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Abstract

The coalescence of binary black holes produces gravitational waves, which subsequently can be gravita-
tionally lensed (like light) when passing by massive astrophysical objects, such as galaxies. We observe
strong lensing as the occurrence of repeated events (images) with different amplitudes, arriving at different
times at our detectors due to travelling along different trajectories.

We build a population of strongly lensed gravitational waves, based on analyses of binary black hole
detections and on electromagnetic observations of strong lensing. We investigate the predicted rate of
galaxy-lensed event detections for the ground-based LIGO-Livingston, LIGO-Hanford, Virgo and KAGRA
gravitational wave detectors, and we forecast ∼ 1 − 2 lensed events per year at their design sensitivities.
We also show the event rates for the future LIGO detector upgrades A+ and Voyager, and comment on
possible improvements by including so-called sub-threshold triggers – gravitational waves buried in noise.

We find most lensed binaries at redshifts z ∼ 1 − 4, beyond the regular detector horizon. We report
the predicted distributions for lensing parameters, such as the time delay between images. We discuss
the impact of lensing statistics on lensed event searches, which rely on comparing pairs of event triggers.
However, two unlensed events can have a similar signature within detector accuracy, producing a false
alarm. We find that including lensing statistics can improve the significance of a truly lensed event by
a factor ∼ 30. We argue that the inclusion of lensing statistics is vital for the lensed event searches, as
otherwise the occurrence of a false alarm becomes inevitable for long observing runs. We hope that this
work will further the case for lensed event searches, and we stress the importance of incorporating lensing
statistics into these searches.

Cover image: Artist rendition of the gravitational waves emitted by two inspiraling black holes. Personal work.
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1 INTRODUCTION 1

1 Introduction

In 1915, Albert Einstein published his now-famous theory of General Relativity (GR) [1], and revolutionised
our view on gravity. Where Newton considered instantaneous forces represented as vectors1, Einstein saw the
‘gravitational force’ as merely a result of the curvature of space and time together, caused by the presence
of mass. It is a dynamical harmony, where mass tells space-time how to curve, and space-time tells mass
how to move. The first observational confirmation of the theory came from gravitational lensing, where light
follows curved paths in spacetime around heavy objects. It was first measured during the total solar eclipse
of 1919 by Arthur Eddington, Frank Watson Dyson and their collaborators, who took photographs of stars
near the Sun from several locations on Earth [2]. In 1979, the Twin Quasar was discovered, and it became
the first identified gravitationally strongly lensed object [3]. These days, gravitational lensing of light is an
active field of research. The upcoming Euclid telescope will survey a third of the sky, look back up to 10 Gyr
in time, and is projected to measure gravitational lensing effects on 1 billion astronomical sources. These
measurements, and other such lensing measurements, can in turn be used for the discovery of exoplanets,
probing the expansion history of the Universe and mapping its dark matter contents [4–6].

Central to GR are the Einstein Field Equations (EFE), which are generally non-linear and extremely difficult
to solve analytically. In 1916, Karl Schwarzschild found the solutions describing a black hole [7], an exotic
object with a singularity at its centre and an event horizon from within which nothing can escape, not even
light. These bodies were long considered to be mathematical constructs, but in 1971 the X-ray source Cygnus
X-1 was found through indirect evidence to be a binary system of a supergiant star and a high mass compact
object [8, 9], the first observed black hole. Nowadays, many indirect observations of black holes have been
made, and the first direct photo of a supermassive one was published on April 10th 2019 by the Event Horizon
Telescope Collaboration [10].

Another exciting prediction from GR is the existence of gravitational waves (GWs) [11], which can be pro-
duced by large variations in the local mass-density. If the Sun were to disappear this instant, gravitational
waves would spread out across the solar system like ripples in a pond, and hit the Earth roughly eight min-
utes later. Luckily for us, the Sun will not vanish. However, this means we need other sources to measure
gravitational waves from. The first indirect observation was from the Hulse-Taylor binary, which has an
ever so slightly decreasing orbital period, inline with the emission of gravitational waves [12, 13]. The first
direct observation was made on the 14th of September 2015 by the LIGO Scientific Collaboration [14]. The
event was labelled GW150914, and consisted of two black holes spiralling towards each other, before finally
merging to leave behind a single, heavier black hole. Currently, there are four operational gravitational wave
detectors capable of detecting gravitational waves: LIGO-Livingston and Hanford in the United States, Virgo
in Italy and KAGRA in Japan. In the Gravitational Wave Transient Catalog 2 (GWTC-2) [15], a total of 50
candidate events are reported. Many more can be expected in the future, with detector upgrades and new
detectors coming online.

This turns our attention to an interesting possibility in GR. Gravitational waves travel along the same paths
as light, so if they pass by a heavy astrophysical object, they should be lensed in a similar manner to light
[16–21]. Lensed gravitational waves can become unique probes of GR and cosmology in general, as the de-
tected effects of gravitational-wave lensing are distinctly different from the lensing of light [22]. If observed,
lensed gravitational waves would enable us to determine the precise sky localisation of the source of the
gravitational wave [23], perform Hubble constant measurements [23–27] and even put alternate theories to
GR to the test [28–32]. While lensed gravitational waves have not been detected yet, forecasts indicate that
a lensed event detection will become probable in the near future [33–37]. These estimates are mostly based
on simplified astrophysical distributions. Here, we will investigate the observed rate of lensed events with a
more complex model, allowing for more diverse lensing configurations. We will also comment on the effect of
the lensed event searches themselves.

1Incidentally, Newton knew his instantaneous action at a distance was most likely wrong. In 1692, he wrote to Richard
Bentley: “That one body may act upon another at a distance through a vacuum without the mediation of anything else, by and
through which their action and force may be conveyed from one another, is to me so great an absurdity that, I believe, no man
who has in philosophic matters a competent faculty of thinking could ever fall into it.”
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In recent years, methodologies have been developed to detect lensed events [38–44], and those have been
tested on the currently available datasets as well [45–48]. Strongly lensed gravitational waves appear as
multiple triggers with similar signatures in our detectors, so pairs of detection triggers need to be compared
during a lensing search. However, there is a chance of two unrelated unlensed events sharing the same signa-
ture, which would be a false alarm. The number of pairs grows quadratically with the number of detections,
making the occurrence of a false alarm increasingly inevitable. We will study the predicted lensing properties
of the lensed events, and investigate their capacity to constrain the false alarm probability.

In this work, we will focus on lensing of binary black hole (BBH) mergers, since these are the heaviest
astrophysical objects accessible and can thus be detected out to large distances, which is where lensing takes
place. We will improve on previous lensing forecasts (Sec. 5.1), with an observationally constrained BBH
population from GWTC-2 (Sec. 4.1), and galaxies from the Sloan Digital Sky Survey (SDSS) catalogue
(Sec. 4.2). We will also show how predictions from lensing statistics can help improve the searches for lensed
gravitational waves (Secs. 5.2 & 5.3), and will finally comment on the science prospects of lensed detections
in juxtaposition with our data (Sec. 5.4). Besides this thesis, a brief article featuring our results has also
been submitted to ArXiv [49], and the Astrophysical Journal.
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2 Gravitational waves

Before we dive into the core of this work, we will start with presenting all the theoretical background necessary
for understanding it, and relate the theory to observations. Central to this section is a single set of equations,
the Einstein Field Equation (EFE):

Gµν =
8πG

c4
Tµν . (2.1)

Gµν is the Einstein tensor and encodes the curvature of spacetime, while Tµν is the energy-momentum tensor,
which contains the information on the density and flux of energy and momentum in spacetime. G is the
Newtonian constant of gravitation, and is not related to Gµν . Another important quantity is the metric
tensor gµν , which encapsulates the geometry of spacetime through

ds2 = gµνdxµdxν , (2.2)

with ds2 the spacetime interval and xµ the coordinate four-vector (ct,x). The Einstein tensor Gµν and the
metric gµν are linked through a complex collection of nonlinear partial differential equations, making the EFE
extremely hard to solve by algebraic means. We will thus resort to approximations to derive gravitational-
wave propagation and generation. Furthermore, we will introduce the different aspects of a binary black hole
coalescence, as well as its detection.

2.1 A note on cosmological distances

λobs

dp

vp

L

λ

ℓ

S

δβ

F

O

Figure 1: An illustration of a source S moving away from an observer O in an expanding universe. The source
is located at proper distance dp, and is receding with proper velocity vp due to the expansion of the Universe.
It has true size `, radiates at luminosity L and emits wavelengths λ. The observer sees the source with an
angular size δβ, measures a radiated flux F and detects wavelengths λobs. These three sets of observables
connect to different definitions of distances.

We live in an expanding universe, where binary black hole mergers are expected to occur out to large look-back
times2. While the gravitational waves travel, the distances between objects changes due to the expansion,
and as such our Euclidean notion of ‘distance’ is no longer unambiguous.

We will thus need to precisely redefine it. In Fig. 1, we see a source S receding from an observer O with proper
velocity vp due to the expansion of the Universe. The source radiates at a luminosity L with wavelengths λ,
while having a true size `. The proper distance dp is related to the velocity of the source through Hubble’s
law: dp = H0vp, where the Hubble constant H0 quantifies the expansion rate of the Universe. However, there
are no straightforward ways of measuring the proper distance or the proper velocity, i.e. we cannot pull out
a yardstick and mark the difference between two galaxies. Thus, different distances can be defined, which we
will briefly outline in this section.

A radiating source in a static, Euclidean space obeys the inverse-square law: the measured flux F is propor-
tional to the luminosity L divided by the distance squared. In an expanding universe, this relation no longer

2The look-back the time is the amount of time a ray of light traveled from its source to us (the observer), and is thus a
measure for distance.
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holds true, as the distance between source and observer changes over time. The luminosity distance dL is
defined such that

dL ≡
(

L

4πF

)1/2

, (2.3)

and can be measured when the luminosity of an object is known through other means, a so-called standard
candle. The true size of the source ` and its apparent angular size δβ are related through the angular-diameter
distance D

D ≡ `

δβ
, (2.4)

which holds true for δβ � 1. Finally, the proper distance changes over time, as the universe continues to
expand. It is thus convenient to define the comoving distance r (or Dc), which is defined as the proper
distance at the current time t0. While the relation between the comoving distance, luminosity distance and
angular-diameter distance might seem non-existent, the three are actually directly correlated. Due to the
expansion of spacetime, the emitted wavelengths λ are altered through the Doppler effect, which defines the
redshift z as

1 + z =
λobs

λ
, (2.5)

where λobs are the wavelengths as measured by the observer. Redshift is thus a measure of distance as well,
since it quantifies the stretching of a yard-stick as it travels from the source to the observer whilst space
expands. One can show (see, e.g. [50]) that the relation between these different quantities then becomes

(1 + z)D = r = dp(t = t0) =
dL

1 + z
. (2.6)

2.2 Linearised gravity

With these notions of distance cemented, we can get started on the gravitational waves, and derive a formalism
for their generation and propagation. We will use the weak-field approximation3, which is valid at large
distances from the BBH merger. This allows us to write

gµν = ηµν + hµν , (2.7)

where ηµν is the Minkowski metric for special relativity and |hµν | << 1 is a small perturbation with respect
to ηµν . It is this perturbation that will be allowed to vary in time and will contain the gravitational wave.
Since the subsequent derivation is not relevant for the remainder of this work, we will only show the result
here, but refer the interested reader to Ref. [51]. After working out Gµν for the new metric, we get

2h̄µν =
16πG

c4
Tµν , (2.8)

with 2 = 1
c2

∂2

∂t2 −∇
2 the d’Alembertian and h̄µν = hµν − 0.5ηµνh a symmetric definition of the perturbation

with h = hαα the trace. This result only holds in the Lorentz gauge, which demands that ∂µh̄µν = 0. A gauge
is a set of constraints on top of the already existing physical formulas, designed to remove redundant degrees
of freedom in field theories. There is residual gauge freedom in the wave equation (Eq. (2.8)), so we can take
the transverse-traceless (TT) gauge when necessary, where h̄0µ = 0 and h̄αα = 0, without loss of generality.
In the vacuum of space, the wave equation reduces to

2h̄µν = 0 (2.9)

which is the equation for plane wave propagation. Suppose we now have a plane wave traveling in the z-
direction. The transverse-traceless gauge ensures that the wave oscillates perpendicular to the direction of
propagation, giving

hTTij =

h+ h× 0
h× −h+ 0
0 0 0

 cos(ω(t− z/c)) , (2.10)

3The weak-field approximation states that weak gravitational fields can be modelled as a superposition of a flat spacetime
and a small perturbation.



