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1 Introduction

In [3] it is shown that for a compact space X, the groups K−n(X) can be described using
Clifford-algebras. In this thesis, we will show that it is possible to do something similar for
equivariant K-theory. Moreover, we will show how Clifford algebras can be used to show
that the groups K−n

G (X) are periodic.
We will now indicate per section what it contains, what references we used and what material
is new. Note that since we of course wrote everything in our own way, combined multiple
sources and applied the theory to different cases, all material differs from the sources. In
this section, we will only mention the most important new results/proofs.

The material in this thesis is ordered as follows:

� In Section 2, the notion of a G-space and a G-vector bundle for a group G will be
introduced. We will for example show how G-vector bundles can be constructed using
clutching functions, show that under certain conditions (equivariant)-sections of a G-
vector bundle can be extended and show that G-vector bundles can be embedded in
‘trivial’ G-vector bundles. This section will mostly be based on [8] and [1] where we
changed some of the proofs to hold for G-vector bundles.
The most notable material that is new with regard to [8] and [1] is:

(i) We give a different proof of Theorem 2.31 because we want to use a different version
of the Peter-Weyl theorem.

(ii) We also introduce quaternionic G-vector bundles and show how Theorem 2.31 can
be proven for real and quaternionic G-vector bundles

� In Section 3, we will give the definition of the group K−n
G (X). We will also construct

the long exact sequence for these groups and prove some of the basic properties of the
groups K−n

G (X). This section is based on [8]. The most notable material that is new
with regard to [8] is:

(i) We prove Theorem 3.20 differently.

(ii) We work out an example for Proposition 3.14. (Example 3.15)

� In Section 4, we will introduce Banach categories and pseudo abelian categories to view
equivariant K-theory from a more general perspective. We will show that the category
of G-vector bundles is a Banach category. This section is based on [3] and the definitions
found on [5], [7] and [6]. Unless otherwise stated, the proofs in these sections are our
own.

� In this section we will define the group K(C) and K−1(C) of a Banach category C.
The group K(φ) of a quasi surjective Banach functor φ will also be introduced. We will
prove some basic results for these groups and show how these groups give an ‘alternative’
definition of KG(X) and K−1

G (X) we defined in section 3 This section will be based on
chapter II. 1, II.2 and III.3 of [3] and section 8 and 9 of [4]. The most notable material
that is new in this section is:

(i) We define the group K−1(C) differently and consequently we need to prove Lemma
5.10 because it no longer holds by definition.
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(ii) We show how the theory of this section can be applied to G-vector bundles.

(iii) We give our own proof of Theorem 5.18.

(iv) We use [4] to show that the group KG(X, Y ) in section 3 coincides with the group
K(i∗) in Section 4.

� In Section 6 we introduce Clifford algebras. The main result of this section is that the
Clifford algebras are in some sense periodic. In the next three sections, we will use
this to show show that the groups K−n

G (X) are periodic. This section will be based on
chapter III.3 of [3] and [4].

� In Section 7 the groups K l,m
G (X) are introduced. We will use the results from the

previous section to show that they are periodic. We will then explain how these groups
can be used to show that

(KR
G)

−n(X, Y ) ∼= (KR
G)

−n−8(X, Y ) and (KC
G)

−n(X, Y ) ∼= (KC
G)

−n−2(X, Y ),

which is the main result of this section. This section is based on section III. 4 of [3].
The most notable material that is new in this section is:

(i) We apply the theory to G-vector bundles and relate it to the groups K−n
G (X, Y ).

(ii) Lemma 7.9 and Lemma 7.10.

(iii) We give a different proof of Proposition 7.2.

� In Section 8, we will introduce gradations and will use them to define the groups
K l,m

G (X,A) from the previous section. The main results of this section will be that

the groups K l,m
G (X,A) are periodic (Proposition ??), that

K l,m
G (X, ∅) ∼= K l,m

G (X)

(Lemma 8.9) and the proof of Equation 7.1 (Theorem 8.16) which says that

K0,0
G (X,A) ∼= KG(X,A).

This section is based on chapter III.4 and III.5 of [3] The most notable material that is
new in this section is:

(i) We apply gradations as defined in [3] to G-vector bundles.

(ii) We give our own proof of Proposition 8.11 and Lemma 8.15.

� In Section 9 we will finish the proof of Theorem 7.16. We will prove that

K l,m+1
G (X,A) ∼= K l,m

G (X × [0, 1], X × {0, 1} ∪ A× I) (1.1)

and describe the isomorphism explicitly. We will base the proof on the proof in chapter
III.5 and III.6 of [3] of Theorem 5.10, but change it such that it applies to the equivariant
case. The most notable material that is new in this section is:

(i) We change the proof in [3] to prove Equation 1.1 if G is finite.

(ii) We give another (new) proof based on the case where G is finite to prove Equation
1.1 for the case that G is a compact Lie group.
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� Section A is the appendix. In A.1 we define and construct the Haar measure and show
it can be used to integrate vector valued functions. This appendix is based on chapter
19 of [9]. But the proofs in Section A.1.2 are our own. We also have an appendix about
representations of groups. The aim of this appendix is to develop enough theory to
state the Peter-Weyl theorem. This appendix is based on chapter 20, 21 and 23 of [9].
But the proofs in Section A.2.1 and A.2.2 are our own.
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2 Vector bundles

In this section the notion of a G-space and a G-vector bundle for a group G will be intro-
duced. We will for example show how G-vector bundles can be constructed using clutching
functions, show that under certain conditions (equivariant)-sections of a G-vector bundle can
be extended and show that G-vector bundles can be embedded in ‘trivial’ G-vector bundles.
This section will mostly be based on [8] and [1] where we changed some of the proofs to hold
for G-vector bundles.
In this section a compact space X is a Hausdorff space, with the property that any open
cover {Ui}i∈I of X has a finite subcover. We start with some definitions:

Definition 2.1. Let G be a topological group and let X be a topological space. Let α :
G×X → X be a left action on X. We then call the pair (X,α) a G-space. We will usually
just say that X is a G-space and use the notation gx := α(g, x) or lg(x) := α(g, x).

Definition 2.2. Let X be a G-space and Y ⊂ X. We call Y a G-invariant subspace, if
gy ∈ Y for all y ∈ Y and g ∈ G.

Since a G-space has more structure than a topological space, a morphisms between G-
spaces also must ’preserve’ this structure. This motivates the following definition:

Definition 2.3. Let G be a group and let X, Y be G-spaces. A continuous function f :
X → Y is called a G-map if

f(g · x) = g · f(x),
for all g ∈ G and x ∈ X.

Example 2.4. Let G be a finite group. The pair (G,α), where we endow G with the
discrete topology and define α by α(g, h) = lg(h) = g · h is an example of a G-space. The
map rh : G→ G, defined by rh(g) = gh is an example of a G-map

With the terminology introduced above, we can give the following definition:

Definition 2.5. Let K = R or C and X be a G-space. A G-vector bundle over X is a
G-space E together with a G-map p : E → X and, for all x ∈ X, the fiber Ex := p−1(x) of
x is endowed with the structure of a K-vector. It must satisfy the following conditions:

(i) The map lg : Ex → Egx is a linear map.

(ii) For all x ∈ X, there exists an open neighbourhood Ux of X and a homeomorphism
Ψ : p−1(Ux) → Ux × Kn, such that P ◦ Ψ = p|Ux, where P : Ux × Kn → Ux is the
projection P (y, v) = y, and the map Ψ|p−1(y) : p−1(y) → {y} × Kn ∼= Kn is a linear
isomorphism for all y ∈ Ux. We will call the isomorphism Ψ a local trivialisation.

If K = R we call p : E → X a real G-vector bundle and if K = C, we call p : E → X a
complex G-vector bundle.

There is also a notion of a morphism between G- vector bundles:

Definition 2.6. Let p : E → X and q : E ′ → X be G-vector bundles. A G-map F : E → E ′

is a G-vector bundle morphism if

(i) We have p = q ◦ F .
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(ii) For all x ∈ X, the map F |Ex : Ex → E ′
x is linear.

We call F a (G-vector bundle) isomorphism if there exists a G-vector bundle morphism
F ′ : E ′ → E, such that F ◦ F ′ = id and F : ◦F = id.

Remark 2.7. Notice that a G-vector bundle morphism F : E → E ′ is already an isomor-
phism if F |x : Ex → Fx is an isomorphism for all x ∈ X. The map F ′ : E ′ → E can then be
defined by F ′|x = (F |x)−1 and is continuous.

Remark 2.8. There is also a more general notion of a G-vector bundle morphism. If
p : E → X and q : E ′ → X ′ are G-vector bundles. Then a G-map F : E → F is a morphism
of vector bundles if:

(i) There exists a continuous G-map f : X → X ′ such that f ◦ p = q ◦ F .

(ii) For all x ∈ X, the map F |Ex : Ex → E ′
f(x) is linear.

However, unless otherwise stated, by a morphism of G-vector bundles, we will mean the
morphism defined in Definition 2.6.

Example 2.9. Let G be a group X a G-space and α : G→ Cn a continuous representation
of G. Then the bundle p : X × Cn → X, where p(x, g) = x and h · (x, v) = (hx, α(g)v) is a
complex G-vector bundle. Notice that the vector space Cn together with the multiplication
g·v = α(g)v is aG-module. We will often denote the representation above by p : X×M → X,
where M is a G-module.

Example 2.10. Let G be a Lie group viewed as a G space as in example 2.4. Let TG
denote its tangent bundle. Then the bundle p : TG → G, where the G-action on TG is
given by h · vg = T lh(g)vg for vg ∈ TGg, is a real G-vector bundle. Notice that the map
Trg : TG→ TG, defined by Trh(vg) = Trh(g)vg for vg ∈ TGg, is an example of a morphism
of vector bundles in the sense of Remark 2.8.

Now that we have some intuition about what a G-vector bundle is, we will show how
known G-vector bundles can be used to construct new G-vector bundles.

Definition 2.11. Let G be a group and p : E → X and p′ : E ′ → X be G-vector bundles,
then the following bundles are G-vector bundles:

1. The bundle q : E⊕E ′ → X, where (E⊕E ′)x = Ex⊕E ′
x for all x ∈ X and the G action

is given by g(v, w) = (gv, gw), for all (v, w) ∈ Ex ⊕ E ′
x

2. The bundle q : E⊗E ′ → X, where (E⊗E ′)x = Ex⊗E ′
x for all x ∈ X and the G-action is

given by the map g· : Ex⊗E ′
x → Egx⊗E ′

gx induced by the map g· : Ex×E ′
x → Egx⊗Egy

defined by g(v, w) = (gv)⊗ (gw).

3. The bundle q : Hom(E,E ′) → X, where Hom(E,E ′)x = Hom(Ex, E
′
x), which is the

set of linear maps from Ex to E ′
x and the action of g is defined by g(A : Ex → E ′

x) =
lg ◦ A ◦ lg−1 : Egx → E ′

gx.

In the following lemma, we will define the topology show that they are indeed G-vector
bundles.

Lemma 2.12. The bundles defined above are indeed G-vector bundles.
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Proof. We will prove the lemma for (i), the proof of the other cases is similar. Let {(Ui,Ψi,Ψ
′
i)}i∈I

be a cover of X, such that Ψ : p−1(Ui) → U × Kn and Ψ′ : (p′)−1(Ui) → Ui × Kn′
i are local

trivialisations. Notice that for all g ∈ G, the map

ψi ◦ lg : l−1
g ((p−1(U))) → Ui ×Kn

is also a local trivialisation. Therefore, we can add local trivializations to the cover I, such
that if (Ui, ψi, ψ

′
i) ∈ {(Ui,Ψi,Ψ

′
i)}i∈I , then (l−1

g (Ui), ψi ◦ lg, ψ′
i ◦ lg) ∈ {(Ui,Ψi,Ψ

′
i)}i∈I . Let

F =
∐

i∈I Ui × Kni × Kn′
i and let π : F → E ⊕ E ′ be the map defined by π(x, v, v′) =

(Ψ−1
i (v),Ψ−1

i (v′)) for i ∈ I. We now endow E ⊕E ′ with the quotient topology (U ⊂ E ⊕E ′

is open if and only if π−1(U) is open). With respect to this topology the map p : E⊕E ′ → X
is continuous and the map (Ψi,Ψ

′
i) : p

−1(Ui) → Ui×Kni ×Kn′
i are local trivializations. Since

π ◦ lg :
∐
i∈I

Ui ×Kni ×Kn′
i → E ⊕ E ′

which maps a x ∈ l−1
g ((Ui)×Kn ×Kni to gx ∈ Ui ×Kn ×Kni is continuous and constant on

the fibers of π, it induces a continuous map lg on E⊕E ′, which is precisely the multiplication
we already defined. Therefore, E ⊕ E ′ is a G-vector bundle.

Another construction which is often useful is the pull-back of a G-vector bundle.

Definition 2.13. Let p : E → X be a G-vector bundle and let f : Y → X be a G-map,
then we can define the pull-back bundle q : f ∗E → Y by f ∗Ey = Ef(y) and endow it with the
G-action which maps a v ∈ Ey to gv ∈ Egf(y) = Ef(gy) = Egy.

Lemma 2.14. This bundle is indeed a G-vector bundle.

Proof. We endow f ∗E with the topology such that the following diagram is a pull-back
square:

f ∗E E

Y X

F

q p

f

.

Thus f ∗E = {(y, v) ∈ Y × E | f(y) = p(v)}, with the subspace topology, where F (y, v) = v
and q(y, v) = y. With this definition, the action of G on f ∗E becomes g · (y, v) = (gy, gv),
which is continuous and well defined. We now show that the bundle has local trivialisations.
Let y ∈ Y . Then there exists a local trivialisation (U,Ψ), such that f(y) ∈ U . We now
define the map H : q−1(f−1(U)) → f−1(U) × Rn by H(y, v) = (y, pr2 ◦ Ψ(v)), where pr2 is
the projection on the second coordinate. Notice that H has a continuous inverse which is
given by H−1(y, v) = (y,Ψ−1(f(y), v)). Therefore, Ψ is a local trivialisation.

Example 2.15. Let p : E → X be a vector bundle, A ⊂ X a G-invariant subset and
i : A → X the inclusion. The bundle bundle q : i∗E → A is an example of a pull-back
bundle. Notice that this bundle is isomorphic to the bundle p|p−1(A) : p

−1(A) → A. We will
often denote this bundle by E|A.
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Example 2.16. If p : X ×M → X is a G vector bundle and f : Y → X is a G-map, then

f ∗(X ×M) := {Y × (X ×M) | x = f(y)} ∼= Y ×M,

where the isomorphism is given by (y, f(y), v) → (y, v).

The following lemma shows how the pull-back ‘commutes’ with the sum and product of
G-vector bundles we defined before:

Lemma 2.17. Let p : E → X and q : F → X be G-vector bundles and f : Y → X a G-map,
then

f ∗(E ⊕ F ) ∼= f ∗E ⊕ f ∗F

and
f ∗(E ⊗ F ) ∼= f ∗(E)⊗ f ∗(F ).

Proof. The isomorphisms are given by the map Ψ : f ∗(E ⊕ F ) → f ∗E ⊕ f ∗F , defined by

Ψ(y, (vE, VF )) = ((y, vE), (y, VF ))

and Φ : f ∗(E ⊗ F ) → f ∗(E)⊗ f ∗(F ), defined by

Φ(y, VE ⊗ VF ) = (y, VE)⊗ (y, VF ).

The pull-back the composition of functions and pullback are related in the following sense:

Lemma 2.18. Let X, Y and Z be G-spaces, f : X → Y and h : Y → Z be G-maps and
p : E → Z a G-vector bundle. Then

(h ◦ f)∗E ∼= f ∗h∗E.

Proof. By definition, we have

(h ◦ f)∗E = {(x, v) ∈ X × E | h ◦ f(x) = p(v)}

and
f ∗h∗E = {(x, (y, v) ∈ X × Y × E | f(x) = y and h(y) = p(v)}.

The map Ψ : f ∗h∗E → (h ◦ f)∗E defined by

Ψ(x, y, v) = (x, v)

gives the required G-vector bundle isomorphism.

We will now prove some basic results about sections of G-vector bundles. We first give
the definition:

Definition 2.19. Let p : E → X be a G-vector bundle. We call a map s : X → E a section
if p(s(x)) = x for all x ∈ X. We will denote the space of sections over X by Γ(E). We
call a section s : X → E an equivariant section if s is a G-map and will denote the set of
equivariant sections by ΓG(E).
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Example 2.20. If X ×M is a G-vector bundle, then the map s : X → X ×M , defined by
s(x) = (x, v) for a v ∈M , is a section of X ×M . If v = 0, then

s(gx) = g(x, 0) = (gx, 0) = g(x, 0) = g(sx)

and the section is an equivariant section.

The following lemma and theorem motivates why it can be useful to look at sections of a
G-vector bundle

Lemma 2.21. Let p : E → X and q : F → X be G-vector bundles, let Homvb(E,F ) denote
the space of morphisms of vector bundles between E and F . Then,

ΓG(Hom(E,F )) ∼= Homvb(E,F ).

Proof. Let f ∈ Homvb(E,F ), then for all x ∈ X, the map f |Ex : Ex → Fx is a linear map
and hence and element of Hom(Ex, Fx). Let H : Homvb(E,F ) → ΓG(Hom(E,F )) be the
map defined by H(f)(x) = f |Ex . We first show that H(f) is continuous. Let (U,ΨE) and
(U,ΨF ) be local trivialisations of E and F , then f induce a vector bundle homomorphism

f : U×Kn → U×Km over U . The map f̃ : U →Mm,n(K), with f̃(x) = f(x, ·) is continuous.
Because f̃ = H(f)|U , it follows that H(f) is continuous. Also notice that f ◦ lg = lg ◦ f ,
which implies that

g · (H(f)(x)) = lg ◦ f |Ex ◦ lg−1 = fEgx ◦ lg ◦ lg−1 = fEgx = G(f)(gx).

Hence H is well defined.
We now show that H has an inverse. Let s ∈ ΓG(Hom(E,F )). Then s induces an element
s′ ∈ Homvb(E,F ), which is defined by s′(v) = s(p(v))(v). As before, it can be shown that s
is continuous by restricting to a local trivialisation. We show that s′ is a G-map. Since s is
an equivariant section, we have s(gx) = gs(x) = lg ◦ s(x) ◦ lg−1 . Therefore,

s′(gv) = s(p(gv))(gv)

= s(gp(v))(gv)

= lg(lg−1s(gp(v)) ◦ lg)(v)
= lgs(g

−1gp(v))(v)

= lg ◦ s(pv)(v)
= gs′(v).

and s is a G-map. We claim that H−1 is the map which maps s to s′. Notice that

H ◦H−1(s)(x) = H(s′)(x) = s′|Ex = s(x)

and
H−1 ◦H(f)(v) = H(f)′(v) = H(f)(p(v))v = f |p(v)(v) = f(v).

Thus, H−1 is indeed the inverse.

To state the next theorem, we need the following definition:

Definition 2.22. Let X and Y be G-spaces and let f, g : Y → X be G-maps. We call f and
g G-homotopic if there exists a homotopy H : Y × [0, 1] → X, such that:
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(i) The map Ht := H(·, t) is a G-map for all t ∈ [0, 1].

(ii) H0 = f .

(iii) H1 = g.

Theorem 2.23. Let p : E → X be a G-vector bundle with X compact, Y a compact G-space
and f, g : Y → X be G-homotopic. Then

f ∗E ∼= g∗E.

To prove this theorem we will need a view lemmas:

Lemma 2.24. (Tietze extension theorem) Let X be a compact (Hausdorff) space, let A ⊂ X

be a closed subset and let f : A→ X be a continuous map, then there exists a map f̃ : X → R,
such that f̃ |A = f .

Lemma 2.25. Let p : E → X be a G-vector bundle, with X compact and let Y ⊂ X be a
closed subset. Let s : Y → E|Y be a section, then there exists a section s̃ : X → E, such that
s̃|Y = s.

Proof. For each y ∈ Y , let (Uy,Ψy) be a local trivialisation of E. Since X is compact
Hausdorff, X is normal, which implies that there exists an open Vy ⊂ Uy, such that {y} ⊂
Vy ⊂ Vy ⊂ U .

Notice that {(Vy|Y )}y∈Y is a cover of Y . Because Y is a closed subset of a compact
space X, it follows that Y is compact. This implies that the cover {(Vy|Y )}y∈Y has a finite
subcover {Vi∩Y }i∈I . Let {χi}i∈I ∪{χY−X} be a partition of unity subordinated to the cover
{Vi}i∈I ∪{X−Y }. Notice that pr2 ◦Ψi ◦s : Ui → Rn is a vector valued function. Since for all
i ∈ I, the set Y ∩Vi is a closed subset of Vi, we can use Lemma 2.24 to extend the coordinate
functions of pr2 ◦ Ψi ◦ s and obtain a map si : Vi → Rn such that si|V ∩Y = pr2 ◦ Φi ◦ s|Ui

and a section s′i := Ψ−1
i ◦ (id× si) : Vi → E|Vi

such that s′i|Vi
= s|Vi

. Let s̃ : X → E be the
section defined by

s̃(x) =
∑
i∈I

χi(x)s
′(x),

where s′i(x) := 0 if x /∈ Vi. For y ∈ Y , we have

s̃ =
∑
i∈I

χ(y)s′(y) =
∑
i∈I

χi(y)s(y) = s(y).

Therefore, s̃ is the required section.

If we assume that Y is G-invariant, then the following holds:

Lemma 2.26. Let p : E → X and s : Y → E|Y as above. Assume in addition that Y
is G-invariant and that s is an equivariant section, then there exists an equivariant section
s̃ : X → E such that s̃|Y = s.

Proof. Lemma 2.25 implies that there is a section s′ : X → E, such that s′|Y = s. Let
s̃ : X → E be the section defined by

s̃(x) =

∫
G

gs′(g−1x)dg.

10



We first show that for all x ∈ X, the integral is well defined. Let f : X × G → E denote
the function f(x, g) = gs′(g−1x). Notice that f(x, g) = αE(g, s

′(αX(g
−1, x))), which implies

that f is continuous. Therefore, fx := f(x, ·) is continuous. We have s(g−1x) ∈ Eg−1x, which
implies that gs′(g−1(x)) ∈ Ex

∼= Kn for all g ∈ G. Therefore, the function f : X ×G→ E is
continuous and fx can thus be integrated as explained in definition A.17 in the appendix.

We now show that s̃ is continuous. Let (U,Ψ) be a local trivialisation and let x ∈ U . Let
V ⊂ U × Rn open. We will show that there is an open W ⊂ U , such that (x, s′(x)) ∈ W
and W ⊂ s̃−1(U). Since V is open, there exists an open neighbourhood U0 of x and an
ϵ > 0, such that U0 × B2ϵ(s

′(x)) ⊂ V , where B2ϵ(s
′(x)) := {y ∈ Rn, ∥s′(x) − y∥ < 2ϵ}. For

g ∈ G, we let Ug = (pr2 ◦ f)−1(Bϵ(f(x, g))) ⊂ G×X. Notice that {prG(Ug)}g∈G is an open
cover of G. Since G is compact, the cover {prG(Ug)}g∈G has a finite subcover {prG(Ugi)}i∈I .
Let W := ∩i∈IprX(Ugi). Notice that W is open and x ∈ W . For (y, g) ∈ W × G, we have
(y, g) ∈ Ugi for a i ∈ I, by construction we also have (x, g) ∈ Ugi and thus

∥f(x, g)− f(y, g)∥ < 2ϵ.

Lemma A.18 now implies that for all y ∈ W , we have

∥s̃(x)− s̃(y)∥ = ∥
∫
G

f(x, g)dg −
∫
G

f(y, g)dg∥ = ∥
∫
G

f(x, g)− f(y, g)dg∥

≤
∫
G

∥f(x, g)− f(y, g)∥dg <
∫
G

2ϵdg < 2ϵ.

Therefore,
W ⊂ s̃−1(W ×B2ϵ(s(x))) ⊂ s̃−1(V )

and s̃ is continuous.

We now show that s̃|Y = s. Let y ∈ Y . Since Y is G-invariant and s is equivariant, we
have gy ∈ Y and

gs′(g−1y) = gs(g−1y) = gg−1s(y) = s(y)

for all (g, y) ∈ G× Y . Therefore,

s̃(y) =

∫
G

gs′(g−1y)dg =

∫
G

s(y)dg = s(y).

Lastly, we prove that s̃ is equivariant. Let x ∈ X and h ∈ G. Then using lemma A.18, it
follows that

s̃(hx) =

∫
G

gs(g−1hx)dg =

∫
G

hh−1gs′((h−1g)−1x)dg = h

∫
G

l∗h−1fx(g)dg = h

∫
G

fx(g)dg = hs̃(x).

The section s̃ is thus the required section.

Before we can prove the theorem, we need one more lemma:

Lemma 2.27. Let X a compact G-space , Y ⊂ X be a G-invariant subset and let p : E → X
and q : F → Y be G-vector bundles. Assume that there exists an isomorphism f : E|Y → F |Y
over Y . Then there exists an open Y ⊂ U ⊂ X and an isomorphism f̃ : E|U → F |U , such
that f̃ |Y = f .
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Proof. In Lemma 2.21, we showed that the map f : E|Y → F |Y can be viewed as an
equivariant section f ′ ∈ ΓG(Hom(E,F )|Y ). Lemma 2.26 implies that this section can be

extended to a section f̃ ∈ ΓG(Hom(E,F )). Notice that the function det ◦f̃ is continuous

and let U = (det ◦f̃)−1(C − {0}). Since for all u ∈ U , the map f̃(u) is an isomorphism,

Remark 2.7 implies that f̃ : E|U → F |U is an isomorphism. It remains to show that
Y ⊂ U and that U is G-invariant. We first show that Y ⊂ U . Since f : E|Y → F |Y is
an isomorphism, it follows that for all y ∈ Y the map f |y : Ey → Fy is an isomorphism.

Therefore, det(f̃(y)) = det(f(y)) ̸= 0 and y ∈ U .
We now show that U is G-invariant. Let g ∈ G and u ∈ U . Then

det(f̃(gu)) = det(gf̃) = det(lg ◦ f̃) = det(lg) det(f̃) ̸= 0,

where we view lg as the linear map lg : Fu → Fgu. Therefore, gu ∈ U .

We are now ready to prove Theorem 2.23

Proof of Theorem 2.23. Let H : Y × [0, 1] → X be a G-homotopy such that H0 = f and
H1 = g. The space Y × [0, 1] , with the action g(y, t) = (gy, t) is a G-space and with this
action, the homotopy H : Y × [0, 1] → X is a G-map. Let prY : Y × [0, 1] → Y denote the
projection onto Y . Notice that for all t ∈ [0, 1], the map Ht ◦ prY is a G map. By definition,
we have

(ft ◦ prY )∗Ev = {((y, t), v) ∈ (Y × [0, 1])× E | Ht ◦ prY (x, t) = p(v)}

and
H∗E = {((x, t), v) ∈ (Y × [0, 1])× E =| H(x, t) = p(v))}.

Since Y × {t} is a closed G-subspace and H|Y,t = Ht ◦ prY , we have

(Ht ◦ prY )∗Ev|Y×{t} ∼= H∗E|Y×{t},

where the isomorphisms is given by Φ((y, t), v) = ((y, t), v). Lemma 2.27 now implies that
there exists a G-invariant open neighbourhood Y × {t} ⊂ U , such that Φ extends to an
isomorphism Φ′ : (Ht ◦ prY )

∗E|U → H∗E|U . Since Y is compact, there exists an open
t ∈ Wt ⊂ [0, 1] such that Y × Wt ⊂ U . For all s ∈ W , we have that Φ′ restricts to an
isomorphism

Φ′ : (Ht ◦ prY )∗E|Y×s → H∗E|Y×s.

Since
(Ht ◦ prY )∗E|Y×s = i∗s(Ht ◦ prY )∗E = (Ht ◦ prY ◦ is)∗E = H∗

tE

and
H∗E|Y×s = i∗sH

∗E| = (H ◦ is)∗E = H∗
sE,

where is(y) = (y, s), it follows that H∗
tE

∼= H∗
sE for all s ∈ Wt. We now show that this

implies that H∗
0E

∼= H∗
1E. Let ∼ be an equivalence relation on [0, 1] defined by s ∼ t

if H∗
sE

∼= H∗
tE. The argument above implies that for all t ∈ T , the class [t]∼ an open

set. However, because [t]∼ = [0, 1] − ∪s/∈[t]∼ [s]∼, the set [t]∼ is also closed. Because [0, 1] is
connected, it follows that [0]∼ = [0, 1] and H∗

0E
∼= H∗

1 .

This theorem is will turn out to be very useful. We now give some first applications of
this theorem to illustrated its usefulness.

12



Theorem 2.28. Let X be compact and G-contractible (G-homotopy equivalent to a point)
and let p : E → X be a G-vector bundle. Then there exists a G-module M , such that
E ∼= X ×M .

Proof. Since X is G-contractible, there exists a x0 ∈ X and a G-homotopy H : X × I → X
such that H0 = id, H1(x) = x0 for all x ∈ X. Theorem 2.23 implies that

E ∼= id∗E ∼= H∗
1 (E)

∼= H∗
1 (E|{x0}).

Notice that E|x0
∼= {x0} ×M for some G-module M . Example 2.16 implies that

H∗
1 (Ex0)

∼= H∗
1 ({x0} ×M) ∼= X ×M.

Thus, E ∼= X ×M .

Let X be a compact G-space and let X1, X2 be closed G-invariant subsets, such that
X1 ∪X2 = X. Let p1 : E1 → X1 and p2 : E2 → X2 be G-vector bundles Let Y = X1 ∩X2

and let f : E1|Y → E2|Y be an isomorphism. Notice that Y is indeed a G-invariant subset of
X, which implies that the bundles E1|Y and E2|Y are indeed G-vector bundles We can then
define the bundle

p : E1 ∪f E2 → X,

whith E1 ∪f E2 := E1

∐
E2/ ∼ where identify a v ∈ E1, with its image f(v).

Theorem 2.29. The bundle E1 ∪f E2 is indeed a G-vector bundle and if g is homotopic to
f through G-vector bundle isomorphisms, then E1 ∪f E2

∼= E1 ∪g E2.

Proof. We first show that E1 ∪f E2 is indeed a G-vector bundle. We will only show that
E1∪fE2 has local trivialisation, the other requirements follow directly from the construction.
First assume that x /∈ Y . We can assume without loss of generality that x ∈ X1. Let (U,Ψ)
be a local trivialisation of E1, then (U ∩ (X1 − Y ),Ψ|U∩(X1−Y )) is a local trivialisation of
E1 ∪f E2.
Now assume that x ∈ Y . Let (U1,Ψ) be a local trivialisation of E1, such that x ∈ U1.
Since Y is compact, Y is normal and there exists an open neighbourhood V of x, such that
{x} ⊂ V ⊂ V ⊂ X. Notice that the map

Ψ ◦ f−1 : E2|V ∩Y → (V ∩ Y )×Kn ∼= (X2 ×Kn)|V ∩Y ,

is an isomorphisms and V ∩ Y is a closed subset of X2. Therefore, if we apply lemma 2.27
(where we endow E2 and X2 ×Kn with the trivial action), it follows that the map Ψ ◦ f−1

extends and we obtain a local trivialisation (V2,Ψ2) of E2, such that Ψ2|Y ∩V = Ψ ◦ f−1. We
now define the map Ψ

∐
Ψ2 : E1|V ∪V2

∐
E2|V ∪V2 → (V ∪ V2)×Kn, by

Ψ
∐

Ψ2 =

{
Ψ(x) if x ∈ V
Ψ2(x) x ∈ V2

This map is constant on the equivalence classes of ∼ and hence induces a map Ψ ∪f Ψ2 :
E1 ∪f E2|V ∪V2 → (V ∪ V2)×Kn, which is the desired local trivialisation.

We now show that if g is homotopic to f through G-vector bundle isomorphism, then
E1 ∪f E2

∼= E1 ∪g E2.
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Let H : E1|Y × [0, 1] → E2|Y denote the homotopy, with H0 = f and H1 = g. Let
prY : Y × [0, 1] → Y be the map defined by prY (y, t) = y and let it : Y → Y × I be the map
given by it(y) = (y, t). The map H induces a map H̃ : pr∗YE1|Y×[0,1] → pr∗YE2|Y×[0,1] defined

by H̃((y, t), v) = H(v, t). The idea of the prove is that we show that

E1 ∪Ht E2
∼= i∗t (pr

∗
yE1 ∪H̃ pr∗yE2).

Since F (y, t) = (y, t) is a G-homotopy from i0 to i1, Theorem 2.23 then implies that

E1 ∪H0 E2
∼= i∗0(pr

∗
yE1 ∪H̃ pr∗yE2) ∼= i∗1(pr

∗
yE1 ∪H̃ pr∗yE2) ∼= E1 ∪H1 E2.

It thus remains to show that E1 ∪Ht E2
∼= i∗t (pr

∗
yE1 ∪H̃ pr∗yE2). By definition, we have

i∗t (pr
∗
yE1 ∪H̃ pr∗yE2) = {(y, v) ∈ X × pr∗yE1 ∪H̃ pr∗yE2 | (y, t) = q(v)}.

Define the map Φ : E1

∐
E2 → pr∗YE1 ∪H̃ pr∗YEY by

Φ(v) =

{
(pE1(v), t, v) if v ∈ E1

(pE2(v), t, v) v ∈ E2

Notice that this map is continuous and that if v2 = Htv1, then Φ(v1) = Φ(v2). Therefore,
this map induces a map Φ̃ : E1 ∪Ht E2 → pr∗yE1 ∪H̃ pr∗yE2. Since p(Φ̃(E1 ∪Ht E2)) ⊂ Y ×{t},
this map is in fact a map Φ̃ : E1 ∪Ht E2 → i∗t (pr

∗
yE1 ∪H̃ pr∗yE2), which is the required

isomorphism.

This construction has the following nice properties, which follow directly from the con-
struction:

Lemma 2.30. (i) Let pi : Ei → Xi and qi : Fi → Xi be vectorbundles for i ∈ {1, 2} and
let f : E1 → E2 and g : F1 → F2 be isomorphism, then

(E1 ⊕ F1) ∪(f,g) (E2 ⊕ F2) ∼= (E1 ∪f F1)⊕ (E2 ∪g F2).

(ii) Let p : E → X be a vectorbundle, E1 = E|X1, E2 = E|X2 and f : E1|Y → E2|Y te
cannonical isomorphism, then

E ∼= E1 ∪f E2.

We will end this section by proving a theorem that will need in the next section:

Theorem 2.31. Let X be a compact G-sapce and let p : E → X be a G-vectorbundle, then
there exists a G-module M and a vectorbundle E⊥, such that X ×M ∼= E ⊕ E⊥.

To prove this theorem, we will need to introduce the notion of a metric on a G-vector
bundle:

Definition 2.32. Let p : E → X be a G-vector bundle. A map µ : E ⊕ E → K is a metric
on E if µ|Ex×Ex is an inner product. We wil call µ invariant if µ(gv, gw) = µ(v, w).

Lemma 2.33. Let p : E → X be a G-vector bundle, then E has an invariant metric.

Proof. We first construct a metric and then use the metric to construct an invariant metric.
Let {(Ui}i∈I be a cover of X of local trivialisations. Since X is compact, we can assume
that it is a finite cover. Let µi : (Ui × Kn) × (Ui × Kn) → K be the metric defined by
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µi(v, w) = ⟨v, w⟩, where ⟨·, ·⟩ is the Euclidean inner product. Since Ui × Kn ∼= EUi
, this

defines a metric on E|Ui
. Let χi be a partition of unity subordinated to {Ui}. The function

µ′ : E ⊕ E → K, defined by

µ′(v, w) =
∑
i∈I

χi(p(v, w))µi(v, w),

is a metric on E. The function µ(v, w) : E ⊕ E → K, with

µ(v, w) :=

∫
G

µ′(gv, gw)dg,

also defines a metric on G. Notice that

µ(hv, hw) =

∫
G

µ′(ghv, ghw)dg =

∫
G

l∗hµ
′(·v, ·w)dg =

∫
G

µ(gv, gw)dg = µ(v, w).

which implies that the metric is invariant.

The following proposition shows why metrics can be useful

Proposition 2.34. Let p : E → X be a sub bundle of p : F → X, then there exists a
G-vector bundle p : E⊥ → X, such that E ⊕ E⊥ = F .

Proof. Let µ be an invariant metric on F . Then we define the bundle E⊥ by

E⊥
x := {v ∈ Fx | µ(v, w) = 0 for all w ∈ Ex}.

The action on E⊥ is the action on F restricted to E⊥. This is well defined because

µ(gv, w) = µ(gvg(g−1w)) = µ(v, g−1w) = 0,

for all v ∈ E⊥
x and w ∈ Egx. We now show that the bundle is locally trivial. Let x0 ∈ X and

s1, . . . , sn be sections such that s1(y), . . . , sk(y) is a basis of Ey for all y in some neighbourhood
of x0 and sk+1(x0), . . . , sn(x0) is a basis of E⊥

x0
. Let U be an open neighbourhood of x, such

that si(x) ̸= 0 for all x ∈ U and 1 ≤ i ≤ n. By setting

s′1(x) :=
s1(x)

µ(s1(x), s1(x))

and

s′i+1(x) = si+1 − (
µ(si+1(x), s

′
1(x))

µ(s′1(x), s
′
1(x))

s′1(x))− . . .− µ(si+1(x), s
′
i(x))

µ(s′i(x), s
′
i(x))

s′i(x),

it follows that the local sections {s′k+1(y), . . . s
′
n(y)} form a basis of E⊥

y for all y is some open

neighbourhood W of x0, which implies that E⊥ is locally trivial.

We will use this result to prove the following lemma, which will enable us to prove Theorem
2.31:

Lemma 2.35. Let M be a G-module, p : E → X a G-vector bundle and π : X ×M → E a
surjective map, then there exists a bundle Ker(E), such that Ker(E)⊕ E ∼= X ×M .
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Proof. Let q : Ker(E) → X be the G-vector bundle, such that Ker(E)x = ker(π|{x}×M). We
leave it to the reader to check that q : ker(E) → X is well defined. Notice that locally π is
a surjective map U × Kn → U × Km, which implies that the kernel has a locally constant
rank. The following sequence of maps is pointwise an exact sequence

0 Ker(E) X ×M E 0i π .

Notice that Ker(E) is a G-vector bundle, which is also a subset of of X ×M . If we let µ
be an G-invariant metric on X ×M , then Proposition 2.34 implies that we have Ker(E)⊕
Ker(E)⊥ ∼= X ×M . Let j : Ker(E) ⊕ Ker(E)⊥ → Ker(E) denote the projection on the
first coordinate. Then since j ◦ i = id, the sequence is pointwise a split exact seqence and
X×M ∼= ker(E)⊕E, where the isomorphism is given by the map Ψ : X×M → ker(E)⊕E,
with Ψ(x,m) = (j(x,m), p(x,m)).

Remark 2.36. Notice that the proof this lemma, also holds if we replace the bundle X×M
by an arbitrary vector bundle. The statement then becomes:
Let π : F → E be a surjective G-vector bundle morphism, then there exists a bundle Ker(E),
such that Ker(E)⊕ E ∼= F .

We are now ready to prove Theorem 2.31 for a complex G-vector bundle.

Proof of Theorem 2.31 for a complex G-vector bundle. We first assume that E is a complex
vector bundle. Lemma 2.35 implies that it is sufficient to construct a surjective G-vector
bundle morphism p : X ×M → E.

Let x0 ∈ X. Let (Ux0 ,Ψi) be a local trivialisation, such that Ux0 is a compact neighbour-
hood of x0. Let si : Ux0 → X×Cn be the section defined by si(x) = (x, ei) for 1 ≤ i ≤ n. Let
β : G×Ux0 → Ui×Cn be the map β(g, x) = (x, gsi(g

−1x)) and let V i
x := β−1(Ux0×B(ei, ϵi)),

with ϵi > 0. Since {e} × Ux0 ⊂ Vi and Ux0 is compact, there exists an open set Wi ⊂ G,
such that Wi × Ux ⊂ Vi. Let {χWi

, χG−{e}} be a partition of unity with respect to the
cover {Wi, G − {e}} of G. Notice that χWi

∈ L2(G). Theorem A.36 implies that there
exists a fi ∈

⊕
α∈[G]Cα(G), such that ∥f − χW∥L2 < ϵ′i. Notice that there is a finite sub-

set Ji ⊂ [G], such that fi ∈
⊕

α∈Ji Cα(G), which is a finite dimensional vector space. Let
Φ :

⊕
α∈Ji Cα(G) → ΓG(E) be the map such that

Φ(f)(x)
1∫

G
χWi

dx

∫
G

f(g)gs(g−1x)dg.

