
Opleiding Natuur- en Sterrenkunde

Sparse, deep neural networks for the
early detection of gravitational waves

from binary neutron stars

Bachelor Thesis

Koen van Lieshout

Supervisors:

Dr. Sarah Caudill
Nikhef, GRASP

Grégory Baltus
STAR Institute ULiège

Justin Janquart
Nikhef, GRASP

Melissa Lopez
Nikhef, GRASP

June 16, 2021

i

Abstract

In the field of gravitational-wave detection, machine learning has be-
come a part of the landscape. In this work, we build upon a previous
work [1], which gave a proof of concept of the use of convolutional
neural network in the detection of the early phases of an inspiraling
binary neutron star. Obtaining such early detection would allow one
to send out alerts to astronomers, so that other phases of the merger
can be observed using other messengers In this work, we adapt two
of the latest techniques from other neural network fields, called incep-
tion modules, adapted from Google Inception-Resnet-v2 and dilation,
as implemented in Wavenet. Here, for the first time, we revise those
tools to be used for one dimensional data. We show they can lead to
improvements in the early detection of binary neutron stars.

CONTENTS ii

Contents

1 Introduction 1

2 Gravitational waves 2
2.1 What is a gravitational wave? 2
2.2 Detectors . 5
2.3 Compact binary coalescence 7
2.4 Matched filtering for gravitational wave detection 9
2.5 Multi-messenger astronomy 12

3 Methodology 12
3.1 Machine learning . 13

3.1.1 Loss function . 15
3.1.2 Gradient descent . 17
3.1.3 Optimizers . 19
3.1.4 Convolutional neural networks 19

3.2 Pooling layers . 22
3.3 Dilation . 23
3.4 Inception modules . 24
3.5 Architecture of the network 26
3.6 Training of the network . 29
3.7 Obtaining results . 32

4 Results 33

5 Conclusion and Discussion 39

A Appendix 45
A.1 Optimising the network without dilation 45
A.2 Optimising the dilation . 47

1 INTRODUCTION 1

1 Introduction

When publishing his theory on general relativity in 1915 [2], Einstein pre-
dicted the existence of gravitational waves. 100 years later, in September
2015, the first observations of gravitational waves were made by the LIGO-
Virgo collaboration [3]. A collaboration revolving around three large in-
terferometers in North America and Europe. Soon after, in 2017, the first
gravitational waves coming from a binary neutron star merger were detected.
This detection allowed astronomers to observe a binary neutron star merger
in the electromagnetic spectrum for the first time [4]. Since then, with the
advances in technology, over 50 detections of gravitational waves have been
made [5, 6] Currently, the detection of gravitational waves is done by using
a process called matched filtering. It uses a library of templates and tries
to match these templates with incoming gravitational-wave signals [7]. How-
ever, matched filtering is relatively slow and with the ever increasing amount
of detected pairs, due to improvements in the detectors, faster techniques
will be necessary to do the initial detection [8–10].

Over the last years, neural networks have been developed to address this.
The goal of neural networks is to detect gravitational waves faster and re-
cently, an additional goal is to detect waves in earlier stages of merger (early
warning) [1, 11]. These neural networks do not directly match the afore-
mentioned templates to the data, but are instead trained on templates or
real gravitational wave data in order to be able to recognise gravitational
waves [1, 12]. The most common neural networks were convolutional neural
networks, which had previously been used for image classification [13].

This work builds upon the work presented in [1], where a proof of concept
was given for the early warning detection of gravitational-waves. In [1],
convolutional neural networks were used for the detection of binary neutron
stars. They have shown that it is possible to detect waves from realistically
simulated binary neutron stars in the inspiral phase using neural networks.
They were one of the first two papers that focused on early warning using
neural networks and we will continue their work.

Currently, there is a lot of research being done on how to improve the ac-
curacy of these networks [14]. Two techniques which resulted in performance
increases in image- and audio-recognition respectively were selected [15–17].
The first technique is the use of inception modules, as previously introduced
in Google Resnet v2 [18]. Inception modules have resulted in significantly
improved results in the field of image recognition, by allowing networks to

2 GRAVITATIONAL WAVES 2

have more layers. The second technique selected for this work is known as
dilation. Dilation introduces more contextual information to the network. It
was used in Wavenet [16], a network used in text-to-speech generation and
led to significant improvements here.

In this work, we will implement the previously mentioned techniques in
combination with the neural networks from [1]. The Resnet blocks will be
adapted to 1D for the first time. We will use the same training techniques
and data set in order to be able to compare the results in the end. Through
this, the research question of this work becomes

Research question: How can the adaptation of inception modules
and dilation into convolutional neural networks lead to increased sen-
sitivity in the detection of the early inspiral phase of a binary neutron
star?

2 Gravitational waves

2.1 What is a gravitational wave?

In 1905 Einstein published his theory on special relativity [19]. In this theory,
he proved that, in a vacuum, nothing can travel faster than light. This theory
was revolutionary, but it also caused several problems with the physics as we
knew it up until that point. One of the big problems came from the law
of gravity. Newton’s law of gravity said that gravity was an instantaneous
force. This meant that information traveled between to objects faster than
the speed of light, which, according to special relativity, is not possible. In
1915 Einstein found a solution through his theory on general relativity [2].
Here, Einstein said that the effect of gravity is due to a deformation of space-
times. Any object with mass curves space-time. Other objects in the vicinity
are not pulled by an instantaneous gravitational force, but instead travel
through a curved space-time, causing their trajectory to follow a geodesic, a
straight line in curved space-time. An illustration can be seen in Fig 1. The
denser an object is, the more curvature it causes and the more the trajectory
of objects in the vicinity will be altered. When a dense object suddenly
accelerates, it will cause a wave in space-time, which travels at the speed of
light. These waves are called gravitational waves.

2 GRAVITATIONAL WAVES 3

Figure 1: A rocket being influenced by gravity, causing the path to curve
following the curvature of space-time from [20].

As space-time is hard to deform, only a few objects are dense enough for
us to measure the gravitational waves in the current detectors. Only neutron
stars and black holes are dense enough to be detected. We need a system
where two dense objects rotate around each other. Such systems are called
binary neutron stars (BNS), binary black holes (BBH) or neutron star black
hole binaries (NSBH).

We now want to find the effect of gravitational waves on space-time when
they reach us. Because these objects are so rare, we can assume that the
distance between us and the binary system is much larger than the charac-
teristic size of the system. When they reach us, the gravitational fields are
therefore weak. Using this assumption, we can define the space-time metric
gµν as the Minkowski metric for flat space (η, plus a small perturbation hµν
caused by the gravitational wave:

gµν = ηµν + hµν , (1)

where |hµν | << 1
Outside of the source, because the energy and flux is zero here, �h̄µν = 0

This equation has plane-wave solutions of the form

hij = Aij(
−→
k)cos(ωt−

−→
k · −→x)) , (2)

where ω is the wave frequency and k is the unit vector in the direction of
propagation. A is the amplitude of the wave at time t and position x.

2 GRAVITATIONAL WAVES 4

If we look at a gravitational wave as a plane wave propagating in the z-
direction, caused by two object orbiting each other circularly in the xy-plane,−→
k · −→x = ωz/c and

hij =

h+ h× 0
h× h+ 0
0 0 0

 cos(ω(t− z/c)), (3)

where h+ and h× are the amplitudes of the ”plus” and ”cross polarisations
of the wave. Unlike electromagnetic waves, gravitational wave polarisations
are at a 45 degree angle. The plus polarisation is the polarisation in the
horizontal and vertical direction [21].

When the gravitational wave reaches a line segment ds2 = gµνdx
µdxν . It

influences that segment as [22]:

ds2 = −c2dt2 + (1 + h+cos[ω(t− z/c)])dx2 + (1− h+cos[ω(t− z/c)])dy2

+2h×cos[ω(t− z/c)]dxdy + dz2

If we set h× = 0, but h+ 6= 0 in Eq.(2.1), we get

ds2 = −c2dt2+(1+h+cos[ω(t−z/c)])dx2+(1−h+cos[ω(t−z/c)]dy2+dz2 . (4)

It becomes clear that, with time, only the cosine terms vary. The x- and
y-distance change periodically, but with opposite sign. When space stretches
in the x-direction, it compresses in the y direction. This is shown in Fig.2.

Similarly, when h+ = 0, but h× 6= 0,

ds2 = dx2 + dy2 + 2hxcos[ω(t− z/c)]dxdy + dz2 + dz2 . (5)

This equation becomes clearer when rotating the x and y axes by 45◦. Noting
the rotated axes as x′ and y′ [21],

ds2 = −c2dt2 + (1 +hxcos[ω(t− z/c)])dx′2 + (1−hxcos[ω(t− z/c)])dy′2 +dz2.
(6)

If we rotate the axes by 45 degrees, the end result is the same as we saw in
Eq.(6), giving the same effect in the rotated axes. The system will experience
the same behaviour in the diagonal direction, as seen in Fig. 2 [22]

As can be seen in Fig. 2, the gravitational wave periodically stretches
and compresses space-time as it passes through. In the next section, we will
explain how we this characteristic can be uses to our advantage when trying
to detect gravitational waves [22].

