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Abstract

The future of the Wadden Sea is uncertain, due to the accelerated sea level rise back-barrier
systems, like those of the Wadden Sea might drown in the future. The focus in this study is
of gaining fundamental understanding on the hydrodynamical and morphological processes of
basins that are connected to two different inlets. To do so, a double-inlet basin is schematised as a
one-dimensional straight channel with two entrances. The Marsdiep-Vlie channel in the western
part of the Dutch Wadden Sea is selected as a prototype, where the incoming wave is a M2 tide.
By imposing an incoming M2 tidal wave on both entrances (with a possible phase/amplitude
shift between them) and by assuming the hydrodynamics to be weakly non-linear, approximate
solutions are obtained for the water motion, sediment transport rate and evolution of the basin
(in terms of length and depth). For the evolution of the channel, two cases are studied. First is
the symmetrical case, where the incoming tidal wave at both entrances does not have a phase
and amplitude shift. Second is the asymmetrical case, where such a phase and amplitude shift
does occur. It is found that without sea level rise, the basins in the symmetrical case either fills
up (short basins) or tends towards a stable equilibrium. For the non-symmetrical case, export is
dominant resulting in deepening and lengthening of the basin. When the current-day sea level
rise is added, most initially long and deep basins drown, whereas short, shallow basins fill up for
the symmetrical case. In the non-symmetrical case, the deepening and lengthening of the basin
is accelerated and initially short, shallow basins increase in size. Similar behaviour is found when
using the sea level rise of the RCP2.6 scenario of the IPCC.

The cover image shows the author and his brother running dry with a sailboat on a sand bank
of the Wadden Sea near the island of Schiermonnikoog.
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Plain English summary

The Wadden Sea is an UNESCO World heritage site in the northern part of the Netherlands and
is important for the economy of that region. However, due to climate change and the accompanied
accelerated sea level rise, the future of the Wadden Sea becomes uncertain. When the sea level
rises too fast, this area with its landscape of tidal flats and channels might drown in the future.
The Wadden sea consists of tidal inlets (the gaps between the islands). These inlets are often
connected with each other by channels, for example between the Marsdiep-Vlie channel between
the Marsdiep and Vlie inlets. The currents, which are primarily generated by tides, are dependent
on, among other things, the depth and length of the inlet. When due to sea level rise the depth
changes, also the current changes. Since the moving water causes sand to move, the transport of
sand changes. As a result, the length and depth of the inlet change.

In this study, a double tidal inlet system is studied. Such a system is schematised as a straight
one-dimensional channel with two entrances on opposite side, to gain insight into the physical
mechanisms that determine the future of the Wadden Sea. Here, the channel between the
Marsdiep and Vlie inlet is used as a prototype. However the theory can be applied more
generically to any double tidal inlet system. In this study, two cases are studied. First is the
symmetric case, for which the incoming tidal wave at both entrances have equal magnitude and
the floods/ebbs occur at the same time. The second is the asymmetric case, where a magnitude
and difference in timing of the ebbs/floods is present. The latter case mimics the Marsdiep-Vlie
channel.

When the time-evolution of the channel mimicking the Marsdiep-Vlie channel is considered, this
model shows that under the sea level rise occurring today, the channel first becomes shorter and
shallow, after which it increases in size. When the RCP2.6 scenario of the IPCC is considered
(strictest policy), the channel drowns according to this model. This model can be used to study
physical mechanisms of the tides in such a channel, but not to obtain the most realistic evolution
possible.



CONTENTS iii

Contents

1 Introduction 1

2 Model and model analysis 5
2.1 Domain and environmental setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Governing hydrodynamical equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Sediment transport rate and time evolution . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Non-dimensionlizing the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Solving the model 10
3.1 Tidal hydrodynamics of the dominant (zeroth) and first order . . . . . . . . . . . . . 10
3.2 Solution of the zeroth-order system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Solution of the first-order system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Expressions for sediment transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Model settings 15

5 Results 18
5.1 Linearized friction coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Dynamics of the M2-tide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3 Tidal dynamics of M4 currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.4 Dynamics of tidal residual (M0) current . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.5 Tidal current with M2, M4 and residual tide included . . . . . . . . . . . . . . . . . 25
5.6 Net sediment import/export . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.7 Time evolution of basin length and depth . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Discussion 35

7 Conclusions 37

A Appendix A 38
A.1 Solution for through flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
A.2 Solution first overtide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

B Appendix B 40
B.1 Dimensionless sea surface variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
B.2 Dimensional sediment transport rate due to the three M4 components . . . . . . . . 41

References 43



1 INTRODUCTION 1

1 Introduction

Barrier islands are found around the world and form a major part of the coast line (Stutz and Pilkey ,
2001). These islands are sometimes part of a barrier island system, consisting of multiple barrier
islands in line. In between these barrier islands, tidal inlets exist. According to Davis Jr. and
Fitzgerald (2020), tidal inlets are openings in the coast line, through which the back-barrier basin
is in contact with a sea or ocean and where the currents are primarily driven by tides. Tidal inlets
are often closed embayments. When part of a barrier island system, two tidal inlets are connected
through the back-barrier basin.

A prime example of such a barrier island system is located along the northern Dutch coast, the
German coast and the western coast of Denmark, named the Wadden Sea (Fig. 1). Others are
found along the east coast of the United States of America (Davis Jr. and Fitzgerald , 2020).

The Wadden Sea is considered as one of the most beautiful parts of the Netherlands and is an UN-
ESCO World Heritage Site, proving the uniqueness of this region. The Dutch part of this barrier
island system consists of seven major islands (Texel, Vlieland, Terschelling, Ameland, Schiermon-
nikoog, Rottumerplaat and Rottumeroog) and six tidal inlets (Marsdiep/Texel Inlet, Eierlandse
Gat Inlet, Vlie Inlet, Ameland Inlet, Frisian Inlet and Eems-Dollard Inlet) (Fig. 1). In the Wadden
Sea, some major sand banks are present. Examples are Richel and Griend (both near Vlieland and
Terschelling) and Engelsmanplaat (located inside the Frisian Inlet).

Figure 1: Map of the Dutch part of the Wadden Sea showing the seven major islands and the six
tidal inlets. The depth, measured from NAP (Normaal Amsterdams Peil), of the Wadden Sea for
the period of 1927-1935 and for 2005 is also given. Obtained from Elias et al. (2012).

One of the major channels in this area, connects the Marsdiep Inlet (between Texel and Den
Helder) with the Vlie Inlet (between Vlieland and Terschelling). The back-barrier basin consists of
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a labyrinth of channels and tidal flats, where the latter is exposed during low tides and submerged
during high tides. This region attracts around 1.3 million tourists a year (in 2015) (CBS , 2016),
which stimulates its economy. The tidal flats and sandbanks allow special-made ships to run dry
during low tide and continue their journey during high tide, which has become a sport many sailors
enjoy (see the cover image).

The astronomical tide of the Wadden Sea, interpreted here as variations in the water level, changes
over the basin. In the south, near Marsdiep, the tidal amplitude is the lowest (flood peak around
50 cm) and it increases when following the outer coast of the Wadden Sea northwards (flood peak
around 75 cm near the Vlie Inlet), see Fig. 2. The tides are semi-diurnal, but the magnitude of the
flood and ebb may differ within a day, so the first flood might be higher than the second flood. In
Fig. 2, the astronomical tide at the Marsdiep Inlet and at the Vlie Inlet is presented.

Figure 2: Calculated astronomical tide (sea surface variations) at the Marsdiep Inlet (left graph)
and for the Vlie Inlet (right graph) for a period from 14 June 2021 till 18 June 2021. It is shown that
the amplitude of the tidal wave increases and a small delay in flood/ebb occurs from the Marsdiep
Inlet to the Vlie Inlet. Data obtained from https://www.rijkswaterstaat.nl/water/waterdata-en-
waterberichtgeving/waterdata/getij.

The tidal currents consist of different tidal constituents: the principal lunar semi-diurnal M2-tide,
a residual tide (M0), overtides (M4) with a frequency twice that of the M2-tide and other tidal con-
stituents (Gerkema, 2019). The overtides are generated through non-linear self-interactions of the
M2-tidal wave, by the means of friction, advection and excess mass flow in shallower waters (Parker ,
1991; Gerkema, 2019). The perfect sinusoidal behaviour of the M2-tide becomes asymmetric caused
by the generated M4-overtides in a shallower basin (Van de Kreeke and Robaczewska, 1993). The
overtides and the residual currents are the determining factor in sediment transport. Since the
M2-tide is a perfect sinusoidal function, the net inflow equals the net outflow. Due to the asym-
metry introduced by the overtides and the residual current, the inflow and outflow do not cancel,
resulting in a net sediment transport through the tidal inlet (Van de Kreeke and Robaczewska, 1993).

The sediment transport increases according to a higher order power (faster than linear) of the cur-
rent (Soulsby , 1997). So a small change in current has a significant influence on the associated
sediment transport. Due to this sediment transport, the morphology of the tidal inlet changes,
which in turn affects the hydrodynamics of the system. This feedback mechanism is important
to understand, since changes in morphology may cause tidal flats to disappear or the back-barrier
basin to silt up.
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The future of tidal inlet systems is uncertain, due to climate change and the accompanied accel-
erated sea level rise these diverse habitats may change. Sea level rise causes the basin to become
deeper over time without the need of a net sediment export. In order for tidal flats to keep pace
with the rising sea level, a net import must thus exist to counteract the deepening of the basin.
Due to the sea level rise, the system remains out of equilibrium until a new equilibrium is found
where the net import of sediments compensates for sea level rise (Van Goor et al., 2003).

To gain insight in the hydrodynamics and morphodynamics of a tidal inlet system, one often has two
options to rely on. First, numerical models are used to calculate water motion, sediment transport
and morphological changes in such systems (e.g. (Dissanayake et al., 2012; Wang et al., 2018)).
With numerical models, one can approach a differential equation and find approximate solutions for
systems even when no analytical solutions exist. The main advantage is therefore that numerical
modelling provides a quasi-realistic outcome. This comes with a cost: morphodynamic simulations
take long (days to weeks) and are therefore not suitable for studies on the sensitivity of the model
to certain parameters. Furthermore, it is hard to determine which driving mechanism is responsible
for a certain process.

A second option relies on finding analytical solutions for a simplified system. Analytical solutions
have disadvantages and advantages over numerical modelling. The main disadvantage of using an-
alytical solutions derived from a simplified model is that they generally provide much less detail
and are therefore less realistic. However, analytical solutions also provide some benefits. Firstly,
analytical solutions consume much less time and computer power and therefore the evolution of the
basin can be calculated much further into time. This also allows for studying the sensitivity of the
model with respect to certain parameters. Furthermore, analytical solutions can be decomposed
into different forcing mechanisms and thus provide more physical insight compared to numerical
models.

