous, current and next
observation is computed and used.

Next, the data is grouped into groups of one minute. In all groups of one minute,
the standard deviation of both vb and vi is computed. This results in a data frame
containing, for each call sign, one row per minute that the aircraft is observed by the
radars. Then, an extra column is created for the absolute difference between these
standard deviations, denoted by ∆σj.

Once all computations in the different groups are done, the turbulence threshold can
be computed. Turbulence is detected if ∆σj exceeds this threshold.
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Algorithm 1 Turbulence

input: data frame D.
output: data frame D′ and threshold.
flights ← all unique call signs
for all call signs in flights do

apply moving median to vb and vi to filter out outliers
group data in groups of 1 minute
for all groups of 1 minute do
σvb,j = standard deviation of vb in group j
σvi,j = standard deviation of vi in group j
∆σj = |σvb,j − σvi,j |

end for
compute threshold ∆σ + 1.2σ(∆σ)
detect turbulence if ∆σj ≥ threshold

end for

Plotting the data clearly shows the noise in barometric vertical rate, as shown in the
top figure in Figure 3.1 for a flight from Romania to the United Kingdom flying over
the Netherlands at October 27, 2020.

As described earlier and also visible in the figure, noise differs over time. Therefore,
we analyse the volatility over time by computing the standard deviation in time
segments of one minute. The standard deviations are shown in the middle in Figure
3.1. A large peak in the standard deviation of the barometric vertical rate is clearly
visible between 13:55 UTC and 14:00 UTC. Moreover, a smaller peak just before
14:24 UTC is observed. To be able to detect turbulence efficiently, the absolute
differences between the standard deviations of the barometric vertical rate and the
inertial vertical velocity is computed. This is shown in the stemplot in the bottom
figure in Figure 3.1. The final step of the algorithm is to compute the threshold as
in Equation 3.1. Differences in standard deviations higher than the threshold are
labeled as turbulence and are shown in red in the figure.

The data shows a more fluctuating pattern for aircraft in climb or descent. While
descending, vertical rate is below zero. An example of this fluctuating pattern is
shown in Figure 3.2. What is shown is data of an aircraft starting to descend above
the UK, crossing the North Sea and landing at Amsterdam Airport Schiphol. We
observe that the threshold for this flight is substantially smaller than the thresholds
of the previous shown flight. Hence, smaller differences in variance of vb and vi are
labeled as turbulence. We conclude that the threshold can differ greatly across flights.
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Figure 3.1: Flight from Romania to the UK. Top: two sources of vertical rate. Middle:
standard deviations in vb and vi in time segments of one minute. Bottom: absolute
difference in standard deviation with detected turbulence in red.
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Figure 3.2: Descending aircraft. Top: two sources of vertical rate. Middle: standard
deviations of vb and vi in time segments of one minute. Bottom: absolute difference
in standard deviation with detected turbulence in red.
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3.4 Validation for en-route air traffic

In this section, we will validate the algorithm for en-route air traffic using different
approaches. Where Sun and Olive [10] first validated the method on single flights
they boarded themselves, this approach is left out in this research. We validate the
algorithm by showing consistent observations by all aircraft and a consistency over
time.

3.4.1 Consistency across aircraft

The first validation method is to show that turbulence is observed by all aircraft
passing a turbulent area. We will analyse two situations on different days.

First, we will analyse detected turbulence on flights flying over Southern The Nether-
lands and Western Germany at October 28th 2020 in the morning between 8:30 UTC
and 9:00 UTC. The flights flying through this area are plotted in the left of Figure
3.3, with detected turbulence in red. We observe consistently detected turbulence.
Note that the algorithm can only detect turbulence in areas where aircraft flew, since
aircraft are our data sources. A heatmap based on the average of the turbulence
thresholds is produced for an overview of the detected turbulence and is shown on
the right of Figure 3.3. The average is computed over all flights crossing a grid cell.

Figure 3.3: Turbulence detected at October 28, 2020 8:30 UTC - 9:00 UTC over
Southern the Netherlands and Western Germany. Left: observed flights with detected
turbulence in red. Right: heatmap based on average of turbulence thresholds in grid
cell.
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Figure 3.4: Turbulence detected at November 2, 2020 7:00 UTC - 7:30 UTC over
Western the Netherlands and Belgium. Left: observed flights with detected turbu-
lence in red. Right: heatmap based on average of turbulence thresholds in grid cell.

Next, we consider a situation at November 2nd 2020 in the morning between 7:00
UTC and 7:30 UTC. We plot flights crossing Western the Netherlands and Belgium
during this timeslot together with the detected turbulence. This is shown in Figure 3.4
with the flights in the left figure and the heatmap based on the average of turbulence
thresholds in each grid cell in the right figure. Again, we observe consistently detected
turbulence for example above the North Sea. We also notice a darker colored heatmap,
which means higher turbulence thresholds. The question is whether the height of the
threshold values can be used as a measure for the intensity of the turbulence or if,
for example, ∆σ works better. It might be aircraft related to have a more noisy
barometric vertical rate and therefore a higher threshold. This does not necessarily
mean more severe turbulence. We will dive deeper into this in Section 4.1.2.

3.4.2 Consistency over time

The second validation method is to show that turbulence is detected consistently over
time. To do this, we analyse flights flying over the Netherlands on two different days.

Figure 3.5 shows four heatmaps of detected turbulence every half an hour from 16:30
UTC to 18:00 UTC on October 27th 2020. For a better overview, we will exclude grid
cells where turbulence is detected for only one aircraft from now. Where Sun and
Olive [10] conclude consistent turbulence over the Netherlands and Flanders in total,
we look at these countries in more detail. In the first two time periods, shown in the
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Figure 3.5: Four heatmaps of detected turbulence every 30 minutes at October 27,
2020. Amsterdam Airport Schiphol is indicated with a red triangle.

top two figures, turbulence looks consistent at the Dutch coast, in parts of Germany
and below Zeeland, in Belgium. Moreover, in the last two time periods, shown in
the bottom two figures, turbulence is consistently detected around the South of the
Netherlands, in the middle of Belgium and around Amsterdam. However, we should
keep in mind that aircraft are the sensors which means that turbulence can only be
detected in areas where aircraft have passed. So, it does not mean that turbulence
above the North Sea was not there in the last two time periods since it is possible
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Figure 3.6: Four heatmaps of detected turbulence every 30 minutes at October 31,
2020. Amsterdam Airport Schiphol is indicated with a red triangle.

that there where no, or less, flights in that area.

