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Abstract

The Ising model is arguably the most studied model in the history of physics, yet it
is not fully understood in all its facets. In the present thesis we will focus on the
frustration effects induced by long range, competing anti-ferromagnetic interactions.
To study this behaviour, we consider a minimal model retaining the phenomenology:
the range-3 Ising model on the square lattice. Previous investigation highlighted the
role of the third range coupling in tuning the infinitely many modulated phases. Our
approach relies on a fresh take on the standard Mean Field Theory framework. We
derive an infinite set of self-consistency equations and show that the solutions depend
solely on the Fourier transform of the interaction neighbour through the wave vectors
available on the lattice. Each of the infinite wave vectors defines a modulated phase of
the system as a periodic magnetization pattern. Constraining the system in Periodic
Boundary Conditions, forces only a finite set of modes to define a phase. In the
present work, we will first provide a systematic way to enumerate all the phases up
to an arbitrary size N of the square lattice. Then, we will show that the region of
stability of the high temperature paramagnetic phase is a convex polytope, whose
faces are in a one-to-one relation with the underlying periodicities, modulo the point
group symmetry of the lattice. The polytopes can be explicitly determined using a
standard vertex enumeration procedure and, on the infinite lattice, through a convex
body reconstruction. The onset of complexity is found in the J3 < 0 region, while for
positive J3 our results correctly reduce to the range-2 model, exhibiting only three
phases. Finally, we validate the theoretical framework with Monte Carlo simulations,
once again enforcing the expected phases with PBC constraints. Our analysis correctly
predicts the dominant mode that bifurcates from the disorder region beyond each face
of the polytopes.
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Chapter 1

Introduction

Lattice systems with interacting spins arose in the past century as a paradigm to study
complex collective behaviour. The dynamic of these systems is typically governed by
an Hamiltonian, that encodes all the information on the interactions. Originally em-
ployed in the field of condensed matter, this approach is now ubiquitous throughout the
natural sciences and beyond. Escaping its original context of ferromagnetism, lattice
models are nowadays studied in highly varied and sometimes exotic settings and suc-
cessfully applied to describe highly diverse fields, ranging from language modelling[1]
to quantum gravity[2], up to the studies for their own sake with a recent interest
in universal models[3]. Our focus is on lattice Hamiltonians with competing anti-
ferromagnetic interactions. The emerging order may be very complicated both in the
number and the nature of the phases, which may arise as spatially modulated peri-
odic magnetization patterns on the lattice. A comprehensive and shared paradigm
in the study of modulated phases is still lacking, as many results are controversial[4]
because they rely on numerical calculations and approximations, which explains the
call by Per Bak[5] which states that it is ”of imperative importance” the study of these
phenomena.

Our original motivation is the development of a coarse grained model for the
crystalline phases of DNA-coated colloidal particles[6], systems whose coupling pa-
rameters are experimentally tunable. To know beforehand what is the Hamiltonian
that leads to a certain crystallization pattern would be of great importance to en-
gineer materials with designed physical properties. Nonetheless, the versatility of
lattice models, makes the study of modulated phases relevant beyond colloidal crys-
tals. Other systems that exploit these kind of phenomena include periodic lattice
distortions, charge-density waves[7], periodic arrangement of atoms in a host lattice[8]
or spin-density waves[9]. The field of Iron Chalcogenids requires special mention, as
we will be able to show magnetic ground states that exactly match the ground states
recently found by Glassbrenner et al.[10] by different means.

We will provide a fresh perspective to study the onset of order on lattice Hamil-
tonians with competing interactions. The power of the theoretical framework that we
propose lies in its versatility: it allows to include an arbitrary number of interactions
on any lattice geometry of interest. Nonetheless, as it will become clear, it is limited
to the order-disorder transition, the calculation of the full phase diagram (and of the
ground states) is an NP problem and might intrinsically be uncomputable[11]. To il-
lustrate our procedure, we will focus on the field free range-3 Ising model on the square
lattice, the simplest geometry (square lattice), with the minimal dimension and the
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minimal number of neighbours, necessary and sufficient[12] to exhibit an infinity of
modulated phases as we will subsequently argue. The essential idea is that introduc-
ing an anti-ferromagnetic third neighbour interaction term in the Hamiltonian, the
full symmetry point group of the lattice can be broken. To sort out the complexity
of this infinite number of phases, we will work with finite systems, introducing an
enumeration procedure to account for more and more complex phases, and eventually
taking the whole, infinite square lattice.

Our intuition levarages and is built upon a century worth of literature. We
will here review in historical order the groundwork underlying the development of
our model. We begin reviewing the birth of the Ising model as it has been originally
introduced, briefly mention the phenomenon of frustration as the mechanism that leads
to multiple modulated phases. Next, we discuss key findings in systems exhibiting
modulated phases. Ultimately, we will review previous investigations on both the
range-2 and the range-3 Ising model with competing interactions.

1.1 Historical Background

The so called ”Ising model” made its first appearance on Zeitschrift für Physik[13] in
1925, as discussed by Ernst Ising in his doctoral thesis. His calculations relied on an
original intuition[14] by his supervisor, Wilhelm Lenz, which a few years earlier pro-
posed a coarse grained model for ferromagnetism, which only retains the major local
degree of freedom: spin orientation. In the absence of an external field, the average
spin orientation at fixed temperature is affected only by its nearest neighbours. We ex-
pect to exist a critical temperature above which thermal fluctuations keep the system
in a paramagnetic (disordered) phase and under which it is energetically convenient
to establish long range order. Among the many historical reviews on the origin of the
model we suggest the early work by Brush[15].

The Ising model is nowadays the ”fruit fly” of statistical physics, the archetypal
example to illustrate the quantitative nature of phase transitions and the construction-
ist paradigm of statistical physics. The emergence of collective behaviour is encoded in
the microscopic physical mechanisms (reductionist hypothesis), but does not trivially
follow from it. The essential idea, better illustrated by P.W. Anderson[16], is that ”in
the so called N →∞ limit of large systems (on our own, macroscopic scale) it is not
only convenient but essential to realize that matter will undergo mathematically sharp,
singular ”phase transitions” to states in which the microscopic symmetries, and even
the microscopic equations of motion, are in a sense violated.”

A century after Lenz seminal work, the Ising model is arguably the most stud-
ied model in statistical physics, a quick search on Google Scholar gives more than
420.000 hits1. Its popularity resides both in its simplicity and versatility. It exploits
the simplest possible local symmetry Z2, which makes it the model for which most
exact results are available. The most studied equivalent formulations are arguably the
grand canonical lattice gas and the binary alloys, where the binary orientations are
respectively interpreted as presence or absence of particles, and as different particles
species. Although these would be the natural formulation that inspired the present
work, for the sake of simplicity we will stick to the language of magnetism.

1Google Scholar, scholar.google.com, [Accessed: April 2021].

scholar.google.com
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In its original formulation the nearest neighbour Ising Hamiltonian couples spins
on adjacent lattice sites i, j with a coupling parameter J and takes the form

H = −J
∑
〈i,j〉

σiσj , (1.1)

where the angular bracket denotes nearest neighbours and the minus sign is conven-
tional such that positive J favours alignment of neighbouring spins and negative J
favours anti-alignment. We start focusing on the ferromagnetic case. In a one di-
mensional system the competition between energy and entropy favours the creation of
anti-aligned neighbouring pairs (domain walls). In other words, thermal fluctuations
are too strong to give rise to finite temperature2 spontaneous symmetry breaking, to
a fully aligned state. For lattices in two and more dimensions the same is not true
and the system effectively undergoes a phase transition. Many scientists contributed
to this important result in the Thirties and Fourties of the 20th century: the first to
recognize a phase transition had been Bragg and Williams[18], who in 1934, neglect-
ing correlations, extended the tool now known as mean field theory to lattice models.
However, their result needed further refinement, as the same technique applied to the
one dimensional lattice would wrongly predict a phase transition. An improvement
on this is due to Bethe and Peierls[19], whose argument has been later formalized by
Griffiths[20]3. The underlying idea is that accounting for further spin correlations, in a
simple back of the envelope calculation, shows how the entropic cost to create a domain
wall is lower than then the energy loss, such that, under a certain temperature the
system will spontaneously magnetize. This is more general, the critical dimension for
systems exploiting discrete local symmetries is d = 24. In 1943 Onsager[22] proposed
the celebrated exact derivation (later refined by Kaufmann[23][24]) of the diverging
correlation functions in terms of elliptic integrals. Finally Yang[25] in 1950, leveraging
on Onsager’s result, computed the exact magnetization, with what he remembers as
the longest calculation of his career.

More intriguing phenomena appear for negative, anti-ferromagnetic interactions.
The ferromagnetic case is peculiar, as geometry only affects the critical temperature.
The global ground state is trivially achieved on any conceivable lattice when all the
spins are aligned, which trivially implies that each site is aligned with all the neigh-
bours. This does not hold if we consider negative values of the coupling parameter
J . In this scenario a single spin contribution is minimal when it is anti-aligned to
all its neighbours. Whether this implies that the global and local ground states co-
incide depends on the topology of the underlying lattice. As shown in Fig.1.1a, on
the square lattice all sites can simultaneously be anti-aligned5 with their neighbours.
The chessboard-like global ground state is called Neel ordered state[26]. The same,
however, does not hold for the triangular lattice. As shown in Fig.1.1b, the topology
forbids even the minimal plaquette of three spins, to simultaneously minimize the
energy of each of its three bonds. This leads to a global ground state degenerate with

2Observed in lab Birgeneau and Shirane[17].
3The cited proof depends on the boundary conditions and the dimensionality, nonetheless it has

been generalized to the infinite lattice and to higher dimensions.
4To be compared with local continuous symmetry, whose critical dimension, as proved by Mermin

and Wagner[21], is d = 3.
5The underlying reason being that one can partition the lattice in two disjoint sub-lattices.
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(a) Ground state of the anti-ferromagnetic
nearest neighbours Ising Hamiltonian. Each
spin is anti-aligned with all its four neigh-

bours.

?

(b) Frustration on the anti-ferromagnetic tri-
angular lattice. The energy is degenerate
with respect to the orientation of the upper

site.

Figure 1.1: Comparison of a square and triangular anti-ferromagnets
on their minimal plaquette. Solid circles represent up spins, empty

circles represent down spins.

respect to individual spin flips. This phenomenon is known as frustration. The term
was coined in 1977 by G. Toulouse and Vanneminus[27][28]. The Ising model on the
triangular lattice was originally investigated by Wannier[29] in 1950, who, exploiting
an Onsager-Kaufmann like calculation, was able to explicitly quantify the degree of
frustration in terms of a zero temperature, residual entropy. We refer to the phe-
nomena occurring on triangular kind of systems as geometrical frustration[30]. To be
contrasted with interaction frustration, the phenomenon of our interest that arises in
presence of long range, competing, anti ferromagnetic interactions, as shown in the
lattice Fig.1.3b.

Our purpose is to construct the minimal model for which the square lattice with
isotropic interactions exhibits an analogous behaviour. To this end we will have to
introduce up to range three anti-ferromagnetic couplings. Ising models with compet-
ing long range interactions have been extensively studied during a flurry of activity
in the Seventies and Eighties, with more sparse work in recent years. Most of the
effort focused on anisotropic interactions to match the experimental observations of
anistropic modulations observed in the crystal structure of Erbium, Tullium and other
rare earth metals. The model that best described the modulations and which sparked
theoretical interest in this class of phenomena was originally proposed by Elliot[9] and
later renamed Anisotropic (or Axial) Next Nearest Neighbour Ising (ANNNI) model,
an Ising model on a cubic lattice with a nearest neighbour ferromagnetic coupling on
two coordinate axes and two competing nearest and next nearest couplings on the
third axis. The ferromagnetic coupling, forces sites lying on parallel planes to have
a unique orientation of the spins. The two out of plane couplings compete to the
emergence of infinite modulated phases labelled by a wave vector. This infinity of
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J−1 10

Figure 1.2: Phase diagram of the nearest neighbour Ising model on
the square lattice.

phases goes under the suggestive name of devil’s staircase, as originally named by
Serge Aubry[31]. The ANNNI model phase diagram has been studied using several
techniques ranging from various degrees of mean field theory and the soliton expansion
(Bak and Van Boehm, 1980[4][5]) to the Monte Carlo simulation and low temperature
expansion employed by Selke and Fisher [32][33]. A thorough review on the topic by
Selke is the first chapter of [34]. While a review on the nature of phase transitions
among phases with a wave vector compatible or incompatible with the underlying lat-
tice (Commensurate-Incommensurate phase transition) was carried on by Janssen[35]
and also studied by Mashiyama[36]. The most relevant feature of the ANNNI model
is that the phases do not necessarily correspond to ground states. Other relevant or
curious findings in the study of long range lattice systems are the work by Redner [37]
on the one dimensional chain, where he points out an interesting connection with num-
ber theory; the appearance of the devil’s staircase on the honeycomb lattice[38]; and
the work by Grousson[39] on the phase diagram of the square lattice with Coulomb
anti-ferromagnetic interactions. Finally, we mention two modern general techniques to
tackle the ground states in this kind of systems: the first leverages on matrix product
states, a method borrowed from quantum mechanics[40]; the second is a mapping to
a maximum satisfiability problem[41] which we will use in the final part of the present
work.

1.2 Previous Investigations

Our ultimate purpose is to study the range-3 Ising model, but the logical intermediate
step is to consider Next Nearest Neighbours (NNN) interactions, which on the square
lattice are the diagonal neighbours at Euclidean distance

√
2

H = −J1
∑
〈i,j〉

σiσj − J2
∑
〈〈i,j〉〉

σiσj , (1.2)

where the NNN interactions are represented by double angular brackets. In Fig.1.3a
we show a 2 × 2 plaquette of this model, which also contains diagonal interactions.
We emphasized a green triangle (out of the four possible), the two catheti are nearest
neighbour interactions, while the hypotenuse is a next neighbour interaction. The
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?

?

(a) Frustration on the range-
2 Ising model. It creates one

type of triangles.

?

?

(b) Frustration on the range-3 Ising model. It creates two
additional types of triangles.

Figure 1.3: Frustration on the square lattice with two (left) and three
(right) neighbours. Both lattices present frustration on the triangles.

competition happens at the level of triangles, a stable configuration depends on the
sign of the two coupling parameters. When both J1 and J2 are negative we find a
similar situation to the one described in Fig.1.1b. On each triangle the minimal energy
configuration is degenerate with respect to single spin flips. Moreover, the system is
complicated by a non trivial entanglement among all the triangles. The range 2 Ising
model has been first studied by means of mean field theory, Renormalization Group
Monte Carlo [42], and Cluster Variation Method[43]. A comprehensive review of these
results and of the physics of this model through exact Monte Carlo has been studied by
Landau and Binder[44] in 1980. Other than the ferromagnetic and anti-ferromagnetic
phases, this model possesses a striped phase, as shown in the phase diagram of Fig.1.4a.
The three ordered phases are separated by continuous phase transitions[45]. The
striped phase arises for negative J2 only and breaks the Z4 symmetry of the model[46]
(only a subset of the whole point group symmetry). Changes in the intensity of the
ferromagnetic next nearest neighbour coupling, J2, only shift the critical temperature
without introducing new orders.

Finally, we present the few attempts to tackle the range-3 model. The essential
idea[48] is that the third range interaction affects the whole point symmetry group[12]
D4 of the square lattice. In Fig.1.3b we show the unit cell of the model. The range
three interaction is parallel to the nearest neighbour interaction but double in distance,
consequently the minimal subset considered is a 3 × 2 rectangle. In the figure, we
emphasized how the introduction of a long range coupling introduces yet another
level of frustration in the form of other two possible triangles (the smaller triangle
present in the adjacent figure will of course still be present). One, shown in green,
couples two range-1 interactions and one range-3 interaction, the other, shown in red,
couples two range-2 interactions and one range-3 interaction.

The first attempts to study this model date back to the Eighties. These are sparse
and not exhaustive, starting as spin-off studies from the rush toward the ANNNI model
and long range lattice models in general. Kaburagi and Kanamori[49][50], in two
successive papers from 1978 and 1983, focused on the ground states, employing their
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J2

J1

1
2

−1
2

1
2

(a) Phase diagram of the range 2 Ising model.
The new phase is the striped phase.

J2/J1

J3/J1

1
2

1
2

0

(b) Partial phase diagram of the range three
Ising model, replicated from [47], for negative

values of J2 and J3.

Figure 1.4: Phase diagrams.

cryptic method of inequalities[51], later refined by Teramoto and Itoh[52]. It consists
in writing a set of inequalities, systematically including bigger and bigger clusters.
The most exhaustive attempt using this method is due to Brandt and Liu[53] who, in
1983, claims to have found the exhaustive set of the ground state that amounts to 7
phases. However, these authors only calculated the inequalities up to clusters of the
size of an interaction neighbours, while we suspect that longer-range patterns can be
possibly stable.

The second important attempt is due to Landau and Binder, with the sole use of
extensive Monte Carlo simulations. In Fig.1.4b we present their (incomplete) phase
diagram. We recognize other 2 phases other then the striped phase. The upper
one is known in the literature as double checkerboard, the central one as staggered
dimer. In the same paper, Landau and Binder, characteristically state that ”[. . . ] the
phase diagram is expected to be very complicated (”devil’s staircase” of phases) [. . . ]”.
Without further investigating the model, they explicitly refer to the ANNNI model
as a source for inspiration. In the same paper they also developed the Fourier space
mean field theory, which we will use a starting point for our work. Moreover, we will
use the given phase diagram as a reference point that we always wish to include and
recover.

A final mention goes to a modern work by Kassan Ogly[54] that in 2015 studied
the range-3 model separately setting the range-2 or the range-3 interaction to zero, by
means of Monte Carlo replica method and the transfer matrix method, with a focus
on the magnetization curves at the frustration points.
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1.3 Research Question

A comprehensive study of the phase diagram of a range-3 Ising model on the square
lattice has yet to be completed. As mentioned by Landau and Binder, we stress that
is expected to be very complicated. In the present work we focus on the calculation of
the paramagnetic region of stability, limiting ourselves to understand the parameter
domain on whose boundary the first phase transitions occur, i.e. the determination of
the order-disorder surface. The physics beyond this point is out of the scope of the
present project and will be empirically addressed only in the chapter on the simula-
tions.

1.4 Overview

We begin the present work by briefly introducing in Ch.2 the model, its symmetries and
define the tools to tackle the phases: the periodic patterns and the order parameter.
The take-home message is that a phase is a vector in the First Brillouin Zone of the
lattice.

In the third chapter, Ch.3, we introduce the first novelty that we propose: a de-
construction of the Brillouin Zones. First, we introduce an enumeration of the periodic
phases that allows to account for more and more complex patterns. Enforcing N ×N
periodic boundary conditions on the square lattice, reduces the possibly infinite mod-
ulated phases to the finite subset of periodic patterns whose period is commensurate
with the size of the lattice. Next, we recover a bijection between the phases and the
periodic patterns accounting for the point group symmetry of the square lattice. This
is crucial simplification that will allow to understand the structure and the location
of the various phases.

The formal core of the theory is in Ch.4. Following traditional arguments, we
show how a simple mean field theory naturally leads to an infinite set of self-consistency
equations, whose periodic solutions are the modulated phases of interest. Each so-
lution uniquely defines a half-space containing the origin in parameter space, a bi-
furcation surface to the underlying periodic pattern. Leveraging on the structure of
the Discrete Brillouin Zones previously introduced, we can take the intersection of all
this planes that defines the paramagnetic region of stability as a convex polyhedron,
a complex object whose study is the aim of the present thesis.

The structure of the polyhedra is studied in Ch.5. Systematically increasing the
size of the lattices in periodic boundary conditions, we discuss how the structure of
the polyhedra is related to the geometry of the Discrete Brillouin Zone and how these
converge to similar shapes for large N . This is a non-trivial task and we have to rely on
sophisticated numerical and analytical tools. For finite N the conversion of the half-
space representation of the polyhedra to a vertex representation is known as vertex
enumeration problem. We rely on the technique due to Avis and Fukuda[55][56][57],
who, in 2006, propose an algorithm polynomial both in memory and time. Finally, to
study the surface in the thermodynamic limit, we use a convex body reconstruction
borrowed from elementary differential geometry.

To test the accuracy of the mean field approximation employed, in Ch.6, we
present the result of Monte Carlo simulations. Our major goal is to inspect whether
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periodic boundary conditions effectively forces periodic pattern to emerge in the cou-
pling space radial direction (the centroid of the polyhedra faces) predicted by our
theory. The minor aim is two empirically search for the phenomenology beyond the
(first) bifurcation surfaces which we will address in terms of subsequent phase transi-
tions and mode coexistence.

Lastly, in Ch.7 we pave the way to a quantitative analysis of the phenomenology
observed in the simulations. To study the ground states of the system, we employ
a modern technique[58], which consists in mapping the energy minimization problem
to a maximum satisfiability (MAX-SAT) problem. The MAX-SAT algorithm, with
respect to traditional optimization algorithm, has the advantage to prove the globality
of the solution found. To address mode coexistence, we outline the first steps toward
a more general solution of the mean field self-consistency equation.
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Chapter 2

Model

Without further hesitation, we present the field free Ising model on the square lattice
including up to third nearest neighbour interactions. After briefly introducing the
square lattice and the Hamiltonian, we focus on the symmetries of the model. The
emerging order breaks the whole symmetry point group of the lattice. Its structure
will play a prominent role in characterizing the phases and the geometry of the phase
diagram.

