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Abstract

This thesis is about Koopman operator theory. The first, main, chapter of
this thesis concerns the connection between classical linear subspace meth-
ods and Koopman operator theory. We show that these are very much related.
The Univariate Principal Components (UPC) algorithm can be used to con-
struct approximations of Koopman eigenfunctions, lying within the span of
delay coordinates. In general these are poor eigenfunction approximation, but
provide a good Koopman mode decomposition, when compared to Extended
Dynamic Mode Decomposition (EDMD) on several low-dimensional examples.

The short second chapter concerns an investigation into the usage and lim-
itations of parameter estimation of discrete-time dynamical systems from par-
tial measurements using Koopman operator theory. We argue that including
delay coordinates allows for the estimation of all parameters, but that doing so
gives rise to a computational issue in computing Galerkin inner products. We
propose to overcome this by continuous approximation of the empirical distri-
bution. We are not able to substantiate these ideas with numerical results. We
find that the computational costs are too high, and propose to tackle this by
resorting to polynomial approximation, for which integration and optimization
are easier.
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Preface
My study in mathematics started with a desire to study complex systems, in par-
ticular the economy. For my thesis I finally saw the opportunity to delve into the
topic. Originally, I formulated my research interested as follows: system identi-
fication from incomplete measurements for complex adaptive systems with forcing,
with application to the economy. Koopman operator theory had caught my interest
somewhere earlier during the master, and has also lead me to ask professor Jason
Frank to be my supervisor.

At the beginning of my thesis period I started looking into Koopman operator
theory and its connections to parameter estimation. This drove me into various
directions. I encountered an article [4] which hinted at connecting linear subspace
identificationmethods with Koopman identificationmethods. Attempts to connect
these did not bring me much. However, I did notice a strong connection between
subspace identification methods and Koopman operator theory, but without an
application to parameter estimation.

Finally, I distinguished two seperate research interests. Firstly my original in-
terest in parameter estimation for economics using Koopman operator theory, and
secondly the connection between linear subspace methods and Koopman opera-
tor theory. This culminated in a split thesis, with a short chapter on parameter
estimation for discrete-time dynamical systems from partial measurements, and
a large chapter on the latter topic.

The outcomes of my research into Koopman identification are limited. I argue
that including delay coordinates as observables in the Koopman operator approx-
imation allows for the estimation of all parameters. However, it brings with it a
practical challenge in the computation of inner products. I suggest that this chal-
lenge might be met by resorting to polynomial approximation. Unfortunately, I am
not able to provide numerical results.

The reseach into the connection between linear subspace methods and Koop-
man operator theory has delivered. Both theoretically and numerically I show that
linear subspace methods can be used to obtain an approximate Koopman mode
decomposition. I call the algorithm Subspace Koopman Algorithm. In comparison
to EDMD, the mode decomposition as provided by SKA offers a better description
as measured in terms of predictable power, as tested in various examples.

During my thesis Jason Frank has supported me by providing on a contin-
uous basis a listening ear, constructive feedback, suggestions and a lot of good
questions. I sometimes had a tendency to concentrate my efforts on a certain
topic, without first analysing my motives for working on the topic. Jason Frank
then asked the questions which made me realize this. I would like to thank Jason
Frank for being my supervisor.
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1 Introduction
The topic of this thesis is the approximation of the Koopman operator. Koopman
operator theory [3] states that autonomous dynamical systems have linear dy-
namics in the space of observables even when the dynamics in the state space
are non-linear. In this work, we consider the discrete case of dynamics given by
a map f : X → X, on state space X ⊆ Rn. Observables are functions on the state
space g : X→ C. Here C is the set of complex numbers. Given a function space G
of observables that is closed under composition with f , the Koopman operator is
the linear map K : G→ G defined as K(g) := g ◦ f .

Often one is interested in obtaining a triplet of Koopman eigenfunctions φi,
eigenvalues λi, and modes vi. Denote by id : X→ X ⊆ Rn the vector valued observ-
able, called the identity observable, defined by id(x) = x for all x ∈ X. The Koopman
modes relate the eigenfunctions to the state space dynamics by id =

∑∞
i=1 viφi.

One of the useful characteristics of Koopman operator theory is the availability
of data-based methods that compute approximations of some of the aforemen-
tioned quantities. In [10] (introduction) and [15] an overview of these algorithms
is given.

The most frequently used algorithm is Extended Dynamic Mode Decomposi-
tion (EDMD) [9, 10]. To use EDMD one needs to specifiy a library of observable
functions, GN = {ψi}Ni=1. EDMD then computes an approximation of the Koopman
operator and related quantities. Per definition the approximate eigenfunctions
lie in the space spanned by the library of observables, GN = span(GN). Such ap-
proximations only make sense when GN contains an (almost) Koopman invariant
subspace. In most situations one is not only interested in obtaining eigenfunc-
tions and values, but in obtaining the modes too. Because the Koopman modes
are the expansion coefficients of expressing the identity observable in terms of the
eigenfunctions, getting an approximation of the modes requires that the identity
observable lies in or close to the Koopman invariant subspace contained in G.
One of the difficulties [10, 11, 16, 17, 18, 19] in using EDMD is in choosing a li-
brary of observables which contains a Koopman invariant subspace that includes
the identity function.

This thesis is divided in two parts. In the first part we investigate how the
UPC algorithm, a linear subspace algorithm, can be used to obtain an approxi-
mate Koopman mode decomposition. In the second part we will investigate how
Koopman operator theory can be used to simulation-free estimate parameters of
models from partial measurements. We conclude this introduction by providing
a basic introduction in to Koopman operator theory and EDMD.

Koopman Operator Theory
Throughout this work we will adopt ideas and notation from [9] in discussing
Koopman operator theory and EDMD. Let X ⊆ Rn be some state space, and f be
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some map providing the dynamics:

xt+1 = f(xt).

We call g : X→ C an observable function. Let G be some function space of observ-
ables which is closed under composition with f :

g ∈ G⇒ g ◦ f ∈ G.

The Koopman operator K : G→ G is defined as

K(g) := g ◦ f.

A Koopman eigenfunction φ, is a function that satisfies K(φ) = λφ, for some
eigenvalue λ ∈ C. Denote by {φi}∞i=1 the Koopman eigenfunctions. The Koopman
modes {vi}∞i=1, vi ∈ Cn are defined by id =

∑∞
i=1 viφi. The modes can be interpreted

as the expansion coefficients of expanding id in the eigenfunction basis.
The Koopman operator has gained a lot of attention recently because of the fact

that it is a linear operator, irrespective of whether the map f is linear or non-linear.
This allows for both an easy approximation of the Koopman operator from data,
as well as a Galerkin method to construct a projected Koopman operator given a
model, as discussed later. The Koopman operator is an infinite dimensional oper-
ator; in order to be able to work with the Koopman operator we look at projections
onto a finite dimensional space. Assuming that G is a Hilbert space with linearly
independent basis {ψi}∞i=1, we denote by GN a finite dimensional subspace of G,
given by GN := span(ψ1, ψ2, ..., ψN). Furthermore, assume that X is measurable,
and µ is some measure on X, we define by PµN : G→ G the projection operator:

PµNg = argming̃∈GN
‖g̃ − g‖µ.

Where the norm is defined with respect to the inner product 〈f, g〉µ :=
∫
X fḡ dµ,

where ·̄ denotes the complex conjugate. We introduce the shorthand notation
KN : GN → GN to be the Koopman operator projected onto a finite dimensional
subspace by KN := PµNK. Such finite dimensional linear operators can be repre-
sented in matrix form by Kµ

N ∈ RN×N , as defined by

KµN(g) ≡ agK
µ
NΨ,

for g = agΨ, where Ψ : X→ CN is the vector function Ψ = [ψ1, ψ2, ..., ψN ]>, ag ∈ CN is
a row vector, and > denotes the matrix transpose.

Let φ̂ be an eigenfunction of KN , with eigenvalue λ̂. Since KN is an operator on
GN , we have φ̂ ∈ GN , and hence φ̂ = aφ̂Ψ for some = aφ̂ ∈ CN By definition of an
eigenfunction we have

λ̂aφ̂Ψ = λ̂φ̂ = KN(φ̂) = aφ̂KNΨ.

It follows that if aφ̂ is a left eigenvector of KN , then φ̂ = aφ̂Ψ is an eigenfunction of
KN .
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Let WKN = KNΛ be an eigenvector decompositon of KN , with W a matrix of
left eigenvectors and Λ a diagonal matrix with eigenvalues. Using the notation
Φ̂ = [φ̂1, φ̂2, ..., φ̂N ]>, a vector function of Koopman eigenfunctions, we arrive at

Φ̂ = WΨ.

Let B be the matrix of expansion coefficients, of expanding id in terms of ψ, that
is B is defined by PµN id = BΨ. Finally, let v̂i be the approximate Koopman modes,
such that PµN id =

∑N
i=1 v̂iφ̂i, or in matrix form PµN id = V Φ̂. By some simple manip-

ulation, the approximate Koopman modes are given by

V = BW−1.

EDMD
For simplicity, we assume for now that full state measurements are available, so h
is the identity function. The EDMD algorithm is a method to approximateKµ

N from
data. For x0, x1, ..., xM and x#

0 , x
#
1 , ..., x

#
M data points satisfying x#

t = f(xt), define the
matrices

ΨX = [Ψ(x0)|Ψ(x1)|...|Ψ(xM)] and ΨX# = [Ψ(x#
0 )|Ψ(x#

1 )|...|Ψ(x#
M)].

Furthermore, throughout this thesis we denote by ρ the empirical measure:

ρ :=
1

M

M∑
t=0

δxt , (1)

where δxt is the Dirac delta function at xt.
Then, the EDMD approximation K̂ρ

N is given by

K̂ρ
N = ΨX#Ψ+

X ,

where + denotes the Moore-Penrose pseudoinverse. See [10] and [9] for more
details. From here on we will regard N to be fixed, and write KµD for the EDMD
approximation of the Koopman operator and Kµ

D = K̂µ
N for its matrix representa-

tion, where the subscript D refers to Data. In [11] (see also [9]) it is proven that if
one assumes xt to be drawn independently from distribution µ,1 then the operator
KµD converges to KµN as the number of samples M goes to infinity. Furthermore,
irrespective of which sampling is used KρD = KρN .

1Or equivalently, the data is a time-series of an ergodic system with equilibrium measure µ.
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Part I

Linear Subspace Methods for
Koopman Mode Decomposition
2 Introduction
One of the useful characteristics of Koopman operator theory is the availability
of data-based methods that compute approximations of some of the aforemen-
tioned quantities. In [10] (introduction) and [15] an overview of these algorithms
is given. In this thesis we will focus on the problem of obtaining an approxima-
tion of the entire triplet of Koopman eigenfunctions φi, eigenvalues λi, and modes
vi, to which we will refer as the eigenfunction-mode problem. The most frequently
used algorithm is Extended Dynamic Mode Decomposition (EDMD) [9, 10]. One
of the difficulties [10, 11, 16, 17, 18, 19] in using EDMD is in choosing a library
of observables which contains a Koopman invariant subspace that includes the
identity function.

On the one hand, there is some literature [17, 20] that proposes to tackle this
challenge by starting with a large library of observables, and then require some
kind of sparsity during the identification of the Koopman operator. Alternatively,
in [18] an algorithm is presented which iteratively finds a maximal Koopman in-
variant subspace given a large set of observables. Both approaches still rely on
being initialized with a meaningful library of observables.

