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Abstract

AdS2/CFT1 is a particularly interesting example of holography since it appears natu-
rally as the near-horizon limit of extremal black holes. However it is also quite poorly
understood. In this thesis aspects of a conformal quantum mechanics model are stud-
ied, using an infinite-dimensional representation which provides a natural candidate for
the CFT1 side of the correspondence. A similar model using a finite-dimensional rep-
resentation, which has possible applications in Hodge theory, is also constructed. After
reviewing some basic aspects of AdS/CFT and AdS2/CFT1 specifically, the conformal
quantum mechanics model is introduced. This model captures some of the aspects of
conformal field theories and forms a discrete series representation of SL(2,R). We then
propose a completeness relation inspired by the shadow transform in conformal field
theories, which provides a method with which all higher correlation functions can be
expressed as integrals. Afterwards we propose an interpretation of the conformal quan-
tum mechanics as the boundary model of quantum mechanics on the Poincaré upper
half plane, which is the canonical way the discrete series representation of SL(2,R) is re-
alized. Finally we propose a similar construction for a finite dimensional representation
of SL(2,R) which has possible applications in Hodge theory. For this representation we
also calculate correlation functions and also use the shadow transform again to define a
completeness relation. Finally we define an integral transformation in order to calculate
this shadow transform explicitly.
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1 INTRODUCTION 1

1 Introduction

Over the last decades the holographic principle has received much attention. Originally
proposed by ’t Hooft [1] and partially inspired by entropy calculations of black holes [2], it
conjectures that quantum gravity in d+ 1 dimensions is equivalent to an ordinary quantum
(field) theory in d dimensions. Since quantum gravity remains one of the biggest unsolved
problems in theoretical physics, the possibility that quantum gravity theories can be rewritten
in terms of relatively well-understood quantum field theories is quite alluring.1 In 1997,
Maldacena proposed that examples of holography could be found by considering superstring
theory on asymptotic anti-de Sitter (AdS) space in d + 1 dimensions and conformal field
theories (CFTs) in d dimensions [3]. String theory very naturally incorporates gravity and
therefore this duality provides strong hints towards some sort of holography. There are
some caveats though. One of the strengths of AdS/CFT duality is that the strong coupling
regime on one side corresponds to the weak coupling regime on the other. However, this
also means that it is quite hard to prove the duality since strong coupling regimes are often
quite difficult to work with. Furthermore, the AdS/CFT duality uses the fact that AdS has
a conformal time-like boundary quite explicitly. Therefore it is somewhat unclear how the
results generalize to different space-times, especially to de Sitter space-time which describes
our universe, although there has been substantial work in this area [4–6]. Despite this
studying the AdS/CFT duality has led to many insights in aspects of quantum gravity, such
as the Hawking information paradox [7, 8] and led to an improvement of our understanding
of quantum gravity in general. Furthermore it has found applications in studying quantum
chromodynamics [9] and condensed matter systems [10]. Thus it seems like AdS/CFT has
much more insights to give us and studying will lead to many more interesting results.

In this thesis we will mostly focus on aspects of the lowest dimensional version of AdS/CFT,
namely AdS2/CFT1 where this notation means that the AdS theory is two-dimensional while
the CFT is one-dimensional. Contrary to what one might expect, here lower dimensions do
not result in a simpler theory or a better understood one. Many results that hold in higher
dimensions do not immediately generalize and there are quite a few particularities [11] as
we will also see later on. This is part of what makes AdS2/CFT1 so interesting since a
better understanding here could lead to some fundamental insights into AdS/CFT in general.
Especially since one would naively expect it AdS2/CFT1 to be the simplest. Furthermore,
since (near) extremal black holes have been observed [12] and the AdS2 geometry naturally
appears when studying these near their horizons [13, 14], this provides an exciting connection
between AdS/CFT and physical experiments.

With these motivations in mind we turn towards possible models for AdS2/CFT1. Since the
Einstein-Hilbert action is non-dynamical in two dimensions, it is necessary to modify it in
order to obtain insights into quantum gravity. A common method is to introduce a scalar
field called a dilaton which couples to the metric and possibly to matter. These kind of fields
naturally appear when performing Kaluza-Klein compactifications in string theory [15, 16]
as well as when taking the near boundary limits of extremal black holes discussed before

1We stress the word relative here.



1 INTRODUCTION 2

[17], something we will discuss in more detail in section 3.1. One particularly interesting
model of dilaton gravity is Jackiw-Teitelboim gravity [18, 19], mainly because it is quite
simple but has AdS2 as well as several black hole solutions. Some progress has been made in
formulating dual theories with the most promising candidates being the Sachdev-Ye-Kitaev
model [20] and conformal quantum mechanics [21, 22]. In this thesis we will mostly focus on
this conformal quantum mechanics model, first introduced by de Alfaro, Fubini and Ferlan
(dAFF) [23]. This model is quite interesting since it can be obtained as the boundary theory
for the Jackiw-Teitelboim gravity described above [24], but also since it captures most of the
properties of conformal field theories in a quantum mechanics setting.

There is also a different reason to study the dAFF model coming from string theory, or
more explicitly the geometry of compactifactions. Famously string theory requires certain
numbers of dimensions in order to be consistent. Since it is clear that in our day to day
life the universe is 4 dimensional this makes one wonder where these other dimensions have
gone. The answer provided by string theory is compactification, which intuitively is a means
to make the extra dimensions extremely ”small” and therefore only accessible at very high
energies. One common way of compactifying is Kaluza-Klein compactification [25–27], which
starts from string theory on a product manifold

M×K (1.1)

where M and K are chosen such that the combined manifold allows for a consistent string
theory. K is called the internal manifold and is compact, which allows us to speak of its
size in a well-defined way. A string theory on this product manifold can now be rewritten as
an effective string theory living on M and this effective theory will depend on the geometry
and size of K. A natural question is now how the effective theory changes as we vary
these. It turns out that much of this information about the size and geometry is captured
in the cohomology groups Hn(K) and specifically their Hodge decompositions [28]. Near
certain singular geometries these cohomology groups decompose in terms of finite dimensional
SL(2,R) representations [29, 30]. Since the dAFF model is also obtained by considering an
SL(2,R) representation (albeit an infinite dimensional one) this invites us to ask if it is
possible to apply similar constructions to these Hodge theoretical representations. This is
one of the main goals of this thesis and we will present these constructions in chapter 5.
An especially interesting aspect of these variations is that the resulting space of possible
variations, the so-called moduli space, appears to have some holographic properties [31, 32].
Therefore a connection between the holographic aspects on the moduli space and those of
AdS/CFT might lead to many interesting results on both sides.

In this thesis we will start to investigate this connection, mostly by providing a better un-
derstanding of the boundary SL(2,R) representations. Firstly, we will review the basics of
AdS/CFT duality in chapter 2. Thereafter we will take a closer look at the lowest dimensional
case of AdS2/CFT1 in chapter 3 and discuss where it differs from the higher dimensional ana-
logues. Then, in chapter 4, we will discuss the dAFF model. First reviewing the original
construction and afterwards proposing a method of obtaining integral expressions for all n-
point correlation functions, as well as suggest an interesting connection to a certain SL(2,R)
representation on the Poincaré upper half plane. From this we will then move on to the
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Hodge theoretical setting in chapter 5, where we will first propose a similar model which is
applicable in this setting and investigate its properties. To this model we then apply the
same tools as used for the dAFF model and will see that it has much of the same structure.
Finally we will review our results and provide an outlook in chapter 6.
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2 An overview of anti-de Sitter/conformal field theory

duality

Since its original conjecture by Maldacena [3] the anti-de Sitter/conformal field theory
(AdS/CFT) duality has been a topic of active study. It is one of the important avenues
for understanding quantum gravity and the hope is that it can be extended to a more gen-
eral gauge/gravity duality [33, 34]. Unfortunately, it is at present still merely a conjecture
although there are a number of examples where the conjecture passes some highly non-trivial
tests, with the most well-known example being type-IIB string theory on AdS5 × S5 dual
to N = 4 supersymmetric Yang-Mills [3, 35, 36]. One of the strengths of AdS/CFT is that
it cross-links high coupling one one side to low coupling on the other side of the duality,
this is however also why it is so difficult to prove since there is not yet a good definition of
string theory at high coupling [37, 38]. Nevertheless AdS/CFT and the related gauge/gravity
duality has already led to an increased understanding of quantum gravity, with notably new
insights into the Hawking information paradox [7, 8].

In this chapter we will give an overview of the AdS/CFT correspondence in the most general
setting, that is in d dimensions and with little reference to an explicit theory on either the
CFT or the AdS side. Furthermore we will mostly focus on the case of a single scalar field
for simplicity. If the reader is interested in more detail, one could consult references [33] and
[39] although many other good references are available [34, 40, 41]. For discussions that focus
more on bulk reconstruction from a boundary CFT, see references [42–45]. Taking this birds-
eye view has the advantage of viewing the conjecture in a more isolated sense, separate from
any explicit realization or even from string theory. In section 2.1 an overview of conformal
field theories is given. We begin by defining the conformal group and afterwards take a look at
its different representations. In section 2.3 we will introduce anti-de sitter space and motivate
why it is the natural geometrization of the conformal group, afterwards we will introduce a
scalar quantum field theory on this space and consider some of its general properties. Finally,
in section 2.4 we will discuss the duality in full by explaining the holographic dictionary and
performing some explicit tests.

2.1 Conformal field theories

Stated somewhat tautologically, the study of conformal field theories is the study of those
field theories that posses a conformal symmetry. These conformal transformations can be
defined on any (pseudo)-Riemannian space as those transformations that leave angles lo-
cally invariant. In slightly more precise terms, a conformal transformation is a coordinate
transformation xµ 7→ x

′µ such that the metric transforms as

gµν(x) → g′µν(x
′) = Ω2(x)gµν(x) (2.1)

where Ω2(x) is positive and smooth. Therefore, a conformal field theory that is invariant
under these transformations has as one of its properties that it has no preferred scale. This
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property is manifest in various theories, for example N = 4 super Yang-Mills and many
statistical systems at their critical points [46]. The conformal transformations form a Lie
group called the conformal group so in order to study conformal field theories it is first
necessary to study this group some more.

2.2 The conformal group

In principle any pseudo-Riemannian manifold has a conformal group of transformations sat-
isfying (2.1). However commonly the conformal group in d dimensions is defined as the
conformal transformations of (1, d− 1)-dimensional Minkowski space.2 Thus it is the group
of transformations xµ 7→ x

′µ satisfying(
∂x

′α

∂xµ

)(
∂x

′β

∂xν

)
ηα,β = Ω2(x)ηµν(x) (2.2)

with η the Minkowski metric in (1, d−1) dimensions and Ω2(x) is again positive and smooth.
Note that the special case Ω2(x) = 1 is the subgroup of transformations that leave the metric
invariant, thus the conformal group is an extension of the Poincaré group. Equation (2.2) is
a differential equation for the new coordinates x

′µ that can be solved and which for d ≥ 3
has the following independent solutions3

xµ 7→ xµ + aµ Translations
xµ 7→ Λµ

νx
ν Lorentz transformations

xµ 7→ λxµ Dilations

xµ 7→ xµ−bµx2

1−2b·x+b2x2 Special conformal transformations

(2.3)

and thus any conformal transformation in d ≥ 3 dimensions is given by some combination
of these. In d ≤ 2 the conformal group is much larger, either generated by the infinite
dimensional Virasoro algebra in the d = 2 case or full re-parametrization for d = 1 [47]. In this
thesis however, when talking about the conformal group we will solely refer to transformations
of the type (2.3), which can be defined in any dimension.

To study this group it is useful to consider the generators associated to (2.3). To obtain these,
one can simply perform the coordinate transformations infinitesimally in order to obtain

Pµ := −i∂µ Translations
Mµν := 2ix[µ∂ν] Lorentz transformations
D := −ixµ∂µ Dilations
Kµ := −i(2xµx · ∂ − x2∂µ) Special conformal transformations

(2.4)

where the factor of −i is due to convention. These generators then satisfy the following

2Sometimes Euclidian space is used instead.
3For some sources which go into the discussion below in some more detail, see for example references [34,

39, 46, 47].
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commutation relations

[D,Pµ] = iPµ [D,Kµ] = −iKµ

[Pµ, Kν ] = −2i(Mµν + ηµνD) [Mµν , Pσ] = −i(ηµσPν − ηησPµ)
[Mµν , Kσ] = −i(ηµσKν − ηνσKµ)
[Mµν ,Mρσ] = i(ηνρMµσ + ηµσMνρ − ηµρMνσ − ηνσMµρ)

(2.5)

and all other commutations resulting in zero. Note that this algebra is isomorphic to the
algebra of SO(2, d) which can be shown by defining

J−1,0 = D J−1,α = 1
2
(Pα+1 −Kα+1)

Jαβ = Mα+1,β+1 J0,α = 1
2
(Pα+1 +Kα+1)

(2.6)

where α and β run from 1 to d. These generators then satisfy

[Jα,β, Jγ,δ] = i(η2,d−1
αβ Jγδ + η2,d−1

βγ Jαδ − η2,d−1
αγ Jβδ − η2,d−1

βδ Jαγ) (2.7)

which are the commutation relations of the so(2, d) algebra. Here η2,d−1 is the Minkowski
metric in (2, d − 1)-dimensions. Note that this means that only the connected part of the
conformal group and SO(2, d) are isomorphic. This connection will be important in estab-
lishing the AdS/CFT duality. Furthermore when building representations of the conformal
group it will be most convenient to build representations of SO(2, d) instead and use that
the two are locally isomorphic.

2.2.1 Representations of the conformal group

In this subsection we will briefly discuss how to obtain the unitary irreducible representations
of the Lorentzian conformal group SO(2, d).4 In 3 + 1 dimension the conformal group was
first classified by Mack [48], for the Euclidian conformal group see references [49, 50] or [51]
for analytical continuations thereof. Here however we will take a somewhat more heuristic
approach by considering the representations of its maximal compact subgroup. For a more in-
depth look into the structure and representation theory of Lie groups the reader can consult
references [52–55]. Here we are briefly going to consider the SO(2, d) group in its fundamental
representation in order to study some of its properties, most importantly to find its maximal
compact subgroup which we will use to label its representations. Afterwards we will connect
this to the generators above.