Notice that Φ is linear. We endow Im(Φ) with the G-action g · s = lg ◦ g ◦ lg−1. We first show
that this action maps the image of Φ to itself:

h · Φ(f)(x) = lh
1∫

G
χWi

dx

∫
G

f(g)gs(g−1h−1x)dg

=
1∫

G
χWi

dx

∫
G

(Lhf)(hg)hgs((hg)
−1x)dg

=
1∫

G
χWi

dx

∫
G

Lhf(g)gs(g
−1x)dg

= Φ(Lhf)(x).
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Since by Lemma A.35, we know that
⊕

α∈Ji Cα(G) is Lh invariant, it follows that Lhf ∈⊕
α∈Ji Cα(G), which implies that h · Φ(f) ∈ im(Φ). This computation shows that

id× Φ : X ×
⊕
α∈Ji

Cα(G) → X × im(Φ),

is a morphism of G-vector bundles, where the action on X ×
⊕

α∈Ji Cα(G) is g · f = Lg(f).
Let Jx = ∪n

i=1Ji. We now show that there is an open set U ′
x and a surjective morphism

τ : X ×
⊕

α∈J Cα(G)|U ′
x
→ E|U ′

x
.

Notice that

∥Φ(fi)(x0)− si(x0)∥ = ∥ 1∫
G
χWi

dg

∫
G

fi(g)gs(g
−1x0)dg − si(x0)∥

=
1∫

G
χWi

dg

∫
G

∥χWi
(g)si(x0)− fi(g)gs(g

−1x0)dg∥

≤ 1∫
G
χWi

dg
(

∫
G

∥χWi
(g)si(x0)− fi(g)si(x0)∥dg +

∫
G

∥fi(g)(si(x0)− gs(g−1x0))∥dg)

≤ 1∫
G
χWi

dg
(ϵ′i∥si(x0)∥+

∫
G

|fi(g)|ϵidg)

≤ ϵ′∥si(x0)∥∫
G
χWi

dg
+ ϵi

∫
G
(|fi(g)− χi(g)|+ |χi(g)|dg)∫

G
χWi

dg

≤ ϵ′∥si(x0)∥∫
G
χWi

dg
+ ϵ(

∫
G
χWi

dg + ϵ′∫
G
χWi

dg
).

Therefore, we can approximate si(x0) as close as we want, which implies that we can assume
that {Φ(f1)(x0), . . . ,Φ(f2)(x0)} is a basis of Ex0 . This implies that {ϕ(f1)(x), . . . , ϕ(fn)(x)}
is a basis of Ex for all x in a neighbourhood U ′

x0
of x0. It follows that the map τ :

X ×
⊕

α∈Jx Cα(G)|U ′
x
→ E|U ′

x
defined by τ(x, f) = Φ(f)(x) is a surjective G-vector bun-

dle morphism.
We now use this map to obtain the surjection F : X ×M → E.
Notice that {U ′

x}x∈X is a cover of X. Since X is compact, this cover has a finite subcover
{Ux0 , . . . , Uxn}. Let J = ∪n

i=1Jxi
. Let F : X ×

⊕
α∈J Cα(G) → E be the map defined by

F (x, f) = Φ(f)(x). The argument above implies that F is a surjective G-vector bundle
morphism, which proves the theorem for the complex case.

We now prove the real case:

Proof of Theorem 2.31 for a real G-vector bundle. We again construct a surjective map F :
X×M → E. If p : E → X is a real G-vector bundle, we can construct the complex G-vector
bundle bundle q : E ⊗ C → X. This bundle is defined by (E ⊗ C)x = Ex ⊗R C and the
G-action is defined by g(V ⊗ z) = (gv) ⊗ z. Since E ⊗ C is a complex G-vector bundle,
there exists a surjective map F : X ×M → E⊗C, where M is a complex G-module. Notice
that we can also view X ×M and E as real G-vector bundles, by forgetting the complex
structure. Since there is a surjective real G-vector bundle morphism τ : E ⊗ C → E,

17



defined by τ(v ⊗ z) = Re(z)v, the map τ ◦ F : X ×M → E is a surjective G-vector bundle
morphism.

We will also need a variation of Theorem 2.31 for a quaternionic G-vector bundle. We
first give the definition of such a bundle:

Definition 2.37. Let X be a compact G-space. A quaternionic vector bundle over X is a
pair (E, σ), where p : E → X is a real G-vector bundle and σ : H → End(E) is a unital
R-algebra homomorphism. A map f : (E, σ) → (F, ρ) is a quaternionic G-vector bundle
morphism if it is a G-vector bundle morphisms and ρ(h) ◦ f = f ◦ σ(h) for all h ∈ H.

Example 2.38. If X is a G-space, then the bundle q : X×H → X, where the H-action is left
multiplication and the G-action is given by g(x, h) = (gx, h) is an example of a quaternionic
G-vector bundle. Moreover, if p : E → X is a real G-vector bundle, then E ⊗R (X ×H) is a
quaternionic G-vector bundle, where the H-action is given by x · (v ⊗ h) = (v ⊗ xh).

Remark 2.39. If (E, σ) is a quaternionic G-vector bundle, then for each x ∈ X, there exists
a neighbourhood U of X and a n ∈ N such that there is a H-module isomorphism

E|U → U ×Hn.

One can construct this isomorphism as follows: Let v ∈ Ex and s1 : X → E a section
such that s1(x) = v. Then the vectors s1(x), σ(i)s1(x), σ(j)s1(X), σ(k)s1(x) are linearly
independent. If the span of these vectors is not yet Ex, let

w ∈ Ex − Span(s1(x), σ(i)s1(x), σ(j)s1(X), σ(k)s1(x))

and s2 : X → Ex a section such that s2(x) = w. Since

w /∈ Span(s1(x), σ(i)s1(x), σ(j)s1(X), σ(k)s1(x)),

the vectors

s1(x), σ(i)s1(x), σ(j)s1(X), σ(k)s1(x), s2(x), σ(i)s2(x), σ(j)s2(X), σ(k)s2(x)

are linearly independent. We can repeat this process to eventually obtain a basis

s1(x), σ(i)s1(x), σ(j)s1(X), σ(k)s1(x), . . . , sn(x), σ(i)sn(x), σ(j)sn(X), σ(k)sn(x)

of Ex. We can restrict to a neighbourhood U of x, such that these sections form a basis of
Ey for all y ∈ Y . The isomorphism is now given by the map F : U ×Hn → E|U , with

F (u, h1, . . . , hn) = σ(h1)s1(u) + . . .+ σ(hn)sn(u).

We also need the following definitions:

Definition 2.40. Let V be a finite dimensional H-module. We call a map g : V × V → H
a quaternionic inner product on V , iff

1. g(u, v) = g(v, u) for all u, v ∈ V .

2. g(v, v) ≥ 0 for all v ∈ V and g(v, v) = 0 if and only if v = 0.
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3. g(u1 + u2, v) = g(u1, v) + g(u2, v) for all u1, v1, v2 ∈ V

4. g(λu, v) = λg(u, v) for all λ ∈ H and u, v ∈ V .

Remark 2.41. Notice that part 1 of the definition implies that

g(v, v) = g(v, v).

Therefore, we have g(v, v) ∈ R, which is needed for part 2 of the definition.

Example 2.42. The map ⟨·, ·⟩ : Hn ×Hn → H, defined by

⟨u, v⟩ =
n∑

i=1

uv.

is an example of an quaternionic inner product.

Definition 2.43. Let (E, σ) be a quaternionic G-vector bundle. We call a map µ : (E, σ)⊕
(E, σ) → H a quaternionic metric if µ|Ex×Ex is a quaternionic inner product. It is invariant
if µ(gv, gw) = µ(v, w) for all g ∈ G.

Remark 2.44. Notice that Lemma 2.33, Proposition 2.34, Lemma 2.35 and Remark 2.36 also
holds for quaternionic bundles. (The direct sum is defined by (E, σ)⊕(F, ρ) = (E⊕F, σ⊕ρ)).
The proof of these statements for quaternionic G-vector bundles are similar to the proofs we
already gave, where we now use quaternionic metrics instead of metrics, use the quaternionic
inner product from the Example 2.42 instead of the Euclidean inner product and replace the
G-module M in Lemma 2.35 by the G-module M ⊗H.

With this remark, we are ready to state and prove the theorem:

Theorem 2.45. Let (E, σ) be a quaternionic G-vector bundle. Then there exists a real
G-module M and a quaternionic G-vector bundle (E⊥, σ⊥), such that

X × (M ⊗H) ∼= (E ⊕ E⊥, σ ⊕ σ⊥).

Proof. Notice that since E is a real vector bundle, there exists a real G-vector bundle E⊥

and a real G-module M , such that E ⊕ E⊥ ∼= X × M as real G-vector bundles. Let
Φ : X × M → E ⊕ E⊥ denote this isomorphism and let P : E ⊕ E⊥ → E denote the
projection. The map π : X × (M ⊗H) → E defined by

π(m,h) = σ(h)P (Φ(m)),

is a surjective quaternionic G-vector bundle morphism. Remark 2.44 together with Lemma
2.35 implies that there exists a quaternionic G-vector bundle (F, ρ), such that

(E ⊕ F, σ ⊕ ρ) ∼= X × (M ⊗H).
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3 Equivariant K-theory

In this section, we will give the definition of the group K−n
G (X). We will also construct the

long exact sequence for these groups and prove some of the basic properties of the groups
K−n

G (X). This section is based on [8].
In this section, all topological spaces are compact and G will always be a compact Lie group.
Let p : E → X be a complex (or real) G-vector bundle. We let

[E] := {q : F → X | q : F → X is isomorphic to p : E → X}

denote its isomorphism class. We will denote the set of complex (or real) G-vector bundles
over X by EK

G(X), where K = C or R. We are now ready to give the following definition:

Definition 3.1. Let X be a compact G-space. Then, for K = C or R, we define the group
KK

G(X) by
KK

G(X) := {([E], [F ]) | E,F ∈ EK
G(X)}/ ∼,

Where ([E+], [E−]) ∼ ([F+], [F−]) if there exists a G-vector bundle L ∈ EK
G(X), such that

E+ ⊕ F− ⊕ L ∼= F+ ⊕ E− ⊕ L.

We will often denote ([E+], [E−]) by [E+]− [E−] or simply E+ − E−.

Remark 3.2. We will often denote KK
G(X) by KG(X).

It turns out that KG(X) ‘naturally’ has the structure of an abelian group:

Lemma 3.3. The direct sum (E+−E−)⊕ (F+−F−) = (E+⊕F+)− (E−⊕F−) gives KG(X)
the structure of an abelian group.

Proof. First, notice that ⊕ is associative. Let E be a G-vector bundle on X. We show
that E − E is the identity. For F+ − F− ∈ KG(X), we have (F+ − F−) ⊕ (E − E) =
(F+ ⊕ E)− (F− ⊕ E). Since

F+ ⊕ (F− ⊕ E) ∼= (F+ ⊕ E)⊕ F−

via the isomorphism Φ(f+, f−, e) = (f+, e, f−), it follows that (F+⊕E)−(F−⊕E) = F+−F−
inKG(X). We now prove that each element inKG(X) has an inverse. Let E+−E− ∈ KG(X).
Then E− − E+ ∈ KG(X) and

(E+ − E−)⊕ (E− − E+) = (E+ ⊕ E−)− (E− ⊕ E+).

Since E− ⊕ E+
∼= E+ ⊕ E−, via the isomorphism Φ(v+, v−) = (v−, v+), it follows that

(E+ ⊕ E−)− (E− ⊕ E+) = (E+ ⊕ E−)− (E+ ⊕ E−) = e

in KG(X).
Lastly, we show that KG(X) is indeed abelian. Let E+ − E−, F+ − F− ∈ KG(X). We have
that

(E+ − E−)⊕ (F+ − F−) = (E+ ⊕ F+)− (E− ⊕ F−)

and
(F+ − F−)⊕ (E+ − E−) = (F+ ⊕ E+)− (F− ⊕ E−).
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Since E± ⊕ F± ∼= F± ⊕ E± via the isomorphism Φ(ve, vf ) = (vf , ve), it follows that

(F+ ⊕ E+)− (F− ⊕ E−) = (E+ ⊕ F+)− (E− ⊕ F−).

It is sometimes useful to describe KG(X) in the following way:

Proposition 3.4. Let (E+, E−), (F+, F−) ∈ EG(X) × EG(X) and ∼ be the relation from
Definition 3.1. Then (E+, E−) ∼ (F+, F−) iff There is a G-module M , such that

E+ ⊕ F− ⊕MX
∼= F+ ⊕ E− ⊕MX ,

Where MX denotes the trivial bundle X ×M .

Proof. Since MX ∈ EG(X), it follows that if E+ ⊕ F− ⊕ MX
∼= F+ ⊕ E− ⊕ MX , then

(E+, E−) ∼ (F+, F−). Now assume that (E+, E−) ∼ (F+, F−). Then, there is a F ∈ EK
G(X)

and an isomorphism Φ : E+ ⊕ F− ⊕ F → F+ ⊕ E− ⊕ F Theorem 2.31 implies that there
exists a bundle F⊥, such that F ⊕ F⊥ ∼= MX , for some G-module M . It follows that

E+ ⊕ F− ⊕MX
∼= E+ ⊕ F− ⊕ F ⊕ F⊥ ∼= F+ ⊕ E− ⊕ F ⊕ F⊥ ∼= F+ ⊕ E− ⊕MX ,

which proves the proposition.

Remark 3.5. Let {e} be the trivial group. Notice that the only finite dimensional complex
(or real) {e}-modules are the spaces Cn (or Rn) for n ∈ N0, with the trivial action. The
proposition above thus implies that in E{e}(X) × E{e}(X), we have (E+, E−) ≃ (F+, F−) if
and only if

E+ ⊕ F− ⊕ (X × Cn) ∼= F+ ⊕ E− ⊕ (X × Cn),

or (X × Rn) in the real case. We will often denote KK
{e}(X) by KK(X).

This remark enable us to compute some examples:

Example 3.6. Let X = {pt}. We will compute KK
{e}(X). Since every {e}-vector bundle

over pt is trivial, the previous remark implies that

X ×Kn+ −X ×Kn− = X ×Kk+ −X ×Kk− ,

if and only if there exists a l ∈ N0 such that

X ×Kn++k−+l ∼= X ×Kk++n−+l.

This is true if and only if n+ − n− = k+ − k−. Therefore, the function Φ : KK
{e}(X) → Z

defined by
Φ(X ×Kn+ −X ×Kn−) = n+ − n−

is an isomorphism.

Example 3.7. We will now compute KG(G), where the G-action is given by left multipli-
cation. We will show that

KG(G) ∼= K{e}(pt) ∼= Z.
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Let ie : pt → G be the G-map defined by ie(pt) = e, where e denotes the identity in G. The
map i∗e : KG(G) → K{e}(pt) defined by

i∗e(E+ − E−) = i∗eE+ − i∗eE−,

where we restrict the G-action to a {e} action, is a well defined group homomorphism. We
will show that i∗e is an isomorphism. Let r : K{e}(pt) → KG(G) be the map defined by

r(pt×Kn+ − pt×Kn−) = G×Kn+ −G×Kn− ,

where the G action on G×Kn± is defined by

g(h, v) = (gh, v).

Notice that r is a well defined group homomorphism and i∗e ◦ r = id. If E ∈ EG(G), then the
map f : G× Ee → E, defined by

f : (g, v) = (g, gv)

is a G-vector bundle isomorphism (the G-action on G× Ee is defined by g(h, v) = (gh, v)).
This implies that

r ◦ i∗e = id.

The elements of KG(X) can all be written in the following way:

Lemma 3.8. Let E+ − E− ∈ KG(X). Then there exists a G-module M and a G-vector
bundle F , such that

E+ − E− = F −MX .

Proof. In Theorem 2.31, we showed that there is a G-vector bundle E⊥
− and a G-module M

such that E− ⊕ E⊥
−
∼= MX . Therefore,

E+ − E− = (E+ − E−)⊕ (E⊥
− − E⊥

−) = (E+ ⊕ E⊥
−)− (E− ⊕ E⊥

−) = (E+ ⊕ E⊥
−)−MX .

We can endow KG(X) with the structure of a ring, by giving it the following multiplica-
tion:

(E+ − E−)⊗ (F+ − F−) = (E+ ⊗ E−)⊕ (E− ⊕ E+)− (E− ⊗ F+ ⊕ E+ ⊗ F−).

Lemma 3.9. This multiplication indeed gives KG(X) the structure of a ring.

Proof. We will leave most of the verifications to the reader. We will only show what the unit
of the ring is. The unit is given by the bundle KX := X ×K, where the G-action is defined
by g(x, v) = (gx, v). The isomorphism Φ : E ×KX → E is given by

Φ(v ⊗ c) = cv.

The rings KG(X) have even more structure:

Lemma 3.10. The assignment X → KG(X) is a functor KG : TopopG → Ring, where TopG
is the category of compact G-spaces.
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Proof. To show that it is a functor, we first must define how KG acts on a G-map f : X → Y .
The map f ∗ : KG(Y ) → KG(X) is defined by f ∗(E+ − E−) = f ∗E+ − f ∗E−. Notice that if
(E+, E−) ∼ (F+, F−), then there exists an F ∈ EK

G(Y ) such that

E+ ⊕ F− ⊕ F ∼= F+ ⊕ E− ⊕ F.

Lemma 2.17 implies that

f ∗E+ ⊕ f ∗F− ⊕ f ∗F ∼= f ∗(E+ ⊕ F− ⊕ F ) ∼= f ∗(F+ ⊕ E− ⊕ F ) ∼= f ∗F+ ⊕ f ∗E− ⊕ f ∗F.

Therefore, the map is well defined. We now show that f ∗ is a ring homomorphism. Notice
that

f ∗(0) = f ∗(E − E) = f ∗E − f ∗E = 0

and
f ∗(Y ⊗K) ∼= X ⊗K.

In Lemma 2.17, we showed that f ∗(E⊕F ) = f ∗(E)⊕f ∗(F ) and f ∗(E⊗F ) = f ∗(E)⊗f ∗(F ),
which implies that f ∗ : KG(Y ) → KG(X) is indeed a ring homomorphism.
In Lemma 2.17 we also showed that for all E ∈ EK

G(Y ) and G-maps f : Z → X and
g : X → Y , we have

f ∗g∗E ∼= (g ◦ f)∗E,
as G-vector bundles. Because we also have id∗E ∼= E, for all G-vector bundles E ∈ EK

G(Y ),
the assignment X → KG(X) is a functor.

Before we study KG(X) further, we will calculate KC
G(X) for some G-spaces X. We will

need the following lemma:

Lemma 3.11. Let p : E → X be a G-vector bundle and let P : E → E be a morphism of
G-vector bundles, such that P 2 = P . Then ImP := {P (v) | v ∈ E} and Im(id − P ) are
G-vector bundles, such that

ImP ⊕ Im(id− P ) ∼= E.

Proof. Notice that

(id− P )(id− P ) = id− 2P + P 2 = id− 2P + P = id− P

and
p(id− p) = (id− p)p = p− p = 0.

We first show that for all x ∈ X, we have Ex
∼= Im(P )x ⊕ Im(id − p)x. Let v ∈ Im(P ) ∩

Im(id− P ). Then v = (id− P )y and v = P (z), for some y, z ∈ Ex. It follows that

0 = P (id− P )y = P ((id− P )y) = P (P (z)) = P (z) = v.

Notice that for all v ∈ Ex, we have v = Pv + (id− P )v. Therefore,

Ex
∼= Im(P )x ⊕ Im(id− p)x.

We now show that Im(P ) is indeed a G-vector bundle. We only show that Im(P ) has local
trivialisations, the other properties follow directly from the definition of Im(P ).
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Let x ∈ X. Let s1, . . . , sn be sections, such that s1(x), . . . , sk(x) form a basis of Im(P )(x)
and sk+1(x), . . . , sn(x) form a basis of Im(id− P )(x). The sections

Ps1, . . . , Psk, (id− P )sk+1, . . . (id− P )sn,

Now have the property that det(Ps1(x), . . . , Psk(x), (id− P )sk+1(x), . . . (id− P )sn(x)) ̸= 0.
Therefore, there exists an open neighbourhood U of x, such that for all y ∈ U , we have

det(Ps1(y), . . . , Psk(y), (id− P )sk+1(y), . . . (id− P )sn(y)) ̸= 0.

It follows that the map Ψ : imP |U → U ×Kk, defined by

Ψ−1(u, (x1, . . . , xk)) = (x1Ps1(u), . . . xkPsk(u)),

is a local trivialisation.

Remark 3.12. We will often denote the bundle Im(P ) by PE.

Remark 3.13. If Q : E → E is also a G-vector bundle morphism such that Q2 = Q and
H : E × [0, 1] → E is a G-homotopy between P and Q such that Ht : E → E is a G-vector
bundle morphism which satisfies H2

t = Ht, then PE ∼= QE. This can be shown as follows:
Let πX : I×X → X denote the projection and it : X → I×X be the inclusion it(x) = (t, x).
The map H induces a G-vector bundle morphism H̃ : π∗

XE → π∗
XE defined by H̃((x, t), v) =

H(t, v). Notice that H̃2 = H̃, which implies that we can construct the bundle H̃(π∗E). We
have i∗0H̃(π∗E) ∼= PE and i∗1H̃(π∗E) ∼= QE. Since there is a G-homotopy between i0 and
i1, Theorem 2.23 implies that PE ∼= QE.

Proposition 3.14. Let X be a G-space, such that gx = x, for all (g, x) ∈ G × X. Then,
there is a ring isomorphism:

Φ : KC(X)⊗R(G) → KG(X),

where R(G) := KC
G({pt}).

Proof. Let p : X → {pt} denote the map defined by p(x) = pt. We define the map Φ̃ :
KC

G(X)×R(G) → KC(X), by

Φ̃((Mpt−Npt)⊗(E+−E−)) := (p∗Mpt−p∗Npt)⊗(E+−E−) = (MX⊗E+⊕NX⊗E−)−(NX⊗E+⊕MX⊗E−).

The group action on MX ⊗E is defined by g(m⊗ v) = (gm)⊗ v and is defined similarly on
NX ⊗ E−, NX ⊗ E+ and MX ⊗ E−. Notice that Φ̃ is a bilinear map, which implies that Φ̃
induces a map Φ : KC

G(X) ⊗ R(G) → KC(X). We show that this map is an isomorphism
by constructing an inverse. To construct this inverse, we first need to define some other maps.

Let p : E → X be a G-vector bundle over X. we can define the map P : E → E, by

P (v) =

∫
G

(gv)dg.

Notice that P is continuous and P |Ex is linear for all x ∈ X. We now show that P is a
G-map. Let h ∈ G, then

hP (v) = h

∫
G

gvdg =

∫
G

(hg) vdg =

∫
G

gvdg =

∫
G

(gh)vdg =

∫
G

g(hv)dg = P (hv). (3.1)
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Since for all h ∈ G, we have hP (v) = P (v), it follows that

P (P (v)) =

∫
G

gP (v)dg =

∫
G

P (v)dg = P (v).

Lemma 3.11 now implies that PE := ImP is a G-vector bundle. In Equation 3.1 we showed
that gP (v) = P (v). Therefore, the G-action on PE is trivial. Since the action of G on X is
also trivial, we can view PE as an element of KC(X). Let ΨM : KC

G(X) → KC(X) be the
ring homomorphism defined by ΨM(E+ −E−) = PHom(MX , E+)−PHom(MX , E−), where
M is a G-module.

With this notation, we are finally ready to define the inverse φ : KC
G → KC(X) ⊗ R(G)

by

φ(E+ − E−) =
∑

M∈[G]

Mpt ⊗ΨM(E+ − E−).

Notice that φ is a ring homomorphism. We now show that Φ ◦ φ = id. Notice that

Φ ◦ φ(E+ − E−) =
⊕
M∈[G]

MX ⊗ PHom(MX , E+)−
⊕
M∈[G]

MX ⊗ PHom(MX , E−).

We will show that
E+

∼=
⊕
M∈[G]

MX ⊗ PHom(MX , E+) =: F.

Let x ∈ X. Then
Fx =

⊕
M∈[G]

M ⊗ PHom(M, (E+))x.

Notice that f ∈ PHom(MX , (E+))x implies that f :M → Ex is a map such that lg◦f ◦lg−1 =
f and thus that f is an equivariant map between representations of G. Since (E+)x is a
finite dimensional representation of G, Proposition A.28 implies that there exists irreducible
representations (α1,M1), . . . , (αn,Mn), such that (E+)X ∼=

⊕n
i=1Mi. Lemma A.31 now

implies that

FX =
⊕
M∈[G]

M ⊗ Hom(M,
n⊕

i=1

Mi)

∼=
⊕
M∈[G]

n⊕
i=1

M ⊗ Hom(M,Mi)

∼=
n⊕

i=1

Mi ⊗ Hom(Mi,Mi)

∼=
n⊕

i=1

Mi ⊗C C

∼=
n⊕

i=1

Mi

= Ex.
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Chasing through all the identifications, we see that the isomorphism Fx → Ex is given by
(m⊗ f) → f(m). Notice however that this isomorphism is the restriction of the morphism
of G-vector bundles h : F → E, defined by h(m⊗ f) = f(m), to Fx. Therefore, the map h
is a morphism of vector bundles, which is fiberwise an isomorphism and thus an isomorphism.

We now show that φ ◦ Φ = id. Let (M ′
pt −Npt)⊗ (E+, E−) ∈ R(G)⊗KC(X). Then

φ ◦ Φ((Qpt −Npt)⊗ (E+, E−)) =
∑

M∈[G]

Mpt ⊗ P Hom(MX , QX ⊗ E+ ⊕NX ⊗ E−))

−
∑

M∈[G]

Mpt ⊗ P Hom(MX , (NX ⊗ E+ ⊕QX ⊗ E−)).

Since

P Hom(MX , QX ⊗ E+ ⊕NX ⊗ E−) ∼= P Hom(MX , QX ⊗ E+)⊕ P Hom(MX , NX ⊗ E−),

to show that φ ◦ Φ is an isomorphism, it is sufficient to show that∑
M∈[G]

Mpt ⊗ P Hom(MX , QX ⊗ E+) = Qpt ⊗ E,

the proof for the other terms is then similar and we obtain

φ ◦ Φ((Qpt −Npt)⊗ (E+, E−)) = (Qpt ⊗ E+ +Npt ⊗ E−)− (Npt ⊗ E+ +Qpt ⊗ E−)

= (Qpt −Npt)⊗ (E+ − E−).

We first show that the map µ : P Hom(MX , QX) ⊗ E+ → P Hom(MX , QX ⊗ E+) given
by

µ(A⊗ v) = Av : m→ Am⊗ v

is an isomorphism. Notice that µ is a G-vector bundle morphism and µ is injective. We now
show that µ is surjective. Let B ∈ P Hom(MX , QX ⊗ E+)x and let m ∈M . We have

B(m) =
n∑

i=1

ni ⊗ vi,

where v1, . . . , vn is a basis of Ex. Because B ∈ P Hom(MX , Q⊗ E+)x, we have

B(gm) = gB(m) = g

n∑
i=1

ni ⊗ vi =
n∑

i=1

(gni)⊗ vi,

for all g ∈ G. Let for all i ∈ I, let

Bi := id⊗ prvi ◦B :M → Q⊗ Span(vi) ∼= Q.

Then, by construction:

B = µ(
n∑

i=1

Bi ⊗ vi).

Therefore,
P Hom(MX , QX ⊗ E+) ∼= P Hom(MX , QX)⊗ E+.
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In Proposition A.28, we showed that M ∼=
⊕k

i=1Mk, where Mk are irreducible representa-
tions. Lemma A.31 now implies that∑

M∈[G]

Mpt ⊗ P Hom(MX , QX ⊗ E+) =
∑

M∈[G]

Mpt ⊗ P Hom(MX , QX)⊗ E+

=
∑

M∈[G]

Mpt ⊗ (
k⊕

i=1

P Hom(MX , (Mi)X)⊗ E+)

=
k∑

i=1

(Mi)pt ⊗ (P Hom((Mi)X , (Mi)X))⊗ E+)

=
k∑

i=1

(Mi)pt ⊗ (CX ⊗ E+)

=
k∑

i=1

(Mi)pt ⊗ E+

= (
k⊕

i=1

(Mi)pt)⊗ E+

= Qpt ⊗ E+,

which proves the theorem.

We now give an example to show how this proposition can be used to compute the group
KG(X) for a G-space X.

Example 3.15. We will show how to compute KC
S1(S2), where the action on S2 is such that

gx = x for all (g, x) ∈ S1 ×X. In section 7, we will show that KC(S2) ∼= Z. We now need
to determine R(S1). The irreducible representations of S1 are given by the maps γn : S1 →
C− {0} = Aut(C), defined by γn(e

iθ) = (eiθ)n for n ∈ Z. Let Mn := {⊕k
i=1γn | k ∈ N} ∪ {0}

and notice that the direct sum gives Mn the structure of a monoid isomorphic to N0. Since
every representation is isomorphic to the direct sum of irreducible representations, every
isomorphism class of EC

G({pt}) corresponds to an element of

M := ⊕k∈ZMk
∼= ⊕k∈ZN0.

Therefore, the group KC
G({pt}) isomorphic to the group

KC
G({pt}) ∼= ⊕k∈ZZ. (3.2)

We now determine the ringstructure of KC
G({pt}). If k, l ∈ Z, then the representation γk⊗γl

on C⊗C is isomorphic to the representation γk+l on C. It follows that γk ∼= (γ1)
k. Since in

Equation 3.2, the representations γk, γl and γl correspond to the elements (k, 1), (l, 1) and
(1, 1), we must have (k, j)⊗ (l, i) = (k + l, i · j) on ⊕k∈ZZ. Notice that this implies that the
elements (1, 1) and (−1, 1) generate the ring ⊕k∈ZZ. Therefore, we have

KC
G({pt}) ∼= Z[X,

1

X
],

with the relation X · 1
X

= 1. The element X corresponds to the element (1, 1) of ⊕i∈ZZ and
thus to the representation γ1.
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To further study the groups/rings KG(X), we will define the reduced groups K̃G(X).

Definition 3.16. Let X be a compact G-space. Then, for K = C or R we define

K̃K
G(X) = {[E] | E ∈ EK

G}/ ∼′,

Where [E] ∼′ [F ] if there exists G-modules M and N , such that

E ⊕MX
∼= F ⊕NX .

We will often denote an element of K̃G by [E]∼′ .

Lemma 3.17. The sum [E]⊕ [F ] = [E ⊕ F ] give K̃G(X) the structure of an abelian group.

Proof. We will only prove that that there is an identity element and that every element has
an inverse, the other properties follow almost directly from the definition of the sum. The
identity element of the group 0, is the vector bundle X ×{0}, where {0} is viewed as a zero
dimensional vector space. Notice that for all E ∈ EK

G(X), we have

0 + E ∼= E ∼= E + 0,

which implies that 0 is the identity.
Let E ∈ EK

G(X). We will construct the inverse of E. In Theorem 2.31, it is shown that there
exists a G-vector bundle E⊥ and a G-module M , such that E ⊕ E⊥ ∼= MX

∼= MX . This
implies that

E ⊕ E⊥ ⊕ 0 ∼= 0⊕MX ,

and thus that [E ⊕ E⊥]∼′ = [0]∼′ .

As before, the mapX → K̃G(X) can be viewed as functor TopG → Ab, where K̃G(f)(E) =
f ∗E, for a G-map f : Y → X.
The functors K̃G and KG have the following useful property:

Proposition 3.18. Let X and Y be G-spaces and let f, g : Y → X be G-maps. Then,

(i) If f and g are G-homotopic, then f ∗ = g∗, viewed as maps KG(X) → KG(Y ) or
K̃G(X) → K̃G(Y ).

(ii) If f is a G-homotopy equivalence, then KG(X) ∼= KG(Y ) and K̃G(X) ∼= K̃G(Y )

Proof. We will prove the statement for KG, the proof for K̃G is similar. We first prove
(i). Let E+ − E− ∈ KG(X). Since f and g are G-homotopic, Theorem 2.23 implies that
f ∗E± ∼= g∗E±. Therefore,

f ∗(E+ − E−) = f ∗E+ − f ∗E− = g∗E+ − g∗E− = g∗(E+ − E−).

We now show (ii). Since f is a G-homotopy equivalence, there exists a map h : X → Y ,
such that f ◦h and h◦ f are G-homotopic to the identity. Part (i) of our lemma now implies
that

f ∗ ◦ h∗ = (h ◦ f)∗ = (id)∗ = id,

viewed as a map from KG(Y ) to KG(Y ), and

h∗ ◦ f ∗ = (f ◦ h)∗ = (id)∗ = id,

viewed as a map from KG(X) to KG(X). Thus, the map f ∗ : KG(X) → KG(Y ) is an
isomorphism, which proves the proposition.
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As the notation might suggest, the group K̃G(X) is closely related to the group KG(X).

Proposition 3.19. Let X be a compact G-space and x0 ∈ X a point such that gx0 = x0 for
all g ∈ G. The following sequence is a split short exact sequence of abelian groups:

0 KG(pt) KG(X) K̃G(X) 0
p∗

i∗

π ,

where p : X → {pt} is the projection, i : {pt} → X defined by i(x) = x0 and π(E−MX) = E.

Proof. We first show that π is well defined. Let E+−E− ∈ KG(X). In Lemma 3.8 we showed
that there exists a G-vector bundle F and an G-module M , such that E+ −E− = F −MX .
Assume that we also have that E+ − E− = F ′ −M ′

X . Then, we have F −MX = F ′ −M ′
X

and Lemma 3.4 implies that there exists a G-module N , such that

F ⊕ (M ′
X ⊕NX) ∼= F ′ ⊕ (MX ⊕NX).

Thus, [F ]∼′ = [F ′]∼′ and π is well defined.
We now show that the sequence is exact. Notice that since i∗p∗ = (p ◦ i)∗ = (id)∗ = id, it
follows that p∗ is injective. Also notice that since π(E) = [E]∼′ , the map π is surjective. We
now show that Im(P ) = Ker(π). We have

π(p∗(Mpt −Npt) = π(MX −NX) = [MX ]∼′ .

Because MX ⊕ 0 = 0⊕MX , it follows that [MX ]∼′ = 0 and Im(P ) ⊂ Ker(π). We now prove
that Ker(π) ⊂ Im(π). Let E+ −MX ∈ Ker(π). Then there exists G-modules N and N ′,
such that E+ ⊕N = N ′. This implies that E+ = N ′

X −NX and

E+ −MX = (N ′
X −NX)−MX = N ′

X − (N ⊕MX) = p∗(N ′
pt − (Npt ⊕Mpt)).

Thus, we have E+ −MX ∈ Im(p∗). Since i∗ ◦ p∗ = id, the sequence is a split short exact
sequence.

Let X be a compact G-space. We will denote the one-point compactification of X by X+

and we will denote the point that is added to X by pt. Notice that if we endow X+ with
the G-action gx = gx if x ∈ X and gpt = pt, the space X+ is a G-space. Also notice that
since X is compact, we have X+ ∼= X

∐
{pt}. With this notation, we can state the following

important consequence of this proposition:

Theorem 3.20. Let X be a compact G-space. Then,

K̃G(X
+) ∼= KG(X),

as abelian groups.

Proof. First, notice that KG(X)⊕KG(pt) ∼= KG(X+), where the isomorphism is given by

Φ(E+ − E−,Mpt −Npt) = (E+

∐
Mpt − E−

∐
Npt),

with E+

∐
Mpt|X := E+ and E+

∐
Mpt|pt := Mpt. Let ipt : KG(pt) → KG(pt) ⊕KG(X) be

the map defined by
ipt(Mpt −Npt) := (Mpt −Npt, 0)
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and let π : KG(pt)⊕KG(X) → KG(X) be the map defined by

πX((Mpt −Npt), (E+ − E−)) := E+ ⊕NX − E⊕MX .

This yields following the exact sequence:

0 KG(pt) KG(X
+) KG(X) 0

Φ◦ppt πX◦Φ−1

,

Let i : {pt} → X denote the inclusion. We have

i∗(ϕ ◦ ipt(Mpt −N)pt) = i∗(0
∐

Mpt − 0
∐

Npt) =Mpt −Npt.

Therefore, the sequence above is a split short exact sequence exact sequence. It follows that
KG(X) ∼= Ker(i∗). Applying Proposition 3.19 to X+, with x0 = pt, we see that the sequence

0 KG(pt) KG(X
+) K̃G(X

+) 0
p∗

i∗

π ,

is also split short exact sequence. Thus, we also have K̃G(X
+) ∼= Ker(i∗) and

K̃G(X
+) ∼= KG(X).

Remark 3.21. The following notation will be useful to describe G-vector bundles over X+.
If X and Y are compact G-spaces and f : Y → X is a G-map, then f induces a G-map
f̃ : X+ → Y +, which is given by f̃(x) = f(x) if x ∈ X and f̃(pt) = pt. We will usually
denote this map by f . If E is a G-vector bundle over X, we will also use the notation E for
the bundle E

∐
0pt over X

+

It might not be clear why it would be useful to look at the groups K̃(X+). It will turn
out that the groups K̃G(X) can be used to construct an exact sequence which will be of vital
importance for the development of the theory.
To construct this exact sequence, we must first introduce some notation. Let X be a G-
space, and x0 ∈ X, such that gx0 = x0, for all g ∈ G. The reduced cone over X is defined
by

CX := X × I/({x0} × [0, 1] ∪ {1} ×X).

The reduced suspension of X is denoted by

ΣX := X × I/({x0} × [0, 1] ∪ {1, 0} ×X).

Notice that CX and ΣX are G-spaces, where the action on an element [(x, t)] is given by
g[(x, t)] = [(gx, t)].
Lastly, if X,Z1, Z2 are G-spaces and i1 : X → Z1 and i2 : X → Z2 is an inclusion which is
also a G-map, then

Z1

∐
X

Z2 := Z1

∐
Z2/ ∼,

where i1(x) ∼ i2(x) for all x ∈ X. Notice that ΣX ∼= CX
∐

X CX, where we identify (x, 0)
with(x, 0) for all x ∈ X. The isomorphism is given by the map Φ : CX

∐
X CX → ΣX
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defined by

Φ[(x, t)] =

(x, 1
2
+ t

2
) (x, t) is an element of the first cone

if
(x, 1

2
− t

2
) (x, t) is an element of the second cone

.

With this notation, we are ready to state the following Lemma:

Lemma 3.22. Let X be a G-space, A a closed G-invariant subspace and x0 ∈ A ⊂ X, such
that gx0 = x0 for all g ∈ G. Let X

∐
ACA be defined by a ∼ (a, 0), for all a ∈ A and let

iA : A → X and iX : X → X
∐

ACA denote the inclusion. Then, the following sequence is
exact:

K̃G(X
∐

ACA) K̃G(X) K̃G(A)
i∗X i∗A . (3.3)

Proof. We first show that Im(i∗X) ⊂ Ker(i∗A). Notice that i∗A ◦ i∗X = (iX ◦ iA)∗, where iX ◦ iA
is the inclusion of A into X

∐
ACA. Let H : A× [0, 1] → X

∐
ACA be the map defined by

H(a, t) = (a, t). Then H is a G-homotopy, such that H0 = iX ◦ iA and H1(a) = [(x0, 1)] for
all a ∈ A. Therefore, Theorem 2.23 and example 2.16 imply that

(iX ◦ iA)∗E = (H1)
∗E ∼= MA

and
[(iX ◦ iA)∗E]∼′ = [MA]∼′ = 0.

We now show that Ker(i∗A) ⊂ Im(i∗X). Assume that [E]∼′ ∈ Ker(i∗A). Then [E|A]∼′ = 0 and
there exists G-modulesM and N such that E|A⊕NA

∼= MA. Let Φ : E|A⊕NA →MA be an
isomorphism. Because CA∪X = X

∐
ACA and X ∩CA = A, which is a closed G-subspace

of A. Theorem 2.29 implies that

(E ⊕NX) ∪Φ MCA

is a G-vector bundle over X
∐

ACA. Since i
∗
X((E⊕MX)∪ΦNCA) ∼= E⊕MX , it follows that

[i∗X((E ⊕MX) ∪Φ NCA]∼′ = [E ⊕MX ]∼′ = [E]∼′ .

Remark 3.23. If X1 and Y1 are compact G-spaces, X2 ⊂ X1 and Y2 ⊂ Y1 and f : Y1 → X1

is a map such that f(Y2) ⊂ X2, then f induces a G-map f̃ : Y1
∐

Y2
CY2 → X1

∐
X2
CX2,

defined by f̃(y) = f(y) if x ∈ Y1 and f̃(y, t) = (f(y), t) if (y, t) ∈ CY2. Notice that this map
makes the following diagram commutes:

K̃G(Y1
∐

Y2
CY2) K̃G(Y1) K̃G(Y2)

K̃G(X1

∐
X2
CX2) K̃G(X1) K̃G(X2)

i∗Y1
i∗Y2

f̃∗

i∗X1

f∗

i∗X2

f∗ .