On the other hand, Ulam’s method provides a non-parametric approach, as
used in [21]. It does not rely on observable functions, but instead discretizes the
statespace into boxes and computes an approximation of f by counting the box-
to-box rate. Left eigenvectors of the matrix representation of this discretization
of f are approximate Koopman eigenfunctions. The drawback of this method is
clear: the discretization introduces an error. Also, obtaining an approximation of
the modes is not a trivial exercise.

In this thesis we will show that well established linear subspace methods [22]
can be used to compute non-parametrically approximations of Koopman eigen-
function, eigenvalues and modes. This investigation was originally inspired by
the hint towards the usefulness of subspace methods in [4].

Linear subspace methods were developed to identify linear state space models
from time series data. Given a time series of output measurements {xt}Mt=0 of a
linear dynamical system of the form

zt+1 = Azt

xt = Czt,
(2)

the Unweighted Principal Component (UPC) algorithm [22, 23] determines first
the trajectory {zt}Mt=0, and then the matrices A and C.
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The connections between subspace methods and the Koopman operator and
related algorithms have been investigated in some literature before. In [23] a the-
oretical connection is made between UPC and the dynamic mode decomposition
(DMD) algorithm. They show that the subspace identification problem and the
DMD problem are equivalent. DMD precedes the development of EDMD, but can
be seen as a special case of EDMD, where the dictionary of observables is just
the identity observable. Furthermore, in [24] a modification to DMD is made
by including delay coordinates and computing the projection of future measure-
ments on past measurements, as is also done in traditional subspace algorithms.
The latter method is developed to handle noise, and is proven to converge to the
Koopman operator in case the underlying observables span a Koopman invari-
ant subspace. Other work on the relation between subspace methods and the
Koopman operator are not known to us.

We note that the quest for Koopmanmodes and eigenfunctions is the quest for a
linear state spacemodel. We are looking for a vector of approximate eigenfunctions
Φ̂ : X→ CN , Φ̂ = [φ̂1, φ̂2, ..., φ̂N ], such that Φ̂ satisfies the eigen problem

K(Φ̂) = Φ̂ ◦ f ≈ ΛΦ̂,

where Λ is a diagonal matrix with eigenvalues. Simultaneously, we desire for the
Koopman modes vi:

id ≈
N∑
i=1

viφ̂i = V Φ̂.

This implies that we are looking for a linear system approximation of f :

zt = Φ̂(xt)

zt+1 ≈ Λzt

xt ≈ V zt.

(3)

Based on this representation of the Koopman eigenfunction-mode problem, we
propose to use UPC to non-parametrically obtain approximate eigenfunctions Φ̂,
eigenvalues Λ, and modes V . We hereby make use of the UPC property that it
first estimate the trajectory zt, which provides information on the approximate
eigenfunction Φ.

In presenting our ideas we will assume the following, which we will refer to as
the perfect mode assumption.

Assumption 1. The discrete-time dynamical system f has a finite dimensional
Koopman invariant subspace S, which includes the identity observable, id ∈ S.

The rest of this work is organized as follows. First we will cover some back-
ground material on the Koopman operator and subspace algorithms in more de-
tail. In section 4 we will present our algorithm, which we name Subspace Koopman
Approximation (SKA). Subsequently, in section 5 we will prove that if f admits the
perfect mode assumption (assumption 1), the algorithm produces exact results.
Finally, in 6 we will apply our algorithm to both an example which does admit and
one which does not admit the perfect mode assumption.
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3 Background
In this section we will discuss elementary theory behind linear subspace methods
and the link with Koopman operator theory.

Finite Dimensional Koopman Invariant Subspace
With the discussed Koopman theory we are able to express a direct implication of
assumption 1, the perfect mode assumption.

Theorem 3.1. Consider a discrete-time dynamical system f that satisfies assump-
tion 1. That is, f has a Koopman invariant subspace S = span({φi}Ni=1), spanned by
the eigenfunctions {φi}Ni=1, such that id ∈ S.

Then, there exists a triple {G∗, K, V }, where G∗ = {ψi}Ni=1, ψi : X → R is a set of
observables, K ∈ RN×N a matrix , and V ∈ Rn×N a matrix, such that

Ψ ◦ f = KΨ, and id = VΨ for Ψ = [ψ1, ψ2, ..., ψN ]>.

Furthermore the state space system

zt+1 = Kzt

x̂t = V zt,
(4)

is equivalent to f in the sense that if x0 = x̂0, and z0 = Ψ(x̂0), the trajectories {x̂t}Mt=0

and {xt}Mt=0, with xt+1 = f(xt) , satisfy xt = x̂t, and furthermore zt = Ψ(x̂t), for all
t = 0, 1, 2, 3, ...,

Proof. To see that the first claim is true, just pick for G∗ the eigenfunctions: ψi = φi,
and let K = Λ with Λ the diagonal matrix of eigenvalues, then Ψ ◦ f = Φ ◦ f = ΛΦ =
KΨ. Since id ∈ S we can write the identity function in terms of the eigenfunctions,
hence id = V Φ = VΨ for some matrix V .

The second claim follows by induction. We prove that if xt = x̂t and zt = Ψ(x̂t),
then xt+1 = x̂t+1 and zt+1 = Ψ(x̂t+1).

Assume xt = x̂t and zt = Ψ(x̂t). Since Ψ ◦ f = KΨ and zt+1 = Kzt, it follows
directly that zt+1 = (Ψ ◦ f)(x̂t) = Ψ(x̂t+1). Furthermore, since id = VΨ, x̂t = V zt, and
xt = x̂t, we have x̂t+1 = V zt+1 = VΨ(x̂t+1) = VΨ(xt+1) = xt+1.

It follows that if x0 = x̂0 and z0 = Ψ(x̂0), then xt = x̂t, and zt = Ψ(x̂t) for all t.

This little theorem thereby firmly establishes the connection between Koopman
operator theory and linear system theory.

Linear Subspace Methods
Let us now look at subspace methods. Originally, subspace methods have been
developed for linear systems. The linear subspace identification problem, as for-
mulated in the seminal work of Van Overschee and De Moor [22] is stated in figure
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1. Assuming a time series of measurement originates from a linear system, these
algorithms are able to identify a corresponding linear system in state space rep-
resentation, together with the trajectory in the state space, from one single time
series.

Figure 1: The subspace identification problem. Copied from [22].

Multiple variants of subspace algorithms are available. We will focus on the
UPC algorithm. We will not discuss how this algorithm actually works, instead
we refer the reader to [22].

Let us introduce some matrices. X,X ′, Z, Z ′ are block Hankel matrices as fol-
lows:

X = [x̄0, x̄1, ..., x̄i], X ′ = [x̄1, x̄2, ..., x̄i], Z = [z1, ..., zi−1, zi], Z
′ = [z1, ..., zi−1], (5)

with x̄j = [xj, xj+1, ..., xj+4N ]>2.
In [23] it is shown that the subspace algorithm UPC computes a solution of

2In this thesis we maintain 4N as the length of the columns of X, with N the dimension of the
linear system SKA tries to fit. There is some freedom in the choice of this length. We refer the
interested reader to [22].
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the following optimization problem:

min
Γ,Z
‖X ′ − ΓZ ′‖F

s.t. row(Z) ⊆ row(X),
(6)

where Γ is the observability matrix, with structure Γ = [C,CA, ..., CAN−1]>, and
row(·) is the row space of a matrix.

We will now restate the linear subspace problem and the optimization formu-
lation of [23] in a way more suitable for the purpose of this thesis. A state space
representation of a discrete-time linear system has the form,

zt+1 = Azt

xt = Czt
(7)

here zt ∈ Z, with Z ⊆ RN the state space and xt ∈ X, with X ⊆ Rn the output space.

Theorem 3.2. Consider a time series of output measurements {xt}Mt=0 originating
from a discrete-time linear system as in equation 7, and assume knowledge of the
parameter N . Then the UPC algorithm computes a solution of the optimization prob-
lem in equation 6, for matrices as in equation 5.

Proof. See [23].

4 Method
Motivated by theorem 3.1 we can apply linear subspace methods to nonlinear
systems. This theorem seems to imply that the recovered trajectory {zt}Mt=0 as
found by the subspace algorithm are observations of some observable functions.
Apart from some minor issues, as discussed later in remark 1, the relation be-
tween the measurements and the recovered linear trajectory xt → zt defines a map
S : XS → Z. This map can be interpreted to be a discretization of some vector ob-
servable Ψ : X→ RN . If the input {xt}Mt=0 would approach X in theM →∞ limit, we
get that S approaches Ψ. Therefore we can interpret the subspace identification
equivalently as constructing the Koopman operator and the observables simul-
taneously. Because the linear subspace problem is ill-posed, up to a similarity
transform, we can always obtain a form in which K is diagonal. In that case
the corresponding limiting observables Ψ are approximate eigenfunctions of the
Koopman operator, with eigenvalues as given in the diagonal K matrix. For finite
M we interpolate between all points in order to obtain an approximation Ψ̂ of Ψ.

In this section we will develop these ideas further and propose a concrete al-
gorithm. In section 5 we will dive into the theoretical aspects.

We assume Ψ is smooth. In order to obtain reasonable approximation for fi-
nite M we require that the sample density is approximately constant over X. This
ensures that there is no neighbourhood of X where the error introduced by inter-
polation is relatively large.
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Originally, subspace methods are designed to work with a single time series.
This would therefore restrict the usage of our approach to ergodic systems. For
non-ergodic systems a single time-series will not be well distributed over the state
space. Since this excludes many dynamical systems and would require very long
time series, we make a slight adaptation to the original subspace method.

Consider the definition of X and Z as given previously together with optimiza-
tion problem 6. Note that for each column x̄j of X ′ a single zj ∈ Z ⊆ RN instance
is estimated, such that x̄j ≈ Γzj. This suggests that instead of using a single time
series, we can pick for each column a short time series, of which the initial point
is independent of the other columns. In the following part we will use superscript
notation to distinguish sequences. Suppose we have M short time series {xjt}Nt=0,
j = 1, 2, ..,M , and xjt+1 = f(xjt), we redefine X and Z as

X = [x̄0, x̄1, ..., x̄M−1], X ′ = [x̄1, x̄2, ..., x̄M−1], Z = [z1
0 , z

2
0 , ..., z

M
0 ], Z ′ = [z1

0 , z
2
0 , ..., z

M−1
0 ]

(8)
with

x̄j = [xj0, x
j
1, ..., x

j
N ]>, xjt+1 = f(xjt). (9)

In the upcoming theory section we will prove that the UPC algorithm still com-
putes a solution of the optimization problem 6 for the redefined matrices. Let
Γa = [V, V K, V KN−1]>, and let Z as just defined be the result of applying UPC. The
subscript a indicates that it concerns the Γ as provided by the algorithm. We de-
fine XS := {xjt ∈ X| for j = 1, 2, ...,M, and t = 0, 1, ..., N} to be the collection of state
space samples. The map S : XS → Z can be constructed, in practise, as follows:

S(x) =

{
zj0 for x = xj0 for some j
Kkzj0 for x = xjk for j and k = 1, 2, ..., N

We assume X is bounded. If we generate these short time series using initial
conditions which are taken at random uniformly, or regularly, over the state space,
we have that in the limit ofM →∞ we recover a set of observables. For finiteM we
can interpolate between all points in order to obtain an approximation Ψ̂ of Ψ. If
we furthermore require that K is diagonal we obtain approximations of Koopman
eigenfunctions.
Remark 1. If there is no Koopman invariant subspace which includes the identity
observable of dimension N or less, then the computed zjt will be approximations
of Φ(xjt). If furthermore, two bursts x̄i and x̄j partially overlap such that there is
an x that x ∈ x̄i and x ∈ x̄j, then the algorithm will associate two different values
to the same x. In such a case one can not directly construct a function S as above,
but this can be resolved by taking the average of the different values associated.
Alternatively, one can skip the construction of S and work with the collection of
tuples of points (xjt , K

tzj0) and in the interpolation step use a regression technique
which can handle non-unique points.