Multiple studies have been conducted on this topic, where the hydrodynamics, sediment transport
and/or morphological evolution of a simplified system are studied. Here, the models of some of those
studies are briefly outlined. Schuttelaars and de Swart (1997) presented a model on the morpho-
logical evolution of a simplified basin. Here, a tidal embayment is simplified as a straight channel
with a varying bottom. Furthermore, variations in width of the channel are neglected. Schuttelaars
and de Swart (1997) only considered the evolution of the bed of the embayment and take both bed
load and suspended sediment transport into account. This has been performed with and without
the presence of an overtide. Todeschini et al. (2008) presented a model of a one-dimensional chan-
nel with an exponential decreasing width, when moving further into the basin, and a non-uniform
bottom. For this channel, the morphological evolution is determined using a numerical approach
on the one dimensional shallow water equations.

A third study using a simplified model, where analytical solutions are found, is conducted by
Frankemölle (2020). In this research, a straight one-dimensional tidal embayment with one opening
and homogeneous depth is considered with an incoming M2-tide. Furthermore, radiative damping
was assumed to be absent and imported sediment was uniformly distributed over the length and
depth of the embayment. Frankemölle (2020) considered both the tidally driven currents, the sedi-
ment transport and the morphological evolution (with focus on finding stable equilibria) under the
influence of sea level rise.
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All presented studies only focus on a single tidal inlet. A study on the stability of a double tidal
inlet system was performed by Van de Kreeke (1990). Here, it was assumed that the sediment is
eroded/deposited only in the tidal inlet (Van de Kreeke, 1985). No simplified model exists where
the hydrodynamics and the morphological evolution under influence of sea level rise of an double
tidal inlet system with radiative damping is considered, where erosion/deposition occurs in the
back-barrier basin.

In this study, the hydrodynamical and morphological evolution of such a simplified double tidal-inlet
system is studied using a similar method presented by Frankemölle (2020). The double tidal inlet
system is approximated by a channel with two entrances. The main goal of this study is to gain
insight into the morphological evolution of an arbitrary sized double tidal inlet system, with and
without the influence of sea level rise. In order to compute the morphological evolution, insight on
the hydrodynamics and sediment transport in the tidal basin is required. Here, attention will be
paid specifically to the different hydrodynamical processes causing sand transport and how these
processes change for different basin sizes. The theory will be applied to a realistic basin in order
to gain insight into its morphological processes and evolution. Here, the Marsdiep-Vlie system is
chosen as the case study (prototype), but the theory can be applied to any double inlet system
under the influence of a tidal forcing.

The structure of this study will be as follows. In Section 2, the model and the governing equations
for the water motion, sediment transport and evolution are presented. In Section 3, the governing
equations are solved to obtain approximate analytical solutions for the model. Then the methods
(Section 4) and the accompanied chosen parameter values are given. The results of this study are
presented in Section 5. In Section 6, the discussion is given and Section 7 contains the conclusions.
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2 Model and model analysis

In this section, the model is formulated and analyzed. First, the domain is sketched. Next, the
governing equations and boundary conditions are stated. After that, the sediment transport will be
discussed and linked to time evolution, which includes equations for the changes in depth and length
of the basin. Finally, the model will be put in dimensionless form using appropriate scaling relations.

The model consists of three components (Fig. 3). The first is the hydrodynamics of the system.
These hydrodynamical processes induce a sediment transport. Due to the sand transport, a net
sediment flux into or out of the basin is present, resulting in a change in morphology. These changes
are expressed in terms of changes in the depth and length of the basin. The hydrodynamics changes
due to the changed basin size (meaning depth and length), in turn changing the sand transport and
so forth. The structure of the model can be schematically depicted as in Fig. 3.

Figure 3: The structure behind the model is presented in this flow chart. For a certain initial
depth and length of the basin the hydrodynamics and sand transport are calculated. From this, the
changes in length and depth are obtained. Using the new basin size, the hydrodynamics are again
calculated and so forth.

2.1 Domain and environmental setting

In order to compute the hydrodynamics and the morphological changes, an one-dimensional straight
channel with two entrances is considered and radiative damping is taken into account by allowing
waves to leave the system at both entrances. The channel has a constant depth H and a length
Lb, extending from x = −L to x = L (where L = Lb/2), and a sea surface level η, measured from
the undisturbed water level (Fig. 4). Due to the constant depth, the imported/exported sediment
spreads out homogeneously over the channel.



2 MODEL AND MODEL ANALYSIS 6

Figure 4: Left: Top view of the domain showing the open channel with the two entrances. The
black arrows indicate the incoming tide and the red arrows indicate the outgoing wave (radiative
damping). Right: Along-section of the system with a uniform depth H and a basin length Lb, where
E1 and E2 represents the first and second entrance.

2.2 Governing hydrodynamical equations

Similar to Frankemölle (2020), the one-dimensional shallow water equations are used, which read

∂u

∂t
+ u

∂u

∂x
= −g ∂η

∂x
− Cd|u|u
H + η

, (2.1a)

∂η

∂t
+

∂

∂x
[(H + η)u] = 0. (2.1b)

Here, x is the x-coordinate, t is time and u is the cross-sectionally averaged velocity in the x-
direction, η is the level of the sea surface with respect to the undisturbed sea, H is the undisturbed
water depth and Cd is the friction coefficient. On both entrances, an incoming tidal wave with
angular frequency ω is imposed. At the first entrance (at x = −L), the incoming tidal wave has
an amplitude Z. For the second entrance (at x = L), the amplitude becomes αZ, where α is a
scaling factor. Both incoming tidal waves follow a sinusoidal behaviour, allowing a phase shift φ to
be present. Furthermore, radiative damping is taken into account. In principle, the damping wave
leaving at entrance 2, will travel along the coastline and re-enter at entrance 1 (same for waves
leaving entrance 1). In this study it is assumed that the distance over sea between inlets is large,
then the damping wave will be fully damped before re-entering and therefore will not be taken into
account. In total, at each entrance there will be an incoming tidal wave and a leaving damping
wave (Fig. 4). The considerations above result in the following boundary conditions:

ηin1 = Z cos(ωt) : at x = −L, (2.2a)

ηin2 = αZ cos(ωt− φ) : at x = L. (2.2b)

Note that the boundary conditions concern the incoming tidal wave. This allows for outwards
travelling waves (radiative damping), which are determined by the system itself. The depth H and
length Lb depend on time and are therefore variables of state. For this reason, the model is not
closed and additional equations are needed to describe the changes in undisturbed depth and length
of the basin. This will be presented in Section 2.3.
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2.3 Sediment transport rate and time evolution

Soulsby (1997) states that the suspended transport rate and the bed load transport rate follow the
same behaviour (in terms as a power of the current), but with different pre-factors, for sediment
transport driven by waves and currents (Soulsby-van Rijn equation). In this study the total load
(sediment transport rate) is taken proportional to the velocity cubed (Bagnold , 1973; The Open
University , 1999), such that;

q = q̂u3. (2.3)

Here q̂ is a proportionally factor dependant on the system and q is the sediment transport rate in
m2/s. The reasoning of Bagnold (1973) and The Open University (1999) behind Eq. (2.3) is that
the sediment transport rate is proportional to the power of the current, which in turn is proportional
to the current cubed.

The time evolution of the morphology is based on four assumptions. First, the imported sediment
spreads out homogeneously over the basin. The same applies to the export, where the sediment
is eroded and transported away and after leaving the basin spreads out homogeneously. A certain
amount of the deposited/eroded sediment contributes to the depth, while the rest contributes to
the length of the basin (Frankemölle, 2020). Furthermore, it is assumed that the values for α and φ
do not change when the basin length changes and therefore stays constant over time. In a physical
sense this is interpreted that the two entrances remain on the same position, but the channel gets
smaller/larger in the back-barrier region, due to deposition/erosion. Thirdly, within a given time,
the basin does not change significantly and therefore the basin size and the sediment transport
rate are constant within that given time (Frankemölle, 2020). Lastly, the net sediment transport
between the two entrances is the determining factor for import/export of sediment, based on a
similar argument made for a single inlet by Frankemölle (2020). Since there are two entrances, the
latter assumption is written as:

qnet = q1 − q2 + qwave. (2.4)

Here, qnet is the net sediment transport of the entire channel and q1 and q2 are the sediment trans-
port at entrance 1 and 2 respectively. Furthermore, qwave is the sediment import by waves due to
littoral drift along the coast. Since import for entrance 1 runs in the positive direction and the
import of entrance 2 runs in negative direction (vice versa for export), a minus sign is added to
the transport at the second entrance to ensure that import is always positive and export is always
negative.

To obtain expressions for the changes in depth and length of the basin, the method described by
Frankemölle (2020) is used. First the mass balance of the system is specified:

(1− p)d(HLb) = −qnetdt, (2.5)

in which dt is some increment of time, p is the porosity and qnet is the net sediment transport. Some
part of the sediment import or export concerns changes in depth (1− a) and the other part for the
length of the basin (a), where a is the fraction coefficient. Using this, Eq. (2.5) becomes

dLb
dt

=
−aqnet

(1− p)H
,

dH

dt
=
−(1− a)qnet

(1− p)Lb
.

(2.6)
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Since the morphological evolution under influence of sea level rise SLR is also studied, Eq. (2.6)
changes to:

dLb
dt

=
−aqnet

(1− p)H
,

dH

dt
=
−(1− a)qnet

(1− p)Lb
+ SLR.

(2.7)

2.4 Non-dimensionlizing the model

In the previous of this section, the model is presented. Now, in order to construct approximate
solutions, their dimensionless form needs to be introduced. To do so, for each variable an appropriate
scaling factor is chosen. In line with Frankemölle (2020), the time is scaled with the inverse of the
tidal angular frequency, thus t = ω−1t̃. Here, the tilde indicates that the variable is dimensionless.
Furthermore, the distance x is scaled as x = (

√
gH/ω)x̃, where Lt =

√
gH/ω is the frictionless

tidal wavelength (including an extra factor of (2π)−1 in the denominator due to in the angular
frequency), meaning that x̃ changes when H changes. The basin length is written as Lb = LtL̃b.
Next, the wave height η is be scaled by amplitude Z, such that η = Zη̃. Lastly, in Eq. (2.1a)
both linear and non-linear terms are present. It is known that in most tidal inlet system, the tidal
dynamics is linear to a first order approximation, therefore the linear terms should be of the same
order of magnitude and the same holds for the non-linear terms. Therefore, one can write that
∂u

∂t
∼ g

∂η

∂x
from which follows that the current scales with U =

√
g

H
Zũ. The dimensionless form

of the shallow water equations are then obtained by plugging in the scaling factor in Eqs. (2.1a)
and (2.1b), namely (after dropping the tildes):

∂u

∂t
+ εu

∂u

∂x
= −∂η

∂x
− γ|u|u

1 + εη
, (2.8a)

∂η

∂t
+

∂

∂x
[(1 + εη)u] = 0. (2.8b)

Furthermore, the dimensionless boundary conditions are rewritten as

ηin1 = cos(t); at x = -`, (2.9a)

ηin2 = α cos(t− φ); at x = `. (2.9b)

In this dimensionless form, three extra parameters are defined:

γ = ω−1ZCd
g1/2

H3/2
, ` =

Lb
2Lt

and ε =
Z

H
. (2.10)

Note that ` = L̃b/2. Here, ε scales the magnitude of the non-linear terms compared to the linear
terms. Since the water depth is in general greater than the sea level deviation, ε is generally much
smaller than 1.