2 GRAVITATIONAL WAVES 5

Figure 2: Influence of a gravitational wave on a ring of particles. We see that
there is a periodical stretching of the circle with a rotation of 45◦ between
the plus and cross polarizations.

2.2 Detectors

The detection of gravitational waves is done by using a laser interferom-
eter [23], which uses the stretching of the space-time by the gravitational
wave when it passes. In a laser interferometer, a laser beam is split into
two perpendicular tubes. At the end of each tube is a mirror. After hitting
the mirror, the light travels back through the tube, where it hits a light de-
tector. We configure the length of the tubes, such that there is destructive
interference when no gravitational wave travels through the detector. As a
simplified explanation: When a gravitational wave passes, assuming the po-
larization considered is aligned on the arms of the detector, one of the tubes
will stretch, while the other compresses. As a consequence, the proper path
of the light is different and the resulting time needed to get to the detectors
is different. This causes a phase shift and there is no longer destructive in-
terference. Based on the phase difference, we can measure the difference in
arm-length and therefore the amplitude of the gravitational wave. So there is
a non-null signal at our light detector and it returns a signal. In theory, this
would be enough to detect gravitational waves, however, we would need arms
that are at least half the gravitational wavelength, in the order of 1000km.
In practice, we therefore need some measures to improve the precision of the
detector. Two techniques were implemented to enhance the accuracy. First,

2 GRAVITATIONAL WAVES 6

Figure 3: An interferometer with Fabry-Perot cavities. Additional mirrors
are inserted near the beam splitter to facilitate multiple reflections of the
laser, containing it within the interferometer and increasing the distance
traveled by the beams. This greatly increases the sensitivity to the smallest
changes in arm length, from [23].

additional mirrors were added to both arms, to construct Fabry Perot cavi-
ties. After entering the arm, the light is reflected 300 times. This amplifies
the effect of a passing gravitational wave, as change in length in the proper
path of the light is amplified.

Second, in order to measure gravitational waves, the detectors have to
operate at 750kW. It is not viable to use a single laser of that wattage. In-
stead, a 40W laser is used and the output gets amplified by a power recycling
mirror. Half of the light that travels back to the laser gets reflected back into
the detector [23].

The output, called gravitational-wave strain, from the detector is [22]:

h(t) =
∆tx −∆ty

t0
(7)

Here, tx and ty are the time it takes light to travel in the x- and y-direction
of the interferometer respectively. t0 the time it would take when there is no
gravitational wave.

Depending on the frequency, the detector has a strain sensitivity in the
order of 10−21/

√
Hz up until 10−23 [24]. As can be seen in Fig.4, the output

2 GRAVITATIONAL WAVES 7

Figure 4: The detector output and the best matching waveform for the binary
black hole detection, event GW151226 [5].

of a detector includes a lot of noise. Because the detectors are so sensitive,
they pick up noise from seismic activity, thermal noise, and even noise from
the fluctuation of photon pressure by the laser [23]. If we want to detect
gravitational waves, we therefore need some way to filter out the noise. In
section 2.4, we will see a way to filter the waves from the data.

2.3 Compact binary coalescence

Every object that accelerates and has a non-zero quadruple moment produces
gravitational waves. With the current detectors, only black holes and neutron
stars are dense enough to emit measurable gravitational waves. With devel-
opments in the detectors, other sources such as boson stars, white dwarfs and
supernova explosions are expected to be observed, but they are beyond the
scope of this work [25]. Of course, neither a neutron star nor a black hole will
start accelerating on randomly. Extreme amounts of energy are needed. One
process that could lead to acceleration of a dense object is the presence in
its vicinity of another massive object. For example, another neutron star or
black hole. When two neutron stars or black holes get close enough together,
they will start orbiting around each other. The gravitational waves produced
by the final stages of the orbit are large enough that we can measure them
here on Earth from a distance of several Gpc [26].

The coalescence process starts when two celestial bodies meet each other
and has three phases. The first phase is called inspiral, during which the two

2 GRAVITATIONAL WAVES 8

compact objects orbit around each other. We are still in the weak regime of
gravitational waves, meaning that we still have small curvature of space time
and can use our approximations. When approximating to the first order, the
emission of gravitational waves takes energy away from the system, following
the equation

dEGW
dt

=
32

5

c5

G
(
GMcω

c3
)10/3 , [21] (8)

where Mc = (m1m2)3/5

(m1+m2)1/5
is the chirp mass. It is used to make the analysis of

binary systems easier as the orbital evolution depends on this combination
of both masses. G is the gravitational constant. The orbital frequency ω is
related to the gravitational wave frequency fGW = ω

π
[27].

For an isolated system, the energy that is radiated away is taken from
the orbital energy:

dEGW
dt

= −dEorb
dt

. (9)

The orbital energy is [21]

Eorb =
1

2
(G2M5

cω
2)1/3 (10)

Combining Equation 8, 9 and 10, we get

˙fGW (t) =
96

5
π8/3

(
GMc

c3

)5/3

f
11/3
GW (t) (11)

Solving Eq.(11), we end up with an equation for the gravitational wave fre-
quency as a function of time as [21]

fGW (t) =
1

π

(
GMc

c3

)−5/8
(

5

256

1

tc − t
) . (12)

Here tc is the coalescence time. In the first order approximation, tc is the
time where the frequency diverges. As the radius of the orbit decreases,
the frequency will keep increasing. Without approximating however, the
frequency does not converge at coalescence time, instead the radius of the
inspiral will become small enough for the two objects to touch. This marks
the start of the next phase, called merger. We will no longer be in the weak-
field regime of gravity and can no longer make use of our approximations and
now need to look at the full Einstein equations. Where during inspiral we

2 GRAVITATIONAL WAVES 9

Figure 5: The waveform during the inspiral of a black hole with the corre-
sponding phases.

could find the waveform analytically, we know have to model the waveforms
numerically.

Depending on the masses, when two neutron stars merge, they will form
either a larger neutron star or they will form a black hole. A black hole
merging with either a black hole or a neutron star will always form a larger
black hole [28]. The final phase is called ringdown. After merging, the created
object will keep orbital momentum, while not being entirely symmetrical.
The final object emits the excess of energy as GW in order to get to his
energy ground state. During this time phase, binary neutron stars will emit
so called afterglow [29]. Afterglow is a form of electromagnetic radiation,
caused by a rapidly expanding cloud of material. From its spectrum, we can
induce a lot of information about the system. For example, in binary neutron
stars, it gives us an indication of the elements within the stars [29].

2.4 Matched filtering for gravitational wave detection

When we receive the signal from the detectors, it still contains a large amount
of noise. Currently, the preferred method to assess the presence of a grav-
itational wave in data is called matched filtering. When a gravitational
wave signal enters the detector, its output is a combination of noise and

2 GRAVITATIONAL WAVES 10

gravitational-wave signal

s(t) = n(t) + h(t) , (13)

where s(t) is the measured strain, h(t) is the gravitational wave signal and
n(t) is the noise. If we know what shape the signal has, we can compare
this signal against the data to determine if there is a signal in the detector.
We therefore make use of a template bank. It is a collection of waveform
models, which have been precomputed. These waveforms are then whitened,
which normalises the power at all frequencies. We can use these whitened
templates and filter them against the data. When one of the templates
corresponds with the signal found in the data, the signal is cross matched with
the other detectors. So, one requires to have the same template matched in
different interferometers, with the appropriate time delay between them. One
detector signalling a gravitational wave is not enough to notify astronomers,
as the detectors are susceptible to glitches [30]. They occasionally recognise
a waveform that isn’t present in the data. If multiple detectors found the
same signal, they can be sure a gravitational wave passed.

The output of matched filtering is the signal-to-noise ratio. [1] The value
of the signal-to-noise ratio (noted SNR and denoted ρ) is the loudness of a
signal in the detector.

ρ =

[
4<
∫ fmax

fmin

s̃(f)h̃?(f)

P (f)
df

]1/2
(14)

where h̃?(f) is the complex conjugate of the Fourier transform of the tem-
plate. P (f) is the noise power spectral density, which is a measure of the
detector noise for each frequency. fmin is the lowest frequency the detector
is sensitive to and fmax is the highest frequency reached by the binary of the
innermost stable orbit [1].