This brings us to our proposed method for estimating the Koopman operator,
eigenfunction, eigenvalues, and modes, the Subspace Koopman Approximation
(SKA) algorithm:
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Input: M short time series x̄j of length 4N as generated by f , according to
equation 9, and a parameter d the amount of eigenfunctions the
algorithm approximates.

Output: Intermediate: a tuple (Γa, S), with observability matrix Γa and
function S : XS → Z. Final: a triple (Ψ̂, K, V ), with Ψ̂ approximate
Koopman eigenfunctions of f , K a diagonal matrix with
approximate Koopman eigenvalues, and V a matrix whose
columns are approximate Koopman modes.

1 Construct matrix X as in equation 8.
2 Using the UPC algorithm as in equation 6 calculate Γa and Z, such that K

is in diagonal form.
3 Construct the map S : XS → Z.
4 Output intermediate result: (Γa, S).
5 Interpolate S to obtain the vector valued approximate Koopman

eigenfunction Φ̂ : X→ CN , with approximate Koopman eigenfunctions
φ̂i : X→ C and Φ̂ = [φ̂1, φ̂2, ..., φ̂d]

>.
6 Extract K and V from Γa.
7 Output final result: (Ψ̂, K, V ).
Algorithm 1: The Subspace Koopman Approximation (SKA) algorithm.

5 Theory
First we will prove that the UPC algorithm functions as desired when applied to
non-Hankel matrices, then the bulk of this section will be devoted to the relation
between SKA and the Koopman operator.

UPC for non-Hankel Matrices
In this section we will prove a modified version of theorem 3.2. We will show that
the UPC algorithm computes a solution of 6 irrespective of the structure of matrix
X. We will follow closely, the proof provided in [23], but pay particular attention
to the fact that it does not rely on the Hankel structure of X. Before stating the
theorem we need to introduce some notation. We will follow the conventional
terminology to make the link with existing work more transparent.

Let X ∈ Ri×M , Xf = X ′ = X[:, 2 : end], and Xp = X[:, 1 : end − 1], again using
Matlab index notation. That is, Xf contains all but the first column of X and Xp

all but the last. Also, Z ∈ RN×M and Zp = Z ′ = Z[:, 1 : end − 1] contain all but
the first column of Z. At this moment it is already important to note that we
can define Xf , Xp just as easy if X has no Hankel structure. The only thing that
changes is the meaning. Normally, f, p indicate future and past, but if there is
no Hankel structure, the columns do not relate to each other chronologically. We
use the notation A/B = AB+B and A/B⊥ = A(I −B+B).

Furthermore, some more background material is required on the workings of
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the UPC algorithm. The UPC algorithm identifies Γ = US1/2, where (Xf/Xp)N =
USV > is an N-truncated singular value decomposition [22, 23]. Now we are ready
to state the theorem and proof.

Theorem 5.1. The UPC algorithm computes a solution of the optimization problem
in equation 6 irrespective of the structure of X.

Proof. We need to prove that there exists a matrix Z such that Γ, Z solves 6, that
is minimizes ‖Xf − ΓZp‖F under condition row(Z) ⊆ row(X). Following the same
argumentation as in [23], we have that the objective function is equivalent to
minimizing ‖Xf/Xp − ΓZp‖. This follows from

‖Xf − ΓZp‖F = ‖Xf/Xp − ΓZp‖F + ‖Xf/X
⊥
p ‖,

where we use that the rows of Zp are orthogonal to Xf/X
⊥
p . To see the latter note

that row(Zp) ⊆ row(Xp), while row(Xf/X
⊥
p ) ∩ row(Xp) = ∅. This does not depend

on X being Hankel, it only depends on row(Xf/X
⊥
p ). Note that the second term,

‖Xf/X
⊥
p ‖ is constant. The rest of the proof is also identical.

The lower bound of ‖Xf/Xp − ΓZp‖F is attained at ΓZp = (Xf/Xp)N , the trun-
cated singular value decomposition. If we choose Z = S−1/2U>XfX

>
p X, then Zp =

S−1/2U>XfX
>
p Xp, and clearly row(Z) ⊆ row(X). Furthermore, ΓZp = (XfX

>
p Xp)N =

(Xf/Xp)N .

Where initially the intuition behind UPC and subspace methods was to project
past trajectories on future trajectories, as in Xf/Xp, in turn out that even though
this intuition behind UPC when applied to non-Hankel matrices is missing, it still
solves the optimization problem 6.

SKA and the Koopman Operator
We will now discuss properties of the approximate Koopman operator and eigen-
functions as provided by the SKA algorithm. Consider the discrete-time dynamical
system f : X→ X on state space X, and a generic function space G that contains
functions of the form g : X → C, and is closed under composition with f . By
definition G is Koopman invariant. We call a subspace S ⊆ G Koopman invariant
if for each g ∈ S we have g ◦ f ∈ S. As is apparent from problem statement 6,
each row of Z is a linear combination of the rows of X. Since X contains the state
measurement and delays of the state measurements, this directly implies that
the approximate eigenfunctions lie in the span of the dynamics and its delays,
ψ̂i ∈ FN , with

FN := span({id1, id2, ..., idn, id1 ◦f, id2 ◦f, ..., idn ◦f, ..., id1 ◦fN , id2 ◦fN , ..., idn ◦fN}).

Where idj : X→ R is the j’th element of id : X → X ⊆ Rn.
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Using this insight we can actually see optimization problem 6 as a specification
of the more general Koopman mode optimization problem

min
vi∈RN ,λi∈C,φi∈FN

∥∥∥∥∥∥∥
√√√√ τ∑

k=1

(
fk −

N∑
i=1

viλki φi

)2
∥∥∥∥∥∥∥
µ

, (10)

where ‖·‖µ is the norm ‖p‖µ :=
√∫

X p
2 dµ. Choosing for µ the emperical measure

ρ := 1
M

∑M
j=1 δxj0

, the above optimization problem closely resembles optimization
problem 6, with the only minor difference that the latter optimization problem
excludes the first data point in the objective function.

At first instance the restriction φi ∈ FN may appear to be a major restriction of
this algorithm. We will show that in fact there is no restriction. We distinguish
two cases, the case where FN for N →∞ is finite dimensional and the case where
it is infinite dimensional.

Let us start with the first case. If FN for N → ∞ is finite dimensional, then
there exists N∗ for which dim(FN1) < dim(FN∗) = dim(FN2) for all N1 < N∗ and
N2 > N∗. It follows directly that FN∗ is a minimal finite dimensional Koopman
invariant subspace. In the next section we will prove that in such a situation the
SKA algorithm yields exact results.

In the case FN for N → ∞ is infinite dimensional, we will prove in two stages
that the Koopman operator defined by the SKA algorithm converges to the actual
Koopman operator. We show FN → G where we consider G = L2(µ), as in [10], and
show that for M →∞ KN,M → KN . This is further discussed in the subsection 5.

Exact Results
Let us first consider an example of a system for which FN for N → ∞ is finite
dimensional. This is the case for each linear system. Consider a linear system of
the form xt = Atx0, with xt ∈ RN , A ∈ RN×N . We have idj(x) = ejx, with ej the j’th
unit row vector. Furthermore, (idj ◦fk)(x) = ejA

kx. It is well known that ejAN can
be written as a linear combination of ejA0, ejA

1, ..., ejA
N−1. Then we see directly that

the corresponding space FN cannot have dimension greater than N2 (dimension
of state space times number of compositions with f ).

We will now prove that for a specific class of dynamical systems, the SKA al-
gorithm yields exact results. Let us now provide a definition and a small lemma
which we need later on.

Definition 5.1. A finite dimensional Koopman invariant subspace S of f is a
minimal Koopman invariant subspace, which includes the identity if idj ∈ S for j =
1, 2, .., n and for every Koopman invariant subspace S∗ of f , with idj ∈ S∗, we have
dim(S) ≤ dim(S∗). Here dim(·) is the Hamel dimension, and id = [id1, id2, ..., idn]>.

Just as in the above definition, we will abuse language and notation by speak-
ing about the inclusion of a vector valued function in S, a space of scalar valued
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functions. Let us formalize what we mean. For ai the components of some vector
function a : X → Cs, such that a = [a1, a2, ..., as]

>, a subspace S of G includes a if
and only if ai ∈ S for i = 1, 2, ..., s. Furthermore, we will abuse notation by writing
a ∈ S if and only if S includes a.

The following lemma is elementary, but makes the proofs in coming theorems
easier.

Lemma 5.2. If the dynamical system f admits the perfect mode assumption (that is
assumption 1), then there exists a unique and minimal finite dimensional Koopman
invariant subspace which includes the identity function.

Before proceeding to a proof, we introduce the notion of a Krylov space, which
for this text we define as follows. The k-th Krylov subspace Krk of a tuple

(a : X→ C, T : X→ X)

is given by
Krk(a, T ) := span({a, a ◦ T, a ◦ T 2, ..., a ◦ T k−1}).

We extend this definition by allowing for vector valued functions a. For a : X→
Cs we define

Krk(a, T ) := span({a1, a1 ◦T, ..., a1 ◦T k−1, a2, a2 ◦T, ..., a2 ◦T k−1, ..., as, as ◦T, ..., as ◦T k−1}).

Now we are ready to state the proof of the just mentioned lemma.

Proof. The existence of a minimal Koopman invariant subspace which includes
the identity is trivial. It remains to prove that it is unique. Assume the dynamical
system f has a finite dimensional minimal Koopman invariant subspace S which
includes the identity function. Proof of uniqueness by contradiction. Assume,
furthermore, that there are two distinct minimal Koopman invariant subspaces
which contain the identity function, S1 6= S2.
S is finite dimensional and Koopman invariant, so there exists minimal k ∈ N

such that Krk(id, f) = Krj(id, f) = for all j ≥ k. Since id ∈ S1 and S1 is Koopman
invariant, we have id ◦fk ∈ S1 for each k ∈ N, therefore Kri(id, f) ⊆ S1 for all i ∈ N.
Because S1 is minimal we have S1 = Krk(id, f).

The same argumentation is true for S2. So S1 = Krk(id, f) = S2, and we have
a contradiction. We conclude that the minimal Koopman invariant subspace is
unique.

In order to be able to say something about the uniqueness of the recovered
approximation of the eigenfunctions we need the notion of observability and as-
sociated ideas from systems theory.

Definition 5.2. A dynamical system is called observable if a finite sequence of
output measurements uniquely determines the state. Moreover, if the dynamical
system is defined by a linear state space system with system matrices (A,C) as
in equation 7, the tuple (A,C) is called observable if and only if the associated
dynamical system is observable.
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We need the following well known [25] theorem on observability.