2.1 Square Lattice and Hamiltonian

Consider the infinite square lattice

L = {z = (z1, z2)|z1, z2 ∈ Z}, (2.1)

equipped with the usual group structure and scalar product. Throughout this thesis
we will conventionally refer to lattice sites (and their duals) with lower case roman
characters and to sets of sites with capitalized roman letters. We will also make
extensive use of the N × N square lattice in Periodic Boundary Conditions (PBC),
which is defined as

LN = {z = (z1, z2)|z1, z2 ∈ ZN}, (2.2)

equipped with the group structure inherited by ZN and where the scalar product
is defined accordingly. As basis vectors for the lattice1, we will use e1 = (1, 0)T
and e2 = (0, 1)T . At each site z there is a classical spin-1

2 variable σz ∈ Z2 which we
conventionally represent by {−1,+1}. We define the range in between two sites r(z, z′)
as the index of the ordered euclidean distance in between two sites d(z, z′) = ||z− z′||.
Given a site z, its neighbours at ranges r(z, z′) = 1, r(z, z′) = 2 and r(z, z′) = 3 are
respectively found at Euclidean distances d(z, z′) = 1, d(z, z′) =

√
2 ans d(z, z′) = 2.

With these definitions the Hamiltonian of interest takes the form

H = −J1
∑

r(z,z′)=1
σzσz′ − J2

∑
r(z,z′)=2

σzσz′ − J3
∑

r(z,z′)=3
σzσz′ , (2.3)

1If not differently specified, when we will refer to a lattice, we will equivalently imply either the
infinite square lattice L or the square lattice in PBC LN .
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Figure 2.1: Distance neighbourhoods with respect to a general site
z as defined in Eq.2.4. In red the first range neighbours, in green the

second range neighbours and in blue the third range neighbours.

where J1, J2 and J3 are the intensity of the couplings in between the three respective
distance ranges. The minus follows the convention introduced in Sec.1, so that align-
ment of spins is favoured for positive values of the coupling parameters. For further
notational convenience, we introduce the three distance neighbourhoods, shown in
Fig.2.1

N1 = {e1,−e1, e2,−e2},
N2 = {e1 + e2,−e1 − e2, e1 − e2,−e1 + e2},
N3 = {2e1,−2e1, 2e2,−2e2}.

(2.4)

The neighbourhoods allows to emphasize the site energy contribution to the Hamil-
tonian

H(σL) =
∑
z∈L
E(σz), (2.5)

where E(σz) is the energy contribution of a single spin

E(σz) = −1
2σz

[
J1

∑
n1∈N1

σz+n1 + J2
∑

n2∈N2

σz+n2 + J3
∑

n3∈N3

σz+n3

]
, (2.6)

and the 1
2 prefactor accounts for double counting of bonds.

2.2 Symmetries

The introduction of competing anti-ferromagnetic range-3 couplings does not only
break the spin flip symmetry2 of the Hamiltonian, it also affects the point group
symmetry of the possible modulated spin configurations. This symmetry concurs in a
non trivial way to phases of the model and is an essential feature to account for.

2The symmetry broken on the nearest neighbour Ising model on the square lattice is the simple
Z2 symmetry.
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The square lattice point group symmetry is the dihedral group of order four
D4. The usual two dimensional matrix representation consists of eight elements:, four
rotations, among which we include the identity

e =
(

1 0
0 1

)
, r =

(
0 1
−1 0

)
, r2 =

(
−1 0
0 −1

)
, r3 =

(
0 −1
1 0

)
,

and four mirror symmetries, two with respect to the diagonals, two with respect
to the vertical and horizontal axes

s =
(

1 0
0 −1

)
, sr =

(
0 1
1 0

)
, sr2 =

(
−1 0
0 1

)
, sr3 =

(
0 −1
−1 0

)
.

The dihedral group has a major role in the understanding of the phases. However,
the nature of symmetry breaking cannot be understood in terms of this group only
as the translational and color symmetries should have a role. While this is out of the
scope of the present work, it has to be kept in mind, as some sparse comments in this
direction may be made.

2.3 Phases

Postponing the statistical characterization of the model to Ch.4, we will here present
the key notion of periodic pattern, the ordered phases in this model, and the order
parameter that allows to discriminate among the phases.

2.3.1 Periodic Patterns on Z2

The emerging order in the system can be studied through the single site spin probabil-
ities Pz(σz). For the moment it suffices to note that it defines the site magnetization

mz ≡ 〈σz〉 =
∑

σz∈{−1,+1}
σzPz(σz), (2.7)

where with the angular bracket we denote the ensemble average. The emerging mod-
ulated phases are characterized by periodic magnetization patterns defined by the
average spin orientation at each site. A periodic magnetization pattern mz on the
infinite square lattice is (non uniquely) characterized by any two linearly independent
non zero integer vectors p1 and p2 such that mz = mz+k·p1+k·p2 for all k and z in the
lattice. For further convenience we collect the two vectors in a matrix

P =
(

p1
1 p1

2
p2

1 p2
2

)
, (2.8)

which we will refer to as periodicity. The two vectors span a parallelogram whose area
(number of lattice points) is given by the determinant of the periodicity det(P) =
p1

1p2
2 − p1

2p2
1 ≡ N , which we will refer to as index or size of the periodicity. Without

loss of generality, we consider periodicities with positive entries only. As we show in
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Figure 2.2: Unit cell of basis vectors p1 = (2, 0), p2 = (1, 2) with
size N = 4. The underlying configuration is the compatible horixontal

striped pattern.

Fig.2.2, this allows to uniquely introduce a unit cell UP, as the set of all elements of
Z2 compatible with the periodicity P

UP =
{

z ∈ Z2
∣∣∣∣∣ 0 ≤ 〈z,p1〉 〈p2,p2〉 − 〈z,p2〉 〈p1,p2〉 < N2

0 ≤ 〈z,p2〉 〈p1,p1〉 − 〈z,p1〉 〈p1,p2〉 < N2

}
. (2.9)

Given a unit cell, its dual is defined as the row vectors q which leave the Fourier
transform invariant under integer translations, i.e. those vectors that for all integers
l = (l1, l2) ∈ Z2 satisfy

exp(i〈q, z〉) = exp(i〈q, z + P · l〉), (2.10)

or equivalently the solutions of
q = 2πP−1k, (2.11)

which are by definition translationally invariant. The canonical basis in the dual space
is given by p̂1 and p̂2 defined as P−1 · p̂j = ej . Using that det(P−1) = det(P) we can
define the dual unit cell

ÛP =
{

q = 2πP−1k
∣∣∣∣∣k ∈ Z2,

0 ≤ 〈k, p̂1〉 〈p̂2, p̂2〉 − 〈k, p̂2〉 〈p̂1, p̂2〉 < N2

0 ≤ 〈k, p̂2〉 〈p̂1, p̂1〉 − 〈k, p̂1〉 〈p̂1, p̂2〉 < N2

}
, (2.12)

which shows that a unit cell defined by a periodicity with index N is compatible with
exactly |ÛP| = N periodic patterns. We notice that ÛP ⊂ Û∞, the Brillouin Zone of
the lattice. Thus each phase is an element of the Brillouin zone, amounting to infinite
possible modulations. We will get back to this in Ch.3.



2.3. Phases 21

q = (0, 0) q = (π2 , 0) q = (π, 0) q = (π2 ,
π
2 ) q = (π, π2 ) q = (π, π)

Figure 2.3: Phases on the square lattice and their corresponding wave
vector.

2.3.2 Order Parameter

A natural way to tell phases apart are the coefficients mq of the Fourier expansion of
the site magnetization

mz =
∑

q∈ÛP

mqe
i〈q,z〉. (2.13)

A unique periodic magnetization pattern is then recognized by the dominant compo-
nent, i.e. the anti-Fourier transform

mq = 1
N

∑
z∈UP

mze
−i〈q,z〉, (2.14)

it is however worth to be remarked that there might be higher harmonics contributing
to the phase, thus contributing to the symmetry breaking. In this formalism the
ferromagnetic phase has an infinite period over the two axes, with a corresponding
wave vector q = (0, 0), accordingly Eq.2.14 reduces to the arithmetic mean over site
magnetizations, the nearest neighbour ferromagnetic Ising order parameter. The Neel
ordered phase, is the phase with the shortest possible period on both axes and is
labelled by the mode q = (π, π). Also in this case, Eq.2.14 effectively reduces to the
staggered magnetization, the order parameter for the anti-ferromagnetic Ising model
on the square lattice. The striped phase is a mixture of the two, with a wave vector
that can be equivalently expressed as q = (0, π) or q = (π, 0). In Fig.2.3 we show
these and other phases, as previously found by Landau and Binder[59]. The crucial
issue (which we will discuss in depth in the next chapter) is that while the patterns
are effectively labeled by vectors in the Brillouin Zone, multiple patterns may give
the same physics, the most simple example being the two possible orientations of the
striped phase. To this end we want to make the anti-Fourier transform of Eq.2.14 both
translational and dihedral invariant, such that it can serve as an order parameter.

The Fourier coefficients are complex numbers, their square norm |mq|2 is maximal
when the wave expansion matches the real space pattern. The phase of mq does not
provide any useful additional information: a phase shift eu is equivalent to a translation
Tu of the pattern

Tumq = 1
N

∑
n∈UP

mn+ue
−iq·n = 1

N

∑
n′∈UP

mn′e
−iq·(n′−u) = eiq·umq. (2.15)
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Thus, the square norm is translation invariant and a better tool to describe the un-
derlying pattern. Nonetheless, different values of |mq|2 = m∗qmq might underpin the
same phase. The simplest example being the striped phase: |m(0,π)|2 is maximal on
the pattern q = (0, π) but minimal on q = (π, 0) and viceversa. We thus need to
account for rotations or reflections of the pattern, i.e. the symmetry point group of
the square lattice, introduced in Sec.2.2. For all elements g ∈ D4

gmq = 1
N

∑
n∈UP

mgne
−iq·n = 1

N

∑
n′∈UP

mn′e
−iq·g−1n′ = 1

N

∑
n′∈UP

mn′e
−igq·n′ = mgq.

(2.16)
Consequently, we can simply take the average over the action of group elements

µq ≡
1
|D4|

∑
g∈D4

m∗gqmgq, (2.17)

which is invariant under both the translational and dihedral symmetries of the lattice
and can be effectively used as an order parameter.
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Chapter 3

Discrete Brillouin Zone

In the previous chapter we introduced ordered phases on the range-3 Ising model as
periodic magnetization patterns. Each pattern is uniquely identified by a vector q of
the dual lattice. Before delving into the statistical mechanics of the model, it is of
great importance to understand the geometrical structure of the dual lattices. The
dual lattice of the infinite square lattice is well known to be the first Brillouin Zone
(BZ), the set of dual vectors U∞ ≡ q ∈ [0, 2π)× [0, 2π) satisfying

eiq·z = 1. (3.1)

The dual lattice of LN is less known. Constraining the square lattice with Periodic
Boundary Conditions also constrains the BZ to a subset of the infinite possible periodic
patterns. We will refer to the dual of the lattice LN as Discrete Brillouin Zone
which strictly depends on the divisors of the size N itself. Intuitively, the period of a
magnetization pattern has to be commensurate with the size of the unit cell considered.
To this end, we will here investigate the geometrical structure of the Discrete Brillouin
Zone varying the size N of the underlying lattice. We begin constructing it from the
definition of periodic pattern given in the previous chapter and provide an interesting
connection to number theory which directly reflects on the geometrical structure of
the paramagnetic region of stability. Ultimately, we consider once again the point
group symmetry of the lattice, which yields a one to one relation in between phases
and periodic patterns. Nonetheless, we remind that not all patterns might emerge as
a phase, this concept will be clarified in Ch.5.

3.1 Discrete Brillouin Zone

We will now constructively show that the Brillouin zone of the square lattice in Peri-
odic Boundary Conditions with size N is

ÛN ≡
⋃

{P|det(P)=N}
ÛP, (3.2)

where ÛP is defined in Eq.2.12. The intuition behind our proof is that the size N of
the lattice needs to be a multiple of the index of a periodicity for this to be compatible
with the lattice.

The first step is to classify the set of periodicities with index N , a problem
equivalent to the enumeration of subgroups of Z2 with index N . This is performed
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leveraging on a classic theorem due to Hermite[60] from 1851, which classifies integer
matrices in equivalence classes, labelled by the divisors of the determinant. That is,
for any matrix P ∈ GL2(N), there exist a unimodular (determinant preserving up to
sign) matrix J ∈ GL2(N) such that P∗ = J · P, with

P∗ =
(

d 0
0 ≤ s < d N/d

)
, (3.3)

where d is a divisor of N , which will be denoted with d|N and s an integer. A
straightforward consequence is that there exist exactly ∑d|N d inequivalent possible
periodic patterns of size N , which can be easily enumerated.

As an example, the number of inequivalent periodicities of size N = 4 is ∑d|N d =
4 + 2 + 1 = 7. Explicitly, the periodicity matrices are:

(
1 0
0 4

)
,

(
2 0
0 2

)
,

(
2 0
1 2

)
,

(
4 0
0 1

)
,

(
4 0
1 1

)
,

(
4 0
2 1

)
,

(
4 0
3 1

)
.

In principle Hermite theorem already gives a route to the enumeration all the
possible patterns compatible with the lattice LN : after enumerating all the P matrices
of a given index N , as we did in the example above, one can compute the respective
unit cells ÛP. This procedure leads to the exhaustive set of patterns. Nonetheless, the
enumeration can be further simplified as we will now show.

The modes compatible with a unit cell P of index d are also compatible with
the PBC square lattice LN whether d|N . If d > N clearly a pattern could not be
”complete”. While if d < N but not commensurate with it, then periodic boundary
conditions would prevent the pattern to appear. Thus, the set of all modes compatible
with LN is exhaustively given by all the modes that arise in all possible periodicities
of size N . This idea is formalized in the following Lemma.

Lemma Discrete Brillouin Zone
The set of wave vectors of length compatible with a given size N is

ÛN = {q = 2π
N

(l1, l2) s.t. l1, l2 ∈ {0, · · · , N − 1}}, (3.4)

moreover, its size is |ÛN | = N2.

Proof. We introduce an auxiliary N × N periodicity Π with generators π1 = (0, N),
π2 = (N, 0) and DBZ ÛΠ. The proof is carried on within two steps. We separately
prove that ÛΠ includes and is included by the set ÛN , hence that the two coincide.

• ÛN ⊂ ÛΠ
Using Hermite theorem, any periodicity of size N is given by p1 = (d, 0)T ,
p2 = (s,N/d)T . So that the Π generators can be written as π1 = N

d p1 and
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π2 = −sp1 + dp2. Thus any P periodic pattern of size N is also Π periodic

ÛN =
⋃

{P |det(P)=N}
ÛP ⊂ ÛΠ. (3.5)

• ÛΠ ⊂ ÛN
To prove the converse inclusion it suffices to show that for any q = 2π

N (l1, l2) ∈
ÛΠ, there exists a periodicity P with size N such that q ∈ ÛP. The dual basis
is defined by P−1 · p̂j = ej . In Hermite normal form p̂1 = (d, s), p̂2 = (0, Nd ).
Thus, any

q = 2π
(
l1
N

p̂1 + l2
N

p̂2

)
= 2π

(
l1d

N
,
l1s

N
+ l2N

d

)
(3.6)

belongs to a certain periodicity P with size N , if d|N and it exists 0 ≤ s < d
such that the congruences

l1d ≡0 modN, (3.7)

l1s+ l2
N

d
≡0 modN, (3.8)

hold. We can now take into account the two possible scenarios stemming from
the above equations.

– If l1 - N the first relation is only solved by d1 = N , hence the second
one reduces to l1s + l2 ≡ modN . Next, we notice that the Great Com-
mon Denominator is GCD(l1, N) = 1, thus by [61] a solution is always
guaranteed.

– If l1 | N , then from the first equality l1 = N
d and the second one reduces to

N
d (s+ l2) = 0 modN or equivalently s+ l2 = 0 modd. This implies that l2
is any multiple of d increased by a value 0 ≤ s̃ < d, l2 = nd+ s̃. Finally, it
exists a 0 ≤ s < d, s = d− s̃, which satisfies the second congruence relation.

Thus, we have proved that ÛΠ ⊂ ÛN .

Which finally implies
ÛΠ = ÛN . (3.9)

Furthermore, the size of the discrete Brillouin Zone is |ÛN | = det(Π) = N2.

The above lemma is crucial. We will make extensive use of it throughout the
rest of the work. It directly provides an easy way to systematically enumerate all the
periodic patterns compatible with a certain size N of the lattice LN . Furthermore, it
formalizes that a pattern may emerge on unit cells whether its period is commensurate
with the size of the system. The first consequence is that the ferromagnetic phase,
which is the only phase on the trivial 1×1 lattice, appears on any unit cell considered,
as 1 trivially divides any possible index N . On a 2×2 lattice, we find only two possible
patterns (other than the ferromagnetic pattern) labeled by the vectors q = (π, π) and
q = (π, 0). The above lemma guarantees that these will be only shared by lattices
with an even index.
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As previously mentioned in Sec.2.3.2, the relation between patterns and phases
is not bijective. Different patterns may correspond to the same phase, the simplest
example is the striped phase that can have two possible orientations. This holds
for more complex patterns and is the topic of the next section, where we recover a
bijective relation accounting for the dihedral symmetry of the square lattice. Before,
we provide a brief digression on a connection to elementary number theory, which
further explores the relation with divisors and modes.

3.1.1 Complexity of a Pattern

As previously remarked, some patterns are compatible with different lattice sizes N .
For example q = (0, 0) appears on any lattice of any size, while the mode q = (0, π)
appears for even N only. As a direct consequence of Hermite theorem, two lattices
share a periodic pattern if their sizes share a divisor, i.e. are commensurate. A mode
q can always be expressed in the form

q = 2π
(
j1
n1
,
j2
n2

)
, (3.10)

with ji and ni coprime natural integers. We define the complexity of a periodic pattern
the minimum size for which it appears

C(q) =


0 q1 = 0, q2 = 0
n1 q1 6= 0, q2 = 0
n2 q1 = 0, q2 6= 0
max(n1, n2) q1 6= 0, q2 6= 0

. (3.11)

To help the intuition, in Fig3.1 we show the dual lattice Û6, colored according to the
complexity of the modes. We say that a mode q ∈ ÛN is of full complexity if C(q) = N .
Introducing the Great Common Denominator (GCD) among three numbers, the set
of modes with maximum complexity, for fixed size N , is

Û†N ≡ {q = 2π
N

(l1, l2), (l1, l2) ∈ Z2
N |GCD(l1, l2, N) = 1} = ÛN \

⋃
n<N

Ûn, (3.12)

i.e. the set of all periodicities q uniquely generated by cells of period N and its integer
multiples. Which also allows to rewrite the Discrete Brillouin Zone as a disjoint union
over these sets

ÛN =
⋃
d|N
Û†d . (3.13)

The set Û†N is known[62](Theorem 7) to be a representation of the cyclic subgroups
of Z2

N of order 2. This identification gives the advantage to use known literature.
Given two integers N and k, Jordan totient functions1 Jk(N) quantifies the number
of k-tuples of integers less or equal than N that form a coprime (k+ 1)-tuple together
with N . We will only be interested in studying the case k = 2.

1The Jordan totient is the series Empirically it has been verified up to N = 50 that the number of
new periodicities added by each N and generated by constructing the P matrices coincides with the
sequence given in http://oeis.org/A007434.

http://oeis.org/A007434
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Figure 3.1: Dual lattice Û6. each mode is colored according to its
complexity C(q. The mode q = (0, 0) (in red) is the only one with a
complexity of 1; there are three modes (in yellow) with a complexity
2; eight modes (in blue) with a complexity 3 and twentyfour modes (in

green) with a complexity of 6.

Analytical expressions for Jordan totient functions can be proved[63] to be both:

J2(N) = N2 ∏
d|N

(1− 1
d2 ), (3.14)

and
J2(N) =

∑
d|N

µ(d)(N
d

)2 =
∑
d|N

µ(N
d

)d2, (3.15)

where µ(d) is the arithmetic function known as Möbius inversion which formalizes the
inclusion-exclusion principle: we want to subtract from the total number of modes
N2 those which may appear among their divisors, however, some of them may share
a divisor and we want to subtract it only once.

As a proof of principle, the Möbius inversion in the analytical expression of
Eq.3.15, can be inverted yielding the so called Gaussian Decomposition[64] which
retrieves the size of the set ÛN

|ÛN| =
∑
d|N

J2(d) = N2, (3.16)

decomposed on its divisors.

The example in Fig.3.1 should now be clearly interpretable: we show the decom-
position for N = 6, the total amount of modes is 36, we have to subtract the total
amount of its divisors 32, 22 and 12. However the divisor 1, other than itself, is shared
by both 3 and 2, so that we want to subtract it only once. Explicitly

|Û†6 | = J2(6) =
∑
d|6

µ(6
d

)d2 = 36− (9− 1)− (4− 1)− 1 = 24. (3.17)
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3.2 Symmetry Reduced Brillouin Zones

So far we showed that the exhaustive set of patterns that may emerge on the lattices
LN and L are respectively the Discrete Brillouin Zone ÛN and the infinite Brillouin
Zone Û∞. Furthermore, we characterized the former in terms of its divisors. Nonethe-
less, as we already pointed out, the underlying physics should be invariant under
rotations or reflections of a pattern, i.e. under the action of elements g ∈ D4. The
one to one correspondence of orbits and inequalities does not only give a tighter upper
bound on the number of phases compatible with LN , it allows to introduce beforehand
key notions that will be of use in Ch.5.

Formally, we define the Symmetry Reduced Brillouin Zone (SBRZ) as the quotient
set2 of the Discrete Brillouin Zone with respect to the action of D4

ÛN ≡ Z2
N/D4 = {D4q | q ∈ ÛN}, (3.18)

where in the following we will use the fraktur font to refer to quantities related to
SRBZ.