The optimal SNR is when the template waveform corresponds to the
gravitational-wave signal present in the data [1, 31]

ρ =

[
4<
∫ fmax

fmin

|h̃?(f)2|
P (f)

df

]1/2
(15)

This represents the loudness of the signal in the detection for a given noise
and is therefore related to the difficulty of detection.

2 GRAVITATIONAL WAVES 11

Figure 6: The amplitude spectral density of the different large detectors. The
amplitude spectral density is the square root of the power spectral density.
This is a measure for the noise for each frequency. Adapted from [3].

Approximating to the first lower order the SNR becomes

ρ ' 1

2

√
5

6

1

π2/3

c

D

(
GMc

c3

5/6
)
√
Ig(θ, φ, ψ, ι) (16)

This gives us a better understanding of what parameters influence the SNR.
First D, the luminosity distance. Systems that are further away are harder
to detect as they are fainter. Second I, the frequency integral.

I =

∫ fmax

fmin

f ′−7/3

P (f ′)
df ′ (17)

Finally g, the sky position. Objects at different sky positions might be
detected less accurately due to the shape and orientation of the detector. In
this work, we look only at the inspiral part of the signal. We can approximate
the maximum frequency using Eq(12), using this and combining it with the
lowest sensitivity for the detector, we can calculate the SNR at the frequency
covered by the inspiral. This is known as the partial inspiral SNR, noted PI
SNR. The higher the PI SNR, the easier a signal is to detect.

3 METHODOLOGY 12

2.5 Multi-messenger astronomy

If we can detect the gravitational waves generated by a binary neutron star
in at least two different detectors, we can triangulate the position of the
binary neutron star in the sky. We can then observe the behaviour of the
binary neutron stars across the electromagnetic spectrum and neutrino do-
main. Currently, the only observation with a detected counterpart is known
as GW170817 [3]. In August of 2017, a binary neutron star coalescence can-
didate was observed by the LIGO and Virgo detectors. Within an hour,
multiple teams had detected an electromagnetic counterpart. They could
combine the electromagnetic detection with a gamma-ray burst detection
moments earlier [32], confirming a longstanding theory that binary neutron
stars create gamma ray bursts.

Then, through optical and infrared detections, they detected a redwards
shift over 10 days. The optical and near-infrared spectrum showed similar
characteristics to models of a kilonova [33]. A kilonova is a phenomena
where two BNS or a NSBH merge and result in an object with 1000 times
the brightness of a ”normal star”. Besides gamma ray bursts, kilonovas were
also thought to produce r-process nuclei. The r-process is a set of reactions
where neurons are captured. The resulting nuclei were also detected in later
stages of the optical detection, confirming that the binary neutron star had
become a kilonova [34]. Finally, radio and x-ray emission was detected after 9
and 16 days respectively [4]. From these results, the value of the gravitational
wave detections becomes clear. It allows us to look deeper into the mechanics
of the detected objects.

The objective of this work is to improve the systems enabling an earlier
detection of the binary neutron star. We build upon the work presented
in [1], where neural networks are used to produce triggers for merging neu-
tron star up to 100 s before the merger. We want to use two techniques,
called Inception modules and dilation to improve on the networks developed
in [1]. In the next section, we introduce the concepts used to build the neural
network and detail the new techniques with their implementation.

3 Methodology

As mentioned in the last Chapter, we are currently working towards using
neural networks to detect gravitational waves. In this Chapter, we explain

3 METHODOLOGY 13

how neural networks work and can be used to detect gravitational waves.

3.1 Machine learning

Machine learning is a field within computer science, where the goal is to
design an algorithm that can learn from examples. The basic idea behind
current technology is to imitate the human brain. Simplified, the human
brain is a group of neurons, all connected by connections called synapses.
When a neuron receives an electric signal from another neuron, it modifies
the signal and sends it to a different group of neurons. Depending on how
strong the signals are, different effects in the body will occur [35]. This is of
course an extreme oversimplification, but it will turn out to be enough for
our problem.

Neural networks can be easily explained by first looking at linear regres-
sion. In linear regression, we have a data set consisting of points. From this
data set, we want to obtain a model, such that when we know a variable
x, we can predict some other variable y. We assume that there is a linear
relation between such that y = ax + b and we want to find the best values
for a and b. To get the best values, we first determine a function to represent
the error for every data point. In Fig.7, this is the minimum square function
in the blue box. We then minimise this error function and receive values for
a and b fitted to the data.

Neural networks work similar to linear regression, but instead of fitting
a simple line function, a complicated function is fitted. This complicated
function is build from the neuron functions:

f(x) = φ(b+
m∑
j=0

wjxj) (18)

In this equation, x is the input, f(x) is the output, b is the bias and φ
represents the activation function, which modifies the output of the neuron.
Finally, in Eq.(18), the wj are the weights that need to be optimized. Com-
mon activation functions are the ReLU (Rectified Linear Unit) and Sigmoid
functions, defined as

ReLU(x) = max(0, x) (19)

Sigmoid(x) =
1

1 + e−x
(20)

3 METHODOLOGY 14

Figure 7: An example of linear regression, where the data points (blue) are
regressed to find the best possible the fit (red line).

Figure 8: Representation of a neuron in a neural network.

3 METHODOLOGY 15

Figure 9: The ReLU and Sigmoid activation function.

ReLU modifies the output such that it is always positive. Sigmoid binds the
output between 0 and 1. From this it is easy to see why neural networks are
not linear functions. A representation of both functions can be found in Fig.
9.

In current neural networks, neurons are laid out in layers. For an exam-
ple, see Fig.10, where every neuron receives input from several neurons in a
previous layer and sends its output to neurons in another layer. Instead of
the linear function seen in linear regression, the activation function and bias
in the neurons allow us to obtain complicated functions that better mimic
the data. We again want to optimise the weights in each of the layers such
that the output of the network accurately predicts the input. Just like in
linear regression, this is done by first defining a function representing the
error. This function is called a loss function and is minimised so that the
error is reduced.

3.1.1 Loss function

As explained above, the loss function is a measure of the error in the output
of a network. An easy example of such a function is the mean squared error.

3 METHODOLOGY 16

Figure 10: Example of layers of neurons in a neural network architecture [36].

When calculating this function, we give the network a large amount of sam-
ples and for each sample, we compute the square of the difference between
the output of the network and the value attributed to the data.

MSE =
1

N

∑
i

(Yi − Ŷi)2 (21)

With Yi the predicted value and Ŷi the actual value.
Which function accurately displays the error in the network is dependent

on the task the network has to fulfill. Amongst other tasks, there are networks
for regression (i.e. predicting a numerical value), clustering (i.e. grouping
several items), classification (i.e. determining which class an item belongs
to). In this work, neural networks are used as classifiers.

A classifier takes an input and determines to which class it belongs. In
this work, the network receives a data time series and determines whether
it contains a gravitational wave or if it contains only noise. This type of
classifier should return 1 when the input contains a gravitational wave and 0
if it contains only noise. When we want to determine the performance of our
network, we give it labelled data for which we know if it has a gravitational
wave or not. If it has a gravitational wave, the network should output a value
as close to 1 as possible.

In this paper we use a more elaborate loss function called the cross entropy

3 METHODOLOGY 17

loss function, where we calculate the loss as

Loss(xi) = −xi + log(
∑
j

exj), (22)

Where xi is the actual probability for a given class and xj are the probabil-
ities for the classes as returned by the network. Cross entropy is a way to
measure the distances between probability distributions. In neural networks,
the distance between the probability returned by the network and correct
class is measured. This is an indication of the error on the predicted values.
The smaller the error in the prediction, the closer the probability returned
by the network will be to the right class and the smaller the loss will be [37].

3.1.2 Gradient descent

As previously mentioned, we want the lowest possible error rate, which is
translated by a minimization of the loss function. For a single signal, it is
possible to calculate the correct weights analytically. However, when we want
to correctly classify many different signals, it is not possible to compute the
correct weights either numerically or analytically. Therefore, we iteratively
modify the weights during a process called training.

First, we start off with random weights. Every weight is set to a value
between 0 and 1. Then we apply a technique called gradient descent. It works
as follows: we let the network classify a number of different samples. Then,
we calculate the loss over these samples. Recalling that the loss function
is a function on weights, input and a bias, we can visualise the loss as a
multidimensional hyperplane. This way, one sees that if we want to find a
minimum in loss, we need to descend along the gradient of this plane. This
is represented in Fig.11. In order to minimise the loss, we therefore calculate
its gradient. Based on the latter, we adapt the weights.
In this work, stochastic gradient descent is used. For each iteration, a small

batch of samples is fed through the network and the weights are adapted as:

wi+1 = wi −
α

n

n∑
j=1

∇Lj(wi). (23)

In this equation, ∇Li is the gradient of the loss calculated on n samples. A
group of n samples is called a batch.