2 GRAVITATIONAL WAVES 5

with h+ and h× the plus and cross polarisations, respectively. The plus polarisation causes space to alter-
natingly stretch in the x and y direction, while the cross polarisation behaves similarly at an angle of 45◦

(see Fig 2, for an illustration). The waves travel at the speed of light c, which completes our framework for
gravitational-wave propagation.
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Figure 2: An illustration of the effect of the plus and cross polarisation on a ring (blue dashes). The ring is
alternately stretched and compressed along two principle axes, which are rotated at an angle of 45◦ between
the different polarisations. Adapted from [40]

Now that we know how gravitational waves propagate, we can look into their generation. Inspecting the wave
equation (Eq. (2.8)), we can identify Tµν as the source of gravitational waves and consequently solve the
equation using the appropriate Green’s function. We must also take care to move to the transverse-traceless
gauge, giving us

hTTij (t,x) =
4G

c4
Λij,kl(n̂)

∫
V

d3x′
1

|x− x′|
T kl(t− |x− x′|/c,x′) , (2.11)

where Λij,kl is the projection operator from the Lorentz gauge to the TT gauge, n̂ is the unit vector in the
direction of propagation and the volume V is the volume containing the binary black holes. The observer at
x (our detectors) will typically be at a large comoving distance r from the source, so we can approximate
|x− x′| ' r, effectively neglecting the inner details of the binary system. This holds well for non-relativistic
binaries, and gives us

hTTij (t,x) =
1

r

2G

c4
Λij,kl(n̂)M̈kl(t− r/c) , (2.12)

with M ij the mass quadrupole moment given by

M ij(t′) =
1

c2

∫
V

d3x T 00(t′,x)xixj . (2.13)

These two equations give us exactly what we want: the gravitational wave in the TT gauge as generated by
the energy-mass density T 00. Since we are free to choose our coordinate system, we can again take z to be
the direction of propagation and get direct expressions for h+ and h×:

h+ =
1

r

G

c4
(M̈11 − M̈22)

h× =
2

r

G

c4
M̈12 , (2.14)

with the quadrupole mass moments evaluated at the retarded time tret = t − r/c. These are the simplest
expressions possible for gravitational waves, and exclude many effects such as higher order terms in mass
moments and time derivatives, as well as spins. There exist other formalisms that include more corrections,
such as the full Post-Newtonian (PN) expansion (see, e.g. [52]), where Einstein’s equations (Eq. (2.1)) are
expanded in terms of the typical velocity of the system divided by the speed of light. We will not treat these
extensions here, as they do not contribute to the general discussion.
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Inspiral Merger Ringdown

Figure 3: An illustration of the coalescence process, starting with the inspiral on quasi-circular orbits, followed
by the plunge and merger, and completed by the ringdown. Personal work.

2.3 A binary black hole coalescence: inspiral, merger and ringdown

We will look into binary black hole (BBH) coalescences, since those are detectable out to high redshifts where
lensing can occur, and their population has relatively well constrained properties. Binary neutron stars can
emit gravitational waves as well, but are only detectable out to about a hundred Mpc. The small total
number of galaxies between us and the neutron stars makes lensing unlikely to occur.

There are three main phases to a BBH coalescence: inspiral, merger and ringdown. We will make approx-
imations to the inspiral phase to derive expressions for the polarisations (Eq. (2.14)) and their frequency
evolution, while we will discuss the process of merger and ringdown in a descriptive manner. An illustration
of the process is shown in Fig. 3.

We make the approximation that the black holes are on quasi-circular orbits during the inspiral to simplify
our equations. We can treat the black holes as point particles with masses m1 and m2 < m1 that orbit each
other with angular frequency ω. The direction of propagation (towards the observer) is along the z-axis,
while the normal to the orbital plane is tilted at the inclination angle ι with respect to the z-axis. Following
the derivation in Appendix A.1 for stationary orbits, we get

h+ = −4

r

(
GMc

c2

)5/3 (ω
c

)2/3 1 + cos2(ι)

2
cos(2ωtret)

h× = −4

r

(
GMc

c2

)5/3 (ω
c

)2/3
cos(ι) sin(2ωtret) , (2.15)

where we introduced the chirp mass

Mc =
(m1m2)3/5

(m1 +m2)1/5
. (2.16)

While the definition of the chirp mass might seem arbitrary, it plays an important role in the functional form
of a gravitational wave. Note that the frequency of the waves is twice the orbital frequency.

Gravitational waves carry energy away from the system since they need it to curve space and time. The en-
ergy is taken from the orbital energy of the system, causing the orbits to shrink over time. Through Kepler’s
third law, we find that the shrinking of orbits increases the orbital frequency. Thus, we write ω → ω(tret)
and ωtret → Φ(tret). The frequency evolution can then be found using conservation of total energy, namely
the sum of orbital energy Eorb and energy carried away by the gravitational waves EGW.

Orbital energy is the combination of classical kinetic energy and gravitational potential energy, which can be
written as

Eorb = −1

2
(G2M5

cω
2)1/3 . (2.17)
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The gravitational-wave energy is derived in Ref. [53], and we will go through an abridged version here. Refer-
ring back to the EFE (Eq. (2.1)), we want to separate the energy-momentum tensor Tµν into a background

tensor T
(B)
µν and the higher-order effect of the gravitational waves. This effect is encapsulated up to quadratic

order in hµν by the effective stress-energy tensor tµν , which is given by

tµν = − c4

32πG
〈∂µhρσ∂νhρσ〉 , (2.18)

where the average is calculated over a region of spacetime large enough to contain several gravitational-wave
oscillations. A detailed calculation then shows that the energy passing through a sphere S of radius r per
unit time is given by

dEGW

dt
=

c3r2

16πG

∫
S

dΩ 〈ḣ2+ + ḣ2×〉 , (2.19)

in terms of the plus and cross polarisations. We can substitute the functional forms of the polarisations (Eq.
(2.14), with time-dependence) to get an explicit formula for the energy carried away by gravitational waves

dEGW

dt
=

32

5

c5

G

(
GMcω

c3

)10/3

. (2.20)

In the following, we will write the energies and polarisations in terms of the gravitational-wave frequency
fgw = 2forb, such that ω = πfgw. Energy conservation dictates that dEtot/dt = 0, which gives us a differential

equation in terms of fgw and its time derivative ḟgw. Solving this equation yields

fgw(t) =
1

π

(
GMc

c3

)−5/8(
5

256

1

τ(t)

)3/8

, (2.21)

with τ(t) = tc − t and tc the time of coalescence. The most important take-away from Eq. (2.21) is that the
frequency evolution of a gravitational wave is entirely governed by the chirp mass, within our approximations.
It is convenient to write these results in terms of the time tobs and the redshifted frequency fobsgw at the observer
instead of the source. This gives us our final result for the simplified inspiral phase of the gravitational wave
waveform

h+ = − 4

dL

(
GMz

c2

)5/3
(
πfobsgw (tobsret )

c

)2/3
1 + cos2(ι)

2
cos
(
Φgw(tobsret )

)
h× = − 4

dL

(
GMz

c2

)5/3
(
πfobsgw (tobsret )

c

)2/3

cos(ι) sin
(
Φgw(tobsret )

)
, (2.22)

with dL the luminosity distance to the source and Mz = (1 + z)Mc the redshifted chirp mass.

In the current situation, the frequency goes to infinity as t → tc. However, our approximations become
invalid at small orbits, where the curvature of the background metric is no longer negligible, and the full
Post-Newtonian expansion becomes a more appropriate approximation. After working out the details [54],
we find the existence of an innermost stable circular orbit (ISCO) at a separation of RISCO = 6GM/c2, which
separates the inspiral from the merger phase. Using Kepler’s third law, we find that this corresponds to a
gravitational wave frequency

fobsgw,ISCO =
c3

63/2πGM(1 + z)
, (2.23)

where M is the total mass of the system m1 + m2. Furthermore, the PN formalism is commonly used to
calculate the accurate inspiral waveforms, as it includes individual component masses and spins into the
polarisations. So while we derived functional forms for the polarisations and their frequency evolution, it is
important to take note of these caveats.

When the binary black holes cross the innermost stable circular orbit, they start to plummet towards each
other and go into the merger phase. This is a rather violent process that takes place in the strong gravity field



2 GRAVITATIONAL WAVES 8

regime, so the full machinery of general relativity is needed. In large numerical simulations, the solutions to
Eq. (2.1) are calculated and evolved through time to solve for the merger (see, e.g. [55]).

When the two binary black holes have merged together, they form a single excited black hole. This will then
settle into a dormant state, shedding its spherical asymmetry in the form of gravitational waves. Their form
can be derived in a perturbative setting, but numerical simulation can be applied as well. Altogether, a few
solar masses of energy are expelled during the entire coalescence in the form of gravitational waves, making
binary black hole coalescences one of the brightest events in the Universe in terms of energy flux.

2.4 Gravitational wave detection

Gravitational waves periodically stretch space in two different directions, and it is this stretching that we
can measure using laser interferometers. A monochromatic laser with a very well defined wavelength is shot
towards a beam splitter. Here, 50% of the light is let through, whereas the other 50% is deflected at right
angles. Both beams now travel through arms several kilometers long, 4 km in the LIGO detectors and 3 km
in the Virgo detector. They are reflected back at the end of each arm, travel up and down the two arms
about 300 times, and finally combine back together at the beam splitter (see Fig. 5 for an illustration). This
set-up can be tuned to make sure that destructive interference takes place when no gravitational wave is
passing, giving an output of zero. When a gravitational wave passes through the interferometer, stretching
of space will then change the lengths of the arms independently, and the destructive interference is lifted to
give rise to a signal.

The response of each arm depends on the location and orientation of the source in the sky, relative to the
detector (see Fig. 4). The total response h(t) can then be characterised by

h(t) = F+(θ, φ, ψ)h+(t) + F×(θ, φ, ψ)h×(t) , (2.24)

where θ, φ and ψ are the angles characterising the orientation of the source with respect to the interferometer,

x

y

z

x′ 

y′ 
z′ 

θ

ϕ

ψ

ι

Figure 4: An illustration of the detector frame and the source frame, together with their associated angles
connecting them through the line-of-sight. In the detector frame, the angles θ and φ give the sky position,
while the angles ι (inclination) and ψ (polarisation) give the relative orientation of the orbital plane with
respect to the line-of-sight. Not to scale.
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and F+ and F× are the so called beam pattern functions:

F+(θ, φ, ψ) =
1

2
(1 + cos2(θ)) cos(2φ) cos(2ψ)− cos(θ) sin(2φ) sin(2ψ)

F×(θ, φ, ψ) =
1

2
(1 + cos2(θ)) cos(2φ) sin(2ψ) + cos(θ) sin(2φ) cos(2ψ) . (2.25)

Note that the definitions of θ and φ change over time relative to fixed points on the sky, since the orientation
of the detectors changes with the rotation of the Earth. This allows us to express the beam pattern func-
tions as functions of the right ascension α, the declination δ, the time of arrival tarrival and the polarisation ψ.

The beam pattern functions characterise the response of the detector to the plus and cross polarisations.
Imagine a source directly overhead the detector in Fig. 4, along the z-axis. The cross polarisation will
stretch the two detector arms an equal amount, rendering the detector insensitive to this polarisation as it
only registers relative differences between the lengths of the arms. The plus polarisation is co-aligned in this
scenario, and will incite a large detector response. The beam pattern functions are the quantification of this
effect, generalised for all orientations.