We will often denote the map f̃ by f and write f as f : (Y1, Y2) → (X1, X2) to emphasize
that f(Y2) ⊂ X2.
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We can iterate this process from the lemma to extend the exact sequence. If in the
lemma above, we replace A, X and X

∐
ACA by X, X

∐
ACA and (X

∐
ACA)

∐
X CX

∼=
CX

∐
ACA, we obtain the exact sequence

K̃G(CX
∐

ACA) K̃G(X
∐

ACA) K̃G(X)i∗ i∗X . (3.4)

If we repeat this process and now attach on CX
∐

ACA a cone along X
∐

ACA, we get

(CX
∐
A

CA)
∐

X
∐

A CA

(C(X
∐
A

CA) ∼= (CX
∐
A

CA)
∐

X
∐

A CA

(CX
∐
CA

CCA) ∼= CX
∐
X

(CX
∐
CA

CCA)

and the following exact sequence:

K̃G(CX
∐

X(CX
∐

CACCA)) K̃G(CX
∐

ACA) K̃G(X
∐

ACA) . (3.5)

The following lemma shows why this sequence makes sense:

Lemma 3.24. Let X and A be as above. We have

K̃G(ΣA) ∼= K̃G(CX
∐
A

CA),

and
K̃G(ΣX) ∼= K̃G(CX

∐
X

(CX
∐
CA

CCA).

Proof. We will prove that K̃G(ΣA) ∼= K̃G(CX
∐

ACA), the proof of the other statement is
similar. Notice that it, by Proposition 3.18, is sufficient to show that ΣA is G-homotopy
equivalent to CX

∐
X(CX

∐
ACA). We claim that the inclusion i : ΣA ∼= CA

∐
ACA →

CX
∐

ACA is a G-homotopy equivalence. Let p : CX
∐

ACA→ ΣA be the map defined by

p([(x, t)]) =

{
[(x, 0)] if [(x, t)] ∈ CX
[(a, t)] if [(x, t)] ∈ CA

We have

p ◦ i([x, t]) =
{

[(x, 0)] if t ∈ [0, 1
2
]

[x, 2t− 1] if t ∈ [1
2
, 1]
.

The homotopy H : ΣA× I → ΣA, defined by

H((x, t), s) = ([(x,
1

1− 1
2
s
(t− 1

2
s))]),

where we have the convention that ([x, t]) = [(x, 0)] if t ≤ 0, gives the G-homotopy between
id and p ◦ i.
Notice that the G-homotopy

F : CX
∐
A

CA× I → CX
∐
A

CA,

defined by

F ((x, t), s) =

{
[(x, t+ s] if [(x, t)] ∈ CX

[x, (1 + s)(t)− s] if [(x, t)] ∈ CA

where we have the convention that [(x, t)] = ([x, 1)] if t > 1 and ([a,−t]) = ([a, t]) ∈ CX, is a
G-homotopy between i◦p and id. Therefore, the inclusion i is a G-homotopy equivalence.
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We are now ready to construct the exact sequence:

Theorem 3.25. Let X be a G-space, A ⊂ X a G-invariant subspace and and x0 ∈ A, such
that gx0 = x0 for all g ∈ G. The following sequence is exact:

K̃G(ΣX) K̃G(ΣA) K̃G(X
∐

ACA) K̃G(X) K̃G(X)
i∗ΣA iX iA . (3.6)

Consider the diagram:

CA
∐

ACA CX
∐

ACA

CX
∐

X CX (CX
∐

X(CX
∐

CACCA)

, (3.7)

where every map is the inclusion. Let i : CA
∐

ACA → CX
∐

X(CX
∐

CACCA denote the
composition of maps in the upper half of the diagram and j the composition of maps of the
lower half of the diagram. We will show that i and j are G-homotopic.
Notice that the maps i and j coincide on the first copy of CA. On the second copy of CA,
the map i maps into CCA via the map

i(x, t) = ((x, t), 0)

and j maps into CCA via the map

j(x, t) = ((x, 0), t).

These map are homotopic relative to X via the homotopy

H(((x, s), t), ϕ) = (x,
√

1 + tan2(f(ϕ))

(
cos(π

2
ϕ) − sin(π

2
ϕ)

sin(π
2
ϕ) cos(π

2
ϕ)

)(
s
t

)
).

where f(ϕ) := π
2
ϕ if t ≤ 0.5 and f(ϕ) := π

2
(1−ϕ) if t ≥ 0.5. Therefore, the maps i and j are

G-homotopic. Proposition 3.18 now implies that the following diagram, induced by equation
3.7, commutes:

K̃G(CX
∐

X(CX
∐

CACCA) K̃G(CX
∐

ACX)

K̃G(CX
∐

ACA) K̃G(CA
∐

ACA).

(3.8)

Also notice that, by Lemma 3.24 the horizontal arrows are isomorphisms. Combining this
with Equation 3.3 , Equation 3.4 and Equation 3.5, we obtain the desired exact sequence:

K̃G(ΣX) K̃G(ΣA) K̃G(X
∐

ACA) K̃G(X) K̃G(X)
i∗ΣA iX iA .

This theorem motivates the following definitions:
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Definition 3.26. Let X, A and x0 be as above, then for all n ∈ N0 we define:

K̃−n
G (X) := K̃(ΣnX)

and
K̃−n

G (X,A) := K̃G(Σ
nX

∐
ΣnA

CΣnA).

Definition 3.27. Let X be a compact G-space and A ⊂ X a closed G-invariant subset. For
all n ∈ N0, we define:

K−n
G (X) := K̃−n

G (X+)

and
K−n

G (X,A) := K̃−n
G (X+, A+).

Remark 3.28. Notice that Theorem 3.20 implies that K0
G(X) ∼= KG(X) as a group.

Remark 3.29. Using Equation 3.6, we obtain the exact sequence

. . . K̃
−(k+1)
G (X,A) K̃

−(k+1)
G (X) K̃

−(k+1)
G (A) K̃−k

G (X,A)

. . . K̃0
G(X,A) K̃0

G(X) K̃0
G(A).

and a similar one for the K−n groups

We will end this section by giving another interpretation of the group KG(X,A) and
K̃G(X,A). Let X and A be defined as before. Notice that the space X/A := X/ ∼, where
x ∼ y if x = y or x, y ∈ A is a G-space. Let π : X → X/A denote the projection. Then, we
have

Proposition 3.30. Let X be a G-space, A a closed G-invariant subset. If A is G-contractible,
then the map π∗ : K̃G(X/A) → K̃G(X) is an isomorphism.

Proof. We will prove the proposition by constructing an inverse i. Let E ∈ EG(X). Because
A is G-contractible, it follows that there exists a G-moduleM and an isomorphism f : E|A →
A ×M . In Lemma 2.27, we showed that there exists an open G-invariant set A ⊂ U , such
that f extends to an isomorphism f̃ : E|U → U×M . We now define the G-vector bundle i(E)
as follows: i(E) := E/ ∼, where v ∼ w if v = w or v, w ∈ E|A and prM(f(v)) = prM(f(w)).
Let π′ : E → i(E) denote the projection. Notice that the G-action on E induces a G-action
on i(E). Let q : i(E) → X/A denote the projection defined by q([v]) = [p(v)]. To show that
q : i(E) → X/A is a G-vector bundle, we will prove that the G-vector bundle is locally trivial
and leave the verification of the other properties to the reader. First assume that x ∈ X/
A−π(A). Let (U,Ψ) be a local trivialisation of E, with x ∈ U , then (U∩(X−A),Ψ|U∩(X−a))
is a local trivialisation of i(E), with x ∈ U ∩ (X − A).

Now assume that x ∈ A. Let f̃ : E|U → U ×M the isomorphism we defined before. Notice

that π′ ◦ f̃ is constant on the fibers of π′. This implies that there exists a unique continuous
map g : i(E)|π(U) → π(U) ×M such that g ◦ π′ = π′ ◦ f̃ . The pair (π(U), g) is the desired
local trivialisation around x.
The map i induces a map i : K̃G(X) → K̃G(X/A) by i(E − F ) = i(E)− i(F ). Notice that
i is well defined. By construction, we have iπ∗E ∼= E and π∗i(E) ∼= E, which implies that i
is the inverse of π∗ and π∗ : K̃G(X/A) → K̃G(X) is an isomorphism.
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Remark 3.31. A direct consequence of this theorem is that, because CA and C(A+) are
G-contractible, we have

K̃G(X,A) ∼= K̃G(X/A)

and
KG(X,A) ∼= K̃G(X

+/A+) ∼= K̃G(X/A).

In the next sections, we will develop the theory further, to eventually show that the groups
K−n

G (X) are periodic:
(KC

G)
−n(X) ∼= (KC

G)
−n−2(X)

and
(KR

G)
−n(X) ∼= (KC

G)
−n−8(X).

To show this, we will first look at the group K(X) from the perspective of Banach categories,
then introduce Clifford algebras and show that they are in a certain sense periodic. After
his, we will link these algebras to the groups K−n(X) to prove that the groups K−n

G (X) are
periodic.
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4 Banach categories

To view equivariant K-theory from a more general perspective, we will introduce Banach cat-
egories and pseudo abelian categories. We will show that the category of G-vector bundles
is a Banach category. This section is based on [3] and the definitions found on [5], [7] and [6].

We will start with a definition:

Definition 4.1. Let C be a locally small category. We call C an additive category if

(i) For each object C,C ′ ∈ C the set HomC(C,C
′) has the structure of an abelian group.

(ii) For each object C,C ′, C ′′ ∈ C, the composition ◦ : HomC(C,C
′) × HomC(C

′, C ′′) →
HomC(C,C

′′) is bilinear.

(iii) The category C has finite products and co-products.

Remark 4.2. Since HomC(C,C
′) is an abelian group, it contains a morphism 0C,C′ , which

is the identity of the group. Since composition is bilinear, we have

0C′,C′′ ◦ f = 0C′,C′′ ◦ f + 0C′,C′′ ◦ f + (−0C′,C′′ ◦ f)
= (0C′,C′′ + 0C′,C′′) ◦ f + (−0C′,C′′ ◦ f)
= 0C′,C′′ ◦ f + (−0C′,C′′ ◦ f) = 0C,C′′

for all f ∈ HomC(C,C
′) and similarly we have g ◦ 0C,C′ = 0C,C′′ for all g ∈ HomC(C

′, C ′′).

Example 4.3. The category of vector spaces over C is an example of an additive category.

We start with proving some basic properties of additive categories:

Lemma 4.4. Let C be an additive category and let A,C1, . . . , Cn be objects of C. Let fi, gi :
A→ Ci be morphisms for 1 ≤ i ≤ n. Let (f1, . . . , fn) : A→

∏n
i=1Ci denote the unique map

with the property that pi ◦ (f1, . . . , fn) = fi, where pi :
∏n

i=1C
i → Ci denotes the projection.

Then,
(f1, . . . , fn) + (g1, . . . , gn) = (f1 + g1, . . . , fn + gn).

Proof. Since composition of functions is bilinear, we have

pi ◦ ((f1, . . . , fn) + (g1, . . . , gn)) = pi ◦ (f1, . . . , fn) + pi ◦ (g1, . . . , gn) = fi + gi.

for all 1 ≤ i ≤ n, which proves the lemma.

Lemma 4.5. Let
∏n

i=1Ci be the product from the previous lemma. Let

iCi
:= (0Ci,C1 , . . . , 0Ci,Ci−1

, idCi
, 0Ci,Ci+1

, . . . , 0Ci,Cn)

We have

id∏n
i=1 Ci

=
n∑

i=1

iCi
◦ pi.
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Proof. Notice that by definition, we have

pj ◦ iCi
:=

{
0Ci,Cj

if i ̸= j
idCi

if i = j
. (4.1)

This implies that

pj(
n∑

i=1

iCi
◦ pi) =

n∑
i=1

(pj ◦ iCi
) ◦ pi = idCj

◦ pj +
∑
i ̸=j

0Ci,Cj
◦ pi = pj + 0 = pj,

for all 1 ≤ j ≤ n. The fundamental property of the product now implies that

n∑
i=1

iCi
◦ pi = (p1, . . . , pn).

Since pj ◦ id = pj for all 1 ≤ j ≤ n, we also have id = (p1, . . . , pn), which proves the lemma.

We can use these lemmas to show that abelian categories have the following useful popery.
The proof is based on the proof proposition 2.1 from [5].

Proposition 4.6. Let C be an additive category and let C1, . . . , Cn be objects of C. Then
n∐

i=1

Ci
∼=

n∏
i=1

Ci.

Proof. To show that the product and co-product are isomorphic, it is sufficient to show that
the product has the fundamental property of the co-product. We first consider the case
n = 0. In this case our diagram is empty and we have to show that a terminal object also
is an initial object. Let C denote an terminal object. Then by definition, there is a unique
morphism f : C → C. Since 0C,C , idC ∈ HomC(C,C), it follows that f = 0C,C = idC . Let C

′

be an object of C and g ∈ HomC(C,C
′). Remark 4.2 implies that

g = g ◦ idC = g ◦ 0C,C = 0C,C′ .

Therefore, we have HomC(C,C
′) = {0C,C′} and C is an initial object.

We now consider the case where the diagram is not empty. Let pi :
∏n

i=1C
i → Ci denote

the projection and let iCj
be defined as in the lemma above. We show that

∏n
i=1Ci, where

the inclusions are given by the maps iCj
: Cj →

∏n
i=1Ci for 1 ≤ j ≤ n is a co-product. Let

A ∈ C and let fi : Ci → A be morphisms in C. We claim that the map g :=
∑n

i=1 fi ◦ pi is
the unique map with the property that g ◦ iCj

= fj for all 1 ≤ j ≤ n. We first show that g
indeed has this property. Equation 4.1 and Remark 4.2 imply that

g ◦ iCj
=

n∑
i=1

fi ◦ (pi ◦ iCj
) = fj ◦ idj +

∑
i ̸=j

fi ◦ 0Cj ,Ci
= fj.

We now show that g is unique. Assume that h :
∏n

i=1Ci → A also satisfies h ◦ iCj
= fj.

Lemma 4.1 implies that

h = h ◦ id = h ◦ (
n∑

i=1

iCi
◦ pi) =

n∑
i=1

(h ◦ iCi
) ◦ pi =

n∑
i=1

fi ◦ pi = g.
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Therefore,
n∐

i=1

Ci ∼=
n∏

i=1

Ci.

Remark 4.7. In the proof of Proposition 4.6, we did not use that C has co-products. The
proposition shows that a category C is already a additive category if it satisfies (i) and (ii)
of Definition 4.1 and has finite products.

Remark 4.8. If iCi : Ci →
∐n

i=1Ci is the inclusion. Then the isomorphism of the previous
proposition can be described explicitly by the map Φ :

∐n
i=1Ci →

∏n
i=1Ci, defined by

iCi ◦ Φ = iCi
.

This Lemma shows that every finite product in an additive category C also has the struc-
ture of a co-product and every finite co-product also has the structure of a product. We
will therefore no longer distinguish between them and will write the product/co-product of
object C1, . . . Cn of C by

⊕n
i=1Ci.

Remark 4.9. Let C be an additive category and Ci, Dj be objects in C for 1 ≤ i ≤ n and
1 ≤ j ≤ k. Let f : ⊕n

i=1Ci → ⊕k
i=1Dj be morphisms in C. Lemma 4.5 implies that

f = id ◦ f ◦ id =
k∑

i=1

n∑
j=1

iDi
pDi

fiCj
pCj

.

If we let fi,j := pDi
fiCj

∈ HomC(Cj, Di), then we can write f as the matrix:f1,1 . . . f1,n
...

...
fk,1 . . . fk,n

 .

We can recover f from this matrix via the formula

f =
k∑

i=1

n∑
j=1

iDi
fi,jpCj

.

Notice that this matrix is unique, because if the is a matrix (f ′
i,j)1≤i≤k,1≤j≤l) such that

f =
k∑

i=1

n∑
j=1

iDi
f ′
i,jpCj

,

then

fp,q = pDp ◦ (
k∑

i=1

n∑
j=1

iDi
fi,jpCj

) ◦ iq = pDp ◦ (
k∑

i=1

n∑
j=1

iDi
f ′
i,jpCj

) ◦ iq = f ′
i,j.

If g : ⊕l
i=1Bi → ⊕n

i=1Ci is also a morphism, then these matrices have the property that

f ◦ g =

f1,1 . . . f1,n
...

...
fk,1 fk,n

g1,1 . . . g1,l
...

...
gn,1 gn,l

 .
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This is true because Equation 4.1 implies that

(f ◦ g)p,q = pDpf ◦ id ◦ id ◦ giBq

=
n∑

i=1

n∑
j=1

pDpfiCi
◦ (pCi

iCj
) ◦ pCj

giCq

=
n∑

i=1

(pDpfiCi
pCi

) ◦ (iCi
pCi

giCq)

= pDp(
n∑

i=1

fp,igi,q)iCq .

If h1 and h2 are morphisms in C, we wil often use the notation h1 ⊕ h2 to denote the
matrix (

h1 0
0 h2

)
.

As the ⊕ notation might suggest, the sum ⊕ of G-vector bundles can be viewed as the
product of those bundles in a certain additive category.

Proposition 4.10. Let EK
G(X) be the set of G-vector bundles over a compact G-space X.

The category EK
G(X), where the objects are G-vector bundles and the morphism are G-vector

bundle morphism (as defined in Definition 2.6), is an additive category.

Proof. Let p : E → X and q : F → X be G-vector bundles. If f, g ∈ HomEK
G(X)(E,F ), then

the sum (f+g)(x) := f(x)+g(x) gives the set HomG(E,F ) the structure of an abelian group
such that the composition of maps is bilinear. We now show that EK

G(X) has finite products.
First, notice that the G-vector bundle X × 0 is a terminal object. Now let pi : Ei → X be
G-vector bundles for 1 ≤ i ≤ n. We claim that the bundle q : E1 ⊕ . . .⊕ En → X, with the
projection πi : E1 ⊕ . . .⊕En → Ei, defined by pi(v1, v2, . . . , vn) = vi, is the product of these
vector bundles. To prove the claim, we check the fundamental property of the product. Let
q′ : A → X be a G-vector bundle and let fi : A → Ei be G-vector bundle morphism for
1 ≤ i ≤ n. The map f : A → E1 ⊕ . . . ⊕ En, defined by f(v) = (f1(v), . . . , fn(v)) is the
unique G-vector bundle morphism with the property that pi ◦ f = fi. Hence E1 ⊕ . . .⊕ En

is indeed the product of the G-vector bundles. Therefore, the categoy EK
G(X) is an additive

category.

In the proposition above, the set HomEK
G(X)(E.F ) has more structure then an abelian

group; it is a K vector space. This motivates the definition of a Banach category (Definition
2.1 on page 59 of [3]):

Definition 4.11. Let K = C or R. Let C be a category. We call C a Banach category if C is
an additive category, such that for all object C,C ′ of C, the set HomC(C,C

′) has the structure
of a Banach space over K, such that the composition map ◦ is bilinear and continuous.

Proposition 4.12. The category EK
G(X) is a Banach category.

Proof. Let p : E → X and q : F → X be G-vector bundles. We want to give HomEK
G(X)(E,F )

the structure of a Banach space. Let µE and µF be invariant metrics on E and F . For each
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x ∈ X and vE ∈ Ex and vf ∈ Fx, we let ∥vE∥E :=
√
µE(xE, xE) and ∥vF∥F :=

√
µF (xF , xF ).

We now define the norm ∥ · ∥ on HomEK
G(X)(X, Y ) by

∥A∥ := sup
v ∈ E

∥v∥E = 1

(∥Av∥F ).

It is clear from the definition that if ∥A∥ <∞ for all A ∈ HomEK
G(X)(E,F ), then ∥·∥ is a norm.

We show that ∥A∥ <∞. Since ∥Av∥F = (
√
· ◦ µf ◦∆F ◦A)(v), where ∆F (vf ) := (vf , vf ), it

follows that
∥A∥ = sup(

√
· ◦ gf ◦∆F ◦ A|(µE◦∆E)−1(1)).

Since (gE ◦ ∆E)
−1(1) is a closed subset of a compact space, it is compact. Therefore, the

map
√
· ◦ µf ◦∆F ◦ A|(µE◦∆E)−1(1) attains its maximum and ∥A∥ <∞.

We now show that (HomEK
G(X)(E,F ), ∥ · ∥) is complete.

Let {Ai}i∈N be a Cauchy sequence. Let x ∈ X and

∥Ai∥x := sup
v∈Ex,∥v∥E=1

(∥Av∥F ).

We have ∥Ai−Aj∥x ≤ ∥Ai−Aj∥. Therefore, The sequence {Ai|Ex}i∈N is a Cauchy sequence
in HomLin(Ex, Fx) (the set of linear maps from Ex → Fx) with the operator norm. Since this
is a Banach space, there is a unique Ax ∈ HomLin(Ex, Fx), such that limn→∞Ai|x = Ax. We
define A : E → F by A|Ex = Ax. We show that A is a G-map. Notice that for all x ∈ X, we
have

lg ◦ Ai|Ex ◦ lg−1 = Ai|Ex .

Therefore,
lim
i→∞

lg ◦ Ai|Ex ◦ lg−1 − Ai|Ex = lim
i→∞

0 = 0

and
Ax = lim

i→∞
Ai|Ex = lim

i→∞
lg ◦ Ai|Ex ◦ lg−1 = lgAxlg−1 .

Thus, we have lgA = Alg. We leave it to the reader to check that A is indeed continuous.
Therefore, The map A is a morphism of G-vector bundles. We now show that we indeed
have limn→∞Ai = A. Let ϵ > 0. Since Ai is a Cauchy sequence, there is a N ∈ N, such that
for all i, j > N , we have ∥Ai − Aj∥ < ϵ. Let i > n. For each x ∈ X, there exists a ix > i,
such that ∥Aix − A∥x < ϵ. Therefore,

∥A− Ai∥ = sup
x∈X

∥A− Ai∥x =≤ sup
x∈X

(∥A− Aix∥+ ∥Aix − Ai∥) < sup
x∈X

2ϵ = 2ϵ

and limn→∞Ai = A. Thus (HomEK
G(X)(E,F ), ∥ · ∥) is a Banach space.

We now show that the composition map

◦ : HomEK
G(X)(E,F )× HomEK

G(X)(F, F
′) → HomEK

G(X)(E,F
′)

is continuous. Let A ∈ HomEK
G(X)(E,F ) and B ∈ HomEK

G(X)(F, F
′). Notice that for all v ∈ F ,

with gF (v, v) ̸= 0, we have

∥Bv∥ = ∥B v

∥v∥F
∥∥v∥F ≤ ∥B∥∥v∥F .
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Therefore, ∥Bv∥ ≤ ∥B∥∥v∥. This implies that

∥BA∥ = sup
v∈E, ∥v∥E=1

(∥BAv∥F ′) ≤ sup
v∈E, ∥v∥E=1

∥B∥∥Av∥ = ∥B∥ sup
v∈E, ∥v∥E=1

∥Av∥ = ∥B∥∥A∥,

which implies that the composition is continuous. Thus, the category EK
G(X) is a Banach

category.

Remark 4.13. In our definition of the Banach structure on HomEK
G(X)(E,F ), we defined

the Banach structure using the metric µE and µF . It is at first not clear what happens to
the Banach structure if we choose other metrics µ′

E and µ′
F . Let ∥.∥′ denote the norm on

HomEK
G(X)(E,F ) induced by µ′

E and µ′
F . We show that the map

id ◦ · : (HomEK
G(X)(E,F ), ∥ · ∥) → (HomEK

G(X)(E,F ), ∥ · ∥′)

is an isomorphism. First notice that id ◦ · is bijective and linear. We show that id ◦ · is
continuous. In the proof of the proposition above, we showed that ∥id ◦ A∥ ≤ ∥id∥∥A∥,
which implies that id ◦ · is bounded and thus continuous. Notice that

· ◦ id : (HomEK
G(X)(E,F ), ∥ · ∥′) → (HomEK

G(X)(E,F ), ∥ · ∥)

is the inverse of id ◦ · and ∥A ◦ id∥ ≤ ∥A∥∥id∥, which implies that id ◦ · is continuous.
Therefore, id ◦ · is an isomorphism.
Thus the choice of metric on the G-vector bundles does not matter in the sense that a
different choice of metrics will give an isomorphic Banach space.

The Banach structure on HomEG(X)(E,F ) has the following useful property:

Proposition 4.14. There is a bijection between paths in HomEG(X)(E,F ) and homotopies
between G-vector bundle morphism.

Proof. First, Let H : [0, 1] → HomEG(X) be a path in HomEG(X)(E,F ). We claim that the

map H̃ : E × [0, 1] → F defined by H̃(x, t) = H(t)(x) is a homotopy between H0 and
H1 though G-vector bundle morphism. This is the case if H̃ is continuous. Let x ∈ X
and let (U,ΨE) and (U,ΨF ) be local trivialisations of E and F , such that U is a compact
neighbourhood of x and let v ∈ Ex. Let µE and µf be the metrics which induce the norm
on HomEG(X). In the local trivialisation U × Rn, we have

∥prRnH(t)(v)− prRnH(s)(w)∥ ≤ ∥prRnH(t)(v)− prRnH(t)(w)∥
+ ∥prRnH(t)(w)− prRnH(s)(w)∥.

Since H(t) is a G-vector bundle morphism, there exists an open neighbourhood of U1 ⊂
U × Rn of v such that if w ∈ U1, then ∥prRnH(t)(v) − prRnH(t)(w)∥ < ϵ. We may assume
that there exists an N ∈ N, such that U1 ⊂ U ×B(0, N). Remark 4.13 implies that we may
assume that µE|U×Rn and µF |U×Rm are the Euclidean metric. Therefore, we have

∥prRnH(t)(w)− prRnH(s)(w)∥ ≤ ∥H(t)−H(s)∥∥w∥.

Since H is continuous, there exists an open neighbourhood I0 of t such that if s ∈ I, then
∥H(t)−H(s)∥ < ϵ

N
. Therefore, if (w, s) ∈ U1 × I0, then

∥prRnH(t)(v)− prRnH(s)(w)∥ ≤ 2ϵ.
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Therefore, the map prU ◦ H̃|E|U×[0,1] and prRn ◦ H̃|E|U×[0,1] are continuous, which implies

that H̃|E|U×[0,1] is continuous and thus that H̃ is continuous.
Now let H : E × [0, 1] → F be a homotopy through G-vector bundle morphism. We
define the path H ′ : [0, 1] → HomEG(X)(E,F ) by H ′(t) = H(·, t). We show that H ′ is
continuous. Let t ∈ [0, 1], x ∈ X and let v ∈ (gE ◦∆E)

−1(1) and t ∈ [0, 1]. Since the map
h : [0, 1]× (µE ◦∆E)

−1(1) → R defined by

h(s, v) =
√
µF (∆F (H(v, t)−H(v, s))),

is continuous, there exists open neighbourhoods Uv of v in (gE ◦∆E)
−1(1) and Iv of t in [0, 1]

such that Uv × Iv ⊂ h−1((−ϵ, ϵ)). Since {Uv}v∈(gE◦∆E)−1(1) is an open cover of a compact
space, it has a finite sub cover Uv1 , . . . Uvn . Let I = ∩n

i=1Ii. Then, by construction, we have
that ∥H ′(t)−H ′(s)∥ < 2ϵ if s ∈ I, which implies that H ′ is continuous. The operation ′ and
˜ are by construction each others inverse, which proves the proposition.

The set HomEK
G(X)(E,E) has even more structure then just being a Banach space, it has

the structure of a Banach algebra, where the multiplication is given by composition.

Definition 4.15. A Banach algebra is a K-Banach space (V, ∥ · ∥), together with a multipli-
cation · : V × V → V such that

(i) The triple (V,+, ·) is an associative K-algebra.

(ii) For all U, v ∈ V , we have ∥uv∥ ≤ ∥u∥∥v∥
Remark 4.16. The element id : E → E has the property that v · id = id · v = v for all
v ∈ V . The Banach algebra HomEK

G(X)(E,E) is thus a Banach algebra with unit.

Example 4.17. Because the set is HomEK
G
(E,E) a Banach algebra, we can define the expo-

nential and logarithm on HomEK
G
(E,E). The exponential for a v ∈ HomEK

G
(E,E) is defined

by

exp(v) :=
∞∑
k=0

vk

k!
,

where v0 = id. For v ∈ HomEK
G
(E,E), with ∥id− v∥ < 1, we can define the logarithm by

log(v) :=
∞∑
k=1

(−1)n−1(v − id)

n
.

We leave it to the reader to check that both sums are indeed convergent. The exponential
function still has some of the properties from the exponential function on K. One can check
by writing out the power series that

exp(λ1v) exp(λ2v) = exp((λ1 + λ2)v),

for all v ∈ HomEK
G(X)(E,E) and λ1, λ2 ∈ K. Notice that this implies that exp(v) exp(−v) =

exp(0) = id and hence that exp(v) ∈ AutEK
G(X)(E). Another property that caries over is

exp(log(v)) = v,

for all v ∈ HomEK
G
(E,E), with ∥id − v∥ < 1. Again, this can be shown by writing out the

power series.
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We have now seen examples of additive categories and Banach categories. These cate-
gories have more structure than a category and therefore the functors between them should
‘preserve’ this extra structure. This motivates the following definition, which is based on
Definition 1.1 of [6].

Definition 4.18. Let C and D be additive categories. A functor F : C → D is an additive
functor if:

(i) the functor maps initial objects to initial objects and terminal objects to terminal objects.

(ii) The functor F preserves finite products and co-products.

Remark 4.19. A functor F preserves finite products if for a product
∏n

i=1Xi with pro-
jections pj :

∏n
i=1Xi → Xj, we have F (

∏n
i=1Xi) ∼=

∏n
i=1 F (Xi) and the projections on

F (
∏n

i=1Xi)) are given by F (pj) : F (
∏n

i=1Xi)) → F (Xj). The definition for co-products is
similar.

This notion of morphism might seem the wrong notion of morphism, because we do not
require F : HomC(C,C

′) → HomD(F (C), F (C
′)) to be a group homomorphism. However,

the following proposition shows that an additive functor already has this property.

Proposition 4.20. Let C and D be additive categories and let C,C ′ be objects of C. Then
for each f1, f2 ∈ HomC(C,C

′), we have

F (f1 + f2) = F (f1) + F (f2).

Proof. Consider the following diagram:

C

C C ⊕ C C

C ′

g idid

f1

i1

p1

h

p2

i2

f2

,

Where pj and ij are defined as before, the function g is defined as the unique function such
that pj ◦ g = id and h is defied as the unique function such that h ◦ ij = fj. Notice that
g = i1 + i2 and h = f1 ◦ p1 + f2 ◦ p2. This implies that

h ◦ g = (f1 ◦ p1 + f2 ◦ p2) ◦ (i1 + i2) = f1 + f2.
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If we apply F to all objects and morphisms in this diagram, we obtain the following diagram:

F (C)

F (C) F (C ⊕ C) F (C)

F (C ′)

F (g)
idid

F (f1)

F (i1)

F (p1)

F (h)

F (p2)

F (i2)

F (f2)

,

Since F preserves limits, F (g) is the unique map such that F (pj) ◦F (g) = id. Therefore, we
have F (g) = F (i1) +F (i2). Since F preserves co-products, the map F (h) is the unique map
such that F (h) ◦ F (ij) = F (fj). This implies that F (h) = F (f1) ◦ F (p1) + F (f2) ◦ F (p2).
Thus,

F (f1+f2) = F (h◦g) = F (h)◦F (g) = (F (f1)◦F (p1)+F (f2)◦F (p2))◦(F (i1)+F (i2)) = F (f1)+F (f2),

which proves the proposition.

There is also a notion of a morphism between Banach categories (The definition is based
on Definition 2.6 on page 60 of [3]):

Definition 4.21. Let C and D be Banach categories. We call a functor F : C → D a Banach
functor if:

(i) The functor F is an additive functor.

(ii) For each C,C ′ ∈ C, the map F : HomC(C,C
′) → HomD(F (C), F (C

′)) is linear and
continuous.

Example 4.22. Let X be a compact G-space and A ⊂ X an closed G-invariant subset. The
inclusion i : A → X induces a functor i∗ : EK

G(X) → EK
G(A) which maps an object E to i∗E

and acts on morphism by i∗f = f |A. Since i∗(X × 0) = A × 0, the functor i∗ preserves the
initial and terminal object. Also notice that i∗(E1 ⊕ E2) ∼= i∗(E)⊕ i∗(E) and that i∗ maps
the inclusion and projections of E1 ⊕ E2 to those of i∗(E1 ⊕ E2). Therefore, the functor i∗

is an example of an additive functor. Because we also have that

i∗(f + λg) = (f + λg)|A = f |A + λg|A = i∗(f) + λi∗(g),

for f, g ∈ HomEK
G(X)(E1, E2) and

∥i∗f∥ = ∥f ◦ i∥ ≤ ∥f∥,

the map i∗ : HomEK
G(X)(E1, E2) → HomEK

G(A)(i
∗E1, i

∗E2) is linear and continuous. Therefore,
the functor i∗ is a Banach functor.

In some cases, a Banach functor preserves even more structure (The definition is based
on Definition 2.6 on page 60 of [3]):
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Definition 4.23. Let C and D be Banach functors. We call a Banach functor F : C → D
quasi surjective, if for every object D of D there exists an object C of C and an object D⊥

of D such that
D ⊕D⊥ ∼= F (C).

Example 4.24. We claim that the functor i∗ from the previous example is also an example
a quasi surjective functor. Let D ∈ EK

G(X). Theorem 2.31 implies that there is a G-module
M and a D⊥ ∈ EK

G(X), such that D ⊕ D⊥ ∼= A ×M . In Example 2.16, we showed that
i∗(X ×M) ∼= A×M . Therefore, we have

i∗(X ×M) ∼= D ⊕D⊥,

which implies that i∗ is quasi surjective.

We end this section by looking at another special type of additive categories. The defini-
tion we give is based on the Definition in [7].

Definition 4.25. Let C be an additive category. We call C a pseudo-abelian category if
for each object C0 of C and each morphism P : C0 → C0, with P 2 = P , the functor
ImP : Cop → Set defined on objects by

ImP (C) := {f ∈ HomC(C,C0) | p ◦ f = f}.

and a morphisms by
F (g)(f) = f ◦ g

is representable.

Remark 4.26. A functor F : Cop → Set is representable if there exists an object C of C such
that the functor yC : Cop → Set is naturally isomorphic to F , where yC(X) := HomC(X,C)
and yC(g)(f) = f ◦ g

Example 4.27. We claim that the category EK
G(X) from the previous examples is an example

of a pseudo-abelian category. Let E ∈ EK
G(X) and let P : E → E be a G-vector bundle

morphism such that P 2 = P . In Lemma 3.11 we showed that ImP is a G-vector bundle. We
claim that yImP

∼= ImP . We define the natural isomorphism σ : yImP → ImP by

σF (f) = P ◦ f.

First, notice that σ is indeed a natural transformation. We now show that σF is an isomor-
phism. Let τ : ImP → yImP be the natural transformation defined by τF (f) = i ◦ f . Notice
that τ is a natural transformation. We claim that τ is the inverse of σ. Let F ∈ EK

G(X).
We have τF ◦ σF (f) = i ◦ P ◦ f. Since f = P ◦ f , it follows that Im(f) ⊂ Im(P ). Since
P |ImP = id, it follows that i ◦ P ◦ f = f . With a similar argument, it follows that

σF ◦ τFg = P ◦ i ◦ g = g.

Therefore, the functor ImP is representable and EK
G(X) is a pseudo-abelian category.

The following lemma about pseudo-abelian categories will often be usefull:
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Lemma 4.28. Let C be a pseudo-abelian category, C an object of C and Pi : C → C be
morphisms such that P 2

i = Pi for all 1 ≤ i ≤ n, Pi ◦ Pj = Pj ◦ Pi = 0 and
∑n

i=1 Pi = id.
Then, we have

C ∼= ⊕n
i=1Ci,

where Ci is an object such that ImPi
∼= yCi

.

Proof. First, notice that since C is pseudo-abelian, there exists objects Ci and a natural
isomorphisms σi : yCi

→ ImPi
. We claim that the map L := (σ−1

1 (P1), . . . , σ
−1
n (Pn))

T : C →
⊕n

i=1Ci is an isomorphisms. Consider the map Q := (σ1(idC1), . . . , σn(idCn)) : ⊕n
i=1Ci → C.

We have

QL =
n∑

i=1

σi(idCi
)σ−1

i (Pi) =
n∑

i=1

σi(idCi
σ−1
i (Pi)) =

n∑
i=1

Pi = id.

If i ̸= j, then

LQi,j = σ−1
i (Pi)σj(idCj

) = σ−1
i (Piσj(idCj

)) = σ−1
i (PiPjσj(idCj

))

= σ−1
i (0Cj ,C) = σ−1

i (Pi ◦ 0Cj ,C) = σ−1
i (Pi) ◦ 0Cj ,C = 0Cj ,Ci

and if i = j, then

LQi,i = σ−1
i (Pi)σi(idCi

) = σ−1
i (Piσi(idCi

)) = σ−1
i (σi(idCi

)) = idCi
.

Therefore, LQ = id⊕n
i=1Ci

.
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5 K-theory for Banach categories

In this section we will define the group K(C) and K−1(C) of a Banach category C. The
group K(φ) of a quasi surjective Banach functor φ will also be introduced. We will prove
some basic results for these groups and show how these groups give an ‘alternative’ definition
of KG(X) and K−1

G (X) we defined in section 3 This section will be based on chapter II. 1,
II.2 and III.3 of [3] and section 8 and 9 of [4].

To define the group K(C) for a Banach category C, we will need the following definition:

Definition 5.1. Let M be a commutative monoid. An abelian group group MG together with
a monoid monomorphism i : M → MG is called the Grothendieck group of M , if for each
monoid homomorphism f : M → A, with A an abelian group, there exists a unique group
homomorphism f ′ :MG → A, such that

f ′ ◦ i = f.

Lemma 5.2. Let M be a commutative monoid. Then the group MG exists and is unique up
to isomorphism.

Proof. We first show uniqueness. Assume that an abelian group N , with the map j :M → N
is also a Grothendieck group of M . Since j : M → N is a monoid homomorphism and
MG is a Grothendieck group of M , Definition 5.1 implies that there exists a unique group
homomorphism j′ : MG → N such that j′ ◦ i = j. Similarly, there exists a unique group
homomorphism i′ : N →MG, such that i′ ◦ j = i. Notice that

i′ ◦ j′ ◦ i = i′ ◦ j = i.

Therefore, we have the following commutative diagram:

MG

M MG

id
i′◦j′

i

i .

Notice that id and i′ ◦ j′ both have id ◦ i = i and (i′ ◦ j′) ◦ i = i. Definition 5.1 says that
there is a unique map with this property, hence i′ ◦ j′ = id. With a similar argument it can
be shown that j′ ◦ i′ = id. Thus, the map j′ :MG → N is an isomorphism.
We now show existence of the group. We define MG :=M ×M/ ∼, where (m,n) ∼ (a, b) if
there exists a l ∈ M such that m+ b+ k = a+ n+ k and the sum of two elements is given
by (m+,m−) + (n+, n−) = (m+ + n+,m− +m−). We leave it to the reader to verify that ∼
is an equivalence relation and MG is a group. The proof is somewhat similar to the proof of
Lemma 3.3. We now show that MG, with the monoid homomorphism i : M → MG defined
by i(m) = (m, 0) satisfies definition 5.1. Let h :M → A be a monoid homomorphism, where
A is an abelian group. Assume that there exists a h′ : MG → A such that h′ ◦ i = h. Then,
since i(m) = (m, 0), we must have

h′(m, 0) = h(m).
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Because (m, 0) + (0,m) = 0, we must have

0 = h′(0) = h′((m, 0) + (0,m)) = h′(m, 0) + h′(0,m) = h(m) + h′(0,m)

and thus that h′(0,m) = −h(m) and

h′(m,n) = h′(m, 0) + h′(0, n) = h(m)− h(n).

Thus if h′ exists, it is defined as above. Since the map h′(m,n) = h(m) − h(n) is a well
defined group homomorphism, the group MG is indeed the Grothendieck group of M .

The construction of the Grothendieck group of a monoid looks very similar to our con-
struction of the group KK

G(X). In fact, if we let EK
G(X) := ([E] | E ∈ EK

G(X)) and define the
operation ⊕ : EK

G(X)×EK
G(X) → EK

G(X) by [E]⊕ [F ] = [E⊕F ]. Then (EK
G(X),⊕) is a com-

mutative monoid and the construction in Lemma 5.2 shows that KK
G(X) is the Grothendieck

group of EK
G(X). This motivates the following definition:

Definition 5.3. Let C be an additive category. Let CM := ob(C)/ ∼, where C ∼ D if
C and D are isomorphic, denote the commutative module where the addition is given by
[C]⊕ [D] = [C ⊕D]. Then we define K(C) as the Grothendieck group of CM .