3 METHODOLOGY 18

Figure 11: A visualisation of gradient descent in a loss function on 2 variables,
adapted from [38].

After obtaining the average gradient of this loss, it is then multiplied by
a factor α, known as the learning rate [39]. The learning rate is a measure
for the amount by which the weights are changed when trying to descend
towards the minimum in the loss-plane. The learning rate determines the
size of the step we take towards the minimum. If the learning rate is too
small, we take very small steps towards the minimum. This means that it
takes more time to reach the minimum and the training time becomes larger.
It can also mean that we get stuck in a local minimum or saddle point, as
the steps we take are not large enough to get out of it.

When using a learning rate that is too large, we risk having a network that
does not converge towards the minimum at all, meaning that the network
does not increase performance when training. In this work we use a learning
rate of 8e−5. Using a larger learning rate results in worse performance of the
network, while using a smaller one leads to a longer training time without
improving the performances of the network.

3 METHODOLOGY 19

3.1.3 Optimizers

When training a neural network, we are adapting the weights until we get to
a minimum. A loss function is often a complicated function with many local
minima and maxima. If we pick a random minimum, there is a large chance
that we pick a local minimum, instead of a global minimum. To increase
our chances of getting a minimum close to the global minimum, we use so
called optimizers. They control the descent towards a minima, by modifying
Eq.(23). The idea is to use a larger learning rate at first, which slowly decays
as we get further in the training. The optimizer used in this work is called
Adamax. It uses a property called momentum. This can be interpreted like
the physical property momentum. When a ball rolls down a hill, it has a
certain momentum. When the ball reaches a tiny hole in the hill (a bad
local minima), the momentum forces it to roll out of the hole and continue
down the slope towards a better minimum. Adamax splits the momentum
in two different variables v and m. v is defined as the largest of the current
gradient and the gradient of the last iteration, multiplied by a dampening
constant,β2. The dampening constant can be seen as the friction on the ball
from the example. In [40], the authors suggest a value of β2 = 0.999. Every
iteration, the contribution of past gradients is multiplied by 0.999, in order
to not let the highest gradient dominate the momentum. Adamax controls
the learning rate by dividing it by the value vi, defined as

vi = max(β2vi−1,∇L). (24)

∇L is the current gradient of the loss. m is the moving average of gradi-
ents. Adamax controls the gradient by incorporating past gradients into the
current one with a constant factor β1, with a proposed value of 0.9 [40].

mi = β1mi−1 + (1− β1)∇L (25)

Adamax finally adapts the Eq.(23) such that

wi+1 = wi −
α

vi

mi

1− βi1
(26)

3.1.4 Convolutional neural networks

The most commonly used neural networks, which are the ones used in this
work, are called convolutional neural networks (CNN’s). In the simplest

3 METHODOLOGY 20

Figure 12: Example of a convolution. This convolution uses a 4x4 filter.
While shifting the filter over the input, four values are combined with the
weights to produce one output value [43].

terms, a CNN is a series of convolutions. The goal is to feed input data
into the neural network and to get as output the probability that the input
contains a gravitational wave. To do this, we first need to know what a
convolution is. A convolution is a way to combine two functions f and g,
such that the shape of g is modified by f. The convolutional operator ∗ is
defined as [41]

fi+1 =
C−1∑
0

M∑
0

gm,c × fm+i,c (27)

In neural networks, the function f is the input of the network and g is a series
of weights. Every convolutional layer consists of a set of neurons. When we
apply the convolutional operator to the input and the weights, we are actually
shifting the weights over the input. By doing so, we are calculating a form of
weighted average [42]. More intuitively, we take a matrix of weights, called
the filter. We then shift this filter past the input, multiplying every input
value with this matrix. See Fig. 12 for an illustration. Finally, C stands for
the number of channels. This represents the number of filters we shift over
the input. For an image for example, one might have separate filters for the
red, the green and the blue values, but we can have as many filters as we
want. More filters means more weights to calibrate.

One convolution returns an array of outputs, which then get used as input
for the next layer.

To discuss neural networks on a more abstract level, some more definitions
are needed. First we introduce the kernel size. The kernel size is a term for
the size of the filter. In Fig.12 the kernel size is 3×3. This means that every
neuron is connected to a square of 3× 3 neurons in the previous layer. The

3 METHODOLOGY 21

Figure 13: An example of padding in a 1D convolutional layer. Zeroes are
added to the input, resulting in a larger output [45].

amount of nodes a neuron is connected to is called the receptive field. When
training neural networks, it has been shown that contextual information is
very important. For example, when a network tries to recognise a picture, it
is important that a node has access to not just one pixel, but also the pixels
around it [44]. A larger receptive field is therefore a good way to improve
network performance.

However, a larger kernel size also means that the output size for a single
layer becomes smaller. If we do not want the input size to become smaller,
we can implement padding (see Fig.13). Using padding amounts to adding
additional values to the input size. These values are only there to moder-
ate the size of the output and do not contain any information about the
input. Besides increasing the input size, padding can also be implemented to
conserve information on the edge of the input. Without padding, this infor-
mation is only used to produce 1 output, while other values are used equal
to the kernel size. In this work, padding is always done by symmetrically
adding zeroes, meaning that we append the same amount of zeros to the end
of the input as at the start of the input as done in Fig.13. By doing this, the
output size as a function of the input size becomes [46]

|xi+1| = |xi|+
2 · padding− (dilation · kernel size− 1)

stride
+ 1, (28)

where the stride represents the amount by which we shift the filter every
iteration. The stride is usually 1 in convolutional layers. Dilation is a way

3 METHODOLOGY 22

Figure 14: A representation of a pooling layer with a kernel size of 2 and a
stride of 2.

to increase the receptive field without picking a larger kernel size and will be
explained in Section 3.3.

3.2 Pooling layers

Sometimes however, to reduce the computational cost, we want to artificially
decrease the size of the input. Randomly removing values would lead to a
large loss of information. Instead pool layers are implement. These layers
decrease the input size in such a way that the decreased input best represents
the actual input. Much like a normal filter, a pool layer takes adjacent values
and applies a function to it to get the best representation. The most common
pooling layer is max pooling (see Fig.14), where we take the maximum value
as the representative value.

output(n) =
m

max
i=0

(xsn+i), (29)

where m is the filter size and s is the stride. In pooling layers, the stride is
rarely less than 2, as a stride of 1 does not significantly decrease the input
size.

3 METHODOLOGY 23

3.3 Dilation

In section (3.1.4), the concept of a receptive field has already been discussed.
Increasing the receptive field can be achieved in many different ways. Orig-
inally there were two main methods. The first was to simply increase the
kernel size. By doing this, a single neuron is connected with more nodes
from the previous layer, leading to more contextual data. However, when
using larger networks, this very quickly becomes computationally expensive,
as the introduction of a new node in a layer with N nodes leads to N ! new
connections.

As seen in the previous section, we can use pooling layers to decrease the
input size in order to make it computationally cheaper. Although pooling
layers are inexpensive, they have one clear downside: with every pool layer,
a certain amount of information is lost, making the network perform worse.

To solve the aforementioned issues, the concept of dilation is introduced.
When we introduce dilation to a convolutional layer, instead of feeding ad-
jacent data points to a filter, we use every N th data point. This is shown in
Fig. 15. With dilation, the convolution equation becomes

fi+1 =
C∑
0

M∑
0

gm,c × flm+i,c, (30)

where l is now the dilation. As seen in Fig.15, after dilation, the group of
nodes in the first layer are connected to a much larger group of nodes in
the second layer. In recent papers, this effect was amplified even further by
doubling the dilation in every layer [16].

In this paper we apply a similar dilation to the one implemented in
Wavenet [16]. There, they start of with a dilation of 1 and then keep dou-
bling the dilation until a dilation of 512 is reached. Then they start at 1
again. In this work, the implementation was similar, but due to a smaller
input size, we could only increase the dilation up to a value of 64. When
increasing the dilation past this value, this value would have lead to negative
input values for some of the layers, which is not possible.

This can be fixed by using padding. Using the simple formula as defined
in Eq.(28), we can calculate the padding needed to keep the size of the
input consistent. The problem with this, is that the padding increases with
the dilation and we want to avoid large padding as the increase in padding
increases the loss in information [47]. Indeed, now, nodes on the edge not

3 METHODOLOGY 24

Dilation =1

Dilation = 2

Input

Figure 15: A representation of nodes in a layer, connected to the previous
layer. Top: When using a dilation of 1. Bottom: When using a dilation of 2.

only include the input data, but also a large amount of padded zeros that are
not representative of the data, degrading the accuracy. We therefore chose
not to incorporate any padding in the convolutional layers.