Next, we analyse the consistency over time at October 31st 2020. We analyse flights
in the same bounding box around the Netherlands as before. Heatmaps of detected
turbulence every half an hour between 20:00 UTC and 21:30 UTC are shown in Figure
3.6. We observe much turbulence in and below Zeeland. However, this turbulence is
not clear in the bottom left figure. Analysing the tracks of the flights clarifies that
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there were less flights in this area around 21:00 UTC. Flights that passed Zeeland did
however experience turbulence, but since we excluded grid cells where turbulence is
detected for only one aircraft this is not visible in the figure. Besides this, turbulence
is also consistently detected around Amsterdam and, for a shorter period, above the
islands.

3.5 Validation for approaching air traffic

In this section, we will validate the algorithm for air traffic in the approach area. As
mentioned before, we will not analyse the entire descent but focus on the approach
in the TMA of Amsterdam Airport Schiphol. Hence, focus lies on the last 100 flight
levels (100.000 feet) of descent. We have seen that the algorithm shows consistency
across aircraft and over time for en-route air traffic. For aircraft in cruise, the vertical
rates fluctuate around zero whereas in approaching air traffic the vertical rates do
not fluctuate around a specific value, as we have seen in Section 3.3. The question
is whether the algorithm still detects turbulence correctly in this case and if it is
possible to detect and distinguish wake turbulence. We validate the algorithm by
showing consistent observations by all aircraft, a consistency over time, a consistency
with wind fields and a consistency with reported wake turbulence encounters.

3.5.1 Consistency across aircraft

The first validation method is, similar as for en-route air traffic, to show that turbu-
lence in an area is observed by all aircraft passing it. We will analyse two approach
situations at the same time on a different day.

First, we analyse a situation on a summer day in 2019. We plot approaching flights
that have landed between 10:30 UTC and 11:00 UTC and color detected turbulence
in red. This is shown in Figure 3.7. The three IAFs can be recognized. We observe
consistently detected turbulence for example above the North Sea. Moreover, much
turbulence is detected in the final turn when aircraft turn to final approach.

Next, we analyse approaching air traffic on a winter day in 2019. We plot approaching
flights that have landed between 10:30 UTC and 11:00 UTC. The flights are shown
in Figure 3.8, with detected turbulence in red. As before, we observe turbulence
detected at some aircraft when turning to their final approach. Also, multiple aircraft
experience turbulence in the final moments before landing.
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Figure 3.7: Turbulence detected on a summer day in 2019, between 10:30 UTC and
11:00 UTC. Detected turbulence in red.

Figure 3.8: Turbulence detected on a winter day in 2019, between 10:30 UTC and
11:00 UTC. Detected turbulence in red.
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3.5.2 Consistency over time

Next, we check if the algorithm detects turbulence consistent over time. We analyse
approaching air traffic in four consecutive time periods of 15 minutes. The plots of
the tracks are shown in Figure 3.9, with detected turbulence in red. We observe an
increase in detected turbulence over time. Turbulence in the final moments before
landing is observed consistently. Moreover, turbulence detected in the turn to final
approach is observed consistently after 9:45 UTC. However, due to the multiple turbu-
lent moments detected in single time periods, we cannot conclude a clear consistency
over time.

Figure 3.9: Four track plots of approaching air traffic in consecutive time periods,
detected turbulence in red.
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We analyse the same time periods on another day. The tracks are plotted and shown
in Figure 3.10. The consistency over time is even less visible in this example. We
conclude that for approaching air traffic less consistent turbulence is detected over
time when compared to en-route air traffic. Turbulence detected on lower altitudes
might be less time consistent, hence not detected by the algorithm. As we cannot
validate the algorithm using this method, we will use two other ways.

Figure 3.10: Four track plots of approaching air traffic in consecutive time periods,
detected turbulence in red.
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3.5.3 Consistency with weather effects

In heavy wind we expect aircraft to experience more turbulence than if there is little
wind. We will analyse a situation where aircraft landed in heavy wind and compare
it to a situation where aircraft landed with little wind and see if the algorithm indeed
detects more turbulence in the first situation. In Figure 3.11, aircraft approaching in
the same time period on a different day are plotted. Most of the flights landed on both
days, which makes it possible to compare these two situations. The left figure shows
flights that landed in little wind with a windspeed of approximately eight knots, with
turbulence detected by the algorithm in red. We observe a little turbulence detected
in the beginning and at the and of final approach. In the right figure, flights that
landed in heavy wind of approximately 30 knots are shown. Much turbulence is
detected in their final approach. Also, one flight executed a go around, which means
that the landing is aborted, likely because the heavy wind made it impossible to land
safely. The expected more turbulence in heavy wind situations is confirmed by this
example.

Figure 3.11: Left: little turbulence detected for aircraft landing with little wind.
Right: much turbulence detected for aircraft landing in strong wind.

Also, aircraft flying through clouds can experience quite some turbulence. We anal-
yse a situation where clouds were reported by the METAR of Amsterdam Airport
Schiphol between 1800 and 2300 feet. The result of the algorithm on approaching air
traffic in this situation is shown in the left figure in Figure 3.12. We observe much
turbulence in the turn to final approach, where most aircraft have an altitude between
3000 and 1000 feet. This is in line with the reported clouds.
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Figure 3.12: Left: approaching air traffic in a time period where clouds were reported.
Right: approaching air traffic in a time period where rain was reported.