We can also define a group similar to the group K(X, Y ) for a Banach functor φ : C → D.
We will define this groups using triples (C+, C−, α), where C+, C− ∈ C and α : φ(C+) →
φ(C−) is an isomorphism. We will call the triple elementary if C+ = C− and α is homotopic
to the identity trough automorphism (In this context, a homotopy between maps f1 and f2
is thus a map H : [0, 1] → Aut(C+), such that H(0) = f0 and H(1) = f(1). We will call
the triples (C+, C−, α) and (C ′

+, C
′
−, α

′) isomorphic if there exists isomorphism f : C+ → C ′
+

and g : C− → C ′
− such that φ(g) ◦ α = α′ ◦ φ(f). We will define the sum of two triples

(C+, C−, α) and (C ′
+, C

′
−, α

′) by

(C+, C−, α)⊕ (C ′
+, C

′
−, α

′) = (C+ ⊕ C ′
+, C− ⊕ C ′

−, α⊕ α′).

With this terminology, we are ready to give the definition:

Definition 5.4. Let φ : C → D be a Banach functor. We define

K(φ) := {(C+, C−, α) | C+, C− ∈ C and α : φ(C+) → φ(C−) is an isomorphism.}/ ∼ .

Where (C+, C−, α) ∼ (C ′
+, C

′
−, α

′) if there exist elementary triples (D,D, β) and (D′, D′, β′)
such that

(C+, C−, α)⊕ (D,D, β) ∼= (C ′
+, C

′
−, α

′)⊕ (D′, D′, β′).

We will denote the equivalence class of (C+, C−, α) by [C+, C−, α].

Lemma 5.5. The set K(φ), with the addition [C+, C−, α] = [C ′
+, C

′
−, α

′] = [C+ ⊕ C ′
+, C

′
− ⊕

C ′
−, α⊕ α′] is a group.

Proof. First notice that⊕ is well defined and (K(φ), φ) is a monoid, where a triple [C+, C−, β]
is 0 if and only if there exist elementary triples (D,D, γ) and (D′, D′, γ′) such that

(C+, C−, β)⊕ (D,D, γ) ∼= (D′, D′, γ′).
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We now show that ⊕ is commutative. Let C1, C2 ∈ C and β : C1 ⊕ C2 → C2 ⊕ C1 be the
map defined by

β =

(
0 1
1 0

)
.

Since φ is a Banach functor, we have

φ(β) = φ(

(
0 1
1 0

)
) =

(
φ(0) φ(1)
φ(1) φ(0)

)
=

(
0 1
1 0

)
.

Therefore, the following diagram commutes:

φ(C1)⊕ φ(C2) φ(C1)⊕ φ(C2)

φ(C2)⊕ φ(C1) φ(C2)⊕ φ(C1)

0 1

1 0


α⊕α′

0 1

1 0


α′⊕α

.

and the addition is commutative. We now show that every element has an inverse. Let
[C+, C−, α] ∈ K(φ). We show that [C−, C+, α

−1] is the inverse. Notice that

[C+, C−, α]⊕ [C−, C+, α
−1] = [C+ ⊕ C−, C− ⊕ C+, α⊕ α−1] (5.1)

and that the following diagram commutes:

φ(C+)⊕ φ(C−) φ(C−)⊕ φ(C+)

φ(C+)⊕ φ(C−) φ(C+)⊕ φ(C−)

φ(id)

α⊕α−1

φ(

0 −1

1 0

)

0

α

−α−1

0



.

This implies that [C+⊕C−, C−⊕C+, α⊕α−1] = [C+⊕C−, C+⊕C−, a], where a is the matrix
on the lower horizontal arrow. If we view α a a number, we can use Gaussian elimination to
write the matrix a as a product of elementary matrices and we obtain:

a =

(
1 0
α 1

)(
1 −α−1

0 1

)(
1 0
α 1

)
. (5.2)

Notice however that if we view α again as a morphism, all the matrices are well defined
automorphism of φ(C+) ⊕ φ(C−) and the equality also holds in this case. The homotopy
H : [0, 1] → Aut(φ(C+)⊕ φ(C−)) given by

H(t) =

(
1 0
tα 1

)(
1 −tα−1

0 1

)(
1 0
tα 1

)
(5.3)

shows that [C+⊕C−, C+⊕C−, a] is an elementary triple, which implies that [C+⊕C−, C+⊕
C−, a] = 0.
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Remark 5.6. Notice that if α is homotopic to a morphism β, then(
0 −α−1

β 0

)
is homotopic to

(
0 −α−1

α 0

)
.

If we replace in [C+, C−, α]by [C+, C−, β] in Equation 5.1 in the lemma above, we see that
this implies that

[C+, C−, β]⊕ [C−, C+, α
−1] = 0

and thus that
[C+, C−, β] = [C+, C−, α].

Before we proceed, we give an example which motivates why this group could be useful:

Example 5.7. Let X be a compact G-space and Y ⊂ X be a closed G-invariant subset. In
Example 4.22 we showed that the functor i∗ : EK

G(X) → EK
G(Y ) is a Banach functor. The

group K(i∗) consists of triples [E,F, α], with E,F ∈ EK
G(X) and α : E|Y → F |Y a G-vector

bundle isomorphism. We will later give a geometric interpretation of these groups and will
show that K(X, Y ) ∼= K(i∗).

To show that K(i∗) ∼= KG(X, Y ), we must first understand the group K(i∗) better. To
do this, we need to introduce the group K−1(C) of a Banach category C.
Definition 5.8. Let C be a Banach category. We let

K−1(C) := {(C, α) | C ∈ ob(C) and α : C → C is an isomorphism}/ ∼ .

Where (C, α) ∼ (C ′, α′) if there exists an object D of C, such that α⊕idC′⊕idD is homotopic
through isomorphism to idC⊕α′⊕idD (which we will denote by α⊕idC′⊕idD ≃ idC⊕α′⊕idD)
.
We will denote the equivalence class of an element by [C, α]. The sum of two elements of
K−1(C) is defined by

[C, α]⊕ [C ′, α′] = [C ⊕ C ′, α⊕ α′].

It will turn out that (K−1(C),⊕) is a group. To show this, we first need the following
lemmas:

Lemma 5.9. The set K−1(C) together with the map ⊕ is a monoid.

Proof. First, notice that ⊕ is well defined and associative. We now show that K−1(C) has
a zero element and determine all triples which are zero. We claim that that [C, α] = 0 if
and only if there exists a D ∈ C, such that α ⊕ idD is homotopic to idC ⊕ idD through
isomorphisms. If [C, α] = 0, then [∗, id] ⊕ [C, α] = [∗, id], where ∗ is the initial/terminal
object in C. This implies that there exists a D ∈ C, such that

id∗ ⊕ α⊕ idD ≃ id∗ ⊕ idC ⊕ idD.

Since End(∗) = {0}, this implies that α ⊕ idD ≃ idC ⊕ idD. If there exists a D ∈ C, such
that α⊕ idD is homotopic to idC ⊕ idD through isomorphisms, then for all [E, γ] ∈ K−1(C)
we have [E, γ]⊕ [C, α] = [E ⊕ C, γ ⊕ α] and

γ ⊕ α⊕ idE ⊕ (idD ⊕ idE) ≃ γ ⊕ idC ⊕ idE ⊕ idD ⊕ idE

≃ idE ⊕ idC ⊕ idE ⊕ idD ⊕ γ

≃ idE ⊕ idC ⊕ γ ⊕ idE ⊕ idD
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where in the last two lines, we used that γ⊕ idE ≃ idE ⊕ γ, where the homotopy is given by

H(t) =

(
cos(π

2
t) − sin(π

2
t)

sin(π
2
t) cos(π

2
t)

)(
γ 0
0 idE

)(
cos(π

2
t) sin(π

2
t)

− sin(π
2
t) cos(π

2
t)

)
.

This implies that [E⊕C, γ⊕α] = [E, γ]. The proof for the case [C, α]⊕ [E, γ] is similar.

Lemma 5.10. Let [C1, α1], [C2, α2] ∈ K(C) and let h : C1 → C2 be an isomorphism in C
such that h ◦ α1 = α2 ◦ h. Then

[C1, α1] = [C2, α2].

Proof. We first show that [C, α1]⊕ [C2, α
−1
2 ] = 0. Notice that

[C1, α1]⊕ [C, α−1
2 ] = [C1 ⊕ C2, α1 ⊕ α−1

2 ] = [C1 ⊕ C2, α1 ⊕ (hα−1
1 h−1)].

We have

α1 ⊕ hα−1
1 h−1 =

(
0 −(h ◦ α−1

1 )−1

h ◦ α−1
1 0

)(
0 h−1

−h 0

)
. (5.4)

It follows from Equation 5.2 and Equation 5.3 that both matrices in Equation 5.4 are ho-
motopic to the identity. Remark 5.9 now implies that

[C1 ⊕ C2, α⊕ α−1] = 0.

If we let h = id and α1 = α2, then this computation shows that

[C, α2]⊕ [C, α−1
2 ] = [C, α−1

2 ]⊕ [C, α2] = 0.

For a general h, we now have

[C1, α1] = [C1, α1]⊕ [C2, α
−1
2 ]⊕ [C2, α2] = [C2, α2].

Proposition 5.11. The set K−1(C), with the operation [C, α] ⊕ [D, β] = [C ⊕D,α ⊕ β] is
indeed a group.

Proof. Notice that ⊕ is well defined and K−1(C) is a monoid. We now show that it is
commutative. Let [C, α], [D, β] ∈ K−1(C). Then, we have

[C, α]⊕ [D, β] = [C ⊕D,α⊕ β] and [D, β]⊕ [C, α] = [D ⊕ C, β ⊕ α].

Notice that h ◦ (α⊕ β) = (β ⊕ α) ◦ h, where

h =

(
0 1
1 0

)
.

Lemma 5.10 now implies that [C ⊕D,α⊕ β] = [D ⊕ C, β ⊕ α].
Lastly, notice that in the proof Lemma 5.10 we showed that [C, α]⊕ [C, α−1] = 0. Therefore,
K−1(C) is a group.

The following lemma will sometimes be useful:

Lemma 5.12. Let [C, α1], [C, α2] ∈ K(C). Then

[C, α1]⊕ [C, α2] = [C, α1α2].
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Proof. Notice that [C, α1]⊕ [C, α2] = [C ⊕ C, α1 ⊕ α2] and

[C, α1α2] = 0⊕ [C, α1α2] = [C, id]⊕ [C, α1α2] = [C, id⊕ α1α2].

Because
(id⊕ α1α2) = (α−1

1 ⊕ α1) ◦ (α1 ⊕ α2),

Equation 5.4, with h = id and α = α−1
1 implies that α−1

1 ⊕ α1 is homotopic to the identity.
Therefore,

[C, α1α2] = [C, α1 ⊕ α2].

We will now calculate the group K−1(C) for some Banach categories C.

Example 5.13. We will calculate K−1(ER
e (pt)). Notice that if [E,A] ∈ K−1(ER

e (pt)), then
E ∼= Rn for some n ∈ N and A ∈ GLn(R). Notice that [E,A1] = [E,A2] if and only if there
exists n ∈ N and [E3, id] ∈ K−1(ER

e (pt)) such that

A1 ⊕ idE2 ⊕ idE3 ≃ idE1 ⊕ A2 ⊕ idE3 . (5.5)

These two morphism are elements of GLk(R) for some k ∈ N. Since elements of GLk(R) are
homotopic if and only if their determinants have the same sign, it follows that Equation 5.5
holds if and only if

sgn(det(A1 ⊕ idE2 ⊕ idE3)) = sgn(det(idE1 ⊕ A2 ⊕ idE3)).

Since det(A1 ⊕ idE2 ⊕ idE3) = det(A1) and det(idE1 ⊕ A2 ⊕ idE3) = det(A2), we have
[E,A1] = [E,A2] if and only if sgn(det(A1)) = sgn(det(A2)). Therefore,

K−1(ER
e (pt)) = Z/2Z.

Example 5.14. We now determine K−1(EC
G(pt)). Let [M,α] ∈ K−1(EC

G(pt)). Since M is
a finite dimensional representation and α ∈ AutG(M), Theorem A.38 implies that α ≃ id.
Therefore,

[M,α] = [M, id] = 0

and
K−1(EC

G(pt)) = {0}.

It is not obvious how the group K−1(C) is related to the group K(C). The following
theorem shows how they are connected:

Theorem 5.15. Let C and D be Banach categories and let φ : C → D be a quasi-surjective
Banach functor. Then there exists a map ∂ : K−1(D) → K(φ) such that the following
sequence is exact:

K−1(C) K−1(D) K(φ) K(C) K(D)
i−1 ∂ j i ,

Where i−1([C, α]) = [φ(C), φ(α)], j([C+, C−, α]) = (C+, C−) and i(C+−C−) = (φ(C+), φ(C−)).
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Proof. We start by defining ∂. Let [D,α] ∈ K−1(D). Since φ is quasi surjective, there exists
a D′ ∈ ob(D) and C ∈ ob(C) such that there exists an isomorphism f : D ⊕ D′ → φ(C).
We define

∂(D,α) := [C,C, f(α⊕ id)f−1].

Notice that this map is well defined, because if we have an isomorphism g : D⊕D′′ → φ(C ′),
then we have

[C,C, f(α⊕id)f−1]+[C ′, C ′, g(α−1⊕id)g−1] = [C⊕C ′, C⊕C ′, f(α⊕id)f−1⊕g(α−1⊕id)g−1].

Since the following diagram commutes:

(D ⊕D′)⊕ (D ⊕D′)′ φ(C)⊕ φ(D)

(D ⊕D′)⊕ (D ⊕D′) φ(C)⊕ φ(C ′)

α⊕id⊕α−1⊕id f(α⊕id)f−1⊕g(α−1⊕id)g−1

f−1⊕g−1

f⊕g

,

and Equation 5.2 and Equation 5.3 imply that α⊕ id⊕α−1⊕ id is homotopic to the identity,
it follows that f(α ⊕ id)f−1 ⊕ g(α−1 ⊕ id)g−1 is homotopic to the identity. Therefore, we
have

[C,C, f(α⊕ id)f−1] + [g(α−1 ⊕ id)g−1] = 0,

which implies that ∂ is well defined. We leave it to the reader to check that i−1, j and i are
well defined.
We now check exactness of the sequence. We first show that Im(j) ⊂ Ker(i). We have

i ◦ j([C+, C−, α]) = (φ(C+), φ(C−)).

Since α : φ(C+) → φ(C−) is an isomorphism, it follows that (φ(C+), φ(C−)) = 0.

We now show that Ker(i) ⊂ Im(j).Assume that i(C+, C−) = 0. Then we have (φ(C+), φ(C−)) =
0, which implies that there exists an object D of D such that φ(C+) ⊕ D ∼= φ(C−) ⊕ D.
Since φ is quasi surjective, there is an object C0 of C and an object D⊥ of D such that
D ⊕D⊥ ∼= φ(C0). Therefore,

φ(C+)⊕ φ(C0) ∼= φ(C+)⊕D ⊕D⊥ ∼= φ(C−)⊕D ⊕D⊥ ∼= φ(C−)⊕ φ(C0).

Let β : φ(C+) ⊕ φ(C0) → φ(C−) ⊕ φ(C0) be the isomorphism from the equation above.
Then, by construction, we have

j(C+ ⊕ C0, C− ⊕ C0, β) = (C+ ⊕ C0, C− ⊕ C0) = (C+, C−).

We now prove that Im∂ ⊂ Ker(j). Notice that

j ◦ ∂([D,α]) = j([C,C, f(α⊕ id)f−1]) = (C,C) = 0.

We now show that Ker(j) ⊂ Im∂. Let [C+, C−, α] ∈ Ker(j), then j([C+, C−, α]) = (C+, C−) =
0, which implies that there exists a C0 ∈ ob(C) and an isomorphism f : C+⊕C0 → C−⊕C0.
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Because the following diagram commutes

φ(C+)⊕ φ(C0) φ(C−)⊕ φ(C0)

φ(C−)⊕ φ(C0) φ(C−)⊕ φ(C0)

φ(g)

α⊕id

φ(id)

α⊕id◦φ(g−1)

,

it follows that

[C+, C−, α] = [C+ ⊕ C0, C− ⊕ C0, α⊕ id] = [C− ⊕ C0, C− ⊕ C0, α⊕ id ◦ φ(g−1)].

Notice that

∂([φ(C−)⊕ φ(C+), α⊕ id ◦ φ(g−1)]) = [C− ⊕ C0, C− ⊕ C0, α⊕ id ◦ φ(g−1)],

which proves the claim.

We prove that Im(i−1) ⊂ Ker(∂). Notice that

∂ ◦ i−1([C, α]) = ∂([φ(C), φ(α)]) = [C,C, φ(α)].

The commutative diagram:

φ(C) φ(C)

φ(C) φ(C)

φ(α)

φ(α)

id

id

implies that
[C,C, φ(α)] = [C,C, id] = 0.

Lastly, we show that Ker(∂) ⊂ Im(i−1). If ∂([D,α]) = 0, then there exists an object D′ of
D, an object C of C and an isomorphism f : D ⊕D′ → φ(C), such that

∂([D,α]) = [C,C, f ◦ α⊕ id ◦ f−1] = 0.

By definition, this implies that there exists elementary triple [CE, CE, β] and [C0, C0, γ], such
that

(C,C, f ◦ α⊕ id ◦ f−1)⊕ (CE, CE, β) ∼= (C0, C0, γ).

Therefore, there are isomorphisms h : C ⊕ CE → C0 and g : C ⊕ CE → C0 such that the
following diagram commutes:

D ⊕D′ ⊕ φ(CE) φ(C)⊕ φ(CE) φ(C0)

D ⊕D′ ⊕ φ(CE) φ(C)⊕ φ(CE) φ(C0)

α⊕id⊕β

f⊕id φ(h)

f◦α⊕id◦f−1⊕β γ

f⊕id φ(g)

,
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This implies that the diagram

D ⊕D′ ⊕ φ(CE) φ(C)⊕ φ(CE) φ(C0)

D ⊕D′ ⊕ φ(CE) φ(C)⊕ φ(CE) φ(C0)

α⊕id⊕β

f⊕id φ(h)

f◦α⊕id◦f−1⊕β φ(h)φ(g−1)γ

f⊕id φ(h)

,

commutes. Since γ is homotopic to the identity, Lemma 5.10 implies that

[D,α] = [D ⊕D′ ⊕ φ(CE), α⊕ id⊕ β]

= [φ(C0), φ(C0), φ(h)φ(g
−1)γ]

= [φ(C0), φ(C0), φ(hg
−1)]

= i−1([C0, C0, hg
−1]).

Example 5.16. Let X be a G-space and x0 ∈ X such that gx0 = x0 for all g ∈ G. In
Example 4.22 and Example 4.24, we showed that the functor i∗ : EK

G(X) → EK
G({x0}) is a

quasi-surjective Banach functor. Theorem 5.15 now implies that the following sequence is
exact:

K−1(EK
G(X)) K−1(EK

G({x0})) K(i∗) K(X) K({x0})
i−1 ∂ j i .

Notice that if [M,α] ∈ K−1(EK
G({x0}), then [X × M, α̃] ∈ K−1(X), where α̃(x,m) =

(x, α(m)) and i−1([X × M, α̃]) = [M,α]. Thus, the map i−1 is surjective, which implies
that j is is injective.

We will now give geometric interpretations of the groups K−1(EK
G(X)) and K(i∗). These

interpretations will also show how these groups are related to the groups we introduced in
section 3. We will start with the K−1 groups.

Lemma 5.17. Let X be a G-space and let [E,α] ∈ K−1(EK
G(X)). Then, there exists a

G-module M and a bijective G-vector bundle morphism β : XMX →MX such that

[E,α] = [MX , β].

Proof. Let [E,α] ∈ K−1(EK
G(X)). In Theorem 2.31, we showed that there exists a G-vector

bundle E⊥ and a G-module M , such that E ⊕E⊥ ∼= MX . Let f : E ⊕E⊥ ∼= MX denote the
isomorphism. Notice that [E⊥, id] = 0. Lemma 5.10 now implies that

[E,α] = [E ⊕ E⊥, α⊕ id] = [MX , f ◦ α⊕ id ◦ f−1].

Theorem 5.18. There exists an isomorphism

σ : K−1(EK
G(X)) → K̃K

G(ΣX
+).
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Proof. We first give the definition of σ. Notice that ΣX+ ∼= CX+
∐

X+ CX+. We will denote
the first cone by C1X

+ and the second cone by C2X
+. We have C1X

+ ∩ C2X
+ ∼= X+. Let

[E,α] ∈ K−1(EK
G(X)). Lemma 5.17 implies that

[E,α] = [MX , f ◦ α⊕ id ◦ f−1].

We define
σ([E,α]) := (MC1X+ ∪f◦α⊕id

E⊥◦f−1
∐

idEpt
MC2X+).

We will often drop the
∐
id from the notation, to shorten the notation. We first show that

σ is well defined. Assume that have that [E ′, β] = [E,α] Then, by definition, there exists a
G-vector bundle F , such that

α⊕ idE′ ⊕ idF ≃ idE ⊕ β ⊕ idF .

Theorem 2.31 implies that we may assume that F = QX for some G-moduleQ. By definition,
we have σ([E ′, β]) = (NC1X∪g◦β⊕id

(E′)⊥◦g−1NC2X). Theorem 2.29 and Lemma 2.30 now imply

that

σ([E,α]) = [MC1X+ ∪f◦α⊕id
E⊥◦f−1 MC2X+)]∼′

= [MC1X+ ∪f◦α⊕id
E⊥◦f−1 MC2X+)]∼′

+ [(N ⊕Q)C1X+ ∪(g⊕id)◦((id⊕id)⊕id)◦(g−1⊕id) (N ⊕Q)C2X+ ]∼′

= (M ⊕N ⊕Q)C1X+ ∪(f⊕g⊕id)◦(α⊕id)⊕(id⊕id)⊕id)◦(f−1⊕g−1⊕id) (M ⊕N ⊕Q)C1X+

= [(M ⊕N ⊕Q)C1X+ ∪(f⊕g⊕id)◦(id⊕id)⊕(β⊕id)⊕id)◦(f−1⊕g−1⊕id) (M ⊕N ⊕Q)C2X+ ]∼′

= [MC1X+ ∪id MC2X+ ]∼′ ⊕ [NC1X+ ∪g◦β⊕id◦g−1 NC2X+ ]⊕ [QC1X+ ∪id QC2X+ ]∼′

= [NC1X+ ∪g◦β⊕id◦g−1 NC2X+ ]∼′

= σ([E ′, β]).

We now show that σ is a group homomorphism. Let [E,α], [F, β] ∈ K−1(EK
G(X)). Lemma

5.17 implies that [E,α] = [MX , f ◦ α ⊕ idE⊥ ◦ f−1] and [F, β] = [NX , g ◦ β ⊕ idE⊥ ◦ g−1]. It
follows that

[E,α]⊕ [F, β] = [MX , f ◦ α⊕ id ◦ f−1]⊕ [NX , g ◦ β ⊕ id ◦ g−1]

= [(M ⊕N)X , f ⊕ g ◦ (α⊕ id)⊕ (β ⊕ id) ◦ g−1 ⊕ f−1].

Lemma 2.30 implies that,

σ([E,α]⊕ [F, β] = [(M ⊕N)C1X ∪f⊕g◦(α⊕id)⊕(β⊕id)◦g−1⊕f−1 (M ⊕N)C2X ]∼′

= [(MC1X ∪f◦α⊕id◦f−1 MC2X)⊕ (N)C1X ∪g◦β⊕id◦g−1 NC2X ]∼′

= σ([E,α])⊕ σ([F, β]).

It remains to show that σ is bijective. We first show that σ is surjective. Let [E]∼′ ∈ K̃G(X).
In Lemma 2.30, we showed that

E ∼= E|C1X+ ∪id E|C2X+ . (5.6)

Since CX+ is G-contractible, there exists a G-module M and isomorphism α : MC1X+ →
E|C1X+ and β :MC2X+ → E|C2X+ . If we combine this with Equation 5.6, we obtain:

E ∼= MC1X+ ∪β−1α MC2X+ .
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Notice however that we need that β−1α|Mpt = id. Theorem A.38 implies that (after a

change of basis) the map β−1α|Mpt is homotopic to a direct sum ⊕n
i=1⊕±i

: ⊕n
i=1(⊕

ki
j=1Mi) →

⊕n
i=1 ⊕

ki
j=1 MiMi, where M ∼= ⊕n

i=1Mi and Mi are irreducible G-modules. Let I := {1 ≤ i ≤
n | ±i = −} and N := ⊕I∈i ⊕ki

j=1 Mi. Notice that

σX+ ×N ∼= NCX+ ∪−id
∐

−id NCX+ .

By construction, the map β−1α|Mpt ⊕−id :M ⊕N →M ⊕N is homotopic to the identity.
Theorem 2.29 now implies that

[E]∼′ = [MC1X+ ∪β−1α MC2X+ ⊕ (NCX+ ∪−id
∐

−id NCX+)]∼′

= [M ⊕NC1X+ ∪β−1α⊕−id M ⊕NC2X+ ]∼′

= [M ⊕NC1X+ ∪β−1α⊕−id|M⊕NX

∐
idM⊕Npt

M ⊕NC2X+ ]

Therefore,
[E]∼′ = σ([M ⊕NX , β

−1α⊕ (−id)]).
Now assume that σ[E,α] = 0. As before, we have

σ[E,α] =MC1X+ ∪f◦α⊕id◦f−1 MC2X+ .

Since σ([E,α]) = 0, it follows that there exists G-modules N and Q, such that

(C1X
+ ×M ∪f◦α⊕id◦f−1 C2X

+ ×M)⊕NΣX+
∼= QΣX+ .

Notice that

(MC1X+ ∪f◦α⊕id◦f−1 MC2X+)⊕NΣX+
∼= (M ⊕N)C1X+ ∪(f◦α⊕id◦f−1)⊕id (M ⊕N)C2X+ .

and
QΣX+

∼= QC1X+ ∪id QC2X+ .

Let
h : (M ⊕N)C1X+ ∪(f◦α⊕id◦f−1)⊕id (M ⊕N)C2X+ → QC1X+ ∪id QC2X+

be the composition of all these isomorphism and let ij : (M⊕N)CjX+ → (M⊕N)C1X+∪(f◦α⊕id◦f−1)⊕id

(M ⊕N)C2X+ denote the inclusion. Notice that h ◦ ij : (M ⊕N)CX+ → QX+ is an isomor-
phism. Chasing trough al these identifications, we see that the following diagram commutes

(M ⊕N)X+ QX+

(M ⊕N)X+ QX+

h◦i1

(f◦α⊕id◦f−1)⊕id
∐

id id
∐

id

h◦i2

.

It follows that
(f ◦ α⊕ id ◦ f−1)⊕ id = (h ◦ i2)−1 ◦ (h ◦ i1)|X+ .

Let H : (M ⊕N)X+ × I → (M ⊕N)X+ be defined by

H(x, v, t) = (x, prM⊕N ◦ (i2)−1 ◦ (i1)([x, t], v)).
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The map H is a G-homotopy from (f ◦ α⊕ id ◦ f−1)⊕ id to H1 = H(·, 1). Since

H(x, v, 1) = (x, prM⊕N ◦ (i2)−1 ◦ (i1)([x, 1], v)) = (x, prM⊕N ◦ (i2)−1 ◦ i1([pt, 0], v)) = (x, v).

the function (f ◦ α⊕ id ◦ f−1)⊕ idNX
is homotopic to the identity. This implies that

[E,α] = [E ⊕ E⊥, α⊕ id]

= [MX+ , f ◦ α⊕ id ◦ f−1]

= [MX+ ⊕NX+ , f ◦ α⊕ id ◦ f−1]

= [MX+ , H1] = [MX+ , id] = 0.

Example 5.19. In Example 5.13, we showed that K−1(ER
{e}({pt})) ∼= Z. The Theorem

above now implies that

Z/2Z ∼= K−1(ER
{e}({pt}) ∼= K̃{e}(Σ{pt}+) ∼= K̃{e}(S

1).

We will now give a geometric interpretation of the group K(i∗) for the inclusion i∗ :
EG(X) → EG(Y ). If Y = ∅, there is an easy interpretation:

Proposition 5.20. Let X be a compact G-space and i : ∅ → X be the inclusion. We have

K(i∗) ∼= KG(X).

Proof. The elements of K(i∗) are triples [E+, E−, α]. Notice however that α : ∅ → ∅ is the
empty function. By looking closely at the definition of K(i∗), we thus have [E+, E−, α] =
[F+, F−, β] if and only if there existsG-vector bundlesQ1 andQ2 such that E+⊕Q1

∼= F+⊕Q2

and E− ⊕ Q1
∼= F− ⊕ Q2. We claim that j : (EK

G(X),⊕) → K(i∗) defined by j(E) =
([E, 0X , α]) is the Grothendieck group of (EK

G(X),⊕). We check the fundamental property.

Let A be an abelian group and h : EG(X) → A a monoid homomorphism. If h̃ : K(i∗) → A

is a group homomorphism such that h̃◦ j = h, then Since [E, 0, α]⊕ [0, E, α] = [E,E, α] = 0,

we must have h̃([0, E, α]) = −h̃([E, 0, α]) = −h(E) and h̃([E,F, α]) = h(E) − h(F ). We

leave it to the reader to check that h̃ is well defined. Thus, K(i∗) is the Grothendieck group
of EG(X) and hence isomorphic to K(X). One can check that, in fact, the isomorphism is
given by Φ([E+, F−,Φ]) = (E+, F−).

For the case where Y ̸= ∅, we will need the following lemma:

Lemma 5.21. Let X be a compact G-space and Y ⊂ X a closed G-invariant subset. Let
i : Y → X denote the inclusion. If there exists a map P : X → Y , such that P ◦ i = id, then
the sequence

0 K̃G(X
∐

Y CY ) K̃G(X) K̃G(Y ) 0
j∗ i∗ .

from Lemma 3.22 is a split short exact sequence.

Proof. In Lemma 3.22 we already showed that Im(j∗) = Ker(i∗). We first show that i∗ is
surjective. Let [E+]∼′ ∈ K̃G(Y ). We have [P ∗E]∼′ ∈ K̃G(X) and

i∗([P ∗E]∼′) = [i∗P ∗E]∼′ = [(P ◦ i)∗E]∼′ = [(id)∗E]∼′ = [E]∼′ .
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Second, we show that j∗ is injective. Let [E]∼′ ∈ K̃G(X
∐

Y CY ) and assume that [j∗E]∼′ =
0. By definition, there exists G-modules M and N such that j∗E ⊕NX

∼= MX . Since CY is
G-contractible and E|Y ⊕NY

∼= MY , we have E ⊕NX
∐

Y CY
∼= MCY . Notice that

E ⊕NX
∐

Y CY
∼= (E|X ⊕NX) ∪id (ECY ⊕NCY ) ∼= MX ∪α MCY ,

for some isomorphism α :MY →MY . We define the map f :MX ∪α MCY →MX
∐

Y CY by

f(x,m) =

{
(x,m) if (x,m) ∈ CY

(x, prM(α(P (x),m))) (x,m) ∈ X

Notice that f is well defined and a G-vector bundle isomorphism, which implies that

[E]∼′ = [E ⊕NX
∐

Y CY ]∼′ = [MX
∐

Y CY ]∼′ = 0.

Let X and Y be compact G-spaces, and X0 ⊂ X and Y0 ⊂ Y be closed invariant subsets
and f : (Y, Y0) → (X,X0) a G-map. The map f : Y → X induces a group homomorphism
f ∗ : K(i∗X0

) → K(i∗Y0
) defined by

f ∗([E+, E−, α]) = [f ∗E+, f
∗E−, α̃],

where α̃(v) = α(v) ∈ (E−)p+(v). With this notation, we are ready to state the following
proposition:

Proposition 5.22. Let X be a compact G-space and Y ⊂ X a closed G-invariant subset.
Let i : Y → X be the inclusion. There exists a natural group morphism

Φ : K(i∗) → K(X, Y ),

such that Φ is an isomorphism if Y = ∅

Proof. Let X0, X1 = X. Let Z := X0

∐
Y X1. Let Pj : Z → Xj be the projection defined by

P (i, x) = x and let ij : Xj → Z be the inclusion. Notice that ijPj = id. Lemma 5.21 implies
that the following sequence is a split short exact sequence:

0 K(Z,Xi) K(Z) K(Xj) 0
πj i∗j

. (5.7)

Since X+
i /Y

+ ∼= Z+/X+
1−i, we have K(Xi, Y ) ∼= K(Z,Xi−1). Moreover, this isomor-

phism is induced by the inclusion fi : (Xi, Y ) → (Z,Xi−1), (which induces an inclusion
fi : X+

i

∐
Y + CY + → Z+

∐
X+

i−1
CX+

i−1). If E is a G-vector bundle over a compact G-

space X, we will also use the notation E to denote the G-vector bundle E
∐

0pt over X
+.

With this notation in place, we are ready to define Φ. Let [E+, E−, α] ∈ K(i∗). Then
F := (E+ ∪α E−) defines a G-vector bundle over Z+.Theorem 2.31 implies that there exists
a bundle E⊥

− ∈ EK
G(X

+) and a G-module M such that E− ⊕ E⊥
−
∼= MX+ . Notice that

[i∗1(F ⊕ P ∗
1 (E

⊥
−))]∼′ = [F |X+

1
⊕ (P1 ◦ i1)∗(E⊥

−)]∼′ = [E− ⊕ (E⊥
−)]∼′ = 0.

Equation 5.7 implies that there exists a unique F ′ ∈ K(Z,X1) such that

π∗
1(F

′) = [F ⊕ P ∗
1 (E

⊥
−)]∼′ .
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We now define Φ([E+, E−, α]) as the unique x ∈ K(X, Y ) such that

π∗
1(f

∗
0 )

−1x = [F ⊕ P ∗
1E

⊥
− ]∼′ .

We first check that Φ is well defined. First, notice that Φ((E+ ⊕ F+, E− ⊕ F−, α ⊕ β)) =
Φ(E+, E−, α) ⊕ Φ(F+, F−, β). This implies that if Φ is constant on the equivalence classes,
then Φ is a group homomorphism. We first show that all the elementary triples are in the
kernel of Φ. Let (E,E, α) be an elementary triple. Since α is homotopic to the identity, we
have F := E ∪α E ∼= E ∪id E ∼= P ∗

1 (E). Therefore,

[F ⊕ P ∗
1 (E

⊥)]∼′ = [P ∗
1 (E ⊕ E⊥)]∼′ = P ∗

1 [E ⊕ E⊥] = 0

and Φ(E,E, α) = 0. We now show that if two triples are isomorphic, they are mapped to
the same element. Let (E+, E−, α) and (F+, F−, β) be isomorphic triples. Then there exists
isomorphism g : E+ → F+ and h : E− → f− such that h|E−|Y ◦ α = β ◦ g|E+|Y . Notice that
the map g ∪ h : E+ ∪α E1 → F+ ∪β F− defined by

g ∪ h(v) :=
{
g(v) if v ∈ E+

h(v) v ∈ E−
.

is a well defined G-vector bundle isomorphism and the map h̃ : P ∗
1E− → P ∗

1F−, defined by

h̃(x, v) = (x, h(v)),

is also a G-vector bundle isomorphism. Therefore,

[E+ ∪α E1 ⊕ P ∗
1E

⊥
− = [F+ ∪β F− ⊕ P ∗

1F
⊥
1 ]∼′

and Φ(E+, E−, α) = (F+, F−, β).
Thus, the map Φ is a well defined group homomorphism.
We now prove that Φ is an isomorphism if Y = ∅. Let [E+, E−, α] ∈ K(i∗). In this case,
X0

∐
αX1 = X0

∐
X1 and F := E+ ∪α E− = E+

∐
E−. Notice that

E+

∐
E− ⊕ P ∗

1 (E
⊥
−) = (E+ ⊕ (E⊥

−)|X0

∐
(E− ⊕ E⊥

−)|X+
1
= π∗

1((E+ ⊕ E⊥
−)|X0

∐
MC(X+

1 )).

Since
f ∗
0 (E+ ⊕ E⊥

−

∐
MCX1) = (E+ ⊕ E⊥

−)|X
∐

Mpt.

, Using the isomorphism from Theorem 3.20, we see that this element corresponds to the
element

E+ ⊕ E⊥
− −MX = E+ − E−,

of K(X) = K(X, ∅). It follows that Φ([E+, E−, α]) = E+ − E−. Proposition 5.20 implies
that Φ is an isomorphism.

Lastly, we show that Φ is natural. Let h : (X, Y ) → (X ′, Y ′) be a continuous G-map. As
we noted in remark 3.21, the map h induces a map h : X

∐
Y CY → X ′ ∐

Y ′ CY ′. The map
h also induces a G-map h : X ∪Y X → X ′ ∪Y ′ X ′ which we will all denote by h to keep the
notation simple. This map than induces a map h : Z+

∐
X+ X+ → (Z ′)+

∐
(X′)+ C(X

′)+.

60



With this notation, the following diagram commutes:

Z+ Z+ ∪X+ CX+ X+ ∪Y + CY +

(Z ′)+ (Z ′)+ ∪(X′)+ C(X
′)+ (X ′)+ ∪(Y ′)+ C(Y

′)+

π1

h h

f0

h

π1

f0

.

Let [E+, F−,Φ] ∈ K(i∗X′), with i : X ′ → Y ′ and assume that Φ([E+, E−, Y ]) = E. We show
that Φ(f ∗([E+, E−, α])) = f ∗E. The diagram inplies that if π∗

1(f
∗
0 )

−1E = x, then

h∗x = π∗
1(f

∗
0 )

−1(h∗E).

In our case, we have x = E+ ∪α E− ⊕ P ∗
1E

⊥
− . Notice that

h∗x = h∗E+ ∪α̃ h
∗E− ⊕ P ∗

1 ((h
∗E−)

⊥),

where α̃ is defined as in the remark before the proposition . Therefore,

h∗E = Φ[h∗E+, h
∗E−, α̃].

The map Φ is actually always an isomorphism.

Theorem 5.23. The map Φ is a natural isomorphism.

Proof. Let X be a compact G-space and {x0} ∈ X a G-invariant subset. We will first show
that Φ : K(i∗) → KG(X, {x0}) is an isomorphism. Consider the following diagram:

0 K(i∗) K(EG(X)) K(EG({x0}))

0 KG(X, Y ) KG(X) KG({x0})

Φ Φ Φ .

Lemma 3.22 implies that the lower horizontal sequence is exact and Example 5.16 shows
that the upper horizontal sequence is exact. Since Φ is natural and all the maps are induced
by inclusions (we view KG(·) as KG(·, ∅) and K(j∗), with j : ∅ → X as K(EG(X))), the
diagram commutes. Since the last two vertical arrows are isomorphism, the first vertical
arrow is also an isomorphism.

Now assume that X is a compact G-space and Y ⊂ X is a closed G-invariant subset. Let
π : (X, Y ) → (X/Y, Y/Y ) be the projection. Using Remark 3.31, we see that

KG(X, Y ) = K̃G(X
+, Y +) ∼= K̃G(X

+/Y +) ∼= K̃G(X
+/Y +, Y/Y +) = KG(X/Y, Y/Y ).

One can check that this isomorphism is induces by π∗ : KG(X, Y ) → KG(X/Y, Y/Y ). Let
i : Y → X and j : Y/Y → X/X be inclusions. Since Φ is natural, the following diagram
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commutes:
KG(i

∗) KG(X/Y, Y/Y )

KG(j
∗) KG(X, Y )

π∗

Φ

π∗

Φ

.

Since the upper half of the diagram is a composition of isomorphism, it follows that Φ◦π∗ is
an isomorphism. This implies that π∗ is injective. To show that Φ : KG(j

∗) → KG(X, Y ) is
an isomorphism, it is sufficient to show that π∗ : K(i∗) → K(j∗) is surjective and hence an
isomorphism. Let [E+, E−, α] ∈ K(j∗). In Theorem 2.31, we showed that there exists a G-
vector bundle E⊥

− and a G-module M such that E− ⊕E⊥
−
∼= MX . Notice that [E+, E−, α] =

[E+ ⊕ E⊥
− ,MX , β], for some G-vector bundle isomorphism β : E+ ⊕ E⊥

− |Y → MY . Since
E+ ⊕ E⊥

− |Y ∼= MY , we can use the same construction as the construction in Proposition
3.30 to obtain the G-vector bundle q : E+ ⊕ E⊥

−/ ∼→ X/Y on X/Y , where v ∼ w if

prM ◦ β(v) = prM ◦ β(w). Notice that β induces a map β̃ : E+ ⊕ E⊥
−/ ∼→ MX/Y defined

by β̃(v) = (q(v),PrM(β(v))). The triple [E+ ⊕ E⊥
−/ ∼ .MX/Y , β̃] now defines an element of

K(i∗), such that

π∗[E+ ⊕ E⊥
−/ ∼,MX/Y , β̃] = [E+ ⊕ E⊥

− ,MX , β] = [E+, E−, α].
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6 Clifford algebras

In this section we introduce Clifford algebras. The main result of this section is that the
Clifford algebras are in some sense periodic. In the next to chapters, we will use this to show
show that the groups K−n

G (X) are periodic. This section will be based on chapter III.3 of
[3] and [4].