3.4 Inception modules

The second technology in this paper is called inception modules. In this
work, we adapt the inception modules from [18]. In general, a way to in-
crease performance in neural networks is to increase the depth of a network.
However, adding extra layers comes at great computational cost. It also
leads to overfitting of the network. It means that the network’s performance
on the training data increases while the performance on test data worsens.
Instead of learning the patterns in the data, the network begins to recognise
the individual samples, leading to a loss in generality for the network. The
solution they came up with was to mimic biological structures by moving to
more sparse networks, which means that neurons in networks are connected
to less neurons. An example of this can be seen in Fig.16. It needs to be
noted that we do not just reduce the kernel size, which would also reduce

3 METHODOLOGY 25

Figure 16: An example of two sparsely connected layers. The connections
here are randomly chosen and not representative for those in an inception
module.

the amount of connections between layers. Instead the kernel size remains
the same, but some values from the kernel are disregarded. By doing this,
the receptive field does not decrease in size, while the amount of connections
between the layers is reduced.

By reducing the amount of connections between layers, networks can be
very deep without overfitting. This better mimics the human brain and
would lead to a better performance. For a deeper and more mathematical
explanation, one can look at [48], but this goes beyond the scope of this work.
Unfortunately, the current hardware available to us is very unoptimized for
sparse data structures. Where dense calculations can be fully parallelised
on the GPU, sparse calculations use many lookups, making it 100 times
slower [48]. This means that switching to sparse networks will not lead to
any major performance increases on the current hardware [48]. We can
however approximate this sparse structure. By using dense convolutional
layers in parallel, the network is still optimized for the architecture of the
hardware while achieving the same result as in a sparse layer.

In this paper, we will use Google Resnet as a guideline for building blocks.

3 METHODOLOGY 26

It is not possible to simply use the Resnet V4 network for gravitational-wave
detection data as the input images for this network are two dimensional while
the data we receive from gravitational-wave detectors is one dimensional.
This means that the inception modules needed to be reworked to accept one
dimensional input. In this work, the Resnet A and Resnet C block have been
adapted to 1D data.

The A- and C-blocks in 2D are shown in Fig.17, and Fig. 18. The A-
block consists of a ReLU activation layer, followed by three parallel branches
with convolutional layers. The first branch has a single convolutional layer
with a kernel size of 1. The other branches start with the same convolutional
layer and are followed by 1 or 2 other convolutional layers. The first layer,
with a 1× 1 kernel size, decreases the amount of parameters and speeds up
the training. The output from the three branches is then concatenated and
fed through a final 1× 1 convolutional layer. It also incorporates a residual
connection, which is the connection between the input and the output of the
block and does not have any convolutional layers. First introduced in [49],
residual connections or skip connections, were meant to improve image recog-
nition in very deep networks, by allowing past gradients to flow through the
network directly. They were also used to speed up training. In the Resnet
implementation, it was not proven that they improved the results, but they
did substantially decrease training time [18].

The C block is very similar to the A block, but there are minor differences.
First, it has only two instead of three branches. The first branch is similar
to the first branch of the A block. The second branch is similar to the
third branch of the A block, but the kernel sizes are different. Instead of
having kernel sizes of 3× 3, it has one 1× 3 convolution, followed by a 3× 1
convolution. This is equal to having one 3x3 matrix, but they found it to be
33% cheaper.

3.5 Architecture of the network

The final architecture used in this work can be seen in Fig.21. It is a stan-
dard convolutional network, interlaced with two 1D-Resnet A blocks and
1D-Resnet C blocks. After each convolutional or 1D-resnet block, a max
pooling and activation layer is used.

The Adaptation of the Resnet A and Resnet C blocks can be seen in
Fig.19. The major changes are the following. The layers within the branches
are very different. First, we use a different kernel size. In one dimension, the

3 METHODOLOGY 27

Figure 17: Representation of the Inception-Resnet-A module from the
Inception-Resnet-v2 network. It consists of three branches with varying ker-
nel sizes and a skip connection [18].

Figure 18: The schema for the Inception-Resnet-C module from the
Inception-Resnet-v2 network. It is similar to the A-block, but does not in-
clude the branch with the largest kernel size [18].

3 METHODOLOGY 28

Conv1D (33)Conv1D (3) Conv1D (63)

Conv1D (1)

Relu

Input

Figure 19: The architecture for the 1D-Resnet block A.

Conv1D(3) Conv1D(33)

Conv1D (1)

Relu

Input

Figure 20: The architecture for the 1D-Resnet block C.

3 METHODOLOGY 29

original kernel sizes did not result in good performance of the network. When
using the base convolutional network, mixed with the Resnet blocks, the best
performance was reached by using kernel sizes of 3, 33 and 63 for block A and
3, 33 for block C. Secondly, note that there are no convolutional layers with a
kernel size of 1 before any of the convolutional layers in the branches. These
layers were removed because they did not improve learning. In 2 dimensions,
the convolutional layers with a kernel size of 1 are included to reduce the
amount of parameters, which increases training speed and they also serve as
a form of linear rectification. In 1 dimension however, parameters increase at
a much lower rate when adding new layers (linear order instead of quadratic).
We suspect this could be the reason for the difference in outcome. Both blocks
do still implement a skip connection, similar to the original Resnet blocks.

The kernel size as shown in Fig.21 is the kernel size as for the network
without dilation. Before implementing dilation, the network was first opti-
mised. When moving on to dilation, we noticed that different kernel sizes
worked for different dilation layouts1. In the blocks, we also always imple-
ment padding when using dilation. This is necessary, because in order to
concatenate the output of the different branches, all branches need to have
the same output size. Since these branches have different kernel sizes, we
can only guarantee consistent output sizes by using padding. To make sure
that the influence of the padding in these blocks remains small enough not
to degrade the training of the network, we decided to use smaller kernel sizes
in blocks with larger dilation. In some networks, it was possible to avoid
having large dilation in the 1D-Resnet blocks all together. As can be seen
in Section 4, not all layers have dilation. When we had a large dilation in
one of the 1D-Resnet blocks, while not all convolutional layers had dilation,
we often chose to have a dilation of 1 in the 1D-Resnet block, moving the
dilation to the next convolutional layer.

3.6 Training of the network

The network in this work was trained on a data set consisting of data simu-
lating heavy binary neutron stars. In this work, when we talk about heavy
BNS, we use the definition from [1]. By this definition, a binary neutron star
pair is considered heavy when the chirp mass exceeded 2.09 − 2.61M�. We

1When talking about dilation in the 1D-Resnet blocks, we only increase dilation in the
branches of the blocks. The final convolutional layer does not have any dilation.

3 METHODOLOGY 30

Conv1D
(128)

ResNetA

Conv1D
(32)

Conv1D
(32)

ResNetC

ResNetA

Conv1D
(32)

ResNetC

Conv1D
(8)

Input

Figure 21: The architecture for the network with inception modules but
without dilation as used in this work.

3 METHODOLOGY 31

Figure 22: An example of a sample on which the neural networks are trained.
This sample contains a gravitational wave. Only the data between the two
red line is used to feed the network.

focus on this category alone as the results here can be generalised to other
categories as well as shown in [1].

The data we use to train the network consists of noise combined with
a template. Every training sample contains 30 seconds of colored Gaussian
noise based on the sensitivity power spectral density in the detector. To this
noise, we add a simulated non-spinning heavy BNS waveform. We choose
the location of the BNS to be the optimal sky location, where the plus po-
larisation is aligned with the arms of the inferometer. An example of such a
waveform in simulated noise can be seen in Fig.22. The waveforms are cho-
sen such that the distances range from 50 to 240Mpc and the PI SNR range
from a value of 7 to a PI SNR of 35. When the waveform is injected into
the noise, we select only the first 30 seconds to have only the early inspiral.
The dataframes are then whitened and normalised, such that the amplitudes
have a value between −1 and 1.

In total, the training set consisted of 8000 data frames, where 4000
dataframes contain noise combined with a gravitational wave signal and the
other 4000 consist of just noise.

3 METHODOLOGY 32

3.7 Obtaining results

After training the network, we use a test set to determine the accuracy of
the network. The test set included 4000 of Heavy BNS samples, similar to
the ones in the training set. It also contained 4000 samples filled with noise.
When we run the network over a sample, the network will return a value
between 0 and 1 which is related to the probability for the presence of a
gravitational wave in the data. A higher value means a higher chance for
a gravitational wave. Of course, in practice, we do not want a probability,
but instead a conclusion about the presence of a wave. The easiest way to
accomplish this is by choosing a threshold. When the network returns a value
higher than the threshold, we decide that the network classified the sample
as a gravitational wave. If the value is lower, it determined that the sample
did not contain a wave. Here, the threshold is chosen so that we get a fixed
false-alarm rate (FAR) of 0.01 [50].

