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“After sleeping through a hundred million centuries we have finally opened our eyes on a
sumptuous planet, sparkling with color, bountiful with life. Within decades we must close our
eyes again. Isn’t it a noble, an enlightened way of spending our brief time in the sun, to work
at understanding the universe and how we have come to wake up in it?”

Richard Dawkins
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Abstract

Hydrodynamic description of the spin degree of freedom has been drawing an in-
creasing amount of attention in recent years. The reason for that attention lies in its
diverse range of applications from condensed matter physics to astrophysics and high
energy physics. After a brief discussion of the recent developments in hydrodynam-
ics, we investigate relativistic hydrodynamics in the presence of a spin current. We
generalize the results in the literature to describe a 2+1D fluid that is constrained
only by Lorentz symmetry. We build the hydrodynamic equations for the energy-
momentum tensor and the spin current. Then, we carry out an exhaustive analysis to
identify constitutive relations, transport coefficients, and entropy. This setup enables
us to solve hydrodynamic equations up to second order in gradients, i.e., in a Navier-
Stokes level of approximation. Our framework reproduces well-known phenomena
in the literature such as the spin Seebeck effect, thermal vorticity, Benett effect, and
spin hydrodynamic generation. We further characterize more than 20 novel transport
coefficients.
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being the most loyal friends of all time.

Furthermore, I would like to thank three more people who had an undeniable in-
fluence on my academic background. I would like to thank Ali Keskin, my primary
school teacher, for refusing the memorization-based instruction techniques and teach-
ing me to think critically from the earliest stage of my education. I would like to thank
Bayram Eray, my high school physics teacher, for encouraging me to pursue physics
as my field of study. Ultimately, I would like to thank Prof. M. Özgür Oktel, my BSc.
advisor, for forming the bedrock of the (prospective) physicist I am today.

Last but not least, I would like to thank my whole family. Your incomparable love,
help, and support made me who I am. You have never failed to encourage me about
my decisions and education. I am forever in debt to my parents for giving me every
opportunity they could provide. I am truly grateful to have such a family.



vi



vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

2 Preliminaries 5
2.1 Non-relativistic Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Quantum Field Theory in Finite Temperature . . . . . . . . . . . . . . . . 8

2.2.1 Statistical field theory . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Closed-Time-Path Finite Temperature Field Theory . . . . . . . . 9

2.3 Relativistic Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Ideal Relativistic Hydrodynamics: a special case . . . . . . . . . . 17
2.3.2 Non-relativistic Limit of Ideal Relativistic Hydrodynamics . . . . 17

3 Spin Hydrodynamics Formalism 19
3.1 Gauge Theory of SO(1, N) . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Vielbein Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Effective Theory for Spin Hydrodynamics 25
4.1 Spin Current Ambiguity and Belinfante-Rosenfeld Transformation . . . 26
4.2 Gauge Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Diffeomorphism Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Field Decompositions in 2+1D 31
5.1 Riemann Tensor in Levi-Civita Connection . . . . . . . . . . . . . . . . . 31
5.2 Contorsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3 Spin Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4 Energy-Momentum Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.5 Spin Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.6 Gradient of Fluid Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Ideal Spin Hydrostatics in 2+1D 37
6.1 Ideal Effective Action and Associated Currents . . . . . . . . . . . . . . . 39
6.2 Ideal Entropy Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



viii

7 Gradient Corrections to Spin Hydrostatics in 2+1D 43
7.1 Corrections to Effective Action . . . . . . . . . . . . . . . . . . . . . . . . 44
7.2 Corrections to Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.2.1 First Order Corrections . . . . . . . . . . . . . . . . . . . . . . . . 45
7.2.2 Second Order Corrections . . . . . . . . . . . . . . . . . . . . . . . 46
7.2.3 Full Form of Currents . . . . . . . . . . . . . . . . . . . . . . . . . 48

8 First Order Spin Hydrodynamics in 2+1D 51
8.1 Frame Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.2 First order constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.3 Second order constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.4 Pure out-of-equilibrium contributions to the currents . . . . . . . . . . . 54
8.5 First order entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

9 Conclusion and Outlook 61
9.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
9.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A Second-order Equations of Motion 65

B Tables of all tensors 73

Bibliography 79



ix

List of Figures

1.1 Schematic of the aftermath of a heavy ion collision. Spectator ions are
depicted in orange and the resulting QGP is given in gray. Figure is
taken from [24] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Schematic of electron hall effect (left) and analogous effect in spintronics
due to non-vanishing vorticity (right). Figure is taken from [45] . . . . . 2

1.3 AdS/CFT correspondance relates a d dimensional many-body system
to a black hole in d + 1 dimensional AdS space. Figure is adapted from
[14] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 2D descriptions of shear stress and expansion. Here, we use the term
“expansion" interchangeably with compression since they are the same
thing up to a minus sign. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 The chart of how different branches of physics relate to each other. . . . 8
2.3 The time contour the system follows in closed-time-path FTFT.. . . . . . 11
2.4 Individual elements of energy-momentum tensor. Figure is adapted

from public domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6.1 Schematic description of thermoelectric effect (a), and its analogous
spin Seebeck effect (b). Figure is taken from [46]. . . . . . . . . . . . . . . 38

6.2 Schematic of spin accumulation in vanishing total magnetization. Op-
posite spins are mapped to red and blue. . . . . . . . . . . . . . . . . . . 40





xi

List of Tables

5.1 Hydrodynamic decomposition of spin current, spin source and contor-
sion. Every spin current component is paired with its source and the
contorsion component that is conjugate to the source. . . . . . . . . . . . 35

7.1 List of 0th order independent objects . . . . . . . . . . . . . . . . . . . . . 44
7.2 List of 1st order independent objects . . . . . . . . . . . . . . . . . . . . . 44
7.3 List of 2nd order independent scalars that are at least linear in torsion . . 45

B.1 Full list of first order scalars . . . . . . . . . . . . . . . . . . . . . . . . . . 73
B.2 Full list of second order scalars . . . . . . . . . . . . . . . . . . . . . . . . 73
B.3 Full list of first order vectors . . . . . . . . . . . . . . . . . . . . . . . . . . 74
B.4 Full list of second order vectors . . . . . . . . . . . . . . . . . . . . . . . . 75
B.5 Full list of first order rank 2 tensors . . . . . . . . . . . . . . . . . . . . . . 76
B.6 Full list of second order rank 2 tensors . . . . . . . . . . . . . . . . . . . . 76





xiii

List of Abbreviations

w/ with
w/o without
GR General Relativity
SM Statistical Mechanics
QM Quantum Mechanics
SQM Statistical Quantum Mechanics
QFT Quantum Field Theory
SFT Statistical Quantum Field Theory
FTFT Finite-Temperature Quantum Field Theory
NS Navier-Stokes
RHIC Relativistic Heavy Ion Collider
QGP Quark-Gluon Plasma





xv

List of Symbols

U(N) unitary group of degree N
SU(N) special unitary group of degree N
SO(1, N) N+1 dimensional proper, orthochronous Lorentz group
Mab generators of Lorentz algebra(

Madjoint
ab

)gh
cd adjoint representation of the generators of Lorentz algebra

fabcd
gh structure constants of Lorentz algebra

φ arbitrary matter field
ψ arbitrary Dirac spinor
γµ Dirac matrices
S arbitrary scalar
Vµ arbitrary vector
T µν arbitrary rank-2 tensor

gµν arbitrary metric tensor (mostly positive signature)
ηµν Minkowski metric tensor (mostly positive signature)
δν

µ Kronecker delta symbol
εµνρ Levi-Civita tensor
Λµ

ν arbitrary Lorentz transformation
Γρ

µν affine connection
Γ̊ρ

µν Levi-Civita connection
Tλ

µν torsion tensor
Kµ

αβ contorsion tensor
eµ

a vielbein
ωµ

ab spin connection (w/ torsion)
ω̊µ

ab spin connection (w/o torsion)
Ωabc objects of anholonomity
Gµν

ab field strength tensor of spin connection
Dµ gauge covariant derivative of Lorentz group (w/ torsion)
D̊µ gauge covariant derivative of Lorentz group (w/o torsion)
∇µ covariant derivative (w/ torsion)
∇̊µ covariant derivative (w/o torsion)
Rλ

σµν Riemann curvature tensor (w/ torsion)
R̊λ

σµν Riemann curvature tensor (w/o torsion)



xvi

Rµν Ricci tensor (w/ torsion)
R̊µν Ricci tensor (w/o torsion)
R Ricci scalar (w/ torsion)
R̊ Ricci scalar (w/o torsion)

Z[·] generating functional
W[·] effective action
Tµν energy-momentum tensor
Sλ

µν spin current
T temperature
µab spin chemical potential
uµ fluid velocity
aµ fluid acceleration
Θ fluid expansion
σµν fluid stress tensor
Ω fluid vorticity



xvii

Dedicated to Cemal Ulugöl





1

Chapter 1

Introduction

One way to think about hydrodynamics is that it is a low-energy effective field the-
oretic description of an underlying classical or quantum many-body system at finite
temperature [29]. In particular, hydrodynamics is concerned with the characterization
of the collective motion of particles in relatively long distances. This thesis builds on
the relativistic description of hydrodynamics, that is to say, we investigate the fluids
whose microscopic descriptions exhibit Lorentz symmetry, for instance, quantum field
theories. This symmetry constraint does not mean that relativistic hydrodynamics de-
scribe the matter only when it travels close to the speed of light, c. We solely focus
on the symmetry itself, and one can always take the non-relativistic limit by making a
1/c expansion.

y

x

z

B
+ +

–
–

+

–

FIGURE 1.1: Schematic of the aftermath of a
heavy ion collision. Spectator ions are depicted
in orange and the resulting QGP is given in

gray. Figure is taken from [24]
.

In addition to the Lorentz symme-
try, we are particularly interested in the
hydrodynamic characterization of spin
currents. Hydrodynamic description of
the spin degree of freedom is drawing
an increasing amount of attention in re-
cent years. The reason for that attention
lies in the diverse range of applications
from condensed matter physics to astro-
physics and high energy physics [4, 12,
16, 19, 21].

This hydrodynamic description is es-
pecially relevant for heavy-ion collisions
in the ultra-relativistic limit. Relativis-
tic heavy-ion collisions produce quark-
gluon plasmas (QGPs) along with strong
magnetic fields. Consequently, those
magnetic fields magnetize the plasma
and cause the macroscopic flow of spin
degrees of freedom [9, 15, 25, 26]. Specif-
ically, the recent observation of global spin polarization of the Λ and Λ particles in
heavy-ion collisions at RHIC [1, 2] serves as an experimental realization of the phe-
nomenon.
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Electric voltage
−+

Spin voltage

Fluid
flow

Fluid
flow

Magnetic field Vorticity

FIGURE 1.2: Schematic of electron hall effect
(left) and analogous effect in spintronics due to
non-vanishing vorticity (right). Figure is taken

from [45]
.