We start with a definition:

Definition 6.1. A quadratic form on Kn is a function Q : Kn → K, defined by

Q(x) :=
n∑

i=1

n∑
j=1

λi,jxixj,

with λi,j ∈ K.

Example 6.2. The map x→ ⟨x, x⟩, where ⟨·, ·⟩ denotes the Euclidean inner product on Rn,
is an example of a quadratic form.

Let T kKn := Kn⊗. . .⊗Kn be the tensor product of k copies of Kn. We can then construct
the space

TRn := R⊕
∞⊕
i=1

T i(Rn).

Notice that TRn has the structure of a R-algebra, where the multiplication is given by
v · w = v ⊗ w. With this notation, we can give the following definition:

Definition 6.3. Let Q : Kn → K be a quadratic form. We define the Clifford algebra of Q
by the quotient algebra

C(Q) := TKn/I,

where I is the two sided ideal generated by the set {x⊗ x− 1 ·Q(x) | x ∈ Kn}.
Remark 6.4. Notice that the map i : Kn → C(Q) defined by i(x) = x is injective, which
implies that Kn ⊂ C(Q).

The algebras have the following useful property:

Proposition 6.5. Let M be a K-algebra with unit, the map Q a quadratic form on Kn and
let L : Kn → M be a linear map such that (Lx)2 = 1 · Q(x). Then, there exists a unique
(unital) algebra morphism L̃ : C(Q) →M such that L̃ ◦ i = L.

Proof. Assume that L̃ exists. Notice that by definition we have L̃(1) = 1. Let
∑n

i=0 λieki,1 ⊗
. . . ⊗ eki,ni

∈ C(Q), with λi ∈ Kn, the vectors ej the standard basis and 1 ≤ ki,ni
≤ n.

Because L̃ is an K-algebra morphism, we must have

L̃(
n∑

i=0

λieki,1 ⊗ . . .⊗ eki,ni
) =

n∑
i=0

λiL̃(eki,1) · . . . · L̃(eki,ni
) =

n∑
i=0

λi(Leki,1) · . . . · (Leki,ni
).

Therefore, if L̃ exists, it must be defined as above. Notice that L̃ is well defined if it map the
elements of the ideal I to 0. This is the case if for all x ∈ Kn, we have L̃(x⊗x−Q(x)1) = 0.
Let x ∈ Kn. We have

L̃(x⊗ x− 1 ·Q(x)) = L(x) · L(x)− 1 ·Q(x) = 1 ·Q(x)− 1 ·Q(x) = 0.
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Example 6.6. Before we proceed we will give another example of a Clifford algebra. Let
Q : Rk+l → R be the quadratic form defined by

Qk,l(x) = −(
k∑

i=1

x2i ) +
k+l∑

i=k+1

x2i .

We will denote the algebra C(Qk,l) by C
k,l. Notice that

e2i = Q(ei) =

{
−1 if 1 ≤ i ≤ k
1 k + 1 ≤ i ≤ k + l

. (6.1)

We claim that
eiej + ejei = 0 (6.2)

if i ̸= j. This holds because

Q(ei + ej)−Q(ei)−Q(ej) = 0

and in Ck,l we have Q(v) = v ⊗ v for al v ∈ V , which implies that

(ei + ej)⊗ (ei + ej)− ei ⊗ ei − ej ⊗ ej = 0

and
eiej + ejei = 0.

Using these relations, it follows that the set B = ∪l+k
i=0Bi, with

Bi := {ej1 ⊗ . . .⊗ eji | 1 ≤ j1 < . . . < ji ≤ k + l}

is a basis of Ck+1 and dimCk+l = 2k+l. One can check that this, together with equation 6.1
and 6.2, implies that

C0,0 ∼= R, C1,0 ∼= C and C2,0 ∼= H.

The remainder of this section, we will compute the algebras Ck,l for all (k, l) ∈ N0 × N0.
The following lemmas will enable us to do this:

Lemma 6.7. Let (Rp+q, Cp,q) and (Rl+m, C l,m) be Clifford algebras. If p + q is even and
(e1e2 . . . ep+q)

2 = 1 (in Cp,q), then

Cp+l,q+m ∼= Cp,q ⊗R C
l,m.

Proof. First, notice Cp+l,q+m ∼= C(Qp,q ⊕ Ql,m), where Qp,q ⊕ Ql,m is a quadratic form on
Rp+q ⊕ Rl+m defined by

Qp,q ⊕Ql,m(v1, v2) = Qp,q(v1) + ql,m(v2).

Let c := e1e2 . . . ep+q and L : Rp+q ⊕ Rl+m → C(Qp,q ⊕Ql,m) be the map defined by

L(v1, v2) = v1 ⊗ 1 + c⊗ v2.
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Since cei = (−1)p+q−1eic for 1 ≤ i ≤ p+q, we have cei = −eic and cv = −vc for all v ∈ Rp+q.
Therefore,

(L(v1, v2))
2 = (v1 ⊗ 1 + c⊗ v2)

2 = v21 ⊗ 1 + v1c⊗ v2 − v1c⊗ v2 + c2 ⊗ v22
= Qp,q(v1)⊗ 1 + 1⊗Ql,m(v1) = Qp,q(v1) +Ql,m(v2)

= (Qp,q ⊕Ql,m)(v1, v2).

Proposition 6.5 implies that this map induces a unique map L̃ : C(Qp,q⊕Ql,m) → Cp,q⊗RC
l,m,

such that L̃◦ i = L. Since both algebras have dimension 2p+q+l+m it is sufficient to show that
L̃ is surjective. To show this, it suffices to show that the image of L̃ contains a multiplicative
basis of Cp,q ⊗R C

l,m. We must thus show that the image of L̃ contains the elements ei ⊗ 1
and 1⊗ ej, for 1 ≤ i ≤ p+ q and 1 ≤ j ≤ l +m. Notice that

L̃(ei, 0) = ei ⊗ 1

and
L̃(c⊗ ej) = (c⊗ 1) · c⊗ ej = c2 ⊗ ej = 1⊗ ej.

Lemma 6.8. We have
C0,2 ⊗ Ck,l ∼= C l,k+2

and
C2,0 ⊗ Ck,l ∼= C l+2,k.

Proof. We will prove the first statement, the proof of the second statement is similar. As in
the previous lemma, we have C l,k+2 ∼= C(Q0,2 ⊕Ql,0 ⊕Q0,k). We now define the map

L : R2 ⊕ Rl ⊕ Rk → C0,2 ⊗ Ck,l

by
L(u, v, w) = u⊗ 1 + e1e2 ⊗ (w, v).

Notice that

L(u, v, w)2 = u2 ⊗ 1− 1⊗ (w, v)2 = Q0,2(u)−Qk,l(w, v)

= Q0,2(u) +Ql,k(v, w) = (Q0,2 ⊕Ql,0 ⊕Q0,k)(u, v, w).

Proposition 6.5 implies that this map induces am map L̃ : C(Q0,2⊕Ql,0⊕Q0,k) → C0,2⊗Ck,l.

As before, these algebras have the same dimension and we have to show that the image of L̃
contains a multiplicative basis. We have L̃((ei, 0, 0)) = ei⊗1 and L̃(−c⊗(0, ei, 0)) = 1⊗(0, ei)
and L̃(−c⊗ (0, 0, ei)) = 1⊗ (0, ei).

Remark 6.9. This Lemma implies that

C0,4 ∼= C0,2 ⊗R C
2,0

and
C4,0 ∼= C2,0 ⊗R C

0,2.

Since C0,2 ⊗R C
2,0 ∼= C2,0 ⊗R C

0,2, it follows that

C0,4 ∼= C4,0.
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Lastly, we need the following statements about matrices. In this lemma, if B is a K-
algebra, we will use the notation Mn(B) for the algebra of n × n matrices with coefficients
in B.

Lemma 6.10. Let K = R or C and let B be a K-algebra. Then we have the following
isomorphisms:

(i) Mn(Mm(B)) ∼= Mnm(B).

(ii) B ⊗K Mn(K) ∼= Mn(B).

(iii) Mn(B)⊗K Mm(K) ∼= Mnm(B)

Proof. We leave the verification of these statements to the reader.

Example 6.11. Before we show how to determine all the Clifford algebras Cp,q, we compute
some more examples. We will determine C0,1, C0,2 and C1,1. We start with C1,1. Notice
that the map

L : C0,1 → Span(

(
1 0
0 1

)
,

(
1 0
0 −1

)
).

Which maps 1 to the first matrix and e1 to the second matrix is an isomorphism. Since

L(
1 + e1

2
) =

(
1 0
0 0

)
and L(

1− e1
2

)

(
0 0
0 1

)
,

The map L̃ : C0,1 → R ⊕ R defined by L̃(a + be1) = (a + b, a − b) is an isomorphism,
where R ⊕ R is the R algebra with addition (a, b) + (c, d) = (a + c, b + d), multiplication
(a, b)(c, d) = (ac, bd) and scalar multiplication λ(a, b) = (λa, λb).
We have C0,2 ∼= M2(R), where the isomorphism is given by

1 →
(
1 0
0 1

)
e1 →

(
1 0
0 −1

)
e2 →

(
0 1
1 0

)
.

We also have C1,1 ∼= M2(R). in this case the isomorphism is given by

1 →
(
1 0
0 1

)
e1 →

(
0 −1
1 0

)
e2 →

(
0 1
1 0

)
.

We will now use the algebras we have already computed to compute the other Clifford
algebras.

Proposition 6.12. The following identities hold:

(i) If l ≥ m, then C l,m ∼= M2m(C
l−m,0).

(ii) If m ≤ l, then C l,m ∼= M2m(C
0,m−l)

(iii) C l+8,k ∼= C l,k+8 ∼= M16(C
l,m).

(iv) C0,k+2 ∼= M2(C
k,0)

(v) Ck+2,0 ∼= C0,k ⊗R H
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Proof. We first prove (i). Notice that in C1,1, we have (e1e2)
2 = 1. Lemma 6.7 now implies

that
C l,m ∼= C l−1,m−1 ⊗R C

1,1.

If we now use lemma 6.7 repeatedly, then, because l ≥ m, we obtain

C l,m ∼= C l−m,0 ⊗ (C1,1
1 ⊗ . . .⊗ C1,1

m ). (6.3)

Since C1,1 ∼= M2(R). Lemma 6.10 (iii) implies that

C1,1
1 ⊗ . . .⊗ C1,1

m
∼= M2(R)⊗ . . .M2(R) ∼= M2m(R).

We can now apply Lemma 6.10 (ii) to Equation 6.3 to obtain

C l,m ∼= C l−m,0 ⊗R M2m
∼= M2m(C

l−m).

The proof of (ii) is similar to the proof of (i). We now show (iii). We will prove the theorem
for C l+8,k, the proof for the other case is similar. Lemma 6.7 together with Remark 6.9
implies that

C0,8 ∼= C0,4 ⊗ C0,4 ∼= C0,4 ⊗ C4,0 ∼= C4,4.

Using Part (i) of this proposition, we get C4,4 ∼= M24(C
0,0) = M16(R). We can now apply

Lemma 6.7 to C l+8,k to obtain

C l+8,k ∼= C l,k ⊗R C
8,0 ∼= C l,k ⊗R M16(R) ∼= M16(C

l,k),

where the last isomorphism follows from Lemma 6.10 (ii).
Lastly, we prove (iv) and (v). We will only prove (iv), the proof of (v) is similar. In

Lemma 6.8, we showed that
C0,k+2 ∼= Ck,0 ⊗ C0,2

and in Example 6.11 we showed that C0,2 ∼= M2(R). Therefore, Lemma 6.10 (ii) implies
that

C0,k+2 ∼= Ck,0 ⊗M2(R) ∼= M2(C
k,0).

Remark 6.13. A direct consequence of part (i) − (iii) of this proposition is that every
Clifford algebra C l,m is isomorphic to M2

nl,m (Cpl,m,ql,m) for a (pl,m, ql,m) ∈ {(0, k) | 0 ≤ k ≤
7} ∪ {(k, 0) | 0 ≤ k ≤ 7} and nl,m ∈ N0.

Remark 6.14. Notice that part (iii) of the proposition above implies that the algebras are
periodic with period 8 in the sense that increasing one of the indices of C l,m by 8 will give
an algebra isomorphism to M16(C

l,m).

Remark 6.13 implies that to be able to determine all Clifford algebras, we must only
determine C0,k and Ck,0 for all 0 ≤ k ≤ 7. Using that we already determined the algebras
for k ≤ 2 and Proposition 6.12 (iv) and (v) we can determine the remaining algebras: The
first few calculations are as follows:

C0,3 ∼= M2(C
1,0) ∼= M2(C),

C4,0 ∼= C0,4 ∼= M2(C
2,0) ∼= M2(H),
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k Ck,0 C0,k

0 R R
1 C R⊕ R
2 H M2(R)
3 H⊕H M2(C)
4 M2(H) M2(H)
5 M4(C) M2(H)⊕M2(H)
6 M8(R) M4(H)
7 M8(R)⊕M8(R) M8(C)

Table 1: The algebras Ck,0 and C0,k.

C3,0 ∼= C0,1 ⊗R H ∼= (R⊕ R)⊗H ∼= H⊕H.
If we continue this process, we eventually obtain Table 1, which is table 1 of [4]. We

will end this chapter by examining what happens in the complex case. Let QC
k,l : Ck+l → C

denote the quadratic form defined by ’

QC
k,l(x) = −(

k∑
i=1

x2i ) +
k+l∑

i=k+1

x2i

and let
Ck,l

C := C(QC
k,l).

Before we show how to compute these algebras, we will first give some examples:

Example 6.15. Notice that C0,0
C

∼= C. Using the same isomorphism as in Example 6.11,

where the matrices now represents objects in M2(C), we obtain C0,1
C

∼= C⊕C, C1,1
C

∼= M2(C)
and C0,2

C
∼= M2(C). We also have C1,0

C
∼= C⊕ C, where the isomorphism is given by

L(z + e1w) = (z + iw, z − iw).

Lastly, there is an isomorphism C2,0
C

∼= M2(C), which is defined by

1 →
(
1 0
0 1

)
, e1 →

(
i 0
0 −i

)
, and e2 →

(
0 1
−1 0

)
.

We will again use these algebras to determine the other algebras. To do this, we will use
the following Lemma:

Lemma 6.16. Let (Cp+q, Cp,q
C ) and (Cl+m, C l,m

C ) be Clifford algebras. Then,

(i) If p+ q is even and (e1e2 . . . ep+q)
2 = 1 (in Cp,q

C ), then

Cp+l,q+m
C

∼= Cp,q
C ⊗C C

l,m
C .

(ii) we have
C0,2

C ⊗C C
p,q
C

∼= Cq,p+2
C

and
C2,0 ⊗C C

p,q
C

∼= Cq+2,p
C .
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Proof. The proof of the statements is almost identical to the proof of Lemma 6.7 and Lemma
6.8.

Since C0,2
C

∼= C2,0
C

∼= M2(C), part (ii) of this lemma implies that

Ck,l+2
C

∼= Ck+2,l
C

∼= M2(Cl,k). (6.4)

If k = 2m+ i and l = 2n+ j, with i, j ∈ {0, 1} and we apply Equation 6.4 repeatedly, then
we obtain

Ck,l
C

∼= M2m+n(Ci,j
C ),

where, since C0,1
C

∼= C1,0
C , the order of the indices i, j in Ci,j

C does not matter. Therefore, we
have

Ck,l
C

∼=


M2m+n(C) (i, j) = 0

M2m+n(C⊕ C) ∼= M2m+n(C)⊕M2m+n(C) if (i, j) = (0, 1) or (1, 0)

M2m+n+1(Ci,j
C ) (i, j) = (1, 1)

.

This equation implies that
Ck+2,l

C
∼= Ck,l+2

C
∼= M2(C

k,l
C ).

Thus, in the complex case, the Clifford algebras are periodic with period 2.
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7 The groups K l,m

In this section the groups K l,m
G (X) are introduced. We will use the results from the previous

section to show that they are periodic. We will then explain how these groups can be used
to show that

(KR
G)

−n(X, Y ) ∼= (KR
G)

−n−8(X, Y ) and (KC
G)

−n(X, Y ) ∼= (KC
G)

−n−2(X, Y ),

which is the main result of this section.
This section is based on section III. 4 of [3].

We start with a definition:

Definition 7.1. Let C be a Banach category and let B be a finite dimensional K-algebra
with unit. We let CB be the category whose objects are pairs (C, f), where C ∈ ob(C) and
f : B → End(C) is a (unital) algebra homomorphism. A morphism σ : (C, f) → (D, g) is a
map σ ∈ HomC(C,D) such that σ ◦ f(b) = g(b) ◦ σ, for all b ∈ B.

The construction we defined above ‘preserves’ some of the structure of C.

Proposition 7.2. The category CB defined above is still a Banach category. Moreover, if C
is pseudo-abelian, then CB is also pseudo-abelian.

Proof. Since HomCB((C, f), (D, g)) is a linear subspace of HomC(C,D), restricting the norm
on HomC(C,D) to HomCB((C, f), (D, g)) endows it has the structure of a normed vector
space, such that composition is bilinear and continuous. We now show that the norm is
complete. Let ϵ > 0 and (Ai)i∈N be a Cauchy sequence in HomCB((C, f), (D, g)). Since
HomC(C,D) is complete, this sequence has a limit A in HomC(C,D). Notice that

∥Af(b)− g(b)A∥ = ∥Af(b)− Aif(b) + Aif(b)− g(b)A∥ = ∥Af(b)− Aif(b) + g(b)Aif − g(b)A∥
≤ ∥(A− Ai)f(b)∥+ ∥g(b)(A− Ai)∥.

Since composition is continuous, we have ∥(A − Ai)f(b)∥ + ∥g(b)(A − Ai)∥ < ϵ for i suf-
ficiently large, which implies that ∥Af(b) − g(b)A∥ < ϵ. Therefore, Af(b) = g(b)A and
A ∈ HomCB((C, f), (D, g)). It remains to show that CB has finite products and co-products.
If (Ci, fi) are objects of C for 1 ≤ i ≤ n, then the object

(C1 ⊕ . . .⊕ Cn, f1 ⊕ . . .⊕ fn),

with same projections and inclusions as in C has the structure of a product and co-product.

Now assume that C is a pseudo-abelian category. Let (C, f) be an object of CB and let
P ∈ HomCB((C, f), (C, f)) be a morphism such that P 2 = P . Since C is an object of C
and C is a pseudo-abelian category, there exists an object C0 ∈ C, such that the functor
ImC

P : Cop → Set, which acts on objects by

ImC
P (X) := {h ∈ HomC(X,C) | p ◦ f = f}.

and a morphisms by
F (g)(h) = h ◦ g

is naturally isomorphic to yC0 : Cop → Set (which acts on objects by yC0(X) = HomC(X,C0)
and on morphisms by yC0(g)(h) = h ◦ g). Let σ : yC0 → ImC

P denote this isomorphism and
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let σ−1 denote its inverse. Now consider the functors ImP : CB → Set and y(C0,f0), where
f0 : B → End(C0) is defined by

f0(b) := σ−1(P ) ◦ f(b) ◦ σ(idC0).

Notice that because

σ−1(P ) ◦ σ(id) = σ−1(P ◦ σ(id)) = σ−1(σ(id)) = id,

we have f0(ab) = f0(a)f0(b) and f(1) = id, which implies that f0 is indeed a (unital) algebra
homomorphism.

We claim that σ|y(C0,f0) : y(C0,f0) → ImP induces an isomorphism. We first show that σ is
well defined. Let h ∈ y(C0,f0)(X, g), then,

σ(h) ◦ g(b) = σ(h ◦ g(b))
= σ(f0(b) ◦ h)
= σ(σ−1(P ) ◦ f(b) ◦ σ(idC0) ◦ h)
= σ(σ−1P ) ◦ (f(b) ◦ σ(idC0) ◦ h)
= P ◦ f(b) ◦ σ(h)
= f(b) ◦ P ◦ σ(h)
= f(b) ◦ σ(h).

Therefore, the map σ|y(C0,f0) is well defied. We now show that σ−1|ImP
is also well defined,

which implies that σ is a natural isomorphism. Let h ∈ ImP ((X, g)). Then

σ−1(h) ◦ g(b) = σ−1(h ◦ g(b))
= σ−1(P ◦ h ◦ g(b))
= σ−1(P ◦ f(b) ◦ h)
= σ−1(P ) ◦ f(b) ◦ h
= σ−1(P ) ◦ f(b) ◦ σ(idC0σ

−1(h))

= (σ−1(P ) ◦ f(b) ◦ σ(idC0)) ◦ σ−1(h).

= f0(b) ◦ σ−1(h)

Remark 7.3. Let C = EK
G(X) and (E, f) ∈ EK

G(X)B. In section 4, we showed that EndEK
G(X)

is a Banach algebra, where the multiplication is given by composition. The Lemma above
implies that

EndEK
G(X)B(E, f) ⊂ EndEK

G(X)(E)

is a Banach space. Notice that if σ1, σ2 ∈ EndEK
G(X)B(E, f), then

σ1σ2f = σ1fσ2 = fσ1σ2,

which implies that σ1σ2 ∈ EndEK
G(X)B(E, f). Therefore, the set EndEK

G(X)B(E, f) is also a
Banach algebra.

Although it is in general difficult to determine all the morphisms of C in HomCB(C,D),
in some cases we can at least find some of the morphisms:

71



Example 7.4. Let C be a Banach category and B be a finite dimensional K-algebra. Let
(C, f) ∈ CB. Then

⊕n
i=1(C, f) = (

⊕n
i=1C, f⊕, . . . , f) ∈ CB. As before, we can view a

matrix A ∈ Mn(K) as an element of EndC(
⊕n

i=1C) by viewing the matrix elements Ai,j as
the map Ai,jidC . Since λidCf = fλidC for all λ ∈ K, it follows that Af = fA and thus that

A ∈ EndCB(
n⊕

i=1

C, f⊕, . . . , f)

for all A ∈Mn(K).

We will be interested in the categories Cl,m
R := CCp,q

, where C is a real Banach category

and Cl,m
C := CCp,q

C if C is a complex Banach category.
We will now translate the propositions about the structure of the algebras Cp,q to state-

ments about the categories Cp,q. To do this, we need the following Lemmas:

Lemma 7.5. Let C be a pseudo-abelian Banach category and let A and B be K-algebras.
Then the following categories are equivalent:

1. (CA)B ∼= CA⊗KB.

2. (CA⊕B) ∼= CA × CB, where CA × CB denotes the product of the categories.

Proof. We first show (i). Let F : (CA)B → CA⊗KB be the functor that maps an object
((C, fA), fB) of (CA)B to the object (C, fA ⊗ fB) of CA⊗KB, where fA ⊗ fB is defined by
fA ⊗ fB(a ⊗ b) = fA(a) ◦ fB(b), and maps a map σ : ((C, fA), fB) → ((D, gA), gB) to the
map σ : (C, fA ⊗ fB) → (D, gA ⊗ gb). We first show that this functor is well defined. We
show that fA ⊗ fB : A ⊗K B → EndC(C) is indeed an algebra homomorphism. Notice that
fA ⊗ fB is a K-module homomorphism. Since for all b ∈ B, we have fB(b) ∈ EndCA(C), it
follows that for all b ∈ B and a ∈ A the following diagram commutes:

C C

C C

fB(b)

fA(a)

fB(b)

fA(a)

.

Therefore, we have

fA ⊗ fB(ac⊗ bd) = fA(ac)fB(bd) = fA(a)fA(c)fB(b)fB(d)

= fA(a)fB(b)fA(c)fB(d) = fA ⊗ fB(a, b)fA ⊗ fB(c, d).

We now show that σ is well defined. By definition, we have σ ∈ HomCA((C, fA), (D, gA)) and
σ ◦ fB(b) = gB(b) ◦ σ for all b ∈ B. This implies that

σ ◦ fA(a) ◦ fB(b) = gA(a) ◦ σ ◦ fB(b) = gA(a) ◦ gB(b) ◦ σ

and σ ∈ HomCA⊗KB((C, fA ⊗ fB), (D, gA ⊗ gB)). Moreover, if σ ∈ HomCA⊗KB)((C, fA ⊗
fB), (D, gA ⊗ gB)), then, by definition we have

σ ◦ fA(a) = σ ◦ fA ⊗ fB(a⊗ 1) = gA ⊗ gB(a⊗ 1) ◦ σ = gA(a) ◦ σ
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and similarly σ◦fB(b) = gB(b)◦σ. This implies that σ ∈ Hom(CA)B(((C, fA), fB), ((D, gA), gB)).
Therefore, the map σ → σ gives a bijection

Hom(CA)B(((C, fA), fB), ((D, gA), gB)) ∼= HomCA⊗KB((C, fA ⊗ fB), (D, gA ⊗ gB))

and F is full and faithful. We now show that F is essentially surjective. Let (C, h) ∈ CA⊗KB.
Then, we have

(C, h) = F ((c, h(· ⊗ 1), h(1⊗ ·))).
We now show (ii). Let F : CA × CB → CA⊕B be the functor, which is on objects defined
by F ((C1, f1), (C2, f2)) = (C1 ⊕ C2, f1 ⊕ f2), where f1 ⊕ f2 : A ⊕ B → EndC(C1 ⊕ C2) is
defined by (f1 ⊕ f2)(a, b) = (f1(a), f2(b)), and a morphism (σ, ρ) : ((C1, f1), (C2, f2)) →
(D1, g1), (D2, g2)) is mapped to the morphism σ⊕ρ : (C1⊕C2, f1⊕f2) → (D1⊕D2, g1⊕g2).
Notice that the functor is well defined. We now prove that F is an equivalence. We first
show that F is full. Let σ ∈ HomCA⊕B(C1 ⊕C2, f1 ⊕ f2, D1 ⊕D2, g1 ⊕ g2). By definition, we
have

σ ◦ fA(a)⊕ fB(b) = gA(a)⊕ gB(b) ◦ σ.
for all (a, b) ∈ A⊕B.Therefore,

0 = pD2 ◦ (gA(1)⊕ gB(0) ◦ σ) = pD2 ◦ (σ ◦ gA(1)⊕ gB(0)) = pD2 ◦ σ ◦ (iC1 ◦ pC1).

Therefore, 0 = pD2σiC1 . With a similar computations, we can show that 0 = pD1σiC2 . This
implies that there exists morphisms σ1 ∈ HomC(C1, D1) and σ2 ∈ homC(C2, D2) such that
σ = σ1 ⊕ σ2. Notice that

gA(a)σ1 = pD1 ◦ (gA(a)⊕ gB(b) ◦ σ1 ⊕ σ2) ◦ iC1 = pD1(σ1 ⊕ σ2 ◦ fA(a)⊕ fB(b)) ◦ iC1

= pD1(σ1fA(a)⊕ σ2fB(b)◦) ◦ iC1 = σ1 ◦ fA(a).

It follows that σ1 ∈ HomCA((C1, fA), (D1, gA)) and similarly that σ2 ∈ HomCA((C2, fB), (D2, gB)).
Therefore, we have σ = F ((σ1, σ2)).
We now show that F is faithful. Assume that σ1 ⊕ σ2, µ1 ⊕ µ2 ∈ HomCA⊕B(C1 ⊕ C2, f1 ⊕
f2, D1 ⊕ D2, g1 ⊕ g2) and µ1 ⊕ µ2 = σ1 ⊕ σ2. By definition, this implies that µ1 = σ1,
µ2 = σ2 and thus that (µ1, µ2) = (σ1, σ2). Lastly, we show that F is essentially surjective.
Let (C, h) ∈ CA⊕B. Notice that P1 := h(1, 0) and P2 := h(0, 1) are maps in CA⊕B such that
P 2
1 = P1, P

2
2 = P2 and P1◦P2 = P2◦P1 = 0. Since CA⊕B is pseudo-abelian by Proposition7.2,

Lemma 4.28 implies that C ∼= C1 ⊕ C2, where Ci is an object such that ImPi
∼= yCi

. Let
σi : yCi

→ ImPi denote this isomorphism. By chasing through the isomorphisms in the proof
of Lemma 4.28 we obtain that the A⊕B acts on C1 via the map

h1(a, b) = σ−1
1 (P1) ◦ h(a, b) ◦ σ1(idC1) = σ−1

1 (P1 ◦ h(a, b) ◦ σ1(idC1)) = σ−1
1 (h(a, 0)σ1(idC1)).

Therefore, the map h1 only depends on a we can view (C1, h1) as an elemt of CA. Similarly,
we can view (C2, h2) as an elemnt of CB and we obtain

(C, h) ∼= F ((C1, h1), (C2, h2)).

Example 7.6. A consequence of this lemma is that the category (EK
G(X))K⊕K is equivalent

to the category EK
G × EK

G .

73



Lemma 7.7. Let C be a pseudo abelian Banach category. Then, the categorys C and CMn(K)

are equivalent.

Proof. Let C be an object of C. We define the functor F : C → CMn(K) by F (C) = (⊕n
i=1C, h),

where the action h maps a matrix A ∈ Mn(K) to the matrix A : (⊕n
i=1C, h) → (⊕n

i=1C, h),
where we interpret the indices of the matrix a a multiple of the identity. The functor
F maps a morphism f : C → D to the morphism f ⊕ . . . ⊕ f . Notice that F is well
defined. It is clear from the definition that F is faithful. We now show that F is full. Let
f := (fi,j)1≤i,j≤n : F (C) = (⊕n

i=1C, h) → (⊕n
i=1D, g) = F (D) be a morphism in CMn(K). By

definition, we must have g(A) ◦ f = f ◦ h(A) for all A ∈ Mn(K). Let A denote a matrix
which is everywhere zero except at Ap,q. Then, Because Af = fA, it follows that fq,i = 0 if
i ̸= q, fj,p = 0 if j ̸= p and fp,p = fq,q. Since p and q where arbitrary, the matrix f1≤i,j≤n

must be a diagonal matrix and

f = f1,1 ⊕ . . .⊕ f1,1 = F (f1,1).

Lastly, we show that F is essentially surjective. Let (C, h) ∈ CMn(K). Let Pi ∈ Mn(K)
denote the projection to the i-th coordinate and let hi := h(Pi). Notice that h2i = hi and
hi ◦ hj = hj ◦ hi = 0. Since C is pseudo-abelian, Lemma 4.28 implies that

C ∼= ⊕n
i=0Ci,

where Imhi ∼= yCi
in C. We first show that the Ci are isomorphic. Let Li,j ∈ Mn(K), for

i ̸= j, denote the linear map, such that Li,j(ei) = ej, Li,j(ej) = ei and Li,j(ek) = ek if k ̸= i, j.
Notice that Pi = Li,jPjLi,j. If f ∈ Im(hi), then

hjh(Li,j)f = h(Li,j)h(Li,jPjLi,j)f = h(Li,j)hif = h(Li,j)f.

This implies that the map f → h(Li,j)f is a well defined natural transformation from Im(hi)
to Im(hj). Since f → h(Li,j)f is also a natural transformation from Im(hj) to Im(hi) and
h(Li,j)

2 = id the map is a natural isomorphism. Therefore,

yCi
∼= Imhi ∼= Imhj ∼= yCj

and Ci
∼= Cj.

If σi : yCi
→ Imhi denotes the natural isomorphism from the definition of Ci, then the

isomorphism above is given by the map Ij,i := σ−1
j (Pj) ◦ h(Li,j)σi(idCi

) : Ci → Cj. We claim
that the map

f := idC1 ⊕σ−1
1 (P1)◦h(L2,1)σ2(id2))⊕ . . .⊕σ−1

1 (h1)◦h(Ln,1)σn(idn)) : (⊕n
i=0Ci, h) → F (C1),

is an isomorphism in CMn(C).
We first determine the induced Mn(K) action h̃ on ⊕n

i=1Ci induced by h. The action of a
matrix A on ⊕n

i=1Cj is given by

(σ−1
1 (h1), . . . , σ

−1
n (hn))

T ◦ h(A) ◦ (σ1(idC1), . . . , σn(idCn)).

This implies that

h(Pi)p,q =

{
0 if (p, q) ̸= (i, i)
idCi

else
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and

h̃(Li,j)l,k = σ−1
l (h(Pl ◦ Li,j) ◦ σk(idk)) =

 idCi
if l = k and l ̸= i, j

σ−1
l (hl)h(Li,j)σk(idk)) (l, k) = (i, j) or (j, i)

0 else

Because I1,j = I1,iIi,j and Ii,j = Ij,i, the action of the matrices Pi and Li,j is compatible with
f . Since the matrices Pi and Li,j generate Mn(K) and these matrices are compatible with
f , the morphism f is indeed an isomorphism in CMn(C).

Let C denote a pseudo-abelian Banach category. The isomorphisms C l,m+8 ∼= C l+8,m ∼=
M16(C

l,m) and C l+1,m+1 ∼= M2(C
l,m), together with the lemmas above now imply that Cl,m

R ≃
Cp,q
R , if l −m = p− q mod 8. Similarly, we obtain Cl,m

C ≃ Cp,q
C if l −m = p− q mod 2. This

is the periodicity we hinted at earlier. If we specialize to the case where C = EK
G(X), we can

use Lemma 7.5 and 7.7 to obtain Table 2, where EH
G(X) denotes the category of quaternionic

l −m mod 8 (ER
G(X))l,m (EC

G(X))l,m

0 ER
G(X) EC

G(X)

1 EC
G(X) EC

G(X)× EC
G(X)

2 EH
G(X) EC

G(X)

3 EH
G(X)× EH

G(X) EC
G(X)× EC

G(X)

4 EH
G(X) EC

G(X)

5 EC
G(X) EC

G(X)× EC
G(X)

6 ER
G(X) EC

G(X)

7 ER
G(X)× ER

G(X) EC
G(X)× EC

G(X)

Table 2: The categories (ER
G(X))l,m and (EC

G(X))l,m

G-vector bundles, where the objects and morphism are defined as in Definition 2.37.
We will now explore some of the consequences of these equivalences in the case C = EK

G(X).

Remark 7.8. Let A and B be K algebras. The equivalence preserves surjective G-vector
bundle morphisms in the following way:

(i) A surjective morphism f ∈ (EK
G(X))A⊗KB corresponds to a surjective morphism f ∈

((EK
G(X))A)B and vice versa.

(ii) A surjective morphism f ∈ (EK
G(X))A⊕B corresponds to a pair of surjective morphisms

(f1, f2) ∈ (EK
G(X))A × (EK

G(X))B and vice versa.

(iii) A surjective morphism f ∈ (EK
G(X)) corresponds to the morphism⊕n

i=1f ∈ (EK
G(X))Mn(K),

which is surjective. Similarly, a morphism f ∈ (EK
G(X))Mn(K) can, after possibly pre

and post composing with an isomorphism, be viewed as a morphism ⊕n
i=1f̃ and hence

corresponds to a surjective morphism f̃ in EK
G(X).
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Lemma 7.9. Let (E, σ) ∈ (EK
G(X))l,m. Then, there exists a G-module M and a (E⊥, σ⊥) ∈

(EK
G(X))l,m such that

(E ⊕ E⊥, σ ⊕ σ⊥ ∼= X × ((M ⊗ C l,m), ρ),

where ρ(x)(m⊗ c) = (m⊗ xc) and g(m⊗ c) = (gm⊗ c), for all x ∈ C l,m and g ∈ G.

Proof. First, notice that since E ∈ EK
G(X), there exists a G-vector bundle F ∈ EK

G(X) and a
G-module M , such that

E ⊕ F ∼= X ×M.

Let Φ : E ⊕ F → X × M denote the isomorphism and let p : E ⊕ F → E denote the
projection. The map π : (X × (M ⊗ C l,m), ρ) → (E, σ), defined by

π(m⊗ c) = σ(c)p(Φ(x,m))

is a surjective morphism in (EK
G(X))l,m. Remark 7.8 implies that the equivalences from

Lemma 7.5 and 7.7 preserve surjective vector bundle morphisms. Since (EK
G(X))l,m is equiv-

alent to one of the categories in Table 2, via these equivalences, the morphism π corresponds
to a surjective morphism or a pair of surjective morphisms in ER

G(X), EC
G(X) or EH

G(X). To
keep the exposition simple, we assume that the morphism π : (X × (M ⊗ C l,m), ρ) → E
corresponds to a pair surjective of morphisms (π1, π2) : (F1, F2) → (L1, L2) in EH

G(X). The
proof for the other cases is similar. Remark 2.44 together with Remark 2.36 implies that
there exists L⊥

1 , L
⊥
2 in EH

G(X) such that

(L1, L2)⊕ (L⊥
1 , L

⊥
2 ) = (L1 ⊕ L⊥

1 , L2 ⊕ L⊥
2 )

∼= (F1, F2).

Since an equivalence of categories preserves and reflects limits and co-limits. This implies
that there exists a L ∈ (EK

G(X))l,m such that (E ⊕ L, σ ⊕ σL) ∼= ((M ⊗ C l,m), ρ).

If G is a finite group, we can slightly improve this lemma.

Lemma 7.10. Let G be a finite group. Let (E, σ) ∈ (EK
G(X))l,m. Then, there exists a

(E⊥, σ⊥) ∈ (EK
G(X))l,m such that

(E ⊕ E⊥, σ ⊕ σ⊥ ∼= X × (
n⊕

i=1

K[G])⊗ C l,m).

Proof. Let π : (X×(M⊗C l,m), ρ) → (E, σ) be the morphism in (EK
G(X))l,m from the previous

lemma. Lemma A.43 says that there exists a surjective G-module morphism Φ :
⊕n

i=1G→
M . Notice that the map P : X × (

⊕n
i=1G)⊗ C l,m) → X × (M ⊗ C l,m, defined by

P (x, (g ⊗ c)) = (x,Φ(g)⊗ c),

is a surjective morphism in (EK
G(X))l,m. We can now proceed analogously to the previous

lemma to obtain the desired result.

We are now ready to define the group K l,m(X).

Definition 7.11. Let C be a Banach category and Let il,m : Cl,m+1
K → Cl,m

K be the functor

that restricts the C l,m+1
K actions on the objects of C to a C l,m action and maps a morphism

to itself. We then define
K l,m(C) := K(il,m).
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If C = EK
G(X), we will use the notation

K l,m
G (X)K := K(il,m : (EK

G(X))l,m+1 → (EK
G(X))l,m)

and will often omit the K from the notation.

Remark 7.12. Because for objects C,D ∈ C the Banach structure on HomCl,m+1((C, f), (D, g))
and HomCl,m((C, il,m(f)), (D, il,m(g))) is obtained by restricting the Banach structure on
HomC(C,D), the functor il,m is a Banach functor, which implies that the group K(il,m) is
well defined.

Remark 7.13. If C = EK
G(X), then we claim that ip,q is quasi surjective. The claim holds,

because if E ∈ (EK
G(X)l,m, then there is a E⊥ ∈ (EK

G(X)l,m such that E ⊕ E⊥ ∼= X × ((M ⊗
C l,m). Notice that the projection π : X × (M ⊗ C l,m+1) → X × (M ⊗ C l,m), where we view
both bundles as an elements of EK

G(X)l,m, is a surjective morphism in EK
G(X)l,m. As before,

this implies that there is a surjective morphism π′ : X× (M ⊗C l,m+1) → E in EK
G(X)l,m and

hence that there exists a F ∈ EK
G(X)l,m such that

E ⊕ F ∼= X × (M ⊗ C l,m+1).

Thus, the functor il,m is quasi-surjective.

The periodicity of the categories extends to the groups K l,m:

Proposition 7.14. Let C be a pseuso-abelian category, then we have

K l,m(C) ∼= Kp,q(C),

if l −m = p− q mod 8 (or mod2) in the complex case.

Proof. We will prove the proposition for the real case. The proof for the complex case is
similar. First, notice that it is sufficient to show that K l+8,m(C) ∼= K l,m(C), K l,m+8(C) ∼=
K l,m(C) and K l+1,m+1(C) ∼= K l,m(C). We will show that K l+8,m(C) ∼= K l,m(C). Let Fl,m :
Cl,m → Cl+8,m denote the equivalence from Lemma 7.7 combined with Lemma 7.5 (i) . We
claim the map F : K l,m(C) → K l+8,m(C) defined by

F ([C+, C−, α]) = [Fl,m+1(C+), Fl,m+1(C−), Fl,m(α)].