The fundamental representation of the group SO(2, d) is given by matrices g ∈ SL(2 + d,R)
that satisfy

gT Ig = I (2.8)

where gT denotes the transpose of a matrix and I is defined as

I =

(
−I2×2 02×d

0d×2 Id×d

)
(2.9)

4Although we will only look at the connected component SO0(2, d), subtleties regarding the disconnected
components will be ignored.
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with In×n the identity matrix of size n×n and 0n×m the zero matrix of size n×m. This then
implies that following the same block notation as in the definition of I, an element g can be
written as

g =

(
α β
βT γ

)
(2.10)

where α ∈ SL(2,R) and γ ∈ SL(d,R) are anti-hermitian and β is an 2× d matrix with real
coefficients. The maximal compact subgroup K = SO(2)× SO(d) ⊂ SO(2, d) is then given
by matrices of the form (

α 0
0 γ

)
. (2.11)

Note that in terms of the infinitesimal generators these are spanned by J−1,0 = D and
Jαβ = Mα+1,β+1. A unitary irreducible representation of SO(2, d) must restrict to a unitary
irreducible representation of SO(2)× SO(d). We can thus label the representation by [∆, L]
where ∆ labels the SO(2) representation and L the SO(d) representation. Note that L de-
notes the familiar spin representation. From the commutation relation (2.5) one can see that
Kµ and Pµ act as raising and lowering operators for D. Since we’re interested in constructing
a quantum field theory, we will consider (tensor) fields ϕ upon which the operators act by
commutation. We now assume that there is a lowest weight state ϕ that satisfies

[D,ϕ(0)] = i∆ϕ(0) ; [Kµ, ϕ(0)] = 0 (2.12)

which we will call a primary field. This assumption is consistent with requiring positive
energy states [48]. Now it is possible to generate its descendants by successively applying the
commutator with Pµ, since then for ϕ1(0) := [Pµ, ϕ(0)] one has that

[D,ϕ1(0)] = i(∆ + 1)ϕ1(0) (2.13)

and Pµ acts as a raising operator as expected. The action of the operators on ϕ(x) can now
be obtained by using

ϕ(x) = eix
µPµϕ(0)e−ixµPµ (2.14)

which results in the relations

[D,ϕα(x)] = i(−∆+ x · ∂)ϕα(x)
[Pµ, ϕα(x)] = i∂µϕα(x)
[Kµ, ϕα(x)] =

(
i(x2∂µ − 2xµx · ∂ + 2∆xµ)− 2xνΣµν

)
ϕα(x)

[Mµν , ϕα(x)] =
(
2ix[µ∂ν] + Σµν

)
ϕα(x)

(2.15)

after applying the commutation relations. Here Σµν is the finite dimensional matrix associ-
ated to the representation L. Note that this is in agreement with (2.4). These fields are the
main object of interest in conformal field theories.

Having discussed some basic properties of the conformal symmetry group and conformal field
theories, we will take a look at anti-de Sitter space and field theories on it.
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2.3 Anti-de Sitter space

The other side of the AdS/CFT duality is AdS space. In this section we will discuss its
definition as well as look at some basic properties. The discussion below is mostly based on
references [34], [39] and [56].

From the symmetry group of conformal field theories one is almost immediately led to in-
troduce AdS space. This is because AdS is the unique (up to a radius) maximally sym-
metric manifold with the SO(2, d) symmetry group, which is similar to the relation between
Minkowski space and the Lorentzian group. To see this, note that by definition the SO(2, d)
symmetry group is the group of transformations in R2,d that leaves

XAX
A := −(X−1)2 − (X0)2 +XiX

i (2.16)

invariant. From now on upper case Latin indices will denote the index of coordinates in R2,d

while lower case Latin letters will be reserved for the spatial coordinates. These transforma-
tions then define a family of SO(2, d) invariant submanifolds ML ⊂ R2,d which have as their
defining equation

ML := { X ∈ R2,d | XAX
A = L2 } (2.17)

and these submanifolds are then precisely AdSd+1 space with radius L. Note that thus by
construction the symmetry group of AdSd+1 is SO(2, d).

While it is sometimes is convenient to work in the above embedding space there are also
several other coordinate descriptions of AdS. One particularly useful set of global coordinates
can be obtained by defining

X−1 = L
sin(t)

cos(ρ)
(2.18)

X0 = L
cos(t)

cos(ρ)
(2.19)

Xi = L tan(ρ)Ωi (2.20)

with Ωi satisfying
∑d

i=1(Ωi)
2 = 1. In these coordinates the induced metric on AdSd+1 is

given by

ds2 =
L2

cos2(ρ)

(
− dt2 + dρ2 + sin2(ρ)dΩ2

)
(2.21)

ρ ∈ [0, π
2
) ; t ∈ (−∞,∞) ; Ωi ∈ [−1, 1] (2.22)

where Ω denotes
∑d

i=1 Ωi. It should be noted that technically this is the universal cover of
the space ML defined above, although this subtlety will not matter for us.

Finally, a different set of useful coordinates is given by the Poincaré coordinates. These are
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defined by

X−1 =
z

2

(
1 +

L2 + x2 − t2

z2

)
(2.23)

X0 = L
t

z
(2.24)

Xi = L
xi
z

(2.25)

Xd =
z

2

(
1− L2 − x2 + t2

z2

)
(2.26)

where x denotes a vector of d− 1 spacial coordinates and 1 ≤ i ≤ d− 1. In these the metric
takes the following form

ds2 = L2dz
2 − dt2 + dx2

z2
(2.27)

z ∈ (0,∞) ; t, xi ∈ (−∞,∞) (2.28)

where dx2 :=
∑d−1

i=1 (dx
i)2. Because of its simplistic form these are the ones mostly used in

actual calculations although one important limitation is that these don’t cover the entire
AdS space, only the Poincaré patch.

With these coordinates it is now possible to give explicit expressions for the AdS Killing
vectors. Since by construction AdS inherits the SO(2, d) symmetry group, its killing vectors
are of the form

J(A,B) = XA∂B −XB∂A (2.29)

in the R2,d coordinates used before. Note that here the subscript (A,B) is not an index but
a label. These Killing vectors can be written in AdS coordinates by defining

(k(A,B))µ :=
∂XC

∂xµ
(J(A,B))C (2.30)

where xµ denote the AdS coordinates. For the global coordinates defined in equation (2.18)
these take the form

k(−1,0) = ∂t
k(−1,0) = cos(ρ) sin(t)Ωi∂ρ + sin(ρ) cos(t)Ωi∂t − sin(t)

sin(ρ)
∂Ωi

k(0,i) = − cos(ρ) cos(t)Ωi∂ρ + sin(ρ) sin(t)Ωi∂t +
cos(t)
sin(ρ)

∂Ωi

k(i,j) = Ωi∂Ωj
− Ωj∂Ωi

(2.31)

where again 1 ≤ i ≤ d.

Another important property of AdS space is that it has a conformal time-like boundary, where
a conformal boundary is defined as the boundary of the conformally compactified space. To
see this, consider the metric of AdSd+1 in global coordinates, given by equation (2.21). Note
that this has a singularity at ρ = π

2
. However, it is possible to define a new metric as

ds̃2 := f(ρ, t,x)ds2 (2.32)
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where f is any smooth positive definite function that has a simple zero at ρ = π
2
. The metric

ds̃2 defines a new manifold which is the conformal compactification of AdSd+1. Note that
f is non-unique and therefore it is possible to perform many different compactifications.5

Choosing

f(ρ, t,x) =
cos2(ρ)

L2
(2.33)

the new metric is given by

ds̃2 = −dt2 + dρ2 + sin2(ρ)dΩ2 . (2.34)

This metric now is actually defined on the boundary and thus it is possible to take the limit
ρ→ π

2
and consider the resulting space. This has a metric given by

ds̃2
∣∣
ρ=π

2

= −dt2 + dΩ2 (2.35)

and thus using this conformal compactification the boundary is given by R×Sd−1. Note that
different choices of f would have given different boundary spaces.

2.3.1 Field theories on a fixed AdS background

We are now ready to study field theories on a fixed AdS background. For simplicity we will
just consider a single scalar field that is not coupled to gravity. This will allow us to perform
explicit calculations and even obtain an exact solution for the free field, with which we can
then study its behaviour. Although this is only the simplest example, some key aspects such
as its boundary behaviour also generalize to other fields [3, 35]. Most of the following analysis
will be classical as we will only give an overview of the simplest arguments for AdS/CFT
duality.

The scalar field on AdS is described by the action

S[ϕ] =

∫
AdSd+1

dd+1x
√
−g

(
1

2
(∂µϕ)(∂

µϕ) +
m2

2
ϕ2 + V (ϕ)

)
(2.36)

where g is the metric of AdS and V is a potential. This action implies that the classical
equation of motion of ϕ is given by

(□−m2)ϕ =
∂V

∂ϕ
(ϕ) (2.37)

with □ the Laplace-Belatrami operator of AdS space. Note that since AdS space has a
time-like conformal boundary the boundary conditions need to be specified in order for the
differential problem to be well-defined. For a free field of massm (e.g V (ϕ) = 0) this equation
of motion reduces to

(□−m2)ϕ = 0 (2.38)

5Note that the above procedure is equivalent to a Weyl rescaling of the metric, see [35] for a nice description
of this procedure in Euclidian AdS.
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which can be written explicitly in Poincaré coordinates (2.27) as(
z2∂2z − (d− 1)z∂z + z2(−∂2t + ∂i∂

i)−m2L2
)
ϕ = 0 (2.39)

where the sum over i denotes a sum over spatial coordinates. Making the ansatz

ϕ(z, t,x) = ψ(z)eitp0+ixipi (2.40)

the above differential can be rewritten as a modified Bessels equation with ψ having solutions
of the form

ψ(z, t, x)p = c1z
d/2K∆−d/2(|p|z) + c2z

d/2I∆−d/2(|p|z) (2.41)

where K and I are modified Bessel functions and

∆ :=
d

2
+

√
d2

4
+m2L2 (2.42)

will play an important role in connecting to the CFT side. In the interior I diverges expo-
nentially so to obtain normalizable solutions c2 must be set to zero. Since near the boundary
z → 0 the functions K scales as

lim
z→0

zd/2K∆−d/2(|p|z) ∼ zd−∆f(p) (2.43)

ϕ also scales as zd−∆ near the boundary. Note that this diverges and thus some regularization
will be necessary, this is usually done by defining a cutoff ϵ instead of taking the limit z → 0.
This process is called holographic renormalization and is often necessary when calculating
correlation functions [57].

When one introduces interactions it is no longer possible to obtain an exact solution, however
Witten introduced a general procedure for calculating correlation functions which can still
be applied [35]. This procedure involves first solving the differential equation for a free field
subject to the boundary conditions

lim
z→0

z∆−dϕ(z, t,x) = ϕ0(t,x) (2.44)

where ϕ0 is some to be specified function, and then iteratively solving for the full solution.
In order to obtain the free solution in terms of the boundary conditions, one first defines a
bulk-to-bulk propagator G(z, t,x) satisfying

(□−m2)G(z, t,x) =
δ(z)δ(t)δd−1(x)√

−g
(2.45)

which is just the conventional Green’s function. With this it is possible to define a bulk-to-
boundary propagator K as6

K(z, t, x) := lim
w→0

2∆− d

w∆
G(z − w, t, x) (2.46)

6Note that this K is not the modified Bessel function used above, although this notation may be somewhat
confusing we have used it here in order to be consistent with the notation from the literature. From here on
out, K will always mean the bulk-to-boundary propagator unless stated otherwise.



2 AN OVERVIEW OF ANTI-DE SITTER/CONFORMAL FIELD THEORY
DUALITY 12

chosen such that
lim
z→0

z∆−dK(z, t, x) = δ(t)δd−1(x) (2.47)

which can be checked by explicitly calculating G and K, as has been done in reference [33].

An interesting property of K is that the free field solution ϕ̃ to

(□−m2)ϕ̃(z, t,x) = 0 (2.48)

subject to
lim
z→0

z∆−d ϕ̃(z, t,x) = ϕ0(t,x) (2.49)

can be written as

ϕ̃(z, t,x) =

∫
∂AdS

dt′dd−1x′ K(z, t− t′,x− x′)ϕ0(t
′,x′) (2.50)

resulting in the free solution in terms of the boundary conditions. With this free solution it
is now possible to expand ϕ iteratively as

ϕ(z, t, x) = ϕ̃(z, t,x) + c1

∫
AdS

dd+1x′ G(z − z′, t− t′,x− x′)ϕ̃(z′, t′,x′) + · · · (2.51)

where the expansion continues with propagators acting on the free solution and the constants
ci are fixed by the potential V [38]. Inserting this expansion in to the action (2.36) gives
an on-shell action which now depends on the boundary condition ϕ0 instead of ϕ. Explicit
expressions for K and G can be found [33, 38] which when inserted in the on-shell action
and integrating by parts results in

Son−shell[ϕ0] =

∫
∂AdS

∫
∂AdS

dtdd−1xdt′dd−1x′ ϕ0(t,x)ϕ0(t
′,x′)

|t− t′|2∆|x− x′|2∆
+ Sinteraction[ϕ0] . (2.52)

Note that the first term is identical to the generating functional WCFT [ϕ0] of a conformal
field theory operator with conformal dimension ∆ and source ϕ0. This suggests that it might
be possible to reinterpret the original field theory described by (2.36) also as a conformal
field theory living on the boundary of AdS space, which leads us naturally to conjecture the
AdS/CFT duality.

2.4 The AdS/CFT duality

The on-shell expansion (2.52) leads us to conjecture a connection between field theories on
AdS space and conformal field theories living on its boundary. In its strongest form it posits
a connection between the AdS partition functional ZAdS[ϕ0] where the ϕ0 act as the boundary
conditions of the theory and a CFT partition function ZCFT [ϕ0] where the ϕ0 act as sources.

7

7There is also the so-called extrapolate dictionary, which states that in a different limit actually the bulk
theory field is actually equal to the CFT operator itself [34, 44] although they are conjectured to be equivalent
for AdS [58].
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Mathematically, the AdS/CFT duality can thus be summed up in the equation8

ZCFT [ϕ0] = ZAdS[ϕ]
∣∣
limz→0 z∆−dϕ=ϕ0

(2.53)

where the ϕ fields now include gravity and other non-scalar fields. The weaker forms of this
conjecture state that this equality only holds in certain limits [33]. While the scalar field
toy-model used above is interesting, the full extent of the AdS/CFT conjecture only comes in
to play when considering different fields and especially gauge fields such as gravity. Equation
(2.53) then implies a mapping where the boundary limit bulk gauge fields act as sources for
conserved currents in the CFT side [35, 36]. An important special case for this is the mapping
between the energy-momentum tensor on the CFT side and the metric on AdS, since any
CFT has an energy-momentum tensor [47] this means that gravity appears on the AdS side
quite naturally. All these combined lead to the so-called AdS/CFT dictionary which can be
summed up as [59]

AdS CFT
Fields ↔ Operators

Gauge fields ↔ Conserved currents
Boundary values of fields ↔ Sources for operators

Local isometries ↔ Global isometries

Besides this general idea we can quickly check some very basic requirements for this duality.
Two somewhat trivial things to mention briefly are that as we saw in subsection 2.3 that
AdSd+1 has an R × Sd−1 boundary. Since R × Sd−1 is conformally equivalent to Rd−1,1 it at
least seems possible that the boundary theory is described by a conformal field theory on
this space. Furthermore taking the boundary limits of the Killing vectors given in equation
(2.31) results in the SO(2, d) Killing vectors defined in equation (2.6), signifying that the
Killing vectors on AdS also get mapped to the conformal Killing vectors on the CFT side.
There are quite a number of other checks on the AdS/CFT duality, such as calculations of
correlation functions [60, 61] and the holographic anomaly [62, 63]. For brevity we will not
go into those here but for an overview see references [38] and [33].

