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Abstract

Over the years, deep learning models have been able to record state-of-the-

art (SOTA) performance on the task of activity recognition. The results

of this can be seen in applications such as video surveillance, medical diag-

nosis, robotics for human behavior characterization, and like in this study,

recognition of human activities from videos. One of the factors that have

contributed to the benchmark performance of these models is the availabil-

ity of large-scale datasets. However, we have observed that these datasets

are largely skewed towards adults. That is, they contain more videos of

adults than kids. Out of 5014 videos from an adult-specific dataset, only

1109 videos contained kids performing an action. Since there exist visual

differences in how an adult performs an activity as opposed to a child, in

this study, we test if current SOTA deep learning models have some sys-

temic biases in decoding the activity being performed by an adult or a

kid. To do this, we create kid-specific and adult-specific datasets. Using a

SOTA deep learning model trained on the different datasets, we test for the

generalization ability of the deep learning model. Our results indicate that,

while SOTA deep learning models can be used to classify kid activities, the

kid-specific dataset is more complex to generalize to than the adult-specific

dataset. The study also shows that the features learned from training on a

kid-specific dataset alone can be used to classify adult activities while the

reverse is not the case.
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Chapter 1

Introduction

1.1 Motivation

Activity recognition for human behavior analysis is one of the major prob-

lems being researched within the computer vision community [Aggarwal

and Xia (2014)]. The increase of interest in this research area is fueled

by the availability of more datasets, increased hardware complexity, ad-

vanced computer vision techniques, and the need for various applications

in the real world [Borges et al. (2013)]. These applications include video

surveillance systems, robotics for human behavior characterization, medi-

cal diagnosis, and many more [Vrigkas et al. (2015), Poppe (2010)]. While

the field has seen more advancement over the decade, there remain areas

where activity recognition has not been fully applied. One of such areas is

activity recognition for children’s behavioral analysis. More research into

this area will bring about better onset diagnosis of children related diseases

such as cerebral palsy or diseases that affect the neuromotor development

of children [Hesse et al. (2018); Chambers et al. (2020)]. It could also

help to understand children’s’ behavior better, and to develop interactive
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playgrounds.

To create the applications mentioned above, we need to automatically de-

tect and analyze the behavioral cues that give an insight into the psycholog-

ical state, emotional state, cognitive state of a person, and many more. The

application of computer vision techniques to behavioral analyses works by

recognizing non-verbal cues such as facial expressions, body gestures, body

poses, and other visual cues in videos and images [Vrigkas et al. (2015)].

Since these non-verbal cues are made up of combinations of complex ac-

tions, to identify them, we must first successfully identify these complex

actions. The field of activity recognition applies state of the art (SOTA)

deep learning models to detect these actions. By the application of SOTA

deep learning models to children’s data, we can identify these actions and

in turn identify and analyze the behaviors defined by these actions.

1.1.1 Activity Recognition

The research area of activity recognition is a subfield of computer vision

that has to do with identifying and classifying different activities in real-life

settings [Kim et al. (2009)]. While they are some standing challenges such

as occlusion, differences in how multiple people perform the same action,

the application of SOTA deep learning models to current human activities

datasets has significantly improved the accuracy at which machines can

successfully predict human activities.

An activity is a set of actions performed consecutively with a certain

pattern [Poppe (2010)]. For an activity class like soccer game, the

actions will include kicking a ball, dribbling, etc.

However, these SOTA deep learning models have majorly been applied to

2



CONTENTS

adult-specific benchmark datasets rather than kid-specific data. One of the

reasons for this is the unavailability of an adequate benchmark dataset for

children’s activity recognition.

Kid-specific dataset in this study, refers to large activity datasets

containing more videos of children performing an activity than

footage with adults performing the same activity.

Adult-specific dataset refers to current benchmark datasets for

activity recognition which have more videos of adults performing an

activity and less videos of kids performing the same activity. Ex-

amples include; Kinetics [Smaira et al. (2020)], Charades [Sigurdsson

et al. (2016)] and UCF101 [Soomro et al. (2012)].

Activity Recognition For Children

There is a significant variation in how people (adults and children) perform

actions. However, we can’t say if there is a systemic bias in how the behav-

ior of children differs from adults. In this study, we explicitly investigate

this problem.

With current SOTA deep learning models, a lot of research has been done

in detecting and analyzing behavioral attributes by recognizing adult ac-

tivities. By carrying out this study, we address the question, can these

same models be used for kid-specific activity recognition.

1.2 Research Objectives

To guide this study, the following research question will be answered:
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Main Research Question: Do the current state of the art

(SOTA), deep learning models, for activity recognition general-

ize to kids-specific dataset?

To answer the main research question, we need to break it down into the

following research questions.

• RQ1: Can an Adult SOTA model generalize to a Kid-specific dataset?

• RQ2: Can a Kid SOTA model generalize to an Adult-specific dataset?

• RQ3: Does training on both kids and adults-specific dataset increase

the performance of the model on:

a. Adult-specific dataset?

b. Kid-specific dataset?

c. Does increasing the size of training data in the mixed model

improves the model’s generalization to the kid-specific dataset ?

d. Does increasing the size of training data in the mixed model

improves the model’s generalization to the adult-specific dataset

In RQ1, we examine how a SOTA deep learning model trained on an adult-

specific dataset performs on a kid-specific dataset. The performance anal-

ysis will be based on the errors and biases this model encounters when

evaluated on a kid-specific dataset. To answer RQ2, we will train a kid-

specific SOTA deep learning model and see how it performs when evaluated

against the adult-specific dataset. In RQ3, we will check how the mixed

model performs on kids-specific data and how it does on adult-specific data.
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The results gotten here will be compared to all the previously ran experi-

ments to see, which data type the model needs to generalize more to kids’

data.

By answering these research questions, we will be able to determine if

current adult-specific SOTA deep learning models can be used to build

kid-specific activity recognition systems and how much value is added to

activity recognition models when kid-specific data are included in training

the model

1.3 Thesis Contribution

To the best of our knowledge, most of the studies that have been con-

ducted regarding activity recognition for children make use of non-visual

data [Boughorbel et al. (2010); Nam and Park (2013); Ahmadi et al. (2018);

Suzuki et al. (2012)]. While the few that provide visual kid-specific dataset

have relatively small dataset [Rajagopalan et al. (2013)], some of which

were captured in monotonous environments [Hesse et al. (2017); Hesse et al.

(2018)]. Hence, this is the first study conducted about analyzing the use of

SOTA deep learning models for kids’ activity recognition with sufficiently

large kid-specific activity data. The following contributions will be made

by this study:

1. We will create a dataset for kid activity recognition.

2. We will perform a detailed quantitative and qualitative analysis on

the use of SOTA for kid activity recognition
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1.4 Thesis Outline

In Chapter 2, we discuss related works and methodologies relevant to

our main research question. In Chapter 3, we discuss our data collec-

tion pipeline. In Chapter 4, we discuss the methodology applied in this

study. In chapter 5 we present and discuss the results of our experiments.

In chapter 6, we discuss the limitations and future work. We present our

conclusion in Chapter 7.
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Chapter 2

Literature Review

2.1 Computer Vision

Computer vision is a sub-field of artificial intelligence that addresses the

problem of how computers can “see” and “understand” the contents of an

image or video. Earlier studies approached this problem by handcrafting

features that are representative of the different parts of the images [Norvig

and Intelligence (2002)]. However, this required a large deal of manual

labor and domain expertise. Over the years, as computational power and

knowledge about the field increased, machine learning techniques that can

automatically identify these features and process them have been devel-

oped. One of which is the biologically inspired convolutional neural net-

works (CNNs). This technique is inspired by the human vision and has

brought about advancement within computer vision and other subfields of

artificial intelligence.
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2.1.1 Convolutional Neural Network (CNN)

A CNN is a feedforward multilayered network with three major operations

at each layer, convolution, activation function, and pooling. The convo-

lution operation extracts useful features from the image by convolving a

filter over different parts of the image and computing the dot product. The

output from this is passed into an activation function which learns different

abstractions and introduces non-linearity into the feature space. In most

cases, subsampling is performed on the output of the activation function

through the pooling operation. This reduces the computational require-

ment of the network by summarizing what has been learned. Also, the

operation makes the network invariant to geometrical changes in the input

[Khan et al. (2020)].

Other modifications applied to CNNs, such as increasing their depth, hype-

parameter tuning, and training on large-scale datasets have led to their

improvements at various vision tasks.

2.1.2 Transfer Learning

Traditionally, CNNs trained on a particular domain’s data can only be used

for tasks in that domain. For example, a model trained using only images

of dogs would have a reduced performance if it was asked to recognize cats.

This is a problem because it means for every new domain we need to build a

large enough dataset and train the CNN from scratch. Building a dataset

and training a CNN are both computationally and manually expensive.

The main idea behind transfer learning comes from the notion of humans

using previous knowledge in a particular domain to infer new things in a

similar domain. Hence, transfer learning makes CNNs pre-trained in one
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domain reusable for a similar domain. For example, the features learned

by CNN used to identify bicycles can be used to identify scooters by fine-

tuning it on a smaller scooter dataset instead of training from scratch.[Lu

et al. (2015)].

Transfer learning is useful when the source domain is different from the

target domain but has some similarities. If the label information of both the

source and target domain is known, the process is referred to as inductive

transfer learning as with our case. Pan and Yang (2009) present four

approaches to transfer learning.

Instance-transfer approach: In this method, there is the assumption

that if all of the data in the source domain can not be used, they are certain

parts of the source data that can be re-weighted and reused in the target

domain. Re-weighting and important sampling are two major techniques

used for this approach. [Jebara (2004); Jiang and Zhai (2007); Liao et al.

(2005)].

Feature representation transfer approach: The idea is to learn

“good” features that reduce the differences between the source and tar-

get domain. So the knowledge transferred to the target domain is encoded

in the feature representations. These feature representations are expected

to lead to significant improvement in performance in the target domain.

These features can be constructed using supervised or unsupervised learn-

ing approaches depending on the availability of data labels in the source

domain. [Argyriou et al. (2007); Jiang and Zhai (2007); Lee et al. (2007)].

Parameter-transfer approach: The assumption here is that there are

shared parameters or priors between the models of the source and target

domain. Hence, knowledge from the source domain can be encoded in

the model’s parameters or priors and transferred to the target domain.
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[Lawrence and Platt (2004); Evgeniou and Pontil (2004); Gao et al. (2008)].

Relational knowledge transfer approach: This approach assumes

there is some relationship in the data of the source and target domain.

Hence, the knowledge transferred is the relationship among the data. [Mi-

halkova et al. (2007); Mihalkova and Mooney (2008); Davis and Domingos

(2009)].

2.2 Human Activity Analysis

It has been observed that literature makes use of the term “activity” and

“action” interchangeably. While we already define that we consider an

activity to be a longer temporal sequence, we would also make use of the

term interchangeably here. This is to avoid confusion with the literature

cited as they use the term action for what we consider an activity. So,

every occurrence of the word action in this section is used for an activity.

Based on Aggarwal and Ryoo (2011) categorization of human activities

(gestures, actions, interactions and group activities), Lei et al. (2019) clas-

sify human activity analysis into 3 problems; action recognition, action

prediction and action quality evaluation.

The task of action quality evaluation [Pirsiavash et al. (2014); Morel et al.

(2016)] involves assessing how an action was performed and providing se-

mantically correct feedback on how to improve the action. An example

application is a physiotherapy system that accesses how the person per-

forms a required action and provides feedback on what the subject should

do better. For action prediction [Kong and Fu (2017); Hu et al. (2018)],

the aim is to determine the action label based on partially observed or
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incomplete actions that occurred in the input video. With both tasks,

temporal information can be obtained from RGB videos or depth videos.

Unlike action recognition, still-frames and images are hardly used for both

tasks. Lastly, the action recognition task [Herath et al. (2017); Ziaeefard

and Bergevin (2015)] aims to determine what action is occurring and when

does the action occur. Two of the typical problems with this task are action

classification and action detection. In the former, the aim is to determine

the action label of the given image or video, while the latter aims at de-

termining the beginning and end of an activity in a given video. [Lei et al.

(2019)]

In the next section, we discuss the different methods for performing ac-

tivity recognition as this forms the basis of our work in children’s activity

recognition.

2.3 Methods for Activity Recognition

The first question that is posed with activity recognition is, “how do we

represent each activity in a video” [Kong and Fu (2018)]. This question

is particularly challenging because of factors such as variations in how the

activity is performed and dynamic background (see Section 2.4 for the

challenges). The task of activity representation is to convert the activity in

the video into a feature vector that can be used to infer the activity label

of the given video. [Wang et al. (2016a); Li et al. (2017); Kong and Fu

(2018)]

A feature is a descriptive, informative, and discriminative represen-

tation of an activity in a video. It is also referred to as a descriptor.

11



CONTENTS

Based on numerous studies, activity representation is categorized into two

methods; handcrafted feature methods and (deep)learning-based methods

[Herath et al. (2017); Zhang et al. (2019); Lei et al. (2019)]. In the former,

the features representing the activity are manually defined as opposed to

deep learning methods where these features are automatically learned.

In the following sections, we start by discussing hand-crated feature repre-

sentation (global and local representation methods). After this, we present

deep-learning feature representation methods.

2.3.1 Hand-crafted Feature Representation

This representation method is further categorized into two methods; global

representation and local representation. Global representation employs a

top-down approach where the subject is first localized and then the regions

of interest are encoded as a whole. While local representation follows a

bottom-up approach where the point of interest is first detected, then local

patches are calculated around these points. These patches are combined to

form the final representation. Based on extensive surveys [Poppe (2010);

Herath et al. (2017); Kong and Fu (2018)] on action recognition, we explain

these methods below.

Global Representation

With global representation, activity recognition is dependent on success-

fully encoding the full representation of the subject performing the activity.

These representations can be obtained from the subject’s silhouette, con-

tour, or optical flow. However, in capturing the information within the

region of interest, these representations become susceptible to noise, view-

12
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point variations, background clutters, and partial occlusions [Herath et al.

(2017); Poppe (2010)].

One of the first work that uses silhouettes is by Bobick and Davis (2001).