Theorem 5.3. ForA ∈ CN×N , C ∈ Cn×N , and Γ the observability matrix, the following
statements are equivalent:

1. The tuple (A,C) is observable,

2. rank

(
A− λI
C

)
= N for each eigenvalue λ of A,

3. rank Γ = N .

Let us state an intermediate lemma, before going over to the main theorem.

Lemma 5.4. Consider a discrete-time dynamical system f , with a minimal Koop-
man invariant subspace S = span({ψi}Ni=1), spanned by the eigenfunctions {ψi}Ni=1,
such that id ∈ S. LetK be the diagonal matrix containing the Koopman eigenvalues,
and V be the matrix containing the modes, as in equation 3.

Then the tuple (K,V ) is observable.

Proof. We introduce the shorthand notation

Eλ =

(
K − λI
V

)
.

Proof by contradiction. Assume (K,V ) is not observable. By theorem 5.3 there is
a Koopman eigenvalue λ∗ for which

rankEλ∗ < N.

This implies there is a column of Eλ that can be written as a linear combination of
the other columns. Furthermore, because K is a diagonal matrix containing the
eigenvalues, the matrix K−λ∗I contains as many zero columns as the multiplicity
of λ∗.

Consider the case that this eigenvalue λ∗ has multiplicity 1. The j’th column
of matrix K −λ∗I is the zero vector, for some j corresponding to the location of λ∗.
All other columns are linearly independent because K is diagonal. So, necessarily
the j’th column of Eλ should be a linear combination of the other columns. It is
easy to see that this implies that the j’th column of Eλ is the zero vector. This
implies C has a zero column. Therefore, there is a mode vj equal to zero and the
space {ψj}j 6=i∗ also contains the identity function. This space is smaller than S,
so S is not a minimal Koopman invariant subspace.

Consider the case that the eigenvalue has multiplicity greater than 1. Several
columns of K − λI will be zero. Let I be the set of indices of these columns. All
other columns are linearly indepedent. Necessarily, the columns of Eλ with index
j ∈ I are linearly dependent. Recall that V contains the Koopman modes. This
implies there are linearly dependent Koopman modes with the same associated
eigenvalue. So the Koopman modes satisfy

vi∗ =
∑

j 6=i∗,j∈I

βjvj,
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for some i∗. Because S includes the identity function we have:

id =
∑
i

viψi =
∑
j 6=i∗

vjψj +
∑

j 6=i∗,j∈I

βjvjψi∗

=
∑

j 6=i∗,j 6∈I

vjψj +
∑

j 6=i∗,j∈I

vj(ψj + βjψi∗).

Since the eigenvalues of the eigenfunction with index j ∈ I are the same, the
functions ψj + βjψi∗, for j ∈ I are eigenfunctions as well. It follows that we can
formulate a Koopman invariant subspace which contains the identity function
that is smaller than S, hence S is not a minimal Koopman invariant subspace.

Since the cases are exhaustive, the assumption that (K,V ) is not observable,
implies that the space S is not minimal. This is a contradiction. We conclude that
(K,V ) is observable.

Now we are ready to state and prove the main theorem.

Theorem 5.5. Consider a discrete-time dynamical system f that admits the perfect
mode assumption. Let S = span({φi}Ni=1), with id ∈ S be the minimal Koopman
invariant subspace which includes the identity. Suppose dim(S) = N . Here φi are
again eigenfunctions. Denote by V the matrix of modes, byK the diagonal matrix of
Koopman eigenvalues, and let Γf = [V, V K, ..., V KN−1]> be the observability matrix
associated to f .

Assume one has access toM > 4N bursts of state measurements {xjt}4N
t=0 of length

4N . The SKA algorithm, with parameter d = N , intermediate result (Γa, S) satisfies:

• Γa = Γf

• S(x) = Φ(x) for all x ∈ XS, and Φ : X → RN some concatenation of the eigen-
functions {φi}Ni=1.

Proof. Since S is a Koopman invariant subspace including the identity function,
we have by theorem 3.1, that there exist matrices K, and V satisfying equation 4.
It follows directly that

x̄j = ΓfΨ(xj0).

Therefore (Γf , Z) with zj = Ψ(xj0) = Γ−1
f x̄j, is a solution of problem 6.

It remains to prove that it is the unique solution (up to a permutation of the
rows of Z). First we establish that Γf is the unique Γ which solves the problem.
Suppose there are two different Γ for which there exists Z ′ such that X ′−ΓZ ′ = 0,
and have A in diagonal form. Since we picked d = N as our algorithm parame-
ter, we have that Γ is full rank. Otherwise there would be a Koopman invariant
subspace of dimension smaller than N .

Because the observability matrices are different and full rank the Z matrices
for which the optimization problem are solved are also different. Hence, there are
two separate sets of eigenfunctions associated.

This means that there are two distinct minimal Koopman invariant subspaces,
which contradict with theorem 5.2.
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Finally we need to establish that S necessarily coincides with Ψ. This follows
from theorem 5.4 and 5.3, because Γf is full rank, Z is unique and therefore S is
unique.

A direct consequence is the following.

Theorem 5.6. Consider a discrete-time dynamical system f that admits the perfect
mode assumption. Let S = span({φi}Ni=1), with id ∈ S be the minimal Koopman
invariant subspace that includes the identity. Suppose dim(S) = N . Assume one
has access to M > 4N bursts of state measurements {xjt}4N

t=0 of length 4N , for which
the initial points xj0 of each short burst x̄j are regularly spaced on the state space. Let
Φ̂M be the final result of the SKA algorithm with linear interpolation, with parameter
d = N , and number of samples M . Then as the number of burst M tends to infinity
we obtain the exact eigenfunctions Φ:

‖Φ̂− Φ‖ → 0 as M →∞.

Proof. From theorem 5.5 it follows that for all x ∈ XS S(x) = Φ(x). Linear interpo-
lation implies Φ̂(x) ∈ affinespan({S(y)|y ∈ Xx}), where Xx contains the 2n elements
in XS closest to x. For M → ∞ we have y → x for all y ∈ Xx. Finally, since Φ is
continuous, affinespan({S(y)|y ∈ Xx}) = affinespan({Φ(y)|y ∈ Xx})→ Φ(x).

Convergence
We would like to prove that the SKA induced approximation of the Koopman oper-
ator converges to the true Koopman operator. Let KN,M be the SKA approximation
of the Koopman operator for M short burst of length 4N and a linear system ap-
proximation of dimension N . Given the SKA output K, Φ̂, we define KN,M by

KN,M(g) := agKΦ̂,

for agΦ̂ = g. Because SKA does not attempt to find optimal eigenfunctions, but
instead an optimal mode decomposition, we cannot directly follow the proof struc-
ture of [10]. We have not develop a proof, but we will share our intuition as to why
we expect that it can be proven

KN,M → K as N,M →∞.

We restrict our attention to the case that FN converges to a basis of a, to be
specified, infinite dimensional function space F. Consider the true Koopman
modes {vi}∞i=1, infinite matrix representation of the Koopman operator K, and
Koopman eigenpairs {φi}∞i=1, {λi}∞i=1. Allowing for infinite matrices, let zj0 = Φ(xj0)
for some concatenation of the eigenfunctions Φ. Let Γ be the observability ma-
trix defined by K and the infinite matrix of Koopman modes V . Then Γ, Z solve
optimization problem 6, because

xjt =
∞∑
i=1

viλ
t
iφi(x

j
0).
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Comparison with Hankel DMD
In this short section we will compare SKA with Hankel DMD [26, 27]. Hankel
DMD can be seen as a version of EDMD where as the library of observables one
takes delay coordinates. Obviously SKA and EDMD are different algorithms, but
how do the results of Hankel DMD and SKA compare?

We distinguish three properties. Firstly, Hankel DMD is only capable of pro-
viding analytical relations for the eigenfunctions, that is it provides approximate
eigenfunctions as a linear combination of the delay coordinates. SKA provides
this too, but in addition it provides an actual function that one can evaluate on
the state space. This is relevant for complex or real world examples where there
is no usable analytical expression of the dynamics.

Secondly, Hankel DMD requires a single time series as input, while SKA does
not require this. Therefore, using SKA offers more flexibility, which is especially
useful for non-ergodic systems.

Lastly, the optimization problem that Hankel DMD and SKA solve is different.
Effectively, EDMD tries to find eigenfunctions, while SKA tries to find a set of
functions which are approximately eigenfunctions and are such that the identity is
contained approximately in their span. This suggests that Hankel DMD might be
better suited for Koopman eigenfunction approximation, while SKA for Koopman
mode decomposition.

6 Results
In this section we apply our SKAmethod to various non-linear dynamical systems:
systems for which it is known the perfect-mode assumption 1 is satisfied, systems
for which this is unknown, and systems for which it is known that the assumption
does not hold.

Method
We will use the accuracy criterion as introduced by [28] to assess the quality
of the eigenfunction approximations. The criterion is entirely data driven and
computes the out-of-sample performance of the Koopman eigenfunctions. Given
a set of points {xk}k where each point is drawn independently from the uniform
distribution, and {x#

k }k is the image under f , x#
k := f(xk), the quality α of an

approximate Koopman eigenfunction φ̂ can be approximated by:

α(φ̂) :=

∑
k |φ̂(x#

k )− µφ(xk)|∑
k |φ̂(xk)|

. (11)

This in itself does not tell anything about the quality of the mode decompostion.
Remember that we are interested in obtaining a finite approximate Koopmanmode
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decomposition
∑N

i=1 viλ
t
iψ̂i. Ideally we wish to find a Koopmanmode decomposition

such that it yields a reasonable approximation of the dynamics for finite time,

f t ≈
N∑
i=1

viλ
t
iψ̂i.

Motivated by this relation and the just mentioned eigenfunction criterion, we pro-
pose to calculate the following mode accuracy criterion:

βT :=

∑
k |fT (xk)− V ΛT Φ̂(xk)|∑

k |fT (xk)|
, (12)

for V the matrix of modes, Λ the diagonal matrix of eigenvalues, and Φ̂ the vec-
tor valued function of approximate eigenfunctions. Recall that fT denotes the
composition of f with itself T times. We assume again that xk are independently
distributed according to the uniform distribution.

When reporting modes and eigenfunctions, we always report normalized val-
ues. We normalize such that maxx∈X(|φ̂(x)|) = 1. Since we rely on a sampling of
the state space the implementation of this normalization might introduce some
small errors.

Invariant Example
The first example that we will treat is the map f : R2 → R2 defined by

f(x) =

(
γx1

δx2 + (γ2 − δ)x2
1

)
, (13)

with γ = 0.9 and δ = 0.8. For this map the Koopman eigenfunctions are known an-
alytically, and the performance of EDMD has been documented using the quality
criterion [29]. We copy their setup.

We take M = 300 bursts, with initial condition uniformly distributed over
[−1, 1] × [−1, 1]. We set N = 5, and take bursts of length 20. The results are the
following. In table 1 the matrix V of modes is displayed.

V =

[
0.994e+ 00 8.139e− 17 8.111e− 17 −1.385e− 15 3.747e− 15
−1.085e− 16 −1.698e+ 00 −0.989e+ 00 −1.639e− 18 4.634e− 17

]
Table 1: The mode approximation as computed by the SKA algorithm for example
1 (eq. 13). Each column is accociated with an eigenfunction. The fourth and fifth
modes are approximately zero.