Finally, we investigate a situation where rain and wind with a speed of approximately
seven knots were reported by the METAR of Amsterdam Airport Schiphol. The plot
of approaching aircraft in this time period of 30 minutes is shown in the right figure
in Figure 3.12. Clearly, clouds are also present in this situation. We observe much
turbulence, which is likely to be caused by the clouds, wind and/or rain.

3.5.4 Consistency with wake vortex reports

Since we are mainly interested in wake turbulence, we will analyse situations where
wake turbulence is reported by the pilot and of which we are sure turbulence is
experienced by aircraft. As mentioned before, for each reported wake turbulence
situation, we have the callsigns of involved aircraft, the distance between the two
aircraft and the altitude of the trailing aircraft at time of the incident. We use
this information to identify the wake vortex incident in the data set and see if the
algorithm detects the reported turbulence.

We will analyse two situations. First, we analyse the approach of a flight where
wake turbulence was reported by a medium aircraft around flight level 70. We run
the algorithm on the available data of this flight and analyse the barometric vertical
rate and inertial vertical velocity and the outcome of the algorithm. This is shown
in Figure 3.13. The first figure plots the barometric measure vb and the inertial
measure vi. Noise in the barometric measure is clearly visible in the end of descent
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Figure 3.13: Consistency with wake vortex report. Top: two sources of vertical rate.
Middle: absolute difference in standard deviation. Bottom: flight level with detected
turbulence in red.
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and also between 10:10 UTC and 10:12 UTC. The second figure shows the difference
in standard deviation, computed per minute and with detected turbulence in red.
The algorithm detected turbulence around 10:12 UTC. The bottom figure shows the
altitude of the aircraft in flight levels over time. The time segments where turbulence
is detected are colored red. We observe that the detected turbulence occurred around
flight level 70, which corresponds to the wake vortex report. The aircraft in front was
a heavy aircraft and the aircraft were 7.8 NM separated, well above the separation
minimum of 5 NM. Whether this turbulence was caused by a wake vortex or not,
turbulence was reported by the pilot and the algorithm detected turbulence where it
should have.

The second situation we analyse is a situation where wake turbulence was reported
by the pilot flying a medium aircraft in final approach below 1000 ft. We plotted the
barometric and inertial measures for this situation and ran the algorithm. The results
are shown in Figure 3.14. The algorithm detected turbulence around 10:20 UTC
when the aircraft was in its final approach, corresponding to the wake vortex report.
We observe that the aircraft aborted the landing. The pilot probably experienced
too much turbulence to land safely and executed a go around. According to the
algorithm, it landed without turbulence the second time.

However, there are also situations where the algorithm does not detect turbulence at
times when wake turbulence is reported and noise in the barometric vertical rate is
visible. Also, we have seen huge differences in threshold value for different aircraft.
These differences are not only visible for different aircraft, but also for same types of
aircraft on different days or routes. To analyse wake turbulence encounters, being able
to compare the intensity of turbulence could be helpful. Since the threshold seems
not to be a good measure for this, we might want to investigate if ∆σ is. Lastly,
we have seen much turbulence being detected in heavy weather circumstances. If we
want to get insight in the number of wake turbulence encounters, we should be able
to distinguish wake turbulence from other turbulence. We will elaborate on these
shortcomings in Chapter 4.
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Figure 3.14: Consistency with wake vortex report. Top: two sources of vertical rate.
Middle: absolute difference in standard deviation. Bottom: flight level with detected
turbulence in red.
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Chapter 4

Experiments and results

During the validation of the algorithm we have come across some problems. Firstly,
not all known wake turbulence encounters are detected by the algorithm, while noise
in the barometric vertical rate is visible. Also, thresholds differ a lot, among different
aircraft and routes but also among days or times for the same aircraft and route. This
makes it hard to decide on the intensity of turbulence which would be helpful when
analysing wake vortex encounters and is one of the goals of the research. We will
propose adaptations to the current algorithm to solve these problems in Section 4.1.
Besides the already mentioned limitations of the algorithm, another problem is that
the algorithm detects more than only wake turbulence. We will analyse turbulence
on final approach in situations where weather could not have been a cause in Section
4.2.

4.1 Algorithm optimization

In this section, we will propose adaptations to improve the algorithm. First, we
discuss how we can improve the detection of turbulence by the algorithm by three
methods. Then, we will propose a method to be able to compare intensities of different
turbulence encounters.

4.1.1 Improve turbulence detection

There are examples where wake turbulence is reported by the pilot and noise is visible
in the barometric vertical rate, but the algorithm does not detect them. The question
is where in the algorithm this happens. It might be caused by grouping the data into
time segments of one minute or the peaks in barometric vertical rate might be filtered
out as outlier when applying the moving median. Another option is that an aircraft
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measured heavy noise during cruise, causing the threshold to be high, resulting in
moderate noise not being detected. We will discuss all these options.

Moving standard deviation

Using the original algorithm, only 43.8% of the reported wake turbulence encounters
are detected. Noise in the barometric vertical rate is visible in most of these cases,
but this information seems to disappear during the algorithm. An important step in
the algorithm is that the data is grouped into segments of one minute. Within these
segments, standard deviations are computed and used for turbulence detection. A
positive aspect of this is that the amount of data is reduced to one row of data per
minute instead of one row every four seconds. However, lots of information is lost.
A peak in the data happening at the split of time segments causes only half of the
peak values to be considered in each time segment. Hence, the standard deviations
in both time segments will be lower than if the peak would have been entirely within
one time segment. A lower standard deviation of the barometric vertical rate results
in a lower ∆σ, which causes the algorithm to be less likely to detect the moment with
noisy barometric vertical rate as turbulence.