They present two templates for representing motion in frames using a single

image. The first template, Motion Energy Image (MEI) shows where the

motion occurs in the frame, while the second template, Motion History

Image (MHI) shows how motion moves in the frame (see Figure 2.1).

These templates capture relevant contextual information within the videos

and can be used for tasks such as filtering out cluttered backgrounds in

images [Tian et al. (2011)]. While these templates lead to an improvement

in the result of recognition systems, the templates are variant to changes

in viewpoints.

To address the viewpoint sensitivity problem with MEI and MHI, Weinland

et al. (2006) creates a new view-invariant motion descriptor called Motion

History Volumes (MHV). Unlike [Bobick and Davis (2001)], they use mul-

tiple calibrated video cameras to get silhouettes from different viewpoints

and combine them into a 3D voxel model. In addition to extending the 2D

templates to a 3D template, they also make use of Fourier transform and

cylindrical coordinates along the medial axis to make their template loca-

tion and rotation invariant. Wang et al. (2007) applies Radon transform to

silhouettes to encode low-level features that are invariant to transformation

and robust to noise. Chen et al. (2006) makes use of contour descriptors.

They describe human posture using star skeletons which connect the center

of an object to the contour extremes.

Instead of using shape-based (silhouettes or contours) properties for ac-

tivity representation, motion information can also be used. One of the

common motion information is optical flow [Horn and Schunck (1981); Sun

13
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et al. (2010)]. Optical flow estimates the motion field from videos by map-

ping the pixels from one frame to another. It is calculated from pairs of

subsequent frames. Unlike shape-based representations, optical flows can

be used when background subtraction cannot be done. In Efros et al.

(2003), they make use of sport footages to calculate optical flow. The flow

field was then split into four distinct channels to capture both the vertical

and horizontal motions across the frames (see Figure 2.5). This method

was used by Ali and Shah (2008) to obtain a set of kinematic features

from optical flow and by Wang and Mori (2010) to generate features that

describe the human body parts.

Figure 2.1: An example from [Bobick and Davis (2001)] showing the input
video frame, the extracted motion energy image, and the motion history
image (from left to right).

While global representation was favored in earlier research on activity

recognition, the focus has now shifted to local and self-learned representa-

tions. Limitations such as rigidity of the method to caption all variation

that could occur with activity and inability to capture more fine-grained

details are attributed to this shift [Dollár et al. (2005); Matikainen et al.

(2009); Herath et al. (2017)].
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Figure 2.2: Original
frame

Figure 2.3: Optical flow

Figure 2.4: Flow field in
four channels

Figure 2.5: Example from Efros et al. (2003) showing the optical flow and
the field in four channels based on the original frame

Local Representation based Methods

Local representation summarizes the activities in an image or video using

a collection of sampled local descriptors. Different from global representa-

tion, there is no need to first localize the person(s) performing the activity

or do background subtraction. Ideally, local descriptors should overcome

the problems of global descriptors such as occlusions, variance to view-

points, and personal appearance. In applying local representation to activ-

ity recognition, the region of interest is first detected, and then the local

descriptors are extracted and aggregated to form the representation of that

activity [Herath et al. (2017)].

Space-time interest point (STIP) is a method to detect the region of in-

terests based on the space-time region. The motion information within

these regions tends to be more informative and more noticeable than its

surrounding regions. Laptev (2005) built a STIP detector by extending the

Harris corner detector [Harris et al. (1988)] to a 3D version. The 2D- Har-

ris corner detector detects interest points that have significant changes in
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two orthogonal directions. In extension, the 3D approach identifies points

where the image values have a significant variation in both space and time

dimensions. Willems et al. (2008) also extends a 2D interest point detector

(Hessian detector) into a 3D version. Contrary to using gradients to detect

these points as was done by [Laptev (2005)], they make use of second-order

derivatives to find these points. A common limitation to the 3D-Harris and

3D-Hessian detector in certain domains like facial expression recognition is

that the spatiotemporal corners needed by these detectors rarely occurs.

While attributes like sparseness could help the recognition model generalize

better, too much rarity could make it difficult for recognition [Dollár et al.

(2005)]. To address this limitation, Dollár et al. (2005) explicitly define

their detector to select too many features rather than too few. They apply

a 2D Gaussian smoothing kernel along the spatial dimension, a quadrature

pair of 1D Gabour filter along the temporal dimension and fine-tune their

detector to select spatiotemporal regions where the variations in image in-

tensity evoke complex motions. Apart from STIP-based methods, dense

sampling is another way to pinpoint relevant regions in the frame. Wang

et al. (2009) compared the performance of Laptev (2005), Willems et al.

(2008) and Harris et al. (1988) on a task of human action recognition and

found that dense sampling outperformed their STIP detectors.

After the spatiotemporal regions are detected, local descriptors are ex-

tracted within these regions. In early works like [Dollár et al. (2005);

Laptev (2005)], obtaining the local descriptor around space-time interest

point was done using cuboids, 2D cuboids for images, and 3D-cuboids for

videos. Later studies [Messing et al. (2009); Matikainen et al. (2009); Wang

and Schmid (2013); Wang et al. (2013)] introduced the notion of motion

trajectories as an alternative means to obtaining local descriptors around

the points of interest.
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Histogram based descriptors are commonly used local descriptors for edges

and motion [Herath et al. (2017)]. Klaser et al. (2008) propose the use

of a 3D gradient orientation descriptor. To create this descriptor, they

extend the concepts of Histogram of Gradient (HoG) descriptors applied

to static images [Lowe (2004); Dalal et al. (2006)] to 3D (HoG3D). This

is to capture the spatiotemporal volumes in videos. Other studies like 3D

SIFT [Scovanner et al. (2007)] and local trinary pattern [Yeffet and Wolf

(2009)] also extend existing 2D descriptors into their 3D versions. Laptev

et al. (2008) suggest the use of both Histogram of Optical Flow (HoF)

descriptors and HoG descriptors computed within the neighborhood of the

interesting point. HoF can draw on the property of optical flow field that

allows for encoding motion at a pixel level across the frames. Dalal et al.

(2006) introduced the Motion Boundary Histogram (MBH) which also uses

the key concepts of HoG but computed on motion boundary fields. These

fields are obtained by taking the gradients of the optical flow field which

also allows them to compress camera motions. Other local descriptors

include spatiotemporal version of local binary pattern (LBP) [Ojala et al.

(2002); Zhao and Pietikainen (2007); Kellokumpu et al. (2008)] and SURF

features [Willems et al. (2008)]. These descriptors successfully make use of

cuboids in extracting their local descriptors.

Another way of extracting local descriptors from interest points is with the

use of motion trajectory. A trajectory is a feature that is tracked over time.

They are particularly useful for features with a long temporal extent. In

Sun et al. (2009), they extract trajectories by computing pairwise matching

over the detected SIFT points that occur across consecutive frames. To

mitigate the creation of spurious trajectories, they impose a unique match

constraint and leave out trajectories that occur too far apart. In Wang and

Schmid (2013), they extract the HoG, HoF, and MBH at each trajectory

17



CONTENTS

and combined them to form an improved dense trajectory (IDT). They

also improve the performance of dense trajectory by correcting for camera

motion estimated with the homography between consecutive frames. Jiang

et al. (2012) also show that correcting trajectories using camera motion

leads to improvements in performance.

Usually, the number of descriptors extracted across videos tends to vary

and have high dimensionality, and cannot be directly compared. Hence, we

need a way to aggregate them into distinctive and fixed-size feature vectors

that can be learned from and eventually compared against new videos. One

of the popular approaches to doing this is based on the concepts Bag-of-

Words for text categorization.

Bag-of-Visual Words (BoV) [Csurka et al. (2004); Herath et al. (2017)] is

a histogram of codeword occurences in the “codebook” or “visual vocabu-

lary”. The codebook consists of clusters of local descriptors and the middle

or the closest descriptor is selected as the codeword. Even though stud-

ies like [Montoliu et al. (2015); Boufama et al. (2017)] used BoV methods

for activity recognition, BoV does not capture temporal information in its

original form. Laptev et al. (2008) propose spatiotemporal grids as a way

to retain some spatial information. Other improvements to the original

BoV includes [Kovashka and Grauman (2010); Liu et al. (2011)].

Fisher Vector (FV) [Perronnin and Dance (2007)] is another method for ag-

gregating local descriptors. This an extension to the BoV approach and is

based on the principles of Fisher Kernels [Jaakkola et al. (1999)]. The main

idea here is to represent the input image with a gradient vector obtained

from a generative probability model and then feed the vector through a

discriminative model. When a Gaussian Mixture Model is used for fea-

ture generation, FV can benefit from both first and second-order statistics
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during aggregation. However, this results in FV’s having high dimensions

[Jégou et al. (2010)]. To reduce the dimensionality, Jégou et al. (2010) in-

troduces Vector of Locally Aggregated Descriptor (VLAD) which removes

the second-order information from the descriptor and has about half of the

dimensionality of FV. By reducing the dimension, they did not compromise

accuracy as their performance outperformed other SOTA and was compa-

rable to the result produced by the BoV approach. In Perronnin and Larlus

(2015), they combined FV with CNNs. In the first layer of the architecture,

they apply an unsupervised approach to local feature extraction, comput-

ing the FV encoding and reducing its dimensionality. Then they combined

this with a regular CNN trained with backpropagation. At the end of the

study, they were able to show that the mid-level feature extracted by their

architecture was on par with those derived by a full CNN.

Other methods for descriptor aggregation includes, the use of dictionaries

[Guha and Ward (2011); Sadanand and Corso (2012)], and Hidden Markov

Models [Hongeng and Nevatia (2003); Tang et al. (2012)].

2.3.2 Deep-Learning Feature Representation

Despite the advancements handcrafted features (global and local) has brought

to the field of activity recognition, these methods require a great deal of

manual labor and knowledge about the task domain. These are some of

the reasons why the shift is being made toward feature representation us-

ing deep learning techniques [Simonyan and Zisserman (2014); Liu et al.

(2016); Zhang et al. (2018)]. Convolutional neural networks (CNNs) are one

of the best deep-learning algorithms for exploring spatial contents in videos

and images, and current SOTA deep-learning models are largely based on

CNNs. These models differ in terms of whether a 2D or 3D convolution is
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used, what is passed in as input (RGB or optical flow), and what informa-

tion is propagated through the network [Carreira and Zisserman (2017)].

They are continuously being used as a baseline for both feature extraction

and recognition and have been shown to perform better than SOTA hand-

crafted feature extractors like HoG [Everingham et al. (2010)]. We present

some of the recent SOTA deep-learning algorithms following the category

as presented in [Kong and Fu (2018)].

Spatiotemporal networks: CNNs can extract and aggregate features

in a given frame through the convolution operation. Currently we can

have a 2D convolution [Karpathy et al. (2014)] or 3D convolution [Tran

et al. (2015)] operation. The difference is that the former can only extract

features in the spatial dimension and would require some additional ag-

gregation method to capture motion or temporal information. However,

the latter considers both spatial and temporal dimensions when extracting

these features (see Figure 2.6). It is more intuitive to make use of the 2D

CNN in detecting the features in images or a single frame at a time, how-

ever, since we have multiple frames in a video, it would be useful to capture

the temporal information over time. The use of 3D kernels for convolution

and 3D pooling is a way to retain temporal information.

Figure 2.6: An example from [Kong and Fu (2018)] illustrating the 2D and
3D convolution operation.(from left to right)

Ji et al. (2012) introduce a 3D CNN architecture that makes use of 3D

convolution. This was achieved by convolving a 3D kernel over adjacent
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input frames. Instead of randomly initializing their model, they start with

5 hardwired kernels namely, gray, gradient-x, gradient-y, optflow-x, and

optflow- y. After getting the resultant feature map from the first layer, they

repeat 3D convolution and subsampling across each channel, and then a

fully-connected layer was used to generate the final feature vector for action

classification (see Figure 2.7). The model was able to achieve competitive

performance on the TRECVID and KTH datasets.

Tran et al. (2015) extends the 3D ConvNet into a deep architecture (C3D)

trained on a large-scale dataset (Sports-1M). Their architecture maintained

a homogenous temporal depth where the kernel in each convolution layer

is the same size (3 x 3). C3D was able to learn better feature embedding

for video than other methods (see Figure 2.8). The study also showed that

the learned C3D features with a linear SVM can outperform or approach

other SOTA approaches on the benchmark data.

While 3D convolution has proved useful in learning temporal information

from videos, they have more parameters than 2D ConvNets which makes

them harder to train. Also, they seem to not be able to benefit from

reusing ConvNets pre-trained on large-scale image datasets. Carreira and

Zisserman (2017) propose two-stream inflated 3D ConvNets (I3D) which

can leverage 2D ConvNets pre-trained on large-scale image data. They

inflate the 2D ConvNet to 3D by adding a temporal dimension to the fil-

ters, and they also bootstrap the parameters learned from the 2D ConvNet.

This architecture outperforms other SOTA models for activity recognition

on the Kinetics-400 dataset. Also, by pre-training on the kinetics dataset,

the method achieves high performance on UCF101 and HMDB51 datasets.

Tran et al. (2018) proposed a new spatiotemporal block (R(2+1)D) where

they factorize the 3D convolution into two operations, a 2D spatial con-

volution and a 1D temporal convolution. This approach produced SOTA
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performance on the large-scale dataset and performs better than the I3D

model at action recognition. Further studies like Ghadiyaram et al. (2019)

leverage on the R(2+1)D architecture for pretraining, and they achieve

stellar performance on the kinetic-400 dataset. In this study, we also make

use of this architecture as our baseline model.

Figure 2.7: 3D ConvNet for human action recognition created in [Ji et al.
(2012)].

Figure 2.8: Video feature embedding by Imagenet and C3D. We can see
clearer clusters with C3D than with imagenet, which shows C3D is better
at learning features for videos. Originally shown in [Tran et al. (2015)].