With this general overview of AdS/CFT finished we will now consider the lowest dimensional
AdS2/CFT1 setting and as we will see it will turn out that even though initially this might
seem like the simplest model it has quite a few peculiarities.

8This equation is also sometimes called the GKPW rule, in reference to Gubser, Klebanov, Polyakov [36]
and Witten [35].
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3 Lowest dimensional AdS/CFT

The lowest dimensional version of the Ads/CFT duality is quite interesting for a number
of reasons. First of all it appears quite naturally when considering extremal black holes in
higher dimensions, which makes it one of the few instances where the AdS/CFT duality
might immediately provide testable predictions. Furthermore there are some very interesting
differences in AdS2/CFT1 in comparison to the higher dimensions. For example, Lorentzian
AdS2 actually has two boundaries instead of one as is shown in figure 1. This makes it
unclear how the ordinary AdS/CFT dictionary of relating bulk fields and boundary operators
through simply taking the boundary limit should be applied, since now one has the choice of
different limits to take. Furthermore calculating correlators by varying with respect to the
boundary conditions as in equation (2.53) also becomes a bit unclear. It has been posited
that therefore there are now two CFTs, one for each boundary, which have been used to
calculate black hole entropies. [64]. Besides the double boundary there is also the fact that
in 0+ 1 dimension a quantum field theory reduces to ordinary quantum mechanics, thus one
can not apply the general CFT formalisms without care. This might also turn out to be an
advantage however, since usually quantum mechanical models are much easier to study than
quantum field theories. A third difference between the higher dimensional analogues is that
in two dimensions, Einstein-Hilbert gravity is non-dynamical. Therefore some modification is
necessary in order to have interesting gravitational dynamics. Usually this is done by adding
a dilaton field to the theory since as we will see these appear very naturally from higher-
dimensional compactification. Finally, there is the fact that AdS2 × K with K compact
admits no finite energy excitations [17, 65]. Therefore one has to settle for just studying the
ground state, or one has to modify the space. We will discuss this more in section 3.2. In the
end, all these differences are part of what makes AdS2/CFT1 so interesting, since overcoming
them will surely lead to a better understanding of the AdS2/CFT1 duality in general.

(a)
(b)

Figure 1: (a) conformally compacted Euclidean AdS2, originally from [66]. Note that the
polygons are of equal volume. (b) conformally compactified Lorentzian AdS2, note the two
time-like boundaries in dark grey extending to ±∞.

In this chapter we will start by motivating the study of AdS2 with dilaton gravity by con-
sidering the spherically reduced Reissner-Nordström black hole in section 3.1, afterwards in
section 3.2 we will show why AdS2 ×K admits no finite energy excitations for compact K.
Finally in section 3.3 we will discuss motivate the particular conformal quantum mechanical
model that we will study in the next chapter.
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3.1 AdS from extremal black holes

One particular reason why AdS2 is interesting it that it can be obtained as part of the near-
horizon geometry of extremal black holes. In fact, this has been partially proven for general
extremal black holes by Figueras et al. [14] and Kunduri et al. [13] using the SO(2, 1)
symmetry near the boundary. As an example, here we will briefly show how the AdS2

geometry arises from a Reisner-Nordström black hole. This discussion will mostly follow
references [67] and [17].

Consider the Reissner Nordström metric in four dimensions given by

ds2 = −(r − r+)(r − r−)

r2
dt2 +

r2

(r − r+)(r − r−)
dr2 + r2dΩ2 (3.1)

r± = QLp + EL2
p ±

√
2QEL3

p + E2L4
p (3.2)

E =M − Q

Lp

(3.3)

here dΩ2 denotes the S2 metric, Q is the charge, E is the excitation energy above extremality
and Lp is the Planck length. For an extremal black hole E = 0, simplifying the expression
for r± to

r+ = r− = QLp . (3.4)

Taking the near-horizon limit means considering a coordinate near r = r± and taking the
length scale to zero. Since Lp is the only remaining variable with dimension length, a natural
choice is

z =
Q2L2

p

r − r+
(3.5)

and taking the limit Lp → 0 while keeping z and Q constant. After performing this change
of coordinates and taking these limits the new metric becomes

ds̃2 = Q2L2
p

(
dz2 − dt2

z2
+ dΩ2

)
(3.6)

which, since the first part is the metric of AdS2 and the second part that of S2, describes
the product space AdS2 × S2. For different extremal black holes this procedure would result
in the product space AdS2 × K where K is some compact manifold. It is also interesting
to consider the near-extremal limits, this amounts to taking Lp to zero while simultaneously
taking limits of combinations of E, Q and Lp or keeping them constant. This has been done
by Maldacena, Michelson and Strominger [17] and one important result found there was that
in the simplest limits the finite energy excitations on AdS2 × S2 were supressed, something
that we will discuss more in section 3.2.

Before we look at this in more detail we will take a look at the resulting theory of gravity in
AdS2 induced from extremal black holes, continuing with the Reisner-Nordström black hole
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example. As we will see this leads naturally to the introduction of a dilaton field. The metric
(3.1) is a solution of the Einstein-Maxwell action

S =
1

L2
p

∫
d4x

√
−g

(
Rg −

L2
p

4
FµνF

µν
)

(3.7)

where g is the metric, Rg its curvature scalar and F the electro-magnetic field strength. Now
consider the spherically symmetric anszats

ds2 = hab(r, t)dx
adxb + Φ2(r, t)dΩ2

F = Q sinϕ dϕ ∧ dθ (3.8)

where a, b ∈ {t, r} and ϕ, θ are the angular coordinates. Inserting this in the action above
and integrating with respect to the angular coordinates applying Stokes theorem leads to9

S =
4π

L2
p

∫
dtdr

√
−h

[
Φ2Rh + 2(∇Φ)2 + 2−

L2
pQ

2

2Φ2

]
(3.9)

where Rh is the curvature scalar of h and ∇ is the covariant derivative with respect to h.
This action is part of a family of 1 + 1 dimensional models initially studied by Almheiri and
Polchinski [65] with actions of the form

S =
1

16πG

∫
drdt

√
−h

[
Φ2Rh + λ(∇Φ)2 − U(Φ)

]
(3.10)

with U(Φ) some potential and G of dimension length squared. Many different theories give
rise to an action of the form (3.10), for example spherically reduced gravity models such as
above or certain string theories [69, 70]. Furthermore, some models of this form are exactly
solvable even with matter making it possible to analyse them more in-depth [71].

With the motivation for studying these kind of models given, we will now discuss some of
their properties which make AdS2/CFT1 especially difficult and interesting. Starting with
the problem of finite energy excitations.

3.2 Backreaction and absence of finite matter excitations

Now that we have a general dilaton gravity action in two dimension we can start to couple it
with matter. As we will see, requiring that the background-metric asymptotes to AdS2 ×K
for K a compact manifold implies that there are no finite energy matter excitations [17,
65]. In extremal black holes such as the one discussed above, this effect manifests by the
thermodynamic description breaking down at extremality [72, 73]. Note that for non-compact
K, finite matter excitations are allowed [74]. The general argument starts by coupling the
action (3.10) to matter as

S =

∫
drdt

√
−h

[
Φ2Rh + λ(∇Φ)2 − U(Φ)

]
+ Smatter (3.11)

9See references [67] and [68] for more detail.
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where the exact form of Smatter will not be important. In two dimensions, any Lorentzian
metric can be rewritten as

ds2 = −e2ω(u,v)dudv (3.12)

by applying some coordinate transformation. The equation of motion for the metric compo-
nent huu then implies that

− e2ω∂u(e
−2ω∂uΦ

2) = Tuu (3.13)

where T is the energy momentum tensor obtained by varying Smatter with respect to h. We
impose that at the boundary the metric asymptotes to the AdS2 metric, thus in accordance
to AdS2 we should find two boundaries which we will take to be at u = v and u = v + π.
Now integrating with the measure e−2ωdu along v = 0 results in the equation

e2ω∂uΦ
2
∣∣
u=0

− e2ω∂uΦ
2
∣∣
u=π

=

∫ π

0

du e−2ωT++ . (3.14)

Importantly, the right hand side of this equation is greater than zero when matter is present.
However imposing that the metric asymptotes to AdS2 at the boundaries implies that e2ω

should scale as

lim
u→v

e2ω ∼ 1

(u− v)2
(3.15)

lim
u→v+π

e2ω ∼ 1

(u− v − π)2
(3.16)

and thus e−2ω vanishes at the boundaries. But since the right hand side of equation (3.14)
is non-zero we see that the ∂uΦ

2 term must diverge quadratically near at least one of the
boundaries. This might not seem like an important problem since in higher dimensional AdS
fields can also have divergences at the boundary,10 however one must remember that in this
context Φ2 appears from an ansatz similar to equation (3.8). Thus Φ2 should be interpreted
as the volume of the compact space K, but since Φ2 diverges this volume is infinite and
K can no longer be compact. Therefore AdS2 × K admits no finite energy excitations. A
solution is available however by considering near-AdS (nAdS) geometries [75, 76] which we
will briefly discuss now.

3.2.1 Near-AdS geometries and Schwarzian actions

Armed with the knowledge that some modification of the system above is necessary here we
will briefly consider one possible solution proposed by Almheiri and Polchinski [65] which was
developed more in references [75] and [76]. This solution involves a boundary parametrization
resulting in a Schwarzian boundary action, which implies a possible relation between Jackiw-
Teitelboim gravity and the Sachdev–Ye–Kitaev model [67]. The starting point is to consider
small deformations

Φ2 = ϕ0 + ϕ (3.17)

10See for example equation (2.43).
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of the dilaton around a constant value ϕ0 that satisfies the equations motion. By expanding
the action (3.10) around ϕ0 and ignoring higher order and topological terms this action can
be rewritten as [67, 75]

S =
1

16πG

[ ∫
drdt

√
−hϕ(Rh + 2) + 2

∫
dt ϕbK

]
(3.18)

where the boundary integral is added in order to make the variational problem well-defined.
Here K is the extrinsic curvature of the boundary and ϕb is the boundary limit of ϕ. Note
that this action describes the well-known Jackiw-Teitelboim gravity [18, 19] and that the
equation of motion for ϕ now assures that h has constant negative curvature. One important
difference with before is that we will know work in Euclidean coordinates and consequentially
that there is only one boundary. The equations of motion for h and ϕ can be solved resulting
in

ds2 =
dr2 + dt2

z2
(3.19)

ϕ =
a+ bt+ c(t2 + r2)

r
(3.20)

where a, b and c are integration constants. Since both the metric and ϕ diverge at the
boundary r → 0, we impose a cut-off by defining a boundary curve parametrized by a
coordinate τ .11 Furthermore, we impose that at along this cut-off, h and ϕ behave as

h|boundary =
1

ϵ2
(3.21)

ϕb =
ϕτ (τ)

ϵ
(3.22)

analogous to equation (3.19). This results in a set of equations for t(τ) and r(τ) along the
path which can be solved resulting in

ϵ∂τ t(τ) = z(τ) (3.23)

a+ bt(τ) + c(t(τ))2

∂τ t(τ)
= ϕτ (τ) (3.24)

where it should be noted that ϕτ acts as the boundary condition imposed on ϕ. The second
equation is the equation of motion for a boundary action given by

I =
−1

8πG

∫
dτϕτ (τ)Sch(t, τ) (3.25)

where Sch(t, τ) is the Schwarzian defined as

Sch(t, τ) := ∂τ

(
∂2τ t(τ)

∂τ t(τ)

)
− 1

2

(
∂2τ t(τ)

∂τ t(τ)

)2

. (3.26)

11This and what follows is somewhat similar to holographic renormalization [57]. Although there is a
substantial difference in that the cut-off is not uniform but along a path parametrized by τ .
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The action (3.25) could also have been derived by imposing the equations of motion for ϕ on
(3.18) and inserting the explicit formula for the extrinsic curvature [75].

Interestingly, a Schwarzian action also appears as the low temperature limit of the Sachdev–Ye–Kitaev
model [20] leading to speculation that Jackiw-Teitelboim gravity might be the bulk dual of
the Sachdev–Ye–Kitaev model [77, 78]. In this thesis however, we will mostly focus on an
alternative CFT1 system: conformal quantum mechanics.

3.3 Motivating conformal quantum mechanics

Although the model above is quite interesting, one may wonder if there are simpler CFT1

systems one might construct. A natural starting point is to consider a conformal quantum
mechanical system. Although it should be noted that the conformal group in one dimension
consists of a full parametrization symmetry, while AdS2 has a SO(2, 1) symmetry. Thus a
natural starting point is to consider quantum mechanical systems with this same symmetry
group. However, usually its double cover SL(2,R) is used instead and therefore we will also
focus on that. A canonical conformal quantum mechanics model with this symmetry group
was introduced by de Alfaro et al. (dAFF) in reference [23]. In the following chapter we
will study their construction more in-depth but here we will give some motivation for why
it is a natural object to study in this context. First of all, as we mentioned it is a quantum
mechanical system with the correct symmetry group and since many of its properties depend
solely on the group properties in some sense the underlying system is interchangeable. The
dAFF model can actually be obtained from the Jackiw-Teitelboim gravity described above
[24] as well as from a symplectic reduction of hermitian matrix models [79]. This last one
is particularly interesting since it has been argued that for pure AdS2, the CFT1 admits a
U(N) symmetry group [64].

Now that we have outlined the AdS2/CFT1 duality and given a motivation for the dAFF
quantum mechanics model, we will turn our attention there. As we will see, it will turn out
to have many properties similar to higher dimensional CFT’s.



4 CONFORMAL QUANTUM MECHANICS 20

4 Conformal quantum mechanics

As we have seen, the dAFF quantum mechanics model provides a natural candidate for a
CFT1 theory. However as it turns out, many of their results are independent of the actual
quantum mechanics and depend solely on the representation theory of SL(2,R). Therefore
in this chapter we will mostly take this representation theory view and not talk about the
specific model. One of the main insights from dAFF was the introduction of a continuous
state |x⟩ that acts similar to a position basis in that it provides a way to move from discrete
states in the Hilbert space to functions of x. It then turns out that, as was noted already by
Chamon et al. [21] that there is an analogue to correlation functions that has very similar
properties to those in ordinary CFT’s.