As a solution to the above shortcoming we propose using a moving standard devia-
tion with a window size of one minute. This means that the standard deviation is
computed for every possible window of one minute. If a peak is at the split for one
window, it will be completely within one of the next windows and still be detected. An
example where pilot-reported wake turbulence is not detected is shown in Figure 4.1.
The final 100 flight levels are analysed. The top figure shows the barometric vertical
rate and the inertial vertical velocity. The figure in the middle shows the standard
deviations of both parameters in time segments of one minute. The obtained result
is shown in the bottom figure. No turbulence is detected by the algorithm here. In
Figure 4.2, the moving standard deviation is used. The top figure shows the moving
standard deviation for both the barometric as the inertial measure. The figure in
the middle plots the difference between the standard deviations with values above
the threshold in red. The threshold is computed as before as in Equation (3.1), now
taking the mean and standard deviation over many more values. We observe that be-
tween 11:11 UTC and 11:12 UTC the algorithm detected turbulence, where it did not
detect any turbulence before. As mentioned before, the wake turbulence encounter
was reported at approximately flight level 45. The bottom figure in Figure 4.2 shows
that the algorithm indeed detected turbulence at this altitude. So, the moving stan-
dard deviation makes it possible to detect wake turbulence reported by the pilot that
the original algorithm did not detect.
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Figure 4.1: Turbulence not detected using the original algorithm. Top: two sources
of vertical rate. Middle: standard deviations of vb and vi in time segments of one
minute. Bottom: absolute difference in standard deviation with detected turbulence
in red.
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Figure 4.2: Turbulence is detected using improved algorithm. Top: two sources of
vertical rate. Middle: standard deviations of vb and vi in time segments of one minute.
Bottom: absolute difference in standard deviation with detected turbulence in red.
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A second advantage of the moving standard deviation is that turbulence is detected
more precisely. If turbulence was detected by the original algorithm, we knew that
somewhere in that time segment of a minute the barometric vertical rate has been very
noisy compared to the inertial vertical velocity. If the noise in the data is at a split
of time segments and therefore present in both time segments for a few seconds, both
time segments could have a ∆σ above threshold due to this peak. If this happens,
the algorithm detects turbulence for two minutes long while it could have been only
20 seconds.

An example is shown in Figure 4.3. The result of the algorithm using a moving
standard deviation is shown in a plot of the flight level over time. A wake vortex
encounter was reported by the pilot in the final approach, below an altitude of 1000
ft. We observe turbulence detected at this point, just before the planned landing.
However, due to this turbulence the aircraft decided not to land and execute a go
around, which is not entirely visible in the figure. Note that the detected turbulence
lasts a lot shorter than a minute.

Figure 4.3: An example of a more precise turbulence detection. The result of the
algorithm is shown on a plot of flight level over time, wake turbulence detected around
7:21 UTC.

On a large scale, we would still like to have turbulence detected consistently by all
aircraft. In Figure 4.4, we plotted approaching aircraft flying through a layer of clouds.
This example is similar to Figure 3.12, now using the moving standard deviation. We
observe that turbulence at the height of the clouds is detected even more consistently
by all aircraft than with the original algorithm. Also important is that there are large
parts of the flights turbulence free for all aircraft.

In Figure 4.5, approaching air traffic is shown in a situation that we have not seen
before. Few clouds around 4000 feet were reported in the METAR of Amsterdam
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Figure 4.4: An example of the algorithm using a moving standard deviation on a
larger scale.

Figure 4.5: An example of the algorithm using a moving standard deviation on a
larger scale.
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Airport Schiphol. We observe some consistent detected turbulence on flights entering
the TMA at RIVER and also above Flevoland, likely to be caused by the clouds.
Moreover, multiple aircraft have turbulence detected on final.

Besides the consistently detected turbulence, we also observe many small and short
lasting turbulent periods to be detected. This might have been turbulence, but the
question is whether these detections are useful or only making the output unclear. As
we have seen in the example in Figure 4.3, these short lasting turbulent periods can
indeed indicate wake turbulence. But, it could also be the case that not all outliers
are filtered out by the algorithm when applying the moving median and that these
short lasting noisy peaks are still outliers and not turbulence.

Implementing the moving standard deviation in the algorithm makes it possible to
detect 68.8% of the reported wake turbulence encounters. Half of the extra detected
cases are reported in final approach. Since wake turbulence is detected on final ap-
proach using the moving standard deviation that was not detected by the original
algorithm, we conclude that it is an improvement to the algorithm. However, we will
not focus too much on the short lasting turbulent moments in the initial approach.
Some of the reported cases that are still not detected do show significant noise in
barometric vertical rate. The cases that are not detected that do not show significant
noise in barometric vertical rate are mostly weak reported wake turbulence encoun-
ters. An overview of the results of the original algorithm and the proposed improved
algorithm is shown in Table 4.1, where the results are split up in results for encoun-
ters on final approach and encounters on higher altitudes in initial approach. In total
62.5% of the reported wake turbulence encounters are on final approach.

Original algorithm Improved algorithm
Final approach 40% 60%
Initial approach 50% 66.7%

Total 43.8% 68.8%

Table 4.1: An overview of the percentages of algorithm detections per approach
segment.

Descent only

The more heavy noise in barometric vertical rate during the flight, the higher the
threshold and the less likely weaker noise will be seen by the algorithm. However,
this weaker noise might be caused by a wake vortex and therefore is preferred to be
detected. Besides some perfectly detected wake turbulence, we have some examples
of wake vortex reports that are not detected by the algorithm. We propose to analyse
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only data where the aircraft was in descent and not take into account the en-route
part of the flight. In this way, we might filter out some heavy noise and base the
threshold on the average level of noise in descent only. By doing this, we ignore the
assumption made by Olive and Sun [10]. They assume that this threshold works
well because an aircraft will always experience turbulence during a flight and this
turbulence will never last the entire flight. If we use descent data only, we change
this assumption to the assumption that all aircraft experience some turbulence during
descent, which is less true.

Figure 4.6: Top: result using all data, reported wake turbulence not detected. Bot-
tom: result using descent data only, reported wake turbulence detected around flight
level 20.