Multi-stream networks: The idea behind multi-stream networks is to

model temporal and spatial information using a spatial ConvNet that takes

in still images and a temporal ConvNet that takes in motion information

from the optical field. The output from each CNN is fused at some specified

convolution layer. Earlier work by Simonyan and Zisserman (2014) directly

combine the output generated by the softmax layer at the last layer of the

network (see Figure 2.9). However, to model spatiotemporal information,
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Figure 2.9: Two-stream architecture proposed in [Simonyan and Zisserman
(2014)]. The spatial stream models takes in static image as input and the
temporal stream takes in optical flow from consecutive frames.Originally
shown in [Simonyan and Zisserman (2014)].

earlier interaction between the two streams could also be useful. Feicht-

enhofer et al. (2016) perform their first fusing after an intermediate con-

volution layer, and this improved their performance and also significantly

reduced the training parameters required. Their result showed that the

best accuracy is obtained by fusing after the last convolution layer. Other

more recent structures based on multi-stream architecture have been pro-

posed. Wang et al. (2016b) proposed Temporal Segment Networks (TSN).

They increase performance by extracting short video segments through a

sparse sampling approach, and then they aggregate the information learned

from the snippet. Their approach can capture long temporal information

in the video. In Feichtenhofer et al. (2016), they combine ResNets with a

two-stream CNN by connecting residual connections to the pathways be-

tween the two streams. Later in Carreira and Zisserman (2017), they make

use of a 3D ConvNet in their two-stream architecture. Although 3D con-

volution can capture motion information, their results show that adding

extra motion information from the optical field improves performance at

the recognition task. Sarabu and Santra (2020) reduces the number of re-

dundant features generated by their two-stream architecture by training the

spatial stream with a ResNet and the temporal stream with Inception-v2.

Hybrid networks: Hybrid networks aggregate temporal information by
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adding a recurrent network on top of 2D CNN architectures [Wang et al.

(2014); Yue-Hei Ng et al. (2015)]. This type of networks leverage on the

advantages of both CNNs and LSTMs and have proven to be able to cap-

ture long-range dependencies and spatiotemporal information [Wang et al.

(2015); Kar et al. (2017); Diba et al. (2017)]. Donahue et al. (2015) propose

the use of Long-term Recurrent Convolutional Networks (LRCNs) which

combines 2D CNN and LSTM architecture for video activity recognition

amongst other tasks (see Figure 2.10). Their study showed that by stack-

ing LSTM’s on top of 2D CNNs, they can capture temporal dependencies

that can not be captured by just the 2D CNN. In Yue-Hei Ng et al. (2015)

they propose two CNN based methods that could learn from full-length

videos. The first method makes use of temporal feature pooling for feature

aggregation (they try 6 methods) and the second feeds the input from the

CNN into LSTM layers. Their results showed that using LSTM layers on

top of the CNN architecture outperforms the temporal pooling method by

a small margin. Wu et al. (2015) stacks bi-directional LSTM(BiLSTM)

model on a two-stream CNN architecture. The two-stream CNN extracts

motion information from the input and then feeds this into the BiLSTM

to model long term temporal dependencies.

2.4 Challenges of Deep-learning Models for

Human Activity Recognition

Although major advances have been made in activity recognition, there

remain some challenges that make SOTA algorithms prone to errors in

real-world scenarios. [Kong and Fu (2018)]

Intra-class and inter-class variations: In an ideal situation, we want
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Figure 2.10: Donahue et al. (2015) learn temporal information by sequen-
tially feeding the output from the CNN into the stacks of LSTM layer.
Originally shown in [Donahue et al. (2015)].

the dataset to exhibit small intra-class variation and a large inter-class

variation, however this is not so in real-world settings [Li et al. (2020);

Akila and Chitrakala (2018)]. For one, the way people perform the same

activity can differ. For example, with an activity like running, people run

at a different pace (fast, slow, etc), and people’s posture while running

can differ. Apart from this, these activities could be captured at different

viewpoints, front view, side view, overhead view, etc. These factors lead to

large intra-class variability within the training and test data, which makes

SOTA prone to misclassification. Furthermore, multiple activities share

close similarities. For example, activities “sailing on a boat” vs “sailing

on a yacht”. Such inter-class similarities also lead to misclassification of

activities by SOTA algorithms.

Cluttered background and environmental factors: SOTA algorithms
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also draw features from the backgrounds in the activity frame [Laptev et al.

(2008); Dollár et al. (2005)]. While this would not be a problem if the data

was gathered in a controlled environment with little variation in the back-

ground, this is problematic in real-world settings. The background noise

the systems encounter in a natural environment can degrade the recogni-

tion performance of the algorithms. However, backgrounds can also provide

useful features for improving activity recognition. For example, diving can

be characterized by the presence of water or golf by the presence of green

open space [Tu et al. (2018)]. Other environmental factors such as shad-

ows, lightning conditions, color variation, and occlusions are part of the

challenges that affect recognition algorithms [Poppe (2010); Kong and Fu

(2018)].

Temporal variations: The extent of temporal features that can be ex-

tracted from the videos is one of the differences between using videos as

opposed to images for activity recognition. However, this temporality is

also a challenge. For one, activities in the dataset might have been per-

formed and recorded at different rates, hence, the recognition algorithms

have to be invariant to the different rates in the dataset. Moreover, deep

neural architectures currently cannot effectively deal with temporal varia-

tions. The SlowFast [Feichtenhofer et al. (2019)] architecture address this

problem a bit.

Static vs moving cameras: Videos from static cameras are relatively

easier to process because the background is non-changing and, motion is

only observed with the moving object or subject in the frame. However,

challenges like occlusion, illumination, or difficult background subtraction

because the subject is wearing a similar color to that of the background,

still occurs. As opposed to static cameras, the video obtained from moving

cameras can capture a larger extent of motion but they are more difficult
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to process since both the background and foreground appear moving. In

addition to the challenges mentioned with static cameras, moving cameras

can introduce blurs to the video due to abrupt change of scene [Chapel and

Bouwmans (2020)].

Obtaining and labeling data: While the web now provides a pool from

which datasets can be constructed, this is still quite a challenging task.

Firstly, not all the data gathered is suitable for the task. This means that

after preprocessing, we are left with fewer data for training than was gath-

ered. Secondly, since the data gathered are raw and unlabelled, labeling

has to be done either manually or automatically. Due to the volume of the

data gathered, it is a time-consuming effort to manually annotate them.

Also, with manual annotations we run into problems with inter-annotator

agreements [Patron-Perez et al. (2007)]. Even though there are automatic

methods that make use of metadata such as subtitles [Gupta and Mooney

(2009)], search results [Schroff et al. (2010)] to label the data, it still re-

quires a manual check to see if the right label was assigned to the right

activity. Although an unsupervised learning approach would require no

label to learn, we can’t guarantee that semantically meaningfully classes

would be learned [Poppe (2010)]. The active learning approach has been

applied to reduce the time required by manual annotation [Ahmadi et al.

(2018)].

Redundancy and uneven predictability: In video data, not all frames

are useful in recognizing the activity done, which means the video could

contain a lot of redundant frames. While a small group of frames can be

sufficient in defining some activities, other activities require more frames

to define them. This results in uneven predictability of the activity classes.

Also, since the frames with the required context-information can occur

anywhere in the video, there is the challenge of predicting an activity as
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early as possible in real-world applications. Studies like Gupta and Mooney

(2009) re-arranged their frames such that the frames with relevant context-

information appear early in the video, but the performance of the algorithm

was still limited due to insufficient relevant frames in the video.

All the issues mentioned above have to be explicitly addressed when build-

ing an activity recognition system.
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Chapter 3

Data Collection

To answer the research questions defined in Section 1.2, we need a suffi-

ciently large kid-specific dataset to train deep-learning models. However,

we observed that the currently available benchmark activity recognition

datasets are adult-specific, i.e most of the videos contain adults performing

the activity. Hence, to facilitate this research, we created a kid-specific

dataset called Kinetic-kids (see Fig 3.1).

3.1 Data Download

The kinetic-kids currently contain clips of kids within the ages 0-12 (pre-

pubescent) performing 21 sporting activities (see Appendix A). The classes

in this dataset are derived from the Kinetics-400 dataset [Kay et al. (2017)].

While the Kinetics-400 dataset has over 38 sporting classes, not all the sport

classes are commonly performed by kids in our age group, hence there are

not enough youtube videos available for kids performing the sport classes

excluded. We choose to use the classes from the Kinetics-400 dataset be-

cause of the extensive works that have been done using this dataset. Fur-
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Figure 3.1: Data Collection Pipeline

thermore, a number of high-performing SOTA activity recognition models

have been trained using this dataset [Tran et al. (2018), Feichtenhofer et al.

(2019)]. In addition to these reasons, we are able to extract an adult-specific

version of kinetics by having annotators select which videos have adults

performing the activity. This allows for a comparison of how the SOTA

activity recognition model performs on kid vs adult-specific datasets.

3.1.1 Creating Queries and Downloading Videos

We first compile a list of sports activities based on kinetics-400 to include

in this dataset (38 activities). After an extensive filtering process (see

Fig 3.1), we selected 21 sport activity labels to include in our dataset.
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We choose the sports category based on our hypothesis that an observable

difference should exist between how a sporting action is performed by a kid

as opposed to an adult (see Fig 3.3). We work with only sporting categories

in this project because of time and resource constraints.

Figure 3.2: From the left kids bowling, hitting baseball and playing tennis

Figure 3.3: From the left adults bowling, hitting baseball and playing tennis

After compiling the activity labels for Kinetic-kids, we define specific query

lists tailored to search for videos with kids performing these activities. We

tailor our query to target the age group we are interested in and search

for them on Youtube. For example, basketball game in pre-school or kids

dunking basketball. Before downloading the returned videos, we check that

the video is at most 100MB. We do this to filter out professionally shot

and heavily edited videos, also to reduce the resources required for storage.

The non-professionally shot videos are less edited and are more depicting

of the real world. We also check that we have good enough resolutions, the

maximum resolution we collect is 720p videos. Hence, the videos in our

dataset can also be used for estimating kids’ poses. The videos that meet

both criteria are downloaded and saved for pre-processing and annotation.
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3.2 Cleaning & Pre-processing

After the videos have been downloaded, we start pre-processing by per-

forming a scene detection step on each video. Our reason behind this step

is, we observed that actions that span across two scenes are usually different

and nothing is linking the motion from one scene to another. Since there

is no motion information needed for classification during a scene change,

we reduce the memory requirement and speed during pre-processing by

running the rest of the steps on scenes rather than the full video.

Using PySceneDetect [Castellano (2017)], we check for differences in the

HSV space between consecutive frames. If the difference in average HSV

pixel values between consecutive frames is greater than 30%, we presume a

scene change. We start by splitting the videos into scenes as we deem that

actions that appear across the scene boundaries are not informative for us.

3.2.1 People Detection

After performing scene detection for each video, we select 3 evenly spaced

frames from scenes that are longer than 1 second and pass these through

a pre-trained YOLO-V3 [Redmon and Farhadi (2018)] model for people

detection. This detection model is reported to have a person detection

mAP of 50.3% and was chosen due to its excellent speed-accuracy quotient.

Its accuracy is less than the 56.4% mAP that the Faster R-CNN model

employed by Simple Baseline and HRNet achieves, but requires only a

fraction of the computational cost. We take this step to eliminate scenes

that do not have people in them, as as we are only concerned with scenes

containing human activities. Detections with confidence of less than 70%

are discarded.
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3.2.2 Child detection

Since our end goal is to end up with a kid-specific dataset, we filter out

scenes that do not contain children. Most current age recognition tech-

niques are limited to faces (via datasets such as MORPH [Ricanek and

Tesafaye (2006)], CACD [Chen et al. (2014)] and FG-NET [Fu et al. (2014)],

AFAD [Niu et al. (2016)], and [UTKFace Zhang et al. (2017)]) or to voice

recognition. For our purpose, however, we cannot rely on facial features as

this would induce an obvious bias towards front-facing subjects, nor can

we rely on voice features as possible speech in the video does not have to

originate from our subject. Work exists that distinguishes children from

adults on anatomical differences by use of their different head-to-body ra-

tios [Ince et al. (2014, 2017)], though these models are not public and the

authors ignored our access requests. To our knowledge, there is no other

work published to specifically identify children based on full-body cues that

work from various angles and require no specialized hardware (such as 3D

cameras [Basaran et al. (2014)]).

We instead detect children using the recent zero-shot model CLIP [Radford

et al. (2021)], developed by OpenAI. Traditional image recognition models

are trained in a supervised manner on a hand-crafted dataset to predict

the probability of an image belonging to one or more labels out of a set.

CLIP is instead trained on 400 million automatically collected image-text

pairs and outputs cosine similarities between pairings. By comparing the

similarities of an image to several hand-crafted indicator sentences, we can

map an image to the class it is most similar to.

To test the CLIP model for child detection, we annotated a subset of our

downloaded data. This gave us 1001 adult and 349 child images. After

annotation, we perform an ablation study to determine which parameters
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give better detection of children.

First, we developed prompts describing our images, as was done in the

CLIP’s study. Our prompts included sentences such as a photo of a teenager,

a photo of a child. We added a margin of 0.2 to the images because the

bounding box detected by using the YOLO model in the previous step

was sometimes too small. Also, we apply padding to the images to make

them square-shaped as CLIP only takes as input, square-shaped images.

We padded by mirroring the image along the edges of the image (reflect

padding). With these parameters, we got the lowest AP and AUC from

the model (see 3.1).

Using the same margin scale and padding method, we optimize the way we

feed our input to the model by using the same prompts used in training

CLIPs on ImageNet. This gave an increase in CLIPs performance over

when we only use the prompts developed by us. Finally, we append the

word doing ¡sports¿ to all the prompts used in training CLIPs on ImageNet

(ImageNet+sports). Here ¡sports¿ is replaced with one of our sporting cat-

egories. This means the prompts (text) in the image-text passed into CLIP

looked like An image of a child doing badminton. Using these prompts gave

us the highest AUC and AP in this phase of our ablation.

We carried out a second phase of the ablation study. In this phase we used

the ImageNet+sports prompts, reflect padding method and, we varied the

margin scale applied to the images. From this phase, we realized that a

margin scale of 0.2 works better for the model to classify kids. In the final

phase of the ablation, we use the ImageNet+sports prompt, a margin scale

of 0.2 and, we vary the padding method used. We tried zero-padding where

the edges of the images are set to zero (black), one-padding (set the edges

to 1), and reflection padding where we repeat the last pixel of the image

34



CONTENTS

across the edges of the image.