Collective description of the spin de-
gree of freedom is equally essential in
spintronics [5, 10] and quantum spin liq-
uids [43]. In (nearly) defect-free crys-
tals, hydrodynamic description of spin
can elucidate the spin transport, energy
dissipation, and efficiency of the system
[13]. On the other hand, the hydrody-
namic framework is crucial by definition
for quantum spin liquids. The recent
observation of spin currents induced by
vorticity in liquid metals [45] is merely
an example of that.

Aside from its wide range of applica-
tions on experimental observations, hy-
drodynamics is appealing from a purely

theoretical perspective as well. We can model gravitational fluctuations of a black
hole as hydrodynamic fluctuations, and vice versa [39, 40]. As a matter of fact,
this connection goes beyond the linear response. It turns out, Einstein’s field
equations of general relativity embeds the hydrodynamic equations surpassing the
Navier-Stokes level of approximation. This link between hydrodynamic equations
and Einstein’s field equations is often called “fluid-gravity correspondence” [20].

Quantum 
system

AdS bulk

Event HorizonEm
er

ge
nt

 d
im

en
sio

n

FIGURE 1.3: AdS/CFT correspondance relates
a d dimensional many-body system to a black
hole in d + 1 dimensional AdS space. Figure is

adapted from [14]
.

This correspondence is more than
just an academic exercise. One can use
holography [3, 38] on top of fluid-gravity
correspondence to map the hydrody-
namics of a black hole to the hydro-
dynamics of a quantum system whose
Hamiltonian is explicitly known. There-
fore, we can compute transport coeffi-
cients of the quantum system using black
hole physics. This mapping is partic-
ularly beneficial because the quantum
systems that appear in holography are
strongly interacting. Furthermore, the
usual tools we use to compute transport
coefficients such as loop corrections and
Monte-Carlo simulations break down in
those strongly correlated systems since
they live in the non-perturbative regime.
That is why holography – consequently
hydrodynamics – plays an increasingly prominent role in the understanding of
strongly interacting systems like QGPs, strongly correlated graphenes, and transition
metal dichalcogenide monolayers [33].
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All those reasons above stimulated the growing interest in the hydrodynamic de-
scription of spin currents. Until this year, that branch of hydrodynamics stood as a gap
in the literature. The first attempt to fill this gap was proposed by [18]. Their frame-
work builds the hydrodynamic description of spin currents that appear in Lorentz
and parity invariant 3+1D systems. Moreover, they presented the implementation of
holography in their framework for the spin liquids that are dual to Lovelock Chern-
Simons gravity [17].

In this thesis, we close the gap even further and generalize this framework to 2+1D
systems that are only Lorentz invariant. Likewise, our framework is ready to be used
for the calculations of hydrodynamic degrees of freedom both self-consistently and
holographically. In the following chapters, we give the preliminary knowledge that
is required to build the framework. Then, we derive the hydrodynamics equations
from the corresponding general hydrodynamic action. We proceed with the intro-
duction of hydrodynamic decompositions and show the constitutive relations of the
energy-momentum tensor and the spin current. Using those results, we solve the hy-
drodynamic equations for an ideal spin fluid and investigate its entropy. Moreover,
we introduce first- and second-order corrections to the ideal fluid to characterize a real
fluid. Consequently, we derive the corrections to the constitutive relations. Finally, we
present the transport coefficients of the theory and investigate the entropy of the real
fluid in first-order.
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Chapter 2

Preliminaries

2.1 Non-relativistic Hydrodynamics

Hydrodynamics is the branch of physics that focuses on the description and prediction
of the flow profile of a fluid [30]. We could have called this branch “fluid dynamics,"
but we chose not to do so for historical reasons. When we are dealing with hydrody-
namics, we describe the fluid as a continuum. Continuum description means that we
do not have particles even in infinitesimal volume elements.

We have to identify which physical quantities affect the fluid flow to construct the
mathematical description. The first quantity is, obviously, the velocity field, v(t, x)
since this field describes the mass flow rate and direction of the infinitesimal fluid
element at position x in space. At first sight, one might think velocity field should
be sufficient to describe fluid flow, but this is not the case. The velocity field knows
nothing about the microscopic properties of the fluid to carry their effects to the macro-
scopic world. Thus, we need other quantities that describe how the particles, forming
the fluid, interact with each other and its surroundings effectively. Luckily, we have a
whole branch of physics to do this job for us, namely, thermodynamics. In particular,
we need two thermodynamic degrees of freedom to give a complete description of a
fluid. At this point, one might ask what is so special about the number two, and it
has a fathomable explanation. If we know two thermodynamic degrees of freedom
of the system, we can determine all thermodynamic quantities using the equation of
state! Consequently, if we know all thermodynamic quantities, then, we know all the
macroscopic effects of the inner structure of the fluid. Now, the question is which
quantities we should choose. Although we are free to choose any two, it is customary
to pick pressure, p(t, x), and mass density, ρ(t, x). This discussion finalizes our choice
of relevant physical quantities to describe a fluid mathematically.

We can start deriving the fundamental equations of hydrodynamics right away
since we know which physical quantities to consider. First of all, we can neither gen-
erate mass out of thin air nor destroy it in non-relativistic physics. Therefore, we need
to conserve it. Let us consider some finite volume Γ in space. The total mass, MΓ in
this volume is given by

MΓ(t) =
∫

Γ
dVρ(t, x), (2.1)
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where dV is the infinitesimal volume element and the integration is taken within the
volume Γ. It is apparent in the expression that total mass within the volume is time
dependent, i.e., the volume is not isolated and it can exchange mass with its sur-
roundings. We can write mass flux through an infinitesimal surface element dS as
ρ(t, x)v(t, x) · dS. Thus the total mass flux, ΦM,Γ is given by

ΦM,Γ(t) =
∮

∂Γ
dS · v(t, x)ρ(t, x), (2.2)

where the integration is taken over the surface enclosing the volume Γ. We note that
the infinitesimal surface element dS is pointing away from the volume Γ. On the other
hand, we can express the mass flux as the negative time derivative of the total mass.
Consequently, we can present the equality

∂

∂t

∫
Γ

dVρ(t, x) = −
∮

∂Γ
dS · v(t, x)ρ(t, x), (2.3)

and we can simplify the expression by making use of Stoke’s theorem,∫
Γ

dV
(

∂ρ

∂t
+ ~∇ · (ρv)

)
= 0, (2.4)

where we dropped space and time dependence of mass density and velocity field for
notational clarity. Moreover, we put a vector arrow on gradient operator although we
employed boldface vector notation. We chose this notation in order not to confuse
space gradient with the covariant derivatives, which we will introduce in the upcom-
ing chapters. Equation (2.4) gives us the mass conservation in volume Γ. However,
the choice of Γ is arbitrary as we have stated at the beginning. This implies a stronger
conservation law,

∂ρ

∂t
+ ~∇ · (ρv) = 0. (2.5)

This equation is called mass continuity equation and the vector j = ρv is called mass
flux density.When we expand the divergence term, we obtain,

∂ρ

∂t
+ v · ~∇ρ + ρ~∇ · v = 0, (2.6)

and we notice that the first two terms are nothing but a total time derivative to give
the final form of the equation:

dρ

dt
+ ρ~∇ · v = 0. (2.7)

Even though, mass continuity equation is a crucial part of hydrodynamics, it does not
describe how the velocity field evolves in time. We have to consider Newton’s second
law to describe the dynamics of flow velocity. We will divide the total force applied on
the fluid into two parts, namely, an external force and the force caused by the pressure.
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The total force emerging from the pressure in an arbitrary volume Γ of the fluid can
be expressed as

−
∮

∂Γ
dSp = −

∫
Γ

dV~∇p, (2.8)

and we can read the emergent force density caused by pressure from the volume inte-
gral. Therefore, velocity dynamics is given by

ρ
dv
dt

= −~∇p + f, (2.9)

where we introduced f as the external force density. If we expand the total time deriva-
tive and rearrange the equation, we find

∂v
∂t

+
(

v · ~∇
)

v = −1
ρ
~∇p +

1
ρ

f. (2.10)

This equation is called Euler’s equation and it describes velocity dynamics as we de-
sired. We should bear in mind that we did not include any dissipative process, like
friction, in the derivation. Therefore, the motion is adiabatic and entropy density is
constant in time. The family of fluids that undergo adiabatic motion is called ideal
fluids. If we want to take the internal friction of the fluid into account, we need to
modify the equation such that it reads

ρ
∂v
∂t

+ ρ
(

v · ~∇
)

v = −~∇p + η~∇2v +

(
ζ +

1
3

η

)
~∇
(
~∇ · v

)
+ f (2.11)

where η is shear viscosity (Fig.2.1a) and ζ is bulk viscosity (Fig.2.1b). This equation is
called Navier-Stokes momentum equation and full derivation can be found in [30].

Navier-Stokes momentum equation coupled to mass continuity equation is a mon-
umental tool to describe non-relativistic fluids [7, 8, 32, 31, 35, 37, 44]. It enabled hu-
mankind to make excellent developments in technology such as climate modeling,
vehicle design, liquid cooling, blood flow modeling. On the other hand, our ultimate
goal is to describe the hydrodynamics of spin currents. Spin, itself, is a relativistic
notion. It arises from the irreducible representations of the Lorentz group. Further-
more, it is inherently a quantum phenomenon. However, Navier-Stokes equations are
neither relativistic nor quantum. Therefore, we need to develop a piece of machinery
to describe quantum hydrodynamics in the relativistic regime. To reach our goal, we
need to understand how a quantum field theory couples to a heat bath. Then, we
need to make the necessary approximation to wind up at the hydrodynamic regime.
Essentially, we have already mentioned this approximation at the beginning of this
section. We assumed that particles within the liquid are so strongly correlated that
we can ignore their individual identity and describe them as a density field. The ap-
proximation will be the same for relativistic quantum hydrodynamics. Now, we need
to introduce a finite temperature field theory (FTFT) to describe how a quantum field
theory couples to a heat bath.
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gradient, ∂yuμfluid

stationary layer

moving layer

shear stress

y

(A) Depiction of shear stress caused by the spa-
tial gradient of velocity. The energy price of non-
trivial shear stress is related to shear viscosity, η.

stationary boundary

stationary boundary

fluid

Expansion

(B) Depiction of expansion. The energy
price of non-trivial expansion is related to

bulk viscosity, ζ.

FIGURE 2.1: 2D descriptions of shear stress and expansion. Here, we
use the term “expansion" interchangeably with compression since they

are the same thing up to a minus sign.

2.2 Quantum Field Theory in Finite Temperature

2.2.1 Statistical field theory

Finite Temperature 
Quantum Field Theory 
in Curved Spacetime

Quantum  
Mechanics

Quantum  
Statistical Mechanics

Special 
Relativity

Finite Temperature 
Quantum Field Theory

Quantum  
Field Theory

Analysis on Manifolds

FIGURE 2.2: The chart of how different
branches of physics relate to each other.