To further investigate the partition of the set ÛN under the action of the dihedral
group D4 we need to remember the fundamental theory of group actions3:

Theorem Let G be a finite group acting on a set X. If X is finite then there exist
disjoint orbits Ox1 , ..., Oxk such that |X| = |Ox1| + ... + |Oxk|. Furthermore, the size
of an orbit is such that divides the size of G, |Oi| | |G|.

The group D4 has size 8 and consequently admits 4 different orbit sizes. In
Fig. 3.2 we show the Brillouin Zone Û∞ and 4 modes, each representing one of the 4
possible orbit sizes. For each of the 4 modes we show the other equivalent elements
under the action of D4. [These are color coded to stress how the orbit size depends
on the position on Û∞.] The orbit size of a mode strictly depend on the position on
Û∞. The mode q = (0, 0) and q = (π, π) are the only one with an orbit size of 1.
Intuitively, the action of D4 on a mode is a reflection or a rotation with respect to
the ”center” q = (π, π), and from this we can infer the size. Without surprise, the
only mode with an orbit size of 2 is q = (0, π), the striped pattern. While, with an
orbit size of 4 we find all the modes that lie either on a diagonal, vertical or horizontal
symmetry axes or on the border of Û∞. All the other modes have an orbit size of 8.

As representative for the whole equivalence class we will conventionally take the
vectors in the lower left triangle, the shaded region of Fig.3.2

ÛN = {q = (q1, q2) | q1 > q2, q1, q2 ≤ π}, (3.19)

it is enclosed by the vertices q = (0, 0), q = (0, π), q = (π, π), the only three modes
with an orbit size of 1 or 2. Its three borders are parametrized by q = (0, α), q = (α, π)
and q = (α, α) with α ∈ [0, π].

2This definition matches the definition of orbifold given by John Conway[65], which might be of
use to generalize the present work to more complicated lattice geometries.

3The fundamental theorem of group actions consists on a multiple characterization of the set of
orbits. Here we will only state those of interest for our purposes.
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(0, 0) (π, 0)

(π,π)

(2π, 0)

(0, 2π) (2π, 2π)

(2π,π)

(π, 2π)

(0,π)

Figure 3.2: Graphical representation of the set Û∞ (light grey), over-
lapped by the set Û∞ (heavier grey). For each of the four possible
orbit sizes we show an element with its orbit. The modes q = (0, 0)
and q = (π, π), with orbit size 1 stand in the center and in the bottom
left corner. The mode q = (π, 0), with an orbit size of 2 has only one
equivalent pattern. The mode lying on the hypotenuse has four equiv-
alent patterns represented by the four corners of the opaque square.
Finally, the mode lying in the bulk of the triangle has an orbit size of

8 and is equivalent to each of the eight vertex of the octagon.



30 Chapter 3. Discrete Brillouin Zone

Also the number of modes in the SRBZ can simply be enumerated, as shown in
the following lemma.

Lemma Symmetry Reduced Brillouin Zone
The Symmetry Reduced Brillouin Zone has size

|ÛN | =
1
2

⌊
N + 2

2

⌋
(
⌊
N + 2

2

⌋
+ 1). (3.20)

Proof. By the fundamental theorem of group actions, the Discrete Brillouin Zone
ÛN can be disjointly decomposed as the union of its orbits. As a straightforward
consequence also the size is decomposed

|ÛN| = 1|O1(N)|+ 2|O2(N)|+ 4|O4(N)|+ 8|O8(N)| (3.21)

where Oj(N) is the set of elements whose orbit has size j. Thus, the number of
elements in the Symmetry Reduced Brillouin Zones is given by

|ÛN| = |O1(N)|+ |O2(N)|+ |O4(N)|+ |O8(N)|, (3.22)

and the enumeration problem is reduced to separately count the elements in each orbit
size. To this end, we suggest to take a look at Figs.3.3a and 3.3b, that showsa clear
difference in between even and odd sizes N is needed: the right green column never
appears for odd N .

There are two patterns of orbit size 1: q = (0, 0) is shared by both even and odd
N , while q = (π, π) only appears for even N . The same holds for the unique mode
with an orbit size 2, q = (π, 0). The modes with an orbit size of 4 appear on the three
sides of U∞. Also in this case, we need to make a distinction between even and odd
sizes N . The number of modes on each side of the triangle is

Ns =
{

N−1
2 N odd

N−2
2 N even , (3.23)

For even N there are three sides and 3Ns modes. For odd N , the sides are only two,
for a total of 2Ns modes. Finally, the modes with an orbit size of 8 can be computed
as

Ns−1∑
n=1

n = 1
2Ns(Ns + 1), (3.24)

both for even and odd N .

The above consideration yields the following brief summary

|O1| =
{

1 N odd
2 N even , |O2| =

{
0 N odd
1 N even ,

|O4| =
{
N − 1 N odd
3N−2

2 N even , |O8| =
{

1
8(N − 1)(N − 3) N odd
1
8(N − 2)(N − 4) N even .

(3.25)
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(a) DBZ Û6 and SRBZ Û6 of the lattice L6. The
three edges of the SRBZ have an orbit size 4.
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(b) DBZ Û7 and SRBZ Û7 of the lattice L6. Only
the horizontal cathetus and the hypotenuse of the
SRBZ have an orbit size 4. The vertical cathetus

has an orbit size 8.

Figure 3.3: Comparison of the DBZ and the SRBZ of an even sized
and an odd sized lattice. Both have the same number of modes, yet

their orbit size is distribution is different.

Plugging the above decomposition in Eq.3.21, we recover, as a proof of principle,
the size of ÛN

|ÛN| =
{

11 + 4(N − 1) + 81
8(N − 1)(N − 3) odd N

12 + 21 + 4 3N−2
2 + 81

8(N − 2)(N − 4) even N
= N2. (3.26)

Finally, inserting the orbit sizes in Eq.3.22, the total number of unique patterns (up
to rotations and reflections) is given by:

|ÛN | =
{ 1

8(N + 1)(N + 3) oddN
1
8(N + 2)(N + 4) evenN

, (3.27)

which can be compactly rewritten as:

|ÛN | =
bN2 +1c∑
n=1

n = 1
2

⌊
N + 2

2

⌋
(
⌊
N + 2

2

⌋
+ 1), (3.28)

which proves the above claim.

As a concrete example we compare the Symmetry Reduced Brillouin Zones Û6
and Û7 of the lattices L6 and L7 respectively, shown in Fig.3.3. The colors represent the
orbit size, and will be used throughout the rest of the present work. Their importance
should not be underestimated and will become clear in Ch.5. Yellow is used for the
two modes with an orbit size of 1 and red for the unique mode with orbit size 2. The
symmetry axes, as well as the lower and left borders are colored in green to signal an
orbit size of 4, while all the others, with an orbit size of 8 are colored in blue. Using
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the above lemma, clearly both Û6 and Û7 have a total of

4∑
n=1

n = 10, (3.29)

different modes. The main difference, and this is important, is the absence of the
vertical and horizontal symmetry axes on Û7. The consequence is that odd sizes will
not be compatible with two out of the three corners of Û∞.

3.2.1 Patterns and Phases

It has to be remarked that while we have enumerated all patterns, these do not
necessarily all correspond to actual phases. Thus, Eq.3.28 is only an upper bound on
the number of phases in the system. Some patterns will contribute in a pathological
way, as will become clear in Sec.5.4.2. We anticipate here that these patterns are
labelled by a q vector that lies on the anti-diagonal (using the proposed representation
of Fig.3.2) going from q = (0, π) to q = (π2 ,

π
2 ) and only appear for even N . Among

the modes on the anti-diagonal, those who contribute with a phase are always the two
extremes: the bottom right extreme is always (0, π); the top left extreme is (π/2, π/2)
if N is a multiple of 4, and varies for all other N . Thus, Eq.3.28 gives the correct
number of phases only for odd N . For N even we have to introduce a correction of
dN4 e−1. So that, the correct number of phases compatible compatible with the lattice
LN , is given for all N by

|ÛN | =
1
2

⌊
N + 2

2

⌋(⌊
N + 2

2

⌋
+ 1

)
− 1 + (−1)N

2

(⌈
N

4

⌉
− 1

)
. (3.30)

3.3 Discussion

In this section we provided a formal way to enumerate all the patterns that may
emerge on a lattice. We have further shown how, accounting for the symmetry point
group of a lattice, gives a bijective relation between elements of the DBZ and phases
compatible with the respective lattice. The notion of Symmetry Reduced Brillouin
Zone and its triangular representation is essential to define the disorder region of
stability of the model under investigation.
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Chapter 4

Derivation of the Disordered
Region

Under the assumptions of Mean Field Theory (MFT), the order-disorder region of
transition takes the form of a polyhedron in parameter space, or for the infinite lat-
tice, a convex body. Following traditional arguments, it is possible to minimize the
free energy to find an infinite set of self-consistency equations for the magnetization
patterns mz. The solutions in Fourier space define planes parametrized by the cou-
pling constants. Per each element in the Symmetry Reduced Brillouin Zone of the
underlying lattice we find a unique plane, each representing the bifurcation surface to
the phase defined by the corresponding pattern. The intersection of all planes yields
the region of stability of the paramagnetic phase as a bounded polyhedron, the main
object of investigation of the present work.

4.1 Mean Field Approximation

The whole of thermodynamics in a system at fixed temperature can in principle be
calculated1 under the fundamental assumption of statistical mechanics

P (σL) = e−βH(σL)

Z
, (4.1)

where the normalization Z = ∑
σL
e−βH(σL) takes the name of partition function and

β = 1
kbT

is the inverse temperature, with kb the Boltzmann constant that will be set to
1. The above probability can be formally obtained optimizing the entropy functional

S[P ] =
∑

P (σL) logP (σL), (4.2)

at fixed energy or equivalently the free energy functional

Φ[P ] ≡ logZ = β〈H〉 − S[P ], (4.3)
1As any good book in statistical mechanics points out. For the present analysis we mostly referred

to the books by Parisi[66], Huang[67] and Pathria[68].
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where with square brackets we denote functionals and with angular brackets the av-
erage of an observable

〈O〉 ≡
∑
σL

O(σL)P[σL]. (4.4)

Under these premises, the average value of any observable of interest can be computed
as derivatives of the partition function alone.

Only few models have been exactly solved[69], as the exact partition function is
often uncomputable and one has to rely on the approximation best suited to describe
the phenomenon of interest. Different degrees of approximation retain different phe-
nomena. The simplest approximation available takes the name of Mean Field Theory.
Its origin can be traced back to a paper by Weiss[70] in 1907, and still remains an
invaluable compromise in between usability and guidance to insights on the physics
of toy models. Heuristically, it consists in considering the spins as independent, ig-
noring further correlations, such that the average spin orientation on the lattice acts
as an effective external mean field. Mean field theory fails, or is less accurate, in the
presence of high correlations, which appear both at criticality and in low dimensions.
In one dimension it yields the wrong result of a finite temperature phase transition.
While in 2 dimensions it correctly predicts a phase transition but at a rather wrong
critical temperature2.

Comparison with previous usage and results makes Mean Field Theory well suited
for the present purpose: we are not interested in a quantitatively correct approach
to study the physics at criticality, but rather at the emergence of phases triggered
by the dihedral symmetry of the model, a universal feature retained by the mean
field approximation. Nonetheless, the dimensionality of our model and the occurrence
(as we will see) of subsequent phase transitions will require a thorough discussion
on the validity of our results, which will be discussed3 together with the numerical
simulations in Ch.6.

Mathematically speaking, mean field theory relies on the assumption that the
spin probabilities factorize

PMF [σL] =
∏
z∈L

P (σz). (4.5)

The main implication, using the linearity of the average, is that spin correlations, and
of any function g of the spins thereon, decomposes as

〈g(σz)g(σz′)〉 = 〈g(σz)〉〈g(σz′)〉, (4.6)

which stresses how Mean Field Theory systematically neglects all covariance in be-
tween variables.

2Charachteristically Onsager[22] solution shows a critical temperature of Tc = 2
log
√

2+1 ∼ 2.269,
to be compared with the mean field prediction of TMF

c = 4.
3In Ch.6 we confirm the existence of a transition systematically underestimating (as expected)

the critical temperature. In the present chapter we will discuss the outcome without prejudice on its
validity.
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4.2 Self-Consistency Equations

The emerging modulated phases are charachterized by a magnetization pattern defined
by the average spin orientation at each site

mz =
∑

σz∈{−1,+1}
σzPz(σz). (4.7)

Under the assumptions of Mean Field Theory the free energy functional of Eq.4.3,
can be explicitely computed and minimized to yield an equation for the magnetization
patterns. Using Eq.4.6 and the Hamiltonian of Eq.2.5, the average energy contribution
to the free energy reads

〈H〉MF = 1
2
∑
z∈L

mz

J1
∑

n1∈N1

m (z + n1) + J2
∑

n2∈N2

m (z + n2) + J3
∑

n3∈N3

m (z + n3)

 ,
(4.8)

and the entropy

S[PMF ] = −〈log(PMF [σL])〉 = −
∑
z∈L
〈log(P (σz))〉 =

=
∑
z∈L

1 +mz
2 log

(1 +mz
2

)
+ 1−mz

2 log
(1−mz

2

)
. (4.9)

Bringing the previous two equations together, the free energy reads

ΦMF = β〈H〉MF − S[PMF ] =

=
∑
z∈L

[
mz (K ·M(z, [mz]))−

1 +mz
2 log

(1 +mz
2

)
+ 1−mz

2 log
(1−mz

2

)]
,

(4.10)

where we have absorbed the inverse temperature in the coupling parameters

K = (βJ1, βJ2, βJ3)T (4.11)

and introduced the shorthand notation for the neighbourhood magnetizations

M(z, [mz]) =

 ∑
n1∈N1

mz+n1 ,
∑

n2∈N2

mz+n2 ,
∑

n3∈N3

mz+n3

T , (4.12)

where the square bracket emphasize the functional dependence on the site magneti-
zations.

That is, the extreme point of the free energy ∂Φ
∂mz

= 0 gives, through direct
derivation

K ·M(z, [mz]) = 1
2 log 1 +mz

1−mz
,

mz = tanh(K ·M(z, [mz])),
(4.13)
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an infinite set of self-consistency equations for the magnetizations whose solutions for
fixed K are the phases of interest. Finally, we note that the solution mz = 0 solves
the above equation in all the parameter domain and for all values of β.

4.3 Bifurcation Surfaces

The three dimensional phase space of the model is spanned by the three K coordinates.
Temperature is constant on spherical surfaces centered in the origin. The infinite
temperature point is found in the origin, accordingly, the only solution of Eq.4.13 is
the disordered phase, mz = 0 for all z. The self-consistency equations define a surface
in phase space where other solutions bifurcates from the disordered one. Moving away
from the origin in any direction the site magnetization remains zero everywhere until
it reaches a critical bifurcation surface, where the whole system undergoes a phase
transition. The surfaces are explicitly found in two steps. First, Taylor expanding
Eq.4.13 on the internal side of the surfaces

mz = K ·M(z, [mz]). (4.14)

Then, restricting our attention to periodic solutions, taking the Fourier transform of
the LHS and RHS of the above equation

mz =
∑
q∈L

mqe
〈q,z〉

=
∑
q∈L

K1
∑

n∈N1

mqe
〈q,z+n〉 +K2

∑
n∈N2

mqe
〈q,z+n〉 +K3

∑
n∈N3

mqe
〈q,z+n〉


=
∑
q∈L

K1
∑

n∈N1

e〈q,n〉 +K2
∑

n∈N2

e〈q,n〉 +K3
∑

n∈N3

e〈q,n〉

mqe
〈q,z〉

=
∑
q∈L

K · F(q)mqe
〈q,z〉,

(4.15)

where in the last step we factored out e〈q,z〉 = cos(〈q,n〉) + i sin(〈q, n〉), and grouped
it in the vector

F (q) =

 2 cos(q1) + 2 cos(q2)
2 cos(q1 + q2) + 2 cos(q1 − q2)

2 cos(2q1) + 2 cos(2q2)

 , (4.16)

where we see that each neighbour contributes with a cosine term per each linear
independent term and the imaginary part vanishes. A term by term comparison of
the first and last line of Eq.4.15 yields

mq = mqK · F(q). (4.17)

The above equation defines the bifurcation surface of the solution mq from the
disorder solution. Explicitly

1−K1F1(q)−K2F2(q)−K3F3(q) = 0, (4.18)
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is the equation of a plane in K−space, the coefficients only depends on Eq.4.16, the
Fourier transform of the neighbourhoods, with respect to the bifurcating mode q.

It is meaningful to show how the same result can be obtained as the region of
divergence of the spin-spin correlation function, or susceptibility. Mean Field Theory
explicitly implies that the susceptibility decomposes as χz,z′ ≡ 〈σzσz′〉 = 〈σz〉〈σz′〉,
hence, in the disordered phase it is zero everywhere. We can work around this ap-
parent contradiction using linear response theory: we let an arbitrary small and site
dependent external field hz act on the system, compute the response of the free energy
and later set the external field to zero

χz,z′ = 〈σzσz′〉 = 1
β2

∂

∂hz

∂

∂hz′
Φ[hz] |hz=0= ∂mz

∂hz′
|hz=0 . (4.19)

The external, site dependent field, consists in an additional additive term in the
Hamiltonian of Eq.2.3 that becomes

βH = −K1
∑

r(z,z′)=1
σzσz′ −K2

∑
r(z,z′)=2

σzσz′ −K3
∑

r(z,z′)=3
σzσz′ −

∑
z∈L

κz, (4.20)

where, for notational convenience we defined κz = βhz.

Thus, the susceptibility can be directly computed as a derivative of the magneti-
zation. Repeating the calculation that lead to Eq.4.13 with the external field, simply
introduces an additional term in the Mean Field self-consistency equations

mz = tanh(K ·M(z, [mz]) +
∑

z
κz). (4.21)

Straightforward derivation yields

χz,z′ = 1
cosh2 (K·M(z, [mz]) + κz′)

(
δz,z′ + K · ∂M(z, [mz])

∂κz′

)∣∣∣∣
hz′=0

= δz,z′

cosh2 (K·M(z, [mz]))
(1 + K·X(z, [mz])) ,

(4.22)

where analogously as the magnetization vector, the susceptibility vector reads

X(z, [mz]) = (
∑

n∈N1

χz+n,
∑

n∈N2

χz+n,
∑

n∈N3

χz+n)T . (4.23)

Approaching the bifurcation surface from the disordered region, T → Tc, we can
Taylor expand the denominator

χz,z′ = δz,z′(1 + K·X(z, [mz])). (4.24)

Finally, we drop the z′ index and take the Fourier transform, mirroring the procedure
that lead to Eq.4.17 above
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χz =
∑
q∈L

χqe
〈q,z〉

=
∑
q∈L

e〈q,z〉 +K1
∑

n∈N1

χqe
〈q,z+n〉 +K2

∑
n∈N2

χqe
〈q,z+n〉 +K3

∑
n∈N3

χqe
〈q,z+n〉


=
∑
q∈L

(1 + χqK · F(q)e〈q,z〉,

(4.25)

where F(q) is the same defined in Eq.4.16. Comparing the Fourier transform coeffi-
cients and inverting

χq = 1
1−K · F(q) , (4.26)

which diverges at 1−K · F(q) = 0 and stresses the occurence of a phase transition at
the critical plane.

That is, the region of stability of the paramagnetic phase with respect to a phase
labelled by a pattern q is

Hq ≡ {K|K · F(q) ≤ 1}, (4.27)

a halfspace bounded by the bifurcation surface

Lq ≡ {K|K · F(q) = 1}. (4.28)

The above definitions also stresses the role of F(q) as the vector orthogonal to Lq, that
will become of fundamental importance in a later chapter. The region of stability with
respect to all the dual vectors of the lattice LN , i.e. the Symmetry Reduced Brillouin
Zone ÛN , defines the region of stability of the disordered phase

DN =
⋃

q∈ÛN

Hq, (4.29)

a convex polyhedron containing the origin embedded in the space of coupling param-
eters. D1 is basically a half-space, D2 and D3 are bounded by three planes only and
are infinite polyhedra. While, we will see in Ch.5, that the more interesting polyhedra
that arise for N ≥ 4 are bounded, accordingly we will equivalently refer to them as
polytopes[71]. Analogously, on the infinite square lattice, the envelope of all the planes
in U∞ defines the convex body

D∞ =
⋃

q∈Û∞

Hq, (4.30)

where, in agreement with the treatment of Ch.3, we reintroduced the fraktur notation
for the equivalence class of modes.

The rest of the present work aims at studying the geometry of the polytopes
varying the size N of the periodic patterns considered. We will investigate the relation
of the geometry of the Symmetry Reduced Brillouin Zone and the polytopes DN .
For finite N we rely on the theory of convex polyhedra, their half-spaces and vertex
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representations, and the conversion among the two. While for infinite N we will use
a convex body reconstruction based on the vector F(q).

Anticipating the results of the simulations, we mention that the region of stabil-
ity of the paramagnetic phase defined above, as expected, overestimates the critical
temperature but well retains the direction of each phase. Nonetheless, it overlooks and
oversimplifies the physics beyond the bifurcation surfaces. It correctly predicts the
dominant mode just right beyond the bifurcation surface, however it does not account
neither for subsequent phase transitions, neither for secondary modes that could also
be stable and concur with the dominant mode in the definition of a phase. We will
hint at what could happen in the outlook.