FAR =
FP

FP + TN
, (31)

where FP is the number of false positives, meaning the network determined
there was a gravitational wave in the input while it only contained noise.
TN stands for the number of true negatives, indicating that the network
determined correctly that there was only noise in the input. The threshold
is determined such that we get a false alarm rate of 1%. Using this thresh-
old, the true positives, false positives, true negatives and false negatives are
determined. They can be displayed in a confusion matrix [50]: A confusion

Event No event
Event TP FN
No event FP TN

Table 1: A confusion matrix used to compare the networks. It contains the
true positives, false positives, true negatives and false negatives.

matrix is a representation of the results of a network. It displays the num-
ber of examples correctly classified as containing a gravitational wave (true
positives), the number of examples falsely classified as containing a gravita-
tional wave (false positives), the number of examples correctly classified as
containing only noise (true negatives) and finally the number of examples

4 RESULTS 33

wrongly classified as containing only noise (false negatives). It is used to
easily compare the different networks to each other.

Besides the confusion matrix, we will use the true alarm probability as a
leading metric to determine the performance of a network. The true alarm
probability is defined as [50]

TAP =
TP

TP + FN
. (32)

The true alarm probability is the probability that a signal containing a grav-
itational wave is well classified. This is important when using the network
for actual detection as detections are broadcasted to a large number of as-
tronomers in the world and a false alarm could result in a lot of wasted
research effort. In current matched filtering pipelines, the true alarm proba-
bility is related to the SNR. It is 99% [51] for an SNR higher than 10.

4 Results

In this section we will analyse the results. The main criteria by which we
analyse these are the TAP as a function of the distance, and the TAP as a
function of the PI SNR. Recall from the background information that the PI
SNR is inversely related to the distance. Before analyzing our result, we first
summarize the results from [1], because we build upon these. Then we will
look at the results from this work and compare both.

In [1], they use the network as shown in Fig.23. This network produces
100% TAP up to a distance of ∼ 125Mpc. They obtained a TAP of 88% over
the entire set and a TAP of 1 up until a PI SNR of 17. They compared their
networks to the current matched filtering techniques, looking at gravitational
wave samples with a PI SNR of at least 8. They found that their results are
similar to matched filtering, but the detection by the neural network is a
factor 10 faster. When using the same network, but trained on a training
set consisting of simulated BNS with an intermediate mass (1.56− 2.09M�),
they get a TAP of 68%, showing that the techniques applied in their paper
work on BNS with a lower mass as well.

In this work, various combinations of dilation structures and kernel sizes,
both in the blocks and inception modules have been tested. In this section,
we only show the best performing architectures. The details about the other
structures tested can be seen in Appendix A. An overview of the architectures

4 RESULTS 34

Figure 23: The architecture of the best performing network as described in
[1].

that are discussed in this section can be seen in Table 2. For every layer, the
dilation size is given and the layer are displayed in their order of appearance
in the network (from left to right).

First we have the network with blocks but without any dilation. As seen in
Fig. 24, the True alarm probability for the network without dilation is 100%
up until a distance of 80Mpc. This is significantly worse than the network as
seen in the network of [1], where the TAP is close to one for distances up to
125Mpc. This is the best result we have obtained when using Resnet blocks
and no dilation. Better results may be obtianed using different architectures,
but were not explored in this work. Before getting this result, the kernel size
and learning rate for this network have been optimised. Other kernel sizes
and learning rates can be seen in Appendix A. Unlike the original Resnet,
this network is not very deep. The reason for this is to stay closer to the
network from [1] in order to get a better comparison. We suspect that in the
future, better results may be reached by implementing a deeper network in
combination with the inception modules, although larger training sets may
be used to prevent overfitting on the data.

Using the network described above as a base, we implemented other tech-

4 RESULTS 35

50 100 150 200 250 300 350
distance (Mpc)

0.4

0.6

0.8

1.0

Tr
ue

 a
la

rm
 p

ro
ba

bi
lit

y
(%

)

1
2
3
4

Figure 24: The TAP as a function of the source distance for the different
networks considered in this work. The network using blocks and no dilation
(1) performs the worst. When adding dilation only in the convolutions (2)
the network TAP as a function of distance becomes closer to the one from the
network described in [1] (4). Finally, when using a combination of dilation
in the convolutional layers and in the blocks (3), we get a TAP that remains
closer to 1 for higher distances, with better performances for sources placed
up to 200Mpc, while keeping the same performances for higher distances.
This shows that the combination of Resnet-like blocks and dilation can be
used to enhance performances on one-dimensional data.

4 RESULTS 36

0 5 10 15 20 25 30 35
Mean PI SNR

0.4

0.6

0.8

1.0

Tr
ue

 A
la

rm
 P

ro
ba

bi
lit

y 1
2
3
4

Figure 25: The TAP as a function of the PI SNR for the different networks
considered in this work. 1: The architecture from this work without any
dilation, performing the worst. 2: The architecture from this work with di-
lation in the convolutional layers only, performing better 3: The architecture
from this paper with dilation in both the convolutional and 1D Resnet lay-
ers, performing the best at all PI SNR 4: The architecture from paper [1],
outperforming the base networks of this paper, but dropping off at low PI
SNR when compared to network 3.

4 RESULTS 37

1.1 Architecture with 1D resnet blocks, no dilation

Layers Conv 1DResA Conv 1DResC Conv 1DResA Conv 1DResC Conv
Kernel 128 3,33,63 32 3,33 32 3,33,63 32 3,33 8
Dilation 1 1 1 1 1 1 1 1 1

1.2 Dilation only in the convolutional layers

Layers Conv 1DResA Conv 1DResC Conv 1DResA Conv 1DResC Conv
Kernel 128 3,33,63 32 3,33 32 3,33,63 32 3,33 8
Dilation 1 1 2 1 4 1 8 1 16

1.3 Dilation in all layers

Layers Conv 1DResA Conv 1DResC Conv 1DResA Conv 1DResC Conv
Kernel 128 3,9,12 32 3,9 32 3,9,12 32 3,9 128
Dilation 1 2 4 8 16 32 64 1 1

Table 2: The best performing neural networks when using the 1D-Resnet
blocks and no dilation (1.1), when using the dilation only in the convolutional
layers(1.2) and when using dilation in both the convolutional and the 1D-
Resnet blocks(1.3).

niques in order to improve the performance. First, we have included a net-
work which only has dilation in the convolutional layers. This was in line with
[16]. Originally, to keep a consistent input size between the layers, we added
padding in these convolutional layers as well. However, as is summarised
in the Appendix, this did not result in significant performance increases.
When removing this padding, we see significant improvements compared to
the first network. The network without padding has a TAP of 100% up until
a distance of 125Mpc. This is similar to the network in [1]. The increase
in performance with respect to the previous network points to the effective-
ness of the dilation for the network when combined with blocks. At higher
distances, the TAP drops faster with distance than for the network in [1].

We can see that dilation in the convolutional layers improved the per-
formance of the network significantly. In this work, the best results were
obtained when using dilation both in the convolutional layers and in the 1D
Resnet blocks. The kernel sizes in the blocks were 3,9 and 12 in the A block
and 3 and 9 in the C block. This is a small kernel size compared to the
original network. When we use the original kernel sizes of 3, 33 and 63, the

4 RESULTS 38

1.1 Standard architecture

GW No GW
Gw 1762 238
No GW 173 1827

1.2 Dilation only in the convolutional layers

GW No GW
Gw 1833 167
No GW 180 1820

1.3 Dilation in all layers

GW No GW
Gw 1906 94
No GW 160 1840

Table 3: The confusion matrices for the standard architecture and the net-
work with dilation in all layers. Showing for every level the true positives
(top left), false negatives (top right), true negatives (bottom left) and false
positives (bottom right).

network performs worse. We suspect the loss in performance was due to the
increase in padding when combining these kernel sizes with dilation. As can
be seen in Eq.(28), the amount of padding needed is related to the kernel size
by dilation× kernel size/2. With large dilation and kernel size, this leads to
a large number of zeroes, which do not contain any information about the
signal and therefore worsen the results.

To exclude the possibility that the smaller kernel size performs better
in general, we also tried this kernel size without dilation, but this network
performed slightly worse than the original network with blocks but without
dilation.

In the best performing network, the dilation got doubled every layer up
to a dilation of 64. After this value, no more doubling was possible, as
the input size would be smaller than the size needed to output a single
value. When looking at the results for this network, we can see that it vastly
outperforms the network without dilation. Not only does it have a 100%
TAP up to 160Mpc, it also holds a higher TAP for all higher distances.
When comparing this network to the results from [1], we notice that our

5 CONCLUSION AND DISCUSSION 39

network performs better at lower distances. However, at higher distances
(DL ≤ 200Mpc) the performances are similar. When comparing the PI SNR
however, we see significant performance improvements. This network has
a TAP of 1 starting at a PI SNR of 14. At lower PI SNR (10-14), it also
performs better than the other networks. The network goes back to the
performance from [1] at a PI SNR of 10, at which point it only has a TAP
of 0.8. This network was not yet trained on other categories of BNS, so we
can not compare the networks on this area. In the future, the network from
this work should be tested on lighter BNS, as well as on other classes of
gravitational wave detection, such as black holes.