Statistical (quantum) field theory (SFT)
gives us a description of the physical
properties of a quantum system in the
thermal equilibrium state. In this de-
scription, we trade in time to introduce
temperature to the system. Precisely, we
make a Wick rotation to Euclidean time,
and we compactify this coordinate to a
circle of circumference L. Then, we iden-
tify temperature, T, with 1/L. From now
on, we will call this compactified time
coordinate as “time circle" and circum-
ference L as the invariant length of the
time circle. We can express SFT partition
function as

ZSFT =
∫

D [φ]e−SE , (2.12)

where

SE[φ] =
∫ 1/T0

0
dτ
∫

dxd−1√gEL[φ] (2.13)
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is the Euclidean action, gE is the determinant of the Euclidean metric, 1/T0 is the co-
ordinate periodicity of the time circle, φ is a matter field, and L[φ] is the Lagrangian
of the underlying quantum field theory. Furthermore, we introduce the time-like vec-
tor Vµ, which can be expressed as Vµ = (1, 0, 0, . . . , 0)T in suitable coordinates. This
vector has to be a Killing vector since SFT describes an equilibrium state. Hence,
spacetime is stationary. Therefore, we can calculate the invariant length of the time
circle by starting in the aforementioned suitable coordinates and plug Vµ back in the
expression to regain coordinate independence. Thus, the invariant length of the time
circle is

L =
∫ 1/T0

0
dτ
√

gττ

= i
∫ −i/T0

0
dt
√
−gtt

=

√−gtt

T0

=

√
−V2

T0
,

(2.14)

where we rotated back to real time in second line and used the fact that spacetime is
stationary in the third line. Then, the temperature is given by

T =
T0√
−V2

. (2.15)

Now, we can calculate all thermodynamic quantities of the underlying system by
introducing source terms J(x) to the action that couple to matter fields φ(x) linearly,
then, taking functional derivatives of the partition function with respect to the sources.
This description is exquisite for an equilibrium state. However, hydrodynamics de-
scribes a system in “near-equilibrium," thus, we cannot afford to trade in time to get
the temperature. That is why we need to introduce a real-time finite temperature field
theory. In this section, we chose to introduce close-time-path FTFT for pedagogical
reasons, an interested reader may choose another FTFT to show what we will do in
the upcoming part is choice-invariant.

2.2.2 Closed-Time-Path Finite Temperature Field Theory

For simplicity, we introduce close-time-path FTFT in Schrödinger picture following
[11]. We start with first-quantized description and we will go back to path integral
quantization at the end of our discussion. Quantum mechanical description of a mixed
state embedded in an external surrounding is described by the density matrix ρ(t) of
the system which is given by

ρ(t) = ∑
n

pn |ψn(t)〉〈ψn(t)| , (2.16)
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where pn is the probability of finding the system in the state |ψn(t)〉, which abides
to the orthonormality condition 〈ψn(t)|ψm(t)〉 = δn,m. Here, we assumed the system
exhibits discrete states, still, it can be generalized to a continuum of states trivially.
Moreover, we can find the expectation value of an operatorO using the density matrix
by

〈O〉 (t) = Tr [ρ(t)O] = ∑
n

pn 〈ψn(t)|O|ψn(t)〉 . (2.17)

Following this, we can define the quantum version of the entropy, S = − ln Ω, as an
expectation value,

S = − 〈ln p〉 = −∑
n

pn ln pn, (2.18)

which coincides to Shannon entropy. Assuming the states satisfy the Schrödinger
equation, we find that the time evolution of the density matrix is given by quantum
Liouville equation,

i
∂ρ(t)

∂t
= [H, ρ(t)] , (2.19)

where H is the Hamiltonian of the system. We should bear in mind that we assumed
probabilities, pn, do not change in time to derive this equation. This coincides to the
assumption of an adiabatic evolution, thus, entropy is constant. We need to remember
this when using closed-time-path FTFT to show relativistic quantum hydrodynamics
is a low energy effective FTFT. Now, we define the time evolution operator as

U(t, t′) = T
[

exp
(
−i
∫ t

t′
dt′′H(t′′)

)]
, (2.20)

where T is time ordering. At that point, we can write ρ(t) as

ρ(t) = U(t, 0)ρ(0)U(0, t). (2.21)

Moreover, we know that density matrix is a positive definite matrix with unit trace.
Therefore, we can write it in terms of a Hermitian operator, Hi, whose meaning will
become obvious shortly after,

ρ(0) =
e−βHi

Tr
[
e−βHi

] (2.22)

where β is inverse temperature. Now, we suppose that the Hamiltonian of the system
has the form

H(t) = HiΘH (−Re(t)) +H (t)ΘH (Re(t)) , (2.23)

where ΘH(x) is the Heaviside step function. Let us elucidate this supposition. We
prepare an equilibrium state in negative times, then, we turn on perturbations adia-
batically after Re(t) = 0. Obviously, system evolves in equilibrium if the Hamiltonian
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is time independent. With this supposition, we can re-express the density matrix as

ρ(0) =
U(t′ − iβ, t′)

Tr [U(t′ − iβ, t′)]
, (2.24)

and its time evolution is

ρ(t) =
U(t, 0)U(t′ − iβ, t′)U(0, t)

Tr [U(t′ − iβ, t′)]
, (2.25)

where t′ is a large negative time. Using this expression and some algebraic manipu-
lations, one can show straightforwardly that expectation value of an operator, O for a
large positive time t′′ is

〈O〉 (t) = Tr [U(t′ − iβ, t′)U(t′, t)OU(t, t′)]
Tr [U(t′ − iβ, t′)]

. (2.26)

Let us again illuminate the physical meaning of this expression. Initially, the system
sits on large negative time t′. Then it evolves to some time t and at that point, we
insert an operator O. Then, the system continues evolving to a large positive time t′′.
After that, system evolves back in time to the initial time t′ and thermalizes to inverse
temperature β. Therefore, it follows the time contour, C = C+ + C− + Cβ given in
fig.(2.3).

ℑ𝔪(t)

ℜ𝔢(t)
t′ t′ ′ 

t′ − iβ

C+

C−
Cβ

FIGURE 2.3: The time contour the system follows in closed-time-path
FTFT..

Now, we can introduce the path integral description of the generating functional
as

ZFT[Jc] =
∫

D [φ]eiSFT [φ,Jc] (2.27)

where
SFT[φ, Jc] =

∫
C

dt
∫

dxd−1 (L[φ] + LJ [φ, Jc]) , (2.28)
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and we already introduced the source term LJ [φ, Jc] that is linear in fields φ. Still, this
expression is in flat spacetime.

After this point, we will not introduce any new derivations in closed-time-path
FTFT but we will give a sketch of what it should be done to obtain the presented result.
The derivations are out of the scope of this thesis, an interested reader can consult [11]
for the complete derivations. Now, let us proceed. When we calculate the propagator
of the theory, we see that propagating in imaginary time is prohibited. Therefore, the
contribution of the contour piece cβ is non-dynamic. Then, we can integrate out this
contribution and absorb it into the integral measure of the generating functional. To
eliminate the contour integration on time coordinate and introduce the usual volume
integration, we can decompose that integration into,∫

C
dt =

∫
dt+ −

∫
dt−, (2.29)

which coincides to the introduction of another timelike coordinate. To eliminate this
further, we need to promote fields (Φ) and sources (J) into doublets. Moreover, Green’s
function gains a matrix structure. Nevertheless, FTFT reduces to the underlying quan-
tum field theory when we take the zero temperature limit. Finally, the generating
functional in curved spacetime becomes,

ZFT[gµν, J] =
∫

D [φ]eiSFT [gµν,Φ,J] (2.30)

where
SFT[gµν, Φ, J] =

∫
dxd√−g

(
Φ†G −1Φ + LJ [Φ, J]

)
, (2.31)

and we define the effective action to satisfy

ZFT[gµν, J] = eiWFT [gµν,J]. (2.32)

Now, we can compare our result from FTFT with SFT. We have traded in time
coordinate to get temperature in SFT. This was not a feasible option to introduce rel-
ativistic quantum hydrodynamics since we needed a time coordinate to describe out-
of-equilibrium behavior. When we introduced FTFT, we saw that we can keep the
time coordinate in expense of introducing doublet fields, i.e., doubling the degrees
of freedom of the underlying system. This completes all the machinery we need to
introduce relativistic quantum hydrodynamics. From now on, we will focus on that
description.

2.3 Relativistic Hydrodynamics

Despite its success in describing many physical phenomena, Navier-Stokes equations
are not applicable for every fluid description. The obvious example is the description
of relativistic fluids. The reason for this inability is quite fundamental. Navier-Stokes
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equations are not Lorentz covariant. Thus, we need to find a relativistic description,
which reduces to Navier-Stokes equations in the non-relativistic limit.

Just like our non-relativistic discussion, let us start by thinking about which phys-
ical degrees of freedom we need to characterize a relativistic fluid. The first choice
is, obviously, promoting the velocity field (v) into 4-velocity (uµ), which is normal-
ized to uµuµ = −1. Furthermore, we can promote non-relativistic mass density to an
energy density since they are equivalent. Finally, we keep the pressure and the equa-
tion of state in the relativistic portrayal (with relativistic corrections of course.) This
completes the relativistic promotions, but there is one more modification left. We can
write energy density and pressure covariantly using the energy-momentum tensor,
Tµν, whose elements we depict in fig.(2.4).

energy
density

momentum 
flux 

shear  
stress 

pressure 

momentum
density

 

energy 
flux 

FIGURE 2.4: Individual elements of
energy-momentum tensor. Figure is

adapted from public domain.

Therefore, it is enough to describe the dy-
namics of the energy-momentum tensor to
describe the fluid. In addition, the dynam-
ics of the energy-momentum tensor should
reduce to the mass continuity equation and
Navier-Stokes momentum equation in the
non-relativistic limit. Now, the question is
how we describe the dynamics of the energy-
momentum tensor. Luckily, it is well-known
that the energy-momentum tensor is the con-
served current of diffeomorphisms. Thus, we
can characterize its dynamics by requiring
diffeomorphism invariance on the underly-
ing theory. On top of that, nothing is restrict-
ing us from coupling the underlying theory to a conserved gauge current, J µ, which
is conjugate to a gauge field, Bµ. We will derive the hydrodynamic equations of mo-
tion following method presented in [22]. Suppose that we know the effective action,
W[gµν,Bµ], of the underlying theory. Then, we can classify the energy-momentum
tensor and the gauge current by the response under the variations of the metric and
the gauge field in respective order. Therefore, we define the energy-momentum tensor
and the gauge current by

Tµν =
2√−g

δW
δgµν

,

J µ =
1√−g

δW
δBµ

.
(2.33)

Equivalently, we can write the variation of the effective action as

δW =
∫

ddx
(

δW
δgµν

δgµν +
δW
δBµ

δBµ

)
=
∫

ddx
√
−g
(

1
2

Tµνδgµν + J µδBµ

)
,

(2.34)
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Notice that we have not assumed any particular gauge group for the gauge field yet.
We just suppressed the group indices in our notation and nothing more. We, now,
suppose the metric is invariant under gauge transformations to derive the hydrody-
namic equations of motion. At that point, giving a hint about the future is in order.
When we consider hydrodynamics of spin current, the aforementioned supposition
will turn out to be incorrect. However, let us not get bothered by that now. We will
discuss every intricacy of the hydrodynamics of spin current in the following chapter.
Using the supposition, we can express the gauge transformations of the background
fields in the presence of an infinitesimal gauge transformation λ as

δλgµν = 0,

δλBµ = ∇̊µλ
(2.35)

where δλ denotes the variation with respect to λ, and the covariant derivative defined
as ∇̊µVν := DµVν + Γ̊ν

µρVρ, Dµ is the gauge covariant derivative of Bµ, and Γ̊ν
µρ is

Levi-Civita connection. Then, the variation of the effective action is given by

δλW =
∫

ddx
√
−g
(

1
2

Tµνδλgµν + J µδλBµ

)
=
∫

ddx
√
−gJ µ∇̊µλ

= −
∫

ddx
√
−g λ∇̊µJ µ.