Finally, a remark is in order. The definitions of Eqs.4.29 and 4.30 only depend on
the Fourier transform of the neighbourhood indicator functions F(q). They are not at
all limited to the range-3 Ising model on the square lattice but can be easily extended
to any other lattice Hamiltonian with long range couplings. Where the dimensionality
of the polytopes only depends on the range considered, the number of inequalities only
depends on the size of the Symmetry Reduced Brillouin Zone and the orientation of
the planes depends on the Fourier transform of the neighbourhood.
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Chapter 5

The Disordered Region and its
Boundaries

In the previous chapter, we derived the geometry of the disorder region of the lattice
LN as a bounded polytope

DN = ⋂
q∈UN Hq,

Hq = K · F(q) ≤ 1,
F (q) =

 2 cos(q1) + 2 cos(q2)
2 cos(q1 + q2) + 2 cos(q1 − q2)

2 cos(2q1) + 2 cos(2q2)

 . (5.1)

The function F(q) is the normal vector to the plane bounding the half space Hq,
thereby, it encodes all the information on the geometry of DN . We can thus regard the
function F(q) as a map from the Symmetry Reduced Brillouin Zone to the polytope
itself. To infer the final shape of DN , we will leverage on two different techniques: for
finite N we rely on an numerical procedure to find the coordinate of the vertices of
the polytopes; when N is infinite, we will use a convex body reconstruction. In the
following, for the sake of notational simplicity, we directly refer to an inequality, or
equivalently a face, with the coefficients F(q). Moreover, we will abuse the vocabulary
and use the words face, phase or mode interchangeably.

In order to abandon the abstract definition of polyhedron and start building a
more concrete intuition, we suggest to examine Fig.5.1, where we show the polytopes
from N = 4 (the lower N for which the polytope is bounded) up to N = 18. The color
code of the faces is the same previously introduced and discriminates different orbit
sizes. Whether two polytopes shares a set of faces depends on the shared divisors. In
the first section of this chapter we address how the inclusion relations among SRBZ
for different N , studied in Ch.3, reflect on the polytopes. Regardless the divisors, the
larger N , the more the polyhedra converge to similar shapes. As a gentle introduction
to the interpretation of the order-disorder diagram1, we begin by describing D4 in
Sec.5.3. Next, in Sec.5.4, we phenomenologically compare D8 and D9, addressing the
alternation of colors of the wider face, that clearly depends the parity of N . Even
polytopes are more regular and in the rest of the chapter we will focus on them, with
only sparse comments on odd polytopes. The position of a mode in ÛN depends on its
orbit size. The corners have an orbit size of 1 or 2, the borders have an orbit size of 4
and the bulk has orbit size of 8. The most astonishing feature is the relation between

1We will show with simulations that subsequent phase transition occurs, so that the polyhedra are
not phase diagrams.
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the orbit size and the position of the faces2. To manifestly see this link we need to
increase N up to 16. In Sec.5.5 we will show that the corners of ÛN always define
the top of the polytopes. As it should already be clear, in the region K3 > 0 each
polytope is always bounded by three prominent modes only (the third one is always
hidden from the proposed point of view). All the other faces appear for negative K3.
The modes on the border of ÛN create regular structures in the form of fans, as shown
in Fig.5.1. These structures are the topic of Sec.5.6. The mapping of the bulk of the
SRBZ is less simple to interpret and we will focus on a single characteristic of the
distribution of the faces: they all cluster around a specific line. To fully understand
the region of clustering, we will take a short digression, in Sec.5.7, to investigate the
mathematical structure of F(q) in terms of a natural coordinate frame that stresses
that the domain of F(q) is a two dimensional surface embedded in R3. This new frame
of reference gives central importance to the empirical observations of the distribution
of the faces, which we will describe in Sec.5.8. Furthermore, it provides a formal
setting to represent the dual polyhedron, a graph retaining the adjacency relation of
the polyhedron. The physical intuition is that the orientation of F(q) depends on the
underlying mode q, neighbouring modes on ÛN represent ”similar” patterns. Thus,
we physically expect that the bifurcation planes, with respect to neighbouring modes,
to be only slightly tilted with respect to each other. Eventually, in Sec.5.9, we address
the convex body reconstruction of D∞, based on the value of F(q) on any point in
the SRBZ Û∞.

5.1 Intersection Algebra and Carving of polyhedra

Before moving to the decription of the polytopes themselves, it is relevant to un-
derstand how the relations among Brillouin Zones ÛN manifest themselves on the
polytopes DN . The result presented in Sec.3.2, that for all d|N , Ûd ⊂ UN , together
with the tautology Hq ∩Hq = Hq, implies that for all d|N , Dd ⊃ DN . The mapping
from ÛN to the polyhedra DN , inverts the inclusion relation, or equivalently, the union
of Brillouin Zones corresponds to the intersection of polyhedra

D
ÛN∪ÛM

= D
ÛN
∩D

ÛM
. (5.2)

To further stress that the faces of a polyhedron are completely characterized by the
divisors of its index N , we will make use of the cyclic group decomposition introduced
in Sec.3.1.1. Given a set of vectors of complexity C(q) (see Sec.3.1.1) we define

D†C ≡
⋂

q∈U†C

Hq. (5.3)

It clearly is an unphysical object, but allows to emphasize the contribution to the
polyhedron of all periodicities of size N . Using the disjoint decomposition of Eq.3.13
and the above definition, it follows

DN =
⋂

q∈ÛN

Hq =
⋂
d|N

 ⋂
q∈U†

d

Hq

 =
⋂
d|N

D†d, (5.4)

2For odd N the same holds but only partially relates to the orbit size.
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(a) D4 (b) D5 (c) D6

(d) D7 (e) D8 (f) D9

(g) D10 (h) D11 (i) D12

(j) D13 (k) D14 (l) D15

(m) D16 (n) D17 (o) D18

Figure 5.1: Polytopes representation for all N ∈ {4, . . . , 18}. The
color code of the faces reflects the orbit size of the underlying mode.
Yellow is used for orbit size 1, red for orbit size 2, green for orbit size
4 and blue for orbit size 8. The shape of the polytopes varies for low
N , but quickly converges to a regular shape for higher N . The color

alternation of the prominent wide face reflects the parity of N .
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which stresses that for all d | N , Dd ⊃ DN . The same holds in the N → ∞ limit,
being Û∞ the disjoint union over all modes of complexity N , it follows

D∞ =
⋂
N∈N

D†N , (5.5)

which clearly implies that D∞ ⊂ DN for all N ∈ N, and consequently that increasing
N the polyhedra converge to the same shape from ”above”.

5.2 Vertex Enumeration

The definition of DN given in Eq.4.29 is known as the half-space representation of a
convex polytope, which in general can be concisely written as a system of inequalities

D = {x ∈ RN |A · x ≥ c}, (5.6)

where A is a N ×N matrix, and c a vector of constants in RN . The above definition
encodes all the relevant information on a generic polyhedron, but does not explic-
itly provide knowledge on the boundaries of the faces. However, a theorem due to
Minkowski [71] always guarantees the existence of an equivalent definition, known as
the vertex representation. Basically, the polytope is defined as the convex hull over a
finite set of extreme points, the vertices. Converting one representation to other is a
rather subtle task that increases in complexity with the number of faces and vertices of
the polyhedron. Intriguingly, it is still unknown whether the complexity of the conver-
sion problem is, in its full generality, P or NP. Nonetheless, DN , is always bounded for
N ≥ 4. Under this assumption a conversion algorithm, polynomial both in time and
memory, exists, as it has been proven in 2006 by Avis and Fukuda[57][56]. In App.A
we review the foundational ideas on the underlying working principles and their im-
plementation in the lrs library[55][72] they developed. In the present work, all the
polytopes are converted to a vertex representation using the aforementioned library
and then rendered using Mathematica[73]. However, we could not just naively use the
algorithm as it intrinsically relies on rational numbers while the inequality defining
coefficients of Eq.4.18 are intrinsically irrational. Extensive pre- and post-processing
of the data was required and described in App.A.3.

5.3 D4: the Complexity

To illustrate the structure of the polytopes we shall start with a gentle example. D1 is
basically a half-space bounded by the bifurcation surface to the ferromagnetic phase.
D2 and D3 are defined by three inequalities only as a consequence cannot intrinsically
be bounded. The smaller lattice whose corresponding polytope is bounded is L4.
The description of D4 provides an introduction to the essential phenomenological
features shared by all the polytopes of higher size. Furthermore, its phases match
those previously found by Landau and Binder and are shown in Fig.2.3.

In Fig.5.2b we show the polyhedron D4 from a positive K1 point of view. On its
left, in Fig.5.2a we show the corresponding Symmetry Reduced Brillouin Zone, Û4,
consisting of six possible phases, each defining one of the six different faces of D4.
The edges drawn on the SRBZ represent the neighbouring relation of the faces of the
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0 π

π

U4

(a) Symmetry Reduced Brillouin Zone of the lat-
tice L4. The circles represent each of the 6 el-
ements q ∈ Û4, the color code is the usual one.
The drawn links show which faces are neighbours
on the polytope and define the dual polytope.

(b) D4. From this perspective only three faces
are visible. The yellow ferromagnetic face, the
red striped face and the green, double striped face.

Their intersection is the vertex vR

Figure 5.2: Polytope D4 and its dual. The take home message is that
all the modes with orbit size 4 emerges for negative K3.

polyhedron. Thus, the graph they form defines the dual polytope of D4. Both the
polyhedron and its dual are colored respecting the convention introduced in Sec.3.1.1.
Each color corresponds an orbit size, the larger N , the more relevant the color code
turns out to be. Yellow is used for patterns with an orbit size of 1, red for size 2,
green for size 4 and blue -here absent- for size 8.

For positive K3 the polytope is bounded by three faces only. The yellow face,
visible in the figure, has an orbit size of 1, is labelled by the mode qF = (0, 0) and
signals the ferromagnetic phase. It is defined by the vector F(0) = (4, 4, 4)T which,
as expected, points to all positive couplings and defines the region K1 > 0,K2 >
−1/3

√
3K1. Symmetric to it with respect to theK1 axis, and thus hidden in the chosen

point of view, lies the surface binding the region of stability of the anti-ferromagnetic
phase K1 < 0,K2 > 1/3

√
3K1. It also has an orbit size of 1 and is defined by

qC = (π, π). Its orthogonal vector, F(π, π) = (−4, 4, 4)T implies anti-ferromagnetic
K1. The third and last face found for positive K3 is the wide red face, it indicates
the bifurcation surface to the region of stability of the striped phase and is defined by
K2 < −1/3

√
3K1, ∩K2 < 1/3

√
3K1. It has an orbit size of 2 and is defined by the

mode qS = (π, 0). Its orthogonal vector, F(0, π) = (0,−4, 4)T , in agreement with the
findings on the range 2 model presented in the introduction, is insensitive on the sign
on K1, but strictly points to negative values of K2.

The other three phases, compatible with the lattice L4, all have an orbit size of
4 and all are strictly contained in the negative K3 region. The floor of the polytope
is identified by the orthogonal vector F(π/2, π/2) = (0, 0,−4)T , parallel to the K3
axis. The corresponding ground state is the double checkerboard (see Fig.2.3). The
other two phases are the so called staggered dimer phase and the double striped phase.
Their defining vectors, respectively F(π, π/2) = (−2, 0, 0)T and F(π/2, 0) = (2, 0, 0)T ,
are parallel to the K1 axis and point in opposite directions. The green triangle of
Fig.5.2b is the double stripe phase, while the staggered dimer is symmetric to it but
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hidden from our view.

We will now shift our attention to the dual polytope of Fig.5.2a, a better rep-
resentation to understand the distribution of the vertices and their role in the phe-
nomenology of the model. We define the multiplicity of a vertex to be the number of
faces that it belongs to. In the dual polytope each vertex is represented by a face,
thus the multiplicity can be inferred simply counting the number of edges that sur-
round each face. The dual polytope is intuitively constructed rotating the edges by
an angle of π2 , and, as the polytopes would be embedded in a three dimensional space.
To represent it as a planar graph implies that one should stretch one vertex(face) to
infinity, such that it lies ”behind” the dual polytope. In the planar representation
overlapping the SRBZ, this is always the vertex at the top vT , the meeting point of
the three upper faces vT = (0, 0, 1

4)T . There are other three vertices that stand out
and that, not surprisingly, have a crucial role, namely those enclosed by the curved
edges on the three borders of the SRBZ. These are always shared by pairs of upper
faces, for reason that will become clear in Sec.5.6, we call these multicritical ver-
tices. The ferromagnetic and anti-ferromagnetic faces meet in the vertex on the back
vB = (0,−1

2 ,−
1
4)T and in our representation is enclosed in between the hypotenuse of

the SRBZ and the curved edge. The striped face meet the other two faces respectively
on the vertices vR = (1

2 ,−
1
4 , 0)T and vL = (−1

2 ,−
1
4 , 0)T , enclosed between the other

two curved edges and the horizontal and vertical catheti, respectively. In Fig.5.2b, vR
is visible and points in our direction at the intersection of the red, green and yellow
faces. In the same figure, vL is not visible and lies on the opposite side, symmetric
with respect to the K1 axis. All the other vertices are less interesting to describe and
all have a multiplicity of three3.

That is, the top of the polytope is bounded by the three modes only, the corners
of the SRBZ. All the other faces, in this introductory example the three green phases
with an orbit size of 4, appear in the anti-ferromagnetic K3 region. These phases are
in general more complex, in the sense defined in Sec.3.2. We could further comment
other features, vertices and edges, however they would be related to D4 only which is
not our final goal.

5.4 D8 and D8: Even and Odd

In the previous paragraph we provided the basic notions on the interpretation of
the order-disorder domain and its dual. To further investigate the structure of the
polyhedra we need to increase N . We will here compare the polytopes D8 and D9
to highlight four major traits useful to classify all the polytopes. The first striking
difference, also noticeable in the dual polytope, is symmetry. D8 (as well as D4) is
symmetric with respect to the K1 axis, while D9 manifestly is not. The (a)symmetry
is preserved on the dual polytopes of Figs.5.3a and 5.3c: the antidiagonal that links
the modes q = (π, 0) with q = (π2 ,

π
2 ) perfectly reflects the symmetry of the polytope.

The second difference, is the number of faces, as of Eq.3.20, both polytopes are the
intersection of 15 inequalities. In D9 all the inequalities contribute with a face, as
stressed in the SRBZ of Fig.5.3a (but hardly noticeble from the figure), while D8 has

3Almost all vertices of all polytopes will have multiplicity of three, with one accidental exception
as we will see in Sec.5.8.
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0 π

π

U8

(a) Dual polyhedron of D8. The mode q =
( 3π

4 ,
π
4 ) is not plot on purpose.

(b) Polyhedron D8. With respect to D4, we see
that the green faces is carved by other faces, all
intersecting the vertex vR. Moreover, we first see

a blue face appearing in the lower part.

0 π

π

U9

(c) Dual polytope of D9. The shaded area in the
back, Û∞, should stress the lack of symmetry
with respect to the segment running from q =

(0, 0) to q = (π2 ,
π
2 ).

(d) Polyhedron D9, it is less regular than D8,
shown above.

Figure 5.3: Comparison of an odd (D9) and an even (D8) polytope.
Some differences are clearly noticeable: D8 is symmetric and D9 is not;
D8 is bounded in the front by a red face and D9 is not; on top of Û9

we drew 15 dots, while we drew only 14 on Û8.
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only 14 faces. The plane defined by q = (3π
4 ,

π
4 ) is only tangent to the polytope on the

common edge shared by the faces q = (π2 ,
π
2 ) and q = (π, 0). This is relevant, we refer

to this edge as the front edge, and its mid point as the front vertex4, with coordinates
vF = (0,−1

2 ,−
1
4)T . Third, we compare the top of the two polytopes. As in D4, this

region is bounded by the three corner modes. The top of D8 exactly matches the
top of D4 as the common corner modes are in Û2. The top of D9 only shares the
q = (0, 0) mode, the other two corner modes, that bind the polytope in the K3 > 0
region, in this case are q = (8π

9 ,
8π
9 ) and q = (8π

9 , 0). The final difference regards the
three multicritical vertices introduced above, whose name is now explained. Both in
D8 and D9 each of the three multicritical vertices has multiplicity 5. D8, shares its
multicritical vertices with D4: vR, vB and vL. Furthermore, all the other vertices of
D8 are threefold. However, D9 only shares vL and vB, while the right multicritical
vertex is slightly shifted outward.

The comparison of D8 and D9 served the grounds to introduce important con-
cepts. All the differences are manifestation of the same underlying cause: eight is
even and nine is odd. The physical and intuitive reason being that even patterns,
for positive K3, are always lower in energy when they can fill the checkerboard, but
cannot arise on odd lattices. The deeper reason is formally rooted in function F(q),
on which we will now leverage to formalize on general and quantitative grounds the
features described above.

5.4.1 Mirror Symmetry

Symmetry is the most striking difference. D8 is symmetric with respect to the K1
axis, while D9 is not. This difference is more general and reflects the symmetry of
ÛN with respect to the antidiagonal segment running from q = (0, 0) to q = (π2 ,

π
2 )

and parametrized by q (α) = (π − α, α) with α ∈
[
0, π2

)
. We want to show that even

polytopes are always mirror symmetric, while odd polytopes are not.

The symmetry is quantitatively rooted in the parity of the cosines of F(q). We
denote with r̂ the reflection operator on ÛN , such that r̂q = (r̂q1, r̂q2) = (π−q1, π−q2).
The plane defined by r̂q has coefficients

F(r̂q) = (F1(r̂q), F2(r̂q), F3(r̂q))T = (−F1(q), F2(q), F3(q))T , (5.7)

where the change of sign in F1(q) is due to the parity of the cosine, while the com-
ponents F2(q) and F3(q) are not affected by the mirror operator. In F2(q) the double
shift by π vanishes and the sign does not affect the cosines, in F3(q) the reflection oper-
ator shifts the arguments of the cosines by on overall factor of 2π, leaving the function
unchanged. That is, the bifurcation surface K1F1(r̂q) + K2F2(r̂q) + K3F3(r̂q) =
−K1F1(q) +K2F2(q) +K3F3(q) = 1 is mirror symmetric to K ·F(q) = 1, with respect
to the K1 axis.

To conclude, we only need to show that q ∈ ÛN implies r̂q ∈ ÛN if and only if
N is even. By theorem 3.1 a mode can in general be written as q = (2πi

N , 2πj
N ) ∈ UN

with 0 ≤ i ≤ j < N , the mode r̂q = (π − 2πi
N , π − 2πj

N ) = (2π(N/2−i)
N , 2π(N/2−j)

N ) ∈ ÛN

4Clearly it is not a vertex. Nonetheless in the limit N →∞ it will become an important one ans
we should already use this vocabulary.
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if and only if N/2 − i is an integer5, which is clearly true if and only if N is even.
The above arguments prove our prior statement that the polytopes DN are mirror
symmetric with respect to the K1 axis if and only if N is even. Furthermore, odd
polytopes systematically have more faces on the right hand side, than on the left hand
side.

A straightforward consequences of the above proof, also using the definition given
in Eq.5.5, is that D∞ is mirror symmetric and that the faces defined on the antidiag-
onal, defined by F(q(α)) must be mirror symmetric themselves. This result paves the
way to the next section.

5.4.2 Tangent Faces

We empirically observed above that in D8 the inequality defined by q = (3π
4 ,

π
4 ) does

not emerge as a face. This is more general: among all the modes on the antidiagonal,
parametrized by q (α) = (π − α, α) with α ∈

[
0, π2

]
, only the two extremes emerge as

a face. Explicitly substituting the parametrization in F(q) yields

F(q(α)) =

 2 cos(π − α) + 2 cos(α)
2 cos(π − 2α) + 2 cos(π)

2 cos(2π − 2α) + 2 cos(2α)

 =

 0
−2 cos(2α)− 2

4 cos(2α)

 , (5.8)

where, coherently with the previous section, the vector F(q(α)) has a null first com-
ponent. Thus, the family of planes K · F(q(α)) shares the common front edge

(K1,−
1
2 ,−

1
4)T , (5.9)

represented in Fig.5.3b as the lowest left edge in D8.

Clearly, the planes on the anti-diagonal only appear for even N . Among all
planes whose defining mode is on the diagonal, only two contribute with a face on
the polytope, those with an extreme value of α, all the others are only tangent to the
polytope on the degenerate one-dimensional face lying on the common edge. Once
again, the two extreme faces depend on the divisors. One of the two extremes is always
the corner mode q = (0, π) (for α = π). The other extreme has a further dependence
on N , we need to distinguish two cases: if 4 | N the other mode is q = (π2 ,

π
2 ), namely

the horizontal plane which we said to be the floor of the polytope; if N is even but
4 - N , the floor is not horizontal, and it has an orbit size of 8. It can be parametrized
by α = π(N−1)

N and in the limit of big N tends to α = π.

Finally we remark that the above considerations also justifies the formula of
Eq.3.30, for the number of faces of a polytope that we anticipated in Sec.3.2.1.