5 Conclusion and Discussion

In this work, we have combined various techniques from the machine learning
field in order to improve the early warning detection of gravitational waves.
For this purpose, we have incrementally added new features to our archi-
tectures. The networks have subsequently been trained on simulated heavy
binary neutron star data. When using simulated data, we have shown that
using a combination of dilation and inception modules can lead to significant
improvements in the detection rate of gravitational waves in the early phase
of the inspiral of binary neutron stars. The improvements are especially
noticeable for samples with a smaller PI SNR. This is important as those
samples are the most difficult to detect.

We also want to discuss some aspects of the results as well as propose
some new techniques. One can also build upon the results presented in this
work, using the newly implemented modules.

• Inception modules

Regarding the Inception modules, even though significant increase in perfor-
mance has been shown when using a combination of dilation and inception
modules, the network with only inception blocks did not result in good per-
formance. As seen in the results, the network without any dilation is per-
forming worse than an architecture without them for the considered cases.
We suspect that other architectures (different combinations of blocs, differ-
ent number of branches, more layers, . . .) might see larger performance
improvements when implementing the 1D-Resnet blocks. In future work, it
is important to maximise the performance of networks with just inception

REFERENCES 40

modules, as well as the performance of networks with dilation and no in-
ception modules. We suggest implementing a deeper network, as inception
modules are usually used in combination with very deep networks.

• Training methods

Secondly, we believe improvements can be made by using different training
methods. As discussed previously, this network is trained in one iteration, on
a data set with a PI SNR between 2 and 45. A different training method has
already been introduced in [1] and is called curriculum learning. When using
curriculum learning, the network is trained on increasingly difficult training
sets. First, the network is trained on a data set consisting of samples with
a high average PI SNR. Then, the network is retrained on sample with a
lower average PI SNR. This should increase performance on the samples
with a lower PI SNR. Curriculum learning has already shown to result in
improvements in neural networks in in [52] and in [1] they have already
implemented a test, which pointed to positive results for gravitational wave
detection.

• Extension of methods to other signals

The techniques used for these neural networks are most likely also valid in
the detection of other objects in the gravitational-wave field. First, the early
inspiral of lighter binary neutron stars could be detected using the same
approach. Second, light binary black holes could benefit from the techniques
in this work. Finally, 1D data might be used in other detections as well. In
some networks, not focused on early warnings, the data is first converted to
a spectogram. With the technique from this work, it would not be necessary
to do the conversion, which could increase the speed of the networks, while
holding a high detection rate [53].

References

[1] G. Baltus, J. Janquart, M. Lopez, A. Reza, S. Caudill, and J.-R. Cudell,
The name of the journal 4, 201 (1993), an optional note.

[2] A. Einstein, Sitzungsberichte der Königlich Preußischen Akademie der
Wissenschaften (Berlin pp. 688–696 (1916).

REFERENCES 41

[3] B. Abbott, R. Abbott, T. Abbott, M. Abernathy, F. Acernese, K. Ack-
ley, C. Adams, T. Adams, P. Addesso, R. Adhikari, et al., Physical Re-
view Letters 116 (2016), ISSN 1079-7114, URL http://dx.doi.org/

10.1103/PhysRevLett.116.061102.

[4] B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley,
C. Adams, T. Adams, P. Addesso, R. X. Adhikari, V. B. Adya, et al.,
The Astrophysical Journal 848, L12 (2017), ISSN 2041-8213, URL
http://dx.doi.org/10.3847/2041-8213/aa91c9.

[5] B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 116,
241103 (2016), 1606.04855.

[6] Ligo: all detections, URL https://dcc.ligo.org/P2000061/public.

[7] B. J. Owen and B. S. Sathyaprakash, Phys. Rev. D 60, 022002 (1999),
URL https://link.aps.org/doi/10.1103/PhysRevD.60.022002.

[8] D. George and E. A. Huerta, Phys. Rev. D 97, 044039 (2018), 1701.
00008.

[9] Classical and Quantum Gravity 32, UNSP 024001 (2015), ISSN 0264-
9381.

[10] J. Miller, L. Barsotti, S. Vitale, P. Fritschel, M. Evans, and D. Sigg,
Phys. Rev. D 91, 062005 (2015), 1410.5882.

[11] H. Yu, R. X. Adhikari, R. Magee, S. Sachdev, and Y. Chen (2021),
2104.09438.

[12] Y.-C. Lin and J.-H. P. Wu, Physical Review D 103 (2021), ISSN 2470-
0029, URL http://dx.doi.org/10.1103/PhysRevD.103.063034.

[13] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Proceedings of the
IEEE 86, 2278 (1998).

[14] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu,
X. Wang, L. Wang, G. Wang, et al., arXiv e-prints arXiv:1512.07108
(2015), 1512.07108.

[15] X. Lei, H. Pan, and X. Huang, IEEE Access 7, 124087 (2019).

http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://dx.doi.org/10.3847/2041-8213/aa91c9
1606.04855
https://dcc.ligo.org/P2000061/public
https://link.aps.org/doi/10.1103/PhysRevD.60.022002
1701.00008
1701.00008
1410.5882
2104.09438
http://dx.doi.org/10.1103/PhysRevD.103.063034
1512.07108

REFERENCES 42

[16] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. W. Senior, and K. Kavukcuoglu, CoRR
abs/1609.03499 (2016), 1609.03499, URL http://arxiv.org/abs/

1609.03499.

[17] C. Fang, Y. Shang, and D. Xu, arXiv e-prints arXiv:1709.06165 (2017),
1709.06165.

[18] C. Szegedy, S. Ioffe, and V. Vanhoucke, CoRR abs/1602.07261 (2016),
1602.07261, URL http://arxiv.org/abs/1602.07261.

[19] A. Einstein, Annalen der Physik 322, 891 (1905).

[20] F. Bellaiche, Quantum bits: Basic principles of general relativity, URL
https://www.quantum-bits.org/?p=116.

[21] S. Husa, General Relativity and Gravitation 41, 1667 (2009).

[22] C. van den Broeck, Lecture notes on gravitational waves, Bachelor’s
Degree Physics, Utrecht University (2018/19).

[23] I. C. . E. Team, Ligo: Ligo’s interferometer, URL https://www.ligo.

caltech.edu/page/ligos-ifo.

[24] D. Martynov, E. Hall, B. Abbott, R. Abbott, T. Abbott, M. Abernathy,
K. Ackley, C. Adams, P. Addesso, V. Adya, et al. (2016).

[25] M. Bezares and C. Palenzuela, Class. Quant. Grav. 35, 234002 (2018),
1808.10732.

[26] K. Chatziioannou et al., Phys. Rev. D 100, 104015 (2019), 1903.06742.

[27] J. Abadie et al. (LIGO Scientific, VIRGO), Class. Quant. Grav. 27,
173001 (2010), 1003.2480.

[28] H. Gao, B. Zhang, and H.-J. Lü, Phys. Rev. D 93, 044065 (2016), 1511.
00753.

[29] S. Banagiri, M. W. Coughlin, J. Clark, P. D. Lasky, M. A. Bizouard,
C. Talbot, E. Thrane, and V. Mandic, Mon. Not. Roy. Astron. Soc. 492,
4945 (2020), 1909.01934.

1609.03499
http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1609.03499
1709.06165
1602.07261
http://arxiv.org/abs/1602.07261
https://www.quantum-bits.org/?p=116
https://www.ligo.caltech.edu/page/ligos-ifo
https://www.ligo.caltech.edu/page/ligos-ifo
1808.10732
1903.06742
1003.2480
1511.00753
1511.00753
1909.01934

REFERENCES 43

[30] S. Sachdev et al. (2019), 1901.08580.

[31] B. Allen, W. G. Anderson, P. R. Brady, D. A. Brown, and J. D. E.
Creighton, Phys. Rev. D 85, 122006 (2012), URL https://link.aps.

org/doi/10.1103/PhysRevD.85.122006.

[32] Fermi grb detection, URL https://gcn.gsfc.nasa.gov/other/

524666471.fermi.

[33] B. D. Metzger, G. Mart́ınez-Pinedo, S. Darbha, E. Quataert, A. Arcones,
D. Kasen, R. Thomas, P. Nugent, I. V. Panov, and N. T. Zinner, 406,
2650 (2010), 1001.5029.