Inspecting the polarisations (Eq. (2.15)), we note that both have a factor h0 in their amplitude. This allows
us to simplify the total response (Eq. (2.24)) to [56]

h(t) = A(ι, ψ, α, δ, tarrival)h0 cos(Φgw(t)− Φ0) (2.26)

where Φgw(t) = 2πtretfgw(tret) and A the antenna pattern given by:

A = (A2
+ +A2

×)1/2 , tan(Φ0) =
A+

A×
, A+ =

1 + cos2(ι)

2
F+ , A× = cos(ι)F× . (2.27)

We now have an expression for h(t), but sadly there is a lot of noise to be dealt with in the detector. Tectonic
plates are constantly on the move, the mirrors experience thermal vibrations, and the photodiode experiences
shot noise, for example [14]. With the inclusion of noise, the detector data strain then becomes

s(t) = h(t) + n(t) , (2.28)

with n(t) the noise in the detector at time t. Some of this noise can be filtered out by figuring out what the
sources are and correcting for it, but we need a more precise method to dig up gravitational waves. One such
method is matched filtering. Presume you expect a signal from a binary with masses m1 and m2. From the
discussion in Sec. 2.3, we know that the frequency evolution is mostly governed by the chirp mass, which in
turn determines most of the functional form of the gravitational wave. We can thus construct a template for
the expected response h(t), and check the match between the strain s and the template at each moment in
time in the data. Doing so allows us to detect gravitational waves with greater efficiency.

We define a detection statistic to quantify the match between the strain and the template, called the signal-
to-noise ratio (SNR) ρ:

ρ =
(h|s)

(h|h)1/2
, with (A|B) ≡ 4Re

∫ ∞
0

df
Ã∗(f)B̃(f)

Sn(f)
, (2.29)

where Sn(f) is the power spectral density (PSD) (see the inset in Fig. 5 for an example), which characterises
the strength of the noise at frequency f [51]. (A|B) is an inner product involving the Fourier transforms of
the functions A(t) and B(t), so this formula is similar to calculating the component of a vector s parallel to

the normed vector ĥ = h/||h||, which is indeed a nice quantification of the match between two vectors. The
optimal value of the SNR is attained when s = h and we get ρopt = (h|h)1/2.

We can now search the entire data strain with a single template and compute the match. However, in reality
we do not know what waveforms h to expect. We thus need to search the data with all the possible waveforms.
This warrants the construction of a template bank. A template bank is a set of templates which attempts to
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Figure 5: An illustration of the LIGO detectors. Inset (a) shows the relative orientations of the Livingston
(L1) and Hanford (H1) detectors, while inset (b) shows the noise in both the detectors at the time of detection
of GW150914. From [14].

cover the expected (m1,m2)-space as efficiently as possible. For high chirp masses, fISCO is quite low and
the wave is visible in the detector for only a few waveform cycles, so the templates do not have to match
precisely to give a high SNR. Lower chirp masses are observable for longer time periods, and the templates
need to be more densely packed. In a search, all of the templates are continuously slid across the data strain,
recording which templates give what SNR at all times.

We have now mostly dealt with noise, but there is still the possibility of a glitch appearing in a detector,
mimicking a gravitational wave. We can quantify how likely a glitch is to produce a certain SNR, and
construct a probability distribution p(ρ). If we then observe a trigger with an SNR of ρ∗, the survival
function of p(ρ) (one minus the cumulative distribution) at ρ = ρ∗ tells us the probability of glitches giving
an equal or higher SNR. Typically, detection triggers with an SNR ≥ 8 are considered good candidates for
astrophysical events [57], and thus we will adopt an SNR ≥ 8 as the detection threshold in this work.

2.5 The observed event rate

One of the goals of this work is to predict the number of observed events within LIGO-Virgo-KAGRA. The
number of expected gravitational-wave events per year can be expressed as an integral over the comoving
volume Vc = 4

3πr
3

dN

dt
=

∫
dN

dVcdt

dVc
dzs

dzs , (2.30)

where dN/(dVcdt) is the merger-rate density measured in the detector frame, dVc/dzs is the differential
comoving volume, and zs is the redshift of the source binary black hole merger. The output of theoreti-
cal predictions and observational papers is the merger-rate density measured in the source frame R(zs) =
dN/(dVcdts) = (1 + zs)[dN/(dVcdt)]. Therefore, we express the integral in terms of the merger-rate density
in the source frame

dN

dt
=

∫
R(zs)

1 + zs

dVc
dzs

dzs . (2.31)



3 GRAVITATIONAL LENSING 11

On the other hand, not all mergers are observed within LIGO-Virgo-KAGRA. Instead, only a fraction of
signals at redshift zs with an SNR larger than some detection SNR threshold ρc are observed

P (ρ > ρc|zs) =

∫
Θ(ρ(zs,θ)− ρc)p(θ)dθ , (2.32)

where ρ(zs,θ) is the SNR of a signal with parameters of the binary black hole system θ, Θ(ρ(zs,θ)− ρc) is
the heaviside theta function, and p(θ) is the distribution of the binary parameters. Therefore, the rate of
observed mergers is

dNobs

dt
=

∫
R(zs)

1 + zs
Θ(ρ(zs,θ)− ρc)

dVc
dzs

p(θ)dθdzs . (2.33)

The observed rate is sensitive to the merger-rate density R(zs), as well as assumptions on the population of
binary black holes p(θ). This is the first step in predicting the rate of observed lensed mergers, which we will
work towards in the next section.

3 Gravitational lensing

We can now adequately describe gravitational waves, so the next topic to be covered is gravitational lensing.
Both light and gravitational waves follow the same paths in space, called null geodesics. In a flat Minkowski
spacetime, these are just straight lines, but they become increasingly complicated for arbitrarily curved
spacetimes. Luckily, most of space is empty and can be described by the background metric, such as the
Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric. This metric can be approximated as locally flat,
while being curved at larger scales. Gravitational lensing requires the waves to pass by sufficiently close to
a galaxy or galaxy cluster, to within its area of effect on the local metric. However, these lenses have a
sufficiently weak Newtonian gravitational potential |Φ| << c2, such that they can be treated as only weakly
perturbing the FLRW metric.

3.1 The effects of lensing and the lens equation4

There are three stages to the journey of a lensed gravitational wave. First, the wave travels from the source
to the lens in a FLRW metric. Secondly, the wave is deflected by the lens in an approximately flat metric
weakly perturbed by a gravitational potential. Finally, the wave propagates once more in a FLRW metric
from the lens to the observer. Stage two takes place at sufficiently small scales compared to stage one and
three, such that we can treat the lens in the thin-lens approximation. Furthermore, we take the lens size to
be much larger than the wavelength of the gravitational wave, which allows us to work in the geometrical
optics limit, essentially rendering the lens achromatic [21].

Fig. 6 shows the geometry of a lensed system consisting of a source S, a lens L and an observer O. Gravita-
tional waves travel from the source to ~ξ, where they get deflected by an angle α̂. The observer then sees the
image S′ at angular position ~θ, while the original source has angular position ~β. The distances are angular
diameter distances, such that separation = angle×distance, and they are a function of the source redshift zs
and the lens redshift zL. This allows us to write the change in separation

~η′ − ~η = DS
~θ −DS

~β = DLSα̂ , (3.1)

for small deflections α̂. From Fig. 6, we conclude that DLSα̂ = DS~α, where ~α is the reduced deflection angle.
This gives us the lens equation

~β = ~θ − ~α(~θ) , (3.2)

which relates the source position ~β to the image positions ~θ. This is a generally nonlinear equation, and it
can have multiple solutions for a single source position.

4This section was inspired by Ref. [58]
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Figure 6: Left : The strongly lensed quasar HE0435-1223. The foreground galaxy at the centre of the image
curves the light from the distant quasar, which we observe as four distinct images. Credits: ESA/Hubble,
NASA, Suyu et al. Right : An illustrative lensed configuration consisting of a source S, image S′, lens L
and observer O. All angles and vectors are with respect to an arbitrary optical axis, which we have chosen
through the centre of the lens for convenience. The vectors ~η, ~η ′ and ~ξ are all 2D, the latter lying in the
lens plane while the other two lie in the source plane. The angles α̂, ~α, ~β and ~θ are all small, such that
he distances DS , DL and DLS are the angular diameter distances between OS, OL, and LS, respectively.
Configurations with multiple images are possible, but not shown here. Not to scale.

Our big unknown is the deflection ~α, which depends on the properties of the lens. We treat the lens in the
Newtonian limit, where it has a gravitational potential Φ(~r). For small deflections, α̂ is given by

α̂ =
2

c2

∫
~∇⊥Φ dz , (3.3)

with ~∇⊥ the gradient perpendicular to z. The depth of the lens is negligible with respect to the distances
DL, DS and DLS , so we can define a scaled 2D projection of Φ:

ψ(~θ) =
DLS

DLDS

2

c2

∫
Φ(DL

~θ, z) dz . (3.4)

We then retrieve a simple relation between the scaled potential ψ and the reduced deflection angle ~α

~∇~θ ψ = ~α , (3.5)

where ~∇~θ is the gradient with respect to ~θ. More properties of the lens effects are incorporated in the Jacobian
matrix A

Ajk(~θ) ≡ ∂βj(~θ)

∂θk
=

(
δjk −

∂2ψ(~θ)

∂θj∂θk

)
, (3.6)

where the second equality follows from plugging in the lens equation (Eq. (3.2)) and the reduced deflection

angle (Eq. (3.5)). This Jacobian describes the mapping of d~θ to d~β and is called the inverse magnification
tensor. The magnification µ of the j-th image itself is given by

µj =
1

det A(~θj)
, (3.7)

which physically is the ratio between a solid-angle element δβ2 of the source and its corresponding solid-angle
element δθ2 of the image, for finitely sized sources. The apparent size of lensed sources is thus altered by the
magnification, and the measured flux is enhanced by exactly the absolute value of the magnification. We can
rewrite the lens equation (Eq. (3.2)), such that

~∇~θ

[
1

2
(~θ − ~β)2 − ψ(~θ)

]
= 0 , (3.8)
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by plugging in the definition for ~α (Eq. (3.5)) and writing the result as a gradient. This equation can then
easily be linked to the time-delay function [59]

td(~θ) =
1 + zL
c

DLDS

DLS

[
1

2
(~θ − ~β)2 − ψ(~θ)

]
(3.9)

= tgeometric + tgravity ,

where tgeometric is the time-delay due to the extra length of the deflected light path as opposed to the un-
lensed case, and tgravity comes from the curvature of spacetime. The time-delay function gives the difference
in arrival time between a curved path through a gravitational potential and a path through a flat spacetime,
given a specific source-lens configuration.

Altogether, the lens equation has now been reduced to ~∇~θ td(~θ) = 0, which is also known as Fermat’s Princi-
ple. This states that the path taken by a light-like ray between two given points, is the path that is stationary
with respect to variations of said path. The solutions ~θj to the lens equation are called images (see, e.g. Fig.
6) and are thus either minima, saddle points or maxima of the time-delay surface.

The images are categorised by image type, which classifies whether an image corresponds to a minimum
(Type I), saddle point (Type II) or a maximum (Type III). These classifications can be made based on the
Hessian matrix T of the time-delay function, which is proportional to the matrix A. Two positive eigen-
values correspond to a minimum, one positive and one negative describes a saddle point and two negative
eigenvalues give rise to a maximum. For a light profile, the image gets inverted along one principal axis at a
saddle point, while it gets inverted along both axes at a maximum. The lensed gravitational waves acquire
a phase shift (the Morse phase), given by π/2 times the number of negative eigenvalues nj .

Outer  
caustic  

Diamond 
 caustic

Figure 7: Two different elliptical lenses, with sources shown as stars and their respective images shown as
dots in corresponding colours, scaled to their magnification. The lens on the left has a small ellipticity, and
shows quadruply lensed (blue, purple), triply lensed (pink) and doubly lensed (orange, yellow) configurations.
The lens on the right is highly elliptic, and has a diamond caustic that extends beyond the outer caustic. Its
triply lensed configuration (orange) is thus different in nature than the triply lensed system on the left.

The number of images per type follows a specific formula, namely

nI + nIII − nII = 1 , (3.10)

with nI,II,III the number of images of Type I, II or III respectively. Fig. 7 shows a number of source and
image positions for two different lens configurations. The black lines in the figure are caustics, lines in the
source plane that separate regions of different image multiplicity. There is always at least one Type I image
present, but on its own it counts as weakly lensed. An extra saddle point and maximum appear when crossing
over the outer caustic, but the Type III is usually heavily demagnified, and the system is counted as doubly
lensed. An extra minimum and saddle point come into existence when crossing over into the diamond caustic,
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making a quadruply lensed system. If the type III image is resolvable, we get the rarer triply and quintuply
lensed systems, respectively. A final possibility is the combination of two Type Is (minima) and a single Type
II (saddle point) image, which would give rise to a different kind of triply lensed event (see Fig. 7, orange
configuration on the right).