Is an isomorphism. We first show that F is well defined. Notice that Fl,m(α) is a map
from Fl,m(il,m(C+)) to Fl,m(il,m(C−). We need that it is a map from il+8,m(Fl,m+1(C+)) to
il+8,m(Fl,m+1(C+)). This holds if il+8 ◦Fl,m+1 = Fl,m ◦ il,m. We will now show that this is the
case. The functor Fl,m+1 sends an object (C, σ) to the object

(⊕16
i=1C, σ ⊗ ρ),

where ρ : M16(R) → EndC(⊕16
i=1C) is the map that sends a matrix to the endomorphism

associated to the matrix and σ ⊗ ρ : C l,m+1 ⊗ M16(R) → EndC(⊕16
i=1C, ) is defined by

σ⊗ ρ(a⊗ b) = σ(a)⊕ . . .⊕σ(a) ◦ ρ(b). The element el+8+m+1 of C
l,m+1+8 corresponds to the

element e1 . . . e8 ⊗ em+1 of M8(R)⊗ C l,m+1. This implies that

il+8,m(
n⊕

i=1

C, σ ⊗ ρ) = (
16⊕
i=1

C, σ|Cl,m ⊗ ρ = Fl,m(il,m)(C, σ).
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It is clear that the functors also coincide on morphism. Since Fl,m is a Banach functor and
an equivalence, it F preserves morphisms and maps elementary triples to elementary triples.
Therefore, F is a well defined group homomorphism.
We now show that it is injective and surjective. We first proof infectivity. Assume that
F ([C+, C−, α]) = [Fl,m+1(C+), Fl,m+1(C−), Fl,m(α)] = 0. Then there exists elementary triples
[D,D, β] and [D′, D′, β′] such that (C+, C−, α) ⊕ (D,D, β) ∼= (D′, D′, β′). Because Fl,m is
an equivalence, there are objects E,E ′ ∈ Cl,m+1 and isomorphisms f : D → Fl,m+1(E) and
f ′ : D′ → Fl,m+1E

′ in Cl+8,m+1. Therefore,

F (C+, C−, α)⊕ (Fl,m+1(E), Fl,m+1(E), f
−1βf) ∼= (Fl,m+1(E

′), Fl,m+1(E
′), f−1β′f).

Since the morphisms between these objects in (Cl,m)M16(K) are diagonal matrices with the
same morphism on each entry on the diagonal, we can project to first coordinate to obtain

(C+, C−, α)⊕ (E,E, (f−1βf)1,1) ∼= (E ′, E ′, (f−1β′f)1,1),

where the last to triples are elementary triples.
We now prove surjectivity. If [C+, C−, α] is a triple in K l+8,m+1(C), then since Fl,m is essen-
tially surjective, there exists an object D+, D− ∈ Cl,m+1 and an isomorphisms f± : C± →
Fl,m+1(D±). Then, we have

[C+, C−, α] = [Fl,m+1(D+), Fl,m+1(D−), f−α ◦ f−1
+ ].

Since the morphism in (Cl,m)Mn(C) are diagonal matrices with the same morphism on each
entry on the diagonal, we can project to the first coordinate to obtain

[Fl,m+1(D+), Fl,m+1(D−), f− ◦ α ◦ f−1
+ ] = F ([D+, D−, (f−α ◦ f−1

+ )1,1].

Before we study the groups K l,m(X) further, it might be good to explain why we are
interested in these groups. Now that we have defined the groups Kp,q

G (X), we will slightly
generalise the definition to obtain a group Kp,q

G (X,A), where A is a closed G-invariant

subspace of X. These groups again have the property that Kp,q
G (X,A) ∼= K l,m

G (X,A) if
p− q = l −m mod 8 (or mod 2 in the complex case). We will then show that

K0,0
G (X,A) ∼= KG(X,A) (7.1)

and
K l,m+1

G (X,A) ∼= K l,m
G (X × [0, 1], X × {0, 1} ∪ A× I). (7.2)

Applying this equation repeatedly, we obtain the equation:

K l,m
G (X,A) ∼= K l,0

G (X × [0, 1]m, X × ∂[0, 1]m−1 ∪ A× [0, 1]m) (7.3)

These equation and the following lemma will then enable us to prove the periodicity of the
groups K−n

G (X,A).

Lemma 7.15. Let X be a compact G-space and Y a closed G-invariant subset. We have:

KG(X × [0, 1]n, X × ∂[0, 1]n−1 ∪ A× [0, 1]n)) ∼= K−n
G (X,A).
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Proof. Remark 3.31 implies that it is sufficient to show that Σn(X+)/Σn(A+) is G-homotopy
equivalent to

Y := X+ × [0, 1]n/(X+ × ∂[0, 1]m−1 ∪ A+ × [0, 1]n).

Notice that the map
f : Y → Σn(X+)/Σn(A+),

defined by f([x, v]) = [x, v] is a G-isomorphisms, which proves the Lemma.

Theorem 7.16. Let X be a compact G-space and A ⊂ X a closed G-invariant subset. We
have the following group isomorphism

(KR
G)

−n(X, Y ) ∼= K0,n
G (X, Y )R and (KC

G)
−n(X, Y ) ∼= K0,n

G (X, Y )C.

Proof. Equation 7.3 together with Lemma 7.15 implies that

K0,n
G (X,A) ∼= K0,0(X × [0, 1]m, X × ∂[0, 1]m−1 ∪ A× [0, 1]m)

∼= KG((X × [0, 1]m, X × ∂[0, 1]m−1 ∪ A× [0, 1]m)
∼= K−n

G (X, Y ).

Remark 7.17. A direct consequence of this theorem and the periodicity of the groups
K l,m

G (X, Y ) is that
K l,m(X, Y ) ∼= K l−m mod 8

G (X, Y )

(or mod 2 in the complex case) and that

(KR
G)

−n(X, Y ) ∼= (KR
G)

−n−8(X, Y ) and (KC
G)

−n(X, Y ) ∼= (KC
G)

−n−2(X, Y ).

Example 7.18. Let X = {pt}. We have

(KC
G)

−n(X, ∅) = (K̃C
G)

−n(X+) = K̃C
G(Σ

n(X+)) ∼= K̃C
G(S

n).

where Sn := {x ∈ Rn+1 | ∥X∥ = 1} is viewed as a G-space with a trivial action. We already
showed that

K̃C
G(X

+) ∼= KC
G(pt)

∼= R(G)

and
K̃C

G(Σ pt+) ∼= K−1(EC
G(pt))

∼= 0.

Remark 7.17 now implies that

K̃C
G(S

n) ∼=
{
R(G) if n = 2k
0 n = 2k + 1
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8 Gradations

In this section, we will introduce gradations and will use them to define the groupsK l,m
G (X,A)

from the previous section.
The main results of this section will be that the groupsK l,m

G (X,A) are periodic (Proposi-
tion 8.11, that

K l,m
G (X, ∅) ∼= K l,m

G (X)

(Lemma 8.9) and the proof of Equation 7.1 (Theorem 8.16) which says that

K0,0
G (X,A) ∼= KG(X,A).

This section is based on chapter III.4 and III.5 of [3] We start with a definition:

Definition 8.1. Let (E, f) ∈ (EK
G(X))l,m. We call a morphism h ∈ End(EK

G(X))l,m(E, f) a

gradation on (E, f) if:

(i) f(ei)h = −hf(ei) for all 1 ≤ i ≤ l +m

(ii) h2 = 1

We will denote the set of gradations on (E, f) by Grl,m(E, f) and endow it with the subspace
topology.

Remark 8.2. Notice that a gradation is an extension of the C l,m structure on E into an
C l,m+1 structure.

We will be interested in triples ((E, f), α+, α−), where (E, f) ∈ (EK
G(X))l,m and α1, α2 ∈

Grl,m(E, f). We will define the sum of gradations by

((E1, f1), α+, α2)⊕ ((E2, f2), β+, β−) = ((E1 ⊕ E2, f1 ⊕ f2), α1 ⊕ α2, β1 ⊕ β2).

If α+, α− ∈ Gradl,m((E, f), then the notation α+ ≃ α− will mean that α+ is G-homotopic
to α− through gradations. We are now ready to define the relative group K l,m(X,A):

Definition 8.3. Let X be a G-space and A ⊂ X a closed G-invariant subset. We define:

K l,m(X,A) := {((E, f), α+, α−) | (E, f) ∈ ob((EK
G(X))l,m), α+, α− ∈ Grl,m(E, f) and α+|A = α−|A}/ ∼ .

where ((E, f), α+, α−) ∼ ((E ′, f ′), β+, β−) if there exists a (F, γ, γ), such that

α+ ⊕ β− ⊕ γ ≃ α− ⊕ β+ ⊕ γ,

relative to A (thus the G-homotopy H between the gradations has the property that Ht|E⊕E′⊕F |Y =
α+⊕β−⊕γ|Y for all t ∈ [0, 1]). We will denote the equivalence class of a triple ((E, f), α+, α−)
by [(E, f), α+, α−]. The operation

[(E, f), α+, α−]⊕ [(E ′, f ′), β+, β−] = [(E1 ⊕ E2, f ⊕ f ′), α1 ⊕ α2, β1 ⊕ β2]

gives K l,m
G (X,A) the structure of an abelian group.

Lemma 8.4. The set K l,m(X,A), together with the operation ⊕ is indeed a group.
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Proof. First, notice that a triple [E,α+, α−] is 0 if and only if there exists a triple (F, γ, γ)
such that

α+ ⊕ γ ≃ α− ⊕ γ,

relative to A. Also notice that ⊕ is well defined and associative. We now show that every
element has an inverse. Let [E,α1, α2] be a triple. Then, we have

[E,α+, α−]⊕ [E,α+, α−] = [E ⊕ E,α+ ⊕ α−, α− ⊕ α+].

Notice that the homotopy H : [0, 1] → Grl,m(E ⊕ E)

H(θ) :=

(
cos(π

2
θ) − sin(π

2
θ)

sin(π
2
θ cos(π

2
)

)
(α1 ⊕ α2)

(
cos(π

2
θ) sin(π

2
θ)

− sin(π
2
θ cos(π

2
)

)
. (8.1)

is a homotopy through gradations and since α+|E|A = α−|E|A , it follows that H(t)|E|A =
α+ ⊕ α−|A = α− ⊕ α+|A and thus that it is a homotopy relative to A. Therefore,

[E ⊕ E,α+ ⊕ α−, α− ⊕ α+] = 0.

Lastly, we show that ⊕ is commutative. Let x := [E,α+, α−], y := [F, β+, β−] ∈ K l,m(X, Y ).
Then, we have

(x⊕ y)⊕ (y + x)−1 = [E ⊕ F ⊕ F ⊕ E,α+ ⊕ β+ ⊕ β− ⊕ α−, α− ⊕ β− ⊕ β+ ⊕ α+].

Using the homotopy from Equation 8.1 twice, we obtain:

α+ ⊕ β+ ⊕ β− ⊕ α− ≃ α− ⊕ β+ ⊕ β− ⊕ α+ ≃ α− ⊕ β− ⊕ β+ ⊕ α+.

Therefore, we have (x⊕ y)⊕ (y ⊕ x)−1 = 0 and ⊕ is commutative.

Remark 8.5. If f : (Y,B) → (X,A) is a G-map, then f induces a map f ∗ : K l,m
G (X,A) →

K l,m
G (Y,B), defined by

f ∗([E,α+, α−]) = (f ∗E, f ∗α+, f
∗α−),

where f ∗α± : f ∗E → f ∗E is defined by f ∗α|f∗E|y = α|f(y). Therefore, the assignment

(X, Y ) → K l,m
G (X, Y ) is a contravariant functor.

There is also a notion of an isomorphism between triples:

Definition 8.6. Let x := ((E, f), α+, α−) and y := ((F, h), β+, β−) be triples, with (E, f), (F, h)) ∈
(EK

G(X))l,m an isomorphism ϕ ∈ Hom(EK
G(X))l,m((E, f), (F, h)) is an isomorphism between x

and y if ϕ ◦ α± = β± ◦ ϕ.

Lemma 8.7. Let x = ((E, f), α+, α−),y = ((F, h), β+, β−) and ϕ be defined as above, and
assume that [x], [y] ∈ K l,m(X,A). then

[(E, f), α+, α−] = [(F, h), β+, β−]

Proof. The proof of the Lemma is somewhat similar to the proof Lemma 5.10. Notice that

[E,α+, α−]⊕ [F, β−, β+] = [E ⊕ F, α+ ⊕ β−, α− ⊕ β+].

We have β± = ϕ ◦ α± ◦ ϕ−1. Equation 5.4 implies that

α+⊕ϕ◦α−◦ϕ−1 =

(
0 −α+ϕ

−1

ϕα− 0

)(
0 ϕ−1

−ϕ 0

)
=

(
0 −ϕ−1

ϕ 0

)
.

(
α− 0
0 ϕ ◦ α+ ◦ ϕ

)(
0 ϕ−1

−ϕ 0

)
.
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The leftmost matrix in the final equation is homotopic to the identity via the homotopy H(t)
from equation 5.3, with α replaced by ϕ. One can check that the map

H̃(t) := H(t) ◦ (α− ⊕ β+) ◦ (H(t))−1,

is a homotopy from α− ⊕ β+ to α+ ⊕ β− relative to A and through gradations.

We will now show that K l,m
G (X, ∅) ∼= K l,m

G (X). To show this, we need the following
lemma:

Lemma 8.8. Let (E, f) ∈ (EG(X))l,m and α+, α− ∈ Grl,m(E, f). If α+ ≃ α− via a homotopy
H : I → Grl,m(E, f), then there exists a map H̃ : I → Aut(EG(X))l,m(E, f) such that H̃(0) = 1

and H̃(1)α+H̃(1)−1 = α−.

Proof. Let h : [0, 1]2 → Endl,m
(EG(X))l,m

(E,F ) be the map defined by

h(t, s) =
1 +H(t)H(s)

2
.

Notice that h(t, t) = id and is hence invertible for all t ∈ [0, 1]. Since h is continuous and
the subset of automorphism is open, there exists an open set {(t, t) | t ∈ I} ⊂ U ⊂ I2, such
that h(s, t) is invertible if (s, t) ∈ U . Since I2 is compact, there exists an ϵ > 0, such that
B((t, t), ϵ) ⊂ U for all t ∈ I. Let n = ⌊2

ϵ
⌋ and xi = i ϵ

2
for 1 ≤ i ≤ n and xn+1 = 1. Then,

this implies that the map H̃ : I → Aut(EG(X))l,m(E, f) defined on [xi, xi+1] by

H̃(t) = h(t, xi)h(xi, xi−1) . . . h(x2, x1)h(x1, 0)

is a well defined automorphism. Since h(t, s)H(s) = H(s)+H(t)
2

= H(t)h(t, s) it follows that

H̃(1)α+H̃(1)−1 = H̃(1)H(0)H̃(1)−1 = H(1)H̃(1)H̃(1)−1 = α−.

Proposition 8.9. Let X be a compact G-space, Then,

K l,m
G (X, ∅) ∼= K l,m

G (X).

Proof. Let Φ : K l,m
G (X) → K l,m

G (X, ∅) be the map defined by

Φ([(E+, σ+), (E−, σ−), α]) = [(E+, σ|Cl,m), α−1σ+(el+m+1), σ−(el+m+1)α].

We first check that Φ is well defined. Assume that y := ((Fρ), (F, ρ), β) is an elementary
triple, then and let x := ((E+, σ+), (E−, σ−), α). Then,

Φ([x+y]) = [(E+, σ|Cl,m), σ+(el+m+1), α
−1σ−(el+m+1)α]⊕[(F, ρ|Cl,m), ρ(el+m+1), β

−1ρ(el+m+1)β].

Since β is homotopic to the identity through automorphisms in EG(X)l,m, it follows that
ρ(el+m+1) ≃ β−1ρ(el+m+1)β and [(F, ρ|Cl,m), ρ(el+m+1), β

−1ρ(el+m+1)β] = 0. Now let x as
before and assume that y := ((F+, ρ+), (F−, ρ−), α) is isomorphic to x. Then, there exist
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morphisms f ∈ Hom((E+, σ+), (F+, ρ+)) and g ∈ Hom((E−, σ−), (F−, ρ−)) such that g ◦α =
β ◦ f . This implies that

Φ([y]) = [(F+, ρ+|Cl,m), ρ+(el+m+1), β
−1ρ+(el,m+1)β]

= [(F+, ρ+|Cl,m), ρ+(el+m+1), β
−1gσ−(el+m+1)g

−1β]

= [(F+, ρ+|Cl,m), fσ+(el+m+1)f
−1, fα−1σ+(el+m+1)αf

−1]

= [(F+, ρ+|Cl,m), fσ+(el+m+1)f
−1, fα−1σ+(el+m+1)αf

−1]

Therefore, Lemma 8.7 now implies that Φ([y]) = Φ([x]). The map Φ is therefore well defined.
Also notice that Φ is indeed a group homomorphism. We now show that Φ is an isomorphism.
We first show that Φ is surjective. Let [(E, σ), α+, α−] ∈ K l,m(X, ∅). Then

Φ((E, σ+), (E, σ−), id) = [(E, σ), α+, α−],

where σ± is the C l,m+1 structure induced by σ and α±.
We now show that Φ is injective. Assume that

Φ([(E+, σ+), (E−, σ−), α]) = [(E, σ+|Cl,m), σ+(el+m+1), α
−1σ−(el+m+1)α] = 0.

Let σ̃+ be the C l,m+1 action on E+ such that σ̃+|Cl,m = σ+|Cl,m and σ̃+(el+m+1) = α−1σ−(el+m+1)α.
Notice that α : (E+, σ̃+) → (E−, σ−) is a morphism in EG(X)l,m+1. Therefore, the diagram

(E+, σ+|Cl,m) (E+, σ̃+|Cl,m)

(E+, σ+|Cl,m) (E−, σ−|Cl,m)

id

id α

α

.

commutes and
[(E+, σ+), (E−, σ−), α] = [(E+, σ+), (E+, σ̃+), id].

We may thus assume that α = id. Since

Φ([(E+, σ+), (E−, σ−), α]) = [(E, σ+|Cl,m), σ+(el+m+1), α
−1σ−(el+m+1)α] = 0,

There exist a triple ((F, ρ), β, β) such that

σ+(el+m+1)⊕ β ≃ (α−1σ−(el+m+1)α)⊕ β.

Lemma 8.8 implies that there exists a map h : I → Aut(EG(X))l,m(E+⊕F, σ|Cl,m⊕ρ) such that
h(0) = id and

h(1) ◦ σ+(el+m+1)⊕ β ◦ h(1)−1 = (α−1σ−(el+m+1)α)⊕ β.

This implies that h(1)−1 : (E−⊕F, σ−⊕β) → ((E+⊕F ), σ+⊕β) is a morphism in EG(X)l,m+1.
Now notice that the diagram

(E+ ⊕ F, σ+ ⊕ ρβ|Cl,m) (E− ⊕ F, σ̃− ⊕ ρβ|Cl,m)

(E+ ⊕ F, σ+ ⊕ ρβ|Cl,m) (E+ ⊕ F, σ+ ⊕ ρβ|Cl,m)

α

id h(1)−1

h(1)−1α

.
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commutes,where ρβ denotes the C l,m+1 action induce by ρ and β, which implies that

[(E+, σ+), (E−, σ−), α] = [(E+, σ+), (E−, σ−), α])⊕ [(F, ρβ), (F, ρβ), id]

= [(E+ ⊕ F, σ+ ⊕ ρββ), (E+, σ+ ⊕ ρβ), h(1)
−1]

= 0.

It is zero because h(1) is homotopic to the identity through automorphisms.

Remark 8.10. This proposition implies that the groups K l,m
G (X, ∅)K ∼= Kp,q

G (X, ∅) if l−m =
p− q mod 8 if K = R or mod 2 if K = C.

The remark above also holds if we replace ∅ by a closed G-invariant subset A ⊂ X.

Proposition 8.11. The groups K l,m
G (X,A)K and Kp,q

G (X,A) are isomorphic if l − m =
p− q mod 8 if K = R or mod 2 if K = C.

Proof. As before, we will prove this theorem for K = R. It is sufficient to show that
K l,m

G (X,A) ∼= K l+8,m
G (X,A), K l,m

G (X,A) ∼= K l,m+8
G (X,A) and K l,m

G (X,A) ∼= K l+1,m+1
G (X,A).

We will show that K l,m
G (X,A) ∼= K l+8,m(X,A). The proof for the other cases is simi-

lar. We will define the isomorphism using the map of the previous proposition. Let x :=
[(E, σ), α+, α−] ∈ K l,m

G (X,A). By forgetting the ‘extra’ structure, the triple [(E, σ), α+, α−]

defines an element of K l,m
G (X, ∅). Using the isomorphism from Proposition 8.9, this element

corresponds to the triple [(E, σ+), (E, σ−), id] ∈ KG(X)l,m, where σ± is the C l,m+1 action
induced by σ and α±. Using the isomorphism from Proposition 7.14 we see that this triple
corresponds to the triple

[((⊕16
i=1E, σ+ ⊗ ρ), (⊕16

i=1E, σ+ ⊗ ρ), id] ∈ KG(X)l,m,

where ρ sends a matrix A ∈M16(R) to the corresponding isomorphism in ⊕16
i=1E and σ±⊗ρ :

C l+8,m+1 ⊗M16(R) → End(⊕16
i=1E) is defined by

σ± ⊗ ρ(a, b) = σ±(a)⊕ . . .⊕ σ±(a) ◦ ρ(b).

Using again the isomorphism from Proposition 8.9, we see that this element corresponds to
the triple

[(⊕16
i=1E, σ ⊗ ρ), α+ ⊕ . . .⊕ α+ ◦ ρ(e1 . . . e8), α− ⊕ . . .⊕ α− ◦ ρ(e1 . . . e8)].

Notice that the gradations coincide on ⊕16
i=1E|Y and this triple can thus be viewed as an

element

[(⊕16
i=1E, σ ⊗ ρ), α+ ⊕ . . .⊕ α+ ◦ ρ(e1 . . . e8), α− ⊕ . . .⊕ α− ◦ ρ(e1 . . . e8)] ∈ K l+8,m(X,A).

Notice that the composition of all these identification is a well defined group homomorphism
Φ : K l,m(X,A) → K l+8,m(X,A). We now show that Φ is an isomorphism by defining an
inverse. Let [(F, σ), β+, β−] ∈ K l+8,m. The equivalence of Lemma 7.7 implies that (F, σ) ∼=
(⊕16

i=1E, σ̃ ⊗ ρ) for some (E, σ̃) ∈ EG(X)l,m. Let f : F → ⊕16
i=1E denote this isomorphism.

Then, we have
[(F, σ), β+, β−] = [(⊕16

i=1E, σ̃ ⊗ ρ), fβ+f
−1, fβ−f

−1].
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As before, we can we view this triple as an element of K l+8,m
G (X, ∅) and hence as an element

of K l+8,m
G (X) and use the isomorphisms from Lemma 7.14 and Proposition 8.9 to obtain the

triple
[(E, σ̃), (ρ(e1 . . . e8)fβ+f

−1)1,1, (ρ(e1, . . . e8)(fβ+f
−1)1,1]

in K l,m
G (X,A). where the subscript refers to the entry of the matrix that represents the

morphism ρ(e1 . . . e8)fβ±f
−1. Notice that this is a well defined group homomorphism. It is

clear from the definition that this morphism is the inverse of Φ.

We will end this section by showing that K0,0
G (X, Y ) ∼= KG(X, Y ). To show this, we will

need to prove some lemmas:

Lemma 8.12. Let p : E → X be a G-vector bundle and Y ⊂ X a closed G-invariant
subset. If H : E|Y × [0, 1] → E|Y is a homotopy between G-vector bundle isomorphisms
and through G-vector bundle isomorphism such that H0 = id, then there exists a homotopy
H̃ : E×[0, 1] → E, such that H̃t is an isomorphisms for t ∈ [0, 1], H̃0 = id and H̃Y×[0,1] = H.

Proof. Let πX : X × [0, 1] → X denote the projection and let h : π∗
XE|Y×[0,1] × [0, 1] →

π∗
XE|Y×[0,1] be the map defined by h((v, s), t) = H(v, st). Notice that we can view h as a con-

tinuous map h : [0, 1] → AutEK
G(Y×[0,1])(π

∗
XE|Y×[0,1]). Let f : [0, 1]2 → AutEK

G(Y×[0,1])(π
∗
XE|Y×[0,1])

be the map defined by f(s, t) = h(s)−1h(t). Notice that f is continuous and f(t, t) = id for all
t ∈ [0, 1]. Let U = {(s, t) ∈ [0, 1]2 | ∥id−β(s, t)∥ < 1}. Notice that U is open. With a similar
argument as in the proof of Lemma 8.8, we obtain 0 = t0 < t1 < . . . < tn < tn+1 = 1 ∈ [0, 1]
such that for all 0 ≤ i ≤ n and t ∈ [ti, ti+1], we have f(ti, t) ∈ U . Since ∥id− f(ti, ti+1)∥ ∈ U
and End(π∗

XE|Y×[0,1])) is a Banach algebra, Example 4.17 implies that the function log(·) is
defined on f(ti, ti+1). Therefore, we have log(f(ti, ti+1)) ∈ End(π∗

XE|Y×[0,1]). Using Lemma
2.26 and 2.21, we can extend this map to obtain a map αi ∈ End(π∗

XE). As mentioned in
Example 4.17, the exponential function is also defined on End(π∗

XE) . We now define:

H̃ := exp(α0) . . . exp(α1).

Notice that

H̃|Y := exp(α0)|Y . . . exp(α1)|Y = exp(α0|Y ) . . . exp(α1|Y )
= exp(log(f(t0, t1)) . . . exp(log(f(tn, tn+1)) = f(t0, t1) . . . f(tn, tn+1)

= h(0)−1h(1) = id ◦H
= H

Therefore, the map π∗
XH̃

−1
0 H̃ is the required map.

Remark 8.13. Since EndEK
G(A)l,m((E, σ)) is a Banach space and a sub algebra of EndEK

G(A)(E)

for any G-space A, it follows that if H is a homotopy through isomorphisms in EK
G(Y )l,m,

the extension H̃ is a homotopy through isomorphisms in EK
G(X)l,m.

This lemma will enable us to prove that the group K l,m
G (X,A) fits into a short exact

sequence:

Lemma 8.14. The following sequence is an exact sequence:

K l,m
G (X,A) K l,m

G (X) K l,m
G (A)

j i∗ ,
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where j([E,α+, α−]) = [E,α+, α−]. Moreover, if A is a G-retract of X, then we obtain the
short exact sequence:

0 K l,m
G (X,A) K l,m

G (X) K l,m
G (A) 0

j i∗ .

Proof. The proof of this Lemma is quite long, so we will postpone it to the end of the
section.

Notice that this Lemma is very similar to Lemma 5.21. The following lemma is a refor-
mulation of Proposition 3.30, but now for the groups Kp,q+1(X,A).

Lemma 8.15. Let X be a compact G-space, A ⊂ X a closed G-invariant subspace and
π : (X,A) → (X/A,A/A) the projection. The map

π∗ : K l,m
G (X/A,A/A) → K l,m

G (X,A)

is an isomorphism.

Proof. We will prove the theorem by constructing an inverse. Let ([(E, σ), α+, α−] ∈ K l,m
G (X,A).

As discussed before, Lemma 7.9 implies that there exists a G-module M and a triple
[(E⊥, σ⊥), γ, γ] such that

[(E, σ), α+, α−]⊕ [(E⊥, σ⊥), γ, γ] = [(X × (M ⊗ C l,m+1), ρX |Cl,m), ρX(el+m+1), β)],

For some β ∈ Grl,m(X × (M ⊗ C l,m+1), ρX |Cl,m). Notice that i∗β = i∗ρ(el+m+1), where

i : A→ X is the inclusion. We now define the inverse j : K l,m
G (X,A) → K l,m

G (X/A,A/A) by

j([(E, σ), α+, α−]) = [(X/A× (M ⊗ C l,m+1), ρX/A|Cl,m), ρX/A(el,m+1), β̃],

Where β̃([x], v) = β(x, v). We leave it to the reader to verify that j is well-defined. It is clear
from the definition that π∗ ◦ j = id. We now show that j ◦ π∗ = id. Let [(E, σ), α+, α−] ∈
K l,m

G (X/A,A). As before, we have

[(E, σ), α+, α−] = [(X/A× (M ⊗ C l,m+1), ρX/Y |Cl,m), ρX/Y (el,m+1), β],

Now notice that

j ◦ π∗[(E, σ), α+, α−] = j ◦ π∗[(X/A× (M ⊗ C l,m+1), ρX/Y |Cl,m), ρX/Y (el,m+1), β]

= j[[(X × (M ⊗ C l,m+1), ρX |Cl,m), ρX(el,m+1), π
∗β]

= [(X/A× (M ⊗ C l,m+1), ρX/Y |Cl,m), ρX/Y (el,m+1), β]

With these lemmas in place, we are ready to prove the theorem:

Theorem 8.16. There is a natural isomorphism

Φ : K0,0
G (X,A) → KG(X,A).
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Proof. Our approach will be the same as in the proof of Proposition 5.22 and Theorem 5.23.
Thus, we will define a natural homomorphism Φ : K0,0(X,A) → K(X,A) and proof that it
is an isomorphism if A = ∅. We can then proceed analogously to the proof of Theorem 5.23
to show that Φ is also an isomorphism if A ̸= ∅.
We will first define Φ and show that Φ is natural. Let [(E, σ), α+, α−] ∈ K0,0(X,A). Let

P± :=
1 + α±

2
.

Notice that P 2
± = P± and P+|E|A = P−|E|A . We now define

Φ([(E, σ), α+, α−]) = [P+E,P−E, β],

where β : P+E|Y → P−E|Y is the identity. Remark 3.13 implies that this map is well defined.
Also notice that Φ is indeed a group homomorphism.

We now show that Φ is natural. Let f : (Y,B) → (X,A) be a G-map. By definition, we
have

f ∗([(E, σ), α+, α−]) = [(f ∗E, f ∗σ), f ∗α+, f
∗α−].

Notice that 1+f∗α±
2

= f ∗P±. Therefore, we have

Φ([(f ∗E, f ∗σ), f ∗α+, f
∗α−]) = [(f ∗P+)f

∗E, (f ∗P−)f
∗E, f ∗β].

The bundle (f ∗P±)f
∗E is canonically isomorphic to f ∗(PE±). Therefore, we have

[(f ∗P+)f
∗E, (f ∗P−)f

∗E, β] = f ∗[P+E,P−E, β].

We now complete the proof by showing that the map is an isomorphism if A = ∅. We
will construct an inverse and show that this inverse is an isomorphism.

Let h : KG(X) → K0,0
G (X, ∅) be the map defined by

h(E+ − E−) = [E+ ⊕ E−,

(
1 0
0 −1

)
,

(
−1 0
0 1

)
],

We leave it to the reader to verify that h is well defined. We first show that Φ ◦ h = id. If
we let h(E+ − E−) as above, then the corresponding projections P+ and P− are

P+ =
1

2
(id+

(
1 0
0 −1

)
) =

(
1 0
0 0

)
and P− =

1

2
(id+

(
−1 0
0 −0

)
) =

(
0 0
0 1

)
.

Therefore, P+(E+ ⊕ E−) = E+ and P−(E+ ⊕ E−) = E− and

Φ ◦ h(E+ − E−) = E+ − E−.

We now show that h ◦ Φ([E,α+, α−]) = [E,α+, α−]. By definition, we have

h ◦ Φ([E,α+, α−]) = [P+E ⊕ P−E, id⊕−id,−id⊕ id].

If we add the triple [(1 − P+)E ⊕ (1 − P−)E,−id,−id] = 0 and then rearrange the terms,
we obtain

h ◦ Φ([E,α+, α−]) = [P+E ⊕ P−E ⊕ (1− P+)E ⊕ (1− P−)E, id⊕−id⊕−id⊕−id,−id⊕ id⊕−id⊕−id]

= [P+E ⊕ (1− P+)E ⊕ P−E ⊕ (1− P−)E, id⊕−id⊕−id⊕−id,−id⊕−id⊕ id⊕−id]

= [E ⊕ E,α+ ⊕ (−id), (−id)⊕ α−].
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Where the last equality holds because α±|P±E = id and α±|1−P± = −id. We claim that

[E ⊕ E,α+ ⊕ (−id), (−id)⊕ α−] = [E,α+, α−].

The claim holds because

α+ ⊕ (−id)⊕ α− = A−1(−id)⊕ α− ⊕ α+A,

where

B =

0 1 0
0 0 1
1 0 0

 .

Since det(B) = 1 the matrix B is homotopic to id through invertible matrices in M3(K),
which implies that

α+ ⊕ (−id)⊕ α− ≃ (−id)⊕ α− ⊕ α+.

As promised, we end with the proof of Lemma 8.14.

Proof of Lemma 8.14. First, notice that since α+|E|A = α−|E|A , it follows that i
∗α+ = i∗α−

and hence that
i∗ ◦ j([E,α+, α−]) = [i∗E, i∗α+, i

∗α−] = 0.

We now show that Ker(i∗) ⊂ Im(j). Let [(E, σ), α+, α−] ∈ Ker(i∗). By definition, this

implies that there exists a (F, τ) ∈ E l,m
G (A) and a gradation γ on F such that

i∗(α+)⊕ γ ≃ i∗(α−)⊕ γ. (8.2)

Proposition 8.9 implies that (F, τ) together with γ corresponds to an element of (F, τ0) ∈
EG(A)l,m+1. Using Lemma 7.9 we see that there exists a (F⊥, τ⊥0 ) ∈ EG(A)l,m+1 and a
G-module M such that

(F ⊕ F⊥, τ0 ⊕ τ⊥0 )
∼= (A× (M ⊗ C l,m+1), ρA).

Notice that
i∗(X × (M ⊗ C l,m+1), ρX) = (A× (M ⊗ C l,m+1), ρA).

Also notice that
τ⊥0 (el+m+1) ∈ Grl,m(E

⊥, τ⊥|Cl,m)

and
ρX(ep+q+1) ∈ Grl,m(X × (M ⊗ C l,m+1), ρX |Cl,m)).

If we define β± := α± ⊕ ρX(ep+q+1), then we obtain

[(X × (M ⊗ C l,m+1), ρX |Cl,m), β+, β−] = [(E, σ), α+, α−]

and using Equation 8.2 we see that

i∗β+ ≃ i∗β−.

Lemma 8.7 implies that there exists a map h : [0, 1] → AutEK
G(A)l,m(A×(M⊗C l,m+1), ρX |Cl,m),

such that h(0) = id and h(1)i∗β+h(1)
−1 = i∗β− and Lemma 8.12 implies that this map
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extends to a map h̃ : [0, 1] → AutEK
G(X)l,m(X × (M ⊗ C l,m+1), ρX |Cl,m), with h̃(0) = id.

Therefore, we have

[(X × (M ⊗ C l,m+1), ρX |Cl,m), β+, β−] = [(X × (M ⊗ C l,m+1), ρX |Cl,m), h̃(1)β+h̃(1)
−1, β−].

Since i∗(h̃(1)β+h̃(1)
−1) = h(1)i∗β+h(1)

−1 = β−, the last triple lies in the image of j.
We now show that the sequence is short exact if A is a G-retract of X.
We first show that i∗ is surjective. Let [E,α+, α−] ∈ K l,m

G (X,A). Then, we have

i∗[r∗E, r∗α+, r
∗α−] = [E,α+, α−].

We now show that j is injective. Assume that j([(E, σ), α+, α−]) = 0. Then, there exists a
gradation γ over a (F, τ) ∈ EG(X)l,m such that α+ ⊕ γ ≃ α− ⊕ γ. Lemma 7.9 implies that
we can add a gradation 0 = [((E ⊕ F )⊥, µ), δ, δ] to [(E ⊕ F, σ ⊕ τ), α+, α−], to obtain

[E,α+, α−] = [(X × (M ⊗ Cp,q+1)), ρ|Cp,q , β+, β−],

with β+ ≃ β− and β+ = ρ(ep+q+1). We show that we also have that β+ ≃ β− relative to A.
Since β+ ≃ β−, there exists a homotopy H : (X× (M ⊗Cp,q+1))× [0, 1] → X× (M ⊗Cp,q+1)
such that

(i) Ht ∈ HomEG(X)l,m((X × (M ⊗ Cp,q+1), (X × (M ⊗ Cp,q+1)),

(ii) Ht is a G-vector bundle isomorphism for all t ∈ [0, 1],

(iii) H0 = id,

(iv) H1β+H
−1
1 = β−.

Let H̃ : (X × (M ⊗ Cp,q+1)× [0, 1] → (X × (M ⊗ Cp,q+1) be the map defined by

H̃((x, v), t) = H(x, t)H((r(x), v), t)−1.

The homotopy
t→ H̃tβ+H̃

−1

is a homotopy between β− and

H1H((r(·), ·), 1)−1β+H((r(·), ·), 1)H−1
1 = H1β−H

−1
1 = β+.

Where
H((r(·), ·), 1)−1β+H((r(·), ·), 1) = β+,

because β+ : X × (M ⊗Cp,q+1) → X × (M ⊗Cp,q+1) does not depend on X and the equality
holds on the vector bundle restricted to Y . Notice that by construction, it is a homotopy
relative to Y .
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9 Periodicity theorem

In this section we will finish the proof of Theorem 7.16. We will prove that

K l,m+1
G (X,A) ∼= K l,m

G (X × [0, 1], X × {0, 1} ∪ A× I) (9.1)

and describe the isomorphism explicitly. We will base the proof on the proof in chapter III.5
and III.6 of [3] of Theorem 5.10, but change it such that it applies to the equivariant case.

9.1 The group G is finite and A = ∅

We will start with the case that G is finite and A = ∅ We will prove that Equation 9.1 holds
by showing that it follows from a more general statement about Banach algebras (Theorem

9.12). To do this, we must first obtain more convenient descriptions of K l,m+1
G (X,A) and

K l,m
G (X× [0, 1], X×{0, 1}∪A×I). We will first provide another description of K l,m+1

G (X,A).
To do this it will be convenient to have the following definition:

Definition 9.1. Let X be a G-space. We call a sequence ((Fn, σn))n∈N in EK
G(X,A)

l,m a
cofinal sequence if:

(i) For all n, k ∈ N, we have (Fn, σn)⊕ (Fk, σk) = (Fn+k, σn ⊕ σk).

(ii) For all (E, τ) ∈ EK
G(X,A)

l,m, there exists a k ∈ N and a bundle (E⊥, τ) such that

(E ⊕ E⊥, τ ⊕ τ⊥) ∼= (Fk, σk).

Example 9.2. If G is a finite group, then Lemma 7.10 implies that the sequence (Fn)n∈N
defined by

Fn :=
n⊕

i=1

K[G]⊗ C l,m,

is a cofinal sequence.

Remark 9.3. If ((Fn, σn))n∈N is a cofinal sequence in EK
G(X)l,m+1, then the sequence

n→ ((Fn, σn|Cl,m), σn(em+l+1))

is a sequence of gradations with the property that

(i) For all n, k ∈ N, we have σn(em+l+1)⊕ σk(em+l+1) = σn+k(em+l+1).

(ii) For each gradation ((E, τ), α), with (E, τ) ∈ EK
G(X) and α ∈ Grl,m(E, τ), then there

exists a n ∈ N and a gradation α⊥ on a (E⊥, τ⊥) ∈ EK
G(X)l,m such that

((E ⊕ E⊥, τ ⊕ τ⊥), α⊕ α⊥) ∼= ((Fn, σn|Cl,m), σn(em+l+1)).

We will often denote ((Fn, σn|Cl,m), σn(em+l+1)) by (Fn, σn(el+m+1)).

The following lemma shows why a cofinal sequence is a useful notion to have:
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Lemma 9.4. Let [E,α+, α−] ∈ K l,m
G (X,A) and (Fn, σn)n∈N be a cofinal sequence in EK

G(X)l,m+1.
Then, there exists an n ∈ N such that

[E,α+, α−] = [Fn, σn(el+m+1), β],

for some β ∈ Grl,m(Fn). Moreover, we have

[Fn, σn(el+m+1), β] = [Fk, σk(el+m+1), γ]

iff there exists an p ∈ N such that

σn(el+m+1)⊕ γ ⊕ σp(el+m+1) ≃ β ⊕ σk+p(el+m+1).

relative to A.

Proof. Remark 9.3 implies that there exists a gradation (E⊥, α⊥
+) and an n ∈ N such that

(E ⊕ E⊥, α⊕ α⊥
+)

∼= (Fn, σn(el+m+1)).

It follows that

[E,α+, α−] = [E,α+, α−] + [E⊥, α⊥
+, α

⊥
+] = [Fn, σn(el+m+1), α− ⊕ α⊥

+].

We now prove the second statement. Assume that

[Fn, σn(el+m+1), β] = [Fk, σk(el+m+1), γ].

By definition, there exists a gradation (L, δ) such that

σn(el+m+1)⊕ γ ⊕ δ ≃ β ⊕ σk(el+m+1)⊕ δ. (9.2)

As before, there exists a gradation (L⊥, δ⊥) and a p ∈ N such that

(L⊕ L⊥, δ ⊕ δ⊥) ∼= (Fp, σp(el+m+1)).

If we add δ⊥ to equation 9.2, we obtain

σn(el+m+1)⊕ γ ⊕ σp(el+m+1) ≃ β ⊕ σk+p(el+m+1).