(2.36)

Gauge invariance of the theory dictates δλW = 0, which implies ∇̊µJ µ = 0. This
equation is our first equation of motion, namely, conservation of gauge current.

Now, we turn to the diffeomorphism invariance. When we introduce an infinitesi-
mal diffeomorphism ξ to the system, the change in background fields is given by a Lie
derivative. We can express their variation as

δξ gµν = Lξ gµν

= ∇̊µξν + ∇̊νξµ,
δξBµ = LξBµ

= ξν∇̊νBµ + Bν∇̊µξν

(2.37)
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where δξ denotes the variation with respect to diffeomorphism ξ. Then, the variation
of the effective action is given by

δξW =
∫

ddx
√
−g
[

1
2

Tµνδξ gµν + J νδξBν

]
=
∫

ddx
√
−g
[

1
2

Tµν
(
∇̊µξν + ∇̊νξµ

)
+ J ν

(
ξµ∇̊µBν + Bµ∇̊νξµ

)]
=
∫

ddx
√
−g
[

Tµν∇̊νξµ + J ν
(

ξµ∇̊µBν + Bµ∇̊νξµ
)]

=
∫

ddx
√
−gξµ

[
−∇̊νTµν +FµνJν

]
(2.38)

where we used conservation of gauge current in the third line. Just like gauge in-
variance, diffeomorphism invariance of the theory dictates δξW = 0, which implies
∇̊νTµν = FµνJν. This equation is our second (and the more fundamental) equation of
motion, namely, conservation of energy-momentum. To summarize our discussion so
far, we re-present the hydrodynamic equations of motion as

∇̊νTµν = FµνJν,

∇̊µJ µ = 0.
(2.39)

To understand the physical meaning of energy-momentum tensor and the gauge cur-
rent better, we can decompose energy-momentum tensor and gauge current into scalars,
vectors and tensors of SO(d− 1) ⊂ SO(1, d− 1), and Lorentz symmetry is preserved
by uµ. The decomposition is given by

Tµν = Euµuν + P∆µν + u(µqν) + τµν,
J µ = N uµ + jµ,

(2.40)

where ∆µν = gµν + uµuν is the projection tensor, uµqµ = uµ jµ = gµντµν = 0, uµτµν = 0,
and τ[µν] = 0. We identify E with energy density, P with pressure, N with charge
density, qµ with heat current, τµν with shear stress, and jµ with transverse charge flow.

At the end of the previous section, We mentioned that relativistic hydrodynamics
would unfold as a low-energy effective field theory. It is time to fulfill this promise.
We start by expanding the effective action in gradients. Since the effective Lagrangian
transforms as a scalar, we can decompose it into independent scalars within the back-
ground fields and their derivatives. We denote ith scalar of order n in gradients as S (n)i
and we define the set of all nth order scalars as

S (m) =
{
S (m)

i

∣∣∣0 < i ≤ Nm

}
(2.41)
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Moreover, we suppose there are Nn many scalars that are nth order in gradients so that
we can decompose mth order corrected effective action, W(m) as

W(m) =
∫

ddx
√
−g

[
P
(
S (0)

)
+

m

∑
n=1

Nn

∑
i=1

χ
(n)
i

(
S (0)

)
S (n)i

]
(2.42)

where P and χ
(n)
i are functions of zeroth-order scalars. By extending our discussion in

subsection (2.2.1), we define the equilibrium state by making use of the timelike vector
Vµ. We characterize hydrostatic equilibrium by demanding the Lie derivatives of the
background fields with respect to Vµ to vanish. This is still a valid condition since we
depict hydrostatic equilibrium as a stationary (up to a Lorentz boost) state.

Furthermore, we can characterize the zeroth-order scalars of the theory in equi-
librium by using the equilibrium condition. First, notice that these quantities have to
be gauge-invariant, local in space but non-local in imaginary time. The non-locality
emerges from the fact that we integrated out the imaginary time in both SFT and FTFT.
The first zeroth-order scalar is the temperature, and we already derived its equilibrium
definition in (2.15). However, the temperature is not the only one. We need to build
scalar(s) using the gauge field as well to describe the effects of the gauge field. To
introduce the gauge field, we need a way to delocalize it in imaginary time. At this
point, Polyakov loops, PB , come to the rescue. They are defined to be Wilson loops
around the time circle [34] and they are gauge-invariant by definition. In addition, the
loop integral around the time circle guarantees non-locality in imaginary time. Thus,
Polyakov loops are cut out for our needs. In equilibrium, Polyakov loops of the gauge
field are given by

ln PB : = iP
∮

dxµBµ

= i
∫ −i/T0

0
dtVµBµ

=
1
T0

VµBµ

(2.43)

where we used the equilibrium condition after the second line. Therefore, we identify
the chemical potential of the gauge field as µB = ln(PB)/L. Finally, we obtain the
velocity profile simply by normalizing Vµ. Consequently, degrees of freedom of the
hydrodynamic system are given by

T =
T0√
−V2

, µB =
BµVµ

√
−V2

, uµ =
Vµ

√
−V2

. (2.44)

This finalizes the construction of relativistic hydrodynamics. Notice that we did not
restrict ourselves to a specific order in gradients. Thus, we can describe hydrody-
namics in any order. In the non-relativistic limit, zeroth-order hydrodynamics would
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coincide with ideal hydrodynamics, i.e., Euler’s equation and mass continuity equa-
tion. First-order hydrodynamics would coincide with Navier-Stokes equations. Now,
let us demonstrate this correspondence for the ideal case. Demonstration of the non-
relativistic equivalence of first-order relativistic hydrodynamics and Navier-Stokes
equations is out of the scope of this thesis. However, a full discussion can be found in
[41].

2.3.1 Ideal Relativistic Hydrodynamics: a special case

Suppose we have an ideal relativistic fluid in absence of any gauge field in 3+1D space-
time. In this case, we can write the effective action as

W(0) =
∫

d4x
√
−gP (T) . (2.45)

Then, the variation of the action is simply given by

δW(0) =
∫

d4x
√
−g

1
2

(
Pgµν + uµuν ∂P

∂T
T
)

δgµν. (2.46)

Therefore, the energy-momentum tensor has the simple form

Tµν = εuµuν + P∆µν (2.47)

where
ε = −P +

∂P
∂T

T (2.48)

is the energy density. Notice that the scalar function P turned out to be the pressure
of the ideal fluid. This identification is not a special case, we can identify the scalar
function P with the ideal pressure of the underlying theory. In addition, this identifi-
cation leads to the definition of the ideal entropy density s = ∂P

∂T . Finally, we present
the projections of the hydrodynamic equation of motion as

uµ∇̊νTµν = uµ∇̊νε + (ε + P) ∇̊µuµ = 0,

∆λ
µ∇̊νTµν = (ε + P) uµ∇̊µuλ + ∆λµ∇̊µP = 0.

(2.49)

These equations give the complete description of a free ideal relativistic fluid. Now,
let us introduce the non-relativistic limit.

2.3.2 Non-relativistic Limit of Ideal Relativistic Hydrodynamics

Here, we present a step-by-step guide on how to take the non-relativistic limit of rela-
tivistic hydrodynamics. Even though we are using ideal hydrodynamics as an exam-
ple, our arguments are general and can be used in any order in gradients. First of all,
we take the special relativity limit of the fundamental equations by introducing the
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flat background metric gµν → ηµν and ∇̊µ → ∂µ. Then, the equations reduce to

uµ∂νε + (ε + P) ∂µuµ = 0,

(ε + P) uµ∂µuλ + ∆λµ∂µP = 0.
(2.50)

Now, we introduce the small spatial velocity limit ui � u0 so that we can express the
velocity as uµ = (1, v)T for |v| � 1. This limit reduces the projections of the gradient
to

uµ∂µ →
∂

∂t
+ v · ~∇, ∆iµ∂µ → ∂i (2.51)

and ∆00 = 0. Consequently, the equations further reduce to

∂ε

∂t
+ v · ~∇ε + (ε + P) ~∇ · v = 0,

(ε + P)
∂v
∂t

+ (ε + P)
(

v · ~∇
)

v + ~∇P = 0.
(2.52)

Finally, we impose a non-relativistic equation of state where P� ε, and we realize the
energy density is dominated by mass density. This limit gives the final non-relativistic
form of hydrodynamic equations:

∂ρ

∂t
+ v · ~∇ρ + ρ~∇ · v = 0,

ρ
∂v
∂t

+ ρ
(

v · ~∇
)

v + ~∇P = 0.
(2.53)

The equations are precisely mass continuity equation and Euler’s equation as we ex-
pected! Therefore, we conclude that both relativistic and non-relativistic hydrody-
namics are nothing but the conservation of energy momentum tensor.
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Chapter 3

Spin Hydrodynamics Formalism

In the previous chapter, we have discussed non-relativistic hydrodynamics and ex-
tended it to a relativistic quantum case. Moreover, we have shown the two descrip-
tions are equivalent in the proper limit. Now, it is time to build the theory of spin
currents in hydrodynamics.

We have stated that every current has a conjugate gauge field in the discussion
of relativistic hydrodynamics. Then, the gauge invariance of the theory produced
the equation of motion of the current we are interested in. Here, we can give some
examples. Electromagnetism has U(1) symmetry, and that gives us electric current.
Weak interaction has SU(2) symmetry, which corresponds to weak current. Strong
interaction has SU(3) symmetry, which produces color current [48]. Now, the question
is, what gives the spin current? We need to look at a very fundamental symmetry to
answer this question, i.e., Lorentz symmetry. Lorentz symmetry is the symmetry to
build a relativistic theory, and we have a canonical way to relate it to spin. When we
look at Wigner’s construction of unitary irreducible representations of the Poincaré
group, we see that the corresponding charge of the Lorentz group, SO(1, N), is spin
[47]!. Thus, we need to use the Lorentz group as a gauge group to obtain spin current
and its equation of motion. Therefore, we need to understand how the Lorentz group
behaves as a gauge group, and that is what we will do in the following section.