This concludes all of the effects of lensing in the geometrical optics limit: each image comes with a magnifi-
cation, time-delay and Morse phase. In this work, we will focus on strong lensing, where two or more images
are formed. In terms of the polarisations (e.g. Eq (2.14)), this translates to a lensed waveform [22]

h̃L+,×(f,x) =
∑
j

|µj |1/2h̃+,×(f,x)e2πiftd,j−iπnj sgn(f)/2 , (3.11)

where j sums over all of the images. The polarisations get magnified by the square root of the magnification
µj , such that their flux is magnified by µj itself. Each image receives a different time-delay td,j , essentially
changing their respective arrival times, and an overall shift in complex phase due to the Morse phase.

Note that only the magnification has an effect on the optimal SNR ρopt, the time-delay and the Morse phase
are cancelled by the complex conjugate. This also causes a degeneracy between distance and magnification,
making the need for multiple images apparent: there is no way to tell whether a single event was lensed or
just occurred close by, at least not when only mass quadrupole modes are present.

3.2 Galaxy lenses

Before we can model gravitational-wave lensing, we need to understand the objects that lens them. The two
most commong types of astrophysical objects that can cause lensing are galaxies and galaxy clusters. We
will focus on galaxies here, but will briefly discuss galaxy clusters towards the end of this section.

We need to know the specific form of the potential ψ (Eq. (3.4)) to find the images of a configuration. This
requires us to find a comprehensive set of parameters that optimally describe a galaxy, a so-called galaxy
lens model. The simplest model is the Singular Isothermal Sphere (SIS) (see Fig. 8, left illustration). This
assumes that the stars in the galaxy behave like an ideal gas, bound by their combined spherically symmetric
gravitational potential. The galaxy is assumed to be in thermal equilibrium, such that

kBT = mσ2
v , (3.12)

with m the mass of the stars and σv the one-dimensional velocity dispersion of the stars, which is constant
for an isothermal stellar gas. We can then require hydrostatic equilibrium

dp

dr
= −GM(r)ρ(r)

r2
,

dM

dr
= 4πr2ρ(r) , (3.13)

where M(r) is the mass out to a radius r and ρ(r) is the density at r. The equation for hydrostatic equilibrium
has a simple solution when combined with thermal equilibrium (Eq. (3.12)) and the ideal gas law, namely

ρ(r) =
σ2
v

2πG

1

r2
. (3.14)

This describes precisely a singular isothermal sphere. For spherically symmetric lenses, sources at ~β = 0 are
mapped to a ring called the Einstein ring. The size of this ring differs between lens models, and for the SIS
it is given by

θE =
4πσ2

v

c2
DLS

DS
, (3.15)

with θE the Einstein radius. It contains information on both the size as well as the distances between source,
lens and observer, and gives an effective radius within which strong lensing occurs. This concludes the SIS
model, which thus has unique parameters σv and zL, given a certain source at redshift zs.
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Figure 8: Different lens models with source (stars) and image positions (dots) in corresponding colours,
where the grey-scale gradient represent the density distribution. From left to right, we show the Singular
Isothermal Sphere (SIS), the Singular Isothermal Ellipsoid (SIE) and the Power-law Ellipse Mass Density
profile (PEMD). Four images can only form in elliptical models, while changes to the slope of the density
distribution mostly affect the size of the diamond caustic.

All real galaxies are elliptical to some extent, so a correction of the SIS model is the Singular Isothermal
Ellipsoid (SIE), which adds an elliptical deformation to the 2D projected density Σ(~ξ) =

∫
ρ(r)dz (see Fig.

8, middle illustration). This adds two more parameters: the axis ratio q, which is the ratio between the semi-
minor and the semi-major axes, and the orientation φq of the semi-major axis with respect to the observer’s
x-axis. The asymmetry of this model allows for the production of quadruple image configurations, whose
importance we will discuss later.

The Power-law Ellipse Mass Density profile (PEMD) model allows the power law of the density ρ to vary as
well, changing from ρ ∝ r−2 to ρ ∝ r−γ (see Fig. 8, right illustration). A point mass would have γ = 3, while
a mass sheet has γ = 1. The final evolution of these models is the Softened Power law Ellipse Mass Density
profile (SPEMD) model, which smoothens out the singularity in the density at the core. This smoothening
mostly affects possible 5th images, which we rarely observe, so we will use the PEMD model in this work.

One final addition is the inclusion of an external shear, which adds another elliptical deformation to the lens-
ing potential. While the effect is similar to the ellipticity, it is caused by the surroundings of the galaxy and
should thus be modelled separately. Altogether, we now have a set of parameters that completely describe
a galaxy lens at redshift zL: the velocity dispersion σv, the axis ratio q and its orientation φq, the slope of
the power law γ, and the two-component shear ~γ = (γ1, γ2). This is commonly considered to be a relatively
realistic lens model for the purpose of doing lensing statistics with mock data.

Galaxy clusters can also lens sources behind them, but their lens modelling is more complicated. Since they
are essentially a collection of moving galaxies, the complexity of the model increases drastically and more
approximations are needed. Another option is the use of hydrodynamical simulations (e.g. [60]), but those
cannot be translated to lens models straightforwardly. We will thus restrict ourselves to galaxy lensing only,
in order to make meaningful predictions.

3.3 The observed lensed event rate

The lensed event rate follows the same idea as in Sec. 2.5, except that 1) only a fraction of of gravitational
waves are lensed, and 2) the events can be multiply imaged and magnified. This essentially translates to a
change of the merger-rate density in Eq. (2.30)
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dN

dVcdt
→ dNSL

obs

dVcdt
=

dNSL
obs

dN

dN

dVcdt
(3.16)

where dNSL
obs/dN is the fraction of observed images from lensed events with respect to total events N . It is

composed of the probability that a source at redshift zs is lensed, times the number of detected images

dNSL
obs

dN
=

∫ images∑
j

Θ(ρj(θ, zs, zL,θL, ~β)− ρc)

× p(SL,θL, zL, ~β|zs)p(θ)dθdθLdzLd~β ,

with µj and ∆tj the j-th magnification and time-delay of a source at redshift zs due to a lens at redshift

zL, with lens parameters θL and source position in the lens plane ~β. The sum enforces detectability of the
individual images, while p(SL,θL, zL, ~β|zs) represents the fraction of lenses at redshift zL with parameters

θL that strongly lens a source at a given redshift zs > zL for a source position in the lens plane ~β.

We can use Bayes’ theorem to further break the probabilities in Eq. (3.17) as follows

p(SL,θL, zL, ~β|zs) = τ(zs)p(θL, zL, ~β|SL, zs) , (3.17)

where we introduced the optical depth τ(zs) = p(SL|zs), which gives the probability that a source at zs
passes by a galaxy that strongly lenses its signal. We assume ~β to be independent of zs, zL and θL, allowing
us to write p(θL, zL, ~β|SL, zs) = p(θL, zL|SL, zs)p(~β|SL). Altogether, this gives us the observed lensed image
rate in terms of the source frame merger rate density

RSL =

∫
R(zs)

1 + zs
τ(zs)

images∑
j

Θ(ρj(θ, zs, zL,θL, ~β)− ρc)p(θ)

×p(θL, zL|SL, zs)p(~β|SL)
dVc
dzs

dθd~βdzldθLdzs .

(3.18)
This essentially adds dependencies on the optical depth τ(zs) and the strong-lensing galaxy population
p(θL, zL|SL, zs) to the observed event rate from Eq. (2.33).

4 The catalogue

As we now have all the necessary theoretical understanding of gravitational waves and the effect of lensing, we
will now present the methodology required for modelling the binary black hole and galaxy lens populations.
We will use Monte-Carlo integration with importance sampling to solve the integral in Eq. (3.18). This
method postulates that ∫

f(x)p(x)dx ≈ 1

N

∑
xi from p(x)

f(xi) , (4.1)

for a large number of samples N , where f(x) is a function and p(x) is a probability distribution. The observed
lensed event rate can thus be calculated by sampling from the respective probability distributions. We will
use this approach to sample all of the parameters in Eq. (3.18) for one million systems. Effectively, this
means we will create a population of 106 binary black holes, and assign lenses to each of them to create a
strong lensing configuration. We will explain these steps in Secs 4.1 and 4.2 respectively.

4.1 The binary black hole population

The parameters that define a binary black hole merger are: source frame masses m1 and m2, orbital plane
inclination ι and polarisation ψ, redshift zs, sky localisation (α, δ) and the arrival time t. The sky localisation
is uniformly distributed across the celestial sphere, and the arrival time uniformly throughout the span of
1 yr. The polarisation follows a uniform distribution between 0 and 2π, while the inclination is sampled from
p(ι) = 1

2 sin(ι) on the domain [0, π]. We will assume spinless black holes in this work, as the distributions for
spin parameters are not observationally well constrained. This concludes the sampling of all the orientation
angles (Fig. 4). The final binary black hole parameters to be sampled are the source frame masses and the
redshift.
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4.1.1 Sampling the mass distribution

From Sec. 2.3, we know that the source frame masses m1 and m2 fully determine the frequency evolution
of spinless binary black hole mergers, and strongly influence their gravitational wave amplitudes. Heavier
binaries curve spacetime more, and are hence detectable out to larger redshifts. The binary black hole mass
distribution will thus heavily influence the observed lensed event rate, as well as the observed lensed binary
black hole population.

Sampling the source frame masses is not a trivial exercise. An inference of the true mass distribution is done
in Ref. [61] with the events from the second Gravitational Wave Transient Catalogue (GWTC-2). They
investigated four different mass models, but we will only use the Power-law + Peak model in this work
(Fig. 9), as it is the model that is most favoured by the data.

The model includes a rapidly falling power-law and a Gaussian “peak” at high masses, for the primary mass
component. It is motivated by the possibility of a pile-up before the pair-instability gap, due to the mass
loss in pulsational pair-instability supernovae. The pair-instability gap is the predicted absence of black
holes with masses & 60 M� produced by stellar collapse. Extremely heavy (> 130 M�) dying stars produce
highly energetic gamma rays, which can convert to electron-positron pairs in the presence of atomic nuclei.
This conversion leads to a rapid drop in radiative pressure, which collapses the star and causes a runaway
thermonuclear fusion explosion, leaving no remnant behind.

Pulsational pair-instability supernovae occur for slightly lighter stars (100 − 130 M�), where the pair-
instability is not sufficient to cause runaway explosions, but instead increases thermonuclear activity that
return the star to equilibrium. After a few of these pulses, the star drops below 100 M�, and can leave behind
a black hole after the supernova. This causes a relative over-abundance of black holes just before the pair-
instability gap. Note that formation channels other than stellar collapse can allow for higher-mass black holes.

0 20 40 60 80
m1

PD
F

p(m1)
Samples

Parameter Value

λpeak 0.10
α 2.63
β 1.26

µm 33.07 M�
σm 5.69 M�

mmax 86.22 M�
mmin 4.59 M�
δm 4.82 M�

Table 1: All the values of the model parameters
for the binary black hole mass distributions.

Figure 9: The probability distribution for the masses m1, following the Power-law + Peak model from
the GWTC-2 results. This is the mass model that is currently favoured by the available gravitational wave
data.

The probability distribution is broken down according to p(m1, q|θpop) = p(q|m1, θpop)p(m1|θpop), with q the
mass ratio m2/m1 and θpop the underlying population parameters. The distribution for m1 is given by

p(m1|λpeak, α,mmax,mmin, δm, µm, σm) = [(1− λpeak)P(m1| − α,mmax) + λpeakG(m1|µm, σm)]S(m1|mmin, δm) ,
(4.2)

with P a normalised power-law distribution with low and high mass cut-offs mmin and mmax and spectral
index −α. G is a Gaussian distribution with mean µm and width σm, and the parameter λpeak gives the
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fraction of binaries that follow the Gaussian. Finally, S is a smoothing function, which is defined as

S(m|mmin, δm) =


0 m < mmin

[f(m−mmin, δm) + 1]−1 mmin ≤ m < mmin + δm

1 m ≥ mmin + δm

f(m′, δm) = exp

(
δm
m′

+
δm

m′ − δm

)
.