Based on the result of the ablation study, our final model configuration

uses ImageNet+sports prompts, a margin scale of 0.2, and zero-padding

(See results in 3.1).

Prompt type Margin scale Padding AP AUC

“a photo of label” 0.2 Reflect 0.689 0.421
ImageNet 0.2 Reflect 0.712 .443
ImageNet + sports 0.2 Reflect 0.769 0.434

ImageNet + sports 0 Reflect 0.750 0.460
ImageNet + sports 0.1 Reflect 0.765 0.453
ImageNet + sports 0.3 Reflect 0.765 0.411

* ImageNet + sports 0.2 Zero-Padded 0.813 0.468
ImageNet + sports 0.2 Replication 0.804 0.441
ImageNet + sports 0.2 One-Padded 0.814 0.458

Table 3.1: Ablation study of hyper parameters for our CLIP child detector.
The row indicated with a * shows our final configuration

To fine-tune the predictions of the model such that it differentiates between

prepubescent children and teens, we also use an ensemble of indicator labels

per class. The labels “infant”, “toddler”, “child” all indicate our desired

“child” class, whereas “adult” is indicated by “adult” and “teen”. Instead

of cosine similarities per label, we want to have the model output a single

value in the range of [0, 1] as our child probability. Formalized in equation

3.1, we calculate this by taking the cosine similarities Z and pick the max-

imum cosine similarities Z of the labels for both our “child” and “adult”

classes. We convert these into probabilities via a softmax step σ. Finally,

since this is a 2-class problem, it suffices to just use the probability of our
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“child” class.

Z = CLIP (x, labels, prompt templates)

Z0 = max({z ∈ Z |z is child label})

Z1 = max({z ∈ Z |z is adult label})

P = σ(Z)

Pchild = P0

(3.1)

In summary, we run our zero-shot child detector once for each of our de-

tected YOLOV3 bounding boxes. We take a crop of the image for each

bounding box, with a margin of 20% in both the width and the height

(chosen via the ablation experiments in Table 3.1). As CLIP accepts only

224x224 images, we rescale the crops such that their longest side fits these

restrictions size and zero-pad them to fill the square.

3.3 Annotation

The pre-processing step filters out the scenes in each video where no kid is

detected (See Fig 3.4). At the end of that phase, we end up with videos

containing just scenes with a confidence level of at least 70% that a child

exists in the scene.

Figure 3.4: Cleaning and Prepossessing Pipeline

To create a robust dataset that presents some difficulty to current SOTA
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deep learning models, we perform an extra filtering step. We classify the

activities present in each scene per video with a SlowFast model [Feichten-

hofer et al. (2019)] trained on the kinetics-400 dataset [Guo et al. (2020)].

The SlowFast model reads input through 2 branches. The fast branch re-

quires more frames than the slow branch. For the fast branch, we pass as

input 32 frames selected from the initial 64 frames (stride=2) and, we pass

an input of 4 frames into the slow branch (stride=16). The scenes that do

not have up to the required number of frames are filtered out because their

duration is too short (¡2s) and not so useful for us.

At this step, we save the top-5 predictions made by the model for each scene

in a video alongside their prediction probability. The prediction probability

is used by the ranking algorithm to select which scenes per video contain

activities that could be possibly difficult to current SOTA models. The

ranking algorithm is presented in the following sub-section.

3.3.1 Ranking Algorithm

Based on the model’s prediction, we know the top-5 labels predicted by

the model and with what certainty this prediction was made. The rank-

ing algorithm checks for the scenes in a video where the model was most

uncertain about predicting the correct class label. At this phase, a correct

label means that the model predicts the actual label of the video e.g hitting

baseball or predicts a label that falls within the super-class of a category.

For example, the basketball category contains labels, shooting basketball,

dunking basketball, etc. If the model makes any of these predictions for a

video within this category, we count this as a correct category. This is be-

cause we only split videos into their respective classes after manual labeling

(explained in 3.3.2).
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Scene Number 1 2 3
Label 1 opening present skipping dribbling basketball
Prediction-Probability 1 0.321 0.301 0.401
Label 2 playing basketball crying catching or throwing baseball
Prediction-Probability 2 0.212 0.145 0.03
Label 3 hitting baseball dunking basketball unboxing
Prediction-Probability 3 0.156 0.01 0.003
Label 4 somersaulting egg hunting catching or throwing softball
Prediction-Probability 4 0.132 0.001 0.002
Label 5 playing tennis doing laundry playing cricket
Prediction-Probability 5 1.101 0.0001 0.001

Table 3.2: Example of result saved when a video containing 3 scenes is eval-
uate with the SlowFast model (video falls under the basketball category)

We will use the results in Table 3.2 to explain the ranking algorithm.

The ranking algorithm starts by checking which super-category the video

evaluated belongs to. In the example above, the video falls under the

basketball category. Hence, the algorithm is only interested in finding scenes

that have one of the subclass labels predicted by the model. In this case,

the sub-class labels are; [playing basketball, shooting a basketball, dribbling

basketball and dunking basketball ]. The goal of the algorithm is to create a

clip of at most 60 seconds that contains the scenes where the activity was

most uncertain.

From Table 3.2, the algorithm will rank scene 2 with the highest score

because the label dunking basketball (Label 3) was predicted with 0.01,

which is the least probability made by the model across all the scenes that

had a basketball sub-label predicted. Scene 2 is then added as the start

of the new clip. Next, the model checks if the duration of the new clip

is greater than 60 seconds. If it is, the algorithm stops, and the new clip

containing only scene 2 is presented for manual labeling. If it is less than

60 seconds, the algorithm checks if a scene number lower or higher than

the already picked scene has a basketball sub-label predicted for it. This

means we check scene 1 and scene 3. In this case, both scenes 1 and 3 have

a basketball sub-label predicted in their top-5. So we pick the scene where
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the basketball sub-label has a lower prediction probability. That is scene 1

(Label 2 and probability 0.212). Scene 1 is then added to the new clip at

the correct temporal position. So the new clip now contains [scene 1 and

then scene 2]. We check again if the new clip is > 60 seconds and repeat

the process, till all the scenes containing the basketball sub-label have been

added to the new clip or stop once the duration exceeds 60 seconds.

We sort the videos this way to maintain the temporal ordering in the video

because they help provide more information about which activity is about

to occur or is occurring. While the majority of the clips at this processing

step are less than or equal to 60 seconds, we do have some clips that are

more than 60 seconds. This happens when we have a single scene in a video

and the duration for that scene is already more than 60 seconds (See Fig

3.5). We limited the duration to 60 seconds so the annotators do not have

to watch long clips before making their decisions.

3.3.2 Manual Labelling on MTURK

Since most clips generated with a ranking algorithm had a low prediction

probability, there is a need to manually confirm that each clip had a kid

performing one of the activities of interest to us. For the manual anno-

tation of the clips, we choose to use a crowd-sourcing platform, Amazon

Mechanical Turk (AMT). AMT is very often used for tasks such as this one

[Kay et al. (2017), Caba Heilbron et al. (2015)] and we expect that since

the workers on this platform are more used to such tasks, it increases our

chances of getting high-quality annotated data.

We customized the available template on AMT to fit our purpose (see Fig

3.7). The design choices with the interface were made to make the labeling

39



CONTENTS

Figure 3.5: Duration distribution of videos presented for annotation on
MTURK”

tasks as seamless as possible. In crafting the instructions, we took into

consideration the visual differences between clips where a kid performs an

activity versus where and how an adult would perform the same activity.

For example, clips with a kid shooting a basketball vary in the environment

it is performed (see Fig 3.8); in the living room, from the staircase, outside

the house. Also how it is performed (see Fig 3.9); driving a cart to shoot the

ball, standing on a platform, or jumping over some stool. We made sure

to include examples that show the workers how different these activities

could be performed so that they know what to annotate. The workers

were presented with 5 activity labels and 2 other labels to choose from. If

an activity label is selected, the workers are presented with functionality

that helps them insert the time when the activity is starting. We also

ask the workers to say if the activity is performed with an adult and if

there are multiple instances of the action occurring in one clip. We asked
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for the latter because we realized that some of the downloaded videos are

compilation videos of distinct activity clips put into one clip and by knowing

this, we will be able to cut more videos out for the dataset. The former

provides a useful signal that can be used later for studying interactions

between kids and adults (see Fig 3.6).

Figure 3.6: Adult perform activity with child. On the left, adult windsurfs
with child, right, adult kicks soccer ball with child.

Figure 3.7: Labelling interface used in Amazon Mechanical Turk

Figure 3.8: Kids shoot basketball in three different environment.

Figure 3.9: Kids shoot basketball in three different ways.

We cluster similar sports together to form a super-category. Hence, work-

ers on AMT get similar sports with each batch of videos they label. For
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example, a super-category of bat/racquet sports contained videos of ten-

nis, badminton, and cricket. Presenting workers with similar videos in a

batch allows for faster acclimatization with the activities, helps improve

the probability of selecting the right labels for each video, and helps us to

contrast similar actions e.g playing basketball vs dribbling basketball.

The clips are presented to the annotators muted, to allow for concentration

on the visual aspect of the activity. Each clip is annotated by two distinct

workers. We checked to see if there is a trend between annotators’ agree-

ment and the duration of the clips presented for annotation but we could

not observe a clear trend between the two variables. After annotation is

done by two Mturkers,

1. we remove videos where both workers agree that there is no required

activity in the video clip or the activity is not being performed by a

kid.

2. If both workers agree on the label but disagree on the time:

• If the difference between specified activity start times is less

than 2 seconds, we take the average of the start time, sample a

5-second clip starting at the average time, and present it to a

third annotator for confirmation.

• If the difference in start time is more than 2 seconds, we present

two 5 seconds sampled clips based on the activity start time

entered by each annotator to a third annotator.

3. If both workers disagree on the label, we present two sampled 5-

second clips based on the specified start times to a third annotator

as two distinct clips with the label specified by each annotator for

confirmation. This lead to cases where the same clip had different
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labels and was added to the dataset. This kind of duplication is

removed during de-duplication.

If the third annotator agrees with the annotation then we add the clips

to our dataset. After processing and annotating all the clips that were

downloaded by us, we ended up with 218 kid-specific videos. To increase the

size of the dataset, we annotated the videos downloaded in the Kinetics-700

dataset for the categories we are interested in. Annotators were asked to

select clips that have kids performing the action of interest. We annotated

5014 videos from the Kinetics dataset (Train and Val split), out of which we

downloaded 1979 videos containing adults performing a sporting activity

and 1109 containing kids performing the same activities (see Fig 3.10). We

did not download all the videos because most of the videos annotated from

kinetics were of adults. To handle class imbalance across both datasets by

selecting 40 videos per class category in both datasets for training. (see

Fig 3.10)

Figure 3.10: Distribution of downloaded videos in Kinetics-Kids and
Kinetics-Adults
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3.4 Select Clips for Dataset

3.4.1 De-duplication of Clips

We performed the de-duplication step to ensure that we only take one clip

from each downloaded YouTube video. After the third annotation, we

randomly selected one annotated clip, if we ended up with more than one

clip from the same video in each activity class.

While we asked the annotators to indicate if a video contains multiple

instances of the activities we are interested in, we only took more than one

clip from the video, if the video had the word “compilation” in its title. A

compilation video usually contains clipped together instances of the same

or different activities. We had a total of 15 videos with the title compilation

in them.

3.4.2 Train-Test split

After processing all the videos and annotations. We randomly select 40

videos per class to be in the training split, this gives 840 videos for kids

training data and 840 videos for adult training data (40 x 21 classes). We

then split the remaining videos per category in the ratio of 60 to 40 to be

in the test and validation dataset (see Fig 3.11 and Fig 3.12). All of the

videos in both datasets are 5 seconds long (See Tab 3.3).

These videos will be used to fine-tune the SOTA models to answer the

research questions of this thesis. How this will be done is explained in the

next chapter.
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Kinetic-kids Kinetic-adults
Activity classes 21 21
Total number of videos 1592 1904
Duration per clip 5 seconds 5 seconds
Fps 30 30
Source YouTube YouTube
Total duration 133 minutes 159 minutes

Table 3.3: Summary of Kinetic-kids and Kinetic-adults dataset.

Figure 3.11: Training, Validation and Test split of the Kinetics-kids dataset

3.4.3 Dataset Bias

An important characteristic of datasets for activity recognition is robust-

ness, such that a model trained on one dataset can generalize well on other

datasets. Class imbalance is one of the properties that can prevent general-

ization to other samples. We handle a class imbalance in the Kinetics-kids

by ensuring that each class has the same number of videos in their training

split (40). However, another source of imbalance that could exist in this

dataset is a gender imbalance. Some sports are more prevalent amongst

a gender e.g it’s more common to find videos of boys juggling soccer than

girls. Hence, this might lead to a reduced generalization when the model
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Figure 3.12: Training, Validation and Test split of the Kinetics-Adults
dataset

has presented with videos of girls juggling soccer.

Another source of bias in this dataset could be a lack of representation of

minority ethnicity. We observed that most of the videos contained kids have

western kids and this is because we query YouTube predominantly in the

English language. The visual conditions of the video clips could be a source

of possible bias. This is because a lot of the videos in the dataset are hand

shot and they contain similar motions and lightning conditions. However,

applying data augmentation during training could make the model less

sensitive to such biases.
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Chapter 4

Methodology

This chapter will describe the methods used in answering the research ques-

tions (See 1.2). We will be fine-tuning 5 models on the data described in

Chapter 3 to answer the research questions. We start by describing our

baseline model, Adult Model, the Kid Model, the Mixed model (half-split),

and the Mixed model (full-split).

4.1 Baseline Model

A SlowFast model with a ResNet-50 base architecture [Feichtenhofer et al.

(2019)] pre-trained on the HACS-clips dataset [Zhao et al. (2019)] serves

as the baseline model for all the experiments conducted in this study. The

SlowFast model has been used to record state-of-the-art accuracies on ac-

tivity recognition tasks on benchmark datasets such as AVA v2.1 [Murray

et al. (2012)], Charades [Sigurdsson et al. (2018)], and the Kinetics-600

dataset [Carreira et al. (2018)]. This shows that the model is sufficiently

complex enough for the experiments we aim to run.
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4.1.1 Pre-training Dataset (HACS)

The HACS-clips dataset is a benchmark dataset for activity recognition

[Zhao et al. (2019)]. It contains 500k annotated video samples spanned

across 200 activity classes. The dataset contains videos downloaded from

Youtube. After pre-processing, the dataset contains 1.5M 2-seconds clips.