3.1 Gauge Theory of SO(1, N)

In this section, we construct the gauge theory for the Lorentz group, SO(1, N), as
promised. Since the Lorentz group is a non-abelian group, we can build the gauge
theory like any non-abelian gauge theory. Let us begin with the matter fields. Under
a group transformation, fields rotate as:

φ(x)→ φ′(x) = Uφ(x), (3.1)

where φ denotes the fields written as a column vector. When an object transform as
above, we will call that object transforms covariantly under gauge transformations.
For compact Lie groups, the matrices U can be written in exponential form. This is
not true for non-compact Lie groups but still valid for infinitesimal rotations. Thus,
SO(1, N) being a non-compact Lie group, its group action on fields can be written in
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exponential form for the set of infinitesimal parameters λab as follows:

U(λ) = exp
(
−1

2
λab Mab

)
, (3.2)

where Mabs are the generators of the Lie algebra, so(1, N), and we can decompose
the generators into rotations and boosts. In N+1D spacetime, we obviously have N
boosts. On the other hand, number of rotations is not as straightforward, yet still not
very complicated. We need to count the maximum number of mutually orthogonal
planes in ND space since we can write every rotation as a combination of rotations in
those planes. Moreover, we can count the maximum number of mutually orthogonal
planes by choosing two axes from an orthogonal coordinate system. Thus, we have
(N

2 ) = N(N−1)
2 rotations in ND space. This gives us a total number of N + N(N−1)

2 =
(N+1)N

2 generators. Therefore, the representation of the generators, Mab has to be anti-
symmetric in its indices. Furthermore, the Lie algebra, so(1, N), is given by:

[Mab, Mcd] = fabcd
gh Mgh, (3.3)

where fabcd
gh are called structure constants and they form the adjoint representation of

the generators. Their closed form is given by:

fabcd
gh =

(
Madjoint

ab

)gh
cd = 2ηa[cδ

g
d]δ

h
b − 2ηb[cδ

g
d]δ

h
a , (3.4)

where the Minkowski metric has the signature (−,+,+, . . . ,+) and [·, ·] in the indices
stands for anti-symmetrization. Furthermore, the group action of the generators on
vectors, V c, and spinors, ψ is given by:

MabV c = 2δc
[aVb],

Mabψ =
1
4
[γa, γb]ψ.

(3.5)

In order to couple the theory to matter fields, we need a gauge symmetry preserv-
ing derivative. One can see easily that the usual derivative ∂µφ does not transform
covariantly under gauge transformations, to overcome this problem, we construct the
gauge covariant derivative as

Dµ := ∂µ +
1
2

ωµ
ab Mab, (3.6)

where ωµ
ab are a set of gauge fields, which we will call as spin connection from now

on. Moreover, we demand Dµφ to transform covariantly to find the transformation
rule for spin connection which is given by:

ωµ
ab → ω′µ

ab = ωµ
ab + ∂µλab +

1
2

fcdgh
abωµ

cdλgh = ωµ
ab + Dµλab. (3.7)
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Therefore, spin connection transforms in the adjoint representation of the Lorentz
group. For completeness, the field strength Gµν

ab is given by:

Gµν
ab = ∂µων

ab − ∂νωµ
ab +

1
2

fcdgh
abωµ

cdω
gh
ν . (3.8)

Here, we choose a pragmatic approach and end the construction of this gauge theory
since this is all we need to know to proceed building up our ultimate goal. In addition,
we built the theory for the charge −1/2, again for the same pragmatic reasons.

Previously, we have claimed that spin connection would couple to the spin of the
matter fields. To convince ourselves that the claim is true, we can test the claim in
minimal coupling. For a spin-0 field, φ, it is obvious that there is no coupling since
Dµφ = ∂µφ. In addition, we can use Dirac spinors ψ as a non-trivial example. In the
minimal coupling case, Dirac Lagrangian reads:

LDirac = iψγµDµψ−mψψ

= iψγµ

(
∂µ +

1
2

ωµ
ab Mab

)
ψ−mψψ

= iψγµ∂µψ +
i
8

ωµ
abψγµ [γa, γb]ψ−mψψ

= iψγµ∂µψ + ωµ
abψΣµ

abψ−mψψ,

(3.9)

where we identified the second term with the Dirac spin tensor Σµ
αβ. We see that

spin connection directly couples to the spin of the matter field as we expected. At this
point, a careful reader might notice that the spin tensor has one spacetime index and
two group indices in the Lagrangian. However, the spin tensor has three spacetime
indices by definition. Then, the question raises canonically. Is there a way to relate
group indices to spacetime indices? The answer is yes, there is but to understand that
relation, we need to introduce a new formalism, i.e, the vielbein formalism.

3.2 Vielbein Formalism

Throughout the remaining part of this thesis, we work on constructing a quantum
effective field theory in most general curved spacetime. The generality includes non-
vanishing torsion. Although having a general framework is crucial for describing as
many physical phenomena as possible, it has its downsides in a calculational perspec-
tive. Objects like Dirac matrices, γµ, are spacetime independent in flat background.
However, this is not the case for a curved background. That is why our calcula-
tions would get quite cumbersome rapidly if we tried to work directly in a curved
background. The workaround of this problem is to use so-called vielbein (meaning
many-legs in German) formalism. In this formalism, we consider a map between the
spacetime coordinates and a set of locally inertial coordinates. From now on, we call
these “Lorentz” coordinates. We can use this mapping to push-forward the tensorial
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objects in our theory to the flat tangent manifold, do the necessary calculations, then,
pull them back using the inverse map. This approach will ease our work significantly.

Now, let us denote the locally inertial coordinate frame at x0 as ya(x0; x). Then the
mapping, vielbein, between spacetime frame and the locally inertial coordinate frame
is given by:

eµ
a(x0) :=

∂ya(x0; x)
∂xµ

∣∣∣∣
x=x0

, (3.10)

where Greek indices are for spacetime coordinates and Latin ones are for Lorentz coor-
dinates. Under a general coordinate transformation, vielbein transforms as a 1-form,
i.e.

e′µ
a(x′) =

∂xν

∂x′µ
eν

a(x) (3.11)

and under Lorentz transformations, it transforms as a vector, i.e.,

e′µ
a(x) = eµ

b(x)Λb
a. (3.12)

As we have stated before, we can use the vielbein to change between spacetime and
Lorentz frame of coordinates. The mapping for vectors and one-forms are given by

V a = eµ
aVµ, Vµ = eµ

aVa,
Vµ = eµ

aV a, Va = eµ
aVµ,

(3.13)

where we dropped the explicit spacetime dependence for brevity, and we will keep
on doing so in the remaining part of the thesis. Using these mappings, we can express
the spacetime metric as

gµν = eµ
aeν

bηab. (3.14)

As a consequence of this expression, we find two additional identities given by

eµ
aeν

a = δν
µ, eµ

aeµ
b = δa

b . (3.15)

To couple matter fields in Lorentz coordinates to our theory, we need a Lorentz co-
variant derivative and that is precisely what we have built in the previous section. The
Lorentz covariant derivative is given by (3.6). Therefore, we define the new covariant
derivative as ∇µVν := DµVν + Γν

µρVρ where Γ is the vielbein compatible connection,
which is determined by:

0 = ∇µeν
a = ∂µeν

a + ωµ
a

beν
b − Γρ

µνeρ
a. (3.16)

This expression is also called the vielbein postulate which is equivalent to D[µeν]
a =

1
2 Ta

µν where Tα
µν := 2Γα

[µν] is the torsion tensor and the connection is given by

Γλ
µν =

1
2

gλρ
(
∂µgνρ + ∂νgµρ − ∂ρgµν

)
+ Kµ

λ
ν, (3.17)
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where Kµ
λ

ν := 1
2

(
Tν

λ
µ + Tµ

λ
ν + Tλ

µν

)
is the contorsion tensor and we denote torsion-

less connection, which is the Levi-Civita connection, by putting a ring on its symbol,
i.e. Γ̊. Then, we can write the connection equivalently in the form Γλ

µν = Γ̊λ
µν + Kµ

λ
ν.

Moreover, we can solve vielbein postulate for the spin connection in the absence of
torsion, i.e,

∇̊µeν
a = 0 ⇒ ω̊µ

ab =
1
2

eµc

(
Ωabc −Ωbca −Ωcab

)
, (3.18)

where Ωabc := 2eµ
aeν

b∂[µeν]c are the objects of anholonomity. Subsequently, we can
use this result to find the spin connection in non-vanishing torsion:

0 = ∇µeν
a = ∂µeν

a + ωµ
a

beν
b − Γρ

µνeρ
a

= ∂µeν
a + ω̊µ

a
beν

b +
(
ωµ

a
b − ω̊µ

a
b
)

eν
b − Γ̊ρ

µνeρ
a − Kµ

a
ν

= ∇̊µeν
a +

(
ωµ

a
b − ω̊µ

a
b
)

eν
b − Kµ

a
ν

=
(
ωµ

a
b − ω̊µ

a
b
)

eν
b − Kµ

a
ν

⇒ ωµ
ab = ω̊µ

ab + Kµ
ab.

(3.19)

Furthermore, Riemann tensor is given by the well-known identity

Rρ
σµν = ∂µΓρ

νσ − ∂νΓρ
µσ + Γρ

µλΓλ
νσ − Γρ

νλΓλ
µσ, (3.20)

and we can use the vielbein postulate once more to plug in Γρ
µν = eρ

a∂µeν
a + eρ

aeν
bωµ

a
b

to arrive at the expression

Rab
µν = 2∂[µων]

ab + 2ω[µ
acων]c

b, (3.21)

which gives the Riemann tensor purely in terms of the spin connection. This concludes
our discussion on the vielbein formalism. Now, we can use this formalism to construct
spin hydrodynamics.
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Chapter 4

Effective Theory for Spin
Hydrodynamics

In this section, we build an effective theory for the hydrodynamics of the spin currents
using our discussion in section 2.3. Suppose that the generating functional Z of the
underlying theory is given by:

Z[eµ
a, ωµ

ab] = exp
(

iW[eµ
a, ωµ

ab]
)

, (4.1)

where W is the effective action, eµ
a is the veilbein, and ωµ

ab is the spin connection. We
define energy-momentum tensor and spin current as:

Tµν =
1
|e|

δW
δeµ

a eνa, Sµ
ab =

2
|e|

δW
δωµ

ab . (4.2)

Consequently, the variation of the effective action is given by:

δW =
∫

ddx
(

δW
δeµ

a δeµ
a +

δW
δωµ

ab δωµ
ab
)

=
∫

ddx|e|
(

Tµνeνaδeµ
a +

1
2

Sµ
abδωµ

ab
)

.
(4.3)

These definitions are nontrivial and worth investigating. First of all, we defined
energy-momentum tensor as the variation of effective action with respect to vielbein
rather than the metric. This definition breaks the symmetry of the energy-momentum
tensor and allows it to have an anti-symmetric part. This anti-symmetric part corre-
sponds to an intrinsic torque in the fluid, which can couple to spin degrees of freedom.
Furthermore, we have defined spin current as the variation of effective action with
respect to the spin connection. This definition does not deviate from our previous dis-
cussion. However, there is a subtlety that one can be miss easily. In the absence of
torsion, we have shown that we could write the spin connection in terms of the viel-
bein by making use of the vielbein postulate. As a consequence, variation of the spin
connection becomes dependent on the variation of vielbein. This situation makes the
definition of a spin current ambiguous. Let us investigate this ambiguity and outline
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how to lift it.