We will start this chapter by giving an overview of the SL(2,R) representation theory in
section 4.1. Afterwards we will review the work of dAFF [23] and Chamon et al.[21] in the
construction of the dAFF model in section 4.2. We will then expand on this in subsection
4.2.2 by introducing a completeness relation for the states |x⟩ and find that it has some
similar properties to the shadow operator from conformal field theories. This completeness
relation then allows us to find formula’s for all higher order correlation functions. Finally we
propose an interpretation of the dAFF model as the boundary theory of a canonical discrete
series representation of SL(2,R) on the Poincaré upper half plane in section 4.3.

4.1 Representations of the 1-dimensional conformal group

Since conformal quantum mechanics consists of representations of the 1-dimensional confor-
mal group, the first task at hand is to classify these and choose one to build our representation
on. The irreducible representations of SL(2,R) were first classified by Bargmann in [80] by
first classifying the representations of the Lie algebra. Here we will take a similar approach
and note that the representations of the Lie algebra can be lifted to a representation of the
group in the usual way. Some of the general theory of Lie groups and algebras can be found
in Lee [81], while a more in-depth look as well as an overview of the representation theory
can be found in references [53] and [54] by Knapp, as well as [82] by Hall. Much of this
theory is then applied to the SL(2,R) group by Lang in [83].

The SL(2,R) group is defined as the group of 2x2 matrices satisfying∣∣∣∣a b
c d

∣∣∣∣ = ad− bc = 1 (4.1)

where a, b, c and d are real. Or equivalently, with the function f : GL(2,R) → R

f

(
a b
c d

)
= ad− bc (4.2)

SL(2,R) is defined by
f(A) = 1 ⇔ A ∈ SL(2,R) (4.3)
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where A ∈ GL(2,R). Since this group is a Lie group, it has a corresponding Lie algebra
which is isomorphic to the tangent space of SL(2,R) at the identity element. Using that
SL(2,R) has f as its defining function this Lie algebra this is then given by

sl(2,R) ≃ TeSL(2,R) = {v ∈ TeGL(2,R) | (df)e(v) = 0} (4.4)

which results in the algebra of 2x2 traceless matrices.12 A common basis of this Lie algebra
is given by

X1 =

(
0 1
0 0

)
; X2 =

(
0 0
−1 0

)
; X3 =

(
1
2

0
0 −1

2

)
(4.5)

and satisfy the commutation relations

[X1, X2] = −2X3 ; [X1, X3] = −X1 ; [X2, X3] = X2 (4.6)

where [·, ·] denotes the commutator for matrices. Now, for a Hilbert space H with an inner
product ⟨·|·⟩ we construct a representation π : sl(2,R) → gl(H) as

π(X1) = iK ; π(X2) = iP ; π(X3) = iD (4.7)

which is taken as the definitions of D, P and K. Note that unitarity implies that these
operators are self-adjoint with respect to the inner product of H. The requirement that the
representation is a Lie algebra homomorphism then fixes the commutation relations of P , K
and D to be

[D,P ] = iP
[D,K] = −iK
[P,K] = −2iD

(4.8)

and we see that D, P and K can be identified as the dilatation, translation and special
conformal transformation operators of the conformal group. To see how these operators act
on the Hilbert space H, first note that

XR :=
1

2
(X1 +X2) =

1

2

(
0 1
−1 0

)
(4.9)

generates the maximal compact subgroup SO(2) ⊂ SL(2,R). The representation π|XR
re-

stricts to a representation of so(2) and therefore R defined by

π(XR) = iR (4.10)

is compact and there exists a complete orthonormal basis |n⟩ of H such that

R|n⟩ = λn|n⟩ = (λ+ n)|n⟩ (4.11)

where λ and λn are integers or half-integers and n is an integer. Knowing this, it is useful to
define the operators

L± :=
1

2
(P −K)± iD (4.12)

12Note that for matrix groups, their Lie algebra’s themselves also consist of matrices.
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Name of the representation Value of ∆ Eigenvalues of R Range of n
Principal series ∆ = 1

2
+ iν, ν ∈ R λn = n or λn = 1

2
+ n n ∈ Z

Positive discrete series ∆ ∈ N \ {0, 1} λn = ∆+ n n ∈ N
Negative discrete series −∆ ∈ N \ {0, 1} λn = ∆− n n ∈ N
Complementary series ∆ ∈ (0, 1) λn = n or λn = 1

2
+ n n ∈ Z

which satisfy the commutation relations

[R,L±] = ±L± ; [L−, L+] = 2R (4.13)

as well as (L+)† = L−, which is a requirement for them to act as proper raising and lowering
operators. The commutation relations then imply that the state L±|n⟩ is an eigenstate of R
with eigenvalue λn + 1, thus we find that

L±|n⟩ = Cn,±|n± 1⟩ (4.14)

where Cn,± is a constant. One final necessary ingredient is that the quadratic Casimir

C := −D2 +
1

2
(PK +KP ) = R2 − 1

2
(L+L− + L−L+) (4.15)

commutes with all other generators. For a unitary irreducible representation any operator
that commutes with all other operators must be proportional to the identity and thus for all
|ϕ⟩ ∈ H we should require that

C|ϕ⟩ = ∆(∆− 1)|ϕ⟩ (4.16)

where ∆ is a constant which defines the representation. By applying equations (4.14) and
(4.16) one obtains the relations

|Cn,±|2 = λn(λn ± 1)−∆(∆− 1) (4.17)

which, if ⟨·|·⟩ is a well-defined inner product should be equal to or greater than zero. Thus
one finds the inequality

∆(∆− 1) ≤ λn(λn ± 1) (4.18)

which can be satisfied in the following ways which classify all unitary irreducible representa-
tions of sl(2,R) [80, 83].

In this chapter we will mostly focus on the positive discrete series following the original
constructions by dAFF [23], however interesting work has also been done to extend these
constructions to the principal series [84]. Note that it is possible to obtain non-unitary finite
dimensional representations by analytically continuing the principal series representations to
∆ ∈ Z [85]. These representations will be considered in the following chapter. Since we are
working in the positive discrete series representation, there exists a lowest weight state |0⟩
that satisfies

L−|0⟩ = 0 ; R|0⟩ = ∆|0⟩ (4.19)

and all other states in the representation can be generated by successively applying L+ to
this state. Thus noting that equation (4.17) implies that

L±|n⟩ =
√
λn(λn ± 1)−∆(∆− 1)|n± 1⟩ (4.20)
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assuming Cn,± is real. Therefore for any state |n⟩ it is possible to rewrite it as

|n⟩ =

√
Γ(2∆)

Γ(n+ 1)Γ(2∆ + n)
(L+)

n|0⟩ (4.21)

where Γ are the Gamma functions. Using this representation it is now possible to define a
|x⟩ state alongside a representation of D, K and P as differential operators. This will turn
out to have some interesting properties similar to conformal field theories.

4.2 Continuous representations

While the above representations of SL(2,R) are useful, it would be nice to construct states
in terms of a continuous variable x in order to make it more similar to conventional CFT’s.
This was originally done by dAFF [23] who introduced a conformal quantum mechanical
system alongside with a continuous state |x⟩ was introduced which acts similar to a position
basis in ordinary quantum mechanics. With this position basis dAFF calculated an analogue
to a correlation function and found formulas very similar to those in ordinary CFT’s, as was
also noted by Chamon et al. [21] In this subsection we will briefly recall this construction,
although slightly modified to fit in line with the conventional CFT operators described in
subsection 2.1. With this we will then also calculate the two and three-point functions. In
the following sections we will then expand on this by introducing some new calculational
tools and try to interpret it as the boundary theory of a quantum field theory on AdS.

In [23] dAFF constructs the state |x⟩ by defining a realization of the so(2, 1) algebra as
differential operators on it. Following this, we define |x⟩ such that13

⟨x|P = −i d
dx
⟨x|

⟨x|K = −i(x2 d
dx

+ 2∆x)⟨x|
⟨x|D = −i(x d

dx
+∆)⟨x|

(4.22)

which satisfy the commutation relations (4.8) and give rise to the correct Casimir (4.16).
Since the states |n⟩ form a basis in H it is possible to expand

|x⟩ =
∞∑
n=0

|n⟩⟨n|x⟩ (4.23)

and thus to obtain an explicit form for |x⟩ it is enough to find an expression for

βn(x) := ⟨x|n⟩ . (4.24)

To obtain an expression for βn, note that (4.22) together with the definition of R given in
(4.10) imply that

⟨x|R|n⟩ = − i

2

(
(1 + x2)

d

dx
+ 2∆x

)
⟨x|n⟩ (4.25)

13Note again the difference in convention compared to [23] and [21].
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while (4.11) implies that
⟨x|R|n⟩ = (∆ + n)⟨x|n⟩ . (4.26)

Combining the two gives the following differential equation for βn

− i

2

(
(1 + x2)

d

dx
+ 2∆x

)
βn(x) = (∆ + n)βn(x) (4.27)

which has as its solution

βn(x) = an

(
1 + ix

1− ix

)n+∆

(1 + x2)−∆ (4.28)

with an a constant. This constant can then be fixed by calculating ⟨x|L±|n⟩ and requiring
that (4.20) holds. This results in

an = a0

√
Γ(2∆ + n)

Γ(n+ 1)
(4.29)

where a0 is an arbitrary constant which will be set to 1 from now on. Formulas (4.28) and
(4.21) can be inserted into the expansion (4.23) resulting in

|x⟩ =
∞∑
n=0

β∗
n(x)|n⟩ =

∞∑
n=0

1

n!

(
1− ix

1 + ix

)n+∆

(1 + x2)−∆(L+)
n|0⟩ (4.30)

which can be evaluated to

|x⟩ = e
1−ix
1+ix

L+

(1 + ix)2∆
|0⟩ =: O(x)|0⟩ . (4.31)

Note that while schematically this looks similar to a conformal operator O acting on a
vacuum state |0⟩, one has to keep in mind that |0⟩ is just the lowest weight state defined
in equation (4.19). This is not annihilated by all operators and therefore not a true ground
state as one would find in an ordinary quantum field theory. Similarly O does not satisfy the
commutation relations with P , K and D that one would expect from a conformal primary.
However both combined do act as a conformal primary, as we will see below.

Formulas (4.28) for βn(x) and (4.31) for |x⟩ will now be used to calculate an analogue to
correlation functions in a conventional conformal field theory and as we will see these will
turn out to have the correct form.

4.2.1 Two and three-point correlation functions

In an ordinary conformal field theory the main objects of interests are the correlation func-
tions. In fact, it is even possible to define a conformal field theory just using these and a
small amount of other data [86]. Thus it is natural to consider the ”correlation function”

G(x1, x2) := ⟨0|O†(x1)O(x2)|0⟩ = ⟨x1|x2⟩ (4.32)
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in this conformal quantum mechanics theory and see if it has similar behaviour, here O(t)
is as defined in (4.31). There are two ways to evaluate equation (4.32), both originally
performed in [23]. Firstly, since the eigenstates |n⟩ form a complete orthonormal basis it is
possible to insert these resulting in

G(x1, x2) = ⟨x1|x2⟩ =
∑
n

⟨x1|n⟩⟨n|x2⟩ =
∑
n

βn(x1)β
∗
n(x2) (4.33)

which, when inserting 4.28 and performing the sum becomes

G(x1, x2) =
Γ(2∆)(

2i|x2 − x1|
)2∆ (4.34)

Note that this is precisely the form of the correlation function for a conformal operator with
conformal dimension ∆ in a conformal field theory. However, as [21] have noted this is despite
the fact that |0⟩ is not a fully invariant vacuum and O is not a covariantly transforming
operator.

Interestingly, this correlation function could have also been derived using by inserting D, K
and P in ⟨x1|x2⟩, and letting them act on both ⟨x1| and |x2⟩ separately giving a differential
equation for G. To do this, it is first necessary to calculate the action of the operators on
|x1⟩, which can be done by taking equation (4.31) and acting on it with P , K and H. This
results in

P |xi⟩ = i d
dxi

|xi⟩
K|xi⟩ = i(x2i

d
dxi

+ 2∆xi)⟨xi|
D|xi⟩ = i(xi

d
dxi

|xi⟩
(4.35)

Therefore, calculating ⟨x1|P |x2⟩ results in

⟨x1|P |x2⟩ = −i ∂
∂x1

⟨x1|x2⟩ = i
∂

∂x2
⟨x1|x2⟩ (4.36)

giving a differential equation for G(x1, x2) = ⟨x1|x2⟩. Performing a similar procedure for D
and K results in the set of differential equations

( ∂
∂x1

+ ∂
∂x2

)G = 0

(x1
∂

∂x1
+ x2

∂
∂x2

)G = 0(
x21

∂
∂x1

+ x22
∂

∂x2
+ 2∆(x1 + x2)

)
G = 0

(4.37)

which when solved also results in (4.34), as was originally shown by dAFF in reference [23].
Using this same method, dAFF also derived a 3-point correlator by inserting a conformal
operator B satisfying

[P,B] = i d
dx
B

[D,B] = i(x d
dx

+∆B)B
[K,B] = i(x2 d

dx
+ 2x∆B)B

(4.38)

where ∆B is the conformal dimension of B. Defining

F (x1, x2, x3) := ⟨x1|B(x2)|x3⟩ (4.39)
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and calculating
⟨x1| [P,B(x)] |x2⟩
⟨x1| [K,B(x)] |x2⟩
⟨x1| [D,B(x)] |x2⟩

(4.40)

this gives rise to a set of differential equations satisfied by F . With these dAFF then found
that the unique (up to a constant) solution of this is given by

F (x1, x2, x3) = ai2∆+∆B
1

|x2 − x1|∆B |x3 − x2|∆B |x1 − x3|∆−∆B
(4.41)

where a is a real constant. Note again the similarity to the conformal three point functions
found in conformal field theory.

While the above strategy of either performing the summation over βn functions directly
or solving a set of differential equations works for two- and three-point functions, it runs
into trouble for higher order correlation functions. There is no clear way of performing the
sum since the matrix element ⟨n|B|m⟩ is unknown while the resulting differential equations
quickly become much too complicated. To solve this it is necessary to introduce an operator
called the shadow operator [87] which makes it possible to obtain a modified completeness
relation, greatly simplifying the calculations needed.