A final modification to the shallow water equations must be performed, i.e., the quadratic friction
term needs to be linearized. Following Lorentz (1926), the assumption is made that the amount of
tidal energy lost over one tidal cycle in the entire basin must be equal for both the quadratic and
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the linear friction term. This way, the dimensionless momentum equation (Eqs. (2.8a)) is rewritten
as (Frankemölle, 2020)

∂u

∂t
+ εu

∂u

∂x
= −∂η

∂x
− λu

1 + εη
. (2.11)

Here, λ is the linearized friction coefficient and it is given by

λ = γ

∫ `
−`
〈∣∣u3

∣∣〉 dx∫ `
−` 〈|u2|〉 dx

. (2.12)

Note here that λ is proportional to the current u and therefore a higher current means an increase
in bottom friction. From calculations it follows that for most basins sizes it holds that λ ∼ 1. Only
for deep basins, the linearized friction coefficient becomes very small.

Next, the sediment transport and time evolution are put in dimensionless form. The sediment
transport rate (Eq. (2.3)) scales with q̂U3, therefore the dimensionless form of Eq. (2.4) becomes:

q̃net = q̃1 − q̃2 + q̃wave. (2.13)

Since the net sediment transport rate (Eq. (2.13)) is dimensionless, Eq. (2.7) is also rewritten into
dimensionless form using Eq. (2.10), H = H0H̃, where H0 is a reference depth, and the fact that sea
level rise scales with H0/ω

−1. The changes in dimensionless depth and length are given by (after
dropping the tildes)

dLb
dτ

=
−aqnet
H3

,

dH

dτ
=
−(1− a)qnet

`H2
+ SLR.

(2.14)

Note that SLR is now the dimensionless sea level rise. The morphological time-coordinate (τ) is
defined as

τ =
t

Tmorf
, (2.15)

where Tmorf (morphological time scale) is given by

Tmorf =
H3

0 (1− p)
q̂gZ3

. (2.16)

To solve Eq. (2.14), initial values for the undisturbed depth (H(t = 0)) and basin length (Lb(t = 0))
are needed, which will be elaborated on in Section 4.
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3 Solving the model

First, perturbation theory is used to obtain the differential equations for the tidal hydrodynamics
for the zeroth and first order. Secondly, analytical solution of these differential are obtained. Using
the equations on zeroth and first tidal current and sea surface variation, equations of the tidally
averaged sediment transport and the associated time evolution of the basin are obtained.

3.1 Tidal hydrodynamics of the dominant (zeroth) and first order

Eqs. (2.8b) and (2.11) for the water motion are not solvable exactly due to non-linearity and the
time-dependence of H and Lb. Therefore, an approximate solution has to be constructed. This is
only possible when the non-linear terms are small compared to the linear terms. This is assumed
to be true for the tidal dynamics in a shallow tidal basin. Since ε is taken to be much smaller than
1 (see previous section), it is a valid parameter to use for the scaling in the perturbation series.
The other parameters of the model (` and λ) are both of order 1 and therefore not suitable for
perturbation theory. The series are defined as follows for the current u and sea level deviation η:

u(x, t) = u0(x, t) + εu1(x, t) + h.o.t. (3.1)

η(x, t) = η0(x, t) + εη1(x, t) + h.o.t. (3.2)

where h.o.t. stands for higher order terms (above first order) in terms of ε. All higher order terms
above the first order term are assumed to be small enough compared to the first two terms such that
they can be neglected. The friction term of Eq. (2.8b) is approximated using a Taylor expansion and
upon inserting the perturbed current and sea level deviation (Eqs. (3.1) and (3.2)) into Eqs. (2.8a)
and (2.8b), the following system of equations are obtained by sorting in leading order terms and
terms in ε (first order). The zeroth order system becomes

∂u0

∂t
+
∂η0

∂x
+ λu0 = 0, (3.3a)

∂η0

∂t
+
∂u0

∂x
= 0. (3.3b)

The dimensionless boundary conditions (Eqs. (2.9a) and (2.9b)) also need to be rewritten in lead-
ing order. Since the tidal sea surface height at both inlets is assumed to be composed of only an
incoming/external tide of frequency ω, the dimensionless boundary conditions of the zeroth order
are equal to Eqs. (2.9a) and (2.9b), but then the left hand side of the equations reads ηin0 instead
of ηin.

The first order solution follows from a collection of all the terms that are of order ε. The continuity
and momentum equation for the first order system reads

∂u1

∂t
+ u0

∂u0

∂x︸ ︷︷ ︸
Advective

= −∂η1

∂x
+ λu0η0︸ ︷︷ ︸

Friction

−λu1, (3.4a)

∂u1

∂x
+

∂

∂x
[u0η0]︸ ︷︷ ︸

Excess mass flux

+
∂η1

∂t
= 0. (3.4b)
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The advection term represents the advected tidal momentum by the tidal current and the friction
term the current generated through the depth-dependent friction. The excess mass flux concerns
a flow compensating for the import of mass by waves. In Eqs. (3.4a) and (3.4b) the three non-
linear forcing terms are given, namely the friction, excess mass flux and advection. The first order
dimensionless boundary conditions at the two inlets become

ηin1 = 0; at x = -`, (3.5a)

ηin1 = 0; at x = `. (3.5b)

In the next section, solutions of the zeroth-order and first-order systems will be obtained.

3.2 Solution of the zeroth-order system

Since the boundary conditions are stated in terms of η0, it is convenient to obtain a differential
equation in terms of η0. To do so, the x-derivative of the momentum equation (Eq. (3.3a)) and
the time derivative of the continuity equation (Eq. (3.3b)) are taken. This way, the zeroth order
current (u0) is eliminated from this system of equations and a single partial differential equation in
term of η0 is obtained, given by

∂2η0

∂t2
+ λ

∂η0

∂t
− ∂2η0

∂x2
= 0. (3.6)

To solve this equation, it is used that tides are nearly sinusoidal and that the boundary conditions
are stated in terms of cosines. Here, only interest is paid to the non-transient solutions, since the
transient solution part relates to the initial conditions. This invites for a separation of variables
using a complex exponential for the time dependence:

η0(x, t) = <
[
η̂0(x)e−it

]
, (3.7)

where < stands for the real part of a complex function or number. By plugging this ansatz into
Eq. (3.6) after rewriting and eliminating the complex exponential after differentiation, the following
equation is obtained:

d2η̂0(x)

dx2
+ κ2

0η̂0(x) = 0, (3.8)

where κ0 is given by

κ0 =
√

1 + iλ. (3.9)

The boundary conditions also change, since cos(t) = <[e−it] and cos(t − φ) = <[e−i(t−φ)]. The
boundary conditions (Eqs. (2.9a) and (2.9b)) are written in terms of η̂0:

η̂in0 (x) = 1 at x = -`. (3.10a)

η̂in0 (x) = αeiφ at x = `. (3.10b)

Note that, Eq. (3.8) is an ordinary differential equation with the general solution

η̂0(x) = Aeiκ0x +Be−iκ0x. (3.11)
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Here, A andB are integration constants to be determined using the boundary conditions (Eqs. (3.10a)
and (3.10b)). Since the time dependence is given by η̂0(x) multiplied by e−it, the first term of
Eq. (3.11) represents a wave travelling in the positive direction and the second term is a wave trav-
elling in the negative direction. Due to the presence of radiative damping, at x = ` the incoming
tidal wave (given by Eq. (3.10a)) is known, but the damping wave is not known. Therefore, this
boundary condition can only be applied on the positive travelling wave (first term) of Eq. (3.11),
since the negative travelling wave at the same location is unknown and to be determined by the
system itself. The same applies at x = ` for the other boundary condition (Eq. (3.10b)) and the
negative travelling wave. The constants of integration then become

A = eiκ0`, (3.12)

B = αei(κ0`+φ). (3.13)

Thus, the full solution for the zeroth order of the wave height reads

η̂0(x) = eiκ0(x+`) + αe−i(κ0(x−`)−φ). (3.14)

From the zeroth order (dimensionless) continuity equation (Eq. (3.3b)), it follows that;

∂η0

∂t
= −∂u0

∂x
. (3.15)

Insert Eq. (3.11) into Eq. (3.15) to obtain an expression for û0;

dû0

dx
= ieiκ0(x+`) + iαe−i(κ0(x−`)−φ). (3.16)

The integral of x is taken and the integration constant from this integration is set to zero. This is
done, because for the zeroth order tide, the flood current should be equal but opposite to the ebb
current. When a non-zero integration constant is introduced a translation occurs, causing this not
to be the case. Using this, û0 becomes:

û0(x) =
1

κ0
eiκ0(x+`) − α

κ0
e−i(κ0(x−`)−φ). (3.17)

3.3 Solution of the first-order system

Solutions of the first-order system are driven by those of the zeroth-order system and the latter are
sinusoidal, with scaled frequency 1 (first two equations of Eq. (3.18)). When those expressions are
substituted in Eqs. (3.4a) and (3.4b), it follows that the non-transient solutions of the first-order
system consist of a time-independent (residual) component and an overtide that is sinusoidal with
double the frequency of the zeroth-order tide (last two equations of Eq. (3.18)).

u0(x, t) =
1

2
û0e
−it +

1

2
û∗0e

it,

η0(x, t) =
1

2
η̂0e
−it +

1

2
η̂∗0e

it,

u1(x, t) = ū+
1

2
û1e
−2it +

1

2
û∗1e

2it,

η1(x, t) = η̄ +
1

2
η̂1e
−2it +

1

2
η̂∗1e

2it.

(3.18)
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Here, ū and û1 are the currents and η̄ and η̂1 are the tidal wave heights for the residual and first
overtide tidal constituents respectively. Note that the asterisk gives the complex conjugate of the
complex function.