The distribution for the mass ratio is defined for q ≤ 1 and is given by

p(q|β,m1,mmin, δm) ∝ qβS(qm1|mmin, δm) , (4.3)

with β the spectral index of the power-law. Because of the complex nature of this combined distribution, we
will break down the sampling step-by-step.

We can disect Eq. (4.2) as follows: the total population consists two sub-populations, that follow their
respective distributions P and G. Before sampling these, we first draw a random number between 0 and 1
to determine which fraction of the total population gets sampled. If it is smaller than λpeak, then G gets
sampled, and vice-versa. This will give us values for m1, but the total distribution still needs to be tailored
by the smoothing function S at the low-mass end of the spectrum. We fix this by drawing random numbers u
between 0 and 1, and rejecting samples where u > S(m1,mmin, δm). This will get rid of any excess low-mass
samples. This whole procedure gives us a sample set that follows the correct probability distribution function
(PDF), as we can see in Fig. 9. Sampling m2 follows a very similar structure, with the simplification that
there is only a single power-law as main distribution, which is then tailored by the smoothing function. This
concludes the sampling of the masses of the binary components.

4.1.2 Sampling the binary black hole redshifts

0 2 4 6 8 10
zs

PD
F

p(zs)
Samples

Parameter Value

λz 0.563
a 2.906
b 0.0158
c 0.58
µz 1.1375
σz 0.8665

Table 2: All the values of the fitted parameters
to dVc/dzs.

Figure 10: The targeted (black) and the sampled (purple) distributions for the source redshift zs, which show
the agreement between the semi-analytical approximation and the differential comoving volume.

The last binary black hole parameter we need to sample is the source redshift. We assume the binaries follow
the differential comoving volume dVc/dzs, which can be normalised to give us p(zs). This normalisation is
done on the domain zs ∈ [0, 10] (Fig. 10), as we do not expect to observe binaries at z > 10. We will use a
semi-analytical approximation to p(zs) to accommodate for inverse transform sampling. This approximation
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is given by p(zs) ' λzf(zs|a, b, c) + (1− λz)g(zs|µz, σz), where f is a beta prime distribution centred at c

f(z) ∝ (x− c)a−1(1 + x− c)−a−b , and (4.4)

g(z) ∝ exp

(
− (log(z)− µz)2

2σ2
z

)
. (4.5)

This approximation resembles the situation with the m1 sampling (Eq. (4.2)), with the absence of a smooth-
ing function. We can thus draw a number between 0 and 1 to choose a distribution based on λz, and sample
the two distributions individually. Note that these both have to be normalised on the same domain as
dVc/dzs, as their formal domains are zs ∈ [0,∞].

With this, we can now sample all necessary binary black hole parameters. This procedure is repeated one
million times, giving us a catalogue of binary black hole mergers.

4.2 The galaxy lens population

As we explained in Sec. 3.2, we will be using the Power-law Elliptical Mass Distribution (PEMD) galaxy lens
model. The parameters that define a PEMD galaxy lens are: velocity dispersion σv, axis ratio q and spectral
index of the density profile γ. We add to this an external shear, defined by γ1 and γ2, rotate the galaxy by
φq and place the galaxy at redshift zL. The shears encompass the effects of the galaxy’s surroundings, and
are drawn independently from a normal distribution centred at 0 and with a width of 0.05 [62, 63], while the
axis rotation φq is random and follows a uniform distribution between 0 and 2π.

The remaining parameters follow distributions from the Sloan Digital Sky Survey (SDSS) catalogue, which
is a large-scale redshift survey dedicated to spectroscopic and (previously) photometric observations of as-
trophysical sources throughout the Universe. This data has been combined with optical observations from
the Hubble Space Telescope for the Sloan Lens ACS (SLACS) survey, which identified and studied strong
gravitational galaxy-galaxy lenses. We take the density profile γ from the SLACS survey results [64], which
follows a normal distribution with a width of 0.2, centred at 2. The distributions of the lens redshift zL,
velocity dispersion σv and axis ratio q are conditioned on the source redshift zs, so a source is picked from
the previously compiled binary black hole catalogue.

The lens redshift is then sampled in multiple steps. First, a value x between 0 and 1 is drawn from the
distribution

p(x) = 30x2(1− x)2 , (4.6)

which gives the ratio between the comoving distance to the lens and the comoving distance to the source
(see Appendix A.2 for the derivation). Given a source at redshift zs, this ratio can then be translated to the
redshift of the lens zL. For the velocity dispersion, we choose the fit to elliptical galaxies only [63, 65]. We
sample a parameter a from a generalised gamma distribution

p(a) = aα−1 exp
(
−aβ

) β

Γ(α/β)
, (4.7)

where α = 2.32 and β = 2.67, and we take σv = 161kms−1 × a. We use the individual lensing probability
to condition our distributions on strong lensing, as is required by the presence of p(θL, zL|SL, zs) in the
lensed rate integral (Eq. (3.18)). We approximate the Einstein radius θE as the Einstein radius of a singular
isothermal sphere (SIS) lens (Eq. (3.15)) and take the individual strong lensing probability to be equal to
the ratio between the sky area of the lens and the total sky area: p(SL|θL, zL, zs) = πθ2E/4π ∝ θ2E . All lenses
are subsequently rejection sampled to condition them on the individual lensing probability, where we draw a
uniformly distributed number between 0 and 32 and pass those that have a value < θ2E .

Finally, we draw the axis ratio q from a Rayleigh distribution with scale s = 0.38− 0.09177a5

p(q) =
1− q
s2

exp

(
− (1− q)2

2s2

)
, (4.8)

5Ref. [63] has a typo, we use the correct scaling from the LensPop code.
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which is sampled until we get a value 0.2 < q < 1 to exclude highly flattened profiles. This concludes the
sampling of the galaxy lens parameters. We need to draw a source position in the lens plane ~β as well,
in order to solve the lens equation. Since we are only interested in strong lensing configurations, we draw
uniformly distributed positions around/inside the lens area until we get a solution with 2 or more images.

This effectively incorporates p(~β|SL) from Eq. (3.18).

Once a lens and a source position is drawn, the lens equation is solved using the lenstronomy package,
which is a multi-purpose package for modelling strong gravitational lensing [66, 67]. Its lens equation solver
gives us the images of the lensed configuration, each with a magnification, time-delay and image type. We
repeat this whole process for a million randomly chosen sources from the binary black hole catalogue, and
save the results in a new catalogue, our final lensed event catalogue.

4.3 Analysing the data

Only detectable events are to be included in our analysis, and we choose the optimal signal-to-noise ratio
(SNR) ρ as our detection criterium (see Eq. (2.29) with s = h), as it quantifies the strength of a signal within
our detectors. We calculate the SNR of the lensed waveform, and both the time-delay factor and Morse
phase drop out because of the complex conjugate. This leaves only the frequency-independent magnification,
which can be taken out of the integral. Another frequency-independent factor is the antenna pattern (Eq.
(2.27)), and finally the SNR is inversely related to the luminosity distance. This gives us the SNR at the
detector [68]

ρj,det = |µj |1/2A(ι, ψ, α, δ, tarrival)ρ1Mpc(m
z
1,m

z
2)

1Mpc

DS
, (4.9)

where ρ1Mpc is the SNR of an optimally oriented source with redshifted masses mz
1,2 = (1 + z)m1,2 at a

luminosity distance of 1 Mpc

ρ1Mpc =

∫ fISCO

f0

df
h̃∗(f)h̃(f)

Sn(f)
, (4.10)

for a single detector, with f0 the lowest frequency said detector can measure and h̃(f) the waveform asso-
ciated with the redshifted masses, for which we will use the IMRPhenomD model [55, 69]. Eq. (4.9) can
easily be extended to a multiple detector network by adding the SNRs in quadrature. Under the assumption
that all detectors have a similar power spectral density (PSD) Sn(f), this equates to adding the antenna
pattern functions in quadrature, e.g. for a network consisting of three detectors Anetwork =

√
A2

1 +A2
2 +A2

3.
We assume a four-detector network consisting of LIGO-Livingston and Hanford, Virgo, and KAGRA, and
use analytical versions of the PSDs from LALSimulation, which is a package providing waveform and noise
generation routines [70].

All events with a network SNR > 8 are counted as detectable, and are counted in the sum with a weight
τ(zs)R(zs)/(1 + zs) (= f(x) from Eq. (4.1)). This weight quantifies an event’s true occurrence, and will be
used to quantify the importance of all the events. We use the semi-analytical approximation to the merger-
rate density from [35], and re-scale it to fit the observed local merger-rate R0 = 23.9+14.3

−8.6 Gpc−3 yr−1

R(zs) =
R0(a4 + 1)ea2zs

a4 + ea3zs
, (4.11)

with the fitted parameters a2 = 1.6, a3 = 2.1 and a4 = 30. The semi-analytical approximation is derived
through a fit to the results of population-synthesis codes. We assume distributions from the SDSS catalogue
for early-type galaxies, and follow Ref. [40] in their derivation for the strong lensing optical depth, which we
detail in Appendix A.2. The optical depth is then given by

τ(zs) = 4.17× 10−6
(
r(zs)

1 Gpc

)3

, (4.12)

where r(zs) is the comoving distance to the source. The optical depth and merger-rate density, combined
with the detection threshold on the SNR, are all the tools we need for analysing the data from the catalogue.



5 THE POPULATION 21

5 The population

The population consists of one million binary black holes (Sec. 4.1), which have been forcibly strongly lensed
by galaxy lenses (Sec. 4.2), each producing two or more images. This gives us a final dataset of roughly
2.2 million images, each labeled by the source and lens parameters (which are the same for images from one
event), and their magnification, time-delay and image type (which are unique). The following section will
demonstrate the versatility of this dataset through performing a set of separate analyses on the data. These
analyses are not intended to be exhaustive, and we refer the interested reader to the full dataset with some
sample analysis code [71]. All uncertainties quoted in this work are at the 90 % confidence level, and we
assume a flat ΛCDM cosmology with H0 = 70 km s−1 Mpc−1 and Ωm = 0.31.

5.1 Event rates

We start by calculating the observed lensed event rate (Eq. (3.18)), with the added condition that at least
two images need to be detectable. This requirement is based on the fact that at least two images are needed
for lensed event identification during searches, since there is a degeneracy between the magnification and
luminosity distance (Eq. (3.11)). We also scale the results from images to events, such that a lensed event
consisting of two super-threshold images is only counted once in the integral. We find that the total observed
rate of lensed events is 1.3+0.6

−0.4 yr−1. The observed rate of unlensed events is ∼ 1900 yr−1 (Eq. (2.33)), which
gives us a relative rate of about 1 lensed event for every 1500 unlensed events.

We can extend these forecasts to the future LIGO A+ detector upgrade, as well as the planned Voyager
detector that might replace A+ eventually. We show these rates in Table 3, including sub-categories for
the different number of observed super-threshold images. Note that the number of observed images is not
directly correlated with the original number of images produced by the lensed configuration, i.e. there can
be demagnified images below the detection threshold which are not counted.

Observed rates L L/H/V/K L/H/V/K (A+) L/H/V/K (Voyager)

Lensed events: total 0.21+0.10
−0.07 yr−1 1.3+0.6

−0.4 yr−1 3.3+1.7
−1.1 yr−1 16.8+8.4

−5.6 yr−1

double 0.17+0.08
−0.06 yr−1 0.92+0.46

−0.31 yr−1 2.5+1.2
−0.8 yr−1 13.1+6.5

−4.4 yr−1

triple 0.032+0.016
−0.011 yr−1 0.23+0.12

−0.08 yr−1 0.55+0.28
−0.19 yr−1 2.0+1.0

−0.7 yr−1

quadruple 0.011+0.005
−0.004 yr−1 0.12+0.06

−0.04 yr−1 0.30+0.15
−0.10 yr−1 1.6+0.8

−0.6 yr−1

Unlensed events 370 yr−1 1.9× 103 yr−1 5.8× 103 yr−1 31× 103 yr−1

Relative occurrence 1 : 1760 1 : 1500 1 : 1740 1 : 1830

Table 3: The observed event rates for different LIGO sensitivities, categorised according to the observed
number of super-threshold images. We report the rates for solely the Livingston detector (L), as well as the
rates with the inclusion of the Hanford (H), Virgo (V) and KAGRA (K) detectors. Keeping the sensitivities
of Virgo and KAGRA fixed, we make projections for the future A+ and Voyager upgrades of the two LIGO
detectors. Furthermore, we report the relative rates of lensed and unlensed event detections, as those are less
sensitive to uncertainties in the merger-rate density.