We will analyse a flight where wake turbulence was reported, but not detected by the
algorithm. Weak wake turbulence was reported at flight level 20. Figure 4.6 shows
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the results of the algorithm on the plot of the flight level over time with detected
turbulence in red. The top figure is the result when running the algorithm on all data
of this flight, the result in the bottom figure is obtained when descent data is used
only. The turbulence in the final minutes of the flight is the only turbulence detected
when using all data. When the algorithm is run on the descent data only, three more
periods with turbulence are detected. And, fortunately, one of those moments is at
flight level 20, the altitude at which wake turbulence was detected. In this case,
reducing the data resulted in a lower threshold causing more periods to be labeled as
turbulence. However, it can also increase the threshold if descent had on average more
noise in barometric vertical rate. This might cause originally detected turbulence, not
to be detected anymore.

Since this was an example of a wake turbulence encounter reported as weak, this sup-
ports the idea that ∆σ could be a measure for the strength of turbulence. Namely, this
weak turbulence resulted in a low ∆σ, smaller than the threshold that was originally
used. We will elaborate more on this in Section 4.1.2.

For the algorithm to run on descent data only we conclude that it will work in some
situations but, holding on to the assumption made by Olive and Sun, it is not a good
solution on the large scale.

Extra radar data

We still have cases where the algorithm did not detect turbulence where wake tur-
bulence was reported by the pilot. We take a look at the barometric vertical rate,
vb, and inertial vertical velocity, vi, of one such example, shown in the top figure in
Figure 4.7. We observe a very noisy barometric vertical rate from 11:57 UTC till
12:14 UTC. This happened when the flight was in cruise, as can be concluded from
the vertical rate fluctuating around zero. Later on, around 12:34 UTC, a huge peak
in barometric vertical rate is visible. In the bottom figure in Figure 4.7, the result of
the algorithm is shown on a plot of the flight level over time. The algorithm detected
turbulence in cruise but the peak at 12:34 UTC is not seen. Moderate wake turbu-
lence was reported around flight level 70, which seems to be, when combining the two
figures, exactly at the peak. Since it is a very short lasting peak, it might have been
removed when executing the moving median to filter out outliers and therefore not
detected as turbulence. This is confirmed in Figure 4.8, where vb and vi are plotted
after removing the outliers. Since we know that the aircraft experienced turbulence
around 12:34 UTC, more data around that time could prevent the peak from being
removed.

The data set we have used so far is ARTAS processed surveillance data. Every four
seconds, it adds the most recent information collected by one of the radars. This
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Figure 4.7: An example where wake turbulence is not detected with ARTAS data.
Top: barometric vertical rate shows peak around 12:35 UTC. Bottom: result of the
algorithm plotted on flight level over time.

Figure 4.8: Two sources of vertical rate after filtering out outliers.
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means that many useful radar data is lost. This data might prevent turbulence to be
removed as outlier or introduce very new peaks in barometric vertical rate. Therefore,
we will merge the ARTAS data set with raw Mode-S radar data obtained from 3 of
the 15 radars. The three radars used are radars around Amsterdam Airport Schiphol:
TAR-I, TAR-West and Soesterberg. Since the radars request information at different
moments in time, this extends the data set to a data set with more updates than only
every four seconds.

Figure 4.9: Result of the algorithm when excluding the extra radar data on the left
compared to the result when including the extra radar data on the right.

In Figure 4.9, the result of the algorithm using data excluding this extra radar data
in the left figure is compared to the result of the algorithm using data including it in
the right figure. The figure shows aircraft approaching Amsterdam Airport Schiphol
between 10:30 UTC and 11:00 UTC. We observe extra cases of turbulence being
detected, but also cases of turbulence that disappeared. This may indicate a more
precise turbulence detection.

We return to the example from Figure 4.7 and now use the extended data set. The
barometric vertical rate and inertial vertical velocity are plotted in Figure 4.10, to-
gether with the algorithm result on the flight level. We do observe an extra peak
around 12:34 UTC, but unfortunately it is still removed as outlier and therefore not
detected as turbulence. However, using this extended data set causes extra moments
to be detected as turbulence in cruise and in the beginning of descent.

Including extra radar data does not make a difference for the wake turbulence en-
counters that we consider in this research. Filtering out outliers causes these cases of
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turbulence to be filtered out, even with extra data included. An option is to skip the
filtering, however this leads to possible false positives. The algorithm already showed
that it is able to detect many true wake turbulence encounters. Only a few more are
detected when skipping the outlier filtering. However, many other possibly false pos-
itives are detected causing unclear results. Therefore, we conclude that skipping the
outlier filteringwill not improve the analysis of wake turbulence encounters. However,
although including the extra radar data did not show extra reported wake turbulence
to be detected it gives a more precise result and can be useful for detecting wake
turbulence on a large scale.

Figure 4.10: An example where extra radar data is included. Top: barometric vertical
rate shows extra peak around 12:34 UTC. Bottom: result of the algorithm plotted on
flight level over time.
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4.1.2 Measure turbulence severity

In the analysis of wake turbulence encounters, it would be helpful if it were possible
to measure the intensity of turbulence. When validating the algorithm for en-route
air traffic we used, as Olive and Sun [10] did in their research, heatmaps to give a
clear overview of the areas where turbulence was detected. The colors in the heatmap
were based on the average of thresholds of the flights crossing a grid cell and should
give insight in the severeness of turbulence in that grid cell.

As mentioned before, we question whether the threshold is a good measure for the
severeness of turbulence. It might be useful for comparing the average level of tur-
bulence experienced by aircraft in the entire flight to other aircraft but since it is
a constant and turbulence intensity differs during the flight, it will not be able to
distinguish different intensities. The value of ∆σ might give a better indication for
this.