5.5 The Top of the Polytope, K3 > 0
The position of a mode on the SRBZ relates to specific positions of the relative faces
on the polytopes. Here, we begin showing the mapping of the simplest modes, the
three corners of ÛN , that define the pyramidal top. The top of D4 and D8, and of

5While in general always belongs to Û2N .
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all even polytopes are defined by the modes of Û2; the top of D9 and of the other
odd polytopes only shares with them the mode q = (0, 0), the other two corners are
different for each odd N . We can define

qN =
⌊
N

2

⌋ 2π
N
, (5.10)

to be the upper bound of ÛN on the two coordinate axis. So that, the set of modes
that are mapped to the top of the polytope

V̂N =


{(0, 0)}, N = 1
{(0, 0), (0, π), (π, π)}, N even
{(0, 0), (0, qN ), (qN , qN )}, N odd

. (5.11)

For all even N , qN = π and V̂N ≡ Û2. For odd N , the larger N the more its corners
approach Û2 and accordingly limN→∞ qN = π = qN |N even. This implies that the
three faces binding the pyramidal top of DN , for odd N , are slightly tilted outward
with respect to D2: the larger N the more the top faces converge to to the even top.
The intersection of the three planes defined by the three above vertices, for N > 1, is
given by

vtop(N) =

 vT = (0, 0, 1
4)T N even(

1
4

(
1 + 1

1+2 cos(πN−1
N

)

)
, 0,−1

4
1

1+2 cos(πN−1
N

)

)
N odd , (5.12)

coherently for even N , the first line of the above equation matches vT and, also in
this case, for odd N limN→∞ vtop(N) = vT .

The top of the polytope is defined in the sector H+ = {K|K3 ≥ 0}, so that for
convenience we define D+

N = DN ∩H+. We will now show that for all N , D+
2 ∩D

+
N =

D+
2 , while, using similar arguments one could show that for all odd N and M , with

N > M , D+
N ∩D

+
M = D+

N . Such that, in general

D+
N =

⋃
q∈V̂N

Hq. (5.13)

The proof for even N requires to introduce the parametrization of the two right corners
as qh(α) = (π−α, π−α), which lies on the hypotenuse and qc(α) = (π−α, 0), on the
vertical cathetus, both with α ∈ [0, π]. For completeness, we remember that the third
corner is always q = (0, 0). We now show our claim in two steps: first, we explicit the
edges on the top of the polyhedron; second, we show that the even edges are always
tilted inwards with respect to all the others. We identify the lines where the edges lie
with the edges themselves, these are given by the three pairwise intersections

F(0, 0) ·K = F(0, π) ·K = 1, E0,1 = {K1 = −2K2,K3 −K2 = 1
4};

F(0, 0) ·K = F(π, π) ·K = 1, E0,2 = {K1 = 0,K3 +K2 = 1
4};

F(0, π) ·K = F(π, π) ·K = 1, E1,2 = {K1 = 2K2,K3 −K2 = 1
4};

(5.14)

where the subscripts 0, 1 and 2 of the edges relate to the modes q = (0, 0), q = (π, 0)
and q = (π, π), respectively. Trivially, the three modes of Û2 satisfy the equality
F(q) · Ei,j = 1, for all edges Ei,j . To show our claim, that the corner modes for even
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N are always more internal, our task reduces to show that for all N and for all Ei,j ,
F(q)·Ei,j ≤ 1, for both qh(α) and qc(α). More specifically, the proven symmetry allows
to focus on the two edges E0,1 and E0,2 only. Inserting the above parametrization in
Eq.4.16 yields

F (qF ) · E0,1 = −8K2 + 4K2 + 1 + 4K2 = 1, (5.15)

F (qc (α)) · E0,1 = −2 (2− 2 cosα)K2 − 4 cosαK2 + (2 + 2 cos 2α)
(1

4 +K2

)
= (2 cos 2α− 2)K2 + 1

2 (1 + cos 2α) ≤ 1, (5.16)

F (qh (α)) · E0,1 = 8 (cosα)K2 + (2 + 2 cos 2α)K2 + 4 cos 2α
(1

4 +K2

)
= (2 + 8 cosα+ 6 cos 2α)K2 + cosα ≤ 1, α ≤ π

2 , (5.17)

where the first equality trivially holds and represent the intuitive fact that the ferro-
magnetic phase pertains to any lattice. The second inequality holds for any α, while
the last inequality has the special requirement that α ≤ π

2 . However, this is always
the case for the modes in V̂N , as the extremes of both qc(α) and qh(α) are decreasing
functions of α with upper bound of α ≤ 1/6π for N = 3. Similarly, with respect to
the second edge,

F (qF ) · E0,2 = 4K2 + 4
(1

4 −K2

)
= 1, (5.18)

F (qc (α)) · E0,2 = −4 (cosα)K2 + (2 + 2 cos 2α)
(1

4 −K2

)
= 1

2 (1 + cos 2α)− (2 + 4 cosα+ 2 cosα)K2 ≤ cosα ≤ 1, (5.19)

F (qh (α)) · E0,2 = (2 + 2 cos 2α)K2 + 4 cos 2α
(1

4 −K2

)
= cos 2α+ (2− 2 cos 2α)K2 ≤

1
2 (1 + cos 2α) ≤ 1, (5.20)

where, once again, the first equality shows the ferromagnetic phase, while, the two
inequalities signal a face beyond the edge considered.

Thus, we formalized the intuition that for any even polyhedron, and consequently
for the infinite polyhedron, the region of positive K3 is bounded by the three corner
modes only. The straightforward consequence, is that all the other faces bound the
anti-ferromagnetic K3 domain of DN . Similar relations also holds for odd polyhedra
that can be shown on a case by case basis, as we empirically observed.

5.6 D16: the Fans

The top of the polytope has a simple structure. As we have just shown, it is always
bounded by three faces only, the corner modes. All the other faces emerge in the
negative K3 sector. Here, we address to which phases the borders of ÛN are mapped.
For even N , the borders correspond to all the modes with size 4, which hints an
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0 π

π

U16

(a) Dual polytope of D16. (b) D16. We clearly see the right fan opening
toward the proposed point of view. The underly-
ing modes all lie on the horizontal cathetus. We
further see half of the bottom fan, opening from
vB . All the modes with an orbit size of 8 lie at

the intersection of the two fans.

Figure 5.4: D16 and its dual.

intriguing relation6 among the orbit size and the position of the face on the dual
polytope. To illustrate this feature, we describe here D16, shown in Fig.5.4b. The
simplest polytope that clearly manifests this feature in all its regularity.

Leveraging on the tools provided, we already have some insights, 16 is even
and hence the polytope is symmetric. This also implies that out of the 45 defining
inequalities, only 42 faces appear, as the three modes on the anti-diagonal are only
tangent to the front edge lying on the line K = (K1,−1

2 ,−
1
4)T . Its top is defined by

the corners of U16: q = (0, 0), q = (π, 0) and q = (π, π), are the sole faces emerging
in the K3 > 0 domain. All the other modes have an orbit size of 4 or 8 and are all
constrained in the K3 < 0 region.

On the set ÛN (for even N), the faces with an orbit size of 4 appear on three
sides of the triangle. Each side shares a unique vertex which we named multicritical
point. More specifically, on D16, such multicritical points are the intersection of 9
faces, two of these faces are corner modes while the other 7 are organized in a green
fan, as clearly observed in Fig.5.4b; we see the fan opening from vR, accordingly, we
name it right fan. Symmetric to it, but hidden from our perspective, there is the left
fan. Furthermore, in the same figure, we see only half of the bottom fan, that opens
from the vertex vB.

The faces opening on the right fan are parametrized by q = (α, 0), α ∈ (0, π).
Acccordingly, the vertex vR = (1

2 ,−
1
4 , 0)T is a common point of all the planes

vR · F(q(α)) = 1
2(2 + 2 cos(α))− 1

44 cos(α) + 0 · (2 cos(2α) + 2) = 1. (5.21)

6The same does not hold for odd N . The vertical border has an orbit size of 8. However, this
property holds for N →∞ and is relevant to stress.
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The real space patterns corresponding to the right fan are stripes modulated by the
wave vector, q1. The fan opens toward negative K3 spanning all the phases com-
mensurate with the given size from the ferromagnetic phase (infinite period) to the
striped phase (minimal period). The vertical cathetus is parametrized by q = (π, α),
α ∈ (0, π). Accordingly, the vertex vL = (−1

2 ,−
1
4 , 0)T is a common point and

vL · F(q(α)) = 1. The corresponding patterns are modulated on one direction with
the vector π, a pure anti-ferromagnetic alternation of up and down spins. In the other
direction the modulation varies from a 0 modulation (simple striped pattern) up to a π
modulation (pure anti-ferromagnetic pattern). We refer to the underlying patterns as
staggered n-mers. Lastly, we parametrize the hypotenuse with q = (α, α). As before,
all the planes pass through vB = (0, 1

2 ,−
1
4)T

vB · F(q(α)) = 1
2(2 + 2 cos(2α))− 1

44 cos(2α) = 1. (5.22)

Beyond them, we find chessboard-like patterns, with a modulated square size. The fan
opens from the ferromagnetic (squares with infinite periods) to the minimal square
of the Neel ordered phase. In the final part of this chapter we will see how the fan
converges to cones when we let N → ∞. Reflecting the symmetry of the polytope,
the left and right fans are confined respectively in the negative and the positive K1
region. The bottom fan widely spans the whole K1 axis, going from vL up to vB. The
adjacency relations of all the faces are rather simple. As shown in the dual polytope,
shown in Fig.5.4a. Within the individual fans, the faces are linearly ordered and
only meet all together in the common vertex. There are only two inter-fan adjacency
relations, found right next to the left and right vertices. All the other adjacency
relations are prohibited by the blue faces, the bulk of Û16, all with an orbit size of
8, that arise at the intersection of the three cones. In Sec.5.8, we will address their
complicated distribution only empirically. It is essential to notice a final important
detail: all the blue faces intersect the common plane S = {K | K2 = 2K3}, which we
call the seam plane. The fundamental importance of this will be clarified in the next
paragraph.

5.7 The Natural Coordinate Frame

The Fourier transform of the lattice, as previously remarked, encodes all the informa-
tion on the polytope. It is a function F : R2 → R3, that maps the Symmetry Reduced
Brillouin Zone to a surface embedded in R3. This hints to a dependence between the
three components of F. By highlighting this natural relation we both underline the
importance of the seam plane K2 = 2K3 and introduce two practical advantages. On
the one hand, it simplifies the calculation of the surface reconstruction of D∞ that we
will provide in Sec.5.9. On the other hand, it yields a more robust representation of
the dual polyhedra, as we will subsequently see. Such a relation is nothing else than
a rotation of the reference frame. We remark, that the proposed frame is a mathe-
matical construction and physical insights are better understood in the (K1,K2,K3)T
reference frame. Accordingly, all the proposed results will be brought back to the
original frame.
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Expanding F(q1, q2) in terms of cos(q1) and cos(q2) only

F(q1, q2) =

 2 cos(q1) + 2 cos(q2)
2 cos(q1 − q2) + 2 cos(q1 + q2)

2 cos(2q1) + 2 cos(2q2)

 =

 2 cos(q1) + 2 cos(q2)
4 cos(q1) cos(q2)

4(−1 + cos2(q1) + cos2(q2))

 ,
(5.23)

explicitly hints at the relation of interest

F 2
1 (q) = (2 cos(q1) + 2 cos(q2))2

= 4(−1 + cos2(q1) + cos2(q2)) + 8 cos(q1) cos(q2) + 4 = F3(q) + 2F2(q) + 4.
(5.24)

which introduces the ”natural” parametrization of F(q)

F(q1, q2) = F1(q1, q2)ê1 + F2(q1, q2)ê2 + F3(q1, q2)ê3

= F1(q1, q2)n̂1 + (F2(q1, q2)− 2F3(q1, q2))n̂2 + (2F2(q1, q2) + F3(q1, q2))n̂3,

(5.25)

where
n̂1 = (1, 0, 0)T ,
n̂2 = (0, 1√

5 ,−
2√
5)T ,

n̂3 = (0, 2√
5 ,

1√
5)T ,

(5.26)

is the orthonormal basis that decouples the relation of Eq.5.24. So that we can intro-
duce the coordinates ϕj ≡ F(q) · n̂j . Explicitly

ϕ1 = 2 cos(q1) + 2 cos(q2),
ϕ2 = 4 cos(q1) cos(q2)− 8(−1 + cos2(q1) + cos2(q2)),
ϕ3 = ϕ2

1 − 4,
(5.27)

finally, in this basis the vector defining the polytope reads

F(ϕ1, ϕ2) = ϕ1n̂1 + ϕ2n̂2 + 1√
5

(ϕ2
1 − 4)n̂3. (5.28)

In K space, the transformation induced by Eq.5.24 is a counterclockwise rota-
tion around the K1 axes by an angle of θ = arctan(2). The transformation has the
impressive consequence that tilts vertically the plane K2 = 2K3, where all the faces
of orbit size 8 tend to converge.

We could also regard the transformation as a mapping from the vectors q =
(q1, q2) ∈ U∞ to the vectors ϕ = (ϕ1, ϕ2) ∈ Φ∞. Of which we now investigate the
boundaries. The q vectors are separately constrained as 0 ≤ q1 ≤ π and 0 ≤ q2 ≤ π,
which clearly yields ϕ1 ∈ [−4, 4]. What remains to determine is the relation between
ϕ1 and ϕ2, which is encoded in the first two lines of Eq.5.27. Inverting, we find

ϕ2 = −210 cos2(q1)− ϕ1 cos(q1) + ϕ2
1 − 4√

5
. (5.29)

We recall that our interest is in the value at the border of Û∞. The constrains of the
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Figure 5.5: Domain boundaries of Φ∞. The right and left yellow
circles are the points q = (0, 0) and q = (π, π), the red circle is the point
q = (0, π), while the green lines, given by Eq.5.30 are the hypothenuse
on top and the two catheti the lower bound. Basically the change
of coordinates rotates the the set Û∞ and than bends the two tips

externally.

hypotenuse and the two catheti yields the boundary cos(q1) ∈ [max(−1, 1
2ϕ1−1), 1

4ϕ1].
Plugging the boundaries in the above equation finally yields

Φ∞ = {(ϕ1, ϕ2) ∈ R2 | −4 < ϕ1 < 4,− 2√
5

(2− |ϕ1|)(3− ϕ1) < ϕ2 <
2√
5

(4− 3
8φ2)},

(5.30)
which is graphically represented in Fig.5.5. The green boundaries are the two limiting
curves given in the above equation, the three colored dots represent the three modes
of Û2 and have the usual color coding for the orbit size. The rotated reference frame
not only tilts the seam plane parallel to two of the axes it also induces the mapping
of Û∞ to Φ∞, as we will see in the subsequent section, a better representation of the
dual polytopes.

5.8 D32: Dual Polytopes

So far we have explored the structure of DN limiting our treatment to the corners and
the borders of the SRBZ. Nonetheless, the vast majority of the modes, as N increases
are in the bulk. Their adjacency relations are more complicated and we will address
their distribution only empirically in the description of D32. To this end, it is useful
to first understand the advantage mentioned above in representing the dual polytopes
introduced by the rotated coordinate frame.

The dual polyhedra are planar graphs and always7 verify Euler’s relation

V + E − F = 2, (5.31)

where V is number of vertices, E the number of edges and F the number of faces (we
recall that in the dual the role of faces and vertices is inverted). The graphs of D4, D8,

7It has been verified for all N up to 16, for all even N up to 32, for N = 48 and N = 64.
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D9 and D16, presented above, are the result of an exact numerical processing of the
vertices coordinates. For N > 16 the graphical representation of the dual polyhedra
above Û∞ may have overlapping straight edges. Moreover, any affine transformation of
the set ÛN would map crossing edges to crossing edges and would not provide a planar
representation. The issue is solved by the rotated reference frame, that systematically
disentangles the dual graphs. In Fig.5.6 we show the dual polytopes drawn above Φ∞,
for all even N from N = 4 to N = 32.

The deeper reason of the disentanglement lies in the parametrization of ϕ1 =
cos(q1) + cos(q2), which introduces a linear ordering of all the modes along the in-
tersection with the seam plane. From right to left the plane intersects all the phases
ordered according to the value of ϕ1. And this explains why no edge crossing is ob-
served up to N = 16: for all N ≤ 16 it holds that if q1 > q2 then cos(q1) > cos(q2).
When this relation breaks down there is an overlap in between the edges.

For a more concrete picture of the linear ordering we suggest to look at Fig.5.7,
where we depict8 D32 and more specifically at Fig.5.7a, where we show a detail of it,
the region where the right fan meets the bottom fan. The general structure of the
polytope should now be clear and we will focus on the blue faces. First, we notice
that all the blue faces are smaller than in the polytope D16 and even more clustered
around the common plane. Second, that the seam plane effectively crosses all the
faces. Lastly, that also the face with orbit size 8 appear to be regularly distributed.
The dual polytope is the last plot of Fig.5.6, it encodes the adjacency relation. All
the duals are plotted numerically but with the exact values, however these, could
in principle be drawn following two simple rules, of which we here give a rudimental
prescription. First, one connects all the modes on ΦN with the broken line that follows
from the linear ordering introduced above, connecting q = (0, 0) to q = (π, π). The
second step is somewhat more complicated. all the other edges of the dual polytope
respect the bifurcation process observed in the detail of D32 shown in Fig.5.7a, that
we will now describe. From each pair of blades in the lower fan, we see elongated blue
triangles regularly appearing at all intersections. More specifically, if we zoom in, as
shown in Fig5.7a, we see that from each face of each fan, a bifurcation structure9 of
the blue faces appears. The regularity of this structure is consequently observed on
the dual polytopes and breaks down when it reaches the seam. Where the distribution
of the faces depends on the ϕ1 ordering.

This further explains the observed vertex multiplicities. Other than the multicrit-
ical vertices, all other vertices are the intersection of three faces only, made exception,
for those accidental cases where two modes have the same ϕ1 value.

Finally, before moving to the description of D∞ we propose in table a summary
on the number of faces, phases, vertices and edges for all even N polyhedra up to
N = 48.

8We remark that the one shown is still the original reference frame.
9A similar behavoiur has been previously observed both in the ANNNI model, but in temperature

and by Grousson[39].
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(a) D4 adjacency graph.
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(b) D6 adjacency graph.
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(c) D8 adjacency graph.
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(d) D10 adjacency graph.

-4 -2 2 4

-6

-4

-2

2

4

(e) D12 adjacency graph.
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(f) D14 adjacency graph.
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(g) D16 adjacency graph.
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(h) D18 adjacency graph.
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(i) D20 adjacency graph.
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(j) D22 adjacency graph.
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(k) D24 adjacency graph.
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(l) D26 adjacency graph.
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(m) D28 adjacency graph.
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(n) D30 adjacency graph.
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(o) D32 adjacency graph.

Figure 5.6: Adjacency graphs for the dual polyhedra in the preferred
coordinate frame for all even N from 4 to 32. All the graphs are planar.
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(a) Detail of D32. We clearly observe the bifur-
cation structure of the adjacency relation of the

bulk of the dual polytopes

(b) D32. The fans are more pronounced, the
faces with orbit size 8 smaller in surface and more

clustered around the seam plane

Figure 5.7: D32 and a detail of it.

5.9 Construction of D∞
The structure of DN explored in the previous section is not only fascinating but also
provides crucial ingredients in testing the framework with simulations. However, as
it is common practice in physics we aim to construct D∞, as the behaviour of the
system is truthfully observed in the thermodynamic limit. The top of the polytope,
as proved in Sec.5.5, should still coincide with D+

2 , while all the other infinite faces
only bind the bottom. In the thermodynamic limit the three fans should converge
to three smooth cones where each fan face squeeze to a single rule. The three cones
should meet on a single one-dimensional line, the seam, parametrized by ϕ1, where all
the modes with orbit multiplicity 8 converge.

To construct the infinite polyhedron D∞, we leverage on both the theory of
convex bodies and of ruled surfaces. A convex manifold is in general completely de-
termined by the normal vector at each point. Thus our starting point is F(q1, q2) :
Û∞ → D∞. However, the calculation is tremendously simplified in the natural frame
of coordinates previously presented. Thus, we will work in the Φ∞ domain and even-
tually, we will rotate the final surface back to the original frame of reference.

N 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
F 6 10 14 20 26 34 42 52 62 74 86 100 114 130 146
V 8 13 18 27 36 49 62 77 94 117 134 163 188 215 246
E 12 21 30 45 60 81 102 127 154 189 218 261 300 343 390
V4 0 0 0 0 0 0 2 2 0 4 0 0 2 0 0

Table 5.1: Polyhedra data for the first 14 sets. Where N is the
maximum size of periodicity allowed; F the number of faces; V the
number of vertices; E the number of edges; V4 the number of pairs of

spurious vertices that have to be controlled analytically.
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5.9.1 The Seam

We will show that a set of solutions for

K · F(ϕ1, ϕ2) = 1, (5.32)

is a curve S(ϕ1), that does not depend on ϕ2: we call this curve the seam. Convex body
theory allows to decompose the solutions of the above equation as a linear combination
of the normal unit vector and its derivatives, without imposing any previous knowledge
we assume a general dependence on ϕ2.

For further convenience, as it is common practice, we bring the function in nor-
malized form

K · û(ϕ1, ϕ2) = 1
|F(ϕ1, ϕ2)| ≡ h(ϕ1, ϕ2), (5.33)

where we introduced both the unit normal vector

û(ϕ1, ϕ2) = F(ϕ1, ϕ2)
|F(ϕ1, ϕ2)| = 1√

1
5(16− 3ϕ2

1 + ϕ4
1) + ϕ2

2

 ϕ1
ϕ2

ϕ2
1 − 4

 , (5.34)

and the support function

h = 1√
1
5(16− 3ϕ2

1 + ϕ4
1) + ϕ2

2

, (5.35)

basically the normalization constant.