Let (Fn)n∈N denote a cofinal row in E l,m+1
G (X), then we define the topological space

Grl,m((Fn)n∈N) := colimn∈NGrl,m(Fn, σn(el,m+1)),

where the inclusion Grl,m(Fn) → Grl,m(Fn+1) is given by α → α ⊕ σ1(el+m+1). We choose
σ(el+m+1) := σ1(el+m+1) ∈ Grl,m((Fn)n∈N) as a base point for π0(Grl,m((Fn)n∈N)) and give
π0(Grl,m)((Fn)n∈N) the structure of a commutative monoid by endowing it with the addition
([f ] ⊕ [g]) = [f ⊕ g]. More precisely, the addition is defined by choosing a representatives
f ∈ Grl,m(Fk) and g ∈ Grl,m(Fn) for some k, n ∈ N and map it to the class of the direct sum
f ⊕ g ∈ Grl,m(Fk+n) ⊂ Grl,m((Fn)n∈N). This is well defined, because we have

(A⊕±idF1)f ⊕σ1(el+m+1)⊕g⊕σ1(el+m+1)(A
−1⊕±idF1) = f ⊕g⊕σ1(el+m+1)⊕σ1(el+m+1).

91



for some invertible matrix A ∈ Mn+k+1(K). Since either det(A ⊕ id) or det(A ⊕ −id) is
positive, we may assume that

B(f ⊕ σ1(el+m+1)⊕ g ⊕ σ1(el+m+1))B
−1 = f ⊕ g ⊕ σ1(el+m+1)⊕ σ1(el+m+1),

for an invertible matrix B ∈Mk+n+2(K) with det(B) = 1. Since det(B) = 1. It follows that
B is homotopic the identity through invertible matrices, which implies that

f ⊕ σ1(el+m+1)⊕ g ⊕ σ1(el+m+1) ≃ f ⊕ g ⊕ σ1(el+m+1)⊕ σ1(el+m+1).

Theorem 9.5. Let (Fn)n∈N be a cofinal sequence in E l,m+1
G (X). The map Φ : π0(Grl,m((Fn)n∈N) →

K l,m
G (X, ) defined by

Φ([f ]) = [Fk, σk(el,m+1), fk],

for some k ∈ N, where fk ∈ Grl,m(Fk) ⊂ Grl,m((Fn)n∈N) is a representative of f , is a monoid
isomorphism and (π0(Grl,m((Fn)n∈N),⊕) is an abelian group.

Proof. Since Grl,m((Fn)n∈N) is Hausdorff, the image of a map h : [0, 1] → Grl,m((Fn)n∈N)
is contained in Grl,m(Fk) for some k depending on h. Lemma 9.4 now implies that Φ is
well defined. Also notice that Φ is indeed a monoid homomorphism. We now show that
Φ is surjective. Let [E,α+, α−] ∈ K l,m(X, ). By Lemma 9.4, there exists a k ∈ N and a
β ∈ Grl,m(Fk) such that

[E,α+, α−] = [Fk, σk(el+m+1), β].

Therefore, we have
Φ(β) = [E,α+, α−].

Lastly, we show that Φ is injective. Assume that

Φ(β) = [Fk, σk(el+m+1), β].

Lemma 9.4 implies that there exists a n ∈ N, such that

β ⊕ σn(el+m+1) ≃ σn+k(el+m+1).

This homotopy is a homotopy between β and σn+k(el+m+1) in Grl,m((Fn)n∈N). Thus,

[β] = [σn+k(el+m+1)] = 0.

This theorem gives a nice description of the group K l,m
G (X, ) provided that we can find a

cofinal sequence. We have shown in Example 9.2 that this is possible if G is finite. We will
now choose a cofinal sequence (Fn)n∈N to get a better description of Grl,m+1((Fn)n∈N). Let

(Fn)n∈N be a sequence in E l,m+2
G (X), where Fn := (X × (⊕n

i=1K[G]⊗C l,m+2, ρn), where ρn is
the C l,m+2 action as defined in Lemma 7.9. Remark 7.13 implies that (Fn, ρn) is a cofinal row.
It will be useful to also consider the cofinal row (F̃n, ρ̃n)|n∈N defined by F1 = (F1⊕F1, ρ1⊕ρ′1),
where ρ′1|Cl,m+1 = ρ1|Cl,m+1 and ρ′1(el+m+2) = −ρ|1(el+m+2).

With this choice of cofinal sequence, we will define the set GL(F1, ρ1|Cl,m) and show
how this set relates to the set of gradations. First, notice that Remark 7.3 says that
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EndEK
G(X)l,m((F1, ρ|Cl,m)) is a Banach algebra, where the multiplication is given by composi-

tion. As explained in Remark 4.9, we can view each morphism

A ∈ EndEK
G(X)l,m((Fn, ρn|Cl,m)) = EndEK

G(X)l,m(
n⊕

i=1

F1, ρ1|Cl,m ⊕ . . .⊕ ρ1|Cl,m)

as a matrix (Ai,j)1≤i,j≤n, with Ai,j ∈ EndEK
G(X)l,m(F1, ρ1|Cl,m). We set GLn(F1) to be the

set of matrices with coefficients in EndEK
G(X)l,m(F1, ρ1|Cl,m) which are invertible. Notice that

there is a canonical bijection

GLn(F1) ∼= AutEK
G(X)l,m((Fn, ρn|Cl,m)),

which sends a matrix to the corresponding morphism. This isomorphism induces a topology
on GLk(F1, ρ1|Cl,m). We now define the space

GL(F1, ρ1|Cl,m) := colimk→∞GL2k(F1, ρ1|Cl,m),

where the inclusion GL2k(F1, ρ1|Cl,m) → GL2k+2(F1, ρ1|Cl,m) is given by f → f ⊕ ϵ ⊕ −ϵ,
where ϵ := ρ(ep+q+2)ρ(ep+q+1).

We now define the map ( ) : EndEK
G(X)l,m(F1, ρ1|Cl,m) → EndEK

G(X)l,m(F1, ρ1|Cl,m) by

f = ρ1(el+m+1)fρ1(el+m+1).

Notice that f = f . This map induces a map : GL2k(F1, ρ1|Cl,m) → GL2k(F1, ρ1|Cl,m), by
letting it act on the matrix elements. With this map, we can define the subsets

GL−(F1, ρ1|Cl,m) := {f ∈ GL(F1, ρ1|Cl,m) | f = −f}

and
I(F1, ρ1|Cl,m) := {f ∈ GL−(F1, ρ1|Cl,m) | f 2 = −1}.

Notice that since ϵ = −ϵ and ϵ2 = −1, these definition make sense. The following propositions
show how these definitions relate to the group K l,m+1

G (X, ∅).

Proposition 9.6. There is an isomorphism

K l,m+1
G (X, ∅) ∼= π0(I(F1, ρ1|Cl,m)),

where we choose ϵ ∈ I(F1, ρ1|Cl,m) as our base point and the group structure on π0(I(F1, ρ1|Cl,m))
is defined by [f ]⊕ [g] = [f ⊕ g].

Proof. Since the sequence (F̃n, ρ̃n)n∈N is a cofinal sequence in EK
G(X)l,m+2, Theorem 9.5

implies that K l,m+1(X, ∅) ∼= π0(Grl,m+1(F̃n∈N)), where the group operation is endowed
by the direct sum. It is therefore sufficient to construct a homeomorphism between Φ :
I(F1, ρ1|Cl,m) → Grl,m+1(F̃n∈N) that preserves the base point and show that the group struc-
ture on π0(I(F1, ρ1|Cl,m)) induced by Φ and the group structure on Grl,m+1(F̃n∈N) is the
direct sum.
We first define Φ. Let

Ik(F1, ρ1|Cl,m) := {f ∈ GL2k(F1, ρ1|Cl,m) | f = −f and f 2 = −1}.
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Notice that I(F1, ρ1|Cl,m) ∼= colimk→∞Ik(F1, ρ1|Cl,m), where the inclusion Ik(F1, ρ1|Cl,m) ⊂
Ik+1F1, ρ1|Cl,m) is given by f → f ⊕ ϵ ⊕ −ϵ. We now define Φ on Ik(F1, ρ1|Cl,m by Φk(α) =
αρ2k(el+m+1) for all k ∈ N. We first check that αρ2K(el+m+1) is indeed a gradation. Notice
that

Φk(α)
2 = αρ2k(el+m+1)αρ2k(el+m+1) = αα = α(−α) = id,

αρ2k(el+m+1)ρ̃(ep) = −αρ̃(ep)ρ2k(el+m+1) = ρ̃(ep)αρ(el+m+1)

for 1 ≤ p ≤ l +m and

ρ̃k(el+m+1)α = αρ̃k(el+m+1) = −αρ̃k(el+m+1).

This implies that Φk(α) is a gradation. Also notice that Φk is continuous. Since

Φk+1(α⊕ ϵ⊕−ϵ) = α⊕ ρ(el+m+2)⊕−ρ(el+m+2) = α⊕ ρ̃k(el+m+2),

it follows that the maps Φk for k ∈ N induce a unique map Φ : I(F1, ρ1|Cl,m) → Grl,m+1(F̃n∈N).
This map is a homeomorphism, because it has an inverse, which is on (F̃k, ρ̃k|Cl,m+1 defined
by Φ−1(α) = αρ̃k(el+m+1). We leave to the reader to check that this map is well defined and
indeed the inverse.
Notice that Φ(ϵ) = ρ̃(el+m+2), which implies that the Φ maps the base point to the base
point. Also notice that Φ∗[α ⊕ β] = Φ∗[α] ⊕ Φ∗[β] and Φ−1

∗ [α ⊕ β] = Φ−1
∗ [α] ⊕ Φ−1

∗ [β].
Therefore, the direct sum give π0(I(F1, ρ1|Cl,m)) the structure of an abelian group isomorphic
to K l,m+1(X, ∅).

We will now describe the group

Kp,q(X × [0, 1], {0, 1} ×X)

in terms of GL(F1, ρ1|Cl,m). Let (F̃n, ρ̃n) be defined as before. Notice that (Fn, ρn|Cl,m+1)n∈N
is a sequence in E l,m+1

G (X). Remark 7.13 implies that (F̃n, ρ̃n)n∈N is a cofinal sequence in

E l,m+1
G (X). Let p : X × I → X denote the projection. Then, since

(p∗Fn, p
∗ρn|Cl,m+1) = ((X × [0, 1])× (⊕2n

i=1K[G]⊗ C l,m+2), ρ2n|Cl,m+1),

the sequence ((p∗F̃n, p
∗ρ̃n))n∈N is a cofinal sequence in E l,m+1

G (X×[0, 1]). We will often denote
p∗ρ̃n by ρ̃n. With this notation in place, we can show the following:

Lemma 9.7. Let (E, σ) ∈ EK
G(X × [0, 1])l,m. Then there exists a bundle (E⊥, σ⊥) ∈ EK

G(X ×
[0, 1])l,m such that

(E ⊕ E⊥, σ ⊕ σ⊥) ∼= (p∗XFn, τ),

where τn|Cl,m = ρ̃|Cl,m and

τn(el+m+1)((x, t), v) := βn((x, t), v) := (ρn(ep+q+1) cos(πt) + ρn(el+m+2) sin(πt))v

for some n ∈ N.

Proof. Since (p∗F̃n, ρ̃|Cl,m+1)n∈N is a cofinal sequence, there exists a bundle (E⊥, σ⊥) such
that

(E ⊕ E⊥, σ ⊕ σ⊥) ∼= (p∗F̃n, ρ̃n|Cl,m+1).

94



We now define the morphism f : p∗F̃n → p∗F̃n) by

f((x, t), v) = (cos(
π

2
t)− ρn(el+m+1el+m+2) sin(

π

2
t))v.

Notice that ρn(ek)◦f = f◦ρn(ek), for 1 ≤ k ≤ l+m, which implies that f ∈ EndEK
G(X×I)l,m(F̃n, ρ̃|Cl,m).

Also notice that h is invertible, with

f−1((x, t), v) = (cos(
π

2
t) + ρn(el+m+1el+m+2) sin(

π

2
t)).

Therefore, the map h is an isomorphism from (p∗F̃n, ρ|Cl,m+1) to (p∗F̃n, τ) ∈ EK
G(X×I)l,m+1),

where τ |Cl,m = ρn|Cl,m and τ(el+m+1) = f ◦ ρ(el+m+1)f
−1. Writing out the definition we

obtain

ρ̃(el+m+1)((x, t), v) = (cos(
π

2
t)− ρn(el+m+1el+m+2) sin(

π

2
t))ρ(el+m+1)(cos(

π

2
t) + ρn(el+m+1el+m+2) sin(

π

2
t))v

= (cos(
π

2
t)− ρn(el+m+1el+m+2) sin(

π

2
t))(ρn(el+m+1) cos(

π

2
t) + ρn(el+m+2) sin(

π

2
t))v

= ((cos(
π

2
)2 − sin(

π

2
)2)ρ(el+m+1) + 2 sin(

π

2
t) cos(

π

2
)ρ(el+m+1))v

= βn((x, t), v).

Notice that since (p∗Fn, τn) ⊕ (p∗Fk, τk) = (p∗(Fn+k, τn+k), the bundles (p∗Fn, ρ̃n) are a
cofinal sequence in EK

G(X × I). This yields the following result:

Lemma 9.8. Let [E,α+, α−] ∈ K l,m
G (X × [0, 1], X × {0, 1}), then we have

[E,α+, α−] = [p∗F̃n, βn, f ] (9.3)

where, f ∈ Grl,m(X × [0, 1]). Moreover, we have

[p∗F̃n, βn, f ] = [p∗F̃k, βk, h],

iff there exists a p ∈ N such that

βn ⊕ h⊕ βp ≃ f ⊕ βk+p

relative to X × {0, 1}.

Proof. This is a direct consequence of Lemma 9.4.

We now want to relate the map f from the previous Lemma to a map

f̃ : I → AutEK
G(X)l,m(F̃n, ρ̃|Cl,m).

Lemma 9.9. We may assume that the map f in equation 9.3 of the previous Lemma is
given by

f |F̃n×{t} = f̃(t)ρ̃n(el+m+1)f̃
−1(t),

Where f̃ : [0, 1] → AutEK
G(X)l,m(F̃n, ρ̃|Cl,m) is a map such that f̃(0) = id and

ρ̃n(ep+q+1)f(1) = −f(1)ρ̃(ep+q+1).
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Proof. We can view the gradation f ∈ Grl,m(p∗F̃n, ρ̃|Cl,m) as a continuous map f : [0, 1] →
Grl,m(F̃n, ρ̃|Cl,m) defined by f(t) = f |p∗E|X×{t} . Lemma 8.8 implies that there exists a map

f̃ : I → AutEK
G(X)l,m(F̃n, ρ̃|Cl,m) such that f̃(0) = id and f̃(1)f(0)f̃(1)−1 = f(1). Notice that

the construction in Lemma 8.8 is such that we even have f̃(t)f(0)f̃(t)−1 = f(t) for all t ∈
[0, 1]. Since f |p∗E|X×{0,1} = βn|p∗E|X×{0,1} , it follows that f(0) = ρ(el+m+1), f(1) = −ρ(el+m+1)
and thus

f̃(1)ρ(el+m+1)f̃(1)
−1 = −ρ(el+m+1).

Therefore, the map f̃ has the required properties.

These map have the following useful property:

Lemma 9.10. We have [p∗F̃n, βn, f ρ̃n(el+m+1)f
−1] = [p∗F̃k, βk, hρ̃k(el+m+1)h

−1], for maps
f : [0, 1] → AutEK

G(X)l,m(F̃n, ρ̃|Cl,m) and h : [0, 1] → AutEK
G(X)l,m(F̃k, ρ̃|Cl,m) as in Lemma 9.9 if

and only if there exists a homotopy

H : [0, 1]× [0, 1] → AutEK
G(X)(F̃n+k+p, ρ̃n+k+p|Cl,m),

such that H0 = f , H1 = h and Ht is a map such that Ht(0) = id and Ht(1)ρ(el+m+1) =
−ρ(el+m+1)Ht(1).

Proof. It is clear that if such a homotopy H : [0, 1]× [0, 1] → AutEK
G(X)(F̃n+k+p, ρ̃n+k+p|Cl,m)

exists, then
[p∗F̃n, βn, f ρ̃n(el+m+1)f

−1] = [p∗F̃k, βk, hρ̃k(el+m+1)h
−1].

Now assume that [Fn, βn, f ρ̃n(el+m+1)f
−1] = [Fk, βk, hρ̃k(el+m+1)h

−1] Lemma 9.8 implies that
there exists a p ∈ N such that

βn ⊕ hρ̃k(el+m+1)h
−1 ⊕ βp ≃ fρ̃n(el+m+1)f

−1 ⊕ βk+p

relative to X × {0, 1}. We can view the homotopy L : I → Grl,m(p∗F̃n+k+p, ρ̃n+l+p|Cl,m) as

a map L′ : [0, 1] × [0, 1] → Grl,m(F̃n+k+p, ρ̃n+l+p|Cl,m), where L′(t, s) = L(s)|p∗Fn+k+p|X×{t} .

We have L0(t) := L(·, 0) = βn+p(t) ⊕ h(t) and L1 = βn+p(t) ⊕ h(t). Since the homotopy is
relative to X ×{0, 1}, we have L(0, s) = ρ̃n+k+p(el+m+1) and L(1, t) = −ρ̃n+k+p(el+m+1). We
now have the following commutative diagram:

[0, 1]× {0, 1} AutEK
G(X)l,m(F̃n+k+p, ρ̃n+k+p|Cl,m)

[0, 1]× [0, 1] Grl,m(F̃n+k+p, ρ̃n+k+p|Cl,m)

i

L̃′

x→xρ̃n+k+p(ep+q+1)x−1

L′

,

where i is the inclusion an L̃′ is defined by

L̃′(t, 0) = βn(t)⊕ h(t)⊕ βp(t) and L̃′(t, 1) = f(t)⊕ βk+p(t), L̃′(0, t) = id,

for t ∈ [0, 1]. Since ([0, 1] × [0, 1], [0, 1] × {0, 1} ∪ {0} × [0, 1]) is homeomorphic to ([0, 1] ×
[0, 1], {0} × [0, 1]). We can use Lemma 8.8 to obtain a map

H : [0, 1]× [0, 1] → AutEK
G(X)l,m(F̃n+k+p, ρ̃n+k+p|Cl,m),
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such that
H|[0,1]×{0,1}∪{0}×[0,1] = L̃′

and
Hep+q+1H

−1 = L′.

The map H now is the required homotopy.

We will now rephrase this Lemma to make it into a statement about GL(F1, ρ|Cl,m). Let
Ω(GL2k(F1, ρ|Cl,m),GL−

2k(F1, ρ|Cl,m)) be the space of maps f : [0, 1] → GL2k(F1, ρ|Cl,m) with
the property that f(0) = id and f(1) ∈ GL−

2k(F1, ρ|Cl,m)) endowed with the compact open
topology. We now define

π1(GL2k(F1, ρ|Cl,m),GL−
2k(F1, ρ|Cl,m)) := colimk→∞π0(Ω(GL2k(F1, ρ|Cl,m),GL−

2k(F1, ρ|Cl,m))),

where the inclusion

π0(Ω(GL2k(F1, ρ|Cl,m),GL−
2k(F1, ρ|Cl,m))) → π0(Ω(GL2k+2(F1, ρ|Cl,m),GL−

2k+2(F1, ρ|Cl,m)))

is given by
f → f ⊕ γ1,

where
γ1(t) := cos(

π

2
t) + (ϵ⊕−ϵ) sin(π

2
t).

We choose [γ1] as our base point. On π1(GL2k(F1, ρ|Cl,m),GL−
2k(F1, ρ|Cl,m)), we can define the

addition [f ]⊕[g] = [f⊕g] (We need to choose representatives fk ∈ π0(Ω(GL2k(F1, ρ|Cl,m),GL−
2k(F1, ρ|Cl,m)))

of [f ] for some k ∈ N and
gn ∈ π0(Ω(GL2n(F1, ρ|Cl,m),GL−

2n(F1, ρ|Cl,m))) of [g] for a n ∈ N to take the direct sum and
the addition is thus defined by

[f ]⊕ [g] = [fk ⊕ gk])

We leave to the reader to verify that this addition is well defined and gives

π1(GL2k(F1, ρ|Cl,m),GL−
2k(F1, ρ|Cl,m)),

the structure of a commutative monoid. With these definitions, we can rephrase Lemma 9.9
and Lemma 9.10 to obtain the following theorem:

Theorem 9.11. The map

Ψ : π1(GL2k(F1, ρ|Cl,m),GL−
2k(F1, ρ|Cl,m)) → K l,m

G (X × [0, 1], X × {0, 1}),
which is defined on π0(Ω(GL2k(F1, ρ|Cl,m),GL−

2k(F1, ρ|Cl,m))) by

Ψ2k(f) = [(p∗XF̃k, ρ̃|Cl,m), βk, f ρ̃|k(el+m+1)f
−1].

is a monoid isomorphism and hence an isomorphism of groups.

Proof. Notice that

γ1(t)ρ̃1(el+m+1)γ1(t)
−1 = (cos(

π

2
t) + ρ̃1(el+m+2el+m+1) sin(

π

2
t))el+m+1(cos(

π

2
t)− ρ̃1(el+m+2el+m+1) sin(

π

2
t))

= (ρ̃1(el+m+1) cos(
π

2
t) + ρ̃1(el+m+2) sin(

π

2
t))(cos(

π

2
t)− ρ̃1(el+m+1el+m+2) sin(

π

2
t))

= cos(πt)ρ̃1(el+m+1) + sin(πt)ρ̃1(el+m+2)

= β1

Therefore, the map Ψ is well defined. It is clear from the definition that Φ is a monoid
homomorphism and Lemma 9.9 and Lemma 9.10 imply that Ψ is an isomorphism.
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We have now expressed the groupsK l,m+1
G (X, ∅) andK l,m+1

G (X×[0, 1], X×{0, 1}) in terms
of the Banach algebra (F1, ρ1|Cl,m). The following general theorem about Banach algebras
shows why we have reduced to these definitions:

Theorem 9.12. Let A be a Banach algebra with an algebra homomorphism ( ) : A → A
such that a = a for all a ∈ A. If A contains an element ϵ such that ϵ2 = −1 and ϵ = −ϵ,
then the map

j : π0(I(A)) → π(GL(A),GL−(A)),

defined by

j(f)(t) = cos(
π

2
t) + sin(

π

2
t)f

is a bijection.

Remark 9.13. For a general Banach algebra A, the definition of the spaces GL(A), GL−(A),
I(A), π0(I(A)) and π(GL(A),GL−(A)) are the same as the definitions we gave earlier for
the Banach algebra (F1, ρ|Cl,m).

Proof. The proof of this theorem is a bit beyond the focus of our thesis. The proof can, for
example, be found in [3] as Theorem 6.12 on page 167.
The original proof can be found in [10].

With this theorem and all the work we have done, we can at last prove the theorem:

Theorem 9.14. Let G be a finite group, then there exists an isomorphism

K l,m+1
G (X, ∅) ∼= K l,m(X × [0, 1], X × {0, 1}).

Proof. In Proposition 9.6 we showed that

K l,m+1(X, ∅) ∼= π0(I(F1, ρ1|Cl,m)).

Theorem 9.12 implies that

π0(I(F1, ρ1|Cl,m)) ∼= π1(GL2k(F1, ρ|Cl,m),GL−
2k(F1, ρ|Cl,m)).

Lastly, in Theorem 9.11 we showed that

π1(GL2k(F1, ρ|Cl,m),GL−
2k(F1, ρ|Cl,m)) ∼= K l,m(X × [0, 1], X × {0, 1}).

Which proves the theorem.

Remark 9.15. We can also describe this isomorphism more explicitly. Let [(E, σ), α+, α−] ∈
K l,m+1(X, ∅). Lemma 9.4 implies that there exists a n ∈ N and a β ∈ Grl,m+1(F̃n, ρ̃|Cl,m+1)
such that

[(E, σ), α+, α−] = [(F̃n, ρ̃|Cl,m+1), ρ̃n(el+m+2), β].

This corresponds to the class

β ∈ π0(Grl,m((F̃n, ρ̃n|Cl,m1)n∈N)

and hence to the class
[βρ2n(el+m+1)] ∈ π0(I(F1, ρ1|Cl,m).
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This class corresponds to the path

j(t) = cos(
π

2
t) + sin(

π

2
t)βρ2n(el+m+1)

in π1(GL2k(F1, ρ|Cl,m),GL−
2k(F1, ρ|Cl,m)). We have

j(t)ρ2n(el+m+1)j(t)
−1 = (cos(

π

2
t) + sin(

π

2
t)βρ2n(el+m+1))(ρ2n(el+m+1) cos(

π

2
t) + sin(

π

2
t)β)

= cos(πt)ρ2n(el+m+1) + sin(πt)β.

Using the isomorphism from Theorem 9.11 on [βρ2n(el+m+1)], we thus obtain the element

[(F̃n, ρ̃|Cl,m), βn, cos(πt)ρ2n(el+m+1) + sin(πt)β].

Let µ : K l,m+1(X, ∅) → K l,m(X × [0, 1], X × {0, 1}) be the map defined by

µ((E, σ), α+, α−) = ((p∗E, p∗σ|Cl,m), cos(t)σ(el+m+1) + sin(t)α+, cos(t)σ(el+m+1) + sin(t)α−).

Notice that µ is a well defined group homomorphism and

µ([(F̃n, ρ̃|Cl,m+1), ρ̃n(el+m+2), β]) = [(F̃n, ρ̃|Cl,m), βn, cos(πt)ρ2n(el+m+1) + sin(πt)β],

which implies that the isomorphism from Theorem 9.14 is induced by µ.

9.2 The group G is a Lie group and A = ∅.

We will now prove that if G is a Lie-group, the group homomorphism

µ : K l,m+1(X, ∅) → K l,m(X × [0, 1], X × {0, 1})

defined by

µ([(E, σ), α+, α−]) = [(p∗E, p∗σ|Cl,m), cos(t)σ(el+m+1)+sin(t)α+, cos(t)σ(el+m+1)+sin(t)α−].

is an isomorphism. As mentioned before, since a Lie group G can have an infinite number
of irreducible representations, we can no longer use a cofinal sequence in EK

G(X)l,m to show
this. However, we can still do something similar.

Let [G]K denote the set of isomorphisms classes of irreducible (real or complex) finite
dimensional representations of G. For each [N ] ∈ [G], we choose a representative N and a
G-invariant inner product ⟨·, ·⟩N on N . This inner product induces an inner product ⟨·, ·⟩N
on N ⊗ C l,m+2 which is defined by

⟨n⊗ (ei1 . . . eik),m⊗ (ej1 , . . . , ejn)⟩ =
{
⟨n,m⟩ if ei1 . . . eik = ej1 , . . . , ejn

0 else
.

For n ∈ N. We let En(X) := X ×
∏

N∈[G] ⊕n
i=1(N ⊗ C l,m+2) denote the product of these

representations/ G-modules in Top, let πn : En(X) → X denote the projection and let
pN :

∏
N∈I N → N denote the projection. We endow the space with a G-action defined by

g(x, v) = (gx, gv),
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where g · v is the unique map with the property that pN ◦ (gv) = gpN(v). Similarly, we can
endow En(X) with a C l,m+2-action ρ defined by

ρ(u)(x, v) = (x, ρ(u)v).

Notice that the space En(X) almost has the structure of a G-vector bundle, with a C l,m+2-
action, expect for the fact that the fibers of the projection π : X ×

∏
N∈[G] ⊕n

i=1(N ⊗C l,m+2)
can be infinite dimensional vector spaces. This motivates the following definition:

Definition 9.16. We define (En(X))n∈N as the category, whose objects are the spaces En(X)
for n ∈ N and the G-vector bundle X × {0} an whose morphisms are continuous G-maps
f : Ek → En such that :

1. πk = πn ◦ f .

2. For all x ∈ X, the map f |{x}×∏
N∈[G] ⊕k

i=1(N⊗Cl,m+2) : (Ek(X))x → (En(X))x is linear.

3. We have
∥f∥ := sup

n∈N
∥f |X×⊕k

i=1N⊗Cl,m+2∥N <∞.

Where ∥f |X×⊕k
i=1N⊗Cl,m+2∥ is the norm of the G-vector bundle morphism

f |X×⊕k
i=1N⊗Cl,m+2 : X ×⊕k

i=1N ⊗ C l,m+2 → X ×⊕n
i=1N ⊗ C l,m+2.

Remark 9.17. Notice that with the norm on the morphisms we defined above, the category
(En(X))n∈N is a Banach category. Therefore, the categories (En(X))l,mn∈N are also Banach
categories and the space End(En(X))l,mn∈N

((En), ρ) is a Banach algebra.

For the category (En(X))n∈N, we can define gradations and the group K l,m
G ((En(X))n∈N, )

as follows:

Definition 9.18. Let (E, f) ∈ (En)
l,m
n∈N. We call a morphism h ∈ End(En(X))l,mn∈N

(E, f) a

gradation on (E, f) if:

(i) f(ei)h = −hf(ei) for all 1 ≤ i ≤ l +m

(ii) h2 = 1

We will denote the set of gradations on (E, f) by Grl,m(E, f) and endow it with the subspace
topology.

and

Definition 9.19. Let X be a G-space. We define:

K l,m((En(X))n∈N) := {((E, f), α+, α−) | (E, f) ∈ ob((En)
l,m
n∈N), α+, α− ∈ Grl,m(E, f)}/ ∼ .

where ((E, f), α+, α−) ∼ ((E ′, f ′), β+, β−) if there exists a triple (F, γ, γ), such that

α+ ⊕ β− ⊕ γ ≃ α− ⊕ β+ ⊕ γ

through gradations.
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Remark 9.20. The proof that this is indeed a group is similar to the proof of Lemma 8.4.
Moreover, Lemma 8.7 and Lemma 8.8 still hold for the group K l,m((En(X))n∈N).

Remark 9.21. If A ⊂ X is a closed G-invariant subspace, we can also define the group
K l,m((En(X))n∈N, (En(A)n∈N)) as the group of triples

((En(X), f), α+, α−),

where α+|En(A) = α−|En(A) and we identify ((En(X), f), α+, α−) with ((Ek(X), f ′), β+, β−) if
there exists a triple (Ep(X), γ, γ), such that

α+ ⊕ β− ⊕ γ ≃ α− ⊕ β+ ⊕ γ

through gradations relative to En+k+p(A). As before, the direct sum givesK l,m((En(X))n∈N, (En(A)n∈N))
the structure of a group.

The idea is that we use the group K l,m((En(X))n∈N) to define the cofinal sequences.
To do this, we define the sequence (Ẽn, ρ̃|Cl,m+1)n∈N)

l,m+1 in (En(X × I))n∈N by

Ẽ1 := E1(X × [0, 1])⊕ E1(X × [0, 1])

and ρ̃1 = ρ⊕ ρ′, where ρ′|Cl,m+1 = ρ and ρ′(el+m+2) = −ρ(el+m+2) and

Ẽn+1 = Ẽn ⊕ Ẽ1.

We will now shows how we can relate this sequence to the group K l,m
G (X× [0, 1], X×{0, 1}).

Definition 9.22. Let I ⊂ [G] be a finite subset and Y be a compact G-space. We define the
map

P ∗
I : End(En(Y ))n∈N(En(Y )) → EndEG(X)(Y ×

⊕
N∈I

n⊕
i=1

N).

by
P ∗
I (σ) = σ|Y×

⊕
N∈I

⊕n
i=1 N

.

Remark 9.23. Notice that if M,N ∈ [G] and M ̸= N , then for the set of equivariant maps
between the representations, we have HomG(M,N) = 0. This implies that in the definition
above we have

Im(P ∗
I σ) ⊂ Y ×

⊕
N∈I

n⊕
i=1

N.

Remark 9.24. The map P ∗
I induces a homomorphism

P ∗
I : K l,m((En(Y × [0, 1])n∈N, (En(Y × {0, 1})n∈N) → K l,m(Y × [0, 1], Y × {0, 1}),

defined by

p∗I([(En, σ), α+, α−]) = ([(Y ×
⊕
N∈I

n⊕
i=1

N,P ∗
I σ), P

∗
I α+, P

∗
I α−]).

We can define the gradation βr on (Ẽn, ρ̃|Cl,m) by

βr|Ẽ|X×{t}
= ρ̃(el+m+1) cos(πt) + ρ̃(el+m+2) sin(πt).

and proceed analogously to the case where G was finite to obtain the following results:
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Lemma 9.25. Let [(E, σ), α+, α−] ∈ K l,m
G (X×[0, 1], X×{0, 1}). Then, there exists a n ∈ N,

a δ ∈ Grl,m+1((Ẽn, ρ̃|Cl,m+1) and finite set I ⊂ [G] such that

[(E, σ), α+, α−] = P ∗
I [(Ẽn, ρ̃n), βn, δ]

and
P ∗
N(δ) = P ∗

N(βn) (9.4)

for all N ∈ [G]− I.

Proof. Lemma 7.9 implies that there exists a (E⊥, σ⊥)) ∈ E l,m+1
G (X × [0, 1]), a α⊥

+ ∈
Grl,m+1(E⊥, σ⊥) and a G-module M such that

(E ⊕ E⊥, σ ⊕ σ⊥) = ((X × [0, 1])×M ⊗ C l,m+2, ρ|Cl,m+1)

and
α⊕ α⊥ = ρ(el+m+2).

Therefore, we have

[(E, σ), α+, α−] = [((X × [0, 1])×M ⊗ C l,m+2, ρ|Cl,m), ρ(el,m+1), γ],

fore some γ ∈ Grl,m(((X × [0, 1])×M ⊗ C l,m+2, ρ|Cl,m+2). Notice that

M ∼= ⊕n
i=1 ⊕

ki
j=1 Ni,

as a representation, where Ni are distinct irreducible representations. We can assume that
k1 = k2 = . . . = kn. Let I = ∪n

i=1{Ni} and let δ′ ∈ Grl,m(Ẽn) be the gradation defined by

P ∗
I δ

′(v) = γ ⊕ ρn(el+m+1),

and
P ∗
Nδ

′(v) = ρ̃n(el+m+1), (9.5)

for N ∈ [G]− I. Notice that

P ∗
I [(Ẽn, ρ̃n|Cl,m), ρ̃n(el+m+1), δ

′] = [(E, σ), α+, α−].

As in Lemma 9.8, we let f : (Ẽn, ρ̃n|Cl,m) → (Ẽn, ρ̃n|Cl,m) be the automorphisms in
End(En(X×[0,1]))l,mn∈N

((Ẽn, ρ̃n|Cl,m)) defined by

f(t) = cos(
π

2
t)− ρ̃n(el+m+1el+m+2) sin(

π

2
t).

Remark 9.20 implies that

[(Ẽn, ρ̃n|Cl,m), ρ̃n(el+m+1), δ
′] = [(Ẽn, ρ̃n|Cl,m), f ρ̃n(el+m+1)f

−1, fδ′f−1]

= [(Ẽn, ρ̃n|Cl,m), βn, δ]

with δ := fδ′f−1. Equation 9.5 implies that we also have that

P ∗
N(δ) = P ∗

I βn,

for N ∈ [G]− I.
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This Lemma allows us to prove the following proposition

Proposition 9.26. The map

Φ : K l,m
G (X × [0, 1], X × {0, 1}) → K l,m((En(X × [0, 1]))n∈N, (En(X × {0, 1}))n∈N)

defined by
Φ([(E, σ), α+, α−]) = [(Ẽn, ρ̃n), βn, δ],

where δ is defined as in the previous Lemma, is an injective group homomorphism. Moreover,
we have that if

x := [(Ẽn, ρ̃n), βn, δ], y := [(Ẽk, ρ̃k), βk, ϵ] ∈ Im(Φ),

were δ and ϵ are as in the previous Lemma, then x = y if there exist a p ∈ N such that

βn ⊕ ϵ⊕ βp ≃ δ ⊕ βk+p,

relative to X × {0, 1}.
Proof. The proof of this statement is similar to the proof of Lemma 9.4. We will only
proof that the map injective and leave the verifications of the other properties to the reader.
Assume that Φ([(E, σ), α+, α−]) = x = 0. By definition, there exists a finite subset I ⊂ [G]
such that

P ∗
I x = [(E, σ), α+, α−].

Since x = 0 and P ∗
I is a group homomorphism, we also have

P ∗
I x = P ∗

I 0 = 0

and thus x = 0.

Lemma 9.27. We may assume that the map δ in Proposition 9.26 is given by

δ(t) = f(t)ρ̃(el+m+1)f
−1(t)

where
f : [0, 1] → Aut(En(X×[0,1]))l,mn∈N

(E2n(X × [0, 1]), ρ2n|Cl,m)

is such that f(0) = id and ρ̃(el+m+1)f(1) = −f(1)ρ̃(el+m+1). Moreover, if ϵ = hρ̃(el+m+1)h
−1

is as in Proposition 9.26, then

[(Ẽn, ρ̃n), βn, δ0ρ̃(el+m+1)δ
−1
0 ] = [(Ẽn, ρ̃n), βn, δ1ρ̃(el+m+1)δ

−1
1 ]

iff there exists a homotopy H : [0, 1]2 → Aut(En(X×[0,1]))l,mn∈N
(E2n, ρ2n|Cl,m is a homotopy such

that H0 = f , H1 = h, Ht(0) = id and ρ2n(el+m+1)Ht(1) = −ρ2n(el+m+1)Ht(1) for all
t ∈ [0, 1].

Remark 9.28. The map δ(t) denotes the map δ|E|X×{t}

Proof. The proof of the statement is similar to the proof of Lemma 9.9 and Lemma 9.10.

We can do something similar for the group group K l,m+1
G (X, ∅).

For n ∈ N, Let (Fn, ρ̃n) be defined by

F1 = (E1(X)⊕ E1(X), ρ⊕ ρ′)

where ρ′|Cl,m+1 = ρ|Cl,m+1 and ρ′(el+m+1) = −el+m+1 and

(Fn+1, ρ̃n+1) = (Fn ⊕ F1, ρ̃n ⊕ ρ̃1).
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Lemma 9.29. Let [(E, σ), α+, α−] ∈ K l,m+1
G (X, ∅). Then, there exists a k ∈ N, a finite

subset I ⊂ G and a β ∈ Grl,m+1(Fn) such that

P ∗
I [(Fn, ρ̃n), ˜rho(el+m+2), β] = [(E, σ), α+, α−].

Moreover, if N ∈ [G]− I, then
P ∗
Nβ = ρ̃(el+m+2).

Proof. The proof is similar to the proof of Lemma 9.25

Proposition 9.30. The map χ : K l,m+1
G (X, ∅) → K l,m+1((En(X))n∈N) defined by

χ([(E, σ), α+, α−]) = [(Fn, ρ̃n), ρ̃(el+m+2), β],

where β is defined as in the previous Lemma, is a well defined injective group homomorphism.
Moreover, if x := [(Fn, ρ̃n), ρ̃(el+m+2), β] and y := [(Fk, ρ̃k), ρ̃(el+m+2), γ] are in the image of
χ, then x = y if and only if there exists a p ∈ N such that

ρ̃n(el+m+2)⊕ γ ⊕ ρ̃p(el+m+2) ≃ β ⊕ ˜ρk+p.

As before, we define

Grl,m+1((En)n∈N) := colimn→∞Grl,m+1((Fn, ρ̃|Cl,m+1)),

where the inclusion is given by
f → f ⊕ ρ̃1(el+m+2).

and obtain:

Theorem 9.31. The morphism

χ0 : K
l,m+1
G (X, ∅) → π0(Grl,m+1((En)n∈N))

defined by
[(E, σ), α+, α−] → [β],

where β is defined as in Lemma 9.29, is a well defined injective monoid homomorphism.

Proof. The proof is similar to the proof of Theorem 9.5.

We have now shown how we can use the category (En)n∈N to describe the groupK l,m+1(X, ∅)
and K l,m(Y × [0, 1], Y ×{0, 1}). As in the case where G was a finite group, we will use these
result to reduce the bijectivity of µ to Theorem 9.12.

As mentioned before, the space B := (E1(X), ρ|Cl,m) has the structure of a Banach
algebra, where the multiplication is given by composition. The map ( ) : B → B de-
fined by α = ρ(el+m+1)αρ(el+m+1) is an algebra homomorphism such that α = α for all
α ∈ B. We choose the element ϵ := ρ(el+m+2el+m+1) as our base point. Notice that
ϵ2 = −1 and ϵ = −ϵ. We now define the spaces GL((E1(X), ρ1|Cl,m), GL−((E1(X), ρ1|Cl,m),
I(E1(X), ρ1|Cl,m), π0(I(E1(X), ρ1|Cl,m)) and

π1(GL((E1(X), ρ1|Cl,m)),GL−((E1(X), ρ1|Cl,m)))

as before. We have
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Lemma 9.32. The map h : Grl,m+1((En(X))n∈N) → I((E1(X), ρ|Cl,m)) induced by the maps
hn : Grl,m+1(Fn, ρ̃|Cl,m+1) → I((E1(X), ρ|Cl,m)) with

hk(f) = fρ2k(el+m+1)

is a homeomorphism and hence induces a bijection

h∗ : π0(Grl,m+1((En(X))n∈N)) → π0(I((E1(X), ρ|Cl,m))).