Detector upgrades will significantly increase the number of lensed event detections, but there are methods
for finding images that allow us to enhance the observed rates in the present day and age. When at least
one super-threshold sibling image is available, targeted lensed searches may allow us to uncover so-called
sub-threshold triggers below the usual noise threshold [72, 73]. The strain data is searched with a reduced
template bank centred around the super-threshold trigger, effectively lowering the background SNR from
noise and glitches. We classify a sub-threshold event as an event trigger observed below an SNR of 8, but
above an SNR of ρth. Sub-threshold events can be considered detectable when they have at least one super-
threshold sibling image. Since ρ ∝ d−1L , Ref. [72] provides us with an indicative increase in the effective
distance of ∼ 15%, corresponding to ρth = 7, which we take to be illustrative for a sub-threshold search.
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Observed rates L L/H/V/K L/H/V/K (A+) L/H/V/K (Voyager)

Lensed events: total 0.30+0.15
−0.10 yr−1 1.7+0.9

−0.6 yr−1 4.3+2.1
−1.5 yr−1 19.9+9.9

−6.7 yr−1

double 0.23+0.12
−0.08 yr−1 1.2+0.6

−0.4 yr−1 3.2+1.6
−1.1 yr−1 15.6+7.8

−5.2 yr−1

triple 0.054+0.027
−0.018 yr−1 0.32+0.16

−0.11 yr−1 0.71+0.35
−0.24 yr−1 2.3+1.1

−0.8 yr−1

quadruple 0.015+0.008
−0.005 yr−1 0.18+0.09

−0.06 yr−1 0.43+0.21
−0.14 yr−1 2.0+1.0

−0.7 yr−1

Relative occurrence 1 : 1210 1 : 1100 1 : 1350 1 : 1540

Overall increase 45 % 36 % 29 % 19%

Table 4: The observed event rates for different LIGO sensitivities including sub-threshold triggers with an
SNR > 7, categorised according to the observed number of super- and sub-threshold images. Virgo and
KAGRA are always assumed to be at design sensitivity, when included in the detector network. We take
SNR > 7 as a proxy for the detection capabilities of the sub-threshold searches, but the actual improvements
achieved may vary.

We find that the total number of observed quadruply lensed events increases from 0.12+0.06
−0.04 yr−1 to 0.18+0.09

−0.06
yr−1, an increase of 51%, when including sub-threshold triggers. Furthermore, the total number of observed
triply lensed events increases with 40% from 0.23+0.12

−0.08 yr−1 to 0.32+0.16
−0.11 yr−1 and for doubly lensed events

there is an increase of 33% from 0.92+0.46
−0.31 yr−1 to 1.2+0.6

−0.4 yr−1. We extend these calculations to the different
sensitivities and detector networks presented earlier, and report the observed number of events in Table 4,
categorised according to the detected number of super-threshold and sub-threshold events. The increase in
detectable events demonstrates how crucial performing follow-up sub-threshold searches for the lensed coun-
terpart pairs of super-threshold events, giving further impetus to such searches.
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a0 4.26 3.03× 10−1 7.32× 10−1

a1 −3.78× 10−1 1.64× 10−2 1.02× 10−1

a2 −1.44× 10−3 9.78× 10−3 −4.85× 10−2

a3 4.78× 10−4 −1.59× 10−3 3.42× 10−3

Table 5: A third-order-polynomial fit to the mean
detection rates from Fig. 11, as a function of sub-
threshold detection threshold SNR.

Figure 11: The observed detection rates as a function of sub-threshold detection threshold SNR ρth for
double (blue), triple (yellow) and quadruple (magenta) lensed event detections and the total rate (black).
The shaded areas indicate the uncertainty from the local merger rate. The observed rates increase several
multiples as the threshold SNR decreases, most notably the quadruple rates. Sub-threshold searches can thus
greatly increase the probability of detecting lensed events.

However, because the sub-threshold searches vary in their sensitivity and some further improvements are still
pending, the SNR threshold choice may vary. During actual searches, different detectability criteria from the
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SNR are used, and the SNR can be considered a proxy that correlates with these criteria, but not perfectly.
Thus, we also give a phenomenological fit to the SNR distribution, which can extrapolate our results to any
choice of SNR threshold. In particular, we demonstrate a third-order-polynomial fit to the detection rate as
a function of the SNR threshold for double, triple, and quadruple images (see Fig. 11 and Table 5).

There are several caveats associated with all of these predicted observed event rates. Detector down-time
is not included in the absolute rates, which is the reason we report the relative rates as well. The number
of detected unlensed events during an observing run can then be scaled, using the relative rate, to find the
predicted number of lensed events. Secondly, we assumed an optical depth derived for SIS lenses (Appendix
A.2). A study was performed using elliptical SIE lenses [36], but only a difference of 4% was found, which
is significantly smaller than the error on the local merger rate. We have thus ignored corrections from the
ellipticity of the lenses.

Finally, the merger-rate density is largely unconstrained at high redshifts, which is where our lensed sources
are located. While this introduces an extra uncertainty to our projected rates, Ref. [48] shows how the non-
detection of lensed events can help constrain the merger-rate density at high redshifts. Conversely, regular
detections of lensed events can help constrain the delay between the star formation rate and the merger rate
at high redshifts, allowing us to probe the formation channels of binary black holes [74]. Consequently, while
our forecasts are tentative based on our best understanding of the binary black hole and lens population, the
comparison between our theoretical predictions and future observations will increase our understanding of
binary black holes themselves.

5.2 Time-delays and image types

One final caveat is that our rates do not take into account the intricacies of finding a lensed event from within
a wealth of data. We will show how our predictions for the lensing signatures can help improve the accuracy
of the searches, but first we need to investigate these signatures and quantify their properties.

From Sec. 3.1, we know of three major effects of lensing on the waveform: a magnification, time-delays
between the images, and the image type quantified by the Morse phase. The magnification is degenerate
with the luminosity distance, and is thus hard to determine precisely in an analysis. The image type and

101 102 103 104 105 106 107 108

t (s)

(a)

p(
t)

Doubles
t12

101 102 103 104 105 106 107 108

t (s)

(b)

p(
t)

Triples
t12
t23

All t

101 102 103 104 105 106 107 108

t (s)

(c)

p(
t)

Quadruples
t12
t23
t34

All t

hour day month hour day month hour day month

Figure 12: (a) The time-delay distribution for double images. The shaded regions give the 90 % confidence
intervals for ∆t12 ∼ 0.7 hr− 133 days. (b) The time-delay distributions (with confidence intervals) for triply
lensed sources between the first two images (blue), between the second and third images (magenta) and the
sum of those two (black). (c) The time-delay distributions (with confidence intervals) for quadruply lensed
sources between the first two images (blue; ∼ 4.5 hr− 51 days), the second and the third images (magenta;
∼ 0.8 hr − 13 days), the last two images (yellow; ∼ 2.4 hr − 27 days), and the total of the three (black;
∼ 1.8 hr− 31 days). Generally, the time delay between the lensed pairs is . 90 days.
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Figure 13: The time-delay distributions for observed doubly, triply and quadruply lensed events, separated
by image type and scaled to show relative occurrence within a plot. The legend entries mark the image types
of the two associated images, and combinations not present within the data are not shown in the legend.
Type I-II images from doubly lensed events have significantly higher time delays than quadruples, illustrating
the discriminatory power of the combined measurement of image types and time delays.

time-delay are closely linked though, as the image type is a derived property of the time-delay function.
We show the time-delays between images for observed doubly, triply and quadruply lensed systems in Fig.
12. The most striking feature in Fig. 12 is that observed triply and quadruply lensed events typically have
time-delays of less than a month, while doubly lensed events can go up to 4 − 5 months. The tail at small
time-delays in Fig. 12a is also an indication that some of the original systems have more than two images.

We further break down the time-delays according to their image types in Fig. 13, where “Doubles, ∆t12−Type
I-I” signifies two consecutive images, both Type I, that are observed as a doubly lensed event, and similarly
for the remaining entries. There is a clear correlation between the chronological order of the images and the
image types. Generally, the Type Is come first, followed by the Type IIs, and once in a blue moon a Type
III is detectable. From the discussion on image types, we know that two consecutive Type IIs can only occur
within a quadruply or quintuply lensed system, while two consecutive Type Is require the existence of at least
three images total. Ascertaining the image types of lensed candidates can thus provide valuable information
on the original system, and help motivate follow-up sub-threshold searches.
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Figure 14: The time-delay distributions for all doubly, triply and quadruply lensed events, separated by
image type and scaled to show relative occurrence within a plot. These show distinctly different signatures
between the multiplicities of the lensed systems, representing their fundamental configurational differences
(see Sec. 3.1).

While Fig. 13 is already quite insightful on in its own right, it can be best interpreted when compared to
the total population, which is compiled without the detectability requirement (Fig. 14). Truly doubly lensed
events have the largest time-delays, ranging from a week to several months at 90 % confidence, while the
second (Type I) and third (Type II) image of a quadruple follow within a month of each other. Only 0.3
% of doubles have time-delays of less than a day, so such a detection would likely come from an originally
quadruply lensed event. Fig. 14b clearly shows the two different arrangements that can cause triple lensing:
either Type I-I-II or Type I-II-III images in chronological order. A small but significant fraction has ordering
I-II-II, which points towards a limitation of lenstronomy. These events are likely quadruply lensed, but the
angular separation between the first two type Is is too small for lenstronomy to resolve. However, triply
lensed systems are significantly less common than quadruply lensed systems within the total population, so
we do not expect this issue to affect our predicted event rates from Sec. 5.1.

Galaxy clusters can cause strong lensing as well, and predictions of their rates have been made as well [75].
However, their expected time-delays are typically larger than a year, extending past the regular observation-
run time. This significantly decreases the probability of two or more images from galaxy cluster lensing to
occur within a single observation run, making their detection unlikely. We thus advise future and ongoing
searches to focus on galaxy lensing, as its properties are more convenient and constrained through the lensing
statistics presented in this section.
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Figure 15: A set of different BBH signals. Red is a m1 = m2 = 100M� BBH at a luminosity distance
of 1 Mpc, which is subsequently lensed by an singular isothermal sphere (SIS) lens of 106M�. Blue is a
m1 = 120M� and m2 = 84M� at 1.2 Mpc. The degeneracy between the magnification and distance is clearly
visible. The second signal mimics a lensed signal, which would give rise to a false alarm.

5.3 The false alarm probability

With these detailed predicted distributions on our side, we can tackle the endeavour that is actually finding
a lensed event from dozens, if not hundreds or thousands detections during an observing run. There are cur-
rently two steps in identifying a lensed event. The first is to find a counter-image of a super-threshold event
with a matching waveform [72, 73]. The second is to test if the two waveforms are identical within detector
accuracy (save for an overall difference in the complex phase, arrival time, and amplitude), as expected of
the lensing hypothesis [40, 45–47]. However, it is also possible for two waveforms to be near-identical within
detector accuracy by chance, giving rise to a false alarm probability (see Fig. 15, for an illustration).