These expressions are plugged into Eqs. (3.4a) and (3.4b) and are subsequently split into the two
tidal constituents (residual and first overtide). For the residual tide, the system of equations is
given by

d

dx

[
ū+

1

4
û0η̂
∗
0 +

1

4
û∗0η̂0

]
= 0, (3.19a)

1

4

[
û0

d

dx
û∗0 + û∗0

d

dx
û0

]
= −dη̄

dx
+
λ

4
[û0η̂

∗
0 + û∗0η̂0]− λū, (3.19b)

with the boundary conditions

η̄in(x = −`) = 0 and η̄in(x = `) = 0. (3.20)

When integrating Eq. (3.19a), the following equation is obtained:

ū+
1

4
û0η̂
∗
0 +

1

4
û∗0η̂0︸ ︷︷ ︸

Stokes velocity

= ū1m︸︷︷︸
Through flow

. (3.21)

Here, the Stokes velocity is the mean velocity of a fluid parcel in the direction of the wave prop-
agation, when transported by the orbital motion of a wave. The through flow (also known as the
residual mass transport velocity) is generated by a pressure difference between the two entrances,
where the pressure gradient results from a gradient in tidal sea surface variation between entrance
1 and 2. The solution to the through flow is determined in Appendix A.

The momentum and continuity equation for the first overtide become

− iû1 +
1

4
û0

d

dx
û0 = −1

2

d

dx
η̂1 +

λ

4
û0η̂0 −

λ

2
û1, (3.22a)

dû1

dx
= −1

2

d

dx
[û0η̂0] + 2iη̂1. (3.22b)

Since the boundary conditions are stated in terms of the wave height, it is convenient to eliminate
û1 from the system of equations (Eqs. (3.22a) and (3.22b)) and thus obtain a single equation in η̂1,
as given in Appendix A (Eq. A.3). Solutions for ū, η̄, û1 and η̂1 are derived in Appendix A. Note
that Eq. (A.3) is linear, so the solution is the sum of responses to each of the three forcing terms
in the right-hand side.

Since the expressions for the currents of the different tidal constituents are complex valued, their
moduli and arguments are calculated. The modulus is of importance for the maximum allowed
current for different basin settings and the argument is a key component in sediment transport, on
which will be elaborated in the next section. The residual current is rewritten as:

ū = |ū| cos(φres). (3.23)

Here, φres is the argument and |ū| is the modulus of the residual current. For the other two tidal
constituents, the expression of the current in terms of the modulus and the argument becomes
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um = |ûm| cos((m+ 1)t− φm). (3.24)

Here, m gives the order of the solution. Note that u1 applies for both the friction, advective and
excess mass flux overtide and distinction will be made using superscripts.

3.4 Expressions for sediment transport

As mentioned earlier, the sediment transport is the driving force behind the evolution of the basin.
When a net import occurs, the basin gets shorter and shallower. Whereas, when a net export occurs
the basin becomes longer and deeper. For the evolution of a basin, the averaged sediment transport
rate over one tidal cycle is of interest. Taking the average of the sediment transport over one tidal
cycle is allowed, because the morphological timescale (Eq. (2.16)) is much larger than the tidal
period. Therefore, the dimensionless sediment transport rate at every instant of time is averaged
over one dimensionless tidal cycle:

〈q̃〉 =
1

2π

∫ 2π

0
ũ3dt. (3.25)

Eq. (3.25) states that the total current is needed for the tidally averaged sediment transport. Re-
member that the first overtide consists of three components, generated by friction, excess mass flux
and advection, hereafter abbreviated as Fr, EMF and ADV respectively. Using this knowledge,
together with Eqs. (3.1), (3.23) and (3.24), the total current is written as

u = |û0| cos (t− φ0) + ε
(
|ū| cos (φres) +

∣∣ûADV1

∣∣ cos
(
2t− φADV1

)
(3.26)

+
∣∣ûFr1

∣∣ cos
(
2t− φFr1

)
+
∣∣ûEMF

1

∣∣ cos
(
2t− φEMF

1

)
.

Eq. (3.25) is integrated and worked out and sediment transport rate terms of order ε and ε3 are
found (Ridderinkhof et al., 2014; Frankemölle, 2020). Since ε is small, the terms of order ε are
much larger then the terms of order ε3. Therefore, the order ε terms are dominant for the sediment
transport rate. The total expression for the tidally averaged sediment transport rate is therefore
written as

〈q〉 =
3ε |û0|2

2
|ū| cos(φres) +

3ε |û0|2

4

(∣∣ûADV1

∣∣ cos
(
φADV1 − 2φ0

)
+ (3.27)∣∣ûFr1

∣∣ cos
(
φFr1 − 2φ0

)
+
∣∣ûEMF

1

∣∣ cos
(
φEMF

1 − 2φ0

)
+ h.o.t. (3.28)

Note that the for the first overtides, the phase difference between these overtides and zeroth-order
solution is clearly of importance. Here, the cos(φ1− 2φ0) determines not only the sign of the trans-
port (and thus whether import or export occurs), but it is also a leading factor in determining the
magnitude of the sediment transport caused by the overtides.

Using the dimensionless tidally averaged sediment transport rates, the expressions of the evolution
of the depth and length of the basin are rewritten (Eqs. (3.29)). Furthermore, it is assumed that
the changes in morphology of the basin occur slowly (Section 2) (Frankemölle, 2020). Therefore,
Eqs. (3.29) can be discretized into an appropriate time step in which the tidally averaged sediment
transport rate can be assumed constant, changing Eqs. (2.7) into:
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∆Lb
∆τ

=
−a〈qnet〉
(1− p)H

,

∆H

∆τ
=
−(1− a)〈qnet〉

(1− p)Lb
+ SLR.

(3.29)

The discretization of Eqs. (3.29) follows a Forward Euler approach, where from initial conditions
(initial basin depth and length), the time evolution of the morphology is determined. This way, the
“old” basin size is used, to calculate the basin depth and length one step further in time. For this
reason, the model is not fully analytical, but can be considered semi-analytical.

4 Model settings

In this study, a symmetrical and an asymmetrical case is considered. The difference between these
two cases is the value for the parameters α and φ. Furthermore, an incoming M2 tide is imposed
on the system. First, all default parameter values applicable to both case are presented in Table 1.
These default parameters are the initial length Lb0, initial depth H0 of the basin, tidal period T and
frequency ω of the M2 tide, incoming M2 sea surface variation Z, friction coefficient Cd, fraction
ratio a, the porosity p and the proportionality factor q̂. Here, Lb0, H0 and Z are based on the
Marsdiep-Vlie channel. Therefore, the value of Lb0 is fixed, while Lb can be any basin length (same
for the depth). As a reminder, the basin length Lb and depth H depend on time and are therefore
variables of state. The default basin length and depth (Lb0 and H0) are parameters of the system.
Furthermore, the linearized friction coefficient λ depends on the basin size, α and φ and thus differ
per system.

Table 1: Default parameter values based on the Marsdiep-Vlie channel, applicable to the symmet-
rical and the non-symmetrical case.

Lb0 70 km (Lb0/Lt ∼ 1)

H0 10 m (Ridderinkhof et al., 2014; Elias et al., 2012)

T 12 h and 25.2 min

ω 1.405 · 10−4 rad/s

Z 0.73 m (Ridderinkhof et al., 2014)

Cd 2.5 · 10−3 (Soulsby , 1997)

a 0.5

p 0.4 (Soulsby , 1997)

q̂ 10−3 s2/m

The last parameter value (q̂) is based on a study performed by (Wang et al., 2018), which states
that the annual sedimentation in the western Wadden Sea is of the order millimeters per year.
Now, the values of the parameters α and φ are discussed for both cases (and shown in Table 2).
For the symmetrical case, it follows that α = 1 and φ = 0. However, for the non-symmetrical case,
it is important to note that α and φ are parameters for the incoming tidal M2 wave. Values for
these parameters need to be derived from measurements/data based on the total wave height (both
incoming and outgoing wave). From the M2 amphidromic map of the North Sea (Plüß , 2003),
the amplitude factor of the total wave (αtot) is estimated to be 1.14 and the corresponding phase
difference (φtot) is 0.52 rad.
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Table 2: Default parameter values for the amplitude ratio and phase shift for the incoming wave
for the symmetrical and the anti-symmetrical case.

Symmetric Non-symmetric

α 1 0.511

φ 0 0.604

In order to obtain α and φ from this, the model is used. For different values of α and φ, the
corresponding αtot and φtot are determined for the total wave in the model (Fig. 5). The values of
α and φ for which holds that αtot = 1.14 and φtot = 0.52 rad (black contour lines in Fig. 5) are
chosen to be the appropriate parameter values to mimic the situation in the Marsdiep-Vlie channel.
Using this method, the parameter values become: α = 0.511 and φ = 0.604 rad.

Figure 5: Colour plots of the amplitude ratio αtot (left) and the cosine of the phase difference φtot
(right) of the total M2 sea surface variation between entrances 1 and 2 as a function of the phase
shift (between 0 and 2π) and amplitude ratio (between 0 and 3) of the incoming M2 wave between
the two entrances. Here, the subscript “tot” refers to the total M2 sea surface variation (incoming
and outgoing wave). The black lines indicate the contour lines for αtot = 1.14 (left) and cos(φtot)
≈ 0.87 (right).

The amplitude ratio αtot and the total phase difference φtot between the two entrances for the total
M2 tidal wave depends on the scaled basing length Lb  Lt and the depth of the basin H for the
non-symmetrical case. In Fig. 6, these two parameters are presented for different basin sizes, where
the depth ranges from 3 to 50 m and is scaled by H0 = 10 m and the scaled basin length ranges
from 0.01 to 2π.

In this study, four experiments are performed on the time evolution of a basin with a certain initial
length and depth. For each experiment, the time step ∆t is equal to one year. In the first experi-
ment, the time evolution of seven different initial basin sizes (initial depth and length) is studied in
the absence of sea level rise and sediment import by waves. In the second experiment, the evolution
is studied for the same basins, but now with a sea level rise corresponding to the current-day rate
of 1.7 mm/yr (Church et al., 2013). The third experiment also considers the current-day sea level
rise, but also includes the net import of sediment by waves qwave of 0.04. In the last experiment, a
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Figure 6: Colour plots of the amplitude ratio αtot (left) and the cosine of the phase difference φtot
(right) of the total M2 sea surface variation between entrances 1 and 2 as a function of the basin
length scaled by H0 = 10 m and the basin length scaled by the frictionless tidal wavelength. Here,
the basin depth H is between 3 and 50 m . The scaled basin length Lb/Lt is between 0.01 and 2π,
where Lt ranges from 38.6 km for 3 m depth and 157.6 km for 50 m depth. The subscript “tot”
refers to the total M2 sea surface variation (incoming and outgoing wave). The black lines indicate
the contour lines for αtot = 1.14 (left) and cos(φtot) ≈ 0.87 (right).

sea level rise of 4.4 mm/yr (corresponding to the RCP2.6 scenario (Church et al., 2013)) is added,
combined with an import by waves of qwave = 0.04. The latter corresponds to a dimensional import
by waves around 470 m2/yr for a basin of 10 m depth, which is a small fraction of the annual drift
of 1-2 million m3/yr estimated by Van Veen (1936). A higher value of qwave is not chosen, because
the import by waves would dominate over the tidal processes. In short, the four time evolution
experiments are summarized below:

• Time evolution of seven different sized basin without sea level rise and sediment import by
waves due littoral drift for 100,000 years.