Proof. The proof goes analogous to the proof of Proposition 9.6.

Lemma 9.33. The map

Ψ : π1(GL((E1, ρ1|Cl,m)),GL−((E1, ρ1|Cl,m))) → K l,m
G ((En(X×[0, 1]))n∈N, (En(X×{0, 1}))n∈N)

(9.6)
defined on π0(Ω(GL2k(E1, ρ1|Cl,m),GL−

2k(E1, ρ1|Cl,m)) by

Ψ2k(f) = [(Ẽk, ρ̃k|Cl,m), βk, f ρ̃(el+m+1)f
−1].

is a well defined monoid homomorphism. Moreover, we have

Im(Φ) ⊂ Im(Ψ)

and Ψ|Ψ−1(Im(Φ)) is injective. (Where Φ is the map from Proposition 9.26 )

Proof. The proof that Ψ is a well defined monoid homomorphism is the same as in the proof
of Theorem 9.11. Lemma 9.27 implies that

Im(Φ) ⊂ Im(Ψ)

and that Ψ|Ψ−1(Im(Φ)) is injective

Theorem 9.12 now says the following:

Theorem 9.34. The map j : π0(I(E1(X), ρ1|Cl,m)) → π1(GL((E1(X), ρ1|Cl,m)),GL−((E1(X), ρ1|Cl,m)))
defined by

j(f)(t) = cos(
π

2
t) + sin(

π

2
t)f.

is a bijection.

With this theorem, we can finish the proof:

Theorem 9.35. The map µ : K l,m+1
G (X, ∅) → K l,m

G (X × [0, 1], X × {0, 1}). is surjective.

Proof. We first show that the map

Ψ ◦ j ◦ h : Im(χ0) → Im(Φ),

is a monoid isomorphism. Since h and j are isomorphism and Ψ is injective on Ψ−1(Im(Φ)),
it is sufficient to show that j ◦h is well defined and surjective. Let γ ∈ Im(χ0). By definition,
there exists a finite set I ⊂ [G] such that PN(β) = ρ̃(el+m+2) for all N ∈ [G] − I. We have
h(γ) = γρ̃k(el+m+1) and

j(h(γ))(t) = cos(
π

2
t) + sin(

π

2
t)γρ̃k(el+m+1).
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Therefore, we have

Ψ ◦ j ◦ h(γ) = [(Ẽk, ρ̃k|Cl,m), βk, j(h(γ))ρ̃k(el+m+1)j(h(γ))
−1].

Notice that for N ∈ [G]− I, we have

P ∗
N(j(h(γ))ρ̃k(el+m+1)j(h(γ))

−1) = P ∗
Nβk.

Since Φ is well defined, Lemma 9.25 implies that

Φ(P ∗
I (Ψ ◦ j ◦ h(γ))) = Ψ ◦ j ◦ h(γ).

We now show that Ψ◦j◦h is surjective. Let x := [(E, σ), α+, α−] ∈ K l,m
G (X×[0, 1], X×{0, 1})

and
Φ(x) := [(Ẽk, ρ̃k), βk, γ].

Notice that there exists a finite set I ⊂ [G], such that

PN(γ) = PN(βk)

for N ∈ [G]− I and
P ∗
I [(Ẽk, ρ̃k), βk, γ] = [(E, σ), α+, α−].

Lemma 9.33 implies that Φ(x) ∈ Im(Ψ). Therefore, there exists a f ∈ π1(GL((E1(X), ρ1|Cl,m)),GL−((E1(X), ρ1|Cl,m)))
such that

Φ(x) = [(Ẽk, ρ̃|Cl,m), β|r, f ρ̃(el+m+1)f
−1].

Theorem 9.34 says that we may assume that f = j(δ), for some δ ∈ π0(I(E1(X), ρ1|Cl,m)).
Let δ′ := δρ̃k(el+m+1). Notice that δ′ ∈ Grl,m+1((En)n∈N). Let δ0 ∈ Grl,m+1((En)n∈N) be
defined by

P ∗
I δ0 := δ′

and
P ∗
Nδ := ρ̃(el+m+1).

By construction, we have

P ∗
I (Ψ ◦ j ◦ h(δ0)) = P ∗

I (Ψ ◦ j ◦ h(δ′)) = x,

Moreover, we have
P ∗
N(Ψ ◦ j ◦ h(δ0)) = ρ̃(el+m+1),

which, because Φ is well defined, implies that

Φ(x) = Ψ ◦ j ◦ h(δ0)).

Therefore, the map Ψ ◦ j ◦ h is an isomorphism. Since χ0 and Φ are injective, the maps
χ0 : K

l,m+1
G (X, ∅) → Im(χ0) and Φ : K l,m

G (X × [0, 1], X × {0, 1}) → Im(Φ) are isomorphism
and the map Ψ ◦ j ◦ h induces an isomorphism

K l,m+1
G (X, ∅) → K l,m(X × I,X × {0, 1}).

By chasing through all the identifications as in Remark 9.15 , we see that this isomorphism
is given by µ. Therefore, the group homomorphism µ is an isomorphism.
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9.3 The group G is a Lie group and A ̸= ∅

We are now almost done. We will show that the map

µ : K l,m+1
G (X,A) → K l,m

G (X × [0, 1], (X × {0, 1}) ∪ (A× [0, 1])) (9.7)

defined as before is also an isomorphism if A ̸= ∅. We will proceed in three steps. We will
first explain that µ is natural, then prove that µ is an isomorphism if Y is a point and will
then prove the general case.

If f : (X, Y ) → (Z,W ) is a G-map, then f induces a map

f̃ : (X × [0, 1], (X × {0, 1}) ∪ (Y × [0, 1])) → (Z × [0, 1], (Z × {0, 1}) ∪ (W × [0, 1])).

A computations shows that we have

f̃ ∗µ = µf ∗ (9.8)

which implies that µ is natural. We will often denote f̃ ∗ as f ∗. With this observation, we
are ready for the case A = {pt}.

Proposition 9.36. Let x0 ∈ X, such that {x0} is a G-invariant subset. The map µ gives
an isomorphism

µ : K l,m+1
G (X, {x0}) → K l,m

G (X × [0, 1], X × {0, 1} ∪ {x0} × [0, 1]).

Proof. Consider the following diagram:

0 Kl,m+1
G (X, {x0}) Kl,m

G (X, ∅) Kl,m+1
G (x0, ∅) 0

0 Kl,m+1
G (X × [0, 1], X × {0, 1} ∪ {x0} × [0, 1]) Kl,m

G (X × [0, 1], X × {0, 1}) Kl,m+1
G ({x0} × [0, 1], {x0} × {0, 1}) 0

µ

i∗X
i∗x0

µ µ

i∗X
i∗x0

where iX : (X, ∅) → (X, {x0}) and ix0({x0}, ∅) → (X, ∅) are the inclusions. Lemma 8.14
implies that the upper row is exact.
The map r : (X× [0, 1], X×{0, 1}) → ({x0}× [0, 1], {x0}×{0, 1}) defined by r(x, t) = (x0, t)
has the property that r ◦ ix0 = id. We can show with a proof similar to the proof of Lemma
8.14 that the lower row is also exact.
Since the map µ in the middle and rightmost column are isomorphism, the map µ in the
first row is an isomorphism.

We can now finally prove the Theorem:

Theorem 9.37. Let X be a compact G-space and let A ⊂ X be a closed G-invariant subset.
The map

µ : K l,m+1(X,A) → K l,m(X × [0, 1], X × {0, 1} ∪ A× [0, 1]).

defined by

µ((E, σ), α+, α−) = ((p∗E, p∗σ|Cl,m), cos(t)σ(el+m+1) + sin(t)α+, cos(t)σ(el+m+1) + sin(t)α−).

is a natural isomorphism
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Proof. The map µ is natural in the sense of equation 9.8. We now show that µ is an
isomorphism. In Lemma 8.15 we showed that the projection π : (X,A) → (X/A,A/A)
defines an isomorphism

π∗ : K l,m
G (X/A,A/A) → K l,m

G (X,A).

Now consider the diagram:

K l,m+1
G (X/A,A/A) K l,m

G (X,A)

K l,m(X/A× [0, 1], A/A× [0, 1] ∪X/A× {0, 1}) K l,m(X × [0, 1], X × {0, 1} ∪ A× [0, 1])

µ

π∗

µ

π̃∗

Where the map π̃ : (X×[0, 1], X×{0, 1}∪A×[0, 1]) → (X/A×[0, 1], A/A×[0, 1]∪X/A×{0, 1})
is the projection. Since µ is natural, the diagram commutes. With a reasoning similar to
that of Lemma 8.15, we can also show that π̃∗ is an isomorphism. Proposition 9.36 implies
that the map µ in the left column is an isomorphism. Therefore, the map

µ : K l,m+1(X,A) → K l,m(X × [0, 1], X × {0, 1} ∪ A× [0, 1])

is an isomorphism.
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A Appendix

A.1 Haar measure/integration of vector valued functions

A.1.1 Haar Measure

In this section, we will show how a continuous function f : G→ C, where G is a Lie group,
can be integrated over the Lie group G. To accomplish this we will define the Haar measure,
show how it can be constructed and prove some basic properties of the Haar measure. We
will follow the approach from section 19 of [9].
We will start with the definition of a density on a vector space.

Definition A.1. Let V be a n-dimensional real vector space. We call a function µ : V n → C
a density if for every linear map L : V → V the pullback T ∗ µ := µ ◦ (T, . . . , T ) satisfies

T ∗µ = | det(T )|µ.
Example A.2. If V = Cn and λ ∈ C, then the map µ(v1, . . . , vn) = λ| det((v1, . . . , vn))|,
where we view vi as a column of a matrix, is a density.

Let DV denote the complex vector space of densities on V .The example above actually
already describes DV .

Lemma A.3. The vector space DV is a one dimensional complex vector space.

Proof. Let e1, . . . en be a basis of V and let λ be densities on V . Let (v1, . . . , vn) ∈ V n. Then

λ(v1, . . . vn) = λ((v1, . . . , vn)(e1), . . . , (v1, . . . , vn)(en))

= | det(v1, . . . , vn)|λ(e1, . . . , en).
Thus the density is uniquely determined by its value on (e1, . . . , en) and the dimension of
D(V ) is at most 1. The example above shows that the dimension of D(V ) is at leat 1.
Therefore, D(V ) = 1.

If A : V → W is a linear map and µ : W n → C is a density on W , then we can use µ to
define a density A∗ : V n → C by

A∗µ := µ ◦ (A, . . . , A).
Now letM be a smooth manifold and let TM denote its tangent bundle. Then we can define
the density bundle DM , by DMm := D(TMm).

Lemma A.4. The density bundle is a complex line bundle.

Proof. Let χU : U → Rn be a chart . Notice that TU ∼= U ×Rn. Let µ : Rn → C denote the
density defined by µ(e1, . . . , en) = 1, where (e1, . . . , en) denotes the standard basis. We can
now define the map sx : U → DU , defined by s(x) = µ. The map sU is a local frame of DM .
If χV : V → Rn is a chart such that U ∩ V ̸= ∅, then we also obtain a section sV : U → DU .
Notice that

sV (x) = µ(eV1 , . . . , e
V
n )

= µ(T (χUχ
−1
V )x)(e

U
1 , . . . , e

U
n )

= | det(T (χUχ
−1
V )x)|µ(eU1 , . . . , eUn )

= | det(T (χUχ
−1
V )x)|sU(x).
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This implies that the frames we defined are smoothly compatible. One can check that
the charts ΦUDM → C, defined by Φ−1

U (x, v) = (χ−1
U (x), vsU) give DU a smooth structure

such that DM →M is a line bundle.

We denote the space of continuous sections of the density bundle of a manifold M by
Γ(DM). We will call a s ∈ Γ(DM) a density on M . We call a density λ ∈ γ(M) positive if
Image(λm) ⊂ [0,∞[ and λm ̸= 0 for all m ∈M .
In example A.2 we saw that a density assigns to a vector space a multiple of (the absolute
value of) the determinant. Since the determinant ‘measures’ the n-dimensional volume of
vectors, a sections s ∈ γ(DM) assigns to eachm ∈M a way to ’measure’ the volume enclosed
by the tangent vectors. We need one more definition before we can use this intuition to define
how to integrate over a density.

Definition A.5. Let M,N be manifolds, F :M → N be a diffeomorphism and λ ∈ Γ(DN),
then we define the pull-back of λ allong F by

F ∗(λ)(m) := TF (x)∗λ(F (x)).

Notice that F ∗(λ) ∈ Γ(DM).

We are now ready to define how to integrate over a density. Let U ⊂ Rn, f ∈ C0(U,C)
and Let µ ∈ Γ(DU) denote the section of the density bundle such that µx(e1, . . . en) = 1.
Then we define ∫

U

fµ :=

∫
Rn

f(x)dx,

where the second integral is the Lebesgue integral.
Now let M be a smooth manifold, (U ′, χU ′ : U ′ → U) a chart and λ ∈ Γ(DU ′) a compactly
supported density. Notice that (χ−1

U ′ )∗λ = gµ for a g ∈ C0(U,C). Therefore, we can define∫
U ′
λ :=

∫
U

(χ−1
U )∗λ =

∫
U

gdx.

It can be shown with the change of variable formula that this definition does not depend on
the choice of chart. We can now define the integral of a density over a compact manifold:

Definition A.6. Let M be a compact manifold, λ be a density on M and {(Ui, χUi
)}i∈I be a

finite cover of local trivialisations. Let ψi be a partition of unity subordinated to this cover,
then we have ∫

M

λ :=
∑
i∈I

∫
Ui

ψiλ.

This integral has the following useful properties:

Lemma A.7. Let M,N be compact smooth manifolds and let F : N → M be a diffeomor-
phism, then

(i) The integral
∫
M
λ does not depend on the choice of cover or partition of unity.

(ii)
∫
N
F ∗λ =

∫
M
λ.

(iii) If λ(v1, . . . , vn) ≥ 0 for all v1, . . . , vn ∈ TMm and all m ∈ M , then
∫
G
λ ≥ 0 and∫

G
λ = 0 implies that λ = 0.
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Proof. We leave the verification of part (i) to the reader. Part (ii) is a corollary of the change
of variable theorem. We now prove part (iii). Notice that∫

M

λ =
∑
i∈I

∫
Ui

ψiλ.

the integral
∫
Ui
ψiλ =

∫
Rn ψigidx, where gi is a continuous non-negative function. Hence, for

all i ∈ I,
∫
Ui
ψiλ ≥ 0 and

∫
Ui
ψigi = 0 if and only if ψigi = 0, which implies that

∫
M
λ ≥ 0

and
∫
M
λ = 0, if and only if λ = 0.

We can also use densities to integrate a function over a compact manifold:

Definition A.8. Let f : G → C be continuous and λ ∈ Γ(DM). Then, we have f · λ ∈
Γ(DM) and we define ∫

G

fγ :=

∫
G

(fγ).

We will now switch our attention to invariant densities on a compact Lie group G.

Definition A.9. Let G be a compact Lie group and ω ∈ Γ(DG). We cal ω left invariant if
l∗gω = ω, where lg(h) = gh. We will denote the set of invariant sections by ΓG(DG).

It turns out that there is a simple characterisation of the left invariant densities on a Lie
group.

Lemma A.10. The map pre : ΓG(DG) → D(TGe) defined by pre(λ) = λ(e), is an isomor-
phism.

Proof. First, notice that pre is linear. Let λ ∈ ΓG(DG). Then

λ(g) = (l∗g−1λ)(g) = T lg−1(g)∗λ(e).

It follows that if λ(e) = 0, then λ = 0. Thus pre is injective. We now show that pre is

surjective. Let γ ∈ D(TGe), we define λ̃ : G→ DTG, by

λ̃(g) := T lg−1(g)∗λ = λ ◦ (T lg−1(g), . . . , T lg−1(g)).

Notice that λ̃ is continuous and that for h, g ∈ G, we have

l∗hλ̃(g) = (T lh)(g)
∗λ̃(hg)

= (T lh)(g)
∗((T l(hg)−1(hg))∗λ(hg))

= (T lh)(g)
∗(λ(T lg−1(g)T lh−1(hg), . . . , T lg−1(g)T lh−1(hg))

= λ ◦ (T lg−1(g)T lh−1T lh(g), . . . , T lg−1(g)T lh−1T lh(g))

= λ ◦ (T lg−1(g), . . . , T lg−1(g))

= λ̃(g).

Therefore, λ̃ ∈ ΓG(DG) and pre is surjective.

Remark A.11. Notice that if λ ∈ D(TGe) is positive, then λ̃ is also positive.

We are now ready to define the Haar measure.
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Theorem A.12. Let G be a Lie group, then there is a unique positive density dx ∈ ΓG(DTG),
such that

∫
G
dx = 1. We call dx the Haar measure.

Proof. Let λ ∈ DTGe, such that λ > 0. Then λ̃ ∈ ΓG(DTG) is positive and Lemma A.7

implies that
∫
G
λ̃ = c ̸= 0. Therefore, dx := λ̃

c
is the required density.

We now show uniqueness. Assume that dx′ is also a Haar measure. Lemma A.10 and the
fact that DTGe is one dimensional implies that dx = adx′, for a a ∈ C. Since a = a

∫
G
dx =∫

G
adx =

∫
G
dx′ = 1, it follows that dx = dx′.

Remark A.13. We will usually denote the Haar measure by dx or dg, depending on the
variable we use.

We now state some useful properties of the Haar measure.

Lemma A.14. Let G be a compact Lie group and let dx denote the Haar measure. Let
f, g : G→ C be continuous and let λ ∈ C. then the following statements hold:

(i)
∫
G
λf + gdx = λ

∫
G
fdx+

∫
G
gdx.

(ii)
∫
G
f ◦ lgdx =

∫
G
fdx

(iii) r∗gdx = dx.

Proof. Part (i) follows directly from the definition. We now show part (ii). Notice that∫
G

f ◦ lgdx =

∫
G

(f ◦ lg)l∗g(dx) =
∫
G

l∗g(f · dx).

Because lg is a diffeomorphism, it follows that
∫
G
l∗g(f · dx) =

∫
G
fdx, which proves part

(ii). We now show that (iii) holds. We first show that r∗g(dx) = | det(TCg−1(e))|dx, where
Cg := lg ◦ r−1

g = r−1
g ◦ lg. Since dx is left invariant, we have for all g, h ∈ G that∫

G

l∗hr
∗
gdx =

∫
G

(rg ◦ lh)∗dx =

∫
G

(lh ◦ rg)∗dx =

∫
G

(rg)
∗(l∗hdx) =

∫
G

(rg)
∗dx.

Therefore, r∗gdx ∈ ΓG(DG) and r∗gdx = cdx. It follows that C∗
g−1dx = l∗g−1(r∗gdx) = cdx

Applying pre to the equation, we obtain

C∗
g−1dx(e) = TCg−1(e)∗dx(e) = | det(TCg−1(e))|dx(e),

which implies that c = | det(TCg−1(e))| We now show that | det(TCg−1(e))| = 1. Since
TCgh = TCg(e)TCh(e), it follows that

| det(TC(gh)−1(e))| = | det(TCh−1(e)TCg−1(e)| = | det(TCh−1(e))|| det(TCg−1(e))|.
Therefore, the map h : G → (0,∞) defined by h(g) = | det(TCg−1(e))| gives a group homo-
morphism between G and (0,∞), where the group structure on (0,∞) is given by multipli-
cation.. Since G is compact, it follows that h(G) is a compact subgroup of (0,∞). Since the
only compact subgroup of (0,∞) is 1, we have h(g) = 1 for all g ∈ G, which proves (iii).

Remark A.15. If G is a zero dimensional compact Lie group (a finite group), we can not
use densities to define the Haar measure. However, we can define our Haar-measure as∫

G

fdx :=
1

|G|
∑
g∈G

f(g),

where |G| denotes the number of elements of G.
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Remark A.16. In this section, we have defined the Haar measure using densities, which
requires our group to be a Lie group. It is possible to define the Haar measure for any locally
compact (Hausdorff) group. The construction for the more general case can for example be
found in section 9 of [2]

A.1.2 Integration of vector valued functions

In the previous section, we showed how the integral
∫
G
fdx is defined for a continuous

function f : G → C. In this section, we show how a function f : G → Cn can be integrated
using the Haar measure.

Definition A.17. Let G be a Lie-group, let dx denote the Haar measure and let f =
(f1, . . . , fn) : G→ Kn, with K = R or C be a continuous function. Then we define:∫

G

fdx := (

∫
G

f1dx, . . . ,

∫
G

fndx).

This integral has the following useful properties:

Lemma A.18. Let f, g : G → Kn be continuous functions. Then the following statements
hold:

(i)
∫
G
λf + gdx = λ

∫
G
fdx+

∫
G
gdx

(ii) If A : Kn → Km is a linear map, then∫
G

Afdx = A

∫
G

fdx.

(iii) If g : Kn → Kn → K is an inner product and ∥ · ∥ is the norm associated to the inner
product, then

∥
∫
G

fdx∥ ≤
∫
G

∥f∥dx.

(iv) We have
∫
G
f ◦ lgdx =

∫
G
fdx.

Remark A.19. Part (ii) of this lemma implies that the integral does not depend on the
choice of basis and is hence defined for functions f : G → V , where V is an n-dimensional
K vector space. This holds because if f = (f1, . . . , fn) with respect to a basis (e1, . . . , en)
and f = (f ′

1, . . . , f
′
n) with respect to a basis (f1, . . . , fn) and A : V → V the linear map such

that A(fi) = f ′
i , then∫

G

(f ′
1, . . . , f

′
n)dx =

∫
G

A(f1, . . . , fn)dx = A

∫
G

(f1, . . . , fn).

Proof. Part (i) and (ii) follow directly from the fact that for a functions f, g : G → K and
µ ∈ K, we have ∫

G

λf + gdx = λ

∫
G

fdx+

∫
G

gdx.

Part (iv) follows directly from part (ii) of Lemma A.14, because∫
G

f ◦ lgdx = (

∫
G

f1 ◦ lgdx, . . . ,
∫
G

fn ◦ lgdx) = (

∫
G

f1dx, . . . ,

∫
G

fndx) =

∫
G

fdx.
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We now prove statement (iii). Part (ii) implies that we can assume that the standard
basis is an orthonormal basis of Kn. Notice that

∥
∫
G

fdx∥ = ∥
∑
i∈I

∫
Ui

ψifdx∥ ≤
∑
i∈I

∥
∫
Ui

ψifdx∥,

and ∫
G

∥f∥dx =

∫
G

∑
i∈I

ψi∥f∥dx =
∑
i∈I

∫
Ui

∥ψif∥dx,

it is sufficient to show that for all i ∈ I,

∥
∫
Ui

ψifdx∥ ≤
∫
Ui

∥ψif∥dx.

Therefore, it is sufficient to show that

∥
∫
Kn

fdx∥ ≤
∫
Kn

∥f∥dx,

where f = (f1, . . . , fn) is a continuous function with compact support and dx denotes the
Lebesgue integral. Because for all 1 ≤ i ≤ n, the function fi is integrable, there exists
a sequence of simple functions (functions with a finite image finite) {ϕk

i }k∈N such that
Re|ϕk

i (v)| ≤ |Ref(v)| and |Imϕk
i (v)| ≤ |Im(v)| for all v ∈ Kn and

lim
k→∞

∫
Kn

ϕk
i dx =

∫
G

fidx.

For all k ∈ N, we can assume that ϕk
i =

∑m
j=1 a

j
iχAj

, where for all 1 ≤ i ≤ k and 1 ≤ j ≤ m,

aji ∈ K, Ai ⊂ Kn are disjoint and χAi
: Kn → K is defined by χ(x) = 1 if x ∈ Ai and 0 else.

Let φk = (ϕk
1, . . . , ϕ

k
n), then

∥
∫
G

φkdx∥ = ∥(
m∑
j=1

aj1dx(Ai), . . . ,
m∑
j=1

ajndx(Aj))∥ ≤
m∑
j=1

∥(aj1, . . . , ajn)∥dx(Ai),

where dx(Ai) is the measure/volume of Ai. Because |Reϕk
i (g)| ≤ |Ref(g)| and |Imϕk

i (g)| ≤
|Imf(g)| for all g ∈ G and 1 ≤ i ≤ k, we have |aji | ≤ |fi(g)| for all g ∈ G. Since our basis is

orthonormal, we have ∥(aj1, . . . , ajn)∥ ≤ ∥f(g)∥ for all g ∈ Aj. Since the Ai are disjoint, the
function ∥ϕk∥ is a simple function such that ∥ϕk∥ ≤ ∥f∥. Therefore,

∥
∫
G

ϕkdx∥ ≤
m∑
j=1

∥(aj1, . . . , ajn)∥dx(Ai) =

∫
G

∥ϕk∥dx ≤
∫
G

∥f∥dx

and

∥
∫
G

fdx∥ = lim
k→∞

∥
∫
G

φkdx∥ ≤ lim
k→∞

∫
G

∥ϕk∥dx ≤
∫
G

∥f∥dx.
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A.2 Representation of groups

In this section, we will introduce some notions of representation theory of Lie groups. The
aim of this section is to develop enough theory to state the Peter-Weyl Theorem. This
section is based on chapter 20, 21 and 23 of [9].
In this section, G will always be a compact Lie group. We start with the definition of a
representation:

Definition A.20. Let V be a Banach space over C (or R). A complex (or real) rep-
resentation (α, V ) of G in V is a continuous left action α : G × V → V , such that
α(g) := α|{g}×V : V → V is a linear map. We will call the representation finite dimen-
sional if V is finite dimensional.

Example A.21. If we set V = C and G = S1, then the map α : S1 × C → C, defined by

α(eiϕ, z) = eiϕ · z,

is an example of a complex representation.

Example A.22. If we set V = R2 and G = S1. The map α : S1 × R2 → R2, defined by

α((cos(ϕ), sin(ϕ))) :=

(
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)
is an example of a real representation of S1. Notice that this representation is obtained from
the example above, by forgetting the complex structure.

Example A.23. Let G be a Lie group and let V = L2(G) := {f : C → G :
∫
G
|f 2|dx <

∞}/ ∼, where we identify functions if ∥f − g∥L2(G) =
∫
G
|f − g|2dx = 0. Notice that

(L2(G), ∥ · ∥G) is a Banach space. The maps L,R : G× L2(G) → G, defined by

Lgf = f ◦ lg−1

and
Rg = g ◦ rg

where rg(x) = xg and lg(x) = gx, are examples of infinite dimensional representations.

We have now seen some examples of representations. Just like G-vector bundles, some
representations can be constructed using other representations. This motivates the following
definition:

Definition A.24. Let (α, V ) be a representation of G and let V ′ ⊂ V be a linear subspace.
We call V ′ an invariant subspace if α(g)V ′ ⊂ V ′ for all g ∈ G. We call V an irreducible
representation if 0 and V are the only closed invariant subspaces and V ̸= 0.

Remark A.25. The representation of Example A.22 is an example of an irreducible repre-
sentation.

To write a representation (α, V ) as a sum of irreducible representation our representation
must be unitary (V has an inner product ⟨·, ·⟩, such that ⟨α(g)v, α(g)w⟩ = ⟨v, w⟩ for all
g ∈ G and v, w ∈ V ). The following lemma says that this is possible for finite dimensional
representations:
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Lemma A.26. Let (α, V ) be a representation of G. Then we can endow V with an inner
product, such that the representation is unitary.

Proof. This is a special case of Lemma 2.33 where we view our representation as a G-vector
bundle over a point.

This lemma has the following useful consequences:

Lemma A.27. Let (α, V ) be a finite dimensional representation of G and let U be an
invariant subspace, then there exists an invariant subspace H⊥, such that V = H ⊕H⊥.

Proof. This is a special case of Proposition 2.34, where we again view our representation as
a G-vector bundle over a point.

Proposition A.28. Let (α, V ) be a finite dimensional representation. Then there exists
finite dimensional irreducible representations (αi, Vi) for 1 ≤ i ≤ n, such that V = ⊕n

i=1Vi
and α = (α1, . . . , αn)

Proof. We proof the theorem with induction on the dimension of V . Notice that the propo-
sition holds if dim(V ) = 1. Now assume that the proposition holds for representations of
dimension n and that dim(V ) = n+ 1. If V is irreducible, then the proposition holds. If V
is not irreducible, then V has an invariant subspace V ̸= W ̸= 0. Lemma A.27 implies that
V = W ⊕W⊥, with dim(W ), dim(W⊥) < dim(V ). Therefore, the proposition holds for W
and W⊥ and thus for V = W ⊕W⊥.

For the rest of this section, we will assume that our representations are complex repre-
sentations.
We will now define the notion of a morphism between representations.

Definition A.29. Let (V, α) and (W,β) be representations. A linear map L : V → W is an
equivariant map if for all g ∈ G, we have L ◦ α(g) = β(g) ◦ L.

Remark A.30. If we view V and W as G-vector bundles over a point, then the notion of
an equivariant map between these G-vector bundles coincides with the definition above.

It turns out that there are not many morphisms between finite dimensional irreducible
representations:

Lemma A.31. If (V, α) and (W,β) are finite dimensional irreducible representations, the
following statements hold:

(i) If A : V → V ′ is equivariant and not an isomorphism, then A = 0.

(ii) We have EndG(V ) := {A : V → V | A is an equivariant map} = Cid.

Proof. We first prove (i). Since A is equivariant, it follows that β(g)(Av) = A(α(g)v).
Therefore, im(A) is an invariant subspace of W . With a similar argument, it can be shown
that ker(A) is an invariant subspace of V . Since V is irreducible, we have ker(A) = V or 0. If
ker(A) = V , the proposition holds. Now assume that ker(A) = 0. Since W is irreducible, we
have im(A) = 0 or W . If im(A) = 0, it follows that W = 0, which leads to a contradiction.
If im(A) = W , then A is an isomorphism, which also leads to a contradiction. Therefore,
ker(A) = V and A = 0.
We now show (ii). Let A ∈ End(V ). Let λ ∈ C be an eigenvalue of A. Since we are
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working with complex vector spaces, there exists a 0 ̸= v ∈ V , such that Av = λv. Let
w ∈ V . Since (α, V ) is irreducible, there exists g1, . . . , gn ∈ G and λ1, . . . , λn ∈ C, such that
w =

∑n
i=1 λiα(gi)v. We can now compute

Aw = A(
n∑

i=1

λiα(gi)v) =
n∑

i=1

λiAα(gi)v =
n∑

i=1

λiα(gi)Av =
n∑

i=1

λiα(gi)λv = λ

n∑
i=1

λiα(gi)v = λw,

which implies that A = λid. Because (µ · id)α(g) = α(g)(µ · id) for all µ ∈ C and g ∈ G, it
follows that

EndG(V ) = Cid.

We will now assign a space of functions to a representation.

Definition A.32. Let (α, V ) be a finite dimensional unitary representation. A matrix ele-
ment of (α, V ) is a function mv,w : G→ C, defined by

mv,w(x) = ⟨π(x)v, w⟩,

where v, w ∈ V . We denote the space of matrix elements of α by Cα(G).

Remark A.33. Notice that because V is finite dimensional, the space Cα(G) is also finite
dimensional.

The space Cα(G) can also be described in the following way:

Lemma A.34. Let f ∈ Cα(G), then there exists a linear map A : V → V , such that
f(x) = tr(π(x)A). Also, if A : V → V is a linear map, then tr(π(·)A) ∈ Cα(G).

Proof. For u, v ∈ V , we define the map Tu,v : V → V by Tu,v(x) = ⟨x, u⟩v. Notice that
tr(Tw,v) = v. This holds, because if (v, e1, . . . , en−1) is a basis of V , then with respect to this
basis we have

Tw,v =


⟨v, w⟩ ⟨e1, w⟩ . . . ⟨en, w⟩
0 0 . . . 0
...

...
...

0 0 . . . 0

 ,

which implies that tr(Tw,v) = ⟨v, w⟩.
Therefore, mv,w(x) = tr(α(x)Tw,v) and

k∑
i=0

mvi,wi
(x) = tr(α(x)

k∑
i=0

Twi,vi),

which proves the first claim. Now let A : V → V be a lineair map. Let {v1, . . . , vn} be a
basis of V . Then

A =
∑

1≤i,j≤n

⟨Avj, vi⟩Tvj ,vi .

This holds, because we have

(
∑

1≤i,j≤n

⟨Avj, vi⟩Tvj ,vi)vk =
∑

1≤i≤n

⟨Avk, vi⟩Tvk,vi)vk =
∑

1≤i≤n

⟨Avk, vi⟩vi = Avk.
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for all 1 ≤ k ≤ n. Therefore,

tr(α(x)A) = tr(α(x)
∑

1≤i,j≤n

⟨Avj, vi⟩Tvj ,vi)

=
∑

1≤i,j≤n

⟨Avj, vi⟩tr(α(x)Tvj ,vi)

=
∑

1≤i,j≤n

⟨Avj, vi⟩mvi,vj(x) ∈ Cα(G).

On L2(G), we define the representation (R,L) : (G × G) × Cα(G) → Cα(G), by
(Rg, Lh)(f) = Rx ◦ Lh(f). The matrix elements now have the following properties:

Lemma A.35. Let (V, α) and (W,β) be finite dimensional irreducible unitary representa-
tions. Then the following holds:

(i) Cα(G) is an (Rg, Lh) invariant subspace of L2(G).

(ii) If there exists an equivariant isomorphism L : V → W , then Cα(G) = Cβ(G).

(iii) If (V, α) and (W,β) are not isomorpic, then Cα(G) ⊥ Cβ(G) in L
2(G).

Proof. We first show (i). Notice that

(Rg, Lh)(tr(α(·)A))(x) = tr(α(h−1xg)A) = tr(α(h−1)α(x)α(g)A) = tr(α(x)(α(g)Aα(h−1))).

Since α(g)Aα(h−1) is lineair, this implies that tr(α(x)(α(g)Aα(h−1))) ∈ Cα(G). Second, we
show (ii). Notice that for all g ∈ G, we have

tr(α(g)A) = tr(α(g)L−1LA) = tr(L−1β(g)LA) = tr(β(g)LAL−1).

Since A → LAL−1 is a bijection from End(V ) onto End(V ′), It follows with lemma A.34
that Cα(G) = Cβ(G).
Lastly, we prove (iii). Let Lw′,w : V → V ′ be the map defined by

Lw,uv =

∫
G

⟨α(g)v, u⟩β(g−1)wdg,

where u ∈ V and w ∈ W . Notice that

Lw,uα(h)v =

∫
G

⟨α(gh)v, u⟩β(h)β(gh)−1)wdg

= β(h)

∫
G

⟨α(gh)v, u⟩β(gh)−1)wdg

= β(h)

∫
G

⟨α(g)v, u⟩β(g−1)wdg

= β(h)Lw,uv.
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Thus Lw,u is equivariant and lemma A.31 implies that Lw,u = 0. Let w′ ∈ W . Notice that
the map ⟨·, w′⟩ : W → C is linear. Lemma A.18 implies that

0 = ⟨Lw,uv, w
′⟩ = ⟨

∫
G

⟨α(g)v, u⟩β(g−1)wdg, w′⟩dg

=

∫
G

⟨α(g)v, u⟩⟨β(g−1)w,w′⟩dg

=

∫
G

mα
v,u(g)m

β
w′,w(g)dg

= ⟨mα
v,u,m

β
w′,w⟩L2(G).

Thus Cα(G) ⊥ Cβ(G) in L
2(G).

We are now ready to state the Peter-Weyl theorem. Let [G] denote the set of isomorphism
classes of finite dimensional irreducible representations of G. Then the following statement
holds:

Theorem A.36 (Peter-Weyl theorem). The subspace⊕
α∈[G]

Cα(G)

is dense in L2(G).

Proof. The proof of this theorem can, for example, be found in chapter 25 of [9]

A.2.1 Equivariant maps between representations

In section we will elaborate a bit on Lemma A.31 and will describe the set Hom(V,W ) of
equivarinat maps between two finite dimensional representations (V, α) and (W,β) of G.

Lemma A.37. Let (V, α) be an irreducible real representation of G. We have

EndG(V ) ∼= R, C or H.

Proof. We show that EndG is a finite dimensional associative division algebra over R. First,
notice that in the proof of part (i) of A.31 we did not use that the representation was
complex. Hence, if A ∈ EndG(V ) and A is not an isomorphism, then A = 0. Also notice that
EndG(V ) ⊂ End(V ) is a sub vector space and hence finite dimensional. If A,B ∈ EndG(V ),
then AB ∈ EndG(V ). Therefore, EndG(V ) is a finite dimensional associative algebra over
R. Notice that idV ∈ EndG(V ). If A ∈ EndV (G) and A ̸= 0, then A is an isomorphism and
A−1 exists . Since lg ◦ A = A ◦ lg it follows that

A−1 ◦ lg = A−1 ◦ lg ◦ A ◦ A−1 = A−1 ◦ A ◦ lg ◦ A−1 = lg ◦ A−1.

Therefore, we have A−1 ∈ EndG(V ) and EndG(V ) is a finite dimensional associative division
algebra over R. This implies that EndG(V ) ∼= R, C or H

Theorem A.38. Let (V, α) be a complex (or real) representation and let A ∈ AutG(V ).
Then A is homotopic through equivariant automorphism of G to id (or ±1id⊕ . . .⊕±nid)
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Proof. We showed that there exists (non-isomorphic) irreducible representations (Vi, αi) for
1 ≤ i ≤ n, such that

(V, α) ∼= (
n⊕

i=1

ki⊕
j=1

Vj,

n⊕
i=1

ki⊕
j=1

αj).

Since HomG(Vi, Vj) = 0 if i ̸= j, it follows that

HomG(V, V ) ∼= HomG(
n⊕

i=1

ki⊕
i=1

Vi,

n⊕
i=1

ki⊕
i=1

Vi) ∼= EndG(

k1⊕
i=1

V1)⊕ . . .⊕ EndG(

kj⊕
i=1

Vn).

If the representation is complex, then End(Vi) = Cid, which implies that

EndG(

kj⊕
i=1

Vj) ∼= GLkj(C).

and
HomG(V, V ) ∼= GLk1(C)⊕ . . .⊕GLkn(C).

Since GLn(C) is connected, it follows that HomG(V, V ) is connected and hence that A is
homotopic to the identity. If the representation is real, then we have EndG(Vj) ∼= GLkj(Kj),
with Kj = R, C or H. Notice that this implies that

HomG(V, V ) ∼= GLk1(K1)⊕ . . .⊕GLk1(Kn).

Since GLkj(Kj) has at most two connected components and each component contains id
and/or −id, the claim follows.

A.2.2 Group ring

In this section, we will introduce the group ring and prove some basic results about it. We
start with the definition:

Definition A.39. Let G be a group and K a field. The group ring is K[G] is a K-algebra
which is defined as follows: It is the free K-vector space over G, with a multiplication which
is defined on its basis elements by

(λ1g1) · (λ2g2) = (λ1λ2)(g1g2),

where λ1, λ2 ∈ K, g1, g2 ∈ G, λ1λ2 is the product in K and g1g2 is the product in G.

Remark A.40. Notice that K[G] also has the structure of a representation of G, where the
G-action is given by

g · (
n∑

i=1

λigi) =
n∑

i=1

λi(ggi).

The group ring has the following useful property:

Lemma A.41. Let (V, α) be an irreducible representation of G, v ∈ V − {0} and let π :
K[G] →M be the linear map defined by

π(
n∑

i=0

λigi) =
n∑

i=0

λiα(gi)v,

Then π is surjective.
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Proof. Notice that by construction Im(π) is an invariant subspace of M . Since v ∈ Im(π),
we have Im(π) ̸= 0. Since M is irreducible, this implies that Im(π) =M ,

Remark A.42. Notice that if G is finite, then K[G] is a finite dimensional representation
of G and π is a surjective equivariant map between these representations.

Lemma A.43. Let (V, α) be a finite dimensional representation of a finite group G. Then,
there exists a finite dimensional representation (V ⊥, α⊥) such that

(V ⊕ V ⊥, α⊕ α⊥) ∼=
n⊕

i=1

K[G].

Proof. Proposition A.28 implies that there are representations (Vi, αi), such that

(V, α) ∼= (
n⊕

i=1

Vi,

n⊕
i=1

αi).

Lemma A.41 implies that there exists a surjective equivariant map

π :
n⊕

i=1

K[G] → (
n⊕

i=1

Vi,⊕n
i=1αi).

If we view these representations as G-vector bundles over a point, then Lemma 2.35 says
that there exists a representation (V ⊥, α⊥), such that

V ⊕ V ⊥ ∼= (
n⊕

i=1

Vi)⊕ V ⊥ ∼=
n⊕

i=1

K[G].
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