The partial derivatives of the normal vector û

∂1û = 1
(ϕ4

1−3ϕ2
1+5ϕ2

2+16)3/2


√

5
(
−ϕ4

1 + 5ϕ2
2 + 16

)
√

5ϕ1
(
3− 2ϕ2

1
)
ϕ2

5ϕ1
(
ϕ2

1 + 2ϕ2
2 + 4

)
 ,

∂2û = 1
(ϕ4

1−3ϕ2
1+5ϕ2

2+16)3/2

 ϕ1ϕ2√
5
(
ϕ4

1 − 3ϕ2
1 + 16

)
5
(
ϕ2

1 − 4
)
ϕ2

 ,
(5.36)

span the tangent plane to the surface S(ϕ1, ϕ2) and by definition the above derivatives
are orthogonal to û. Thus, the triple {û, ∂1û, ∂2û} form an orthogonal basis on every
point of the surface. This implies that any decomposition of S(ϕ1, ϕ2) of the form

S(ϕ1, ϕ2) = h(ϕ1, ϕ2)û(ϕ1, ϕ2) + γ1(ϕ1, ϕ2)∂1û(ϕ1, ϕ2) + γ2(ϕ1, ϕ2)∂2û(ϕ1, ϕ2),
(5.37)

satisfies Eq.5.32, where we introduced the simplified the notation ∂
∂qi
≡ ∂i.

An equation for the coefficients γ = (γ1, γ2)T can be found deriving the support
function

∂ih(ϕ1, ϕ2) = (∂iû(ϕ1, ϕ2))S(ϕ1, ϕ2) + û(ϕ1, ϕ2)(∂iS(ϕ1, ϕ2))
= (∂iû(ϕ1, ϕ2))S(ϕ1, ϕ2),

(5.38)
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where the second term vanishes because the derivatives of ∂iS(ϕ1, ϕ2) is trivially
orthogonal to û(ϕ1, ϕ2). Introducing the ansatz of Eq.5.37 in the above derivative,
sets an equation for the coefficients γ1 and γ2

(∂1û) · S = γ1∂1û · ∂1û + γ2∂1û · ∂2û = ∂1h, (5.39)
(∂2û) · S = γ1∂2û · ∂1û + γ2∂2û · ∂2û = ∂2h, (5.40)

which in matricial form is(
∂2û · ∂2û −∂1û · ∂2û
−∂2û · ∂1û ∂1û · ∂1û

)(
γ1
γ2

)
=
(
∂1h
∂2h

)
. (5.41)

By inverting the above equation, we find(
γ1
γ2

)
= 1

∆ (û)

(
∂2û · ∂2û −∂1û · ∂2û
−∂2û · ∂1û ∂1û · ∂1û

)(
∂1h
∂2h

)
, (5.42)

where ∆(û) is the determinant of the Jacobian of u(ϕ1, ϕ2). The explicit calculation
yields

γ1 =
ϕ1
(
3− 2ϕ2

1
)√

ϕ2
2 + 1

5
(
ϕ4

1 − 3ϕ2
1 + 16

)(
ϕ2

1 + 4
) 2 , (5.43)

γ2, = −
(
4ϕ2

1 + 5
)
ϕ2
√
ϕ2

2 + 1
5
(
ϕ4

1 − 3ϕ2
1 + 16

)(
ϕ2

1 + 4
) 2 . (5.44)

Finally we plug the above result in the ansatz of Eq.5.37, and the seam finally reads

S(ϕ1) =


2ϕ1

4+ϕ2
1

0
−
√

5
4+ϕ2

1

 , (5.45)

independently on ϕ2, or equivalently in the original frame

S(q) =


2(2 cos(q1)+2 cos(q2))

4+(2 cos(q1)+2 cos(q2))2

− 2
4+(2 cos(q1)+2 cos(q2))2

− 1
4+(2 cos(q1)+2 cos(q2))2

 . (5.46)

This result formalizes both our previous claim of a linear ordering of the modes,
and that all the modes with an orbit size 8 shrink to a single point. In a certain sense,
the seam can be interpreted as a manifestation of the devil’s staircase modulated by
a parameter rather than temperature.

5.9.2 Ruled Surfaces

In Sec.5.6 we showed that the modes with orbit size 4 bifurcates from the disorder
region on faces distributed as fans opening from each of the three multicritical vertices
vL, vR, vB. In the infinite limit each face shrinks to a single rule and the fans becomes
skewed cones which we name CB, CL and CR. Mathematically, the cones are the
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envelopes of a one parameter family of planes with vanishing gaussian curvature, thus
can be described in the formalism of developable surfaces[74].

Without loss of generality, we parametrize the cones as ruled surfaces

Ci(ϕ1, t) = S(ϕ1) + tri(ϕ1), (5.47)

where S is the seam, ri are the director coefficients and t a real parameter. A ruled
surface is developable[75] when the vectors (ri, dri

dϕ1
, dS
dϕ1

) are linearly dependent

det(ri,
dri
dϕ1

,
dS
dϕ1

) = 0. (5.48)

The above condition is met if we assume that the director of coefficents is of the
form

ri = S− vi, (5.49)

where vi are the coordinates of the three multicritical vertices, first mentioned in
Sec.5.3. Thus, the task of finding a parametric equation for the cones reduces to
verify that the normal vector to the cones evaluated at the seam (t = 0) matches the
normal vector F(ϕ1, ϕ2). As before we compute the normal vector to the cone as the
cross product of the partial derivatives

Ni(ϕ1, t) = ∂Ci

∂ϕ1
× ∂Ci

∂t
= dS
dϕ1
× ri(ϕ1) + t

dri
dϕ1
× ri(ϕ1). (5.50)

The two vectors, although supposedly parallel, are not equal in length and to effectively
compare the two we need to find the scaling constant. Without loss of generality, the
scaling constant is found taking the ratio |F(ϕ1, ϕ2,max)|/|Ni(ϕ1, 0)|, which yields
1
2(ϕ2

1 +4)2 for the bottom cone and −2(ϕ2
1 +4)2 for the left and right cones, where the

minus indicates that the two vectors are anti-parallel. With this magnitude correction,
we proceed verifying that the two cones satisfy the mentioned relation.

We begin with the bottom cone. The condition that we want to be verified is
NB(ϕ1, 0) = F(ϕ1, ϕ2,max). Explicitly,

√
5vB,2ϕ1 = ϕ1

−(
√

5(vB,1ϕ1 − 1) + vB,3(ϕ2
1 − 4)) = −2(

3ϕ2
1

8 −4)√
5

vB,2(ϕ2
1 − 4) = ϕ2

1−4√
5

, (5.51)

where clearly from the first and last equations vB,2 = 1√
5 . Rearranging the second one

vB,3 = 3
4
√

5
− vB,1

20ϕ1

(−4 + ϕ2
1)(4
√

5)
, (5.52)

we see that the only possibility is vB,1 = 0 as we assumed the vertices to be indepen-
dent on ϕ1. As expected, the vertex vB = (0, 1√

5 ,
3

4
√

5)T and, when rotated back to
the original coordinate frame, we recover the bottom vertex vB = (0, 1

2 ,−
1
4)T .
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Figure 5.8: Graphical representation of D∞. From this point of view
for ferromagnetic K3 we see the yellow and red faces, the bifurcation
surface to the ferromagnetic phase and the striped phase respectively.
Behind the polytope, symmetric the yellow face the bifurcation surface
to the Neel ordered phase. At the intersection of the red and yellow
faces at K3 = 0 lies the vertex vR from where the cone CR opens. On
the left of the figure we also see a glimpse of CL. The two cones meet
at the central point of the seam S, here colored in blue. Under the
seam, also colored in green we finally see the cone CB , opening from

vB .

We proceed similarly for the vertices vL and vR. As before we set the equation
NL,R(ϕ1, 0) = F(ϕ1, ϕ2min), explicitly
√

5vL,R,2ϕ1 = 4
√

5vL,R,2ϕ1 + ϕ1

−(
√

5(vL,R,2ϕ1 − 1) + vL,R,2(ϕ2
1 − 4)) = −4(

√
5(vL,R,2ϕ1 − 1) + vL,R,2(ϕ2

1 − 4))− 2(|ϕ1|−3)(|ϕ1|−2)√
5

vL,R,2(ϕ2
1 − 4) = 4vL,R,2(ϕ2

1 − 4) + ϕ2
1−4√

5

.

(5.53)
From the first and last equations we find vL,2 = vR,2 = − 1

4
√

5 . While we can rearrange
the second one as

10v1ϕ1 = −5|ϕ1|+ (ϕ2
1 − 4)(1 + 2

√
5vL,R,3), (5.54)

where the second term vanishes only for v3,L = v3,R = − 1
2
√

5 , so that the the first
coordinate finally reads v1,L = v1,R = − sign(ϕ1)

2 . Rotating back to the physical frame
the two vertices read vL = (−1

2 ,−
1
4 , 0)T and vR = (1

2 ,−
1
4 , 0)T , which as before exactly

recover the vertices, first introduced in Sec.5.3.
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5.9.3 The Boundary in the Thermodynamic Limit

We can now give a full analytical characterization of the disorder region of stability,
shown in Fig.5.8

∂D∞ =



conv{vT ,vR,vB} ⊂ 4K1 + 4K2 + 4K3 = 1
conv{vT ,vL,vB} ⊂ −4K1 + 4K2 + 4K3 = 1
conv{vT ,vR,vL,vF } ⊂ −4K2 + 4K3 = 1
K = S(q, q) + t(S(q, q)− vB), q ∈ [0, π], t ∈ [0, 1]
K = S(q, 0) + t(S(q, 0)− vR), q ∈ [0, π], t ∈ [0, 1]
K = S(π, q) + t(S(π, q)− vL), q ∈ [0, π], t ∈ [0, 1]

,

(5.55)
where by conv{. . . ,vi, . . . }, we denote the convex polygon bounded by the vertices
within the brackets.

It consists of six surfaces only, the first three terms are polygons binding the
upper part, the last three terms are the three cones binding the lower part. For
ferromagnetic K3 we proved in Sec.5.5 that the disorder region is bounded by three
planes only and exactly match D2, whose tip vT = (0, 0, 1

4)T we introduced in Sec.5.3.
For any even N ≥ 4, the ferromagnetic and anti-ferromagnetic faces are quadrangolar,
while the striped face is a pentagon. In the limit for N → ∞ all three faces lose an
edge in the region K3 < 0: the two lower edges of the (anti-)ferromagnetic face align
on the edge that connects the back vertex vB = (0, 1

2 ,−
1
4)T to the right(left) vertex

vR = (1
2 ,−

1
4 , 0)T (vL = (−1

2 ,−
1
4 , 0)T ); the front edge of the striped face (introduced

in Sec.5.4.2), in this limit, converges to a single vertex vF = (0,−1
2 ,−

1
4)T . In the

previous section we derived the analytical equations of the three cones binding the
bottom of the region. It suffices to remember that each of the three cones opens from
one of the three pairwise intersections of the upper polygons and has the basis lying
on the seam. The left cone apex is vL, its basis is the arc of the seam going from the
point S(0, 0), lying on the bottom edge of the ferromagnetic face, to S(π, 0) ≡ vF .
Symmetric to it with respect to K1, the right cone basis is the seam arc going from
vF to S(π, π). While the bottom cone opens from the vertex vB and its basis exactly
matches the seam in its full width.

5.10 Summary

For finite N the polyhedra are bounded whenever N ≥ 4. The relative position of
a mode on the SRBZ plays an important role. The top of the polytope is always
given by three modes only, those at the corner of ÛN . The bottom of the polytopes
is predominantly dominated by the modes on the border of the SRBZ that organizes
in three fans opening from the three multicritical vertices. For even N the borders
exactly matches the modes with an orbit size of 4. The bulk of the modes has orbit
size 8 and always appear clustered in small facets all tangent to a single curve S(q).
In the limit N → ∞ the fans converge to cones and the multitude of small facets
converge to single points lying exactly on the seam.

The rest of the thesis is dedicated to numerically assess the validity of the pre-
dictions for the possible order-disorder transitions that follow from the polytopes at
fixed N .
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Chapter 6

Simulations

We aim to numerically test the degree of accuracy of the physics encoded in the
polytopes predicted by Mean Field Theory. Our major purpose is to inspect whether
the dominant mode bifurcates from the disorder solution along the radial direction of
the faces predicted by our theory. To meet our goal, the simple choice of a spin flip
Metropolis algorithm, as we will argue, is well suited: we are not interested in low
temperature or critical phenomena, rather in observing the onset of a phase.

We will also empirically address the physics beyond the (first) bifurcation surface.
First, we test the precision of the predicted critical temperature. Our expectation
is that mean field theory systematically overestimates (underestimates) the critical
temperature (inverse temperature). Second, we look for mode coexistence: our theory
only predicts what the dominant mode is, while a phase might be fully defined by
the superposition of a set of concurring modulations. We further discuss this topic in
the outlook (Sec.7.2). Finally, we hint at the presence of subsequent phase transitions
beyond the predicted bifurcation surfaces. Long range lattice models, as argued in the
introduction (Sec.1.1), may exploit multiple phase transitions up to the emergence of
a full devil’s staircase of infinite modulated phases, that has been observed e.g. in the
ANNNI model. Considering only lattices constrained by PBC, we expect that only
a subset of modulations compatible with the lattice structure may emerge. Thus,
Periodic Boundary Conditions may also constrain the hypothetical devil’s staircase
to a finite number of phase transitions. To shed light on this subtle hierarchy of
transitions we will compare simulations on the same dominant mode but on lattices
of increasing commensurate sizes.

We stress that the interpretation of some results is ambiguous, in such cases, we
will only describe what we see rather than provide explanations.

In Sec.6.1, we review the basic workings of the Metropolis algorithm and its
specific usage in the present context. The observables of interest to fulfill the scopes
described above are introduced in Sec.6.2. Finally, the results are presented in Sec.6.3.

6.1 Metropolis

A many body system is fully understood when the probability distribution of Eq.4.1
is known . The average of an observable at fixed temperature could then be computed
as a sum over uniformly sampled configurations weighted by the probability. However,
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on an Ising model with M sites, there are 2M configurations and a full enumeration
is generally unfeasible.

The Metropolis algorithm[76] circumvents the above issues considering only con-
figurations according to their probability weight, technique called importance sam-
pling. The idea of stochastic sampling dates back to early 19th century to an intuition
by Laplace. However, without the development of computers, the method was imprac-
ticable. The turning point came in 1940 with America entering the second world war
and the consequent funding to the development of the computer ENIAC to simulate
neutron diffusion in nuclear bombs. Nonetheless, the project, supervised by the Greek
physicist Nick Metropolis was not completed until 1947. The Metropolis algorithm
is nowadays widely used and many instructive manuals are available[77]. Given an
arbitrary initial configuration C0, the essential idea is to generate a Markov Chain of
configurations proposing a small change in the previous step that can be either ac-
cepted or rejected. The procedure is effective whenever the system is ergodic and the
Markov Chain respects detailed balance. Ergodicity is the requirement that given any
two configurations X and Y , there is a non zero transition probability W (X → Y )
from one to the other. Detailed balance is the very core of the algorithm and gives the
practical rule to accept or reject a move. The derivation is easy and brief to sketch.
The starting point is the master equation of the Markov Chain

dPX
dt

=
∑
X 6=Y

[PY (t)W (Y → X)− PX(t)W (X → Y )], (6.1)

where PX(t) is the probability of a configuration at time t, which we will assume to
be time independent and to coincide with the Boltzmann weight. For a stationary
process (dPXdt = 0) the master equation immediately reduces to the condition known
as detailed balance

PYW (Y → X) = PXW (X → Y ), (6.2)

where we dropped the time dependence. The above equation can be further decom-
posed factorizing the transition probability in a trial and an acceptance probability
W (X → Y ) = T (X → Y )A(X → Y ), substituting above

PY T (X → Y )A(X → Y ) = PXT (Y → X)A(Y → X), (6.3)

where, noticing that the probabilities are known (and are given by the Boltzmann
weight of Eq.4.1) and that one of the two acceptance probability can be arbitrarily
set to 1, all the effort is devoted in finding the appropriate trial move such that it can
be mathematically modelled, as well as, well performs for the given purposes. For our
current purposes, we will use a spin flip move, the trial probability is T (X → Y ) = 1

M ,
with M the number of sites in the system. Inverting the equation above, the final
acceptance (rejection) rule for the system under investigation becomes

A(X → Y ) = min{1, e−β(EX−EY )}, (6.4)

which can be easily implemented.
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6.1.1 Usage

The most important quantity when dealing with Monte Carlo simulations is the corre-
lation time among successive configurations. The use of a Markov Chain intrinsically
generates subsequent correlated configurations, such that, the hypothesis of the cen-
tral limit theorem are not verified. Thus, to take averages one has to wait for the
configurations to decorrelate. To this end, one should in principle take one mea-
surement every correlation time1, heavily reducing the number of measurements. A
common technique that circumvents the issue and yields more solid measurements is
block averaging. Instead of taking one measurement per correlation time, one mea-
sures the observables at all steps and eventually divides the measurements in blocks of
size greater than correlation times. The final results are then calculated as averages of
block averages. This procedure is of further practical advantage. It allows to use only
rough estimates of the correlation time without affecting the number of measurements
taken.

The correlation time strictly depends on the temperature regime and the move
implemented, our choice of the simple spin flip move yields low correlation times
at high temperature and far from criticality. It is the perfect choice as we are not
interested in low temperature physics, neither in accurate measurements at criticality.

The Metropolis algorithm consists in some infrastructure wrapped around the
acceptance rule: first, one initialize the system and waits for it to equilibrate2; next, a
double loop over the number of blocks and the number of Monte Carlo steps per block
encloses the trial move and its acceptance/rejection rule. At each step the observables
of interest are measured and are averaged at the end of each block. Finally, at the
very end, one takes the final averages over the block averages.

Typically, the Metropolis algorithm usage consists in simulating the Hamiltonian
at different temperatures in a desired interval. We are interested in assessing the
emergence of a mode beyond a face of the polytopes. To this end, we ran Monte Carlo
simulations along straight rays in reduced coupling parameter space (introduced in
Sec.4.2), starting from the infinite temperature point, (the origin of parameter space)
and running through the centroid of each predicted face. There is some freedom in
fixing the scale of the coupling parameters. The natural choice is to take the values
at the centroid of a face, thus using inverse temperature units, This choice has the
advantage of a simpler comparison with the predicted critical temperature which is
always Tc = 1, and the disadvantage that it does not allow to directly compare the
critical temperature for different faces.

Finally, we make an important remark. Usually, finite size can dramatically
affect results of the simulations, especially at criticality. Phase transitions are defined
in the thermodynamic limit and the finite size simulations introduce systematic errors
in the measurement of the observables which are hard to take into account, e.g., the
smaller the size, the lower the ”divergence” peak of the susceptibilities and the more
slightly shifted to the left(right). The most simple way to circumvent the problem is
to increase the system size to the limit of the computational resources available. On

1It is a rule of thumb: usually it is suggested to wait one or two correlation times.
2Starting with a random configuration, one typically waits two or three correlation times for the

system to equilibrate.
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the contrary, our interest lies in simulating systems at specific finite sizes. We are
interested in testing whether we have the correct predictions on the finite lattices LN
in periodic boundary conditions, where only a limited number of phases emerges due
to the arguments presented in Sec.2.3.1. Thus, finite size systems are advantageous
for our scope: we focus in detecting the sole modes compatible with the underlying
lattice structure, where finite size effects are intrinsically present.

6.2 Observables

For the purpose of detecting the dominant modes beyond a bifurcation surface, we are
only going to take into account four observable quantities. We measured the energy,
the order parameters and their susceptibilities. The simplest indicators of a phase
transition are the average energy E = 〈H〉, measured directly form the definition of
Hamiltonian of Eq.2.3 and its fluctuation, the specific heat

CV ≡
∂E

∂T
= ∆E2

kbT
= 〈E

2〉 − 〈E〉2

kbT 2 , (6.5)

which can be directly computed taking the square of the energy. The specific heat is
expected to peak at a phase transition but does not directly provide information on
the specific phase. To tell phases apart, we measured the order parameter of Eq.2.17

µq ≡
1
|D4|

∑
g∈D4

m∗gqmgq, (6.6)

where we remember that D4 is the dihedral group of order four (Sec.2.2) and g ∈ D4.
Per each simulated lattice size there are a number of order parameters equal to the size
of the respective SRBZ. The expectation is that, beyond each face of the polytope, only
the dominant predicted mode emerges. A stronger[why] indication of the occurrence
of a phase transition is given by the order parameter susceptibility per spin

χq = ∂µq
∂T

=
∆µ2

q

kbT
=
〈µ2
q〉 − 〈µq〉2

kbT
. (6.7)

For the practical purpose of evaluating the performance and the reliability of the
algorithm, we measured the correlation time. Its estimate has been performed taking
the suggestions of Barkema[77]: first, calculating the integral of the auto-correlation
function a(t) of an observable

a(t) ∼ e−
t
τ , (6.8)

where τ is the correlation time; next, taking as estimate for τ the numerical integral
of the above equation ∫ ∞

0

a(t)
a(0) =

∫ ∞
0

e−
t
τ = τ. (6.9)

The bottleneck of the calculation lies in the numerical measurement of a(t). If we
suppose to begin the measurement at t = t′ and to let it run for tmax steps, the
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auto-correlation function ξq for each of the order parameters is given by

ξq = 1
tmax − t

tmax−t∑
t′=0

µq(t′)µq(t+ t′)− 1
tmax − t

tmax−t∑
t′=0

µq(t′)
(

1
tmax − t

tmax−t∑
t′=0

µq(t+ t′)
)
,

(6.10)
so that the integral of Eq.6.9 trivially follows as a sum of all the discrete values.

The above procedure is a computationally intensive measurement both in time
and memory: it requires to store all the measurements and the computation time scales
quadratically with the number of steps. Moreover, one does not know beforehand the
correlation time.