• Time evolution of seven different sized basin with an annual sea level rise of 1.7 mm/yr and
without sediment import by waves due to littoral drift for 4,000 years.

• Time evolution of seven different sized basin with an annual sea level rise of 1.7 mm/yr and
a dimensionless import by waves of qwave = 0.04, for 4,000 years.

• Time evolution of seven different sized basin with an annual sea level rise of 4.4 mm/yr and
a dimensionless import by waves of qwave = 0.04, for 4,000 years.

The difference in time between the first and the other experiments is due to the added sea level
rise, which causes a large increase in depth when considered over long periods of time.



5 RESULTS 18

5 Results

In this section, the left column of a graph always represents the symmetric case and the right
column the non-symmetric case. First, the values for the linearized friction coefficient λ are given
for different basin lengths and depths for both cases. Second, the M2-tide is discussed, after which
the M4- and M0-tides and the net import/export of sediment are shown. Lastly, the morphological
evolution is presented.

5.1 Linearized friction coefficient

The dimensional linearized friction coefficient λdim is shown in Fig. 7 for the symmetric case (left)
and the non-symmetric case mimicking the Marsdiep-Vlie channel (right). It reveals that the bottom
friction decreases with increasing water depth and that for basins deeper than 10 m, the friction
becomes very small. Furthermore, a maximum in bottom friction occurs around a basin length
equal to half a tidal wavelength (Lb/Lt = π).
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Figure 7: Colour plots of the dimensional linear friction coefficient λdim as a function of the scaled
basin depth (H/H0) and scaled basin length (Lb/Lt) for the symmetric system (left) and the asym-
metric system that mimics the Marsdiep-Vlie channel (right). The parameter values of Table 1 are
used. Here, the basin depth H is between 3 and 50 m and is scaled by H0 = 10 m. The scaled basin
length Lb/Lt is between 0.01 and 2π, where Lt ranges from 38.6 km for 3 m depth and 157.6 km
for 50 m depth.

5.2 Dynamics of the M2-tide

In Fig. 8, times series of the dimensionless current of the left travelling, right travelling and the total
wave of both cases for two tidal periods are shown. Here, the default parameter values of Table 1
are used. Since Fig. 8 represents the current for a single basin length and depth, the dimensionless
and dimensional tidal wave only differ by a scaling factor and therefore show the same behaviour.
The first row is for the entrance 1 and the second row at entrance 2. The left column gives the
symmetrical case and the right column the non-symmetrical case. Furthermore, in Appendix B, the
same graph (Fig. 21) is shown for the dimensionless sea surface variations.

The symmetric case (at both entrances) shows that the velocities at both entrances are equal in
magnitude, but of opposite sign. Since α = 1 and φ = 0, the magnitude of the two incoming
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flood/ebb currents are equal and both occur at the same instant of times. When flood occurs, the
current at entrance 1 is positive, while the current at entrance 2 is negative (still flood due to wave
travelling in opposite direction). Therefore, no current exists at the middle of the basin (x = 0). As
a results, half of the system (from x = −` to x = 0 or from x = 0 to x = `) has effectively become
the system described by Frankemölle (2020), with the inclusion of radiative damping.

Furthermore, the effects of bottom friction is evident from the left panel of Fig. 8, showing the
symmetric case. The right travelling wave at entrance 1 and the left travelling wave at entrance
2 have the same amplitude and initial phase. When the two waves at entrance 1 are considered
it appears that the left travelling wave has undergone an amplitude and a local phase shift. The
amplitude decreases is solely due to effects of bottom friction. The local phase shift is due to the
effect of bottom friction and due to the fact that the left travelling wave has to cross the channel
before it reaches entrance 1. Due to this distance, the flood of the left travelling wave lags the flood
of the right travelling wave at entrance 1.
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Figure 8: Time series of the dimensionless dominant tidal velocity induced by the left and right
travelling wave and the total wave at the two entrances for two tidal periods. The first column is for
the symmetric system and the second column for the non-symmetrical (mimicking the Marsdiep-
Vlie channel) for a basin depth of 10 m and a basin length of 70 km. Furthermore, the first row
indicates the first entrance and the second row gives the second entrance. The parameter values of
Table 1 are used. The scaling parameter for the current is U ≈ 0.72 m/s.
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When the asymmetric case is considered, the same overall behaviour is observed. However, due to
the introduction of the phase shift, more constructive interference occurs at entrance 1 and more
destructive interference at entrance 2 for the current. For the sea surface variations (Appendix B,
Fig. 21), the interference pattern is opposite. This results in a gradient between the two inlets,
where the amplitude of the sea surface variation at entrance 1 is smaller compared to entrance 2.
This in turns drives a negative current from entrance 2 to entrance 1, on which will be expanded
when discussing the residual current. Furthermore, the peak current at entrance 2 is slightly lower
than the peak current at entrance 1.

For the morphological evolution of the basin, the changes in amplitude of M2 currents at both en-
trances when depth H and length Lb change are important, because they are factors that determine
the net import and export of sediment (Eq. (2.14)). In Fig. 9 the dimensional amplitude of the M2
tidal current is shown for different basin sizes. Furthermore, the phase of the M2 tidal current in
itself is not important for the sediment transport, but the phase difference between the M2 and M4
tide is. The latter will be discussed in the next subsection.
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Figure 9: Colour plots of the dimensional amplitude of the M2 tidal velocity (m/s) as a function of
scaled basin depth H/H0 and scaled basin length Lb/Lt. Here, the basin depth H is between 3 and
50 m and is scaled by H0 = 10 m. The scaled basin length Lb/Lt is between 0.01 and 2π, where Lt
ranges from 38.6 km for 3 m depth and 157.6 km for 50 m depth. The first row represents the first
entrance and the second row gives entrance 2. The parameter values of Table. 1 are used.
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The left panel in Fig. 9 (symmetric case) shows that a resonance peak in the M2 tidal velocity
occurs for a basin just shorter than half a tidal wavelength. When the basin length is half a tidal
wavelength, the ebb at entrance 1 coincides with the flood at entrance 2 (so current in same direc-
tion), therefore amplifying each other. Due to friction, the resonance peak is slightly below half a
frictionless tidal wavelength. The opposite occurs at a basin length close to the frictionless tidal
wavelength, when ebb and flood flows balance each other out. Due to this interference, the amplitude
of the M2 tidal velocity shows a ”standing wave” behaviour with clear resonance peaks and troughs.

A slightly different behaviour is visible in the non-symmetrical case. Here, for entrance 1 a shift
of the peak is shown to the left compared to the symmetrical case, since the left travelling wave
runs behind on the right running wave (due to the phase shift φ). In order to compensate for this
delay, the distance covered by the left travelling wave must decrease and therefore the peak M2
tidal velocity current occurs for shorter basin length. The opposite occurs at the second entrance,
where the right travelling wave must cover more distance, since it runs ahead of the left travelling
wave (at entrance 2). Furthermore, for the non-symmetrical case, the M2 tidal velocity at entrance
2 is smaller than at entrance 1 for basin shallower than 20 m.

For the symmetrical case, the peak in the linearized friction coefficient coincides with the peak in the
dimensionless current. This is in agreement with Eq. (2.12), since the highest amplitude of the M2
tidal velocity current causes the friction coefficient to maximize. When the non-symmetrical case is
considered, it turns out that the peak of the linearized friction coefficient is still around Lb/Lt = π,
but the peaks of the amplitude of the M2 tidal velocities currents have shifted. This also follows
from Eq. (2.12). The friction coefficient contains integrals over x, since at the first entrance the
peak current is for basins shorter than the tidal wavelength and the opposite is true for the second
entrance. By taking the integral over the amplitude of the M2 tidal velocity (Eq. (2.12)), the net
highest current over the channel will be found in between the two tidal velocity peaks and therefore
around Lb/Lt = π.

Furthermore, since the symmetrical case consists of two waves of initially same amplitude and phase
travelling in the opposite direction a standing wave is present for short basin. This is due to the
fact that for short basins, the friction is weak and therefore almost no phase and amplitude shift
occurs between the left and right running wave. Note that for a standing wave, the cosine of the
phase difference between the tidal sea surface variation and the tidal velocity is zero. For a basin
with the parameters of Table. 1 in the symmetrical case, the cosine of this phase difference is around
-0.06 rad and therefore the M2 tidal wave is close to a standing wave. For the non-symmetrical
case, this phase difference is around 0.81 rad and therefore no standing wave is present here. This
behaviour becomes important when discussing the Stokes velocity in Subsection 5.3.

5.3 Tidal dynamics of M4 currents

The leading factors of the tidally averaged sediment import/export are cos (φ1 − 2φ0) and the am-
plitude of the M4 tidal velocity. For the sediment transport and the time evolution, the total phase
shift and the total tidal velocity of the M4 tide are of importance, therefore no attention will be paid
to the separate M4 tidal velocities (in Subsection 5.6, the sediment import/export of the separate
M4 tidal components will be discussed). In Fig. 10, the dimensional amplitude of the total M4 tidal
velocity is given for the symmetrical (left column) and non-symmetrical (right column) case at the
first (top) and second (bottom) entrance.
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Figure 10: Colour plot of the dimensional amplitude of the total M4 tidal velocity (m/s) as a
function of scaled basin depth H/H0 and scaled basin length Lb/Lt. Here, the basin depth H is
between 3 and 50 m and is scaled by H0 = 10 m. The scaled basin length Lb/Lt is between 0.01
and 2π, where Lt ranges from 38.6 km for 3 m depth and 157.6 km for 50 m depth. The first row
represents the first entrance and the second row gives entrance 2. The parameter values of Table. 1
are used.

For the symmetric and the non-symmetrical case, the dimensional amplitude of the total M4 tidal
velocity decreases with increasing depth. In line with the dimensional M2 tidal velocity, the right
panel of Fig. 10 (non-symmetrical case) shows that the dimensional total M4 tidal velocity at
the second entrance is smaller compared to the first entrance for basins of less than 20 m depth.
Furthermore, the dimensional M4 tidal velocity is an order two smaller than the dimensional M2
tidal velocity.

The cosine of the phase difference between the M2 and M4 current cos (φ1 − 2φ0) is the second
important factor that determines the sediment import/export. For each situation (as before), this
phase difference is shown for different basin sizes in Fig. 11. In this figure, the black line indicates
when cos (φ1 − 2φ0) = 0 and therefore the sign change.

For the symmetrical case, a clear standing wave pattern is observed with troughs near π/2 and
3π/2 scaled basin lengths Lb/Lt and peaks near π and 2π. Furthermore, the asymmetry of the
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symmetric case is also clearly visible. For non-symmetrical case, it is observed that the asymmetry
is broken. For short basins (at x = −`) a region of negative values is observed, which is absent for
the symmetric case. The same applies for positive values at the second entrance. When the two
cases for the first entrance are compared, more or less the same behaviour is observed for large basin
lengths. While for the second entrance a different pattern is shown. Here, the non-symmetrical case
still has a positive sign for deep and long basin, which is not the case for the symmetrical case.