[34] V. M. Lipunov, E. Gorbovskoy, V. G. Kornilov, N. . Tyurina, P. Bal-
anutsa, A. Kuznetsov, D. Vlasenko, D. Kuvshinov, I. Gorbunov, D. A. H.
Buckley, et al., 850, L1 (2017), 1710.05461.

[35] T. Edition, Anatomy and Physiology Volume 3 of 3 (Lulu.com,
2014), ISBN 9781304843319, URL https://books.google.nl/books?

id=-TuSoAEACAAJ.

[36] J. McGinn, C. Messenger, I. Heng, and M. Williams (2021).

[37] T. Contributers, Pytorch documentation: Crossentropyloss,
URL https://pytorch.org/docs/stable/generated/torch.nn.

CrossEntropyLoss.html.

[38] C. Surai, Medium, machine learning fundamentals. 2.gra-
dient descent algorithm, URL http://medium.com/swlh/

machine-learning-fundamentals-2-gradient-descent-algorithm-6c8f5204bd9b.

[39] R. Karim, 10 gradient descent optimisation algorithms, to-
wards datascience, URL https://towardsdatascience.com/

10-gradient-descent-optimisation-algorithms-86989510b5e9.

[40] S. Ruder, CoRR abs/1609.04747 (2016), 1609.04747, URL http:

//arxiv.org/abs/1609.04747.

[41] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT Press,
2016), http://www.deeplearningbook.org.

1901.08580
https://link.aps.org/doi/10.1103/PhysRevD.85.122006
https://link.aps.org/doi/10.1103/PhysRevD.85.122006
https://gcn.gsfc.nasa.gov/other/524666471.fermi
https://gcn.gsfc.nasa.gov/other/524666471.fermi
1001.5029
1710.05461
https://books.google.nl/books?id=-TuSoAEACAAJ
https://books.google.nl/books?id=-TuSoAEACAAJ
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
http://medium.com/swlh/machine-learning-fundamentals-2-gradient-descent-algorithm-6c8f5204bd9b
http://medium.com/swlh/machine-learning-fundamentals-2-gradient-descent-algorithm-6c8f5204bd9b
https://towardsdatascience.com/10-gradient-descent-optimisation-algorithms-86989510b5e9
https://towardsdatascience.com/10-gradient-descent-optimisation-algorithms-86989510b5e9
1609.04747
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747
http://www.deeplearningbook.org

REFERENCES 44

[42] J. D. Irwin, The industrial electronics handbook. Control and mecha-
tronics (Boca Raton, Florida, 2011), 2nd ed.

[43] V. Dumoulin and F. Visin, A guide to convolution arithmetic for deep
learning (2018), 1603.07285.

[44] W. Luo, Y. Li, R. Urtasun, and R. Zemel, Understanding the effective re-
ceptive field in deep convolutional neural networks (2017), 1701.04128.

[45] R. Castro, Y. M.Souto, E. Ogasawara, F. Porto, and E. Bezerra, Neu-
rocomputing 426 (2019).

[46] T. Contributers, Pytorch documentation: Conv1d, URL https://

pytorch.org/docs/stable/generated/torch.nn.Conv1d.html.

[47] Convolutional Neural Networks for Visual Recognition, Department of
Computer Science (2020/21), URL http://cs231n.stanford.edu/.

[48] S. Arora, A. Bhaskara, R. Ge, and T. Ma, arXiv e-prints arXiv:1310.6343
(2013), 1310.6343.

[49] K. He, X. Zhang, S. Ren, and J. Sun, CoRR abs/1512.03385 (2015),
1512.03385, URL http://arxiv.org/abs/1512.03385.

[50] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction
to Statistical Learning: with Applications in R (Springer, 2013), URL
https://faculty.marshall.usc.edu/gareth-james/ISL/.

[51] Ligo: All-sky search for long-duration gravitational wave transients in
the first advanced ligo observing run, URL https://www.ligo.org/

science/Publication-O1AllskyLongduration/.

[52] Y. Bengio, J. Louradour, R. Collobert, and J. Weston (Associa-
tion for Computing Machinery, New York, NY, USA, 2009), ICML
’09, p. 41–48, ISBN 9781605585161, URL https://doi.org/10.1145/

1553374.1553380.

[53] D. George and E. Huerta, Physics Letters B 778, 64 (2018), ISSN 0370-
2693, URL https://www.sciencedirect.com/science/article/pii/

S0370269317310390.

1603.07285
1701.04128
https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
http://cs231n.stanford.edu/
1310.6343
1512.03385
http://arxiv.org/abs/1512.03385
https://faculty.marshall.usc.edu/gareth-james/ISL/
https://www.ligo.org/science/Publication-O1AllskyLongduration/
https://www.ligo.org/science/Publication-O1AllskyLongduration/
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1145/1553374.1553380
https://www.sciencedirect.com/science/article/pii/S0370269317310390
https://www.sciencedirect.com/science/article/pii/S0370269317310390

A APPENDIX 45

A Appendix

In this section, we compare some of the networks build while optimising
the networks presented in the results. Most of these networks have worse
performance due to a difference in kernel size or dilation.

A.1 Optimising the network without dilation

First we compare some attempts at optimising the network without dilation.
We compare the architectures with different kernel sizes. We do not include
the different learning rates, as these either did not let the network learn
or they did not influence the performance of the network. We compare 2
different networks: One with smaller kernel sizes, one starting at large kernel
sizes, before switching to smaller kernel sizes. The exact values of the kernel
sizes can be seen in Table.4 and the comparison of the TAP as a function of
the distance of the source can be seen in Fig.26. The TAP of these networks
are relatively similar, but we see that the network with the smallest kernel
size has a TAP of 1 up until a distance of only 90Mpc. The reason for this is
that this network has a smaller receptive field and less connections between
the layers. The second network has slightly larger kernel sizes at the start,
increasing the receptive field somewhat. This improves the results. It has
a TAP of 1 until a distance of 100Mpc. The network used in this work
has the largest kernel size and performs the best. Increasing the kernel size
even further would come with the downside of a smaller input size, making
dilation more difficult. We therefore did not implement a larger kernel size.

Layers Conv 1DResA Conv 1DResC Conv 1DResA Conv 1DResC Conv
Kernel1 64 3,33,63 16 3,33 16 3,33,63 16 3,33 8
Kernel2 128 3,33,63 64 3,33 16 3,33,63 16 3,33 8

Table 4: The kernel sizes for the tested networks without dilation and with
Inception blocks.

A APPENDIX 46

Figure 26: Some of the different architectures tried in the network with
inception modules but without dilation. 1: The network with a smaller
kernel size in all layers, performing the worst due to a small receptive field.
2: The network with large kernel sizes in the earlier layers, performing better
at lower distances. 3: The network as used in the results with the best TAP.

A APPENDIX 47

A.2 Optimising the dilation

Several combination of dilation values have been tested. Some different con-
figurations are shown in Tab.5 and Fig.27. We have included a network which
has a twice repeating dilation up until a dilation of 8, which is similar to the
implementation presented in [16], where they doubled the dilation value up
until a value of 512 is reached. After that, they restart with a value of 1
and double the dilation value for each following layer. At these low dilation
values, it does not increase performance. We have also included a network
which has smaller dilation values. This network performed the worse than
the repeating dilation. The suspected reason was that it had the smallest re-
ceptive field of the three networks. In fig;27, we represent these two scenarios
as well as the best performing architecture for comparison.

Layers Conv 1DResA Conv 1DResC Conv 1DResA Conv 1DResC Conv
Dilation1 1 2 4 8 16 1 1 1 1
Dilation2 1 2 4 8 1 2 4 8 1

Table 5: The different configurations of dilation in the network with dilation
in both the convolutional and 1D-resnet blocks. Dilation1 is the network
with doubling dilation up until a value of 8. Dilation2 is the network with
twice repeating dilation up until a value of 8.

A APPENDIX 48

Figure 27: The TAP for different networks with dilation in both the convolu-
tional layers and the 1-D Resnet blocks layers. 1: the network with doubling
dilation up until a value of 16. 2: the network with twice repeating dilation
up until a value of 8. This network has a larger receptive field than network
1, resulting in better performance. However it does not perform as good as
the best performing networks, as it has smaller dilation in the final layers.

	Introduction
	Gravitational waves
	What is a gravitational wave?
	Detectors
	Compact binary coalescence
	Matched filtering for gravitational wave detection
	Multi-messenger astronomy

	Methodology
	Machine learning
	Loss function
	Gradient descent
	Optimizers
	Convolutional neural networks

	Pooling layers
	Dilation
	Inception modules
	Architecture of the network
	Training of the network
	Obtaining results

	Results
	Conclusion and Discussion
	Appendix
	Optimising the network without dilation
	Optimising the dilation