Figure 4.11: Difference in standard deviation ∆σ of two flights in similar circum-
stances, with detected turbulence in red.
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We compare two medium aircraft flying the same route from London Heathrow Air-
port to Amsterdam Airport Schiphol half an hour apart, landing in equal weather
circumstances. In Figure 4.11, ∆σ is plotted over time for two aircraft with the values
above threshold in red. While we expected to see similar values for both aircraft due
to the constant circumstances, we observe a completely different pattern in the two
figures. The top figure shows the result of an aircraft of type B737 with a threshold of
110.5. The bottom figure shows the result of an aircraft of type A320 with a thresh-
old of only 31.8. This big difference might of course be an exception, for example
due to the heavy wind on that day. Therefore, we compare thresholds of all flights
from London Heathrow Airport to Amsterdam Airport Schiphol on a day with little
wind and we find thresholds varying from 30 to 75. What is a striking observation
is that aircraft of type B737 have thresholds between 65 and 75, whereas the other
types have values between 30 en 40. This suggests that noise varies over aircraft type
and besides the threshold also ∆σ might not be a good measure for the severeness of
turbulence.

Figure 4.12: Difference in standard deviation of final 100 flight levels of aircraft of
type B737 (top) and A320 (bottom).
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In Figure 4.12, we plotted ∆σ for flights entering the TMA at SUGOL in the week
from 27-10-2020 to 02-11-2020. Since all aircraft fly the approximate same route in
the TMA, we will compare the final 100 flight levels of all flights. The top figure
shows the result for aircraft of type B737. The bottom figure shows the result for
aircraft of type A320. We observe higher and more deviating values for aircraft of
type B737, but also aircraft of type A320 have some deviating values. For other types
of aircraft, similar results are obtained. Although the results for aircraft of type B737
seem higher on average, we do not observe a clear trend. We conclude that there is
not an overall trend per aircraft type, but that diverging values exist for all types.

To be able to compare results of all aircraft, we want to convert the data into a uniform
scale. Normalisation, or min-max scaling, scales the data to an interval between zero
and one. The maximum value gets normalised value one and the minimum value gets
normalised value zero [6]. We go back to the example of the two aircraft flying from
London Heathrow Airport to Amsterdam Airport Schiphol half an hour apart and
apply normalisation to ∆σ. The non-normalised results for ∆σ were already shown
in Figure 4.11, the normalised results are shown in Figure 4.13. These figures look
promising, since both aircraft show similar values now. However, if the maximum
value of ∆σ is one for each flight, it is still impossible to compare turbulent strength.
Since for one aircraft experiencing some weak turbulence only, this weak turbulence
peak is scaled to have a top at one, but for another aircraft experiencing severe
turbulence, this severe turbulence peak is scaled to have a top at one, as well. What
we need is a scaling to have the non-turbulent values approximately in the same
range, but outliers to be more visible and not in a bounded range.

We propose to apply standardisation. Standardisation scales the data to have mean
zero and standard deviation one. The formula for standardisation is

∆σ′
j =

∆σj −∆σ

σ(∆σ)
, (4.1)

where ∆σ and σ(∆σ) are the mean and standard deviation of all ∆σj, respectively. We
use the same two flights as before to demonstrate standardisation. The standardised
results are shown in Figure 4.14. An advantage of standardisation is that values are
not scaled to a bounded range thus outliers are not so much affected [6]. We observe
that most values lie between minus one and one with some peaks varying in size. For
this example, the two figures were expected to have similar values since the aircraft
flew in similar circumstances. To check if deviations vary for other turbulent flights,
we look at a larger scale. In Figure 4.15, we standardised the results from Figure 4.12.
We observe the values to be more on the same scale than before the standardisation.

Due to the computation of the threshold, every flight has a threshold of 1.2. This
means that the threshold cannot be used for comparing the average level of turbulence
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Figure 4.13: Normalised difference in standard deviation of two flights in similar
circumstances, with detected turbulence in red.

experienced by aircraft anymore. Since we are interested in specific turbulence cases,
this is not a problem for this research. The advantage of this is that ∆σ′ seems more
useful for comparing turbulence in specific cases.

To check whether ∆σ′ can be used as a measure for the strength of turbulence we
use the reported wake turbulence situations, of which we know whether it was ex-
perienced as weak, moderate or severe turbulence. In Figure 4.16, ∆σ′ is plotted
for a flight where severe turbulence was reported. We clearly see a high peak in
the plot at 00:33 UTC, suggesting that ∆σ′ is high for severe turbulence. However,
comparing the results of reported moderate to weak wake turbulence shows less sig-
nificant results. The top two figures in Figure 4.17 show the results for flights with
moderate wake turbulence reported around 8:32 UTC and 10:12 UTC, respectively.
The bottom figure shows the result for a flight with weak turbulence reported around
9:25 UTC. According to the values of ∆σ′, the aircraft in the first figure seems to
have experienced weaker turbulence than the aircraft in the other two figures. As
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the intensities as stated in the data are mainly based on pilot reports and one pilot
can describe turbulence as weak while the other describes it as moderate, this could
be an explanation for the obtained results. Research on a larger scale is needed to
determine whether ∆σ′ is a good measure for the strength of turbulence.

Figure 4.14: Standardised difference in standard deviation ∆σ′ of two flights in similar
circumstances, with detected turbulence in red.
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Figure 4.15: Standardised difference in standard deviation ∆σ′ of final 100 flight
levels of aircraft of type B737 (top) and A320 (bottom).

Figure 4.16: Standardised difference in standard deviation ∆σ′ of a flight where severe
wake turbulence is reported.
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Figure 4.17: Standardised difference in standard deviation ∆σ′ of flights where mod-
erate (top and middle) and weak (bottom) wake turbulence is reported.
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4.2 Distinguish wake turbulence

So far, we have analysed known wake turbulence encounters and concluded that the
algorithm can detect most of the available cases. However, only a few incidents
are reported by pilots and more wake turbulence encounters happen, mostly in final
approach. One of the goals of the thesis is to get insight in the number of wake
turbulence encounters and therefore we want to be able to distinguish wake turbulence
from the other detected turbulence.