Figure 11: Colour plot of cos (φ1 − 2φ0), where φ0 and φ1 are the phase of the M2 current and the
total M4 current as a function of scaled basin depth H/H0 and scaled basin length Lb/Lt. Here,
the basin depth H is between 3 and 50 m and is scaled by H0 = 10 m. The scaled basin length
Lb/Lt is between 0.01 and 2π, where Lt ranges from 38.6 km for 3 m depth and 157.6 km for 50 m
depth. The black line indicates the zero line. The parameter values of Table. 1 are used.

5.4 Dynamics of tidal residual (M0) current

The residual current consists of a residual mass transport velocity (u1m) and a Stokes velocity (Sec-
tion 3). In Fig. 12 the dimensionless residual current with these two components (without ε) are
plotted in an along-channel view. Here, it is shown that for the symmetrical case, the Stokes velocity
and the residual current are an order 1 smaller than the non-symmetrical case. For the symmetrical
case, the M2 tide shows a near standing wave behaviour (see Subsection 5.2) for a basin with a
length of 70 km, default values from Table. 1. For a full standing wave the net displacement of a
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fluid parcel over one tidal cycle is in the vertical direction only (standing waves do not propagate).
Therefore the Stokes velocity becomes near zero for the symmetrical case. For the non-symmetrical
case, there is no standing (M2 tide) wave in the basin and therefore the net displacement of a fluid
parcel over one tidal cycle is also directed in the direction of wave propagation, resulting in a much
higher Stokes velocity for the non-symmetrical case compared to the symmetrical case.
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Figure 12: Along-channel view of the dimensionless residual current, through flow and Stokes
velocity (without pre-factor ε) for the symmetrical case (left) and the non-symmetrical case (right)
for a basin depth of 10 m and a basin length of 70 km. Here, the parameter values of Table 1 are
used. The scaling parameter for the current is U ≈ 0.72 m/s.

From Eq. (A.2), it follows that for the symmetrical case, the first two terms cancel each other and
the integral will be zero for the residual mass transport velocity. Therefore, no through flow is
expected here and thus the residual current and the Stokes velocity cancel each other (left panel
of Fig. 12). For the non-symmetrical case (right panel of Fig. 12), these terms do not cancel or
drop out and therefore a net through flow exists from the second to the first entrance (negative
direction). Furthermore, it is shown that the Stokes velocity is always positive and the residual
current is always negative, this also indicates a strong dependence on the values of α and φ since
this behaviour is different from the symmetrical case.

Due to the constructive interference at entrance 2 and the destructive interference at entrance 1,
the wave height at entrance 2 is always higher in case of the non-symmetrical channel. This results
in a constant current between the two entrances, which is the residual mass transport velocity (as
stated in Subsection 3.3). For the non-symmetrical case, it is observed that the amplitude of the
tidal current and sea surface variation of the right travelling wave is greater than that of the left
travelling wave (Figs. 8 and 21) for every location in the basin (since at both entrances, the right
travelling wave is greater). Resulting in a non-negative Stokes velocity through the channel.

Similar to the M2 and M4 tidal currents, the dimensional residual tidal velocity for different basin
lengths and depths is shown in Fig. 13. Similar to the M4 tidal velocity, in most regimes the residual
current is much smaller than the M2 current. Furthermore, it is observed that for very short basins,
the residual tidal velocity of the non-symmetrical case is much larger than the symmetrical case.
Here, the tidal sea surface variation gradient between the two entrances is very large due to the
short basin length, therefore resulting in a very large residual current. Furthermore, for long and
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Figure 13: Colour plots of the dimensional amplitude of the residual current (m/s) as a function
of scaled basin depth H/H0 and scaled basin length Lb/Lt for the symmetrical (left panel) and the
non-symmetrical (right panel) for the first entrance (top) and second entrance (bottom). Here, the
basin depth H is between 3 and 50 m and is scaled by H0 = 10 m. The scaled basin length Lb/Lt
is between 0.01 and 2π, where Lt ranges from 38.6 km for 3 m depth and 157.6 km for 50 m depth.

shallow basins, the residual velocity at entrance 1 is for both cases around the same magnitude,
while for the second entrance, the residual velocity for the non-symmetrical case is slightly smaller.
When comparing the M4 and residual tidal velocities, it is observed that for short and shallow
basins, the M0 current dominates over the M4 current. For longer and deeper basins, the M4 and
residual current have similar magnitude.

5.5 Tidal current with M2, M4 and residual tide included

When the M2, M4 and M0 tides are included in the tidal dynamics of the system, the total tidal
current will no longer be sinusoidal. Fig. 14 shows a time series (two tidal periods) of the tidal
current that includes the M2, M4 and residual dimensionless tide for the symmetrical case for a
basin with a length of 70 km and a depth of 10 m (see Table. 1 for parameter values). Due to
the inclusion of the M4 and residual tides, the ebb current becomes larger than the flood current.
Another asymmetry is also observed in the perturbed tide; the time from flood to ebb becomes
shorter compared to the time from ebb to flood. Both asymmetries depend on the system settings
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and therefore a larger flood current and/or a longer flood to ebb time is also possible.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 
t

0.75

0.50

0.25

0.00

0.25

0.50

0.75

u(
x

=
)

Perturbed
M2

Figure 14: Times series of the dimensionless total tidal current, including the M2, M4 and residual
tide for two tidal periods for the symmetrical case. Here, the default parameters of Table 1 are used
with a depth of 10 m and a length of 70 km. The scaling parameter for the current is U ≈ 0.72.

5.6 Net sediment import/export

Since the sediment transport rate is the driving factor behind the evolution of the basin, it is split
up into the three separate non-linear tidal M4 components (given in Appendix B, Fig. B.2). For
each M4 component, the dimensional net sediment import/export divided over the maximum sedi-
ment import/export 〈qnet〉/max(|〈qnet〉|) is presented. Here, the pink/red region indicates sediment
import and the blue region sediment export.

The first row of Fig. 15 represents the total M4 transport, the second row the M0 transport and
the third row gives the total transport. For the total M4 transport in the symmetric case (left
panel), it is observed that sign of the transport follows the pattern of the cos(φ1 − 2φ0) and that
import occurs for very short basin and very long basins. Furthermore, export occurs for middle long
basin. The sediment import/export is larger for shallow basins, which is in line with the higher tidal
velocities in this regime compared to deeper basins. Stable and unstable equilibria exist. Note that
an equilibrium exists when the net transport is equal to zero (black line). Two unstable equilibria
(red on left, blue on right) and one stable equilibrium (blue on left, red on right) are observed.
An unstable equilibrium occurs when the sediment import causes the basin to shrink, allowing it
to import more sediments causing a positive feedback mechanism, by which the basin will fill up.
The same principle applies for an unstable equilibrium where export occurs, the basin grows in
size, which causes more export. The opposite occurs for a stable equilibrium. Here, when the basin
shrinks in size, the export increases. This allows the basin to grow in size, meaning the basin will
return to its equilibrium depth and length.

The non-symmetrical case (right panel) sediment transport shows similar behaviour, but with
weaker sediment transport, due to the weaker current for the non-symmetrical (mimicking the
Marsdiep-Vlie channel) case for a certain basin which is not too short. Furthermore, more areas are
blue for the non-symmetrical case (compared to the symmetrical case) and therefore more export
of sediment occurs.
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(b) max(|〈qnet〉|) = 1.25 · 10−5 m2/s
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Figure 15: Colour plots of the tidally averaged dimensional sediment transport (m2/s) divided
by the maximum of the absolute transport 〈qnet〉/max(|〈qnet〉|) generated by the M4-current (first
row), M0-current (second row) and these two tidal constituents combined (third row) for different
basin lengths and depths for the symmetrical (left panel) and the non-symmetrical (right panel).
Here, the basin depth H is between 3 and 50 m and is scaled by H0 = 10 m. The scaled basin length
Lb/Lt is between 0.01 and 2π, where Lt ranges from 38.6 km for 3 m depth and 157.6 km for 50 m
depth. Furthermore, the parameter values of Table. 1 are used. For each subfigure max(|〈qnet〉|) is
given in the subcaption. Here, the pink/red region indicates sediment import and the blue region
sediment export.
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The total M4 transport consists of the transports due to the three non-linear forcing mechanisms
(Appendix B, Fig. B.2). In Appendix B, it is shown that for the symmetrical case the excess
mass flux and advection induced sediment transport rates are dominant over the friction for deeper
basins. However, for shallow basin, the three components are of the same order of magnitude and
the friction is slightly higher compared to the other two. When the asymmetrical case is considered,
it is observed that the advection is slightly dominant over the excess mass flux and friction induced
sediment transport. Here, the excess mass flux induced sediment transport is higher compared to
the friction.

Next, the M0 current results only in export in the symmetrical case, while a small region of import
exists for the non-symmetrical case. Furthermore, the sediment transport for very short basins of
the non-symmetrical case shows a larger transport, which is in line with the large residual current
in that regime.

For the time evolution of the basin, the total sediment transport (M4 and residual combined) is
of importance. It is seen that in both cases, the maximum sediment transport of the residual
tide is an order of magnitude higher compared to the M4. It is also observed that the sediment
transport due to the residual tide is strong for shallow basin and weak for deep basins. Therefore,
for shallow basins the residual tide induced sediment transport dominates over the M4. For short
basins in the symmetrical case, the sediment transport induced by the total M4 tide dominates. For
deeper, longer basins in the symmetrical case, the M4 current. For the asymmetrical case, the M4
tide dominates the residual tide for deep, long basins and for a small region of short, deep basins.
However, for all other basin length and depths, the residual tide dominates.
When comparing the sediment transport of the symmetrical and asymmetrical case, it is evident
that the values of α and φ are important for the sediment transport of the basin.

5.7 Time evolution of basin length and depth

In the previous subsections, the basin length Lb and depth H were used as if they were parameters,
since no dependence on time was studied. However, since in this subsection their time evolution
is presented, the basin length and depth becomes variables of state again and their initial value
H(t = 0) and Lb(t = 0) are parameters. Mind that all figures are moved to the end of this subsec-
tion.

As mentioned in Section 4, four scenarios are studied to gain insight into the evolution of a basin
with a certain initial length and depth. Experiment 1 (top row of Fig. 16 and 17) concerns the
evolution without sea level rise and/or import by waves. Experiment 2 (bottom row of Fig. 16
and 17) includes the current day sea level rise. For experiment 3 (top row of Fig. 19 and 20) and
experiment 4 (bottom row of Fig. 19 and 20) the import by waves is added using qwave = 0.04, where
for experiment 3 the current day sea level rise is considered, while for experiment 4 the sea level
rise according to the RCP2.6 scenario is used. In the top row of Fig. 16, the black line indicates an
equilibrium, since here the sediment transport is zero and no sea level rise present. For the second
row of Fig. 16 and Fig. 19, the red line indicates that the sediment transport is zero, but due to sea
level rise no equilibrium is present.