4.1 Spin Current Ambiguity and Belinfante-Rosenfeld Trans-
formation

To illustrate the spin current ambiguity, suppose spacetime has no torsion. Thus, any
term we add to the effective action that is proportional to contorsion is essentially
zero. Now, we introduce a “zero” to the effective action as

W ′[eµ
a, ωµ

ab] = W[eµ
a, ωµ

ab] + WBR[eµ
a, ωµ

ab], (4.4)

where
WBR[eµ

a, ωµ
ab] =

∫
ddx|e|Bµ

abKµ
ab, (4.5)

and Bµ
ab is an arbitrary tensor (anti-symmetric in the last two indices), which we as-

sume to be independent of the vielbein and the spin connection for brevity. After the
introduction of the new term, we express the modifications to the currents as

T′µν → Tµν + T′µν
BR, S′µab → Sµ

ab + Sµ
BRab (4.6)

where Tµν and Sµ
ab are the original currents while Tµν

BR and Sµ
BRab are the modifications.

To find the closed form of the modifications, we calculate the contorsion variation
using Eqs. (3.18, 3.19), then, the variation is given by

δKµ
ab = δωµ

ab − δω̊µ
ab

= δωµ
ab −

[
D̊µ

(
eσ[aδeσ

b]
)
− D̊σ

(
eσ[aδeµ

b]
)
− D̊σ

(
eσ[a|eρ|b]eµcδeρ

c
)]

.
(4.7)

Now, we can calculate the modifications to the currents since we assumed Bµ
ab to be

independent of the sources. The variation of the modification term becomes,

δWBR =
∫

ddx|e|Bµ
abδKµ

ab

=
∫

ddx|e|Bµ
ab

{
δωµ

ab −
[

D̊µ

(
eσ[aδeσ

b]
)

− D̊σ

(
eσ[aδeµ

b]
)
− D̊σ

(
eσ[a|eρ|b]δeρ

c
) ]}

=
∫

ddx|e|
[
∇̊λ

(
Bλµν − Bµλν − Bνλµ

)
eνaδeµ

a

+ Bµ
abδωµ

ab
]

,

(4.8)
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where we used integration by part to obtain third line from the second. Then, the
currents have the form

Tµν
BR = ∇̊λ

(
Bλµν − Bµλν − Bνλµ

)
, Sµ

BRab = 2Bµ
ab. (4.9)

These modifications terms cannot describe any physics since they are zero contribu-
tions. This implies that they are reminiscents of a residual degree of freedom, and one
can choose any Bµ

ab to redefine the energy-momentum tensor and the spin current
without changing the physics. This redefinition is called Belinfante-Rosenfeld Trans-
formation [6, 42]. This degree of freedom has an interesting consequence. One is free
to choose Bµ

ab = − 1
2 Sµ

ab to set S′µab = 0 and claim the spin current is nothing but a
residual degree of freedom which does not contribute to the physics of the fluid. This
claim makes the spin current definition ambiguous since the spin degree of freedom
is a fundamental physical degree of freedom.

To lift this ambiguity, we need to relax the vielbein postulate to include a non-
vanishing torsion. When spacetime has non-trivial torsion, it fixes Belinfante-Rosen-
feld degree of freedom automatically because the underlying contribution to the effec-
tive action is not zero anymore. Therefore, we need to introduce torsion to spacetime
to have a well-defined spin current.

At this point, we would like to emphasize that we are not claiming there has to be
torsion in spacetime fundamentally. We are using torsion merely as a mathematical
tool to resolve an ambiguity. We can always take the vanishing torsion limit at the end
of our calculations but not at the beginning. How we are using torsion here is analo-
gous to how we use curvature to define the energy-momentum tensor. Even if we are
working with a flat metric, we define the energy-momentum tensor as the variation of
the action with respect to the metric, i.e., we introduce an infinitesimal curvature. This
definition of the energy-momentum tensor makes it symmetric automatically and that
form is the one that couples to gravity without additional improvement terms.

Now, we proceed to the symmetries of the effective theory to find the equations of
motion of the energy-momentum tensor and the spin current. Following our previous
discussion, we demand the effective action to be gauge and diffeomorphism invariant.

4.2 Gauge Symmetry

The spin connection, ωµ
ab of the effective theory is the gauge field of SO(1, d − 1)

by construction. Thus, we demand gauge invariance of the theory. For an infinitesi-
mal Lorentz transformation, parametrized by λ, the change in fields can be read from
Eqs.(3.7, 3.12), which are:

δeµ
a = −λa

beµ
b, δωµ

ab = Dµλab. (4.10)
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Therefore, we find the implication of local Lorentz symmetry by setting the variation
of the action to zero, i.e.,

0 =
∫

ddx|e|
(
−λabeµbTµ

a +
1
2
(Dµλab)Sµ

ab

)
=

1
2

∫
ddx|e|

(
2λabT[ab] + ∇̊µ

(
λabSµ

ab

)
− Γ̊µ

µρλabSρ
ab − λabDµ (Sµ

ab)
)

=
1
2

∫
ddx|e|λab

(
2T[ab] + Kµ

µρSρ
ab −∇µ (Sµ

ab) ,
) (4.11)

and we obtain ∇µSµ
ρσ = 2T[ρσ] + Kµ

µλSλ
ρσ, which is the equation of motion for the

spin current.

4.3 Diffeomorphism Invariance

To obtain the dynamics of energy-momentum tensor, we demand diffeomorphism
invariance of the effective theory. Transformation rules for an infinitesimal diffeomor-
phism is given by a Lie derivative along the vector ξ:

δeµ
a = Lξeµ

a = ξν∂νeµ
a +

(
∂µξν

)
eν

a

= ξν∂νeµ
a + ∂µ (ξ

νeν
a)− ξν∂µeν

a

= 2ξν
(

K[ν
a

µ] −ω[ν|
a

be|µ]
b
)
+ ∂µ (ξ

νeν
a)

= Dµ (ξ
νeν

a) + ξν
(

2K[ν
a

µ] −ων
a

beµ
b
)

,

(4.12)

and

δωµ
ab = Lξωµ

ab = ξν∂νωµ
ab +

(
∂µξν

)
ων

ab

= ξν∂νωµ
ab − ξν∂µων

ab + ∂µ

(
ξνων

ab
)

= ξν
(

Rab
νµ − 2ω[ν

acωb
µ]c

)
+ ∂µ

(
ξνων

ab
)

= ξνRab
νµ + Dµ

(
ξνων

ab
)

.

(4.13)
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When we demand diffeomorphism invariance, we find

0 =
∫

ddx|e|
(

Tµ
aδeµ

a +
1
2

Sµ
abδωµ

ab
)

=
∫

ddx|e|
[

Tµ
a

(
Dµ (ξ

νeν
a) + ξν

(
2K[ν

a
µ] −ων

a
beµ

b
))

+
1
2

Sµ
ab

(
ξνRab

νµ + Dµ

(
ξνων

ab
)) ]

=
∫

ddx|e|ξν

[
− eν

aDµTµ
a − Γ̊µ

µρTρ
ν + Tµ

a

(
2K[ν

a
µ] −ων

a
beµ

b
)

+
1
2

Sµ
abRab

νµ −ων
abT[ab]

]
=
∫

ddx|e|ξν

[
−∇µTµ

ν + Kµ
µ

ρTρ
ν + 2K[ν

ρ
µ]T

µ
ρ +

1
2

Sµ
abRab

νµ

]
,

(4.14)

where we used the Spin current equation of motion in the third line. Finally, we obtain:

∇µTµ
ν = Kµ

µ
ρTρ

ν + 2K[ν
ρ

µ]T
µ

ρ +
1
2

Sµ
abRab

νµ, (4.15)

which is the equation of motion of the energy-momentum tensor.
Furthermore, we can rewrite the equations of motion in a more convinient way

using Levi-Civita connection:

∇̊µTµν =
1
2

RρσνλSλρσ − TρσKνabeρ
aeσ

b,

∇̊λSλ
µν = 2T[µν] + 2Sλ

ρ[µeν]
aeρbKλab .

(4.16)

To solve the equations of motion, we can decompose every tensorial object into scalars,
vectors and tensors of SO(d− 1) ⊂ SO(1, d− 1), where the Lorentz symmetry is pre-
served by the velocity profile uµ. We call this decomposition as hydrodynamic decompo-
sition. From now on, we set d = 3 and work in 2+1D spacetime.
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Chapter 5

Field Decompositions in 2+1D

In this section, we give the decompositions of tensorial quantities in the theory of spin
hydrodynamics in 2+1D spacetime with respect to velocity profile uµ. The velocity
profile is normalized as uµuµ = −1 and we define the projection tensor ∆µν := gµν +
uµuν.

5.1 Riemann Tensor in Levi-Civita Connection

In 2+1D, Riemann tensor (R̊µνρσ) has six degrees of freedom. Thus, it can be written in
terms of Ricci scalar (R̊) and Ricci tensor (R̊µν). First, we define symmetric tensor Cµν,

Cµν := R̊µν −
R̊
4

gµν. (5.1)

Then, Riemann tensor can be written as,

R̊µνρσ = Cµρgνσ + Cνσgµρ − Cµσgνρ − Cνρgµσ. (5.2)

This decomposition is only due to the dimensionality of our spacetime. We can further
decompose Cµν into its parallel and transverse components with respect to the velocity
profile uµ:

Cµν =

(
R̊u +

R̊
4

)
uµuν +

1
2

(
R̊u +

R̊
2

)
∆µν − 2u(µΥν) + ξµν, (5.3)

where uµΥµ = 0, uµξµν = 0, and ξµν is a symmetric traceless tensor. This decomposi-
tion can be inverted by:

R̊ = gµρgνσR̊µνρσ,

R̊u = uµuρgνσR̊µνρσ,

Υα = uµ∆α
ρgνσR̊µνρσ,

ξµν =

(
∆µ

α∆ν
ρ − 1

2
∆αρ∆µν

)
gβσR̊αβρσ,

(5.4)
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and this finalizes the decomposition of curvature in Levi-Civita connection. Therefore,
we have decomposed Riemann tensor into two scalars, one transverse vector and one
transverse symmetric traceless rank-2 tensor. As a side note, we have used the equa-
tion below to eliminate Cµν completely,

Cαβ =

(
δ

µ
α δ

ρ
β −

1
4

gµρgαβ

)
gνσR̊µνρσ. (5.5)

At this point, one might question what happens when torsion is nontrivial. Luckily,
we can still make use of the decomposition that we have just outlined. To illuminate
how to deal with torsion, we introduce contorsion.

5.2 Contorsion

Contorsion tensor, Kµ
ab is antisymmetric in last two indices, thus, it has nine degrees

of freedom. We can decompose it into a scalar, two pseudo-scalars, a transverse vector,
a transverse pseudo-vector, a transverse symmetric traceless rank-2 tensor.