We now know the expected distributions of the time-delays (Fig. 12), as well as the distribution for uncor-
related events [43]. This allows us to calculate a ranking statistic

RLU =
p(∆t|Lensed)

p(∆t|Unlensed)
, (5.1)

which quantifies how much more likely a certain time-delay is under the lensed hypothesis than under the
unlensed one. The distribution of RLU values differs between lensed and unlensed events, as can be seen in
Fig. 16a. The survival function for unlensed events is of particular interest, since it tells us the fraction of
unlensed events that have a similar or higher RLU than an event with a given RLU . As an example, we take
p(∆t|Lensed) to be the average distribution for quadruply lensed events, calculate RLU for both lensed and
unlensed events, and check the value of the survival function for a large sample of events from the lensed
distribution. This gives us an average of 0.029 unlensed events producing an RLU similar or higher than a
given lensed event, or equivalently, a reduction of the individual false alarm of a truly lensed event by a
factor of 34. Incorporating knowledge from the expected time-delay distribution thus greatly improves the
significance of lensed event candidates.
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Figure 16: (a) The RLU distributions assuming unlensed events (orange) and lensed events (purple). For
unlensed events, the survival function (SF) is plotted, which is 1− CDF (cumulative distribution function).
Only a small fraction of unlensed events have an RLU similar or higher than lensed events, illustrating the
RLU ’s ability to differentiate between lensed and unlensed events. (b) The catalogue false alarm probabilities
(FAP) as a function of the observation run times tobs, assuming a constant event rate N = 510 events/yr,
time window ∆tcluster = 1 yr and an intrinsic FAP = 10−6. Shown are the FAP without windowing (black),
the windowed FAP for galaxy cluster lensing (purple), and the ranked FAP for galaxy lensing (orange).
Incorporating the galaxy-lensing time-delay changes the functional dependency in the exponential from ∝ t2obs
to ∝ tobs. This reduces the FAP significantly for galaxy lensing when tobs ∼ 1 yr, but galaxy cluster lensing
requires much longer observation times.

However, the improvement from incorporating the time-delay distribution becomes even more apparent when
we consider a catalogue of detections. The total catalogue false alarm probability, that there is at least one
false alarm within Npairs of unlensed events, is given by

FAP = 1−
Npairs∏
i=0

(1− pi) , (5.2)

where pi is the individual false alarm. It consists of an intrinsic false alarm probability from the true binary
black hole population, and the likelihood of the time delay between the unlensed events occurring under the
lensed hypothesis.

Without time-delay information, all events N from the observing run need to be taken into account with
equal weight, giving Npairs = N(N − 1)/2, where N is the total number of single events. This quadratic
dependence makes the occurrence of a false alarm increasingly probable for long observing runs and/or high
unlensed event rates. As we showed in Sec. 5.1, the unlensed event rate is expected to be ∼ 103 yr−1 as
we reach LIGO design sensitivity, giving over half a million pairs for our lensed event analysis. Even if the
intrinsic false alarm probability is low, the inevitability of a false alarm in the dataset will raise concerns over
the significance of a possible lensed event candidate detection.

Assuming an intrinsic false alarm probability p = 10−6 as an underestimation, we find that the complexity of
the total catalogue false alarm probability becomes linear, similar to typical single-event false alarms, when
including galaxy lensing statistics (Fig. 16b). The weights assigned to the event pairs are the values of the cu-
mulative distribution for theRLU s of lensed events, since this is the fraction of lensed events that have a similar
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or lower significance than an unlensed event with a given RLU . For galaxy cluster lensing, we assumed all
events with time-delays of less than a year to be equally likely, and rejected all events with larger time-delays.

The catalogue false alarm probability grows with the number of detections N when taking galaxy time-
delays into account, instead of with the number of pairs N(N−1)/2. Such a low total false alarm probability
strengthens the significance of any possible detected lensed candidates. Furthermore, incorporating the
knowledge of the predicted time-delay distributions would allow us to tackle the problem created by the
otherwise rapidly rising false alarm.

A noteworthy feature of the time delay is the correlation between the time-delays of subsequent images
from the same event. Fig. 17 shows the two-dimensional density functions of the time delays for observed
quadruply lensed events, and a linear correlation between the ordered images can be made out. Such multi-
dimensional probabilities can be used to perform lensed event analyses beyond trigger pairs, and thus further
reduce the false alarm probability.

An important caveat is that the time-delay distributions are dependent on the lens modelling and the as-
trophysical priors, and no uncertainties were included in their calculation. Lensed event identification based
on these specific distributions might introduce a model bias, which would harm our search capabilities. If
incorporated during lensed event searches, the time-delay distributions as presented in this work should be
relaxed to allow for variations in the true lens population, correcting for possible biases.

Another factor is the dependence of the individual false alarm probability on the binary black hole population.
From the mass distribution (Fig. 9), one can observe immediately that binary black hole mergers with
masses ∼ 50 M� are less likely to occur than mergers with ∼ 10 M�. While the true mass distribution of the
binary black hole population may vary from Fig. 9, the concept stays the same. More research is thus needed
to identify the dependency of the individual false alarm probability on the binary black hole population.
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Figure 17: The two-dimensional density functions for consecutive images from observed quadruply lensed
events. The matching one-dimensional distributions from Fig. 12 are shown to the sides. Both density
functions show linear correlation, which can be employed to reduce the false alarm of quadruply lensed
detection even further.
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Figure 18: (a) The observed redshift distributions for the galaxy lenses (purple) and lensed sources (orange).
The unlensed observed source distribution (black) is shown for comparison. Additionally, we show the
distributions specifically for events that have been quadruply lensed (dashed), as an example of the versatility
of the data. The 90% confidence interval for the unlensed sources is zs ∼ 0.7−2.1, while for the lensed sources
zs ∼ 1.0 − 3.9. Lensing magnifications and optical depth thus allow us to probe events beyond the regular
detector horizon. (b) The observed (purple) and original (black) distributions for the Einstein radii. The
Einstein radii of observed lensed systems are typically ∼ 0.2 − 1.8 arcsec, while the prior population has
Einstein radii θE < 1.0 arcsec. The Einstein radius will play an important role in localisation efforts.

5.4 The observed source and lens populations

Once we have identified an event with a high likelihood of being lensed, its estimated source and lens pa-
rameters can be used in further analyses. When four images are observed, we essentially measure the events
sky position 4− 16 times (depending on how many detectors are operational). This allows for constraints of
< 10 deg2 on the sky area containing the merger [23]. This area of the sky can then be searched with optical
telescopes, identifying all possible lens + host galaxy combinations. Through modelling the time-delays and
magnifications of the electromagnetically observed systems, the best match with the observed gravitational
waves can be calculated. This provides us with a possible identification of the host galaxy. If realised in
practice, such identification might allow for e.g. improved lens modelling and studies on binary black hole
formation.

We present our expected observed redshift distributions for both lenses and sources in Fig. 18a. Observed
lensed sources are predicted to lie within zs ∼ 1.0− 3.9, beyond the current detector horizon of zs ∼ 1. Ob-
servability of lenses in the electromagnetic spectrum hinges on a set of requirements based on the telescope’s
specifications. While we cannot comment on the observability of the host galaxies, as we did not incorporate
those in this work, we present the predicted observed distribution of the Einstein radii in Fig. 18b. As an
estimate of observability, an Einstein radius of & 0.3 arcsec is required for the Euclid telescope (Wempe et
al., in prep.), which is satisfied by ∼ 90 % of lenses in our sample.

This percentage is highly dependent on the choice of the velocity dispersion distribution. Distributions based
on all-type galaxies (not just ellipticals) peak at lower velocity dispersions when conditioned on strong lens-
ing [76]. While this is an important caveat to note, we do not expect our choice of the velocity dispersion
distribution to influence our predicted rates, as the lenses are conditioned on strong lensing regardless.
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If the host galaxy can be localised, precise redshift-luminosity distance measurements can be made by com-
bining electromagnetic and gravitational wave observations. These can in turn be used to calibrate the
cosmological model and measure the Hubble constant H0. Another line of research is the measurement of
gravitational wave polarisations beyond h+ and h×. Alternate theories to GR allow up to six total polarisa-
tions, each having a different beam pattern function [77] (see Eq. (2.25) for the + and × responses). Since
detectors only see the total response, precise sky localisations and the detection of multiple images provide
the discriminatory power necessary for measuring the individual polarisations. These measurements provide
a novel test of GR and alternate theories, likely improving our understanding of fundamental physics itself.

6 Conclusions

Gravitational waves can be lensed by massive galaxies, much like light. This phenomenon opens up possibili-
ties for altogether new fields of research in cosmology. In this work, we have created a catalogue of one million
strongly lensed binary black holes (BBHs), from observationally constrained distributions of the source and
lens parameters. We predict 1−2 lensed event detections per year at LIGO design sensitivity, in conjunction
with the Virgo and KAGRA detectors. These rates will increase as LIGO receives further upgrades, and
more detectors become available. One can also enhance the number of detections by performing rigorous
sub-threshold searches, for which the methodologies are already developed and continuously being improved.

We then presented detailed predicted time delay distributions, and showed the link between the image type
and time-delay. This information can prove useful for discerning whether the source was originally doubly,
triply or quadruply lensed. These distributions can be used as well to improve ongoing and future lensed
event searches, by assigning lensed event candidates a significance based on our lensing statistics. We demon-
strate how the false alarm probability of a lensed event can be reduced by a factor ∼ 30, while the catalogue
false alarm probability changes complexity from a quadratically to a linearly increasing trend. This change
significantly decreases the probability of a false alarm during upcoming observing runs, and underlines the
importance of taking lensing statistics into account.

Finally, we showed our results for the expected observed distributions of source and lens redshifts, as well as
Einstein radii. These quantities will play an important role in precise sky-localisation endeavours, which are
a requirement for several science cases such as Hubble constant measurements. We cannot possibly present
all interesting statistics in this work, so we encourage the interested reader to investigate the data them-
selves. Anyone in need of properties of lensed gravitational waves (or a subset thereof) can find their relevant
distributions in our catalogue [71].

It is our hope that this work and its subsidiary publication [49] will help motivate increased effort into lensed
event searches, as well as the incorporation of lensing statistics into those searches. Lensed gravitational
waves can provide a unique view beyond the detector horizon, and it would be a shame if we missed them.



A SUPPLEMENTARY DERIVATIONS 31

A Supplementary derivations

A.1 Point masses on stationary orbits

We take the binary black holes to be two point masses of m1 and m2 on a circular orbit of diameter R. Their
positions x)1,2 at time t are then given by

x1(t) = R
m2

m1 +m2
ê(t) = R

µ

m1
ê(t)

x2(t) = −R m1

m1 +m2
ê(t) = −R µ

m2
ê(t) ,

with µ = m1m2/(m1 + m2) the reduced mass and ê(t) the unit vector pointing from the centre of mass to
m1

ê(t) = (cos(ωt), cos(ι) sin(ωt), sin(ι) sin(ωt)) ,

where ι is the inclination as is illustrated in Fig. 4, and ω is the orbital frequency. The mass quadrupole
moment (Eq. (2.13)) can be approximated in the limit of non-relativistic velocities as

M ij(t) =
1

c2

∫
d3xT 00(t,x)xixj

=

∫
d3x ρ(t,x)xixj ,

with ρ(t,x) the density of the two point masses

ρ(t,x) = m1δ
3(x− x1) +m2δ

3(x− x2)

= m1δ
3

(
x− µ

m1
Rê(t)

)
+m2δ

3

(
x +

µ

m2
Rê(t)

)
,

where δ3(x) is the three-dimensional Dirac-delta function. We can now solve the integral to get the mass
quadrupole moments

M ij(t) =

∫
d3x

[
m1δ

3

(
x− µ

m1
Rê(t)

)
+m2δ

3

(
x +

µ

m2
Rê(t)

)]
xixj

=

∫
d3xm1x

ixjδ3
(
x− µ

m1
Rê(t)

)
+

∫
d3xm2x

ixjδ3
(
x +

µ

m2
Rê(t)

)
= m1

µ2

m2
1

R2ê1ê2 +m2
µ2

m2
2

R2ê1ê2

= µR2ê1ê2 ,

with ê1,2 the first and second component of ê, respectively. Writing these out explicitly and differentiating
twice with respect to time, we get

M11(t) = µR2 cos2(ωt) → M̈11(t) = −2µR2ω2 cos(2ωt)

M22(t) = µR2 cos2(ι) sin2(ωt) → M̈22(t) = 2µR2ω2 cos(2ωt)

M12(t) = µR2 cos(ι) cos(ωt) sin(ωt) → M̈12(t) = −2µR2ω2 sin(2ωt) .

We can now substitute these into the definitions of the plus and cross polarisations (Eq. (2.14))

h+ =
1

r

G

c4
(M̈11(tret)− M̈22(tret)) = −4

r

G

c4
µR2 1 + cos(ι)

2
cos(2ωtret)

h× =
2

r

G

c4
M̈12(tret) = −4

r

G

c4
µR2 cos(ι) sin(2ωtret) .