The dataset has been shown to outperform SOTA deep learning model

trained on other large-scale datasets like Kinetics-600 [Carreira et al. (2018)]

and Sports1M [Karpathy et al. (2014)] dataset when used as a pre-training

source [Zhao et al. (2019)]. We choose to use HACS-clips as our pre-

training source because of the similarities it has to our dataset such as our

video sources being Youtube. Also, the taxonomy used in HACS-clips is

derived from ActivityNet [Caba Heilbron et al. (2015)]. While we got our

taxonomy from Kinetics-400, the Kinetics dataset shares some taxonomy

with ActivityNet. We did not use Kinetics as our pre-training source be-

cause we train and test on videos from the Kinetics dataset. Furthermore,

we choose HACS-clips over ActivityNet because HACS-clip (500k videos)

contains significantly more videos than ActivityNet (2̃0k videos).

While HACS-clips bears some similarities with our datasets, issues such

as class imbalance within the HACS-clips dataset could lead to a poor

generalization of the learned features to our videos. In Kinetics-kids and

Kinetics-adult, we ensured class balance by selecting the same number of

training videos per activity class. Another source of bias that could arise

with this pre-training source is the lack of representation of minority ethnic

groups. We see this as a possible source of bias because the report [Zhao

et al. (2019)] did not explicitly state if measures were taken to prevent

such bias. Finally, some of the classes present in our dataset are missing

from the HACS-clips dataset and this could affect the generalization of the
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learned features to our data.

4.1.2 SlowFast Architecture

Figure 4.1: SlowFast architecture proposed in [Feichtenhofer et al. (2019)].
Originally shown in [Feichtenhofer et al. (2019)].

The SlowFast model (see Fig 4.1) is a a single-stream model that reads

in input at two different frame rates. Unlike two-stream architecture, the

SlowFast architecture has a single input source (just frames from the video)

but passed through different pathways. This is referred to as the Slow

pathway and the Fast pathway. The Slow and Fast pathways can be any

convolutional model that works on videos as a spatiotemporal volume, in

our baseline, this is a ResNet-50. Both pathways are fused by lateral con-

nection into a SlowFast model [Feichtenhofer et al. (2019)].

The idea behind having two pathways is that the categorical semantics of

visual contents do not change as rapidly as with the motion being performed

by the subject. For example, the appearance of a subject performing the ac-

tivity catching or throwing baseball doesn’t change rapidly over the frames

as with the motion of actually throwing or catching the baseball. Other

semantic information like the lighting condition or background colors also

would not change so rapidly. Hence, the model can learn Spatio-temporal
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patterns of shorter and longer duration using both pathways.

The Slow pathway requires low frame rates as input. To do this we take

large strides (stride= 16) on our input clip. While the Fast pathway re-

quires a high frame rate, we take a smaller stride (stride=2) for this path-

way. Both pathways are kept aware of what each learns by fusing both

pathways with a lateral connection after each stage (see Fig 4.1). Our

SlowFast implementation was done in PyTorch and can be found in this

repository originally written by Alexandros Sterguio (git). Since this study

is not about determining which architecture performs best on our dataset,

the SlowFast model is sufficiently complex for the experiment we aim to

perform.

We will be applying transfer learning to fine-tune the pre-trained model on

our dataset. Given the size of our dataset, we will only be fine-tuning the

last fully connected layer of the pre-trained model. Since the pre-training

source bears some similarities with our data, we expect that the features

learned during pre-training should be able to generalize to our dataset.

The model contains 34M trainable parameters and we only retrain the last

layer of the pre-trained model with 1.5M parameters.

We will start by evaluating the pre-trained model directly on the test split of

the Kinetic-kids and Kinetic-adults dataset without fine-tuning. This will

allow us to get a sense of how similar the training data used in pre-training

is to our data and how useful the learned features from the HACS-clips

dataset are for classifying our dataset.
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4.2 Adult model

The reason for this study is to see if existing SOTA deep-learning models

could generalize to the kids-specific datasets, given that most benchmark

activity recognition datasets are adult-specific. We will train an Adult

model to test the generalizability of features learned from the adult-specific

datasets to the kid-specific datasets. To create the Adult model, we will also

fine-tune the last layer of our pre-trained model on only an adult-specific

dataset. After the model has been fine-tuned, we will evaluate the adult

and kid-specific test split model. This model will be used to answer RQ1

(see 1.2), “can an adult-specific SOTA model generalize to a kid-specific

dataset”.

4.3 Kid model

We will create a Kid model to answer RQ2 (see 1.2), “can a kid-specific

SOTA model generalize to an adult-specific dataset”. To do this, we will

fine-tune the last layer of our pre-trained network (SlowFast-ResNet50) on

the kid-specific dataset described in the last chapter. After training the

model, we will first evaluate it on the kid-specific test split. This is to

see what classes the model has difficulties with classifying. Next, we will

evaluate the Kid model on the adult-specific test split. We will do this to

test the generalizability of a Kid model to an adult-specific dataset. This

is particularly interesting to see if one of the features the Kid model learns

relates to the age of the kid in the video and how the model transfers this

when presented with inputs not containing kids.

51



CONTENTS

4.4 Mixed Model (half-split)

As mentioned in Chapter 1, by stating that a lot of benchmark activ-

ity recognition datasets are adult-specific, we do not mean that they only

contain adult subjects but rather, the majority of subjects performing ac-

tivities in the dataset are adults. The purpose of creating a Mixed Model

is to test if by deliberately ensuring that a dataset has an equal number

of kids and adult subjects in it, the model can better generalize to both

adult-specific and kid-specific datasets. The Mixed Model (half-split) will

be referred to as the MHS model in this study.

The MHS model is created by fine-tuning the last layer of our pre-trained

model using a combination of kid and adult-specific datasets. However, we

will be using half the training size from each dataset so we end up with the

same training size used in both kid and Adult models. That is, for each

class in the adult-specific dataset, we only use 20 videos out of the initial 40

videos and likewise for the kid-specific dataset. This will enable us to see

how the training size influences the model’s predictions. We will evaluate

the model individually against the adult-specific test split and the kid-

specific test split. This model will be used to answer RQ3 (see 1.2), “Does

training on both kids and adult-specific datasets increase the performance

of the model on the adult-specific dataset and kid-specific dataset”.

4.5 Mixed Model (full-split)

The Mixed model (full-split) is similar to the MHS model. The only dif-

ference is that we will train with the full videos available for each class (40

videos) instead of just 20. This means this model is trained with more data
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than with the previous models described above. We will create the model

by fine-tuning the last layer of our pre-trained model on both the adult-

specific and kid-specific training split. The model will be evaluated against

the adult-specific and kid-specific test split. The Mixed Model (full-split)

model will be referred to as the MFS model in this study.

4.6 Model Implementation Details

The SlowFast-ResNet50 network is the architecture all our models were

built upon. We implemented all our models using Pytorch.

We trained the models using Adam optimizer and calculated the loss using

the cross-entropy loss function. We set a batch size of 32 and adjust the

learning rate (starts at 0.01) using the PyTorch ReduceLROnPlateau with

a patience value of 80 and a factor of 0.1. The scheduler is called on every

batch. Since the scheduler is called on every batch, it reduces the learning

rate by a factor of 0.1 whenever there is no improvement in the loss after

80 batches. To prevent over-fitting, we apply early stopping based on the

validation loss. If there is no decrease in validation loss after 12 epochs, we

stop training the model.

We normalize the shorter image size during training so that it has 384

pixels wide and keeps its aspect ratio on the longer side. With validation

and testing, we normalized the shorter image size so that it is 294 pixels

wide. We choose these normalizations to match the settings applied to

the frames used in pre-training the model. All our videos were resampled

to 30fps for consistency in the time between frames when we sample the

frames for training and validation. This will ensure that all the segments

of the video cover the same amount of time.
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We sample 40 frames from the input clip during training and validation.

We choose to sample 40 frames because, during pretraining, 16 frames

were sampled from 2-sec clips. Since we have 5-sec clips, to match the

sampling rate during pre-training we need 40 frames. To make sure the

frames sampled spread across a large extent of the clip, we set the stride

size as, length of the frame in clips (150) / target number of frames (40).

Hence, in this case, we sample every 3rd frame.

We apply the same data augmentation methods as were applied during

the pre-training of the baseline model to keep consistency in the inputs

we present to the model. During training, we apply uniform cropping of

256x256 to the videos. Other augmentations applied on random include,

Gaussian blur, left-right flipping, gamma contrast, linear contrast, hue and

saturation, and average blur. During validation and testing, we only apply

a center cropping of 256x256 to the video.
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Chapter 5

Experimental Results &

Discussion

In this chapter, we present the results of our experiment with the 5 models

described in Chapter 4 on both of our datasets: adult-specific dataset, and

kid-specific dataset. All experiment are evaluated on the test split of the

datasets. We will be using the top-1 and top-5 accuracy metrics to evaluate

the models.

Top-1 accuracy denotes the accuracy when the actual label of the

video is predicted by the model as the most probable classification.

Top-5 accuracy is the accuracy of when the true label appears in

the top-5 most probable options predicted by the model. The top-5

accuracy helps to see the ability of the model in a less strict manner.

We will start by discussing how each model performs on the kid-specific

dataset and after that, we present the results on the adult-specific dataset.

We will end the chapter by discussing our response to the research questions

posed in this study on the basis of the results gotten.
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5.1 Kid-specific Test Split

In this section, we discuss how each model performs on this test split. We

start by describing how the baseline model performs on the data. Next, we

discuss how the Kids model performs, followed by how the Adults model

performs. Finally, we discuss how the MHS model and MFS model per-

forms on the kid-specific test split.

5.1.1 Baseline Model Evaluated on Kid-specific Data

We cannot quantitatively evaluate how the baseline model performs on the

kid-specific test split because of a mismatch in class labels (200 base labels,

21 target labels). The reason we evaluate this model on the dataset is to

get a sense of the kind of features learned from the pre-training source.

Also, to see how well the parameters we aim to transfer performs on our

dataset.

Overall the features learned on the pre-training source do not generalize well

to kid-specific data without fine-tuning (See Appendix). However, there

seems to be some pattern as to ehy the model made certain predictions.

For example, the model misclassifies the classes bouncing on trampoline,

cartwheeling and parkour as doing karate. While we do not have doing

karate as one of our acting classes, there are similarities in the motion

kids make when doing parkour, cartwheeling, and bouncing on trampoline

that bear some resemblance to moves in karate. Hence, even though the

baseline could not generalize directly on our sample, it still indicates that

the features learned could be useful during the fine-tuning of the other

models.
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Kid-specific Adult-specific
Kid Model 43.8% 45.5%
Adult Model 35.0% 51.9%
MHS model 43.8% 51.1%
MFS model 46.2% 52.6%

Table 5.1: Average accuracy reported by all the models on kid-specific and
adult-specific dataset

5.1.2 Kid Model Evaluated on the Kid-specific Data

The Kid model records a top-1 accuracy of 43.8% and top-5 accuracy of

78.1% (see Table 5.1). We notice that the top-1 accuracy is particularly

low. Given the properties of the dataset such as how varied the actions are

in terms of how they are performed and where they are being performed,

this makes the dataset somewhat difficult to learn from. The low accuracy

suggests that there is a large variation in the test split and that the training

split might not containing enough videos to generalize to the variations in

the test split.

Aside from the low top-1 accuracy, the model performs well on some classes

(see Fig 5.1). One such class is the water skiing class. The model achieves

a 100% accuracy in this class. While we only have 7 test videos for this

class, we can visually observe that that the background of this videos and

generally the same (water in sight), also they have similar camera motion.

This makes the class a relatively simple one for the model to classify. Fur-

thermore, only two other classes makes a confusion with the water skiing

class: somersaulting and kicking soccer ball classes and this misclassifica-

tion occurs less than 5% of the time in both classes. Visually looking at the

misclassified videos, it looked like a random prediction as the background

and motion in the video did not look like the ones typically in a water ski-

ing video. Another class where the Kid model performs well is the archery
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Figure 5.1: Per-class accuracy reported by the Kids model, MHS model,
and Adults model on the kid-specific test split (top) and the adult-specific
test split (bottom)

class with an accuracy of 80.0%. Like with the water skiing class, this class

also has relatively little variation in how and where it is performed. Given

that archery can be a dangerous sport, kids perform this in a supervised

environment which is mostly in open fields. From visualizing the model’s

prediction of this class (see Fig 5.2) we can see that the sport is performed

58



CONTENTS

outside, in a similar pose and a similar background.

Figure 5.2: Archery frames from the kid-specific dataset

The model also classifies the playing tennis, bowling, and bouncing on tram-

poline class with an accuracy of 70.0%. With the playing tennis class, the

model can predict the standard looking tennis video,i.e., tennis played at

the tennis court. However, the model commonly misclassifies the playing

tennis class with either catching or throwing a baseball or hitting baseball

(see confusion matrix in Appendix B.3). From the videos misclassified as

these, we observe that the environment does look like the same environment

where softball and baseball sports are typically performed in this dataset

(see Figure 5.9). In general, what we have observed with the classes where

the model obtains a high accuracy (above 70.0%) is that the videos in these

classes are very similar to each other (color of the court, shape of equip-

ment, similar objects always present in frames and, camera motion) and

that the model does have a difficulty in classifying the videos within these

classes that look different. We are also aware that having a low number of

test sample could influence this.

The three classes that prove the most confusing for the model to classify

in the Kid-specific test split are, catching or throwing baseball (14.2%),

playing basketball (15.3%), and catching or throwing frisbee (16.6%). With

catching or throwing baseball, the model commonly confused this with the
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Figure 5.3: Playing tennis misclassified as catching or throwing softball by
the Kid model

Figure 5.4: Catching or throwing softball frames from the kid-specific
dataset

classes hitting baseball and catching or throwing frisbee. We hypothesized

the confusion between catching or throwing baseball and hitting baseball

because both actions usually occurred within a split second of each other

in the videos and this also proved difficult to annotators during annotation.