Kµ
ab = −uµkab + 2u[aκb]

µ +
1
2
Kµεabcuc, (5.6)

where we have decomposed the total 9 degrees of freedom as 9 = 3 + 4 + 2. We can
further decompose the first two terms as

kab = 2u[akb] +
1
2

kεabcuc,

κµν =
1
2

κT∆µν + κ
µν
S −

1
2

κAεµνρuρ,
(5.7)

where 3 degrees of freedom of kab is decomposed as 3 = 2 = 1 and 4 degrees of
freedom of κµν is decomposed as 4 = 1 + 2 + 1. We can invert this decomposition as:

ka = uµubKµ
ab,

k = εabduµudKµ
ab,

κT = ub∆µ
aKµ

ab,

κ
αβ
S =

(
∆(α

a∆β)µ − 1
2

∆µ
a∆αβ

)
ubKµ

ab,

κA = εµ
νρeν

aubuρKµ
ab,

Kα = εabcuc∆α
µKµ

ab.

(5.8)

Moreover, we introduce field strength of contorsion, Gλ
αρσ as

Gλ
αρσ = ∇̊ρKσ

λ
α − ∇̊σKρ

λ
α + Kρ

λ
βKσ

β
α − Kσ

λ
βKρ

β
α. (5.9)
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Then, we can decompose the full Riemann tensor into its torsion-less and torsion-
full sectors as Rλ

αρσ = R̊λ
αρσ + Gλ

αρσ. Therefore, we can still use our hydrodynamic
decomposition in the previous section as promised.

5.3 Spin Connection

Spin connection, ωµ
ab, has the same symmetries as the contorsion tensor. Thus, we can

make an analogous decomposition. The only difference is that we identify its temporal
component with the spin chemical potential whose reason will become apparent in the
upcoming chapter. Therefore, the decomposition can be stated as:

ωµ
ab = −uµµab + 2u[atb]

µ +
1
2

τµεabcuc, (5.10)

where

µab = 2u[amb] + Mεabcuc,

tµν =
1
2

tT∆µν + tµν
S −

1
2

tAεµνρuρ.
(5.11)

Here, we identify µab as the spin chemical potential, tµν as the boost potential, and τµ

as the spatial spin flow potential. Furthermore, the individual components are given
by:

ma = ubµab,

M =
1
2

εabcuaµbc,

tT = ub∆µ
aωµ

ab,

tαβ
S =

(
∆(α

a∆β)µ − 1
2

∆µ
a∆αβ

)
ubωµ

ab,

tA = εµ
νρeν

aubuρωµ
ab,

τα = εabcuc∆α
µωµ

ab.

(5.12)

5.4 Energy-Momentum Tensor

Energy-momentum tensor, Tµν is a rank-2 tensor and it does not have a symmetry
restriction. Thus, it has nine degrees of freedom and it can be decomposed into two
scalars, one pseudo-scalar, two transverse vectors and one transverse symmetric trace-
less rank-2 tensor. The decomposition is given by:

Tµν = Euµuν + P∆µν + u(µqν) + u[µhν] + πµν +T εµνρuρ (5.13)
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where E and P are scalars, T is a pseudo-scalar, qµ and hµ are transverse vectors, and
πµν is a transverse symmetric traceless rank-2 tensor. Furthermore, we identify E with
energy density, P with pressure, πµν with shear stress, T with intrinsic torque, qµ and
hµ with heat currents. The individual components are given by:

E = uµuνTµν,

P =
1
2

∆µνTµν,

qµ = −2u(α∆µ
β)T

αβ,

hµ = 2u[β∆µ
α]T

αβ,

πµν =

(
∆µ

(α∆ν
β) −

1
2

∆αβ∆µν

)
Tαβ,

T =
1
2

εαβρuρTαβ.

(5.14)

5.5 Spin Current

Spin current shares the same symmetries with contorsion. This leads to a decomposi-
tion of the same form:

Sµ
ab = −uµsab + 2u[aςb]

µ +
1
2

Σµεabcuc (5.15)

where

sab = 2u[asb] +
1
2
Sεabcuc,

ςµν =
1
2

ςT∆µν + ς
µν
S −

1
2

ςAεµνρuρ.
(5.16)

Here we identify sab as the spin density, ςµν as the boost current, and Σµ as the spatial
spin flow. We can invert this decomposition as:

sa = uµubSµ
ab,

S = εabduµudSµ
ab,

ςT = ub∆µ
aSµ

ab,

ς
αβ
S =

(
∆(α

a∆β)µ − 1
2

∆µ
a∆αβ

)
ubSµ

ab,

ςA = εµ
νρeν

aubuρSµ
ab,

Σα = εabcuc∆α
µSµ

ab.

(5.17)
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TABLE 5.1: Hydrodynamic decomposition of spin current, spin source
and contorsion. Every spin current component is paired with its source

and the contorsion component that is conjugate to the source.

Spin current Spin Source Torsion Conjugate Degrees of Freedom
sµ mµ kµ 2
S M k 1
ςT tT κT 1
ς

µν
S tµν

S κ
µν
S 2

ςA tA κA 1
Σµ τµ Kµ 2

5.6 Gradient of Fluid Velocity

In addition to the decompositions of primitive tensors, we will make use of the de-
composition of the derivative of fluid velocity throughout the thesis. Taking the nor-
malization condition into account, we can decompose the derivative as

∇̊µuν = −uµaν +
1
2

∆µνΘ + σµν + Ωεµνρuρ, (5.18)

where we identify, aµ with acceleration, Θ with expansion rate, σµν with shear, and Ω
with vorticity. They are given individually by:

aµ = uν∇̊νuµ,

Θ = ∇̊µuµ,

σµν = ∆α
µ∆β

ν∇̊(αuβ) −
1
2

Θ∆µν,

Ω =
1
2

εαµνuα∇̊µuν.

(5.19)

This concludes our discussion of field decompositions. At this point, we are ready to
solve the equations of motion.
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Chapter 6

Ideal Spin Hydrostatics in 2+1D

Now, we turn to the spin hydrodynamics for non-dissipative systems in 2+1D. We
start by identifying hydrodynamic variables in terms of the time-like vector Vµ:

T :=
T0√
−V2

, uµ :=
Vµ

√
−V2

, µab :=
ωµ

abVµ

√
−V2

. (6.1)

We identify T with temperature, uµ with velocity profile and µab with spin chemical
potential. Hydrostatic equilibrium condition is defined to be

LV = 0, (6.2)

which means the Lie derivative of any object with respect to the time-like vector V
vanishes. This implies that V is a time-like Killing vector in equilibrium. At this point,
one might question the importance of a time-like Killing vector or even the existence
and uniqueness of it so that above-defined fluid parameters are unambiguous. Let
us justify these crucial points. First of all, the simplest answer to this set of ques-
tions is “an observer moving tangential to the time-like Killing field sees the system
stationary," which makes perfect sense as an equilibrium condition. However, let us
dive even deeper to gain a more comprehensive understanding of the definition. A
Killing vector, by virtue, is directly related to a conserved quantity. In equilibrium,
our systems settles at the maximal entropy state, which is dictated by the second law
of thermodynamics. This implies that there cannot be any dissipative processes hap-
pening since they would increase the entropy of the system. Now, we established
that the equilibrium state is a non-dissipative state, and this has further implications,
namely., a conserved (free)energy. Therefore, there has to be a Killing vector associated
to it. However, we did not use any Killing vector to define the equilibrium, we used
a time-like one. This has a particular reason. The energy of the system is determined
by its Hamiltonian and Hamiltonian itself describes the time evolution of the system,
in other words, it is the generator of time-translations. Thus, the Killing field associ-
ated to it has to be time-like and uniqueness of Hamiltonian implies the uniqueness
of time-like Killing vector.

Since we have internalized the meaning of the equilibrium condition, we can pro-
ceed to its implications. Using the definitions in 6.1, we can rewrite expansion (Θ),
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shear (σµν), temporal contorsion (kµν), derivatives of temperature and chemical poten-
tial as

Θ = ∇̊µuµ =
1
T0
LV T +

T
2T0

gµνLV gµν,

σµν =
T

2T0
∆µ

α∆ν
βLV gαβ −

1
2T0

(
LV T +

T
2

gαβLV gαβ

)
,

kµν = uλKλ
µν = µµν + Ωεµνρuρ − 2u[µaν] − T

T0
e[µaLVeν]a,

∇̊µT = − Taµ +
T
T0

uµLV T +
T2

T0
uνLV gµν

= − Taµ + TΘuµ +
T2

T0

(
δα

µuβ − 1
2

uµgαβ

)
LV gαβ,

T∇̊µ

(
µab

T

)
=Rab

µνuν + 2Kµ
[a

c µb]c +
T
T0
LVωµ

ab,

(6.3)

In equilibrium, expansion and shear of the fluid vanish. In addition to those rela-
tions, Lie derivatives of the other fluid parameters imply the relations given by,

kab = uµKµ
ab = µab + eµ

aeν
b
(

Ωεµνρuρ − 2u[µaν]
)

,

T∇̊µ

(
µab

T

)
= Rab

µνuν + 2Kµ
[a

c µb]c , aµ = −
∇̊µT

T
.

(6.4)

V

Spin Seebeck effect

Metallic magnet

b

T2

T1

a Thermocouple Metal A

Metal B

∇T

E

E

T2

T1

∇T

μ↑ – μ↓

FIGURE 6.1: Schematic description of ther-
moelectric effect (a), and its analogous
spin Seebeck effect (b). Figure is taken

from [46].

The first expression tells us vorticity and ac-
celeration are supported by torsion and spin
chemical potential and they are not necessar-
ily zero in an equilibrium state. When we
take a vanishing torsion, the presence of non-
vanishing spin polarization still generates ac-
celeration and vorticity. This situation is not
unexpected since it is known that spin cou-
ples to vorticity [13]. Moreover, the third ex-
pression tells us that temperature acts as a
potential on the fluid, analogous to the rela-
tion F = −∇U. Thus, a non-vanishing tem-
perature gradient accelerates the spin fluid,
a similar effect can be found in the literature
as “spin Seebeck effect" [46]. Consequently,
this thermal acceleration creates spin poten-
tial via the first expression. Finally, the sec-
ond expression tells us how chemical poten-
tial gradient couples to curvature and torsion. In other words, the presence of torsion
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and curvature creates a varying spin polarization. In addition, if we take a flat back-
ground with trivial torsion, we see that acceleration and spin polarization support
each other.

Furthermore, these relations lead us to define two new out-of-equilibrium tensors,
k̃ and k̃µ, following the decomposition in (5.7):

k̃ := −2M− 2Ω− k,

k̃µ := mµ − aµ − kµ.
(6.5)

These first-order objects will be beneficial while building the out-of-equilibrium cur-
rents. Here, we would like to emphasize that we need to take spin chemical potential
and temporal torsion as first-order in derivatives to keep (6.4) and (6.5) consistent in
derivative orders. On the other hand, we are free to set spatial torsion and spin con-
nection to any order. For simplicity, we set them to first-order as well.