Fig. 16 shows the evolution of seven different initial basin depths and lengths for the symmetrical
case (left column) and the non-symmetrical case (right column) with on the first row no sea level
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rise and on the second row the current sea level rise. Special attention must be paid to the basin
in the bottom left of the graph, the green line represents the symmetrical case (left panel) and the
blue line the non-symmetrical case (right panel) for the initial condition of the channel mimicking
the Marsdiep-Vlie channel (Table 1). Furthermore, Fig. 17 shows the time evolution of the length
(left panel) and depth (right panel) of the symmetrical case (green line) and non-symmetrical case
(blue line) for this initial condition.

First, the top rows of Figs. 16 and 17 (experiment 1) are considered. In the absence of sea level
rise and sediment import by waves, it is observed that for the symmetrical case a short basin with
initial conditions in the red region (import) fills up, while those in the blue region (export) tend
towards a stable equilibrium. In Fig. 17 it is observed that for the symmetrical case, the initial
condition mimicking the Marsdiep-Vlie channel fills up rapidly. When the non-symmetrical case is
considered, it is observed that for almost all initial conditions export occurs and therefore length-
ening and deepening of the basin. This also follows from the top row of Fig. 17, which reveals that
for initial condition mimicking the Marsdiep-Vlie channel in the asymmetrical case the basin depth
and length continue to deepen and lengthen.

Now, the second row is considered of Fig. 16 and 17. It is observed that for the symmetrical case,
a deep basin with an initial condition in the import region starts to become deeper due to sea level
rise. Furthermore, for initial condition in the export region, the pace of the deepening increases.
Still, the basin mimicking the Marsdiep-Vlie channel fills up. Due to the added sea level rise, the
filling up of the basin takes significantly longer (Fig. 17). When the asymmetrical case is considered,
it is observed that the pace of the deepening of the basin increases due to sea level rise for all initial
conditions. Do not be alarmed by the time evolution lines in the export part of the graph to move
to shorter Lb/Lt (despite their being is export), since the basin length is scaled by

√
gHω and H

is increasing much faster than Lb, this means that Lb/Lt will decreases as is observed in Fig. 16.
Now, consider in experiment 2 for both cases the initial condition of H/H0 = 1 and Lb/Lt = 3
(fig. 16). It is observed that at first the dimensionless length ` increases, after which it decreases
even though it remains in an export dominated state. The dimensional basin length Lb does always
increase here and the behaviour of ` is due to the chosen scaling relation.

In Section 4, it was stated that due to the littoral drift along the Dutch coast, sediment is imported
into the basin by waves (qwave) = 0.04. A critical sea level rise can be defined as the sea level rise
for which the depth of the basin does not change over time. The critical sea level rise must therefore
be equal to the change of depth of Eq. 2.14 within one year. For both the symmetrical case and the
asymmetrical case (left and right column respectively), the critical sea level rise is shown in Fig. 18.

For both cases, the region where the net sediment transport rate is negative, the critical sea level
rise is also negative. So in order to keep the depth constant, the sea level must drop. For the
symmetrical case, a high critical sea level rise is observed for very short basin of shallow depth.
For all other basins sizes, the critical sea level rise is below the current sea level rise. When the
asymmetrical case is considered, for short basins a very high export occurs, so the critical sea level
rise must be negative there as well. Here too, for short shallow basins the critical sea level rise is
large and for all other basin sizes it is below the current day sea level rise.

In Fig. 19, the evolution of the seven basins are considered with the inclusion of the sediment import
by waves qwave. This is performed for the current day sea level rise (experiment 3) and the sea level
rise according to RCP2.6 scenario (experiment 4). In Fig. 20, the time evolution of the default
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initial condition from Table. 1 is given for the symmetrical and non-symmetrical case with on the
top row experiment 3 and on the bottom row experiment 4.

Due to the addition of the sediment import by waves, the sediment import/export of the asymmet-
rical case changes significantly. Now, for most region import occurs and a region of large export is
observed for short basins. In Figs. 19 and 20, it is observed that the channel based on the parameter
values of Table. 1, fills up for the symmetrical case for both experiments. When the non-symmetrical
case is considered, different behaviour is observed between experiments 3 and 4. For experiment
3, the basin first decreases in depth and length (Fig. 20). When the basin becomes too short, it
reaches the region of export for short basins, through which this initial condition starts to lengthen
and deepen. For experiment 4, the sea level rise dominates over the tidal processes and the import
by waves and all basin become deeper.
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Figure 16: Colour plot showing the dimensionless evolution for seven different basin initial conditions
under the symmetric case with no sea level rise (first row, over 100,000 yr) and the current day sea
level rise (second row, over 4,000 yr). The second column gives the asymmetrical case. Here, the
basin depth H is between 3 and 50 m and is scaled by H0 = 10 m. The scaled basin length Lb/Lt is
between 0.01 and 2π, where Lt ranges from 38.6 km for 3 m depth and 157.6 km for 50 m depth and
the parameter values of Table 1 are used. The basin in the bottom left represents the initial condition
mimicking the Marsdiep-Vlie channel. For the first row (first experiment), the black lines indicate
equilibria, while for the second row (experiment 2), the red lines indicate where the transport is
zero. Due to the sea level rise, the red lines are not equilibrium lines. The diamond shape indicates
the initial depth and length. In the background, tidally averaged dimensional sediment transport
(m2/s) divided by the maximum of the absolute transport is given. For each case, the maximum
transport is presented in the subcaptions.
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Figure 17: Time series in years of the evolution of the basin (mimicking the Marsdiep-Vlie channel)
length divided over the initial length (left) and depth divided over the initial depth (right), based on
the parameter values of Table. 1. The symmetrical case is given in green, while the asymmetrical
case is given in blue. The top row represents experiment 1, while the bottom row represents
experiment 2. For experiment 1, the first 4,000 years are shown.

Figure 18: Colour plot showing the critical sea level rise for the symmetrical case (left) and the
asymmetrical case (right) in mm/yr. Here, the basin depth H is between 3 and 50 m and is scaled
by H0 = 10 m. The scaled basin length Lb/Lt is between 0.01 and 2π, where Lt ranges from 38.6 km
for 3 m depth and 157.6 km for 50 m depth and the parameter values of Table 1 are used. The
import by waves is set to qwave = 0.04. The black lines show a critical sea level rise of zero.
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Figure 19: Colour plot showing the evolution dimensionless evolution for seven different basin
initial conditions for experiment 3 (top row) and 4 (bottom row). The first column represents the
symmetrical case and the second column the asymmetrical case. Here, the basin depth H is between
3 and 50 m and is scaled by H0 = 10 m. The scaled basin length Lb/Lt is between 0.01 and 2π,
where Lt ranges from 38.6 km for 3 m depth and 157.6 km for 50 m depth and the parameter values
of Table 1 are used. The basin in the bottom left represents the initial condition mimicking the
Marsdiep-Vlie channel. The red lines indicate where the transport is zero. Due to the sea level
rise, the red lines are not equilibrium lines. The diamond shape indicates the initial depth and
length. In the background, tidally averaged dimensional sediment transport (m2/s) divided by the
maximum of the absolute transport is given. For each case, the maximum transport is presented in
the subcaptions.
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Figure 20: Time series in years of the evolution of the basin (mimicking the Marsdiep-Vlie channel)
length divided over the initial length (left) and depth divided over the initial depth (right), based on
the parameter values of Table. 1. The symmetrical case is given in green, while the asymmetrical case
is given in blue. The top row represents experiment 3 and the bottom row represents experiment 4.
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6 Discussion

The main findings of this research are summarized below. First, the internal generated residual and
M4 tide are determining factors for the sediment import/export, since it leads to asymmetries in
the dominant tide. Furthermore, it is shown that tidal current are not the only factor controlling
the evolution, the littoral drift and therefore net import of sediment by waves changes the overall
sediment import/export of the basin (especially for the asymmetrical case). Sea level rise can force
a basin to move away from its equilibrium size and therefore changing its evolution. Using the two
case studies (symmetric and non-symmetric), it is shown that the hydrodynamics and the evolution
of such a channel strongly depends on the amplitude and phase shift of the incoming tidal wave
between the entrances.

Interest is in the differences in results between this model and the one presented by Frankemölle
(2020). As mentioned earlier, when the symmetrical case is considered, half of the basin effectively
becomes the basin studied by Frankemölle (2020) with radiative damping. Radiative damping is
a leakage of energy in the system, therefore the dominant (M2) tidal velocity decreases due to
it. When the sediment transport induced by the M4 and residual is considered, it is also shown
that due to radiative damping the transport decreases significantly. This is also reflected in the
time evolution, which in this study happens much slower. Overall, the the symmetrical case of this
study and the model of Frankemölle (2020) show the same behaviour but with different magnitudes.

The effects of making the channel asymmetric are considered by comparing the asymmetrical case
with Frankemölle (2020). A major difference between the two studies is the residual current for
short basins. In the study of Frankemölle (2020), the residual tidal velocity is small, while in this
model it can become large due to the existing pressure gradient between the two entrances. In
this study, the sediment transport of the M4 and residual tide (and therefore the combined tide) is
significantly different from the one observed by Frankemölle (2020). Due to the weaker sediment
transport (of both cases), both the import by waves and the sea level rise have a much greater effect
on this model compared to a single inlet. In general, the effects of an asymmetric tide and thus
those of a channel with two entrances (compared to a single inlet) are profound.

The main goal of this study is primarily to gain insight into the (tidal) processes that govern the
evolution of a channel with two entrances. A direct comparison between the evolution of the de-
fault channel (mimicking the Marsdiep-Vlie channel) and existing literature is not possible, due to
many differences between the strongly simplified channel of this model and the actual Marsdiep-Vlie
system. For example: according to this model, the default channel will drown under the RCP2.6
scenario. Existing studies on the evolution of the Wadden Sea are performed by Wang et al. (2018)
and Van der Spek (2018). Both these studies found that the Wadden Sea in the RCP2.6 projection
will not drown.

Here, the main differences between the channel in this model and the Marsdiep-Vlie system are
highlighted. First, the model does not have tidal inlets, instead it consists of two entrances. Sec-
ondly, tidal flats are absent in this model. However, tidal flats have an influence on the sediment
transport (Speer and Aubrey , 1985) and therefore should be taken into consideration. Next, from
Fig. 1 (Elias et al., 2012) it follows that the depth decreases when moving further into the basin,
and is close to zero near the water divide. This is significantly different from the homogeneous
depth used in this model. Another major simplification concerns the assumptions that all im-
ported/exported sediment deposits/erodes homogeneously and that the sediment import/export at
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the two entrances is leading for the total import/export. Both do not occur in reality and should
differ per location in the basin. The equation for the sediment transport rate is also simplified, since
it is only a simple relation using the current cubed times a constant and processes like settling lags
are not taken into account. Furthermore, atmospheric effects and discharge of fresh water from for
example the IJsselmeer (Duran-Matute et al., 2014) are not integrated into this model. When the
time evolution is considered, the incoming tidal wave height Z and phase difference φ should be
function of sea level rise, which has not been taken into account in this study. Lastly, an external
M4 tide is neglected, however the amplitude of the M4 tide on the North Sea near the Wadden Sea
is around 0.1-0.15 m, estimated from Sinha and Pingree (1997), and is therefore not negligible.