However, when we visually inspect the misclassifications made by the model

(see Fig 5.6), it misses even scenes where only throwing occurs in the frame.

This could be because both action still jointly occur in the training samples.

Furthermore, the catching or throwing baseball class is one with the classes

where the activity is performed in varying environments. This suggests

that the model needs more videos to learn from to be able to generalize

well to these videos. For the playing basketball, the Kid model confuses this

class with other basketball classes (shooting basketball, dribbling basketball

60



CONTENTS

and dunking basketball) and the juggling soccer ball class. The confusion

between playing basketball and other basketball classes is understandable

due to how similar these classes are to each other. Technically all other

basketball classes can be classified as playing basketball. In Kay et al.

(2017), they also report a confusion between playing basketball and shooting

basketball by a two-stream model trained on Kinetics-400. For the confusion

between playing basketball and juggling soccer ball class, we cannot visually

explain why this misclassification could have occurred, because the videos

misclassified were playing basketball. Visually, we would expect that the

presence of the basket is a good indication of playing basketball, however,

it is possible that the model finds some similarity in the motion type in

the playing basketball and juggling soccer ball (see Fig 5.5). Finally, with

the catching or throwing frisbee class, the model seems to find this difficult

because it misclassifies the videos with a lot of other classes which makes

us think the model did not learn with this class. We also visually compare

the videos in the catching or throwing frisbee training split to the videos in

the test split and they are similar videos (see Fig 5.7). We can not explain

the misclassification of the catching or throwing frisbee visually.

Figure 5.5: Sample frames from videos in the juggling soccer class (top)
and playing basketball class (bottom) in the kid-specific dataset

The top and bottom 5 predictions of the Kid model on the kid-specific test

split are presented in Tables 5.2.

In general, the results are in line with our hypothesis that the videos in
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Figure 5.6: Catching or throwing baseball videos from kid-specific dataset
misclassified by the Kid model

Figure 5.7: Sample frames from videos in the catching or throwing frisbee
test split (top) and catching or throwing frisbee train split (bottom) in the
kid-specific dataset

the kid-specific dataset are quite complex because of the variations in how

and where they are performed. Hence, the model’s low accuracy can be

attributed to the small training sample and this could be improved with

more kid-specific training videos.

5.1.3 Adult model Evaluated on the Kid-specific Data

The Adult model records a top-1 accuracy of 35% and top-5 accuracy of

69% on the kid-specific test split (see Table 5.1). This is a much lower
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Class Top-1
Water skiing 100.0%
Archery 80.0%
Bouncing on trampoline 70.4%
Playing tennis 69.9%
Bowling 69.9%

Class Top-1
Catching or throwing baseball 14.2%
Playing basketball 15.3%
Catching or throwing frisbee 16.6%
Dunking basketball 18.8%
Shooting basketball 19.9%

Table 5.2: Classes with the highest (left) and lowest (right) top-1 accuracy
recorded by the Kid model on the Kid-specific test split

performance when compared to how the Adult model performs on the

Adult-specific dataset. One reason for this could be because, the videos

in the adult-specific test split are simply different from the videos in the

kid-specific test split, which in turn leads to a lower generalization to the

kid-specific test split. However, the per-class accuracy obtained by the

Adult model on the kid-specific test split shows that the model was able

to generalize well to some of the classes in the kid-specific test split (see

Fig 5.1).

One such class is the water skiing class. The Adult model achieves an

accuracy of 100% on this class just like the Kid model. This goes to prove

that the water skiing class contains relatively simple videos to classify.

The Adult model was also able to classify the archery and playing tennis

class with 80% top-1 accuracy. For archery, the Kid model also achieves

a class accuracy of 80%. However, on the playing tennis class, the Kid

model only achieves an accuracy of 69.9%. This means the Adult model

is slightly better at generalizing to the playing tennis class videos in the

kid-specific test split than the Kid model. Based on visually analyzing the

playing tennis videos in the Kid-specific test split (see Fig 5.9) this could

be because the number of training samples used in the Kid model was not

sufficient for the model to learn all the features needed to generalize to

the tennis video in its test split. By visually inspecting the adult-specific

archery class we observe that the videos contain a more varied background
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and lighting conditions than the videos of kids. Also unlike with kids, adults

are not constrained to supervision during archery so they perform this in

a more varied way than with kids (see Fig 5.8). Furthermore, HACS-clip

[Zhao et al. (2019)] which is the pre-training source of the models contains

the archery and tennis classes. Hence we hypothesize that since HACS-clip

is also an adult-specific dataset, the Adult model could benefit more from

the features learned on HACS-clip as well.

Figure 5.8: Example frames from the Archery class in the Adult-specific
dataset

While the Adult model can generalize decently to some of the classes in

the kid-specific test split, some classes prove difficult for this model. Some

of the classes classified with less than 10.0% by the Adult model are dunk-

ing basketball (4.5%), playing basketball (7.6%) and catching or throwing

softball (8.3%). Just like with the Kid model, the Adult model also misclas-

sifies the basketball classes with each other. For the catching or throwing

softball class, the Adult model confuses the class with a lot of other classes

which suggests that the model simply could not generalize to this class.

Other classes where the Adult model performs poorly especially since it per-

forms well on these classes in the adult-specific dataset are, hitting baseball

and playing volleyball. On the hitting baseball class in the kid-specific test

split, the Adult model records an accuracy of only 21.0% while it records an
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Figure 5.9: Example frames from the Playing tennis class in the Kid-specific
test split

accuracy of 75.0% on the same class within the adult-specific dataset. The

Adult model commonly misclassifies hitting baseball as catching or throwing

softball within the kid-specific test split. In the misclassified samples (see

Fig 5.10), the kids all hold a baseball bat which makes it difficult to say

why the model attributes this to catching or throwing softball. Although

baseballs are supposed to be thrown from an elevated mound while soft-

balls are thrown from a flat designated circle, hence, if the model is unable

to decode the baseball bat held by the kid, it can be interpreting the ball

and the flat area where the kids are to mean catching or throwing softball.

The model also generalizes poorly to the playing volleyball class in the kid-

specific test split. The Adult model gets a top-1 accuracy of 72.7% on this

class in the adult-specific dataset and only 26.6% on the playing volleyball

class in the kid-specific test split. The model commonly misclassifies play-
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Figure 5.10: Hitting baseball samples from kid-specific test split misclassi-
fied by the Adult model

ing volleyball as playing basketball and shooting basketball (see examples in

Fig 5.11). Like with other classes, the Adult model has a poor general-

ization to the kid-specific test split, the misclassified samples either occur

in a non-standard setting or are played with alternative equipment, e.g.,

playing volleyball with a yoga-looking ball.

Figure 5.11: Playing volleyball samples from kid-specific test split misclas-
sified by the Adult model

The top and bottom 5 predictions of the Adult model on the kid-specific

test split are presented in Tables 5.3.
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Class Top-1
Water skiing 100.0%
Archery 80.0%
Playing tennis 80.0%
Juggling soccer ball 62.0%
Bowling 55.0%

Class Top-1
Dunking basketball 4.5%
Playing basketball 7.6%
Catching or throwing softball 8.3%
Kicking soccer ball 10.5%
Parkour 12.5%

Table 5.3: Classes with the highest (left) and lowest (right) top-1 accuracy
recorded by the Adult model on the Kid-specific test split

5.1.4 MHS model Evaluated on the Kid-specific Data

The model records a top-1 accuracy of 43.8% and top-5 accuracy of 74.6%

on the kid-specific dataset. From the accuracy, we can see that, overall, the

MHS model generalizes better to the kid-specific dataset than the Adult

model does. However, the Kid model and the MHS model record the same

top-1 accuracy on the kid-specific dataset (43.8%).

While the MHS model has an equivalent accuracy to the Kid model (see

Table 5.1), this model does better than the Adult-specific and Kid model

on some of the kid-specific dataset classes (see Fig 5.1). One of these classes

is the archery class. The MHS model achieves an accuracy of 89.9% in this

class while the Kid and Adult model achieves an accuracy of 80.0% in the

same class. While we established earlier that the archery videos in the kid-

specific test split has proven to be a relatively simple class, it can benefit

from the features learned from both adult-specific and kid-specific videos

to improve generalization to the archery class. Especially since we still use

the same number of training samples and evaluate on the same test split as

was used with the two previous models, the only difference was including

both adult and kid-specific videos for training.

Other classes that seem to benefit more from the training data used in

MHS model are the catching or throwing frisbee and shooting basketball

class. With the catching or throwing frisbee, the MHS model classifies this
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class with an accuracy of 50%. This is significantly more than what the Kid

model (16.6%) and Adult model (33.3%) achieve in this class. This suggests

that by introducing adult-specific catching or throwing frisbee samples into

the training split, we are better able to generalize more to the frisbee classes

in the kid-specific test split. Another class that seems to benefit from the

mixed training system is the shooting basketball class. The MHS model

achieves an accuracy of 44.4% in this class while the Adult model achieves

an accuracy of 33.3% and the Kid model achieves an accuracy of 22.2%.

There are also classes within the Kid-specific dataset that do not seem to

benefit from including adult-specific videos during training. One such class

is the parkour class. The MHS model gets an accuracy of 12.5% in this

class. This is the same accuracy the Adult model achieves in this class.

However, the Kid model achieves an accuracy of 37.5% in the same class.

This suggests that the presence of adult-specific parkour videos, reduces

the generalization of the model to the kid-specific parkour class. The kid-

specific parkour is one of the classes where we can also easily spot the

variation in how and where the activity is being performed, which looks

different to what would be considered a standard parkour (see Fig 5.12) in

the adult-specific test split.

The confusion matrix for this model can be found in Appendix B.5. We

present the top-5 classes that had an increase in accuracy when the MHS

model is used in Table 5.4 in comparison to the single-training sourced

videos.
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Figure 5.12: Parkour samples from kid-specific dataset misclassified by the
Adult model

Figure 5.13: Parkour sample from kid-specific dataset correctly classified
by the Adult model

Figure 5.14: Parkour samples from adult-specific dataset correctly classified
by the Adult model

5.1.5 MFS model Evaluated on the Kid-specific Data

The MFS model records a top-1 accuracy of 46.2% and top-5 accuracy

of 78.0% on this model. Overall, these are the best classification results
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Class MHS Kid Adult
model model model

Catching or throwing frisbee 50.0% 16.6% 33.3%
Shooting basketball 44.4% 22.2% 33.3%
Playing cricket 42.8% 32.9% 32.9%
Kicking soccer ball 34.2% 28.9% 10.5%
Dunking basketball 27.2% 18.1% 4.9%

Table 5.4: The top 5 classes that improve in accuracy when MHS model is
used on the kid-specific test split

recorded on the Kid-specific dataset. While the MHS model was only able

to match the performance of the Kid model on the top-1 accuracy (see

Table 5.1), the MFS model surpasses the Kid model on both top-1 and

top-5 accuracy. Based on these figures, there is evidence that the Kid

model benefits from having a mixed training dataset and increasing the

number of training videos.

Some of the classes where the MFS model performs better than the MHS

model includes the bouncing on trampoline and catching or throwing base-

ball class. On the bouncing on trampoline class, the MFS model achieves

an accuracy of 75.4% while the MHS model achieves an accuracy of 63.9%.

While this is a substantial improvement from the MHS model, we think

this improvement is because there was an increase in the number of kid-

specific trampoline videos and not necessarily because of the presence of

more adult-specific trampoline videos. The reason why we make this ar-

gument is that the Kid model was already able to achieve an accuracy of

70% on the bouncing on trampoline class, hence, by increasing the training

samples of the Kid model we could get an increase in the performance of

the Kid model to this class. Another class where the MFS model does

better than other models is the catching or throwing baseball. The model

records an accuracy of 35.7% on this class while the MHS model got an

accuracy of 21.4% on this class.
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Like with MHS model, there are classes where the MFS model records a

low accuracy. One of such classes is the bowling class. The MFS model

records an accuracy of 60.0% on this class while the MHS model got an

accuracy of 69.9% on the same class. By comparing the performance of the

Kid model (69.9%) and the Adult model (55.0%) to both versions of the

Mixed model (MHS, MFS), we cannot say for certain that the bowling class

benefited from the model having a mixed data for training. Another class

where we see a decline in accuracy when classified with the MFS model is

the catching or throwing frisbee class. The model records an accuracy of

33.0% on this class while the MHS model got an accuracy of 50.0%.

The confusion matrix of the performance of this model on the kid-specific

dataset can be found in Appendix B.8. We present the classes that had an

increase in accuracy when the MHS model is used in Table 5.5.

Class MFS MHS Kid Adult
model model model model

Bouncing on trampoline 75.4% 63.9% 70.4% 52.4
Playing badminton 50.0% 44.4% 49.9% 49.9%
Catching or throwing baseball 35.7% 21.4% 14.2% 28.5%
cartwheeling 35.4% 29.0% 25.8% 16.12%

Table 5.5: The classes that improve in accuracy when MFS model is used
on the kid-specific test split

5.1.6 Summary of the model’s performance on the

Kid-specific dataset

We ran a total of 5 models on the Kid model. We ran the baseline to see

how useful the features learned from the pre-training source could be to

this dataset. Next, we ran the Kid model, Adult model, MFS model, and

MHS model to determine which type of training data generalizes better
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to the kid-specific dataset. From the top-1 accuracies reported, the MFS

model generalizes best to the kid-specific dataset (see Table 5.6).

Model top-1 top-5
Kid 43.8% 78.1%
model
Adult 35.0% 69.0%
model
MHS 43.8% 74.6%
model
MFS 46.2% 78.6%
model

Table 5.6: Top-1 and top-5 accuracy of all the models evaluated on the
kid-specific test split

The results discussed above points to the complexity of data present in

the kid-specific dataset. Given the complexity of the dataset and the fact

that we only fine-tune the last layer of the baseline for each model, a

larger training sample and training more layers could be a way to improve

the performance of the SOTA deep-learning recognition model on the kid-

specific dataset.

In the next section, we will discuss the results of the models when evaluated

against the adult-specific dataset.