6.3 Results

The code has been implemented in C++ and optimized with the aid of the time
profiler available in the Xcode suite. The energy calculation has been optimized mea-
suring the energy difference of the flipped spin neighbourhood only, to further speed
up the calculation of the order parameters the cosines of the compatible modes have
been tabulated. The bottleneck of the computation is the measurement of the order
parameters, even with a full tabulation of the cosines involved. It requires a loop over
the whole lattice per each compatible mode. Furthermore, it scales quadratically both
with the linear size N of the lattice considered and the number of modes to account
for.

The simulations were performed on the cluster Hollandia at Amolf. It consist of
40 Intel Xeon E5-2697 v4 CPUs where temperature sampling where run in parallel.
The correlation time measurement makes exception, it is a linear and heavy calcu-
lation, more conveniently performed on the other available Dual-Core Intel Core i5
processor.

We will begin presenting the simulations on L4 as an introductory example to
the trends and the visualization of the result. Increasing the size of the lattice we will
subsequently show the simulations on L6, where we first witness mode coexistence.
The smallest lattice that clearly exhibits the phenomenon of subsequent phase tran-
sitions is L8. Finally, to compare lattices with commensurate phases we will compare
the simulations on L4 and L6 with those on L12.

For the simulations on the lattices L4, L6 and L8, we the took a uniform tem-
perature sampling of 40 temperature points equi-spaced in the range from T = 1 to
T = 3 and 45 temperature points equi-spaced in the range T = 0.1 to T = 1. While
on L12, we refined the precision to ∆T = 0.01 in the interval T = 0.1 to T = 0.5.
For each simulation we set a fixed number of blocks to NBLOCKS = 100, and varied
the number of steps per blocks according to the measured correlation time. There-
fore, the total number of MC steps NBLOCKS = 100 for each simulation is computed
as NTOTAL = NBLOCKSNSTEPS. The correlation time with respect to which we set
NSTEPS, has been taken as the maximum among the energy correlation time and the
order parameter correlation time, one per each compatible mode. We systematically
observed (and it stands to reason) that the highest correlation times are those of the
emergent modes and the energy. On L4 we measured a correlation time of 16000
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steps at T = 0.1 that already decreases under 100 steps at T = 0.4. Similarly, on
L6 we measured a correlation time of 33000 steps at T = 0.1 that also goes under
100 at T = 0.4. The measurement of the correlation time on L8 and L12 was not
successful at low temperature: the minimum correlation time measurement on L8 was
of 33000 steps at T = 0.12, while at T = 0.1 we attempted the measurement up to
300000 steps, but without observing any decorrelation. A similar issue has been en-
countered on L12, where we found as lower bound for the correlation time at T = 0.11
500000 steps, while at T = 0.12 we measured a correlation time of 33000 steps as
for L8. As before, the correlation time on both L8 and L12 decrease to few hundreds
above T = 0.4. According to the correlation time measurement and to produce solid
measurement we have almost always set a number of steps per blocks way above the
canonical choice of three times the correlation time. For the simulations on L4 and
L6 we set NSTEPS to 500000 up to T = 0.2, to 100000 up to T = 0.4 and to 10000
for higher temperatures. On L8 and L12 we also set NSTEPS to 10000 for T > 0.4,
while for lower temperatures we set NSTEPS to 2 105 for 0.2 < T ≤ 0.4 and to 106

for T ≤ 0.2. These include the above mentioned temperatures whose correlation time
measurement was not successful.

Each size simulated consists of multiple plots, each providing interesting insights
on the physics going on. Among the variety of the measurements performed, per each
size simulated we will show all the order parameters per each bifurcation surface. To
give an intuitive representation of the emergence of the predicted dominant mode,
the plots are organized to mimic the geometry of the Symmetry Reduced Brillouin
Zone. The greater the size, the more various the behaviour of the phases. To address
this diversity we will further show the energy, specific heat and susceptibility of the
phases that, case by case, are deemed more interesting. Moreover, to compare with
the theoretical prediction, in all the plots a dashed pink line stresses the theoretical
critical temperature. In the more interesting cases, the phase transition happens
roughly around T = 0.25, thus, to emphasize the low temperature physics we show
the plots in units of β, as it dilates the more interesting low temperature phenomena.

6.3.1 L4

The SRBZ U4 has six elements, the corresponding simulations are shown in Fig.6.1.
Each of the six simulations on this lattice behave exactly as expected. Beyond the
centroid of each face, only the predicted dominant mode emerges. All the other modes
completely vanish beyond the phase transition. We remember that the corresponding
ground states are known and have already been reported in Fig.2.3. The plots only
differ in the steepness of the curves3. The three modes in the corners behave roughly
similarly, while the double checkerboard phase begins arising for slightly lower β. This
is true also for the staggered dimer and double striped phases, although their curves
reach a steady value of the order parameter at a higher β. Furthermore, we notice a
remarkable feature that we will also find on all the other lattices: the plots reflect the
symmetry of the SRBZ with respect to the anti-diagonal, retaining the K1 symmetry
of the polytopes treated in Sec.5.4.1. More specifically, the plots of q = (0, 0) and
q = (π, π) as well as the pair q = (0, π2 ) and q = (π, π2 ) are exactly equal, also in the
vanishing trend of the other modes.

3This is emphasized by the susceptibility plots which we do not show here.
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Figure 6.1: Order parameters of the six phases compatible with lat-
tice L4. The plots are organized to mirror the geometry of the SRBZ
U4. Beyond each bifurcation surface the sole mode emerging is the

predicted mode.
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(a) Energy (red) and heat capacity (blue).
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(b) Order parameter (green) and susceptibility
(purple). The trend of the presented observables
perfectly mimic the classic behaviour of a nearest

neighbour Ising model.

Figure 6.2: Simulation details of the phase q = (π, π2 ) on the lattice
L4.
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Figure 6.3: Order parameters of the ten phases compatible with lat-
tice L6. The plots are organized to mirror the geometry of the SRBZ
U6. Beyond each bifurcation surface we observe different behaviours.
The corners are well behaved, while all other modes hint at coexistence.

Finally, in Fig.6.2 we show the details of the simulation of the staggered dimer
phase. An uncommon but well behaved phase that we will use as a term of comparison
for further simulations. All plots are shown with their standard deviation, the error
bar is often smaller than the marker. On the left, in Fig.6.2a we show the energy E
and the heat capacity CV . On the right plot, in Fig.6.2b, we show the order parameter
µ(π,π2 ) and its susceptibility χ(π,π2 ). The energy reaches a minimum value of 0.5. On
both plots, the peaks of the correlation function signals a phase transition at roughly
β ∼ 2. The low height of the peaks is due to size effects on the very small 4×4 lattice.

6.3.2 L6

More interesting behaviours are observed beyond the ten faces of D6. In Fig.6.3 we
show the plots of the order parameters, organized as the respective SRBZ. As before,
it clearly stands out that the expected dominant mode emerges beyond each face.

The three corner modes, also shared by U4, behave exactly as before: only the
dominant mode arises, while all the other modes completely vanish. Beyond all the
other seven faces we clearly see mode coexistence. The dominant mode takes over
without reaching the value of 1, while a very small component of each of the other
modes survives until low temperature but in a flat trend.

The symmetry of the plots with respect to the anti-diagonal implies that we can
restrict our attention to four plots only. To this regard, we notice that the behaviour of
a phase does not strictly depend on the parity of the complexity of a mode. The modes
with complexity (we have defined the complexity in Sec.3.1.1) C(q) = 3, q = (2π

3 ,
2π
3 )
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(a) Energy and specific heat. The specific heat
weirdly grows at low temperature.
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(b) Order parameter and susceptibility. The or-
der parameter grows very slowly. The suscepti-
bility has a double bump, the second one followed

by high fluctuations.

Figure 6.4: Simulation details of the mode q = (π, π3 ).

and q = (2π
3 , 0), are symmetric to modes with complexity C(q) = 6 but behave exactly

in the same manner. Thus, parity is not a good indicator of the underlying physics.

To further understand the details of the mentioned behaviour, in Figs.6.4 and 6.5
we compare the transitions toward the phases q = (2π

3 ,
2π
3 ) (equivalently q = (π3 ,

π
3 ))

and q = (π, π3 ) (equivalently q = (2π
3 , 0). The reason of this choice is that q = (2π

3 ,
π
3 ) is

rather well behaved, while q = (π3 , 0) (and q = (π, 2π
3 )) behave similarly4 to q = (2π

3 , 0).

The mode q = (π, π3 ) is symmetric to q = (0, 2π
3 ). The energy and CV are shown

in Fig.6.4a. We notice two things, first and most important the CV appears to slightly
grow again beyond the first peak, which might be indicative of a subsequent phase
transition. Second we notice that the energy, compared to Fig.6.2a, decreases very
slowly and without any inflection points. A very similar thing occurs for, respectively,
the susceptibility and the order parameter, shown in Fig.6.4b. The order parameter
grows very slowly up to a maximum value lower than 1. While the susceptibility has
an unexpected behaviour, coherently with the signal in the CV , it also has a double
bump. Furthermore, it also shows very wide low temperature fluctuations. This
behaviour is compatible with frustration, where there is no long range order and both
the specific heat and the susceptibility do not have a divergence point[29]. However,
we cannot exclude a heavy influence of finite size effects.

The plots of Figs.6.5a and 6.5b are indicative of a phase transition toward q =
(2π

3 ,
2π
3 ) (equivalently q = (π3 ,

π
3 )). The energy has a behaviour similar to the previous

one, however, the specific heat vanishes for high β without any hint to subsequent
phase transitions. The order parameter slowly grows up to a maximum value lower
than one. The surprising behaviour comes from the susceptibility, after the first peak
it goes down to reach a maximum value higher than the first peak at T = 0.1, with
respect to the suceptibility of q = (π, π3 ), with a very low standard deviation. We will
not further comment upon this unexpected behaviour, it is nonetheless worth to point
out that it might be explained in terms of the ground states (compare to Sec.7.1).

4In Sec.7.1 we will make the first step toward the ground states, which hints at the reason of the
similarity.
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(a) Energy and specific heat. Other than then
very low peak, the trend matches the expected

behaviour.
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(b) Order parameter and susceptibility. The or-
der parameter is well behaved, while the suscep-

tibility appears to diverge at very high β.

Figure 6.5: Simulation details of the mode q = ( 2π
3 ,

2π
3 ).

6.3.3 L8

The behaviour of the simulations on L8 are very diverse and reflect the more interesting
features of U8 with respect to the previous lattices. It is defined by 15 inequalities,
with 9 new modes of complexity 8. Out of these 6 have an orbit size of 4 and three
an orbit size 8, with the first appearance of a degenerate face.

In Fig.6.6 is shown the standard mosaic. Once again, our theory always predicted
the correct first bifurcation mode, nonetheless the clear presence of subsequent phase
transitions requires some more attention to notice. Once again, the modes shared by
L4 behave in exactly the same way. The two non-degenerate modes with an orbit
size of 8, q = (π2 ,

π
4 ) and q = (3π

4 ,
π
2 ), have a very simple behaviour that recalls

the behaviour of the mode q = (2π
3 ,

2π
3 ) on L6, whose details have been previously

discussed: the predicted dominant mode arises with only minor contributions from the
others. Moreover, the physics beyond the vertex vF , shows an interesting transition
toward a phase defined by three emerging modes. Among the other plots we manifestly
recognize roughly two different behaviours: subsequent phase transitions, and mode
coexistence.

Subsequent phase transitions are observed beyond all the faces with a complexity
C(q) = 8 and an orbit size 4. We correctly predict the first emerging mode, while
the system appears to systematically settle on the ground state of the corner mode
next to it. There is a difference however in between the modes on the two catheti
q = (π4 , 0) and q = (3π

4 , 0), where the second phase transition is observed roughly at
β < 4, and the mode on the hypotenuse q = (π4 ,

π
4 ), where the second phase transition

is only hinted at very low temperatures5.

In Fig.6.7 we investigate the details of the simulation beyond the face defined by
q = (3π

4 , 0). The clear double transition observed in the order parameter plot, is only
partially confirmed by the susceptibilities shown in Fig.6.7b: the susceptibilities of
the modes q = (π, 0) and q = (3π

4 , 0) appear to peak at the same inverse temperature
5As previously stated, the correlation time of the last two points might have been underestimated.

However the trend of the corner mode emerging at low temperatures already begins at solid measure-
ments.
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Figure 6.6: Order parameters of the fifteen phases compatible with
lattice L8. The plots are organized to mirror the geometry of the SRBZ
U8. We observe all the aforementioned behaviours beyond the faces:
the corners are still well behaved; some modes on the borders clearly
show subsequent phase transition; the simulation beyond the front edge

shows a transition to a phase clearly defined by mode coexistence.
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(a) Energy and specific heat. The specific heat
clearly peaks around β ∼ 4, nonetheless around
β ∼ 3, where the predicted order parameter
peaks before vanishing, there is curious abrupt
change in the slope. Accordingly, the energy also
appear to change inflection around the same tem-

perature.
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(b) Susceptibilities of the predicted mode q =
( 3π

4 , 0) and of the subsequent phase q = (π, 0).
Both peak at roughly β = 4.

Figure 6.7: Simulation details of the mode q = ( 3π
4 , 0).
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(a) Energy and specific heat of the system. The
behaviour is rather clean, the specific heat has a

single peak before vanishing.
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(b) Susceptibilities of the three arising modes:
the predicted mode q = ( 3π

4 ,
π
4 ) and the two

other modes on the anti-diagonal, q = (π2 ,
π
2 ) and

q = (π, 0). All three have a wide and round peak.

Figure 6.8: Simulation details of the mode q = ( 3π
4 ,

π
4 ).

β ∼ 4, the only difference being height. Similarly also the specific heat, shown in
Fig.6.7a exploit a single peak. However, the weird and abrupt change in its slope at
roughly β = 3 might be indicative of a behaviour observed in the order parameter.

Finally, in Fig.6.8, we show the simulation observables across the midpoint of the
front edge, vF = (0,−1

2 ,−
1
4)T , where the inequality defined by q = (3π

4 ,
π
2 ) is only

tangent. In this case mode coexistence differs from that observed on the modes of L6:
rather than a minor background coexistence, in this situation we have three modes
that prominently emerge, fully concurring to the overall phase. The order parameter
of the predicted mode q = (3π

4 ,
π
2 ) dominates, but closely followed by the two other

modes on the anti-diagonal q = (π2 ,
π
2 ) and q = (π, 0). Accordingly, the specific heat of

Fig.6.8a exploits a single peak before vanishing, while the susceptibilities of the three
coexisting modes, shown in Fig.6.8b, simultaneously peak in very wide and round
fashion.
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Figure 6.9: Order parameters of the 14 out of the 28 phases com-
patible with lattice L12. We are omitting the upper triangular half of
the SRBZ due to symmetry reason and the corner modes. The new
most interesting behaviour is observed on q = (π3 ,

π
3 ) that now has a

subsequent transition to a double checkerboard state. Furthermore, in-
tricate and interesting behaviour is observed beyond the faces defined

by q = (π3 ,
π
6 ) and q = (π3 , 0).

6.3.4 L12

Lastly, we investigate the phase transitions beyond the faces of D12. The size of its
SRBZ, Û12, that amounts to 28 modes, makes it prohibitive to show the plot of all
the order parameters as we did for the previous lattices. Thus, accounting on the
now established mirror symmetry, in Fig.6.9, we only show the lower half of the plots.
To further improve the overall visualization, we chose to not show the corner modes
q = (0, 0) and q = (π, 0), as once again, their behaviour resembles the one shown in
the previous plots. Thus, out of all the 28 modes we show only 14.

The behaviour of the faces with complexity C(q) = 4 do not change with size;
more interestingly, those shared with Û6 exploit an interesting twist, when compared to
Fig.6.3: q = (π3 ,

π
3 ) now exhibit a subsequent phase transition to the phase q = (π2 ,

π
2 )

in the same spirit of the modes on the catheti of Û8. The other three modes shared
with Û6, are also influenced by the presence of modulations of size four, that now
contributes to the final phase, lowering the overall contribution of the dominant mode
but always from the background.

Among the 9 new phases of complexity C(q) = 12 we recognize previous be-
haviours, the modes q = (π6 , 0), q = (5π

6 , 0), q = (π6 ,
π
6 ), q = (π2 ,

π
6 ) and q = (π3 ,

π
3 ) are

taken over by the closer modes of size four. The plots on the anti-diagonal, q = (5π
6 ,

π
6 )

and q = (2π
3 ,

π
3 ) are almost equal, except for some low temperature noise, probably
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(a) Energy and specific heat. While the energy
smoothly decreases, the specific heat exhibits a

worth of two peaks.
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(b) Susceptibilities of the three arising order pa-
rameters. The suceptibilities of q = (π3 ,

π
6 ) and

q = (π2 ,
π
6 ) are rescaled by a factor 25 and both

peak roughly around β ∼ 4. The susceptibility of
q = (π3 , 0) manifestly peaks at a different value.

Figure 6.10: Simulation details beyond the face defined by q =
(π3 ,

π
6 ).

due to the aforementioned poor sampling. The behaviour beyond the transition re-
sembles the trend observed for the mode q = (3π

4 ,
π
4 ) on L8, a superposition of the

anti-diagonal harmonics dominated by the predicted one.

Thus, on L12 we recognise only two new interesting behaviours with respect to
the previous lattices. The mode (2π/3, π/6) has a subsequent phase transition to a
phase defined by mode coexistence. The order parameters beyond the face defined
by q = (π3 ,

π
6 ), have an intricate behaviour: the predicted mode is the first to emerge

but with a very low and wide peak, its purple dots are hardly noticed. Next, two
subsequent transitions take over, first to the mode q = (π2 ,

π
6 ) that vanishes when

q = (π2 , 0) finally arises. The above considerations are only partially confirmed by
the susceptibilities and the specific heat, shown in Fig.6.10. In contrast to the order
parameters shown in Fig.6.10b, we see three subsequent order parameters arising at
three different temperatures, but the specific heat only has a double peak; this is
still remarkable, as it is the first specific heat, that fully shows a double peak. The
same trend is confirmed by the susceptibilities plots, shown in Fig.6.10b, where the
susceptibility of the predicted mode and of the mode q = (π2 ,

π
6 ) are the first to simul-

taneously peak around β ∼ 4, followed by the suceptibility of q = (π2 , 0), that roughly
peaks at β ∼ 6.5. Moreover, it is worth to point out that for representation reasons,
the first two susceptibilities have been rescaled by a factor 25, thus the susceptibility
of q = (π2 ,

π
6 ), is ambiguous and further investigation should be required.

6.4 Discussion

Once again Monte Carlo simulations proved to be an important tool for empirically
investigating the physics of the desired system. We succeeded in validating that the
theoretical framework presented above fully retains the first modes peaking at the
bifurcation surface. Furthermore, we moved the first steps in understanding the phe-
nomenology beyond the polytope diagram. The only modes that appears to be stable
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at low temperatures are the six phases of U4. This might also be true for the simula-
tions on L6, nonetheless, as shown increasing the size up to N = 12, we clearly see that
the commensurability with L4, introduces a subsequent low temperature transition to
its phases. Further investigations varying the size of the simulated systems will be
required to understand the stability of these phases, in the outlook we will sketch a
procedure that might more thoroughly shed light on this behaviour. Other than the
low temperature stability we observed other behaviours induced by the mechanism of
frustration due to competing anti-ferromagnetic interactions. This led to a variety of
plots whose nature is unclear, also in this case more work need to be done. mention
solution space
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Chapter 7

Outlook

To address the empirical observations of the previous chapter, we present two open
routes that might quantitatively shed light on the physics beyond the bifurcation
surface. First, a mapping of the energy minimization problem to a maximum satis-
fiability (MAX-SAT) problem. Second, a first step towards a more general solution
of the Mean Field self-consistency equations (Eq.4.13) that retains mode coexistence
beyond the bifurcation surface.

7.1 Formulation as a MAX-SAT Problem

With a strong awareness on the geometrical structure of the phase diagram, we show
introductory investigations that pave the way to a study of the ground states. Our
attempt is incomplete and maybe even ill-posed. We relied on a recent technique
[58], based on the separate convergence of an upper bound and a lower bound on
the energy. The upper bound consists in a mapping of the the energy optimization
problem to a maximum satisfiability (MAX-SAT) problem, a well studied approach to
NP problems. A combinatorial NP solver that has the intrinsic advantage of proving
the globality of the solution found. The lower bound is found within the framework of
linear programming for which we refer to the original article. This approach, however,
has an intrinsic and an practical problem. The intrinsic problem is that only a single
solution is obtained, while the degeneracy of the ground states induced by frustration
implies that large regions of phase space are still accessible at zero temperature and
should therefore be studied with the appropriate tools. The practical problem lies
in software compatibilities of the code provided in the paper which is now obsolete.
The implementation of both techniques requires more time than that available for
the present work, and we succeeded in replicating it only for the upper bound, which
would in principle suffice. However, the absence of the lower bound often requires to
run the algorithm for much longer times, making it of poor practical use. Nonetheless,
our minor findings are still worth to report.

With respect to standard optimization techniques employed in statistical me-
chanics, e.g. Simulated Annealing or Genetic Algorithms, MAX-SAT solvers provide
two major advantages. First, they formally prove the globality of the optimum found.
Second, the yearly competition of MAX-SAT solver performances, guarantees the ex-
istence of open source, reliable and highly optimized algorithms. For our purposes,
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we will use the library open-wbo1, winner of the 2018 competition and available on
github[78][79]. MAX-SAT algorithms, as open-wbo, or any of its competitors, are
highly non-scalable and provide a viable tool to compute the ground states only for a
limited cell size. For our purpose we have attempted to simulate systems up to N = 6.
However, most of the configurations2 did not converge on single core computations
within 72 hours.