4.2.2 Completeness relations and the shadow operator

To calculate the higher point functions it would be useful to have a completeness rela-
tion for the states |x⟩. Since then, any n-point correlation function could be split into
a three-point function and an n − 1 point function. For example, a four-point function
⟨0|O†(x1)A(x2)B(x3)O(x4)|0⟩ could be split as

⟨0|O†(x1)A(x2)B(x3)O(x4)|0⟩ = ⟨0|O†(x1)A(x2)|X⟩⟨X ′|B(x3)O(x4)|0⟩ (4.42)

where |X⟩⟨X ′| is schematic notation for some unknown completeness relation. In ordinary
quantum mechanics for a position basis satisfying

⟨x|x′⟩ = µ(x, x′)δ(x− x′) (4.43)

one would find a completeness relation of the form∫
R
dx

1

µ(x, x′)
|x⟩⟨x| = 1 (4.44)

with µ an arbitrary non-zero function. This is a problem though since from equation (4.34)
one can see that the states |x⟩ do not satisfy the equation (4.43). Therefore a different
approach is necessary. Interestingly in conformal field theories, a similar problem occurs in
the conformal block decomposition used in the conformal bootstrap method [88]. There in
order to calculate n-point correlators a conformal block expansion is introduced that splits
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it into two lower order correlation functions analogous to equation (4.42) [87]. This split is
achieved by introducing a projection operator PO that satisfies∑

O

PO = 1 (4.45)

where the sum is over conformal primaries [86]. In other words, the sum over these projection
operators is a completeness relation in conformal field theories.

A particularly convenient method of obtaining these projection operators is using the shadow
operator formalism originally due to Ferrara, Grillo, Parisi and Gatto [89, 90] and generalized
by Simmons-Duffin [87]. There for each scalar conformal operator O its shadow operator Õ
is defined as14

Õ(x) :=

∫
Rd

ddx′⟨O(x)O(x′)⟩
∣∣
∆→∆̃

O(x′) (4.46)

where |∆→∆̃ denotes that in the correlation function ∆ is replaced with the shadow dimension

∆̃ := d−∆. This shadow dimension is defined such that the action of the conformal Casimir
is invariant under ∆ → ∆̃. Since for a scalar the 2-point correlation function in a conformal
field theory is of the form C|x− x′|−2∆ the shadow operator is given by

Õ(x) =

∫
Rd

ddx′
C

|x− x′|2(d−∆)
O(x′) . (4.47)

Note that this integral is formally divergent and therefore some regularization procedure will
be required. The conformal projectors can now be written in terms of the shadow operator
as

PO := NO

∫
Rd

ddx|O(x)⟩⟨Õ(x)| (4.48)

where NO is chosen such that (4.45) holds and |O(x)⟩ denotes O(x) acting on the CFT
vacuum.

Motivated by this action of the shadow operator it would be tempting to try to immediately
apply formulas (4.46) and (4.48) to the quantum mechanical system described above. There
is however some subtlety that needs to be taken care of first. The operation of taking the
shadow operator is a unitary transformation between two principal series representations with
the same Casimir charges. Since the Casimir acts as C = ∆(∆− 1) which is invariant under
∆ → ∆̃ = 1 −∆ [51]. However, the representation above is a discrete series representation
and therefore one should expect that a different approach might be necessary. As we will see
in the following chapter, for the Hodge theoretical setting the approach above will work. This
is not surprising since there a finite dimensional representation is used, which is an analytical
continuation of the principal series [85]. To give an alternative in this context, we will define
a heuristic method of performing a similar operation.

Since the shadow transform is a map between representations the goal is to obtain a similar
map for the discrete series. The first requirement is that the two representations have the

14This definition also extends naturally to operators with spin, however since our application will focus on
scalar fields we will only consider those here.
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same Casimir charge, which is achieved by the transformation ∆ → ∆̃ = 1 − ∆. However,
since the states |n⟩ in the quantum mechanics setting have eigenvalues ∆+n with respect to
R, this action changes the eigenvalue to ∆̃+n = n+1−∆. To correct for this it is then also
necessary to replace n → ñ = 2∆ + n − 1. Combining these we obtain a heuristic ”shadow
transform” S. While this procedure might seem somewhat arbitrary, applying it to the βn
as given in (4.28) results in

S[βn](x) = βn(x)
∣∣
(n,∆)→(ñ,∆̃)

= ãn

(
1 + ix

1− ix

)n+∆

(1 + x2)∆−1 (4.49)

where

ãn = an
∣∣
(n,∆)→(ñ,∆̃)

=

√
Γ(n+ 1)

Γ(2∆ + n)
=

1

an
(4.50)

and an is as defined in equation (4.29) with a0 = 1 as before.

With this expression it is possible to define a ”shadow operator” such that

Õ(x)|0⟩ :=
∞∑
n=0

S[βn](x)|n⟩ (4.51)

analogous to the definition of O in (4.31).15 With this operator it is now possible to define
the projection operator (4.48)

P := N
∫
R
dx O(x)|0⟩⟨0|Õ(x) (4.52)

where N is a constant to be determined. Since there is only one ”primary” operator in
the conformal quantum mechanics setting the sum in equation (4.45) becomes trivial and
P should be proportional to the identity. Since the states |n⟩ form a complete orthonormal
basis of H it is enough to check that

Pn,m := ⟨n|P |m⟩ = δn,m (4.53)

with δ the Kronecker delta. Inserting the explicit expressions for P , O and Õ as given in
(4.52), (4.30) and (4.51) then results in

Pn,m = N
∫
R
dx βn(x)β̃

∗
n(x) = anãm

∫
R
dx

(
1 + ix

1− ix

)n−m

(1 + x2)−1 (4.54)

which, when making the change of coordinates x = tan(θ) evaluates to

Pn,m = anãmN
∫ π/2

−π/2

dθ e2iθ(n−m) = anãmNπδn,m (4.55)

15Interestingly, since |0⟩ is the actual state in the representation of SL(2,R) one might wonder if this also
needs to be transformed somehow. This however seems not to be the case as we will see below.
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with δ again the Kronecker delta. Thus, setting N = 1
π
and noting that anãn = 1 results in

Pn,m = δn,m (4.56)

as required. Thus P gives a pseudo-completeness relation for the states |x⟩ which can be
used to calculate arbitrarily high correlation functions by inserting P , inserting expressions
for lower order correlation functions and performing the integrals. We will now briefly show
how to find integral expressions for the higher order correlators.

4.2.3 Higher order correlators

In order to show the usefulness of this completion relation, lets consider the 4-point function

F4(x1, x2, x3, x4) := ⟨x1|A(x2)B(x3)|x4⟩ (4.57)

where A and B satisfy the commutation relations (4.38) with conformal dimensions ∆A and
∆B respectively. Now inserting the projection operator P from equation (4.52) and using
that P = 1 results in

F4(x1, x2, x3, x4) =

∫
R
dx ⟨x1|A(x2)|x⟩⟨0|Õ(x)B(x3)|x4⟩ (4.58)

where the first term in the integral is just the 3-point function from equation (4.41). The
second term is similar to the 3-point function and can be obtained in a similar way by solving
the differential equations it satisfies. To find these, first note that

⟨0|Õ(x)P = −i d
dx

⟨0|Õ(x) (4.59)

⟨0|Õ(x)D = −i(x d
dx

+ 1−∆)⟨0|Õ(x) (4.60)

⟨0|Õ(x)K = −i(x2 d
dx

+ 2(1−∆))⟨0|Õ(x) (4.61)

which are analogous to (4.22) but with ∆ → 1−∆. With these it is again possible to calculate
the commutators

⟨0|Õ(x) [P,B(x3)] |x4⟩
⟨0|Õ(x) [K,B(x3)] |x4⟩
⟨0|Õ(x) [D,B(x3)] |x4⟩

(4.62)

in order to find

⟨0|Õ(x)B(x3)|x4⟩ ∝
1

|x− x3|∆B+1−2∆|x3 − x4|∆B−1+2∆|x− x4|1−∆B
(4.63)

analogous to a 3-point CFT correlator where the operators have weights 1 −∆, ∆B and ∆
respectively. Inserting this and equation (4.41) into equation (4.58) then results in

F4(x1, x2, x3, x4) ∝
∫
R
dx

1

|x2 − x1|∆A|x− x2|∆A|x1 − x|∆−∆A

1

|x− x3|∆B+1−2∆|x3 − x4|∆B−1+2∆|x− x4|1−∆B
.

(4.64)
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Unfortunately we were not able to solve this integral in complete generality, however these
kind of integrals are very similar to those appearing in CFT 4-point functions and therefore
it might be possible to apply tools used there such as Mellin-Barnes representations or the
embedding formalism [87, 91]. One should note that the above procedure generalizes in
an obvious way to higher order correlation functions, making it possible to find integral
expressions for any n-point correlator. Even if the resulting integrals turn out to be unsolvable
in full generality, having these integral expressions then still makes it possible to study their
properties in more detail as well as calculate them in certain special cases or approximations.

We will now take a step back from the correlators and completeness relations discussed above
by considering a certain discrete series representation of SL(2,R) on the Poincaré upper half
plane, and as we will see this turns out to have an interesting connection to the quantum
mechanics model described above.

4.3 The discrete series representation on the Poincaré half-plane

To see the connection between the quantum mechanical system above and the discrete series
on the Poincaré upper half-plane it is first necessary to construct the latter. We will mostly
follow the excellent book by Lang on the SL(2,R) group in doing this [83] and emphasize
the connection to conformal quantum mechanics. To start, define the upper half plane

H2 := {z ∈ C | Im(z) > 0} (4.65)

with its metric given by

ds2 =
dx2 + dy2

y2
(4.66)

where we write z = x+ iy. This metric is invariant under the action of SL(2,R) on H2 given
by

gz =
az + b

cz + d
for g =

(
a b
c d

)
∈ SL(2,R) (4.67)

and in fact SL(2,R) gives the full isometry group of H2. The Hilbert space our representation
will act on is the space of holomorphic square integrable functions on H2 with the measure
dµ∆(z) := y2∆−2dxdy which will be denoted by H∆. The discrete series representation
π∆ : SL(2,R) → GL(H∆) is then defined as

π∆(g)f(z) :=
f(g−1z)

(cz + d)∆
for g =

(
a b
c d

)
∈ SL(2,R) (4.68)

and f ∈ H∆. For the generators Xi defined in (4.5) this transformation rule implies that

π∆(e
tX1)f(z) = f(z + t)

π∆(e
tX2)f(z) = 1

(1+tz)∆
f( z

1+tz
)

π∆(e
tX3)f(z) = et∆f(etz)

(4.69)
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where t ∈ R. Note that these are exactly the transformation rules of a primary operator
under conformal transformations.

It is possible to associate an infinitesimal generator to each element X ∈ sl(2,R) by calcu-
lating

LX(f) :=
d

dt
π∆(e

tX)f
∣∣
t=0

(4.70)

which, for the generators Xi defined in (4.5) results in

L1 = ∂
∂x

L2 = (x2 − y2) ∂
∂x

+ 2xy ∂
∂y

+ 2∆(x+ iy)

L3 = x ∂
∂x

+ y ∂
∂y

+∆
(4.71)

where Li := LXi
. Lang then showed that this was a unitary irreducible representation of

SL(2,R) with lowest weight ∆. Furthermore, the functions

ϕ∆,n(z) := an

(
1 + iz

1− iz

)∆+n

(1 + z2)−∆ (4.72)

form a complete orthonormal basis ofH∆, where n is a positive integer and an is as in equation
(4.29). Note the similarity with the βn functions as given in equation (4.28). This is not
coincidentally since as we will see the quantum mechanical system above can be thought of
as the boundary theory associated to this representation.

To see this, first note that taking the limit y → 0 of Li as written in equation (4.71) results
in

limy→0 L1 =
∂
∂x

= iP
limy→0 L2 = x2 ∂

∂x
+ 2∆x = iK

limy→0 L3 = x ∂
∂x

+∆ = iD
(4.73)

where P , K and D are as defined in equation (4.22). This gives a motivation for the original
definition of the differential operators given in equation (4.22), which originally was just
obtained by identifying P as the generator of translations and requiring that the commutators
as well as the Casimir charge are correct. Furthermore, defining the operators

LR := 1
2
(L1 + L2)

L+ := 1
2
(L1 − L2) + iL3

L− := 1
2
(L1 − L2)− iL3

(4.74)

and letting them act on ϕ∆,n as defined in equation (4.72) results in

LRϕ∆,n = i(∆ + n)ϕ∆,n

L+ϕ∆,n = −i(2∆ + n)ϕ∆,n+1

L−ϕ∆,n = −inϕ∆,n−1

(4.75)

analogously to the action of R and L± on the βn functions defined in equation (4.24). The
ϕ∆,n are in fact also eigenfunctions of the Casimir

LC := L2
3 −

1

2
(L1L2 + L2L1) = ∆(∆− 1)− y2

(
∂2

∂x2
+

∂2

∂y2

)
+ 2y∆

(
i
∂

∂x
+

∂

∂y

)
(4.76)
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with eigenvalue ∆(∆ − 1). Interestingly, the second term is the Laplacian on H2 and the
third term is ∂

∂z̄
which is zero since we are only dealing with holomorphic functions. This

combined with the fact that the functions ϕ∆,n are annihilated by the Laplacian guarantees
that they have eigenvalue ∆(∆ − 1). Note that this is different from ordinary free fields on
AdS2 which classically are eigenfunctions of the Laplacian, not annihilated by it.

Taking the limit of ϕ∆,n to the boundary is trivial and results in a correspondence between
the ϕ∆,n of equation (4.72) and the βn functions of equation (4.28). To see this, simply taking
the limit

lim
y→0

ϕ∆,n(z) = lim
y→0

an

(
1 + iz

1− iz

)n+∆

(1 + z2)−∆ = βn(x) (4.77)

is enough. Note that this limit is slightly different than the limit usually taken in the
AdS/CFT correspondence, since there for a field ψ with conformal dimension ∆ the limit

lim
y→0

y∆−dψ(x, y) (4.78)

is usually taken to be equivalent to the source of a conformal operator [33], while the limit

lim
y→0

y−∆ψ(x, y) (4.79)

is taken to be either the expectation value of the operator, or in the extended dictionary the
operator itself [34]. The difference in limits however is simply due to the fact that the fields
ϕ∆,n are elements of H∆ = L(H2, µ∆) and thus appear with an extra factor of y∆ in integrals.
It is therefore possible to associate a function fH2 ∈ L2(H2) on H2 to any function f∆ ∈ H∆

by taking fH2(z) := y∆f∆. This is then in L2(H2) since∫
H2

dxdy

y2
|fH(x, y)|2 =

∫
H2

dxdy

y2
y2∆|f∆(x, y)|2 =

∫
H2

dµ∆(z)|f∆(x, y)|2 <∞ . (4.80)

as required. Taking the limit to the boundary y = 0 of f∆ is then equivalent to taking the
limit

lim
y→0

f∆ = lim
y→0

y−∆fH2 (4.81)

which the AdS/CFT limit relating bulk fields to boundary operators in the extrapolate
dictionary [34, 44]. There seems to be no clear interpretation however for the other limit in
equation (4.78) associated to sources in the conventional AdS/CFT dictionary.