5.2 Adult-specific Test split

In this section, we discuss how each model performs on this test split. We

start by describing how the baseline model performs on the data. Next, we

discuss how the Adult model performs, followed by how the Kid model per-

forms. Finally, we discuss how the MHS model and MFS model performs

on the Adult-specific test split.
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5.2.1 Baseline Model Evaluated on Adult-specific Data

Even though we consider the pre-training source (HACS-clips) an Adult-

specific dataset, the model does badly at generalizing what it has learned to

the Adult-specific dataset without fine-tuning. We choose this dataset as

our training set because of the similarities it shared with Kinetics. However,

since we only use a subset of Kinetics-400 in which a large subset of it does

not exist in HACS-clips, this was not the most suitable choice to transfer

learn on.

Nonetheless, the features still prove useful even though we only fine-tune

the last layer. With a larger training split, fine-tuning more layers from

this model could help improve the overall accuracy of all our experiments.

5.2.2 Adult model Evaluated on the Adult-specific

Data

The Adult model records a top-1 accuracy of 51.9% and top-5 accuracy of

81.9%. While this would not be considered a high accuracy, the perfor-

mance of the Adult model on the Adult-specific dataset is generally higher

than its performance on the Kid-specific dataset (35.1%). Also, the size of

the training sample could be a contributing factor to as to why the model

performs low. Based on the model’s better performance on the Adult-

specific test split, there is an indication that the Adult-specific test split is

less complex than the Kid-specific test split. Another factor that could have

contributed to an increase in this performance is the pre-training source.

Since the pre-training source is also an Adult-specific dataset, the features

learned from this will better generalize to other adult-specific data than to

kid-specific data.
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While the model does not predict any of the classes 100% correct, the model

does present high accuracy for some of the classes (see Appendix B.1). For

example, the model was able to predict the class bowling with 85.37%

and, water skiing with 85.71%. We expect that these classes are easier to

predict because they have less variation in the environment in which they

are performed or how they are performed. An adult would always bowl

in a bowling alley and water skiing is always performed on water. Also,

the Adult model did significantly better at classifying the bowling class in

the Adult-specific test split, than it did on the bowling class (55.0%) in

the kid-specific test split (see Fig 5.1). This is understandable as there is

generally more variation in how and where kids bowl than with adults, so

visually the videos look different (see Fig 5.15).

Figure 5.15: Bowling samples from the Kid-specific dataset

Figure 5.16: Bowling samples from the Adult-specific dataset

Other classes where the Adult model performs significantly better on the
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classes within the Adult-specific test split than it does on the class in the

kid-specific test split are playing volleyball and, playing badminton. The

Adult model records an accuracy of 72.0% on the playing volleyball class

in the adult-specific test split, and only achieves an accuracy of 26.0% on

the playing volleyball class in the kid-specific test split. Visually inspecting

the videos in the playing volleyball class in the kid-specific test split (see

Fig 5.11), we see that these videos do not look like the standard volleyball

videos in the Adult-specific dataset.

However, there are also classes within the Adult-specific dataset that prove

difficult for the Adult model to classify. One of such classes is the catching

or throwing softball (12.5%) class in the adult-specific test split. The model

confuses the catching or throwing softball with catching or throwing baseball

(15.62%) and kicking soccer ball (12.5%) (see examples in Fig 5.17). While

catching or throwing softball and catching or throwing baseball share visual

similarities in how they are played, the model seems to be encoding green

grass as one of the features for kicking soccer ball. This is because the sam-

ples that were misclassified as kicking soccer ball happen in an environment

similar to a soccer field (see Fig 5.18).

Some of the classes where the Adult model does better on the Kid-specific

test split than it does on the Adult-specific test split are archery and jug-

gling soccer ball class. As previously mentioned, the Adult model can

generalize better to the archery class in the kid-specific test split (80.0%)

than it does to the archery in the adult-specific test split (62.5%). This

is one of the classes in the Adult-specific dataset that contains a lot of

variation in how archery is performed, as opposed to other standard sports

(see Fig 5.8). The model also performs better on the juggling soccer class

in the kid-specific test split than it does on the juggling soccer class in the

adult-specific test split. The model achieves an accuracy of 35.4% on the
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Figure 5.17: Catching or throwing softball clips misclassified as catching
or throwing baseball by the Adult model

Figure 5.18: Catching or throwing softball clips misclassified as kicking
soccer ball by the Adult model

class in the adult-specific test split and accuracy of 62.0% on the juggling

soccer kid-specific test split. However, we observe that this not a case of

having so many variations in the dataset, we think the model just needs

more training samples to better learn this class.

The top and bottom 5 predictions of the Adult model on the adult-specific

test split are presented in Tables 5.7.

Generally, the Adult model does better on the classes within the Adult-

specific test split than on the same classes in the Kid-specific test split.

This falls in line with our hypothesis, that this happens because the Adult-

specific dataset is less complex than the Kid-specific dataset. While we

have generally argued that the complexity of videos in the dataset is a
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Class Top-1
Water skiing 85.7%
Bowling 85.3%
Hitting baseball 75.7%
Playing volleyball 72.7%
Playing badminton 65.8%

Class Top-1
Playing basketball 6.2%
Catching or throwing softball 12.5%
Cartwheeling 16.6%
Catching or throwing frisbee 18.5%
Somersaulting 30.0%

Table 5.7: Classes with the highest (left) and lowest (right) top-1 accuracy
recorded by the Adult model on the Adult-specific test split

major reason why the Adult model can generalize better to the Adult-

specific dataset than it does on the Kid-specific dataset, the training size

could also be a factor. With the more adult-specific video for training,

there is a possibility that the model can learn features that will generalize

to the Kid-specific dataset.

5.2.3 Kid model Evaluated on the Adult-specific Data

The Kid model records a top-1 accuracy of 45.5% and a top-5 of 76.2% on

the Adult-specific dataset. We see that the Adult model performs better

than the Kid model on the Adult-specific dataset. However, the Kid model

was able to better generalize to some of the classes than the Adult model.

One such class is the catching or throwing softball class in the adult-specific

test split. The Kid model classifies this class with an accuracy of 28.0%.

While this is low accuracy, the Adult model does even lower by only being

able to classify the class with a 12.5% accuracy. What we observe is that the

model commonly misclassifies this as hitting baseball, which is the confusion

the Kid model also makes on the Kid-specific test split. We think that the

reason why the Kid model can generalize more to the Adult-specific test

split is that most of the videos in the catching or throwing softball class

do not have the hitting activity occurring in the same frame as with the

catching or throwing baseball in the kid-specific test split. Other classes
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Class Top-1
Water skiing 93.8%
Bowling 80.0%
Playing volleyball 74.9%
Playing badminton 65.8%
Bowling 64.9%

Class Top-1
Somersaulting 10.0%
catching or throwing baseball 11.1%
Dunking basketball 11.4%
Playing cricket 11.7%
Kicking soccer ball 12.5%

Table 5.8: Classes with the highest (left) and lowest (right) top-1 accuracy
recorded by the Kid model on the Adult-specific test split

where the Kid model performs better than the Adult models includes,

bouncing on trampoline and playing basketball. These results suggest that

the presence of variations in the kid-specific training set makes the Kid

model generalize better to the Adult-specific test split.

While the Kid model can generalize well to some of the classes, it still does

badly on some of the others. Some of these classes includes, somersault-

ing (10.0%), catching or throwing baseball (11.1%) and dunking basketball

(11.4%). The Kid model commonly misclassifies the somersaulting class as

cartwheeling within the adult-specific test split. Even though both classes

are visually similar, the Kid model can distinguish between the somer-

saulting and cartwheeling class in the kid-specific test split. By visually

examining the somersaulting in the adult-specific test split, the activity is

mostly carried out at a gymnastics gym, while the somersaulting videos in

the kid-specific test split occur in a home setting. We think this makes it

difficult for the Kid model to classify the somersaulting class in the adult-

specific test split because it does not associate the gymnastic gym with the

activity somersaulting.

We present the top and bottom 5 predictions of the Kid model on the

adult-specific test split are presented in Tables 5.2. The model’s confusion

matrix on this split can also be found in Appendix B.4.
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5.2.4 MHS model Evaluated on the Adult-specific

Data

The MHS model achieves a top-1 accuracy of 51.1% and top-5 of 81.1%

on the Adult-specific dataset. This performance is slightly lower than that

of the Adult model (51.9%). Even though the MHS model generally per-

formed a little lower than the Adult model on the Adult-specific test split,

there are classes where the model performs better at classification than the

Kid and Adult model.

One of such classes is the archery class. The MHS model achieves an accu-

racy of 72.5% in this class while the Kid and Adult models both achieve an

accuracy of less than 65.0% in the same class. We mentioned above that

the archery class within the Adult model seems to contain more complex

sample videos than those in the Kid-specific test split. This can also be

proved by the fact that all the models (Kid, Adult, MHS and MFS models)

were able to classify the archery class within the kid-specific test split with

an accuracy of over 80.0%. Hence, the ability of the MHS model to classify

the archery class within the adult-specific test split with an increased accu-

racy suggests that the archery class does benefit from including kid-specific

data in the training sample. Another class the MHS model model performs

better at in the adult-specific test split is the playing badminton class. The

model achieves an accuracy of 73.1% in this class while the Adult and Kid

models both achieve an accuracy of 65.8%. Also, the MHS model performs

less (44.4%) when classifying the playing badminton class in the kid-specific

test split, which suggests that including kid-specific data helps the model

better classify the playing badminton class in the adult-specific test split.

Other classes that seem to benefit from having both kid and adult-specific

training samples are bouncing on trampoline and cartwheeling. We think

79



CONTENTS

these classes in the Kid-specific dataset introduces more complexity to the

training samples used in the MHS model because they have more variations

than the class in the adult-specific test split. Also, these variation seems

to help in improving the model’s generalization to the classes.

There are also classes within the Adult-specific dataset that get a reduced

classification accuracy with the MHS model. The model achieves an ac-

curacy of 53.5% on the parkour class in the while the Adult model was

able to achieve an accuracy of 75.0% on the same class and the Kid model

achieves an accuracy of 65.8%. The drop inaccuracy on the parkour class

when the MHS model and Kid model is used, suggests that adding kid-

specific data to training is not beneficial to classifying parkour class in the

Adult-specific test split. This is interesting because the accuracies of the

models (Kid model, Adult model, and MHS model) on the parkour class

in the kid-specific test split. It also suggests that including parkour data

from the Adult-specific dataset in training is non-beneficial for classifying

the parkour class in the kid-specific test split. Based on Fig 5.12, we think

this is because of the difference in the environment and possibly how park-

our is done by adults as opposed to kids. Another class, the MHS model

classifies with lower accuracy than the other models is the playing volley-

ball class in the adult-specific test split. The model records an accuracy

of 59.0% while the Adult and Kid models both record an accuracy greater

than 70.0%.

The confusion matrix of the performance of this model on the Adult-specific

test split can be found in Appendix B.6. We present the top-5 classes that

had an increase in accuracy when the MHS model is used in Table 5.9.
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Class MHS model Kid model Adult model
Playing badminton 73.17% 65.8% 65.8%
Archery 72.5% 64.9% 62.5%
Bouncing on trampoline 66.6% 53.3% 46.6%
Juggling soccer ball 38.7% 32.2% 35.4%
Cartwheeling 33.3% 16.6% 16.6%

Table 5.9: The top 5 classes that improve in accuracy when MHS model is
used on the Adult-specific test split

5.2.5 MFS model Evaluated on the Adult-specific Data

The model records a top-1 accuracy of 52.6% and top-5 of 85.2% on the

Adult-specific dataset. This is the highest top-1 and top-5 accuracy recorded

across all the models in our experiment (see Table 5.1). However, this is

only a slight increase in accuracy from MHS model’s performance on the

Adult-specific test split. This does not show substantial evidence that the

Mixed model’s (MHS and MFS) generalization to the Adult-specific dataset

benefits from increasing the training size. Especially since the size of the

training videos was doubled and we only get a top-1 increase of less than

1.0%. Nonetheless, there are classes within the Adult-specific test split

that indicate they benefit from increasing the training sample in the MFS

model.

One such class is the playing volleyball in the adult-specific with an accu-

racy of 79.0%. In comparison to the MHS model which got an accuracy of

59.0%, increasing the training proves to be beneficial to this model. Fur-

thermore, the playing volleyball class in the adult-specific test split seems

to benefit from both features learned on the kid-specific and adult-specific

dataset. We say this because the Kid and Adult models both record accu-

racy of over 70.0% on this class. The second class is the dribbling basketball

class. The MFS model got an accuracy of 51.4% on this class while the

MHS model got an accuracy of 40.0%. It is again difficult to particularly
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say if the increase in accuracy is as a result of an increase in training sam-

ples for both the kid and adult-specific sample or just an increase in the

adult-specific sample. This is because the Adult model was already able

to achieve an accuracy of 48.0% while the Kid model only achieves an ac-

curacy of 22.8% in this class. The last class is the cartwheeling class in

the adult-specific test split. The MFS model records an accuracy of 41.6%.

The model is also the best model at classifying the cartwheeling class in

the kid-specific test split.

For the classes that experience a drop in accuracy when the MFS model

is used, this seems to happen because of the presence of one class over the

other. So some classes seem to benefit more from the Adult-specific dataset

than the Kid-specific dataset and vice-versa. As mentioned earlier, we can

only know for sure if an extra experiment is run on the mixed models to

determine the influence of each data-type (adult-specific and kid-specific

dataset) to the generalization capability of the model.

The confusion matrix of the performance of this model on the Kid-specific

dataset can be found in Appendix B.7. We present the classes that had an

increase in accuracy when the MHS model is used in Table 5.10.

Class MFS model MHS model Kid model Adult model
Playing volleyball 79.5% 59.0% 74.9% 72.7%
Dribbling basketball 51.4% 40.0% 22.8% 48.5%
cartwheeling 41.6% 33.3% 18.5% 18.5%

Table 5.10: The classes that improve in accuracy when MHS model is used
on the Adult-specific test split
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5.2.6 Summary of the model’s performance on the

Adult-specific dataset

Like with experiments conducted on the Kid-specific dataset, we also run

5 models on the Adult-specific dataset. The baseline model, Adult model,

Kid model, MHS model, and MFS model. From the top-1 accuracies re-

ported, the Mixed-model (full-split) generalizes best to the Adult-specific

dataset (see Table 5.11).