The last two columns of the matrix, that is the last two modes, are zero to
machine precision, which indicates that the first 3 Z coordinates already give a
perfect representation of the dynamics. In other words: there exists a Koopman
invariant subspace of dimension 3. Assumption 1 is satisfied. It is easy to see
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Figure 2: The map S : XS → Z for example 1 (eq. 13), as computed with SKA using
random sampling, restricted to the first three coordinates of Z. The horizontal
plane is the state space. Eigenvalue indexes correspond to table 6. On the left
are all individual points of map S, while on the right it is interpolated.

analytically that this is indeed true. We can rewrite the dynamical system 13 in
a linear form: x1

x2

x3

→
 γx1

δx2 + (γ2 − δ)x3

γ2x3


If the initial condition satisfies x3 = x2

1 then the trajectory of the above linear
system will be the same as the trajectory of f . The map S, which can be inter-
preted as the discretization of the first three Koopman eigenfunctions of f , can be
observed in figure 2. In figure 3 all five approximate eigenvalues are plotted as
heatmaps.

index eigenvalues modes αlinear αnatural αbiharm αloess2
1 9.00e− 01 1.28e+ 00 3.56e− 16 3.65e− 16 8.16e− 04 4.68e− 16
2 8.00e− 01 8.01e− 01 6.51e− 03 6.63e− 03 2.15e− 03 1.11e− 14
3 8.10e− 01 7.77e− 01 1.18e− 02 1.20e− 02 3.49e− 03 1.99e− 14
4 −8.86e− 02 1.76e− 08 9.88e− 01 9.90e− 01 9.94e− 01 9.80e− 01
5 −4.41e− 01 1.88e− 08 1.32e+ 00 1.32e+ 00 1.33e+ 00 1.34e+ 00

Table 2: The out of sample performance of the approximated SKA eigenfunction for
example 1 (eq. 13), by interpolation from S, using various interpolation methods:
linear interpolation, natural interpolation (C1), biharmonic interpolation, and a
Lowess quadratic non-parametric regression. Under the header of ’modes’ we
have also reported the norm of the mode.
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Figure 3: The approximate eigenfunctions φ̂ : XS → Z for example 1 (eq. 13), as
computed with SKA using random sampling. Color indicates function value.

The approximation of the eigenfunctions requires an interpolation. For vari-
ous interpolation techniques we have calculated the quality of the approximate
eigenfunctions. We use 1000 independently and uniformly distributed points. See
table 6. We note that the performance heavily depends on choice of interpola-
tion technique. The quadratic Lowess non-parametric yields the best results, of
α ≈ 10−15, this is no surprise since the first three eigenfunction are indeed poly-
nomials of maximal degree 2. EDMD performs comparably, also with α ≈ 10−15.
We therefore conclude that the SKA algorithm is able to retrieve eigenfunctions
for this example, if a suitable interpolation method is chosen.

Furthermore, the quality of the fourth and fifth approximate eigenfunction
is very poor. This example shows a major drawback of the proposed method.
Because it tries to find a minimal Koopman invariant subspace which includes
the identity, it is unable to find eigenfunctions that do not lie in this minimal
Koopman invariant subspace.

For further study of the performance we use a regular grid of samples instead
of uniformly distributed samples. This makes interpolation easier, and is not a
restriction for simulation models. We will study β for SKA and EDMD.

We generate in first instance M = 1024 short bursts with initial conditions
uniformly spaced over [−1, 1] × [−1, 1], that is, along both directions we have 32
grid points. Secondly, we pick 71 grid points in each direction, to get a total of
M = 5041 short bursts. For EDMD we supply as the library all monomials xi1x

j
2

with i, j = 0, 1, 2, 3, 4, 5. We set N = 10, that is we consider only the first (sorted by
mode norm) N eigenfunctions for EDMD, and let SKA compute an N dimensional
linear approximation. We use linear interpolation. We know already that there
exists a perfect representation for N = 3, but we pick N = 10 for uniformity with
the next example. We use 20000 uniformly random distributed points as our test
dataset. Figure 4 shows how β evolves in time for both SKA and EDMD, for both
densities of bursts.

The first thing to notice is that EDMD performs better in first instance, which
is to be expected because the true eigenfunctions lie in the span of the library,
so EDMD is able to obtain the true eigenfunctions, whereas SKA still requires
an interpolation step which introduces an error. More interesting though is what
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Figure 4: β for example 1 (eq. 13), for both EDMD and SKA. Left uses a training
data set of 32× 32 = 1024 points, while the right side is with 71× 71 = 5041 points.

happens later in time. The error for EDMD grows, whereas for SKA it decreases.
This is not naively to be expected. Note however that in our definition of β (eq. 12),
we are dividing by

∑M
k=1 |fT (xk)|. Since the system under study can be regarded

as an asymptotically stable linear system, we know that for T →∞ all trajectories
converge to zero. Hence the denominator of β goes to zero. This provides a possible
explanation for the observation. For SKA the numerator goes more quickly to
zero than the denominator, while for EDMD the denominator goes more quickly
to zero. Lastly we note that the results do not change considerably if the sampling
resolution increases.

Modified
The first example has a finite dimensional Koopman invariant subspace which
includes the identity. Therefore, by the discussed theory, it was to be expected
that the algorithm works fine. We will now slightly modify the example such that
it probably does not have a finite dimensional Koopman invariant subspace. We
consider the dynamical system:

f(x) =

(
γx1 − ε exp(−x1)x2

δx2 + (γ2 − δ)x2
1

)
, (14)

with γ = 0.9, δ = 0.8 and ε = 0.1. This system had one stable equilibrium point at
(0, 0). For sake of comparison we first use randomly distributed samples as before,
with M = 300 bursts. In figure 5 and 6 we display respectively a 3D plot of the
first three eigenfunctions and heatmaps of all five approximate eigenfunctions.
We observe that all five approximate eigenfunctions now have a smooth shape,
as compared to the previous example. In table 3 the eigenvalues, mode norms
and accuracy criterion are provided. The accuracy is considerably lower for all
interpolation methods, order α ≈ 10−3. If we should follow the interpretation of
the authors of [28], we would need to conclude that these are very poor results.
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As a rule of thumb, we consider every approximate eigenfunction with α < 10−10

a reasonable approximate eigenfunction. Therefore we conclude that SKA is not
able to adequately identify the eigenfunctions. Of course these results depend on
the sampling resolution, because we are interpolating.

Figure 5: The map S : XS → Z for example 2 (eq. 14), as computed with SKA using
random sampling, restricted to the first three coordinates of Z. The horizontal
plane is the state space. Eigenvalue indexes correspond to table 3.

Figure 6: The approximate SKA eigenfunctions φ̂ : XS → Z for example 2 (eq. 14),
as computed with SKA using random sampling. Color indicates function value.

Next, we turn again to regular sampling for computational convenience. We use
the same setup as in the previous example. For the previous and this example we
discussed shortly the influence of the interpolation method in the case of random
sampling, now we will discuss the influence of the the interpolation method in
the case of regular sampling. In appendix 14 we show the eigenfunction accu-
racy criterion for various interpolation techniques (basic Matlab routines). The
results suggest two things: the interpolation error is insignificant if the sampling
resolution is sufficiently high, and the interpolation method only matters at low
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index eigenvalues modes αlinear αnatural αbiharm αloess2
1 9.00e− 01 1.09e+ 00 6.71e− 04 6.59e− 04 6.49e− 04 1.46e− 03
2 8.10e− 01 1.11e+ 00 1.73e− 02 1.73e− 02 5.51e− 03 8.06e− 03
3 8.00e− 01 1.83e+ 00 9.89e− 03 9.89e− 03 3.19e− 03 4.87e− 03
4 7.23e− 01 7.80e− 02 6.49e− 02 6.53e− 02 5.97e− 02 1.82e− 02
5 6.74e− 01 1.06e− 01 9.66e− 02 9.71e− 02 8.37e− 02 7.94e− 02

Table 3: The out of sample performance of the approximated SKA eigenfunction
for example 2 (eq. 14), by interpolation from S, for random sampling, using vari-
ous interpolation methods: linear interpolation, natural interpolation (C1), bihar-
monic interpolation, and a Lowess quadratic non-parametric regression. Under
the header of ’modes’ we have also reported the norm of the mode.

sampling resolution. Both statements follow from the observation that the accu-
racy criterion appears to be independent of sampling resolution and interpolation
method, if the resolution is sufficiently high. In the appendix we also provide
the performance of EDMD with the library of observables as in the previous ex-
ample. For EDMD all eigenfunction have quality α < 10−3, whereas for SKA the
performance is worse, multiple approximate eigenfunctions have α ≈ 10−1.

In figure 7 we have plotted β as a function of time for both sampling densities,
for SKA using linear interpolation. The sampling resolution has only a minor ef-
fect. The difference between SKA and EDMD is again significant. Note that the
system under study has only one equilibrium point, which is stable, therefore the
all trajectories converge to zero. Apparently the error in the SKA mode decom-
position goes to zero at the same rate as the trajectories them selves, while for
EDMD the error goes less quickly to zero than the trajectories them selves.
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Figure 7: β for example 2 (eq. 14), for both EDMD and SKA. Left uses a training
data set of 32× 32 = 1024 points, while the right side is with 71× 71 = 5041 points.
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Figure 8: On the left, the map S : XS → Z for example 3 (eq. 15), as computed
with SKA using random sampling, restricted to the first three coordinates of Z.
The horizontal plane is the state space. Eigenvalue indexes correspond to table
4. On the right β for example 3, (eq. 15), for both EDMD and SKA.

Population dynamics
Next we consider an example for which we know there exists no finite Koop-
man invariant subspace which includes the identity function. We look at the
well known Susceptible-Infected-(Recovered) model from epidemiology, which has
two equilibria, one stable and one unstable, and hence no finite dimensional
Koopman invariant subspace which includes the identity function. The recov-
ered class is not modeled since it does not affect the dynamics. Let f : X → X,
with X = [−1, 1]× [−1, 1] be given by

f(x) =

(
x1 − µx1x2

x2 + µx1x2 − ηx2

)
, (15)

with µ = 0.01 and η = 0.003. We again use the same setup, with the exception
that we pick 100 × 100 = 10000 grid points to be on the safe side. In particular
for EDMD we use the same library of observables, a library of monomials. We
justify this choice by the fact that f is a polynomial. In figure 8 we show a 3D plot
of the first three approximate SKA eigenfunctions and the mode decomposition
performance β of both SKA and EDMD. Furthermore, in figure 9 we show heat
maps of the first five approximate SKA eigenfunctions. In table 4 and 9 (in ap-
pendix 14) we provide the eigenfunction performance of SKA, respectively EDMD.
The eigenfunction accuracy of EDMD is again better than that of SKA, by at least
one order of magnitude, up to five orders of magnitude. On other hand in figure
8 it can be observed that SKA outperforms EDMD as it comes to mode decom-
postion accuracy β in the mid- and long-term. Consider for example T = 80, the
difference between EDMD and SKA is almost 102, in favour of SKA. For T > 100 the
performance of both mode decompositions is β > 10−2. Therefore for T > 100 the
mode decompositions become useless. The reason that the errors keep growing
is because the linear system is unstable; there is an eigenvalue greater than 1.
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index eigenvalues modes αlinear αcubic αspline
1 1.02e+ 00 4.65e− 01 5.80e− 03 5.80e− 03 5.80e− 03
2 1.00e+ 00 2.38e+ 00 3.53e− 03 3.54e− 03 3.54e− 03
3 9.97e− 01 2.71e+ 00 5.47e− 03 5.47e− 03 5.47e− 03
4 9.97e− 01 2.71e+ 00 5.47e− 03 5.47e− 03 5.47e− 03
5 9.88e− 01 1.01e− 01 1.64e− 02 1.64e− 02 1.64e− 02
6 9.88e− 01 1.01e− 01 1.64e− 02 1.64e− 02 1.64e− 02
7 9.81e− 01 5.84e− 01 1.18e− 02 1.18e− 02 1.18e− 02
8 9.40e− 01 3.08e− 02 1.42e− 02 1.42e− 02 1.42e− 02
9 1.13e+ 00 1.31e− 05 5.67e− 02 5.66e− 02 5.66e− 02

10 1.06e+ 00 9.50e− 03 1.16e− 02 1.15e− 02 1.15e− 02

Table 4: The out of sample performance of the approximated SKA eigenfunction
for example 3 (eq. 15), by interpolation from S for regular sampling withN = 10000,
using various interpolation methods: linear, cubic, and spline interpolation. Un-
der the header of ’modes’ we have also reported the norm of the mode. The eigen-
functions with index 9 and 10 contribute approximately zero to the mode decom-
position.