The system above is interesting though because it gives some insights into the conformal
quantum mechanics defined previously. The exact form of the differential operators defined
in (4.22) may have seemed a bit arbitrary at first but now is realized as the boundary limits
of differential operators acting on H2 in a canonical way. Furthermore the wave functions at
the boundary are just directly the boundary limits of the wave functions in H∆. This means
that a natural interpretation of the conformal quantum mechanics system is just simply as
the boundary theory of quantum mechanics in H∆. While it might be tempting to imbue this
with some sense of holography, this seems unlikely as the mapping seems much too simple
to allow for the more interesting aspects of AdS/CFT. I.e. there is no theory of gravity in
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the bulk and while the analogue of correlation functions does match in the bulk and in the
boundary, the calculation is much too trivial to obtain interesting information from since a
lot of the complexity of field theories is missing. It would be interesting to promote both the
boundary and the bulk theory to quantum field theories by second quantization and see if
that yields interesting results. This could be done in further research.

Now that we have studied this conformal quantum mechanics model, we will construct a
similar model for the Hodge theoretical setting. As we will see, much of the constructions
can directly be carried over although there is the crucial difference that the resulting repre-
sentation is not unitary.
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5 Finite dimensional representations in Hodge theory

Having studied the conformal quantum mechanics setting in the previous chapter, we now
turn towards the second main object of interest of this thesis: the finite dimensional SL(2,R)
representations from Hodge theory. In order to understand broadly what these are and why
they are relevant, we need to take a brief look at string compactifications. Quite famously,
string theory requires more than 4 dimensions in order to be consistent. Since at our every
day energy-scales we see only 4 dimensions, string theory needs a method that hides these
dimensions as these energy scales. This is what is is achieved by compactification. Usually,
compactification starts by considering string theory on a product manifold16

M×K (5.1)

where K is a compact manifold called the internal manifold. This decomposition then results
in an effective theory over M which depends on the internal geometry of K. For example, if
K is sufficiently small this effective theory will keep only the massless excitations on K. A
natural question then is how this effective theory varies as this internal geometry changes.

Figure 2: Two tori with different geometries, choosing either as the internal manifold K will
lead to different effective theories on M.

Much of this information about the geometry is captured by the de Rham cohomologies
Hn(K,C) and their Hodge decomposition, which have been used to study the infinite distance
conjecture [92] and flux vacua [93]. These Hodge decompositions result in vector spaces that
change over the space of all geometries, the moduli space. This moduli space has boundaries
that denote singular geometries, for example for the torus this would be taking its width to
zero. Interestingly near these boundaries these de Rham cohomologies split into a so-called
limiting mixed Hodge structure. These cohomologies then decompose in to finite dimensional
SL(2,R) representations [29, 30]. Meaning that there are is a triple N0, N± satisfying the
sl(2,R) algebra

[N0, N±] = ±2N± ; [N+, N−] = N0 (5.2)

along with a basis |n,∆⟩ of N0 eigenstates that satisfy

N0|n,∆⟩ = 2n|n,∆⟩ (5.3)

N±|n,∆⟩ ∝ |n± 1,∆⟩ (5.4)

16For a good reference see the excellent book by Blumenhagen, Lüst and Theisen [28], especially chapters
10, 14 and 17.
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where ∆ here is an integer that defines the highest weight of the representation, i.e. −∆ ≤
n ≤ ∆. Note however that these states |n,∆⟩ do not directly form a basis of the F p but
of their so-called Deligne splitting, although for us this difference will not be important. A
further property of these spaces is given by the nilpotent orbit theorem, which states that
near the boundaries in moduli space these vector spaces F behave as

F (t) ≈ etN
0

F0 +O(ei2πt) (5.5)

where t = x + iy is a coordinate on moduli space and the boundary is at y → ∞. Finally
the boundary vector spaces are endowed with an inner product such that the states |n,∆⟩
are orthonormal and the SL(2,R) generators satisfy

(N0)† = N0 (N+)† = N− . (5.6)

Since both these vector spaces and the conformal quantum mechanics from the previous
chapter form SL(2,R) representations, it is interesting to see if these same constructions
from conformal quantum mechanics can also be applied to the Hodge theoretical setting.
Applying these constructions was one of the main goals of this thesis and in this chapter we
will discuss how this can be done. Before this, we will briefly discuss some properties of these
finite dimensional representations.

5.1 The finite dimensional representation

Equations (5.2), (5.3) and (5.6) together completely determine the representation already.
For example, using the commutation relations (5.2) and the adjoint relations (5.6) one can
deduce that N± must act as

N±|n,∆⟩ =
√

(∆∓ n)(∆ + 1± n)|n± 1,∆⟩ (5.7)

which implies that any state |n,∆⟩ can be written as

|n,∆⟩ =

√
Γ(∆ + 1 + n)

Γ(∆ + 1− n)Γ(2∆ + 1)
N∆−n|∆,∆⟩ (5.8)

where |∆,∆⟩ is the highest weight state. Furthermore, the quadratic Casimir in this repre-
sentation takes the form

C2 :=

(
(N0)2 + 2(N+N− +N−N+)

)
(5.9)

which acts as
C2|n,∆⟩ = 4∆(∆ + 1)|n,∆⟩ (5.10)

within this representation.
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Finally since SL(2,R) is non-compact it follows that its unitary irreducible representations
are infinite dimensional. However, the representations considered in this chapter are finite
dimensional and therefore not unitarizable. To see why this is the case, first notice that by
comparing the sl(2,R) commutators given in equation (4.6) to equation (5.2) above one can
deduce that within this representation

X1 7→ N− (5.11)

X2 7→ −N+ (5.12)

X3 7→ −2N0 (5.13)

where Xi are as defined in equation (4.5). From the Lie group-Lie algebra correspondence
we know that it is possible to write any element g ∈ SL(2,R) in the connected component
to the identity as

g = eaX1+bX2+cX3 (5.14)

where a, b and c are real numbers. Thus g will be represented as

g 7→ eaN
−−bN+−2cN0

(5.15)

within our representation. Now applying the adjoint relations (5.6) to this equation results
in

g† 7→ eaN
−−bN+−2cN0

(5.16)

while g−1 will be mapped to

g−1 = e−aX1−bX2−cX3 7→ e−aN−+bN++2cN0

(5.17)

and therefore g† ̸= g−1 for general g ∈ SL(2,R). Which means that this representation is not
unitary. One might wonder if by changing the inner product it would be possible to obtain a
unitary representation. The problem here however is that as we mentioned SL(2,R) is non-
compact and therefore no finite dimensional unitary representations exist [83]. Therefore
the representation considered in this chapter will not be unitary nor even unitarizable. This
actually has some interesting consequences, first of all as we will see we will associated N+

with translations in our continuous representation. In quantum mechanics the generator
of time translations is usually interpreted as the Hamiltonian which is required to be self-
adjoint. However, from the adjoint relations (5.6) it is immediately clear that (iN+) ̸= iN+

and therefore an equation of the form

iN+f = i
d

dx
f (5.18)

is not a proper Schrödinger equation.17 Note that this is the notion of unitary usually meant
in quantum mechanics while the notion of unitarity used above is the one more commonly
used when talking about group representations. The representation from this chapter is
neither.

17We have chosen to write the continuous coordinate as x here to connect more clearly with the Hodge
theory setting where x also denotes the boundary coordinate. However it can also be interpreted as a time
coordinate.
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The equations (5.3) to (5.6) as well as equation (5.9) to (5.8) will be the most useful for
further study, while the Hodge theory motivating them will play no further role from now on.
Thus we will now solely consider the representation in isolation and construct a continuous
representation analogous to that in chapter 4.

5.2 Continuous representations

To construct the continuous representations of the system described above we will take a
similar approach to the one in chapter 4, namely we will first construct some differential
operators acting on a state ⟨x| and then find an explicit expression for this state. Since there
is a priori no natural definition of the differential operators we have a bit more freedom here.
However since the goal is to end up with a state of the form (5.5) a natural requirement is

|x⟩ = exN
− |ϕ⟩ (5.19)

for some state |ϕ⟩. This in turn implies that

N−|x⟩ = d

dx
|x⟩ (5.20)

and since (N−)† = N+ one should expect

⟨x|N+ = d
dx
⟨x| (5.21)

which we will therefore take as a starting point. Requiring the commutation relations in
equation (5.2) as well as that the Casimir acts as in equation (5.9) then fixes the action of
N0 and N− to be

⟨x|N0 = (−2x d
dx

+ 2∆)⟨x|
⟨x|N− = (−x2 d

dx
+ 2∆x)⟨x| . (5.22)

Now the next step is to find an expression for the state |x⟩. In the conformal quantum
mechanics setting it was necessary to define the operator R in order to obtain an orthonormal
eigenbasis. Here however, there exists already an orthonormal eigenbasis of N0 and therefore
this step is unnecessary. Using this we can define

βn(x) := ⟨x|n,∆⟩ (5.23)

which makes it possible to express |x⟩ as

|x⟩ =
∆∑

n=−∆

|n,∆⟩⟨n,∆|x⟩ =
∆∑

n=−∆

β∗
n(x)|n,∆⟩ (5.24)

where it was used that the states |n,∆⟩ form an orthonormal basis. Note that in the conformal
quantum mechanics setting the similar formula (4.23) involved an infinite sum while here the
sum is finite.
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An explicit expression for the βn functions can be found by considering ⟨x|N0|n,∆⟩ and
using that |n,∆⟩ is an eigenstate of N0 as well as equation (5.22). This then results in the
following differential equation

(−2t
d

dx
+ 2∆)βn = 2nβn (5.25)

which has as its solution
βn(x) = anx

∆−n (5.26)

with an a constant. This constant can then be fixed by requiring that equation (5.7) holds
resulting in

an := a∆

√
Γ(2∆ + 1)

Γ(∆ + 1 + n)Γ(∆ + 1− n)
(5.27)

where a∆ will be set to 1 from now on. With formulas (5.26) and (5.24) it is now possible to
find an explicit expression for |x⟩. This is done by simply inserting (4.24) and (5.8) in (5.24)
and performing the sum explicitly, which results in

|x⟩ =
∆∑

n=−∆

(xN−)∆−n

Γ(∆ + 1− n)
|∆,∆⟩ = exN

− |∆,∆⟩ (5.28)

where it was used that (L−)m|∆,∆⟩ = 0 for m > 2∆. Note the relative simplicity in
comparison with formula (4.21) from conformal quantum mechanics. This difference is due
to that in the Hodge theory setting, we are working directly with an eigenbasis of N0 while
in conformal quantum mechanics it was necessary to work in an eigenbasis of R.18 N0 as
a differential operator is much simpler than R was in the previous chapter, as one can see
by comparing equations (4.25) and (5.22). The reason why it is possible now to work in an
eigenbasis of N0 instead of R is that we are no longer working in a unitary representation.
In particular, while N0 is self-adjoint, N± satisfy (N+)† = N− which makes it possible for
them to act properly as raising and lowering operators. Remember that in the conformal
quantum mechanics setting the operators L± were defined that satisfied (L+)

† = L−. In fact
when working in an orthonormal eigenbasis the raising and lowering operators must satisfy
these adjoint relations in order for the theory to be consistent.

With the expression for the βn functions and the state |x⟩ we will now calculate correlation
functions, analogously to what was done in section 4.2.1.

5.2.1 Correlation functions

Similar to in the conformal quantum mechanics setting, it is possible to define an analogue
to a correlation function. In order to make this more explicit, we first rewrite equation (5.24)
as

|x⟩ = O(x)|∆,∆⟩ (5.29)

18The analogue of this in conformal quantum mechanics would be to work in an eigenbasis of D.
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with
O(x) := exN

−
. (5.30)

This then invites us to interpret

⟨x1|x2⟩ = ⟨∆,∆|O†(x1)O(x2)|∆,∆⟩ (5.31)

as a two point correlator of O acting on a ”vacuum state” |∆,∆⟩. Thus one can define the
”correlator”

G(x1, x2) := ⟨x1|x2⟩ (5.32)

similar to equation (4.32). Inserting the full set of orthonormal states |n,∆⟩ and performing
the sum then results in

G(x1, x2) =
∆∑

n=−∆

βn(x1)β
∗
n(x2) = (1 + x1x2)

2∆ . (5.33)

Interestingly, this looks quite different from a normal correlation function. First of all it does
not depend just on the distance |x1 − x2|, furthermore it diverges as either x1 or x2 go to
infinity. While these properties make it quite unconventional as a correlation function, as we
will see interpreting it this way does have its advantages when defining a shadow operator.
Before that, we will show how these properties arise from the differential equations satisfied
by G.

Remember that one way of obtaining the correlation function in the conformal quantum
mechanics setting was by inserting an operator and letting it act on ⟨x1| and ⟨x2| separately,
as described in section 4.2.1. One key property there was that the action of the operators on
⟨x1| and |x2⟩ was obtained just by taking the complex conjugate. In the system considered
in this chapter however, the action on |xi⟩ of N0 and N± is given by

N−|xi⟩ = d
dxi

|xi⟩
N0|xi⟩ = (−xi d

dxi
+ 2∆)|xi⟩

N+|xi⟩ = (−x2i d
dxi

+ 2∆xi)|xi⟩
(5.34)

as can be obtained by explicit calculation. Heuristically, one can see that these equations
can also be obtained by taking the adjoint of equations (5.21) and(5.22), although one has
to be careful since taking the adjoint of the differential operators in this context is somewhat
ill-defined.19 This suggests the difference in the form of the correlation function is related to
the fact that this is a non-unitary representation of SL(2,R). With equations (5.21),(5.22)
and (5.34) it is now possible to obtain the differential equations G must satisfy by calculating
⟨x1|N0|x2⟩ and ⟨x2|N±|x2⟩. This procedure then results in the following differential equations

( d
dx1

+ x22
d

dx2
− 2∆x2)G = 0

(x1
d

dx1
− x2

d
dx2

)G = 0

(x21
d

dx1
+ d

dx2
− 2∆x1)G = 0

(5.35)

19This is due to the fact that the states |x⟩ behave somewhat analogous to a position basis, thus taking
the differential of them is ill-defined until one actually considers wave functions of the form ϕ(x) := ⟨x|ϕ⟩.
This is done in subsection 5.3.1.
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which has the solution
G(x1, x2) = c(1 + x1x2)

2∆ (5.36)

where c is an arbitrary constant. Setting c = 1 then results in equation (5.33).