However, the quantities R, µ and ω are not independent from each other, but related through Kepler’s third
law:

R3

ω2
= GM ,
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where M = m1 +m2 the total mass of the system. Introducing the chirp mass

Mc =
(m1m2)3/5

(m1 +m2)1/5
= µ3/5M2/5 ,

we finally arrive at our desired result, Eq. (2.15)

h+ = −4

r

(
GMc

c2

)5/3 (ω
c

)2/3 1 + cos2(ι)

2
cos(2ωtret)

h× = −4

r

(
GMc

c2

)5/3 (ω
c

)2/3
cos(ι) sin(2ωtret) .

A.2 The optical depth

The total probability of a source at redshift zs being strongly lensed can be expressed as an integral over the
conditional probabilities

p(SL|zs) =

∫
p(SL|zs, zL,θL)p(zL,θL|zs)dzLdθL ,

where p(SL|zs, zL,θL) is the probability of a single galaxy-lens with parameters θL at redshift zL lensing a
source at zs

p(SL|zs, zL,θL) =
πθ2E
4π

,

and p(zL,θL|zs) is the probability of finding such a lens

p(zL,θL|zs) =
d2N`

dzLdθL
=

d2N`
dVcdθL

dVc
dzL

=
dn`
dθL

dVc
dzL

= n0` p(θL)
dVc
dzL

.

Here, N`(zL,θL) is the total number of lenses and n` is the number-density of lenses. We take n0` to be
independent of θL, such that dn`/dθL follows the distribution of lens parameters p(θL), normalised by the
constant number density n0` . We approximate the lenses as spherically symmetric (SIS model), which leaves
the velocity dispersion σv as the only lens parameter.

We now take τ(zs) the optical depth to be p(SL|zs), and substitute the different probabilities:

τ(zs) =

∫ zs

0

dzL

∫ ∞
0

dσv n
0
`

θ2E
4

dVc
dzL

p(σv) ,

where p(σv) is given by

p(σv) =
1

σ∗

(σv
σ∗

)α−1
e−( σvσ∗ )

β β

Γ(α/β)
,

with α = 2.32, β = 2.67, σ∗ = 161 km s−1 and Γ the Gamma function defined for Re(z) > 0

Γ(z) =

∫ ∞
0

dxxz−1e−x .

Together with the expression for the Einstein radius (Eq. (3.15)), which carries a σ2
v term, we can now carry

out the integration:
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use Vc = 4
3πr

3 and DLS = r(zs)−r(zL)
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:
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30
.

The number density for early-type galaxies from the SDSS catalogue was found by [65], and is given by
n0` = 8× 10−3h3 Mpc−3, with h = H0/(100 km s−1 Mpc−1) the dimensionless Hubble constant. Plugging in
all the values for the constants, we get our final result, Eq. (4.12):

τ(zs) ≈ 4.17× 10−6
(
r(zs)

1 Gpc

)3

.

B A Comprehensive Guide to Everything Gravity6

According to Igitur Statistics, only a small percentage of people actually read my entire thesis. So if you
end up enjoying this summary, please consider reading the thesis from start to finish. It is completely free,
and you can always change your mind later.

In Einstein’s general relativity, space and time are no longer separate quantities, but are instead connected
through the medium of spacetime. Spacetime is not necessarily Euclidean (like all the neat little perpendic-
ular lines on graph paper), it can be curved instead. This curvature is caused by the presence of mass (or
equivalently, energy), and can be visualised as follows. Imagine a trampoline that you place a bowling ball
on top of. The trampoline sheet will curve down, just like spacetime curves around a single massive object.
Suppose you now take a ping-pong ball, place it at a certain distance away from the bowling ball, and give it
a push. If given the right push7, the ping-pong ball will start circling the bowling ball, much like the Earth
orbiting the Sun.

Suppose that instead of a ping-pong ball, we would take out a second bowling ball, and push both bowling
balls in opposite directions. They would start orbiting each other, not unlike two black holes. Black holes
are curious astrophysical objects with all their mass concentrated in a single point, the singularity. They
curve spacetime so strongly that beyond a radius called the event horizon, nothing can escape, not even light.
In our trampoline analogy, they are the ultimate bowling balls, though you cannot throw them as they are
infinitely small. Two black holes together form a binary black hole system.

The orbiting black holes continuously alter the local curvature of spacetime as their positions change over
time. These periodical changes of the curvature manifest themselves as gravitational waves, which can be
visualised as the trampoline surface becoming extremely bouncy. The gravitational waves carry away energy,
as changing the curvature of spacetime comes at a cost. Since total energy needs to be conserved, the black
holes start slowly spiralling inwards, as their orbital energy decreases. This continues until the innermost
stable circular orbit is reached, and the black holes plummet towards each other, before finally merging and
forming a single, larger black hole. This entire process is called coalescence.

As the gravitational waves travel through spacetime, there is a chance of them encountering a galaxy or
galaxy cluster. These massive astrophysical objects are approximately stationary while the waves pass by,

6Terms and services apply. The author does not claim this section to be an accurate representation of the theory of General
Relativity.

7On a frictionless trampoline, the existence of which might be debatable.
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so their effect on spacetime is only dependent on the space part. Kind of like our single bowling ball at the
beginning, but extremely large, massive and possibly asymmetric in shape. The path of the gravitational
wave gets deflected as it has to follow the curved space. This is called gravitational lensing, and is quite
commonly observed for light8.

After being lensed by a galaxy or galaxy cluster, the gravitational wave moves on into the vast emptiness
that is most of our Universe. However, there is a tiny chance of it encountering a certain small blue planet,
orbiting an unremarkable yellow sun in the unfashionable end of the Western Spiral Arm of the Milky Way
[78]. There, it will pass through some funky machine made by little men, consisting of two perpendicular
arms, each 4 km long. These arms will be alternately stretched and squished by about a thousandth the size
of a proton, as the gravitational wave passes. Through many an engineering and data analysis feat, we can
measure these changes in length, and thus detect these gravitational waves.

At the source, the gravitational waves fly out in all directions, with each direction having an uniquely deter-
mined path. Through strong gravitational lensing, different paths can combine at a single point. We observe
this as multiple images of the same object, but appearing at different positions in the sky (see Fig. 6 for a
nice photo from the Hubble telescope). Gravitational-wave detectors (the funky machines) do not have the
resolution to see the differences between the sky positions, but they can measure other effects. The amplitude
of the waves is magnified differently for each image, and they arrive at separate times due to the difference in
the path length. We can thus measure a lensed gravitational wave as repeated events in our detector, with
different amplitudes but with the same general form.

The goal of my thesis is to make predictions about these observed lensed gravitational waves. How many can
we expect to see, in coming years and farther away in the future? What are the properties of these detections,
and can we use these predictions to our advantage? This reveals the true topic of this work: statistics. If
we want to say anything meaningful, we need to build a large dataset containing the properties of the lensed
gravitational waves. These properties follow distributions, which tell us the how often a certain value of a
property occurs with respect to the total population. An example of a distribution can be found in Fig. 9,
which shows the distribution for the mass of the heaviest black hole of the binary. It has two peaks and an
overly complicated formula that comes with it, but we will ignore that struggle here.

This specific distribution for the mass has been inferred from the currently available data by the LIGO-Virgo
Collaboration. LIGO has two detectors in the United States, LIGO-Livingston and LIGO-Hanford, while
Virgo is a single detector in Italy. Together, they have about 50 publicly released detections of gravitational
waves, and are currently working on the data analysis for even more. The mass distribution of these 50
detections is not the distribution we will use. Heavy black holes generate gravitational waves with larger
amplitudes, and are thus easier to detect. This effect is called the observational bias. We can make educated
guesses about this bias, and correct our observed distributions for it. This gives us an idea of what the
true population looks like. We will be using these distributions of the true populations in this thesis. Note
however, that these are not set in stone. They are guesses, as that is the best thing we have.

Masses are not the only thing we need for our population of lensed gravitational waves. We place the binaries
a certain distance9 away, and throw a bunch of orientation angles into the fray (see Fig. 4 for an illustration
of all the different angles). This gives us all the necessary details of the unlensed gravitational wave. We
then turn our attention to the galaxies that will lens them. From observations with optical telescopes and
other astronomical machinery, distributions for the sizes, shapes and mass-density profiles of galaxy-lenses
have been inferred. These are all the distributions we care about in this thesis.

We calculate the effects of lensing on the gravitational waves with the lenstronomy package, and quantify
the signal ‘loudness’ with pycbc. Remember the lengthy explanation of black holes, gravitational waves and
gravitational lensing I gave earlier? I do not do any of the associated calculations myself, I just use the code

8A single Google search on “gravitational lensing hubble telescope” will show you a plethora of pretty pictures.
9Sec. 2.1 explains how our regular notion of distance is broken in an expanding Universe, but I will not bother you about

that here.
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other people have been developing for years or even decades. I did, however, write a bunch of routines for
drawing samples from all of the distributions I need. Binary black hole properties get thrown at pycbc,
while galaxy properties are chugged at lenstronomy. Combining the results from the two, I get all the
data I need for a single lensed gravitational wave: values for the properties of the binary black holes, the
galaxy-lens and the observed gravitational wave.

You cannot do statistics with a single event (the lensed gravitational wave), so we need a couple more. A
million in our case, to be precise, so that the random samples accurately form the entire distribution they
were sampled from. This takes quite a long time to do, and I would like to be able to use my laptop for other
things. Luckily, I had access to LIGO’s CIT computational cluster at Caltech. Through some old-fashioned
command-line work10, I had my codes run on a random computing core in California, waited half a day for
them to finish, and then copied the results back to my own laptop. Since we have quite large number of
black holes, and a dozen properties to be recorded, my results were in the form 400 MB of doom contained
in a single .txt file.

We can now finally move on to the actual results. We start with calculating the predicted number of observed
lensed events per year. There are some big tables in the results section, quoting all sorts of numbers. However,
our main prediction is 1− 2 lensed events per year with four operational detectors at their target sensitivity
(sensitivity quantifies the noise levels in a detector). We thus conclude that lensed event observations be-
come quite probable in the near future, justifying why research should be done to prepare for them. The
actual number of observations will provide valuable information as well. The predictions we make are highly
dependent on a number of choices, assumptions and inferred populations. Different models predict different
observed event rates, so (non-)detection can tell us more about which of our assumptions are consistent with
the true population.

Our second question is more involved: what are the properties of the expected detections and can we use this
information to our advantage? Extracting the properties is easy, those are in the .txt file. Sec. 5.2 shows
the distributions for the time delays between different images of the same lensed system, and some further
categorisation of these systems. Sec. 5.4 shows two examples of distributions for properties of the source
binary black holes and of the galaxy lenses. Sec. 5.3 discusses the effect of the time-delay distributions on
the lensed event searches, so I will explain those searches first.

A search is an analysis of detector data in order to find gravitational wave signals. Strongly lensed grav-
itational waves appear as multiple images with different amplitudes at different arrival times, but with a
similar detector signature. Strong lensing searches thus compare the match in detector signatures between
all gravitational-wave detections. However, it is entirely possible for two gravitational waves to have a simi-
lar signature through pure coincidence. We call this a false alarm, and pairs of gravitational waves have an
intrinsic false alarm probability. The number of pairs grows quadratically with the number of detections,
making the occurrence of a false alarm essentially inevitable. This is disastrous, as any lensed event candi-
dates could now be challenged based on this inevitability.

We suggest the inclusion of the time-delay distributions to combat this catastrophe, and show a proof of
concept. Randomly chosen pairs of unlensed events can have any time delay between them, but we showed
in Sec. 5.2 that lensed events have quite typical time-delays. We then do some statistical jujitsu to quantify
when a pair of unlensed events produces a similar time-delay to lensed events. If a time-delay is unlikely to
come from a lensed event, we reduce the individual false alarm probability of the unlensed pair. Repeat this
for a significant amount of unlensed event pairs, and you get Fig. 16b, which shows a significant reduction
in the total false alarm probability. We thus argue that the inclusion of time-delay distributions is vital for
the lensed event searches.

And that’s all folks! We find that a lensed event detection becomes increasingly probable in the future, and
we underline the importance of statistical predictions for the searches. The 400 MB of doom are available
online [71] for anyone to have a go at. For now, I will deactivate. Renske out.

10Graphical interfaces are for casuals and I do not take constructive criticism.
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