As described in the previous part of this section, the model consists of many simplifications. In the
following part, some improvements are proposed for future research. The first improvement can be
obtained by adding an external M4-tide, for reasons mentioned before. A second improvement can
be made by adding a bottom slope to the model (e.g. (Prandle and Rahman, 1980; Schuttelaars
and de Swart , 1997)). A linear bottom slope would be the simplest bottom improvement to the
model. Furthermore, a local sediment transport should be defined (instead of one where sediment
transport at the two entrances is leading). Such a model is presented by Schuttelaars and de Swart
(1997) and allows for a more realistic sediment transport.

Now, some attention must be paid to the time evolution equation for the length of the basin. In this
study, it is assumed that the eroded sediments spreads out homogeneously after leaving the basin
and that the two entrances remain at the same location in time (fixed value for α and φ). The latter
implies that the morphological changes (channel becomes deeper/shallow and shorter/longer) occur
in the back-barrier in basin. This assumption is based on the Marsdiep-Vlie channel, which is not a
straight channel, where deposition/erosion can occur in the channel bends and therefore changing
its length. For the increase in length of a straight channel however, deposition must take place in
the sea/ocean at the outer edge of the channel, since there are no channel bends. When a volume
sediment is eroded from the channel, a part of it deposits at the outer edge of the entrances. Then,
the amount of lengthening of the channel is the total deposited volume divided over the difference
in depth between the sea and the channel. So, when erosion occurs, the depth of the outer region
(sea/ocean) also becomes an important parameter for determining the change in length of the basin.
This can also be taken into account in future research. However, this also implies that α and φ
become time-dependent and therefore making the model more complex.

When import of sediments occur, the same assumptions as above were used. However, when a
straight channel is considered, the imported sediment should only contribute to changes in depth.
This is due to the fact that the depth must stay homogeneous and therefore the sediment is piled
up layer on layer and thus not changing the length of the basin. Otherwise, the channel would be
closed at some location. Here, the same consideration as above was used, that the channel mimics a
back-barrier region. Furthermore, note that the time evolution equations Eqs. (3.29) are dependent
on the fraction coefficient a, therefore gaining insight into sensitivity of the model with respect to
this coefficient is of importance.

Now, attention must be briefly paid to how the perturbation theory is constrcuted. In this study x
and u are scaled by H. When the basin is shallow and therefore H is small, this also results in value
for ε close to 1. Since perturbation theory is based on a ε� 1, one can say that they perturbation
theory fails for very shallow basins. This is based on the subjective assumption that ε is not much
smaller than 1 in that regime. Therefore, in future research a constant depth H0 can be used for the



7 CONCLUSIONS 37

scaling relation for x and u and for appropriate H0, ε will be much smaller than 1 for all basin depths.

Another topic of research is to study how strong the system depends on α and φ. In most of this
study, the hydrodynamical and morphological equations for different basin lengths and depths were
used, while for α and φ only two cases were chosen. As stated earlier, the tidal processes change
significantly by altering α and φ. Examining the sensitivity of the model for different initial phase
and amplitude shift can therefore be an interesting topic.

To conclude this discussion, one might think that this model is too simplistic due the mentioned
simplifications and assumptions. Indeed, this model does not fully represent the reality, however
the intriguing and fascinating side of this model is that it allows to study the processes occurring
in a open channel. This model should not be used to determine a realistic basin evolution for a
certain basin. However, it does provide the physical insight in the processes occurring in such a
open channel system and can therefore be used as a toy-model in further research.

7 Conclusions

The primary aim of this study is to gain insight into the morphological evolution of a open channel
system with and without the influence of sea level rise. As a secondary goal, the hydrodynamics
and sediment transport in the channel was considered. This study is performed using a symmetrical
and an asymmetrical case (mimicking the Marsdiep-Vlie channel) (Table.2).

For the evolution of the basin, it is found that without sea level rise, initial short basins in the
symmetrical case fill up, while initial longer basins often tend towards a stable equilibrium. For the
asymmetric case, most of the initial basins become deeper and longer over time, without finding
an equilibrium. When sea level rise is added, deeper basins where import occurs cannot keep up
with the sea level rise and will therefore drown in the symmetrical case. In the asymmetrical case,
the drowning of the initial basin is accelerated. When a sediment import by waves is introduced,
no differences are found for the symmetrical case. However, for the asymmetrical case most initial
basins exhibit import instead of export. Still, the import of sediment is not able to compensate for
sea level rise.

When the hydrodynamics and the associated sediment transport is considered, it is found that
due to non-linear interactions in the basin, a residual tide and M4 overtides are generated. The
latter consists of three contributions, namely advection, excess mass flux and friction. When these
two tidal constituents are super positioned on the dominant (sinusoidal) M2 tide, the resulting
tide becomes slightly asymmetric, resulting in a net sediment transport. It is found that for the
symmetrical case the M4 tide is dominant for shorter basins, while for longer, shallower basins the
residual tide is dominant. For the asymmetrical case, the residual tide is primarily dominant as a
result from tidal sea surface variation differences between the two entrances.
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A Appendix A

A.1 Solution for through flow

Here, the solution for the through flow/residual mass transport velocity (Eq. (A.1) is obtained.
When integrating Eq. (3.19a), the following equation is obtained:
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4
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0 +

1

4
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Stokes velocity
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Through flow

.

With help of the Eq. (A.1), the second differential equation (Eq. (3.19b)) is rewritten as
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It follows from Eq. (A.1) that when the through flow is known, also the residual current is known
because the stokes drift depends only on the zeroth order solution. Therefore, Eq. (A.1) and the
corresponding boundary condition (Eq. (3.20)) are used to find an expression for the through flow.
Eq. (A.1) is integrated once and then the boundary conditions on x = ±` are used. This gives a
through flow given by
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The residual current is then obtained by inserting equation A.2 into equation A.1.

A.2 Solution first overtide

The governing equation for the first overtide is given by
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] (A.3)

where

κ1 =
√

2 + iλ. (A.4)

With the corresponding the boundary conditions A.5:

η̂in1 (x = −`) = η̂in1 (x = `) = 0. (A.5)

As mentioned in section 3, equation A.3 has three non-linear forcing terms, namely advection, excess
mass flux and friction. Therefore, equation A.3 is solved by treating each non-linear forcing term
separately and thus resulting into three separate differential equations to solve. Since the method
of solving these equations is the same, a general method is treated using a generalized forcing term
f(x). The generalized differential equation for the forcing terms then becomes

d2η̂
f(x)
1

dx2
+ κ2

2η̂
f(x)
1 = f(x). (A.6)

Where κ2 =
√

2κ1. Equation A.6 is a forced harmonic oscillator and therefore a particular and a
homogeneous solution exists. As mentioned before, the only interest is in the particular solution.
In order to solve equation A.6, the following ansatz is made:
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η̂
f(x)
1 = Af(x)(x)eiκ2x +Bf(x)(x)e−iκ2x. (A.7)

Here Af(x)(x) and Bf(x)(x) are integration constant. Using this ansatz in equation A.6, and fol-
lowing the method presented by Frankemölle (2020), the following expressions are obtained for the
integration constants

dAf(x)(x)

dx
= − i

2κ2
e−iκ2xf(x), (A.8)

dBf(x)(x)

dx
=

i

2κ2
eiκ2xf(x). (A.9)

Equations A.8 and A.9 are integrated to obtain solutions for Af(x)(x) and Bf(x)(x). Since equation
A.8 concerns the right travelling part of the full solution, it is integrated from x′ = −` to x′ = x and
using the boundary condition (eq. A.5) at x′ = −`, where x′ is a dummy variable to be integrated
over. In the same manner equation A.9 is integrated from x′ = ` to x′ = x and using the boundary
condition (eq. A.5) at x′ = `, since here the left travelling wave is evaluated.

Solving these integrals give expressions for Af(x)(x) and Bf(x)(x), which together with equation A.7

gives the full solution of η̂
f(x)
1 .

As mentioned in the theory, for the sediment transport rate the currents of the first overtide must be
known. To do so the momentum equation (eq. 3.22a) for the first overtides is used. For convenience,
this equation is re-stated below
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As mentioned earlier, the momentum equation consists of two non-linear forcing terms in zeroth
order. For each case (advection, excess mass flux and friction) the corresponding term from the
momentum equation can be picked and used to solve for the corresponding overtide current. This
results in three equations, one for each overtide
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(A.10)

Using these three equations, the current of the first overtide for the advective, excess mass flux and
friction are obtained.
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B Appendix B

B.1 Dimensionless sea surface variation

In this appendix, four plots are giving where the dimensionless left travelling, right travelling and
the total sea level deviation of the M2-wave is presented for a depth of 10 m and a length of 70 km
for the two cases at each entrance.
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Figure 21: Time series of the dimensionless dominant tidal sea surface variation for a basin of 10 m
depth and a length of 70 km for the symmetric (first column) and non-symmetric (second column)
for two tidal periods. The first row represents the first entrance and the second row gives entrance
2. The scaling relation for the tidal sea surface variation is η ≈ 0.73 and the parameters from
Table. 1 are used.
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B.2 Dimensional sediment transport rate due to the three M4 components

In this appendix, the dimensional net sediment transport divided over the maximum sediment
transport due to the three non-linear components of the M4-current are presented for both cases.
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(a) max(|〈qnet〉|) = 2.29 · 10−5 m2/s
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(b) max(|〈qnet〉|) = 1.09 · 10−5 m2/s
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(c) max(|〈qnet〉|) = 1.45 · 10−5 m2/s
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(d) max(|〈qnet〉|) = 8.85 · 10−6 m2/s
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(e) max(|〈qnet〉|) = 3.74 · 10−5 m2/s
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Figure 22: Colour plots of the tidally averaged dimensional sediment transport (m2/s) divided by
the maximum of the absolute transport 〈qnet〉/max(|〈qnet〉|) generated by advection (first row),
excess mass flux (second row) and friction (third row) for different basin lengths and depths for the
symmetrical (left panel) and the non-symmetrical (right panel). Here, the basin depth H is between
3 and 50 m and is scaled by H0 = 10 m. The scaled basin length Lb/Lt is between 0.01 and 2π,
where Lt ranges from 38.6 km for 3 m depth and 157.6 km for 50 m depth. The parameters from
Table 1 are used. For each subfigure max(|〈qnet〉|) is given in the subcaption.
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