Like in the conformal quantum mechanics setting, it is also possible to define a 3-point
function

F (x1, x2, x3) := ⟨x1|B(x2)|x2⟩ (5.37)

where B now satisfies
[N−, B(x)] = d

dx
B(x)

[N0, B(x)] = (−2x d
dx

+ 2∆B)B(x)
[N+, B(x)] = (−x2 d

dx
+ 2∆Bx)B(x)

(5.38)

similar to equation (4.38) in the conformal quantum mechanics setting. One may wonder
whether the commutation relations between N− and N+ should be swapped or not, since
their actions on ⟨x| and |x⟩ are different. However, swapping their commutation relations
with B above results in inconsistent differential equations. Furthermore, in the dAFF model
the commutation relations were also chosen in accordance with how the operators acted on
|x⟩, although there the difference was simply a complex conjugation [dede1976conformal].
Inserting these commutators as ⟨x1| [·, B(x2)] |x3⟩ again results in a set of differential equa-
tions. These can be solved and result in

F (x1, x2, x3) ∝ (1 + x1x2)
∆B(1 + x2x3)

∆B |x3 − x2|2∆−∆B (5.39)

which has some interesting properties. First of all, like before it is not dependant on just
distances between the three points which is somewhat expected. More surprisingly though,
it actually does depend on the distance |x3−x2| and therefore is not a product of the 2-point
correlators either. This is a direct result of the differential equations (5.38) that B satisfies
and therefore one may wonder if it is possible to find differential equations for B that would
result in a more conventional product of 2-point correlators. Unfortunately we were not able
to find any such differential equations. If these are possible then an immediate question
arises which choice of differential equations is more natural, and also what interpretation the
different choices have. These questions will hopefully be answered in further research.

Now we will continue following the conformal quantum mechanics constructions and try to
find a completeness relation, which would make it possible to calculate higher order correla-
tors. As we will see, the shadow transform will play an even more important role than in the
conformal quantum mechanics setting.

5.3 Shadow operator

To calculate higher order correlators it is useful to obtain a completeness relation analogous
to the one obtained in 4.2.2. It turns out that in the hodge theory setting the connection with
the shadow transform is much more clear than in the conformal quantum mechanics setting.
For the readers convenience, we will first briefly recall the shadow operator formalism. In
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conformal field theories, the shadow operator Õ associated to an operator O with conformal
dimension ∆ is defined as [89, 90]

Õ(x) :=

∫
Rd

ddx′⟨O(x)O(x′)⟩
∣∣
∆→∆̃

O(x′) (5.40)

where ∆̃ is the shadow dimension and |∆→∆̃ denotes that the in the correlation function of O,

∆ is replaced with ∆̃. This shadow dimension is defined such that the action of the Casimir
is invariant under the transformation ∆ → ∆̃. For example, in conformal field theories the
Casimir acts as [C,O(x)] = ∆(∆ − d)O(x) on a conformal scalar with weight ∆ thus the
shadow dimension is given by d−∆. The usefulness from this shadow operator comes when
defining the projection operator PO which can be interpreted as the projection operator on
the subspace spanned by |O(x)⟩, here the state |O(x)⟩ denotes the state associated to O(x)
in the state-operator correspondence. The projection operator is defined as

PO :=

∫
Rd

ddx′ |O(x)⟩⟨Õ(x)| (5.41)

and satisfies the completeness relation ∑
O

PO = 1 (5.42)

where the sum is over conformal primaries [87].

Motivated by these definition we now propose to define the shadow operator

Õ(x) :=

∫
R
dx′ ⟨O(x)O(x′)⟩

∣∣
∆→∆̃

O(x′) =

∫
R
dx′

ex
′N−

(1 + xx′)2(∆+1)
(5.43)

where O is as defined in (5.30) and the correlator found in equation (5.33). It was also used
that since the Casimir from equation (5.9) is invariant under ∆ → −(∆ + 1) the shadow

dimension is given by ∆̃ = −(∆ + 1). Two things should be noted from this definition,
first of all it may seem that the integral diverges due to the exponential ex

′N−
, however this

is not the case since N− is nilpotent and therefore all terms of order (N−)2∆+1 and higher
annihilate. There is an actual divergence in the integral at x′ = −(x)−1 though, which will
need some regularization. We will ignore this for now and return to it in section 5.4 where we
will find a consistent method of regularizing this integral and also find an explicit expression
for Õ. For now, we can use this definition of Õ to define a projection operator P as

P := N
∫
R
dx |O(x)⟩⟨Õ(x)| (5.44)

where

|O(x)⟩ := O(x)|∆,∆⟩
|Õ(x)⟩ := Õ(x)|∆,∆⟩

(5.45)
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are analogues to states obtained from the state-operator correspondence and N is a constant.
Now to check that P satisfies a completeness relation, it is enough that

Pn,m := ⟨n,∆|P |m,∆⟩ = δn,m (5.46)

since the states |n,∆⟩ form an orthonormal basis. Inserting the explicit expressions (5.43)
and (5.44) then results in the integral

Pn,m = Nanām

∫
R2

dxdx′
x∆−nx′∆−m

(1 + xx′)2(∆+1)
(5.47)

where an and am are given in equation (5.27). Making the change of coordinates

x→ u+ v

x′ → u− v
(5.48)

and performing a Wick rotation v → iv results in the integral20

Pn,m = iNanām

∫
C
dzdz̄

z∆−nz̄∆−m

(1 + |z|2)2(∆+1)
= 4πi(∆ + 1)N δn,m (5.49)

with z = u+ v and the explicit formula (5.27) for an and ām was inserted. Thus choosing

N =
1

4πi(∆ + 1)
(5.50)

results in equation (5.46) as required. Thus in the finite dimensional representation the
shadow operator formalism works similar to how it does for conformal field theories.

A natural question is now why in this finite dimensional representation the above proce-
dure works while in the conformal quantum mechanics setting of the previous chapter some
modifications were necessary. One possible reason seems to be that the shadow transform
of an operator is originally defined only for principal series representations of the conformal
group, and that both the representations conventionally used in conformal field theories as
well as the finite dimensional representations are given by analytical continuations of the
principal series [51, 85]. Conversely, the representation described in the previous chapter is
a discrete series representation. In any case both completeness relations make it possible to
calculate higher order correlation functions explicitly (or at least find expressions for them),
although these will have to be performed in further research. Now, we will take a quick aside
and see how this completeness relation makes it possible to define a wave function quantum
mechanics.

5.3.1 An aside: wave function mechanics

Interestingly, it is possible to define an analogue to wave function quantum mechanics using
the projection operator above. To do this, note that in ordinary quantum mechanics it is

20This Wick rotation includes a Feynmann iϵ prescription, regularizing the integral. An alternative deriva-
tion of this result will be presented in section 5.4.
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possible to go from wave vectors in a Hilbert space to a wave function representation by using
a position basis |x⟩. This basis usually satisfies a completeness relation∫

R
|x⟩⟨x| = 1 (5.51)

and therefore for states |ϕ⟩ and |ψ⟩ in the Hilbert space this completeness relation can be
inserted to obtain

⟨ϕ|ψ⟩ =
∫
R
dx ⟨ϕ|x⟩⟨x|ψ⟩ =

∫
R
dx ϕ(x)ψ(x) (5.52)

where ϕ(x) := ⟨x|ϕ⟩ and ψ(x) := ⟨x|ψ⟩. Thus one obtains a natural embedding between
the original Hilbert space and the space of square integrable functions, where the objects of
interests are now wave functions instead of vectors.

To apply this to the representation from this chapter, note that the projection operator P
defined in equation (5.44) can be rewritten as

P = N
∫
R2

dxdx′
|x⟩⟨x′|

(1 + xx′)2(∆+1)
(5.53)

and thus, for two general states |ϕ⟩ and |ψ⟩

⟨ϕ|ψ⟩ = ⟨ϕ|P |ψ⟩ =
∫
R2

dxdx′
ϕ(x)ψ(x′)

(1 + xx′)2(∆+1)
(5.54)

where again ϕ(x) := ⟨x|ϕ⟩ and ψ(x) := ⟨x|ψ⟩. This inner product is slightly different than
the one in equation (5.52) since there is now a double integral involved, inner products of this
type also appear when constructing the complementary representation [80] or in quantum
field theory [85], however this difference will not turn out to be important for us. This wave
function representation now gives a natural interpretation of the the βn functions defined
in (5.26), which now span the wave function Hilbert space. Furthermore the actions of N0

and N± on ⟨x| given in equation (5.34) now equates to a mapping of operators from the
original representation to differential operators on the wave function representation. In that
one can define differential operators on the wave functions as nαϕ(x) := ⟨x|Nα|ϕ⟩ and use
equation (5.34) to find an explicit expression. Finally the adjoints of the resulting differential
operators

d
dx

; −2x d
dx

+ 2∆ ; −x2 d
dx

+ 2∆x (5.55)

with respect to the inner product

(ϕ, ψ) :=

∫
R2

dxdx′
ϕ(x)ψ(x′)

(1 + xx′)2(∆+1)
(5.56)

can now be calculated. Here ϕ(x) and ψ(x) are elements of the wave function space. One
can then easily check that (

d

dx

)†

= −x2 d
dx

+ 2∆x (5.57)(
−2x

d

dx
+ 2∆

)†

= −2x
d

dx
+ 2∆ (5.58)
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where the adjoint is now with respect to the inner product (·, ·) defined in equation (5.56).
This is of course due to the fact that in the original representation (N+)† = N− and (N0)† =
N0 and that the differential operators from (5.55) are exactly those obtained from N+, N0

and N− respectively.

We will now take a closer look at the shadow operator, and to perform some calculations we
will define an integral transform related to the Mellin transform.

5.4 Integral transformations and analytical continuation in Mellin
space

From the definition of the shadow operator given in equation (5.43) one may wonder if it is

possible to find an explicit expression for Õ. One natural in-between step is defining

Õn(x) :=

∫
R
dx′

xn

n!

1

(1 + xx′)2(∆+1)
(5.59)

such that

Õ(x) =
∞∑
n=0

Õn(x)(N
−)n (5.60)

which is convenient when performing actual calculations. One problem however is that
the integral (5.59) diverges due to the singularity at xx′ = −1 thus some regularization is
necessary.21 With this in mind one might also notice that the expression for Pn,m given in
equation (5.47) involves a very similar integral of the form∫

R2

dxdx′
xnx

′m

(1 + xx′)2(∆+1)
(5.61)

where here the integral was regularized by means of a Feynmann iϵ prescription. Integrals
of this kind will also appear when trying to calculate higher-order correlation functions by
inserting P into

⟨∆,∆|O†(x1)A(x2)B(x3)O(x4)|∆,∆⟩ (5.62)

where A and B have local expansions of the form

A(x) =
∑
n∈Z

Anx
n (5.63)

B(x) =
∑
n∈Z

Bnx
n . (5.64)

From these examples it is clear that a systematic approach to working with these integrals
would be convenient. Therefore we introduce the integral transform

{T f}(n) :=
∫
R
dx xnf(x) (5.65)

21The singularity at x′ → ±∞ is not a problem since (N−)2∆+1 = 0 when acting within this representation,
therefore the denominator always dominates in the integrand.
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where we will usually be interested in the n ∈ Z case. With this we could write

Õn(x) =
1

n!
{T (1 + xx′)−2(∆+1)}(n) (5.66)

as well as
Pn,m ∝ {TxTx′(1 + xx′)−2(∆+1)}(∆− n,∆−m) (5.67)

where in this notation Tx denotes the T transform with respect to x and some regularization
scheme is implicit. To actually calculate the T transform it is useful to note that

{T f}(n) = {Mf}(n+ 1) + eiπn{Mf−}(n+ 1) (5.68)

where {Mf} is the Mellin transform defined as

{Mf}(s) :=
∫ ∞

0

dx xs−1f(x) (5.69)

and f− is defined as
f−(x) := f(−x) . (5.70)

This relation becomes useful since the Mellin transform is quite well-studied [94–96] and
there are known results for analytical continuations of Mellin integrals [97]. Interestingly, the
Mellin transform also appears when calculating AdS/CFT correlators [98, 99] although the
context there is slightly different, we will discuss this more in subsection 5.4.3. Recently some
work has also been done by Bianchi et al. [100] and the regularization procedures employed
there and in reference [101] by Penedones et al. are quite reminiscent of the ones used here.
Finally, the Mellin transform satisfies the following Mellin inversion formula

ϕ(s) = {Mf}(s) ⇔ f(x) =
1

2πi

∫ c+i∞

c−i∞
ds x−sϕ(s) =: {M−1ϕ}(x) (5.71)

where c is a real number such that ϕ(s) is analytic on a strip a < Re(s) = c < b and f and
ϕ satisfy growth conditions such that both are well-defined [94, 95]. Note that the inverse
Mellin transformation is independent of c because ϕ(s) is assumed to be analytic. Since the
Mellin transform is unique this makes it possible to check possible analytical continuations
by performing the inverse Mellin transform if possible.

In this section we will begin by studying this integral transform T and calculate the transform
of some important functions. Afterwards we will apply this knowledge to calculate Pn,m and

Õn(x) and we will conclude by giving some interpretations of the integral transform.

5.4.1 The general procedure and a useful integral

From equations (5.66) and (5.67) on may notice that they involve transformations of the
function

f(x) := (1 + x)−2(∆+1) (5.72)
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and therefore a natural starting point is to calculate {T f}(n), which we will do in this
subsection. This will also showcase some of the general techniques used when calculating
the T transform and the associated Mellin transforms. In order to do this we first split the
integral into Mellin transforms as in equation (5.68), thus finding the Mellin transforms of f
and f−(x) = f(−x) results in a formula for {T f}. The Mellin transform of f can simply be
obtained by evaluating the integral

{Mf}(s) =
∫ ∞

0

dx
xs−1

(1 + x)2(∆+1)
=

Γ(2∆ + 2− s)Γ(s)

Γ(2∆ + 2)
(5.73)

which is valid for a strip in the complex plane satisfying 0 < Re(s) < 2∆ + 2 and can be
analytically continued to a meromorphic functions on the entire complex plane using the
usual analytical continuation of the Gamma function. The Mellin transform of f− however
requires some more work due to the pole at x = −1. A trick one can use is to split the
integral as

{Mf−}(s) =
∫ 1

0

dx
xs−1

(1− x)2(∆+1)
+

∫ ∞

1

dx
xs−1

(1− x)2(∆+1)
(5.74)

and note that these integrals separately do have regions s ∈ C for which they are well-defined,
even though these regions do not overlap. This is equivalent to defining the functions

u1(x) :=

{
f−(x) for 0 ≤ x ≤ 1
0 for x > 1

(5.75)

and

u2(x) :=

{
0 for 0 ≤ x ≤ 1
f−(x) for x > 1

(5.76)

and to calculate their Mellin transforms separately. Then analytically continue them to
meromorphic functions on the entire complex plane and finally define the Mellin transform
of f− as

{Mf−}(s) = {Mu1}(s) + {Mu2}(s) (5.77)

which is now also a meromorphic function on the entire complex plane, even though the
original integral converges for no value of s. These kind of techniques are outlined by Bleistein
and Handelsman in reference [97] and allow the calculation of Mellin transforms for very large
classes of functions.