Model top-1 top-5
Adult-specific 51.9% 81.9%
Kid-specific 45.5% 76.2%
MHS model 51.1% 81.1%
MFS model 52.6% 85.2%

Table 5.11: Top-1 and top-5 accuracy of all the models evaluated on the
Adult-specific dataset

Generally, the results indicate that the videos in the Adult-specific dataset

are easier to classify in comparison to the Kid-specific dataset. Also, while

the Mixed-model (full-split) records the best accuracy on the Adult-specific

dataset, we hypothesize that the model might be able to do better than

the mixed model in the currents form with more training data.

In the last section, we give a summary of the results reported on both

datasets with respect to the research question posed at the beginning of

this research.

5.3 Research Questions

In this chapter, we provide answers to our research questions based on the

results presented above.
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We will answer the research question chronologically from RQ1 - RQ3 and

then we discuss the main research question posed by this study.

5.3.1 RQ1: Can an Adult SOTA model generalize to

a Kid-specific dataset?

Based on the accuracy recorded (see Table 5.1), we see a drop in the per-

formance of the Adult model when it is evaluated on the Kid-specific test

split as opposed to when it is evaluated on the Adult-specific test split.

While the Adult model has proven to be able to generalize to some classes

within the Kid-specific test split, the overall performance of the Adult

model on the kid-specific test split (35.15%) is low. One of the factors that

could explain this is that the kid-specific test split generally contains more

variations in how and where each sport is performed than the adult-specific

test split. Another possible reason is that the adult-specific data were all

downloaded from the Kinetics-dataset and a large part of the data has a

relatively low resolution (down to 144p) while the videos we download for

the kid-specific data generally have a higher resolution. Hence, since the

Adult model was trained on generally lower resolution images, it might

find it difficult to generalize to higher resolution videos in the kid-specific

test split. However what seems the most plausible factor is that the Adult

model could not generalize to the kid-specific test split because the videos

in the adult’s training sample look different from those in the kid-specific

test split.

Based on the accuracy alone, we can say that there is a decline in the

performance of an Adult model and the generalization to a kid-specific test

split is low. Given the size of the training samples we have in this dataset,
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we would expect some variation in the performance of the model, if trained

multiple times. However, we observed that the model is quite stable at its

performance as it was returned accuracy within the same range even when

trained multiple times. This could suggest that the model needs more data

to be able to grow in performance. However, further experiments will be

required to determine which factors influence the model’s ability to not

generalize currently to the Kid-specific test split.

5.3.2 RQ2: Can a Kid-specific SOTA model general-

ize to an Adult-specific dataset?

The Kid model generalizes better to the Adult-specific dataset than the

Adult model does to the Kid-specific dataset. As we already hypothesized

that the Kid-specific dataset generally contains more variation in terms

of where and how the activity is performed, hence, the model could have

learned complex and general features that help it to generalize well to the

Adult-specific dataset. Another possible factor could be the resolution of

the videos used in training our Kid model. A large part of the videos has

a resolution of up to 720p while a large number of the videos in the Adult-

specific dataset have a lower resolution than this, which could be why the

Adult-specific dataset generalizes poorly to kid-specific data.

In general, we believe that even though the Kid model recorded a low

accuracy on the Kid-specific test split, it is complex enough to generalize

on the Adult-specific test split. As explained in the results chapter, the

reason why we think the Kids model performs lowly on the Kid-specific

dataset is because the number of training videos available is not enough

for the video to learn how to generalize to the test split.
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5.3.3 RQ3.a: Does training on both kids and adults-

specific datasets increase the performance of

the MHS model on Adult-specific Data?

The accuracies reported (see Table 5.1) show that the MHS model performs

a little lower than the Adult model on the Adult-specific test split which

implies that using both data types does not improve the performance of the

model on the Adult-specific test split. However, the MHS model achieves

this accuracy only using half the size of adult-specific training data used

by the Adult model.

There are indications that certain classes can benefit from having both kid-

specific and adult-specific video in the training sample but there are also

classes that have reduced accuracy possibly because both data source (kid

and adult-specific videos) was used during training. This makes it difficult

to make a general conclusion as to whether using both adult and kid-specific

data in training is beneficial for generalizing to the Adult-specific dataset.

Like we said with the use of the MHS model on the Kid-specific dataset,

additional experiments should be conducted to find out what balance of

kid and Adult-specific training data is needed for a better generalization

to Adult-specific datasets and also if including the Kid-specific data is at

all needed for increased generalization to Adult-specific datasets.
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5.3.4 RQ3.b: Does training on both kids and adults-

specific datasets increase the performance of

the MHS model on Kid-specific Data?

Based on the accuracy alone, we see evidence that the MHS model gen-

eralizes as well as the Kid model to the Kid-specific dataset. The MHS

model even records a better accuracy than both the Adult and Kid models

in some of the classes. Another indicator that training on both kid-specific

and adult-specific data is beneficial to generalizing to kid-specific data is

that the MHS model only contains half the amount of kid-specific data

that was used in training the original Kid model and it was still able to

match the performance of the Kid model. Furthermore, even though the

adult-specific dataset seems relatively simple in comparison to the kid-

specific counterpart, there was evidence above that suggests some of the

classes in the adult-specific class contains more variation that could have

played a part in the MHS model ability to generalize to some of the classes

in the Kid-specific dataset. However, we also see classes where the MHS

model recorded lower accuracies. This suggests that additional experiments

should be conducted to find out what balance of kid and adult-specific

training data is needed for a better generalization to Kid-specific datasets.

That is, do we need more kid-specific training data and less adult-specific

training data for this model or vice-versa. Such an experiment could also

indicate that having an equally balanced kid and adult-specific training

sample is the best training option for the model.
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5.3.5 RQ3.c: Does increasing the size of training data

in the mixed model (MHS) improve generaliza-

tion to the Kid-specific dataset?

Overall, there is an increase in the classification of the Kid-specific test split

when the MFS model is used. This indicates that by increasing the number

of kid-specific and adult-specific training videos, the model can generalize

better to the Kid-specific test split.

However, just like with the MFS model, more experiments have to be per-

formed to verify the right balance between the two types of data that

provides the best generalization to the Kid-specific test split.

5.3.6 RQ3.d: Does increasing the size of training data

in the mixed model (MHS) improve generaliza-

tion to the Adult-specific dataset?

In general, the adult-specific dataset does not seem to benefit from having

both kid-specific and adult-specific data in the training sample, at least in

comparison to the increase in accuracy we saw when the Mixed Model (full-

split) is evaluated on the Kid-specific dataset. We will say the Adult model

seems to do best on the adult-specific data. The difference in the level of

variation in the adult-specific dataset versus the Kid-specific dataset is not

the only factor contributing to the generalization of the model. Other

factors could be, the resolution of videos in the dataset, typical camera

motion in the videos, backgrounds, etc.
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5.3.7 MRQ: Do the current state of the art (SOTA),

deep learning models, for activity recognition

generalize to kids-specific dataset?

Looking at the accuracies recorded by all the models used in this study,

especially the Kid Model, we can conclude that the current STOA deep

learning model for activity recognition is sufficient to learn from and gen-

eralize to a Kid-specific dataset. However, a larger kid-specific dataset will

be needed to see how much the current SOTA deep learning models can

learn from a Kid-specific dataset and if they can record benchmark results

on a Kid-specific dataset.
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Chapter 6

Limitations & Future Work

The experiment performed in this study has shed more light on the bi-

ases and possible usefulness of kid-specific datasets for performing activity

recognition. However, there are some areas of our work that can be im-

proved. Below we discuss these areas and give possible solutions to them.

6.0.1 Selecting Activity Classes

One of the limitations of our result is that we only consider only sporting

activities. We only use sports classes because it is one activity group where

we can easily spot the differences between kids and adults. However, if

we are to create activity recognition applications that recognize kids doing

an activity, more classes would have to be considered in such a study as

this. Furthermore, the model had a hard time classifying hierarchical labels

like playing basketball, shooting basketball, dribbling basketball, and dunking

basketball. For further studies, it is sufficient to consider all these classes

as just playing basketball. In essence, when compiling activity labels for

activity recognition, having hierarchical labels should only be considered if
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there is a clear difference between the activities.

6.0.2 Compiling Queries Youtube

One limitation of the videos we have downloaded for the kid-specific dataset

is the lack of cultural diversity. While the Youtube videos are mostly

reflective of the real world, it is quite biased towards western contents. This

means that the majority of the videos in the kid-specific dataset contains

caucasian children, more specifically American children. This begs the

question, would this kids-model be able to generalize to kids from other

races performing the same activity. During the future collection of kid-

specific datasets, we suggest translating the queries into other common

languages used on Youtube. Also, multiple download sources should be

considered e.g. Youku, Daum tvPot, etc. This would help to increase

the diversity in the dataset and ensure that a racially biased model is not

created.

6.0.3 Downloading more Videos

The results of this study were limited by the number of training samples

we had. One of the downsides of using a deep learning model is that they

require a large amount of training sample even when a pre-trained model

is used. We expected that there would be a lot of variation in performance

when training a model several times due to our small-sized training samples.

However, the training and validation accuracy always fell within the same

range when they were trained multiple times. This suggests that the model

does need more data even when we only fine-tune the last layer. For the

further collection of videos for a Kid-specific dataset, other sources like
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social media sites can be considered as a source of download since they

typically contain a lot of postings about kids and they are scrapped by using

hashtags. Another source of download could be news websites and kids’

advertisement videos. Another possible data source could be animation

videos (see Covre et al. (2019)). While more studies would be required

before this data source can be used, animation videos are modeled after

kids and might provide motion information needed by the model to classify

kids’ activity.

6.0.4 Pre-processing Step: People Detector and Bound-

ing Boxes

One of the pre-processing steps that could have introduced bias into the

dataset was using a People detector (pre-trained YOLO-V3 [Redmon and

Farhadi (2018)]). We apply this filtering process to limit the number of

noisy videos presented to the video annotators. However, the people detec-

tion model used was also pre-trained on the adult model, hence, we could

have discarded a lot of videos because the detector could simply not rec-

ognize children in the scene. Also, it is possible the threshold set on the

bounding boxes does not account for children because they had smaller

pixels than the threshold set on the bounding box.

6.0.5 De-dupliaction of Dataset

While we de-duplicate videos by ensuring that we only download one video

per youtube link, we did not do this across classes. One way we could

have addressed this was to build a feature vector for sampled frames from

each video and then find the cosine similarities between the videos. The
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threshold of similarity can be tweaked according to the activity class. This

worked for de-duplication in the Kinetics-400 [Kay et al. (2017)].

6.0.6 Temporal Extent of Activity

Also, within the data collection pipeline, we encountered difficulty with

determining what constitutes the start of an action. This means we got

different start times annotated for the same video. While we tried to cor-

rect this by having an additional annotator and taking average time, it

is still worth studying how to better define the temporal extent of activi-

ties. Especially since there seems to be a difference in the duration of each

activity.

6.0.7 Video Resolution

One of the factors that could affect the generalization of each model to the

opposing dataset (Kids model-Adult dataset & Adults model-Kid dataset)

is the resolution of the videos in both datasets. since we have varying

resolutions across classes and across the datasets, further ablation studies

would be required to determine how much effect the resolutions of videos

in the datasets affect the generalization ability of the model.

6.0.8 Pre-trainig Source

Furthermore, given that we had a small training size, we could have consid-

ered choosing a more similar pre-training source to transfer-learn on. While

there is no benchmark kid-specific dataset yet, we could have made sure

that the majority of our classes also existed in the pre-training source as
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this could have given us better results. Another thing we could have done

was to download our pre-training data ourselves. This is because using a

pre-trained network containing more classes than we have, could also be

a source of confusion for the model at classifying our datasets. Having a

pre-training source contain the same sports classes that we had would have

made for a better baseline model.

6.0.9 Further Abalation Studies

In general, a comprehensive ablation study is needed to understand the

properties of the kid-specific dataset, such as the temporal extent of activ-

ities, video resolution, training size, and semantic information, and motion

information. By understanding how these properties of the Kid-specific

dataset differ from that of the Adult-specific dataset, it becomes easier to

understand the model’s behavior on these datasets and see which features

influence each model the most. Furthermore, an ablation study to test

the influence of the different factors associated with each dataset could

help come up with a training scheme that helps both adult-specific and

kid-specific datasets benefit more from each other’s complexity.
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Chapter 7

Conclusion

To conclude, this thesis investigated if SOTA deep learning models for

action recognition can generalize to the kid-specific dataset. To do this we

created a kid-specific and an adult-specific dataset. We also present our

data collection pipeline to foster the future collection of kids-specific data.

Our results show that, while SOTA deep learning can be used to classify

kid activities, the kid-specific dataset is more complex to generalize to

than the adult-specific dataset. The study also shows that the features

learned from training on a kid-specific dataset alone can be used to classify

adult activities while the reverse is not the case. More work is needed to

determine what properties make the kid-specific model generalize better to

adult-specific datasets.
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Appendix A

Sport Labels

1. Archery

2. Bouncing on trampoline

3. Bowling

4. Cartwheeling

5. Catching or throwing frisbee

6. Catching or throwing baseball

7. catching or throwing softball

8. Dribbling basketball

9. Dunking basketball

10. Hitting baseball

11. Juggling soccer ball

12. Kicking soccer ball

13. Parkour
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14. Playing badminton

15. Playing basketball

16. Playing cricket

17. Playing tennis

18. Playing volleyball

19. Shooting basketball

20. Somersaulting

21. Water skiing
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Figure B.1: Confusion matrix of Adult-specific model evaluated on adult-
specific dataset.
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Figure B.2: Confusion matrix of Adult-specific model evaluated on kid-
specific dataset.
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Figure B.3: Confusion matrix of Kid-specific model evaluated on kid-
specific dataset.
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Figure B.4: Confusion matrix of Kid-specific model evaluated on adult-
specific dataset.
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Figure B.5: Confusion matrix of Mixed model (half-split) model evaluated
on kid-specific dataset.
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Figure B.6: Confusion matrix of Mixed model (half-split) model evaluated
on adult-specific dataset.
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Figure B.7: Confusion matrix of Mixed model (full-split) model evaluated
on adult-specific dataset.
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Figure B.8: Confusion matrix of Mixed model (full-split) model evaluated
on kid-specific dataset.
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