When validating the algorithm for approaching air traffic, we have seen that turbu-
lence caused by weather effects is detected by the algorithm. Therefore, we will focus
on situations where these factors are minimized. For example the situation sketched
in Figure 4.18. There were no clouds and a windspeed of only three knots according
to the METAR of Amsterdam Airport Schiphol. But we still observe some turbulence
to be detected in final approach, possibly caused by wake vortices. What stands out
is that three aircraft, entering the TMA at SUGOL, fly over their own future position,
from West to East, making a turn to the South and flying final approach to the North,
where they will experience turbulence. Since wake vortices go down, it might be the
case that the detected turbulence is turbulence caused by their own wake vortices.
Analysis on a larger scale, in the same circumstances, is needed to draw conclusions.

Figure 4.18: Approaching air traffic in a time period with little winds and no clouds,
possible wake turbulence is detected in final approach.
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Figure 4.19: Approaching air traffic in a time period with little winds and no clouds,
possible wake turbulence is detected in final approach.

We analyse a second situation with windspeeds of only two knots, with no rain and
no clouds reported. Aircraft approaching in a time period of 30 minutes are shown in
Figure 4.19. Despite the non turbulent weather circumstances, still some turbulence
is detected during the final approach. Both in this example and in the previous
example, the ICAO separation minima are met. This does not exclude the possibility
for the detected turbulence to be wake turbulence. Besides it being caused by wake
turbulence, it is also possible that a sudden decrease in speed caused by extending
the landing gear or using wing flaps led to turbulence. However, we did not observe
this in any analysed situation.

To confirm detected turbulence to be wake turbulence one might analyse other sources
of data. For example, the distance to the aircraft in front and types of both leading
and following aircraft can give insight in whether a wake vortex could have been strong
enough to cause wake turbulence. Moreover, wake turbulence is sometimes visible in
the roll angle, since a wake can have a rolling effect on an aircraft. An example where
the roll angle shows extreme values during a reported wake turbulence encounter is
shown in Figure 4.20. Wake turbulence is reported by a pilot around flight level 70.
This reported turbulence is detected by the algorithm as shown in the top figure. At
the time of the turbulence encounter, the plot of the roll angle in the bottom shows
an extreme peak.
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Figure 4.20: Pilot-reported wake turbulence encounter around flight level 70 detected
by the algorithm. Result plotted on flight level in the top and on roll angle in the
bottom.

We conclude that with favorable weather circumstances it is likely that wake turbu-
lence is detected. However, in heavy weather it is hard to distinguish wake turbulence
from turbulence caused by the weather. Turbulence caused by wind and turbulence
caused by wake vortices can both result in a sudden drop in altitude and/or shaking
of the aircraft. Not only for the algorithm and analysis of the results, but also for
pilots themselves is it sometimes hard to distinguish different causes of turbulence.

For example, much wake turbulence and windshear is communicated to air traffic
controllers at Amsterdam Airport Schiphol where wind flowing over the Amsterdam
Forrest causes mechanical turbulence to approaching aircraft. An example where this
could be the case is shown in Figure 4.21. A Southwestern wind with speeds between
15 and 20 knots is reported. Turbulence is detected for many aircraft in the final part
before landing. However, we have already seen that wind causes much turbulence, also
for aircraft not flying over the Amsterdam Forrest. So we cannot conclude that this
detected turbulence is actually the mechanical turbulence caused by the Amsterdam
Forrest, yet another example where explaining turbulence is difficult.
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Figure 4.21: Possible mechanical turbulence caused by wind flowing over the Ams-
terdam Forrest visible right before landing.
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Chapter 5

Conclusions and discussion

The goal of this thesis was to investigate whether the algorithm for detecting and
measuring turbulence proposed by Olive and Sun [10] can be used for approaching
air traffic, as well, and to analyse the applicability for analysing wake turbulence
encounters. The conclusions and suggestions for future work are discussed in this
chapter.

5.1 Conclusions

We started with the validation of the algorithm. Where Olive and Sun implemented
and analysed the algorithm for en-route air traffic only, we extended the analysis to
approaching air traffic with a focus on wake turbulence. Therefore, besides examining
a consistency of turbulence across aircraft and over time for en-route air traffic we
validated the algorithm for approaching air traffic by also looking at a consistency
with reported heavy weather circumstances and reported wake turbulence encounters.
We concluded that the algorithm was able to detect 43.8% reported wake turbulence
encounters.

To improve the detection of turbulence by the algorithm we proposed to implement a
moving standard deviation instead of using the standard deviation of a small number
of time windows only. Although many smaller periods of turbulence are detected,
making the results more unclear, we still concluded this adaptation to be an improve-
ment to the algorithm since this made it possible to detect in total 68.8% of the
reported wake turbulence encounters.

Furthermore, we experimented with the data by reducing the data set to descent data
only. We did detect a reported wake turbulence encounter we did not detect before
using descent data only. However, by doing this the assumption made by Olive and
Sun, that this algorithm and threshold works well because an aircraft will always
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experience turbulence during a flight and this turbulence will never last the entire
flight, is ignored. Therefore, we concluded that this is not an improvement for large
scale analysis.

For a more precise detection of turbulence we included extra raw radar data. This did
not result in extra detection for the known pilot-reported wake turbulence encounters,
due to the fact that peaks in barometric vertical rate were filtered out as outlier. We
analysed the possibility to exclude the filtering, but concluded that this would not help
for the analysis of wake turbulence encounters due to an increase in false positives.

To analyse wake turbulence encounters, it is helpful to be able to measure the severity
of the turbulence detected. We concluded that the computed threshold and difference
in standard deviation are not able to give a good indication of severity of turbulence
and proposed to standardise the difference in standard deviation and use this as a
measure for the severity. We saw the standardised values of the difference in standard
deviation to be more comparable and the analysis of a severe reported wake turbu-
lence encounter suggested that this might indeed be a good measure for the level of
turbulence.