Figure 9: The approximate SKA eigenfunctions φ̂ : XS → Z for example 3 (eq. 15),
as computed with SKA using random sampling. Color indicates function value.

Lorenz system
As a last example we consider the four dimensional Lorenz-96 system given by

f(x) =


x1 + δ[(x2 − x3)x4 − x1 + 8]
x2 + δ[(x3 − x4)x1 − x2 + 8]
x3 + δ[(x4 − x1)x2 − x3 + 8]
x4 + δ[(x1 − x2)x3 − x4 + 8]

 . (16)

We set δ = 0.005. We looked at several time series and found that the system almost
never leaves the box [−10, 10]4, so we take this as the state space. We apply SKA
in various setups: N = 10, M = 10.000; N = 20, M = 10.000; N = 60, M = 10.000;
and N = 20 M = 1.000.000. In all cases all the eigenvalues lie in (0.95, 1), and the
eigenfunction accuracy is of order between 10−2 and 10−1. Our main interest is the
mode accuracy performance β. In 10 we show the performance for all SKA setups

28



0 20 40 60 80 100 120 140 160 180 200

T

10-15

10-10

10-5

100

-
T

SKA N=10 M=10.000
EDMD
SKA N=60 M=10.000
SKA N=20 M=1.000.000
e-2
SKA N=20 M=10.000

Figure 10: The quality of the mode decomposition for various SKA setups and
EDMD, for example 4 (eq. 16).

and an EDMD application. For EDMD we use the library of monomials xi1x
j
2x

k
3x

l
4,

for i, j, k, l = 0, 1, 2. We do not include higher order monomials for computational
reasons.

We make three observations. First of all for small T SKA performs very poorly
relative to EDMD and previous examples. One possible explanation is the follow-
ing. SKA minimizes the error over the entire length of the burst, so the first time
instance in not different then the 4N ’th. The Lorenz system is know to be chaotic,
it is hard to predict, hence the errors are all relatively large. Therefore for small
T the error is approximately constant and relatively large. Why is it then that
in the other examples we did observe a relative low error at the first time step?
This might be attributed to interpolation. The interpolation introduced another
error, which does grow in time. For the Lorenz example the interpolation error is
insignificant in comparison to the error introduces by the linear system approxi-
mation, so we do not observe an initial time dependence of the error. On the other
hand for the other examples, it might be that the interpolation error is significant.
EDMD works only with one time-step, so it is to be expected that for very small
time it yields the best results.

Secondly, for 20 < T < 100 there appears to be a dependence on the sample
resolution. For n = 20, tripling the resolution in each direction, that is increasing
the amount of samples from 10.000 to 1.000.000 reduces the error from from ap-
proximately 10−1 to maximally 10−2. Average improvement is less than one order
of magnitude.

Thirdly, for T > 100 we see no dependency on the sample resolution, but instead
on n. However at this point all errors are greater than 10−1 and hence the mode
decompositions are too poor to be of use.
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7 Discussion
In this thesis we have investigated how linear subspace methods might be used
as an alternative algorithm for computing a Koopman mode decomposition. The
algorithm is dubbed Subspace Koopman Algorithm (SKA), and attempts to find
an almost Koopman invariant subspace which includes the identity, in the span
of delay coordinate functions.

In the theory section we proved that if a dynamical system f has a finite di-
mensional Koopman invariant subspace which includes the identity, then SKA
is able to find all eigenfunctions and modes exactly. Furthermore, we gave the
outlines of a possible proof of convergence of SKA to the actual Koopman operator
in case f has no finite dimensional Koopman invariant subspace which includes
the identity.

In the results section we showed that SKA is indeed capable of finding the
eigenfunction and modes for an example with a finite dimensional Koopman in-
variant subspace which includes the identity. We then considered a bunch of
examples for which there is no finite dimensional Koopman invariant subspace
which includes the identity. We found that SKA performs worse than EDMD if it
comes to approximating eigenfunctions. However, in most cases SKA outperforms
EDMD if it comes to mode decomposition accuracy, for which we introduced a new
criterion (eq. 12).

We conclude that SKA is a promising algorithm for Koopman mode decompo-
sition, especially for systems where the dynamics are not known explicitly. SKA is
able to reconstruct approximate eigenfunctions in the span of delay coordinates,
without relying on explicit equations. For dynamical systems with a finite dimen-
sional Koopman invariant subspace, SKA is able to identify all eigenfunctions and
modes.

In the future the authors wish to investigate whether it is possible to extend
SKA with a library of non-observables, and whether it is possible to abuse the
optimization solving nature of SKA to find sparse almost Koopman invariant sub-
spaces.

Also, future research should address how the ideas developed here for discrete-
time dynamical systems arch over to continuous-time, differential systems.
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Part II

Parameter Estimation for Nonlinear
Discrete Time Dynamical Systems
using the Koopman Operator Theory
8 Introduction
The estimation of model parameters from data, also called system identification,
for sophisticated models is an essential step in the use of models in practise. The
usage of agent based models (ABMs) to forecast the economy by actual economic
actors, such as central banks, is a prime example in which the author is inter-
ested. These models can be categorized as stochastic discrete-time dynamical
systems, of which only partial state measurements are available. This class of
models will be the focus of this study.

The existing methods for parameter estimation for stochastic differential equa-
tions can be distinguished in two categories: maximum likelihood based, or objective-
function based [1]. This distinction also appears to hold up in the case of esti-
mation for ABMs [2]. This thesis focusses on objective-function based methods.
An important feature of all standard estimation methods for large models is the
fact that they are simulation based. This is a consequence of it being a hard
job to arrive at analytical expression for solutions of complex models. However,
simulation based estimation has two drawbacks: computing trajectories of large
models can be computationally expensive, and furthermore, using a finite number
of simulations/trajectories always introduces a sampling error.

In light of this we are motivated to find objective functions that can be cal-
culated directly, both from data as well as from an analytical description of the
model, without the need of simulation of entire trajectories.

In the last twenty years there has been enormous interest in Koopman operator
theory. Having been developed in the 30’s by Koopman [3], it has gained traction
only recently. Koopman operator theory establishes that for a general discrete-
time dynamical system f : X→ X, and an observable g : X→ C on the state space,
the map g → g◦f , is a linear map on a function space of observables. Because the
mathematical toolbox for linear systems is considerably larger than the non-linear
mathematical toolbox, Koopman operator theory opens a promising pathway to
studying non-linear dynamical systems.

Other interesting properties of the Koopman operator include: the fact that, up
to a homeomorphism on the state space, there is a bijection between the Koopman
operator and the dynamics f ; the possibility of writing a finite dimensional pro-
jection of the Koopman operator in matrix form; the availability of algorithms to
estimate the Koopman operator directly from data; and the possibility of relating
an expression of the functional f to the Koopman operator.
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The presence of all these propertiesmakes the Koopman operator theory frame-
work interesting for parameter estimation. The promise is that we can estimate
the Koopman operator directly from data, and use the bijective relation between
the Koopman operator and f to determine the dynamics f , and thereby estimate
the parameters.

Currently, several authors are investigating these possibilities. Known to the
author of this thesis are the following works. In [4] and [5] Koopman theory
is used to estimate parameters of continous time dynamical system, which are
linear in the parameters, and for which full state measurements are available.
The possibilities of using Koopman theory for parameter estimation in stochastic
differential equations are developed in [6]. Both methods that are developed in
these works rely on the connection between the finite time Koopman operator
and the infinitesimal generator of the dynamics. This limits these methods to
differential equations, and prevents their application to discrete-time systems.
Furthermore, both methods assume the availability of full state measurements.

For discrete-time system identification in presence of full state measurements,
the SINDy method has been developed in [7]. This method is, however, limited to
usage with full state measurements and requires linearity in the parameters.

This leaves open the quest for a Koopman based identification method for
discrete-time systems with partial measurements. Inspired by Takens embedding
theorem [8], in this thesis we will, first of all, investigate the possibilities of includ-
ing delay coordinates into the finite dimensional Koopman projection in order to
retrieve information about the entire system and enable the estimation of all sys-
tem parameters from partial measurements, for deterministic systems. We hope
that in the future our contribution, combined with the work in [6] on estimation
for stochastic systems, will lead to a simulation-free parameter estimation method
for discrete-time stochastic dynamical systems from partial measurements.

We show that including delay coordinates introduces a problem with the com-
putation of the Galerkin approximation. To overcome this difficulty, we propose to
approximate the discrete empirical measure with a continous kernel distribution.
This constitutes the first contribution of this thesis.

The second contribution made in this thesis is the proposal of polynomial ap-
proximation of the dynamics as a means to reduce the computational cost of the
optimization problem.

We will now formally state the partial-measurement parameter estimation prob-
lem we are studying. Let f : X → X, and h : X → O, with X ⊆ Rn the state space
and O ⊆ Rm the output space, define a discrete-time dynamical system:

xt+1 = f(xt)

yt = h(xt).
(17)

We consider the case in which h is known and f is known up to a set of parameters
Θ, such that f = fΘ̃ for known fΘ and unknown Θ̃ ∈ Q, for some box Q ⊂ Rq. We
assume Θ determines fΘ uniquely, so there exist no Θ1,Θ2 such that Θ1 6= Θ2 and
fΘ1 = fΘ2. Our goal is to develop a method which, given a time-series of output
measurements {yt}Mt=0, provides an estimate Θ̂ such that Θ̂ ≈ Θ̃.
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The rest of this thesis is organized as follows. We will first discuss in section
9 a Galerkin approximation approach of the Koopman operator; Koopman based
identification; and delay coordinates. Subsequently, in section 10 we will discuss
the difficulties arising in computing the inner products when using delay coor-
dinates. In section 11 we describe our proposed method and in 12 we discuss
an example. In section 13 we will propose polynomial approximation in order to
reduce computational complexity.

9 Fundamentals

Galerkin Approximation
As discussed in [10] and [12] the operator KµN is in fact a Galerkin approximation
of K: it is the orthogonal projection of K onto a finite subset of elements, or put
differently KN(g) = argming∗∈GN

‖g∗ − K(g)‖. The matrix Kµ
N then consists of inner

products in the following way:

Kµ
N = (Gµ)−1Aµ,

with elements Aµij := 〈ψi,Kψj〉µ and Gµ
ij := 〈ψi, ψj〉µ. Remember that the inner prod-

uct is given by 〈f, g〉µ =
∫
X fḡ dµ. Given a model of a dynamical system and a

measure, one can compute the inner products analytically or by numerical inte-
gration. We will refer to this approach as the Galerkin approach. Where EDMD
relies on data, this approach relies on a model.