As a gentle introduction to the workings of the procedure, in Sec.7.1.1, we con-
sider minimizing the energy of a single pair of spins. Next, in Sec.7.1.2, we generalize
to the Hamiltonian of interest extending the energy mapping to the whole square
lattice in PBC. In Sec.7.1.3, we present the meager results that we obtained, where
we also conclude with a discussion on the nature of the ground states, relating our
findings to previous results.

To introduce the maximum satisfiability problem, we adopt the standard nota-
tion: the operators ∧, ∨ and ¬ respectively represent the AND, OR and NOT opera-
tors. Moreover, we identify the product of Boolean variables with the AND operator.
Given a set of Boolean variables {s1, . . . , sn}, si ∈ {0, 1}, we define a disjunctive clause
to be any disjunction of variables or their negation d = . . . si ∨ · · · ∨ ¬sj ∨ . . . By con-
junctive normal form, we mean a conjuction of disjunctive clauses, as exemplified in
the following equation

f = (. . . si ∨ · · · ∨ ¬sj ∨ . . . ) ∧ · · · ∧ (. . . sk ∨ · · · ∨ ¬sl ∨ . . . ), (7.1)

and remind that any logic expression f can be rewritten in this form. If there exists a
variable assignment such that f holds the value True, we say that f is satisfiable. The
MAX-SAT problem[80] aims at finding the maximum number of disjunctive clauses
that can simultaneously hold true in a formula written in conjunctive normal form.
This description naturally reminds the definition of frustrated systems given in Sec.1,
where the global energy minimum implies that some sites are not in their local ground
states, i.e. not all bonds are simultaneously minimized.

7.1.1 Single Bond

To translate the energy minimization problem, into a Boolean optimization problem
we employ the transformation σ → 2s−1, where s ∈ {0, 1} is a Boolean variable. The
energy of a single Ising bond takes the form

E = −Jσ1σ2 = −J (4s1 ∧ s2 − 2s1 − 2s2 + 1) . (7.2)

So that
min{E} = −|J |max{sign(J)(4s1 ∧ s2 − 2s1 − 2s2 + 1}, (7.3)

where to stress that the standard input of MAX-SAT solvers requires each disjunctive
clause to have a positive weight we factorized J = |J |sign(J). Making use of the

1Seehttp://sat.inesc-id.pt/open-wbo/.
2Curiously, those for which the ground state is highly degenerate.

See http://sat.inesc-id.pt/open-wbo/
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following identities

−s1 ∧ s2 = (¬s1 ∨ ¬s2)− 1,
s1 ∧ s2 = (s1 ∨ ¬s2) + s2 − 1

s = 1− (¬s) ,
, (7.4)

we succeed in the purpose of writing the energy minimization problem in MAX-
SAT form

minE =
{

5|J | − |J |max{4 (s1 ∨ ¬s2) + 2s2 + 2 (¬s1)− 5} J > 0
5|J | − |J |max{4 (¬s1 ∨ ¬s2) + 2s1 + 2s2 − 5} J < 0

. (7.5)

A simple truth table then yields the correct energy spectrum. For a ferromagnetic
interaction, J > 0, we have the following

s1 s2 s1 ∨ ¬s2 ¬s1 ¬s2 4 (s1 ∨ ¬s2) + 2s2 + 2 (¬s1))
0 0 1 1 1 6
1 0 1 0 1 4
0 1 0 1 0 4
1 1 1 0 0 6

, (7.6)

which yields the correct energy ground state E = −J and the conclusion that the
ground states are equivalently (0, 0) or (1, 1) .

For anti-ferromagnetic interactions, J < 0, we have the following truth table

s1 s2 ¬s1 ∨ ¬s2 4 (¬s1 ∨ ¬s2) + 2s1 + 2s2
0 0 1 4
1 0 1 6
0 1 1 6
1 1 0 4

, (7.7)

which again yields the correct spectrum E = −J for the equivalent ground states
(1, 0) or (0, 1).

7.1.2 Square Lattice in PBC

Our final goal is minimizing the Hamiltonian of Eq.2.3. Once again, as a starting
point, we consider the energy contribution per spin, Eq.2.6, which for convenience we
remember here

E(σz) = −1
2
[
J1

∑
n1∈N1

σz+n1 + J2
∑

n1∈N1

σz+n2 + J3
∑

n1∈N1

σz+n3

]
. (7.8)

To begin, we focus on a single neighbourhood. Using Eq.7.5, the cluster energy con-
tribution due to the neighbourhood N1 only, takes the form

E(1)(sz) =

−
1
2 |J1|

∑
n1∈N1

[
4 (sz ∨ ¬sz+n1) + 2sz+n1 + 2 (¬sz)− 5

]
J1 > 0

−1
2 |J1|

∑
n1∈N1

[
4 (¬sz ∨ ¬sz+n1) + 2sz + 2sz+n1 − 5

]
J1 < 0

. (7.9)
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For the purpose of using a MAX-SAT solver, we are now interested in writing the
energy contribution with the minimal number of disjunctive clauses. To this end we
sum over the whole lattice

E =
∑
z∈sL

E = 10N(|J1|+ |J2|+ |J3|)− 4 max

∑
i,j

[
|J1|H(1) + |J2|H(2) + |J3|H(3)

] ,
(7.10)

where we factorized out the constant terms and where the spin dependent contribu-
tions H(i) of the three neighbourhoods are

H(1)(sL) =


∑

z∈sL

[
sz + ¬sz + (sz ∨ ¬sz+e1) + (sz ∨ ¬sz+e2)

]
J1 > 0∑

z∈sL

[
2sz + (¬sz ∨ ¬sz+e1) + (¬sz ∨ ¬sz+e2)

]
J1 < 0

,

H(2)(sL) =


∑

z∈sL

[
sz + ¬sz + (sz ∨ ¬sz+e1+e2) + (sz ∨ ¬sz+e1−e2)

]
J2 > 0∑

z∈sL

[
2sz + (¬sz ∨ ¬sz+e1+e2) + (¬sz ∨ ¬sz+e1−e2)

]
J2 < 0

,

H(3)(sL) =


∑

z∈sL

[
sz + ¬sz + (sz ∨ ¬sz+2e1) + (sz ∨ ¬sz+2e2)

]
J3 > 0∑

z∈sL

[
2sz + (¬sz ∨ ¬sz+2e1) + (¬sz ∨ ¬sz+2e2)

]
J3 < 0

,

(7.11)

both for a positive and a negative interaction. We considered that each pair of nearest
neighbours will appear two times as a disjunction, while the unary terms will appear
4 times as a self contribution plus one time per each of the neighbours. Moreover, we
notice that the ferromagnetic contribution can be further simplified using the identities
of Eq.7.4. Finally, the ground state energy per spin of the system can be coincisely
written as

1
N

minE = 10(|J1|+ |J2|+ |J3|)−
4
N

max
{[
|J1|H(1) + |J2|H(2) + |J3|H(3)

]}
. (7.12)

One last step needs to be taken into account to produce a usable input for a
MAX-SAT solver, the weights all need to be lower than one. To do so, we divide
the interaction energies by the maximum coupling, we rationalize the remaining two
parameters and divide again by their GCD.

7.1.3 Ground States

As previously stressed, unfortunately, our procedure failed to converge even for lattices
as small as L6. Similarly to what we did in the Monte Carlo simulations, our choice
of coupling parameters are the centroid of the faces. The ground states are shown in
Fig.7.1. For the sake of completeness, when the MAX-SAT algorithm did not converge
within reasonable time (more than 72 hours), the ”ground states” presented are the
minimum energy configurations found with the Monte Carlo simulations at T = 0.1.
To further explore the effect of frustration on the ground state, we cross checked the
individual energy contribution of each site with a direct calculation from the Hamil-
tonian of Eq.2.3. As expected, we found that some spins are free to oscillate without
affecting the global energy. A behaviour similar to that observed by Wannier[29] on
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(a) Ground states of the three phases for N = 3.
Ground state energies per spin are minE(0, 0) =
0.5, minE( 2π

3 , 0) = −0.41823, E( 2π
3 ,
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3 ) =

−0.3348.
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(b) Ground states of the six phases for N = 4.
All the ground state energies per spin are

minE(q1, q2) = 0.5.
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(c) Ground states of the ten phases for N = 6. Ground state energies per spin are
minE(0, 0) = −0.5, minE(π3 , 0) = −0.467172, minE∗( 2π

3 , 0) = −0.41823, minE(π, 0) =
−0.5, minE∗(π3 ,

π
3 ) = −0.3348, minE∗( 2π

3 ,
π
3 ) = −0.297517, minE∗(π, π3 ) = −0.41823,

minE∗( 2π
3 ,

2π
3 ) = −0.3348, minE∗(π, 2π

3 ) = −0.467172, minE(π, π) = −0.5.

Figure 7.1: Low energy states for the system on L6: the states whose
energy comes with a ∗ are found with a Monte Carlo simulation, those
coming without the ∗ are exact ground states found with the method-

ology described above.
The free spins are emphasized in red.
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the anti-ferromagnetic triangular lattice. If this is the case, the sites are colored in
red.

In Fig.7.1b we show the ground states of L4, which exactly match those previously
found by Landau and Binder and already shown in Fig.2.3. This is coherent with the
Monte Carlo simulations on L4, presented in Sec.6.3.1, where the system converged
without problems to the expected ground states. In Fig.7.1a we show the ground
states3 of L3. The lattice is compatible with three phases only. The ferromagnetic
phase is trivial. The phase q = (2π

3 , 0) is a striped pattern with two columns pointing
in one direction and the third column in the opposite one. The ground state is
degenerate with respect to the flip of one entire column (either the right or left black
column of the figure). Phenomenologically speaking, the ground state should be static
and the spins locked in their position by the surrounding spins. The third phase,
q = (2π

3 ,
2π
3 ), is characterized by four free spins that have a zero energy contribution

to the Hamiltonian. We remark that the representation with four red sites might
be misleading: it is true that each of the four spins can freely flip. However not
independently, the flip of a single one of them would affect the energy contribution of
the surrounding spins, thus changing the set of sites with zero energy contribution.
The different behaviours may also explain the difference of the plots of Fig.6.4b and
6.5b, shown in the previous section.

In Fig.7.1c we show the ground states of L6. In this case the algorithm converged
only for the three corner modes. The other ground states have been taken as the
lowest energy states found in the previously presented Monte Carlo simulations and
it is not guaranteed (but reasonable to expect) that these are exact zero temperature
configurations. The two states on the diagonal exploit the flipping spins, while the
phases on the catheti are frustrated but with a locked-in configuration. Finally, we
mention that the ground state of q = (π, π3 ) has been recently reported in paper on
iron chalchogenids[10], mentioned in the introduction.

In conclusion, we see two different aspects of frustration, already observed when
comparing the Monte Carlo simulations of these two phases in the previous section.
On the one hand, the phase q = (2π

3 , 0), exploits locally excited sites, but still with
a definite globally locked ground state configuration. On the other hand, the zero
energy contribution of certain sites in the q = (2π

3 ,
2π
3 ) phase. This zero temperature

fluid behaviour resembles the iconic anti-ferromagnetic triangular lattice studied by
Wannier[29]. The above preliminary results are intriguing. In combination with a
zero temperature Monte Carlo, new light may be shed on the elusive phenomenon of
frustration.

7.2 Solution Space of the Mean Field Equations

In this final section, we introduce a promising route to formally address the observed
mode coexistence. In Ch.4 we derived the Mean Field Approximation of the model
under investigation with the aim of finding the region of stability of the paramagnetic
phase with respect to all the possible modulations. Formally, we derived an infinite

3The choice of parameters in this case is the centroid of the faces of D6 as the faces of D3 are
unbounded.
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set of self-consistency equations (see Eq.4.13)

tanh(K ·M(z, [mz]) = mz, (7.13)

whose trivial solution in the origin is z = 0 for all sites z. Next, we Taylor expanded
the equations around a supposed bifurcation surface, to investigate whether and where
these equations sustain other solutions. The positive answer is found in Fourier space,
that lead to recognize the plane

K · F(q) = 1, (7.14)

as the bifurcation surface toward the mode q. Thus, we proved that a solution of
the self-consistency equation are the modulations mq = exp(i〈q, z〉). Coherently, we
observed in the simulations, that the above wave systematically dominates over the
others right beyond the first bifurcation surface. Nonetheless, nothing guarantees
these to be an exhaustive set of solutions. This is confirmed by the results of the
Monte Carlo simulations, that hint to the coexistence of multiple modes on a single
phase. Thus, we aim to generalize the previously found solutions with two steps.
First, we notice that the magnetization waves are eigenfunctions of the effective field

K ·M(z, [mq]) = K · F(q)mq. (7.15)

Second, that the full Taylor expansion of the hyperbolic tangent

tanh(x) = x− x3

3 + 2x5

15 − . . . (7.16)

has only odd powers, with the major consequence: first, that even products of the
magnetization should always vanish; second, that it induces a natural map from the
triple product of waves mqmq′mq′′ to the sums q+q′+q′′ restricted to the (Symmetry
Reduced) Brillouin Zone considered. The underlying reason being that higher odd
powers can always be reduced to cubic powers recursively grouping triple products.
Therefore, we can define a closure relation

C(q) = {ql | q1 = q, ql + ql′ + ql′′ ∈ C(q)}, (7.17)

that could be recursively calculated. The dominant mode is found taking the first
order Taylor expansion of the self consistency equations, while a more general solution
exists and can be written as a linear combination of the waves within the solution space
defined by the closure above

mz =
∑

ql∈C(q)
al exp i〈ql, z〉. (7.18)

The above procedure, if fully developed, might explain the behaviour observed
beyond the bifurcation surfaces. However, without the claim that this might lead to
the exhaustive set of phases.
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Chapter 8

Conclusion

In short, the introduction of a range-3 coupling in the Ising model on the square lattice
is sufficient for the stabilization of infinitely possible modulated phases that can be
identified with the elements of the Brillouin Zone of the model. Following traditional
arguments, we approximate the model in the MFT framework and solve the resulting
self-consistency equations in Fourier space. To each solution corresponds a bifurcation
surface in parameter space. To simplify the otherwise infinite phases that emerge in
the model we developed a framework for the systematic enumeration of phases of in-
creasing complexity. The crucial idea is that enforcing Periodic Boundary Conditions
on the lattice limits the number of phases to a finite subset of the whole Brillouin Zone.
With this simplification, the stability domain of the paramagnetic phase predicted by
Mean Field Theory can be formally written as a convex polytope in half-space repre-
sentation. To extract information on the boundaries of each phase on finite lattices
we employed a Vertex Enumeration algorithm, only available since 2006, while, on the
infinite lattice, we employed a convex body reconstruction. Next, we confirmed with
Monte Carlo simulations that our theory correctly predicts the radial direction of the
first phase transition in parameter space. The simulations hint at further intriguing
physics beyond the first bifurcation surface in terms of subsequent phase transitions,
modes coexistence and disparate low temperature phenomena induced by frustration.
To this end, we propose two possible routes for further exploration: a mixture of MAX-
SAT algorithm and zero temperature Monte Carlo, as well as, a more general solution
to the self-consistency equations. The versatility of our method makes it applicable
to any lattice on any dimension. Specifically, in future work, it might be interesting
to revisit the triangular lattice anti-ferromagnet to address the phenomenon of frus-
tration in its original context or revisit the ANNNI model to investigate the elusive
devil’s staircase.
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Appendix A

Vertex enumeration

The mean field approximation, as derived in Ch.4, yields the domain of stability of the
disordered phase in the shape of a convex polytope in the so-called H-representation.
An implicit formulation of a polytope that does not provide direct information on the
boundaries of the faces. A crucial step in the present work is to find the interval in
phase space where a specific phase might emerge. In the present Appendix we briefly
review the foundational notions of the problem, known as representation conversion
problem. Interestingly, in its full generality the problem complexity still remains
unknown. In Sec.A.1, we introduce the problem; in Sec.A.2 we mention the available
algorithms and explain the reason of our choice; finally, in Sec.A.3 we describe our
usage of the algorithm that required an extensive pre- and post-processing.

A.1 Representation Conversion Problem

The core result in the representation of convex polytopes is known as Minkowsky-Weil
theorem[81]. Basically, it guarantees the existence of two equivalent representations for
convex polytopes. The representation that naturally emerge the mean field derivation
of Eq.4.29 is known as half-space representation (H-representation)

D = {x ∈ RN |A · x ≥ c}, (A.1)

where A is a N ×N matrix, and c a vector of constants in RN . A system of inequali-
ties whose common solutions define the body of the polyhedron. The complementary
representation, known as vertex representation (V-representation) consists in the min-
imal1 set of points (the vertices), whose convex hull defines the polyhedron.

For completeness we also mention that a polyhedron is simple if all its vertices
share the same number of edges, else is called degenerate[81].

A.2 Algorithms

The conversion problem is a challenging problem. Many disparate algorithms have
been historically proposed, all coming with advantages and disadvantages. These fall
roughly in three different classes: double description method, pivotal algorithms[57]

1This definition holds for bounded convex polyhedra, if we wish to include generally unbounded
convex polyhedra we should include the so-called extreme rays. Basically, the directors of the poly-
hedral cones.
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and lexicographic reverse search method. The first two algorithms are older, their
workings is rather intuitive (although the underlying theory is not) and well perform
for simple polytopes. These algorithms do not perform well on degenerate polytopes
as they have to either loop multiple times on the whole set of vertices or store a
great amount of coordinates in memory. For the present purpose, the representation
conversion of highly degenerate polytopes, the necessary choice was the lrs algorithm,
developed in 2006 by Avis and Fukuda, whose drawback is the complexity of the
underlying workings, for which we refer the reader either to [56] or to [55]. Although
very efficient, its usage does not come for free, as we will see in the following section.

A.3 Usage of lrs library

Three mutually non parallel planes meet exactly on a single point. A vertex can
nonetheless arise as the intersection of multiple planes, this is the case for example
for the multicritical vertices (see Sec.5.3). The intrinsic usage of integer arithmetic,
on which the lrs algorithm is based on, is problematic. We want to run the lrs
algorithm over half-spaces defined by Eq.4.16, whose coefficents are irrational. The
required rationalization would tilt the half-spaces by an arbitrarily small amount in an
unpredictable direction, different for each face. All the information of vertices arising
from multiple faces is lost. Rationalization gives rise to the appearance of a multitude
of spurious vertices in the surrounding of the position of those exact vertices resulting
from the intersection of more than three inequalities.

The problem is easily circumvented applying the following prescription which
makes use of some exact results of Ch.5: first one rationalizes the half-space coeffi-
cients, appropriately choosing the degree of accuracy. A preliminary run of the algo-
rithm, computing all reciprocal vertex distances, allows to identify the proper distance
threshold under which the depicted shifting might occur2. Most of the distances are
typically lower than 10−5, some of them however might be some orders of magnitude
lower. The higher the size of the underlying lattice, the lower may be the distance
among vertices. Up to D32, we identify a good distance threshold to be in between
the two orders of magnitude reported in the last two columns of Tab.A.1.

Any pair of vertices, whose distance lies in the reported range, should be manually
controlled to verify whether they do or do not coincide, this procedure can be heavily
reduced introducing exact knowledge on the polyhedron, which allows to identify three
sources of spurious vertices: those arising from the multicritical vertices (see Sec.5.3),
those emerging on the front edge (see Sec.5.4.2) and those related to the linear ordering
(see Sec.5.8).

The vast majority of the spurious vertices appear around the multicritical ver-
tices. As shown in table A.1 per each of the three multicritical vertex, rationalization
introduces exactly n− 1 spurious vertices, where n is the number of inequalities that
meet in such vertex. The fan structure implies that the minimum distance in between
a multicritical point and its closer neighbour is about d ∼ 0.1, which makes them easy
to identify.

2This is a rule thumb. The typical degree of rationalization of the order of 10−20 and we do not
reasonably expect the vertices to be shifted by more than 10−7 units.



A.3. Usage of lrs library 93

N F V E VM VE VA min d max d
4 6 8 12 2 0 0 -1 na
6 10 13 21 3 0 0 -1 na
8 14 18 30 4 2 0 -2 na
10 20 27 45 5 2 0 -2 na
12 26 36 60 6 4 0 -2 na
14 34 49 81 7 4 0 -3 na
16 42 62 102 8 6 0 -3 na
18 52 77 127 9 6 2 -3 -17
20 62 94 154 10 8 2 -3 -16
22 74 117 189 11 8 0 -4 na
24 86 134 218 12 10 4 -3 -17
26 100 163 261 13 10 0 -4 na
28 114 188 300 14 12 0 -4 na
30 130 215 343 15 12 2 -4 -16
32 146 246 390 16 14 0 -5 na

Table A.1: Polyhedra data for the first 14 sets. Where N is the
maximum size of periodicity allowed; F the number of faces; V the
number of vertices; E the number of edges; VM the number of spurious
vertices per each critical point; VE the number of spurious vertices
found around the edge; VA the number of pairs of spurious vertices
that have to be controlled analytically; min d, magnitude the minimum
vertex distance above the applied threshold; max d magnitude of the

maximum vertex distance below the applied threshold.

The second major source for spurious vertices are the anti-diagonal faces, all
tangent to the common edge parallel to K2 = K3 = 0. This case is slightly different:
rationalization might shift the spurious vertices anywhere on the surrounding of the
edge, to spot them is necessary to introduce a distance control on the edge rather then
on its extremes. In this case we find exactly two spurious vertices per missing face, as
shown in table A.1.

The rest of the pairs of spurious vertices, when present, could appear anywhere
around the seam and have to be analytically controlled one by one. It is worth to
stress that all of them turned out to be spurious. However, this might not be a general
behaviour and a manual check is required. The adjacency graphs of the dual polyhedra
resulting from this prescription are reported in figure 5.6.
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