Finally, we looked into the possibility to distinguish wake turbulence from other
detected turbulence to be able to get insight in the number of wake turbulence en-
counters. We concluded that with favorable weather circumstances it is likely that
turbulence detected in final approach is caused by wake vortices. However, with heavy
wind and rain too much turbulence is detected to be able to distinguish between tur-
bulence caused by the weather and turbulence caused by wake vortices. Also, heavy
wind causes wake vortices to dissipate more quickly which makes it less likely that
wake turbulence is experienced.

All together, we conclude that the algorithm can be used to detect turbulence for
approaching air traffic. However, it is hard to distinguish wake turbulence if effects of
heavy weather cannot be ruled out. To measure the intensity of turbulence, standar-
dising is proposed. But, this needs extra analysis on larger scale to draw conclusions
for the applicability.

5.2 Discussion and future work

The assumption made by Olive and Sun on which the turbulence detection is based is
that an aircraft will always experience turbulence during a flight and this turbulence
will never last the entire flight. For this research, data collected by radars in the
Netherlands is used covering an area of approximately 200 kilometers around the
country. This means that for analysis of flights approaching Amsterdam Airport
Schiphol departing outside this area, we do not take the entire flight into account.
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Although we have seen good results, further research on this topic may use data of
the entire flight, if available, to obtain even more precise results.

Besides extending the radar data to other parts of the world, more data on reported
wake turbulence would also be helpful for further analysis. So far, standardising
the difference in standard deviation looks promising for determining the intensity
of turbulence. We saw, for example, a severe wake turbulence case that showed an
extreme value suggesting that higher values of the new measure indicate more severe
turbulence. However, a clear trend for weak and moderate reports was not visible.
Future work might include to analyse more wake vortex reports to see if a trend exists
and thus if the standardised difference in standard deviation is a good measure for
severity of turbulence.

As one of the ideas is to use this algorithm to create a warning system for air traffic
controllers, it is possible to research the prediction of wake turbulence using machine
learning algorithms. Much data is available, for example on wind and aircraft speed,
that is correlated to the strength of the wake vortex and the effect of it on the trailing
aircraft. If more wake vortex reports become available, machine learning algorithms
can be trained and tested on larger data sets leading to better algorithms.

Another application of this algorithm might be to get insight in the number of wake
turbulence encounters which can be helpful in the analysis of RECAT-TBS once it
is implemented and in use. We have concluded that the algorithm can be used for
detecting wake turbulence in situations where weather effects are ruled out. This
means that for those situations it is possible to get insight in the number of wake
turbulence encounters and is it possible to compare results. This will specifically be
useful when analysing wake turbulence after implementation of RECAT-EU. For the
effect after implementation of TBS it will be less useful, since TBS will decrease sep-
aration between aircraft mostly in strong headwind, where a wake vortex dissipates
more quickly. More research on distinguishing wake turbulence can be done, possi-
bly in combination with wake turbulence prediction algorithms, to also be useful in
heavier weather circumstances.
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Appendix A

List of Symbols

vb barometric vertical rate
vi inertial vertical velocity
σvb,j standard deviation of barometric vertical rate in time segment j
σvi,j standard deviation of inertial vertical velocity in time segment j
∆σj absolute difference between σvb,j and σvi,j
∆σ column with ∆σj for all j
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Appendix B

List of Abbreviations

ACAS Airborne Collision Avoidance System
ASTERIX All purpose Structured EUROCONTROL

Surveillance Information Exchange
BDS Comm-B Data Selector
EHS Enhanced Surveillance
ELS Elementary Surveillance
EUROCONTROL European Organistion for the Safety of Air Navigation
FAF Final Approach Fix
FL Flight Level
IAF Initial Approach Fix
IF Intermediate Approach Fix
ICAO International Civil Aviation Organisation
KNMI Royal Netherlands Meteorological Institute
LVNL Air Traffic Control the Netherlands
MRS Minimum radar separation
METAR Meteorological Aerodrome Report
MHR Meteorological Hazard Report
MRAR Meteorological Routine Air Report
NATS National Air Traffic Services of the UK
NM Nautical Mile
RECAT-EU Wake Vortex Re-Categorisation
RECAT-TBS Wake Vortex Re-Categorisation and Time Based Separation
TBS Time Based Separation
TMA Terminal Manoeuvring Area
WTC Wake Turbulence Category
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Appendix C

Glossary
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Approaching air traffic Air traffic descending to land.
ARTAS System that processes surveillance data.
ARTIP IAF above Flevoland.
Barometric vertical rate Measure of vertical rate obtained from barometer

measurements.
Cruise Phase of the flight after climb and before descent.
En-route air traffic Air traffic outside TMAs containing final part of

climb, cruise and begin of descent.
Final approach Final segment of descent where aircraft is lined up

with the runway for landing.
Final approach fix A specified point where final approach starts.
Flight level Aircraft’s altitude above sea-level in hundreds of feet.
Go around An aborted landing.
Ground speed Aircraft’s speed with respect to the ground.
Magnetic heading Angle between the heading of the aircraft and magnetic

North.
METAR A weather report formulated at an airport every

half an hour.
Mode S radar A secondary surveillance radar technique.
Inertial vertical velocity Measure of vertical rate obtained from fusing

barometer altitude and inertial acceleration.
Initial approach Segment of descent from IAF to IF or FAF.
Initial approach fix A specified point where initial approach starts.
Intermediate approach Segment of descent from IF to FAF, not always

included in approach procedure.
Intermediate approach fix A specified point where intermediate approach starts.
Roll angle Rotation of the aircraft around the longitudinal axis.
RIVER IAF above Rotterdam.
SUGOL IAF above the North Sea.
True airspeed Aircraft’s speed with respect to the air.
Track angle Angle between track and true North.
Wake vortex Turbulent airflow that follows an aircraft.
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