Identification
In line with [6] we will focus on identification in the projected Koopman space. We
define Kµ(Θ) := (Gµ)−1Aµ(Θ) with Aµ(Θ)ij = 〈ψi, ψj ◦ fΘ〉µ. Recall that we fixed N .
The identification then reduces to finding an optimal estimate Θ̂ by computing

Θ̂ = argminΘ∈Q‖Kµ(Θ)−Kρ
D‖F . (18)

Here F denotes the Frobenius norm. We use the Frobenius norm instead of the
2-norm because in [6] it is shown that it makes little difference in practise, but is
computationally beneficial. Since invertingGµ is numerically unstable, we instead
propose to look at:

Θ̂ = argminΘ∈Q‖Aµ(Θ)−GµKρ
D‖F , (19)

for µ and ρ corresponding to each other. What this correspondence entails will be
discussed in section 10. The local minima of the objective function of equation
18 and 19 are the same. However, the global optimum may be different. So
depending on the optimization requirements, one still needs to compute ‖Kµ(Θ)−
Kρ

D‖F for all local minima of ‖Aµ(Θ)−GµKρ
D‖F .
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Delay Embedding
This section and the next sections contain the main contributions of this thesis. If
only partial measurements are available, and one does not use delay coordinates,
we can only calculate the EDMD with respect to observables of the form ψ = φ ◦h.
For many combination of fΘ and h, the composition h ◦ fΘ will be independent of
some of the parameters Θ. Hence, Aµ(Θ)ij = 〈φi ◦ h, φj ◦ h ◦ fΘ〉 will be independent
of some parameters Θ, and it will not be possible to estimate these parameters. A
simple example which shows this is the following two dimensional map fΘ : R2 →
R2 with h : R2 → R given by:

fΘ :

(
x1

x2

)
→
(
x1 + x2

θx1x2

)
, h :

(
x1

x2

)
→ x1.

It is easy to see that (h◦fΘ)(x) = x1 +x2 is independent of Θ, and hence Aµ(Θ) is in-
dependent of Θ. Surely, any system which is not observable for some unobserved
states will also suffer from this problem.

For system which are observable, we can circumvent this issue by considering
a delay embedding. Let the Takens map H : X→ Rn+1 be given by

HΘ := [h, h ◦ fΘ, h ◦ f 2
Θ, ..., h ◦ f 2n

Θ ],

where fk := f ◦ f ◦ f..., k times. If the dependency on Θ is irrelevant, or if Θ is
fixed, we will write just H. We define the delay space D by D = H(X). Takens
theorem [8] states that for a large class of dynamical systems, for each dynamical
system f , there exists a homeomorphic dynamical system f ∗ : D → D such that
H−1 ◦ f ∗ ◦ H = f and H is a bijection. As is commonly done, and motivated by
Takens theorem, we propose to append our dataset with delay coordinates in order
to capture all dynamics.

Let τ be the number of delays we include. We redefine H to be a map H : X→
D ⊆ Rτ given by H := [h, h ◦ f, h ◦ f 2, ..., h ◦ f τ ] and write the delay coordinates as:

ỹt =


yt
yt+1
...

yt+τ

 = H(yt), (20)

for {yt}Mt=0 a time-series of output measurements.
For τ sufficiently large H ◦ fΘ depends on all Θ, and hence for observables of

the form ψ : X→ C, given by ψ = φ ◦H, for φ : D→ C, we have that Aµ(Θ)ij depends
on all Θ.

For the just-mentioned example we would have

H(x) =

(
x1

x1 + x2

)
, (H ◦ fΘ)(x) =

(
x1 + x2

x2 + x2 + θx1x2

)
,

and we note that for many observables of the form ψ = φ◦H, Aµ(Θ)ij = 〈ψi, ψi ◦fΘ〉µ
depends on Θ.

34



Using a full Takens embedding, that is using 2n+1 delays, ensures that the dy-
namics in the delay space are homeomorphic to the dynamics in the state space.
On first thought, it appears that we only require something weaker; that the an-
alytical expression for K(Θ) depends on all parameters Θ. However, on second
thought, we need that H is a bijection such that the inner products with respect
to an empirical measure on the delay space are properly defined. This will become
apparent later.

10 On Measures in Inner Product Computation
The identification method as defined by equation 19 appears to be pretty straight-
forward. However, it rests on the ability to compute Kµ(Θ) for µ corresponding to
the empirical measure ρ. In this section we will first discuss what this correspon-
dence entails in the case no delay embedding is used, and then for the interesting
case where a delay embedding is used.

No delay embedding
For full state measurements we can just regard h to be the identity map. In this
case the output space equals the state space, O = X. Let µ be some measure
on the state space. We consider a time-series of consecutive state measurements
x1, x2, ..., xM , and x#

1 , x
#
2 , ..., x

#
M satisfying x#

i = f(xi). So, xt+1 = x#
t . Let {ψk}Nk=1,

ψi : X → C be a library of linearly independent polynomials, with Ψ : X → CN

the shorthand notation as defined earlier. In order for equation 19 to make sense
Kµ(Θ) and Kρ

D need to be computed with respect to the same, or approximately
the same, inner product. There are three options to do so.

• We can use the empirical measure ρ directly, and compute Kρ(Θ). Using the
simple but crucial identity ∫

X
r dρ =

M∑
t=1

r(xt), (21)

the integrals in the Galerkin inner products reduce to a finite sum, which
is computationally very straightforward. This is the most obvious approach
and is also followed in [6].

• If we can assume that the data series correspond to a measure with a con-
tinuous density function, we can estimate the density from our samples, and
use it to scale the observations with the density in calculating the EDMD.
This is related to importance sampling in Monte Carlo integration. By com-
pensating for the distribution of the data, we are calculating the EDMD with
respect to the uniform distribution. The condition that time-series data
converge to a continuous distribution implies that the system needs to be
ergodic.
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• Instead of using the empirical measure directly, we can use a continuous ap-
proximation of the (generalized) density function to approximate the Galerkin
inner product with respect to that measure by evaluating

∫
X gh̄ dρ̂, where ρ̂ is

the estimated density function.

The first approach is exact and easy, so it is the preferred option. When using
a delay embedding this option becomes intractable, as we will argue in the next
section, and we need to consider the other options.

Delay embedding
We will now consider the case where one has no full state measurements, and
needs to use delay coordinates in order to be able to estimate Θ completely. We will
show that it is not possible to use the standard, first approach as listed above, and
argue that it necessary to resort to the third option of continuous approximation
of the density function.

Given the time-series of output measurements we construct the delay coordi-
nates as defined in equation 20. Let the functions φi be observables on the delay
space, φi : D → C, and let π be the empirical measure on the delay space. We
write ψi = φi ◦ H for the observables on the state space. The empirical measure
on the state space ρ is unknown in general.

Applying EDMD on the delayed coordinates amounts to computing Kρ
D. The

corresponding Galerkin inner products are

〈ψi,Kψj〉ρ =

∫
X
ψi · (ψj ◦ f) dρ(x) =

∫
X
ψi · (ψj ◦ f) dπ(H(x)). (22)

Where we require that H is a bijection. Otherwise the right side would not be
bounded.

Since ρ is unknown in general we cannot evaluate
∫
X ψi · (ψj ◦f) dρ(x), however if

we attempt to evaluate
∫
X ψi ·(ψj ◦f) dπ(H(x)) we get into troubles as well. A relation

such as equation 21 does not exist for the more complicated expression we now
have.
Remark 2. If sufficiently many delay coordinates are included, and the conditions
of Takens theorem are met, the map H will be invertible and there exists a home-
omorphic dynamical system f ∗ : D→ D. Suppose we know explicitly H−1 : D→ X.
In this case we know ρ and we are in fact able to calculate

∫
X ψi · (ψj ◦ f) dρ(x).

However, even though H is invertible, its inverse might not be available explicitly.
Consider for example higher order polynomials, for these there is no expression
for the inverse. Although no explicit expression can be obtained, it is still pos-
sible to calculate H−1

Θ (y) for given y and Θ by solving HΘ(x) = y for x. For many
dynamical systems, such exercises are computationally expensive, and we expect
that for most combinations of dynamical systems and optimization methods the
computational costs will be too high. Therefore in most cases we can not work on
the delay space. In the results section we treat one example where it is possible
to write down f ∗ explicitly.
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Let us now consider the various options to obtain Kµ(Θ) and Kρ
D, with cor-

responding inner products. As we have just seen, we can not directly compute
〈ψi,Kψj〉ρ. Therefore, the first approach as listed in the previous section is not
applicable in general in the case of delay coordinates. Furthermore, ABMs are
probably not ergodic [2], and neither is the actual economy, hence we can not
resort to the second approach.3

Assuming the three options we considered are exhaustive, this leaves us with
the last option. We propose to approximate the density function π continuously
as a way to make the integral in equation 22 tractable. In case the system is
non-ergodic the empirical measure of the data does not converge to a specific dis-
tribution. Nevertheless, we can still approximate the empirical measure directly
using a kernel based approach. Denote by π̂ some continuous approximation of
π, and write ρ̂ for the measure such that dρ̂(x) = dπ̂(H(x)).

We propose to estimate the parameters in a delay embedding by

Θ̂ = argminΘ∈Q‖Aρ̂(Θ)−Gρ̂Kρ
D‖F , (23)

In the next section we will elaborate more on the estimation method, including
an approach to kernel density estimation. We finish this section by developing
some intuition as to why such an approximation would yield reasonable results.

Consider the simple case of only one sample, then π = δd0 for some d0 ∈ D. Let
us approximate π continuously using some kernel function with bounded support,
such that π̂(y) = 0 for {y ∈ D | |y − d0| > ∆} =: D0 for some small ∆. We abuse
notation slightly by treating π̂ as a probability density function on the delay space,
while we define it as a probability measure. This should not lead to confusion,
since π̂ has by definition a continuous probability density function which defines
a probability measure in the obvious way.

Assuming some functions r : X→ R and H : X→ D are sufficiently smooth and
∆ is sufficiently small, then r ◦H−1 is approximately constant on D0, and it follows
that:

∫
X
r(x) dπ(H(x)) =

∫
D
r ◦H−1 dπ

= r(H−1(d0)) =

∫
D0

r(H−1(d0))π̂(y) dy

≈
∫
D0

r(H−1(y))π̂(y) dy =

∫
D
r ◦H−1 dπ̂

=

∫
X
r(x) dπ̂(H(x)).

This shows that we can approximate the empirical measure of a single data
point with a continuous distribution. Kernel density approximation places a con-

3Even in the case the system would be ergodic, the time scale on which time-series data would
converge to a space average would be far longer then the time scale on which the economy can be
considered to be an autonomous dynamical system.
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tinuous distribution at each data point, hence the above intuition generalizes for
a multitude of points by summation over all data points.

11 Method
We propose an algorithm for parameter identification from partial measurements
using Koopman operator theory. Consider a dynamical system as in equation
17. Assume access to a time-series of output measurements {yt}Mt=1. Denote by π
the empirical measure on the delay space, associated with this time-series. Let
H : X → D ⊆ Rτ be the delay map, for minimal τ such that H depends on all Θ.
And let φi : D → C, i = 1, 2, ..., N be a library of N observables on the delay space.
The algorithm is the following.