The Mellin transforms of u1 and u2 can be calculated explicitly resulting in

{Mu1}(s) =
Γ(s)Γ(−2∆− 1)

Γ(s− 2∆− 1)
(5.78)

{Mu2}(s) =
Γ(−2∆− 1)Γ(2∆ + 2− s)

Γ(1− s)
(5.79)

where it should be noted that since ∆ is an integer, both are singular for non-integer s.
However in the expressions (5.66) and (5.67) we are interested only in integer n and m, in
this case it is possible to use the identity

Γ(n− z)

Γ(−z)
= (−1)n

Γ(z + 1)

Γ(z + 1− n)
(5.80)
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which is valid for integer n and can be derived by repeatedly applying Γ(z + 1) = zΓ(z) to
the left hand side of this equation. Therefore for integer n the Mellin transforms of u1 and
u2 are given by

{Mu1}(n) = {Mu2}(n) = (−1)n
Γ(s)Γ(2∆ + 2− s)

Γ(2∆ + 2)
. (5.81)

With this it is possible to use equation (5.77) to find the Mellin transform of f−, inserting
this with the Mellin transform of f into equation (5.68) results in the T transform of f which
for integer n is given by

{T f}(n) = {T (1 + x)−2(∆+1)}(n) = −Γ(n+ 1)Γ(2∆ + 1− n)

Γ(2∆ + 2)
(5.82)

where it should be stressed that the original integral defining {T f} does not converge for
any n and we are therefore including the analytical continuations above in the definition of
{T f}.

With this explicit formula and the knowledge of some of the general techniques, we are now
ready to calculate the T transform of the monomial xn.

5.4.2 An important special case, the integral transform of a monomial

Another integral that merits some special attention is the T transform of xm. As an integral
this would be written as

{T xn}(m) =

∫
R
dx xn+m (5.83)

which clearly diverges for all n and m. Once again, it is possible to write this as a sum of
Mellin transformations resulting in

{T xm}(n) = (1 + eiπ(n+m)){Mxn}(m+ 1) (5.84)

and thus the problem is reduced to finding {Mxn}. Using the same trick as before it is
possible to split the Mellin transform integral by defining

u1(x) :=

{
xn for 0 ≤ x ≤ 1
0 for x > 1

(5.85)

and

u2(x) :=

{
0 for 0 ≤ x ≤ 1
xn for x > 1

(5.86)

such that xn = u1(x) + u2(x). The Mellin transform of u1 and u2 can easily be obtained by
explicit calculation resulting in

{Mu1}(s) =
1

n+ s
(5.87)
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valid for Re(s) > −n and

{Mu2}(s) =
−1

n+ s
(5.88)

valid for Re(s) < −n. If one would now naively try to define

{Mxn}(s) = {Mu1}(s) + {Mu2}(s) (5.89)

one can clearly see that this would result in zero. However since the Mellin transform is
unique this gives some problems, since clearly the zero function would also have {M0}(s) = 0.
Furthermore applying the inverse Mellin transformation from equation (5.71) to 0 would also
result in zero thus something is going wrong. The key observation to make is that

{M−1Mu1}(x) + {M−1Mu2}(x) =
1

2πi

∫ c1+i∞

c1−i∞
ds

x−s

n+ s
− 1

2πi

∫ c2+i∞

c2−i∞
ds

x−s

n+ s
(5.90)

where c1 > −n and c2 < −n. Since the integrands are meromorphic it is possible to choose
c1 and c2 arbitrarily close to −n, this results in a closed contour around the pole at s = −n
and thus by Cauchy’s integral formula we find

{M−1Mu1}(x) + {M−1Mu2}(x) =
1

2πi

∮
γ

x−s

s+ n
= xn (5.91)

as one would expect. The solution thus is to define

{Mxn}(s) = {Mu1}(s+ ϵ) + {Mu2}(s− ϵ) (5.92)

where the limit of ϵ→ 0 is implicit and should be taken after the inverse Mellin transform.22

This definition then ensures that there is a strip−n−ϵ < Re(s) < −n+ϵ where the two Mellin
transforms are both defined and it is possible to take the inverse Mellin transform directly,
furthermore it splits the coincident pole at s = −n which was crucial in calculating the
inverse Mellin transform above. Inserting the explicit formulas for u1 and u2 from equations
results in

{Mxn}(s) = 1

n+ s+ ϵ
− 1

n+ s− ϵ
. (5.93)

Two important observations are that firstly for s ̸= −n this still results in zero after the limit
ϵ → 0 for s ̸= −n, secondly this expression is actually a representation of 2πδ(i(n + s)) by
the Sokhotsk-Plemelj theorem, with δ the Dirac delta distribution [103]. This relation could
have also been derived by using the integral representation

δ(x) =

∫ ∞

−∞

dk

2π
eikx (5.94)

and applying the change of coordinates x→ k := ln(x) to

{Mxn}(s) =
∫ ∞

0

dx xn+s−1 =

∫ ∞

−∞
dyen+s = 2πδ(i(n+ s)) (5.95)

22Interestingly, this definition is very similar to the definition of a hyperfunction and the explicit formula
obtained is identical to the representation of 2πiδ(i(n+ s)) as a hyperfunction. See for example [102] for an
overview that also discusses the Mellin transform quite nicely.
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Note that all formulas above are only well defined for Re(s) = −n which is in accordance
with n− ϵ < Re(s) < n + ϵ as ϵ → 0. This is also why the conventional approach to obtain
the Mellin transform of xn gave problems, as the resulting object is not actually an analytic
function but a distribution (or a hyperfunction, depending on the interpretation). To check
that (5.93) is the correct formula, lets first consider the inverse Mellin transform given by

{M−1Mxni}(x) = 1

2πi

∫ −n+i∞

−n−i∞
ds x−s

[
1

n+ s+ ϵ
− 1

n+ s− ϵ

]
(5.96)

=
1

2πi

∫ −n−ϵ+i∞

−n−ϵ−i∞
ds x−s 1

n+ s
− 1

2πi

∫ −n+ϵ+i∞

−n+ϵ−i∞
ds x−s 1

n+ s
. (5.97)

Letting ϵ→ 0 and closing the contour results in

{M−1Mxn}(x) = xn (5.98)

as required.

For the above results for the Mellin transform of xn it should be stressed that they only hold
within the analytical continuations of the integrals, since clearly the integral representation
of {Mxn} diverges. However, this result was also obtained in a similar way by Penedones et
al. in reference [101] by a deformation of integration contours in the inverse Mellin transform.
Furthermore this method was then applied by Bianchi et al. in reference [100] to calclate
CFT1 correlators.

With the Mellin transform of xn obtained, the next step is to use this to find {T xn}. Inserting
(5.93) into equation (5.84) results in

{T xn}(m) = (1 + eiπ(n+m))

[
1

n+m+ 1 + ϵ
− 1

n+m+ 1− ϵ

]
(5.99)

where again the ϵ→ 0 limit is implicit and ensure that the above expression is equal to zero
for n ̸= −m− 1. In the limit of n→ −m− 1 however, we find that

lim
n→−m−1

{T xn}(m) = 2 lim
n→−m−1

1 + eiπ(n+m)

ϵ
(5.100)

where since both the numerator and denominator go to zero this is undefined. Taking the
limit simultaneously however results in {T xn}(m) → −2πi and would imply that

{T xn}(m) = −2πiδn,−m−1 (5.101)

where δn,−m−1 is the Kronicker delta. As we will see, this answer is consistent with the
results from section 5.3 so it does seem correct although unfortunately we were unable to
find a rigorous justification for it. Therefore one should be somewhat cautious in applying
this formula.

With equations (5.82) and (5.101), we are now ready to demonstrate their usefulness by
performing some actual calculations.
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5.4.3 Applying the transformation

Using the result it becomes quite easy to calculate Õn(x) and Pn,m, for example using a
re-parametrization x′ → x′/x it is possible to write

Õn(x) =
1

n!

∫
R
dx′

xn

(1 + xx′)2(∆+1)
=

{
sign(x)x

−(n+1)

n!
{T (1 + x)−2(∆+1)}(n) for x ̸= 0

1
n!
{T xn}(0) for x = 0

(5.102)
which can be solved immediately by inserting formula’s (5.82) and(5.101). This results in

Õn(x) = −sign(x)x−(n+1)
Γ(2∆ + 1− n)

Γ(2∆ + 2)
for x ̸= 0 (5.103)

Õn(0) =
−2πi

n!
δn,−1 = 0 (5.104)

where in the bottom equation it was used that n ≥ 0. Similarly, note that rewriting equation
(5.47) in terms of T transformations results in

Pn,m = Nanām{TxTx′(1 + xx′)−2(∆+1) (5.105)

while from the definition of T in equation (5.65) we see that for general g

{TxTx′g(xy)}(∆− n,∆−m) = {T g(x)}(∆− n){T xn}(−m− 1) (5.106)

which can be derived by performing a coordinate transformation x → xx′ and x′ → x′.
Combining these two results in

Pn,m = Nanām{T (1 + x)−2(∆+1)}{T xn}(−m− 1) (5.107)

which when inserting (5.82) and(5.101), as well as the equations (5.27) for an and (5.50) for
N gives

Pn,m = δn,m (5.108)

as required.

As we have seen above the T transformation has made it possible to find an expression for
Õ, as well as perform another proof of the completeness relation for P . It should also help
in performing calculations for the n-point correlators, although these will have to be carried
out in future research. The integral space is also interesting because it seems to provide a
different connection between the continuous variable x and the discrete variable n, which can
appear either in a state |n,∆⟩ or as the argument of a transformed function {T f}(n). Partly
this is because in the transformed space the differential operator −2x d

dx
+ 2∆

{T (−2x
d

dx
+ 2∆)f}(n) = 2(∆ + n+ 1){Tf}(n) (5.109)

in other words, in the transformed space the operator N0 becomes diagonal. Since this is
already clearly the case when acting on the states |n,∆⟩ the spaces have a similar structure.
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In this sense, there is some similarity to the Mellin transform for the dilaton in conformal field
theories [94]. Interestingly there are some other similarities with the CFT Mellin amplitudes
as well. In the CFT setting, the Mellin transform is often used to write correlation functions
by applying the operator product expansion. Interestingly, O when acting on |∆,∆⟩ plays
a similar role since it generates all descendants of |∆,∆⟩ by applying (N−)n. In the CFT
setting the Mellin amplitudes are very tightly constrained by properties of the operator
product expansion thus it would be interesting to see if similar constraints could be derived
for the transformed functions here.
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6 Conclusion and outlook

In this thesis we have studied representations of the 1-dimensional conformal group and
specifically considered a mapping from discrete bases to continuous ones. With the goal of
obtaining a better understanding of the CFT1 side of the AdS2/CFT1 duality. For this we
constructed a conformal quantum mechanics model in chapter 4 originally due to dAFF [23].
Besides this we also introduced a similar finite dimensional representation in chapter 5 which
has relevance in Hodge theory. For both of these theories an analogue to the shadow operator
was introduced in order to obtain a completeness relation, which was used to obtain integral
expressions for higher order correlation functions.

There is an interesting interplay between higher dimensional CFT’s and this quantum me-
chanical model, where the latter has many properties simlar to conformal field theories but
is fundamentally different simply due to not being a field theory. This difference makes it
interesting that various tools from the conformal bootstrap program, such as the shadow
operator, find their use naturally in conformal quantum mechanics. One is lead to wonder
how this connection might develop further. For example one could ask what the analogue
of the operator product expansion would be. Where we already have a complete basis of
states, since all the states are known in the quantum mechanical model. Curiously, the
continuous states |x⟩ naturally have some of the same structure as an operator product ex-
pansion. Where for both there is an insertion of a primary operator (or the ground state)
and its descendants, obtained by repeatedly acting with the raising or lowering operator.
Hopefully a better understanding of the connection between conformal quantum mechanics
and conformal field theories would lead to a better understanding of the individual theories
too.

Besides this an interesting interpretation of the conformal quantum mechanics model was
introduced in section 4.3, where it was used that the discrete series has a natural represen-
tation on the Poincaré upper half plane. The conformal quantum mechanics model studied
before then naturally appears as the boundary theory of this representation. This seems very
far from an AdS/CFT type duality since the models on both sides are much too simplistic
and therefore it seems that there is no room for the more interesting aspects of AdS/CFT.
Both models are just quantum mechanical systems on different spaces and there seems to be
no clear way to introduce gravitational effects, gauge theories or other aspects that appear
when dealing with quantum field theories. There does seem to be a natural way to promote
both to field theories by a second quantization type procedure (or a many particle quantum
mechanical model on the CFT1 side) which would be interesting to investigate further. Es-
pecially since the two models do seem to share some of the basic properties of the AdS/CFT
duality, such as the relation between the SL(2,R) symmetry operators in the bulk and the
boundary, as well as that the wave functions in the bulk and the boundary seem to be related
with the correct limits. However as mentioned, one should not take the analogy too far.

A different direction that can be explored is the connection with Hodge theory. Even though
the language and concepts in Hodge theory seem very different at first sight, there are some
interesting similarities. First of all there is a similar problem of bulk reconstruction in Hodge
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theory [31, 32]. Where there is a boundary quantum mechanics model that, along with some
different information, seems to be enough to describe the near-boundary behaviour of bulk
fields. There are also other similarities, the operator product expansion blocks in CFT’s
can be related to geodesics on AdS [104] which seems at least superficially similar to Hodge
theory where one of the main objects of interest is given by periods in the moduli space.
This similarity deepens somewhat when one notices that this so-called kinematic space can
be realized as coadjoint orbits [105], while in the Hodge theory setting much importance is
placed on the nilpotent orbits. Furthermore, the kinematic space naturally carries symplectic
and Kähler structure, both of which play an important role in the Hodge theory setting.
Hopefully applying the model constructed in this thesis could shed some lights on these
similarities, by providing a better understanding of the boundary theory.

Finally it turns out that there are some relations between the solution of certain differential
operators and the periods of algebraic connections [106, 107]. Here a limited mixed Hodge
structure also naturally appears. The differential operators studied in this thesis are of the
same type and interestingly, the so-called Bloch-Vlasenko gamma functions defined there
show significant similarity to the shadow transformed operators defined for the Hodge theory
setting in chapter 5. In fact, both can be written in terms of Mellin transforms with coeffi-
cients of the type eiπns.23 This provides a connection between Hodge theory and differential
operators, so one may wonder if that connection can be used to relate the representations
built in this thesis directly to the Hodge theoretical setting. If this turns out to be possible it
might provide an interesting new perspective there. Furthermore, if this can be generalized
to the conformal quantum mechanics case it might even provide interesting insights into the
AdS/CFT setting, providing a new language into which one can view the duality.

At the moment much of what is written above remains speculative. However we think that the
models studied in this thesis might provide interesting new viewpoints into both AdS/CFT
and Hodge theory. Where in the best case scenario, it would provide connections between
holography, Hodge theory, differential equations and group representation theory, hopefully
leading to a better understanding of all of these. For now though, only the future will tell
how much of that is actually possible.

23See for example page 5 in reference [106].
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