• Calculate an approximation of the Koopman operator from data using EDMD.
Denote the matrix representation by Kρ

D.

• Continuously approximate π, for example by kernel density approximation.
Denote the results as π̂. Call the associated measure on the state space ρ̂.

• Solve the optimization problem as defined in equation 23.

Continuous Approximation of empirical measure
A well develop approach to estimation of probability densities is kernel density
approximation [13]. A kernel is a function k : D → R that is non-negative and
bounded with Lebesgue measure equal to one. Kernel density approximation
places a kernel function at each data point of a data set. For the time-series
{yt}Mt=1 we obtain an approximation of the density π as

π̂(x) =
1

hM

M∑
t=1

k

(
x− yt
h

)
,

for h a smoothing parameter.

12 Results
We leave the investigation into performance of the full algorithm, including the
optimization step for future research. That is, we will not investigate the forward
error Θ̂ − Θ̃, instead we will focus on the backward error in the optimization for-
mulation 19. We will study

eµ1,µ2(Θ) := ‖Aµ1(Θ)−Gµ1Kµ2
D ‖F , (24)

especially eµ1,µ2(Θ̃), for data generated using parameters Θ̃.

38



Illustrative Example
First of all we study the dynamical system f : R2 → R2 with measurement h : R2 →
R defined by

f :

(
x1

x2

)
→
(
x1 + θ1x1x2

x2 + θ2x1

)
and h :

(
x1

x2

)
→ x1. (25)

Where we use the superscript to denote elements of a vector, corresponding to
x = [x1, x2]>, and reserve the subscript for time indexation. We include one delay
coordinate and define H : R2 → R2 by

H :

(
x1

x2

)
→
(

x1

x1 + θ1x1x2

)
.

For this simple example we can obtain an explicit expression for H−1:

H−1 :

(
y1

y2

)
→
(

y1

−(y1 − y2)/(θ1y1)

)
.

Because we know H−1 we know the dynamics in the delay space f ∗ = H ◦ f ◦H−1,
and hence we are able to calculate

∫
D ψi ·ψj◦f

∗ dρ directly for the empirical measure
and obtain Aρ(Θ).

We set Θ̃ = [0.001,−0.002], and generate time-series data using the true param-
eters and x0 = [1, 2]> of length 3000. We compute the backward error eρ,ρ(Θ̃), as
defined in 24, to be 9.4050 · 10−13. In figure 11 we plot eρ,ρ(Θ) for a grid of Θ. We
observe that there are multiple points in this parameter space where the error
goes to zero. It is easy to show that there are indeed multiple points in the pa-
rameter space that yield the same time-series for corresponding initial conditions.
We conclude that the method is able to identify the parameters correctly, if the
actual empirical measure can be used directly.

The main question is however, whether the method works if we approximate
the empirical measure π continuously. Unfortunately, we are not able to report
any results that answer this question. For a time-series of length 3000 we at-
tempted to approximate the empirical measure with a kernel distribution using
a Gaussian kernel. The computational costs of our implementation were higher
than anticipated, and we were not able to compute any integral. In hindsight it
is no surprise that computing for each point the summation of 3000 evaluations
of a Gaussian function, yields an integral which it computationally (too) costly to
numerically integrate.
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Figure 11: Parameter exploration of dynamical system as defined in 25, for pa-
rameters in the box [−0.004, 0.004]× [−0.004, 0.004].

13 On Computation
The author has considered one possibility of mitigating the computational prob-
lem. The idea is to approximate all functions involved as polynomials. This has
two benefits. First, in the calculation of A we can separate the Θ dependency
from the state dependency, which allows us to calculate the integrals over the
state space only once and obtain an explicit polynomial expression for A(Θ).

The second benefit arises when tackling the optimization problem. We are
interested in finding the global minimum over Q of a polynomial expression. This
requires us to find the points for which the gradient is zero. Within the field of
algebraic geometry, dedicated numerical algorithms have been developed to find
the (real) roots of systems of polynomials.

Polynomial kernels
In order to obtain a final polynomial expression we also need that the continuous
approximation of the empirical measure is polynomial. It is certainly possible to
use a polynomial kernel [14], but it has to be investigated whether low degree
polynomials yield sufficiently accurate approximations.
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High degree polynomials
In case the degree of the final polynomial A(Θ) is too high to find roots in practise,
we wish to approximate it by a lower degree polynomial. Since we assume certain
knowledge on the parameters, namely that they lie in the box Q, we know that
certain terms will be very small. It has to be investigated what impact this has on
computational cost and results to leave out such terms.

14 Discussion
In this short text we have developed the idea of including delay coordinates in
Koopman identification, as a means to estimate all parameters of a system from
partial measurements. This is motivated by Takens embedding theorem. We hope
that in the future this work might be combined with the work of [6] to form a
simulation-free Koopman based identification method for stochastic systems with
partial measurements, such that it might be deployed for parameter estimation of
ABMs.

We argued that a challenge arises in the Galerkin approximation, because the
integral becomes intractable, and proposed to solve this by continuous approxi-
mation of the empirical measure. Unfortunately, it turned out that this is not com-
putationally tractable. We propose to tackle the computational issue by resorting
to polynomials, for which dedicated solvers are available. It also remains to be
investigated for which category of models it is tractable in general, for sufficiently
simple measures, to compute the inner products numerically or symbolically.
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Appendix

SKA Example 2: Eigenfunction Accuracy for Various
Grid Densities

index eigenvalues modes αlinear αcubic αspline
1 9.00e− 01 1.21e+ 00 1.04e− 05 1.74e− 06 1.64e− 06
2 8.10e− 01 1.47e+ 00 1.09e− 03 1.25e− 04 1.25e− 04
3 8.00e− 01 2.13e+ 00 6.34e− 04 8.09e− 05 8.09e− 05
4 7.29e− 01 1.20e− 01 6.95e− 03 6.05e− 03 6.05e− 03
5 7.20e− 01 1.38e− 01 1.33e− 02 1.25e− 02 1.25e− 02
6 6.56e− 01 3.94e− 01 2.21e− 01 2.21e− 01 2.21e− 01
7 6.47e− 01 3.53e− 01 2.08e− 01 2.09e− 01 2.09e− 01
8 6.42e− 01 5.24e− 02 1.83e− 01 1.84e− 01 1.83e− 01
9 5.74e− 01 4.89e− 02 8.74e− 02 8.80e− 02 8.80e− 02

10 5.86e− 01 8.05e− 03 1.38e− 01 1.38e− 01 1.38e− 01

Table 5: The out of sample performance of the approximated SKA eigenfunction
for example 2, (eq. 14), by interpolation from S for regular sampling with N =
1024, using various interpolation methods: linear, cubic, and spline interpolation.
Under the header of ’modes’ we have also reported the norm of the mode.

index eigenvalues modes αlinear αcubic αspline
1 9.00e− 01 1.21e+ 00 3.09e− 06 1.68e− 06 1.68e− 06
2 8.10e− 01 1.47e+ 00 3.04e− 04 1.29e− 04 1.29e− 04
3 8.00e− 01 2.13e+ 00 1.81e− 04 8.22e− 05 8.22e− 05
4 7.29e− 01 1.20e− 01 6.27e− 03 6.15e− 03 6.15e− 03
5 7.20e− 01 1.38e− 01 1.28e− 02 1.27e− 02 1.27e− 02
6 6.56e− 01 3.94e− 01 2.21e− 01 2.22e− 01 2.22e− 01
7 6.47e− 01 3.51e− 01 2.09e− 01 2.09e− 01 2.09e− 01
8 6.42e− 01 5.33e− 02 1.84e− 01 1.84e− 01 1.84e− 01
9 5.74e− 01 4.92e− 02 8.84e− 02 8.86e− 02 8.86e− 02

10 5.86e− 01 7.78e− 03 1.39e− 01 1.39e− 01 1.39e− 01

Table 6: The out of sample performance of the approximated SKA eigenfunction
for example 2, (eq. 14), by interpolation from S for regular sampling with N =
5041, using various interpolation methods: linear, cubic, and spline interpolation.
Under the header of ’modes’ we have also reported the norm of the mode.
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index eigenvalues modes αlinear αcubic αspline
1 9.00e− 01 1.21e+ 00 1.86e− 06 1.65e− 06 1.65e− 06
2 8.10e− 01 1.47e+ 00 1.63e− 04 1.27e− 04 1.27e− 04
3 8.00e− 01 2.13e+ 00 1.02e− 04 8.13e− 05 8.13e− 05
4 7.29e− 01 1.20e− 01 6.15e− 03 6.12e− 03 6.12e− 03
5 7.20e− 01 1.38e− 01 1.26e− 02 1.26e− 02 1.26e− 02
6 6.56e− 01 3.94e− 01 2.22e− 01 2.22e− 01 2.22e− 01
7 6.47e− 01 3.50e− 01 2.09e− 01 2.09e− 01 2.09e− 01
8 6.42e− 01 5.37e− 02 1.84e− 01 1.84e− 01 1.84e− 01
9 5.74e− 01 4.94e− 02 8.79e− 02 8.79e− 02 8.79e− 02

10 5.86e− 01 7.67e− 03 1.39e− 01 1.39e− 01 1.39e− 01

Table 7: The out of sample performance of the approximated SKA eigenfunction for
example 2, (eq. 14), by interpolation from S for regular sampling with N = 20164,
using various interpolation methods: linear, cubic, and spline interpolation. Un-
der the header of ’modes’ we have also reported the norm of the mode.

index eigenvalues modes α
1 9.00e− 01 1.21e+ 00 6.74e− 07
2 8.10e− 01 1.47e+ 00 9.13e− 06
3 8.00e− 01 2.13e+ 00 5.68e− 06
4 7.29e− 01 1.20e− 01 6.87e− 05
5 7.20e− 01 1.37e− 01 5.64e− 05
6 6.56e− 01 4.19e− 02 3.39e− 04
7 6.49e− 01 4.22e− 02 3.01e− 04
8 6.40e− 01 1.51e− 02 1.27e− 04
9 5.87e− 01 1.04e− 02 9.54e− 04

10 5.77e− 01 2.64e− 02 5.21e− 04

Table 8: The out of sample performance of the approximated EDMD eigenfunction
for example 2, (eq. 14). Under the header of ’modes’ we have also reported the
norm of the mode.
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SKA Example 3: Eigenfunction Accuracy for Various
Grid Densities

index eigenvalues modes α
1 1.00e+ 00 6.22e+ 01 2.51e− 04
2 1.00e+ 00 6.22e+ 01 2.51e− 04
3 9.98e− 01 1.47e+ 01 1.25e− 03
4 9.93e− 01 1.19e+ 01 1.91e− 03
5 9.93e− 01 1.19e+ 01 1.91e− 03
6 9.90e− 01 3.08e+ 01 1.55e− 03
7 9.90e− 01 3.08e+ 01 1.55e− 03
8 9.90e− 01 1.28e+ 01 1.98e− 03
9 9.90e− 01 1.28e+ 01 1.98e− 03

10 9.89e− 01 4.24e+ 01 2.40e− 03

Table 9: The out of sample performance of the approximated EDMD eigenfunction
for example 3, (eq. 15). Under the header of ’modes’ we have also reported the
norm of the mode.
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