6.1 Ideal Effective Action and Associated Currents

The effective action of the theory will depend on the scalars we can build in ideal fluid
approximation. Therefore, we can only use the hydrodynamic variables, i.e., T, uµ

and µab. In addition to the temperature, we can build two (pseudo-)scalars from the
chemical potential, namely, M and m2 = mama. This gives us a total of three scalars in
ideal regime.

Now, we can write the ideal effective action as:

Wid =
∫

d3x|e|P(T, M, m2), (6.6)

where subscript “id” stands for “ideal” and we identify P with the ideal pressure,
i.e. the pressure of source-free state. Before moving on, let us remind ourselves the
variation of the effective action in general:

δW =
∫

d3x|e|
(

Tµ
aδea

µ +
1
2

Sµ
abδωµ

ab
)

. (6.7)

At this point, one can calculate the energy-momentum tensor and spin current from
the ideal effective action we have. To find those one point functions, we list the rele-
vant variations:

δ|e| = |e|ea
µδea

µ, δT = Tuµuaδea
µ,

δM =
1
2

εabcµbcuµ (∆a
d + uaud) δed

µ +
1
2

εabcuauµδωµ
ab,

δm2 = 2ucµacµa f uµ
(

∆ f
h + u f uh

)
δeh

µ + 2ucuduµµacδωµ
ad.

(6.8)
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Now, we vary the ideal effective action to find,

δWid =
∫

d3x
[

Pδ|e|+ |e|
(

∂P
∂T

δT +
∂P
∂M

δM +
∂P

∂m2 δm2
)]

=
∫

d3x|e|
(

Tµν
id eaνδea

µ +
1
2

Sµ
idabδωµ

ab
)

,
(6.9)

where

Tµν
id = εuµuν + P∆µν + uµQν,

Sµ
idαβ = uµραβ,

(6.10)

and components are given by

ε = −P +
∂P
∂T

T +
1
2

µabρab

ραβ =
∂P
∂M

εαβρuρ + 4
∂P

∂m2 m[αuβ]

Qµ =

(
∂P
∂M

+ 2
∂P

∂m2 M
)

εµνρuνmρ,

(6.11)

stationary boundary

stationary boundary

fluid flow

FIGURE 6.2: Schematic of spin accumula-
tion in vanishing total magnetization. Op-
posite spins are mapped to red and blue.

where we identify ε as energy density, ραβ

as spin charge density and Qµ as a heat cur-
rent. Notice that the presence of a spin po-
larization breaks the symmetry of energy-
momentum tensor. This is what we ex-
pected and allowed at the first place. More-
over, spin polarization contributes to the en-
ergy density of the system which is also ex-
pected. In addition, we see that the explicit
symmetry breaking of energy-momentum
tensor is caused by non-symmetric heat cur-
rent and when we take the equation of state
independent from spin chemical potential,
we recover the usual fluid energy momen-
tum tensor which is symmetric.

Finally, (6.11) shows that spin accumulation is possible even if the spin chemical
potential vanishes. This phenomenon is exclusive to 2+1D systems and does not exist
in higher dimensions [17, 18]. In figure 6.2, we give a schematic of this phenomenon.
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6.2 Ideal Entropy Current

Second law of thermodynamics states that the change in entropy of a system has to
be non-negative, and it is zero only if the underlying thermodynamic process is re-
versible [28]. For an ideal fluid, the change of entropy is always zero since there is no
dissipative process to increase entropy[30]. In covariant language, this corresponds to
a conserved entropy current. Thus, we are looking for a conserved current in this sec-
tion. To construct the ideal entropy current, we remind ourselves that P is identified
with pressure of the ideal fluid. Then, naturally s = ∂P

∂T is the entropy density. There-
fore, we can define entropy current in ideal regime to be Jµ

s,id = suµ. Now, we need
to extract its covariant derivative from the equations of motion. Due to Gibbs-Duhem
relation, we can write the derivative of the pressure to be

∂µP = s∂µT +
1
2

ρab∇̊µµab + Qν∇̊µuν, (6.12)

then, the derivative of the energy density follows as

∂µε = T∂µs +
1
2

µab∇̊µρab −Qν∇̊µuν. (6.13)

Moreover, we extract the parts of the equations of motion that we are interested in for
this calculation, those parts are given by:

uν∇̊µTµν = −uνTρσKνρσ = Qµkµ,

µµν
[
∇̊λSλ

µν − 2T[µν]

]
= 2µµνSλ

ρµKλν
ρ = −2Qµkµ.

(6.14)

Finally, we tailor those pieces to find the covariant derivative of ideal entropy current:

−T∇̊µ Jµ
s,id = −T∇̊µ (suµ)

= uν∇̊µTµν +
1
2

µµν
[
∇̊λSλ

µν − 2T[µν]

]
= 0,

(6.15)

where we used the equations of motion after the first line, then, we used our previ-
ously calculated quantities to show ideal entropy current is conserved as we expected
from an ideal fluid.
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Chapter 7

Gradient Corrections to Spin
Hydrostatics in 2+1D

To describe a real fluid, we need to introduce gradient corrections to the ideal parti-
tion function, and we are interested in the corrections to the energy-momentum tensor
and the spin current that are first order in the gradient expansion. However, to keep
the theory self-consistent, equations of motion [4.16] constrain us to expand the anti-
symmetric part of energy-momentum tensor to one order higher than the spin current
since it acts as a source.

We introduce the corrections by adding scalars to the effective action that are in
the order we are interested in so that we can express the total effective action as:

W = Wid +
2

∑
n=1

W(n) (7.1)

where the correction effective action of order n is given by

W(n) = ∑
j

∫
d3x|e|χ(n)

j S
(n)
j (7.2)

where χ
(n)
j are functions of temperature. Here, we introduce the shorthand notation

notation S (n)i ,
(
V (n)

i

)µ
,
(
T (n)

i

){µj}
to denote ith (pseudo)scalar, vector, and tensor of

O(∂n) in derivatives respectively. From now on, we take the spin connection and
contorsion to be first order in gradients. In condensed matter perspective, this choice
implies a crystal geometry without dislocations since Burgers vector is related to the
holonomy of spacetime [27]. Then, we proceed with building the tensorial objects to
introduce the corrections.
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7.1 Corrections to Effective Action

We need to build every independent first order scalar, and second order scalars that
contribute to the spin current. When we take the variation of correction terms with re-
spect to spin connection, second order scalars will contribute up to first order in spin
current since we chose the spin connection to be first order in gradients. Moreover, sec-
ond order corrections to the antisymmetric part of the energy-momentum tensor are
created by the scalars that are at least first order in torsion since the energy-momentum
tensor is symmetric in absence of torsion. This is consistent with our requirements for
the spin current corrections.

We list the zeroth order independent objects in table 7.1.

i S (0)i
1 T

(A) Scalar(s)

i V (0)
i

1 uµ

(B) Vector(s)

i T (0)
i

1 ∆µν

2 εµνρuρ

(C) Tensors

TABLE 7.1: List of 0th order independent objects

First, we use contorsion components and gradients of zeroth order objects to con-
struct first order objects. Notice that Θ = 0 and Eqs.(6.4) are satisfied in equilibrium.
Thus, we choose contorsion and chemical potential to be independent objects over ac-
celeration and vorticity. These first order independent objects are listed in table (7.2).

i S (1)i
1 κT
2 κA
3 k
4 M

(A) Scalars

i V (1)
i

1 kµ

2 mµ

3 Kµ

4 εµνρuνkρ

5 εµνρuνmρ

6 εµνρuνKρ

(B) Vectors

i T (1)
i

1 κ
µν
S

2 εµνρkρ

3 εµνρmρ

4 εµνρKρ

(C) Tensors

TABLE 7.2: List of 1st order independent objects

Now, we use the first order objects to build second order scalars that are at least
linear in torsion in table 7.3.
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i S (2)i 9 kM
1 κ2

T 10 kµkµ

2 κ2
A 11 kµmµ

3 k2 12 kµKµ

4 κTκA 13 Kµmµ

5 κTk 14 KµKµ

6 κTM 15 εµνρkµuνmρ

7 κAk 16 εµνρkµuνKρ

8 κAM 17 εµνρmµuνKρ

TABLE 7.3: List of 2nd order independent scalars that are at least linear
in torsion

This finalizes the construction of scalars. The corrections to the effective action are
given by (7.2).

7.2 Corrections to Currents

In the last section, we have built the corrections to the effective action. Variations of
those terms will give us the equilibrium corrections to energy-momentum tensor and
spin current as stated in (6.7). For notational convenience, we introduce

δW(n) =
∫

d3x|e|
(

∑
n,j

(
T(n)

)µν
eνaδea

µ +
1
2 ∑

n

(
S(n)

)µ

abδωµ
ab

)
. (7.3)

Now, we proceed with the corrections.

7.2.1 First Order Corrections

We use (7.2) and table (7.2a) to build the first order correction to the effective action
which is given by

W(1) =
∫

d3x|e|
(

χ
(1)
1 κT + χ

(1)
2 κA + χ

(1)
3 k
)

. (7.4)

When we take the variation of first order corrected effective action with respect to the
vielbein, we find the corrections to the energy-momentum tensor, which are listed
below. Further keep in mind that we are using the hydrodynamic decomposition
given in chapter (5):

E(1) = −χ
(1)
1 (Θ + κT) +

∂χ
(1)
1

∂T
TκT − χ

(1)
2

(
k + k̃ + 2M + κA

)
+

∂χ
(1)
2

∂T
TκA

+ 2χ
(1)
2

(
k + k̃ + 2M

)
+

∂χ
(1)
3

∂T
Tk,
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P(1) =
1
2

χ
(1)
1 (Θ + 3κT) +

∂χ
(1)
1

∂T
uµ∇̊µT +

1
2

χ
(1)
2

(
κA − k− k̃− 2M

)
+ χ

(1)
3

(
2k + k̃ + 2M

)
,

qµ

(1) = −χ
(1)
1

(
kµ + k̃µ −mµ − 1

2
εαβρuαKβgρµ

)
−

∂χ
(1)
1

∂T
∆µα∇̊αT

+ χ
(1)
2 εαβρgρµuβ

(
3kα + k̃α −mα

)
− 1

2
χ
(1)
2 K

µ +
∂χ

(1)
2

∂T
εαβρgµρuα∇̊βT

− 2χ
(1)
3 εαβρuβgµρ

(
2kα + k̃α −mα

)
− 2

∂χ
(1)
3

∂T
εαβρgµρuα∇̊βT,

hµ

(1) = χ
(1)
1

(
kµ + k̃µ −mµ +

1
2

εαβρuαKβgρµ

)
−

∂χ
(1)
1

∂T
∆µα∇̊αT

− χ
(1)
2 εαβρgρµuβ

(
kα + k̃α −mα

)
− 1

2
χ
(1)
2 K

µ − ∂χ
(1)
2

∂T
εαβρgµρuα∇̊βT

+ 2χ
(1)
3 εαβρuβgµρ

(
k̃α −mα

)
,

π
µν

(1) = χ
(1)
1

(
κ

µν
S − σµν

)
− χ

(1)
2 εαβλuαgβ(µ

(
κ

ν)λ
S + σν)λ

)
+ 2χ

(1)
3 εαβλuαgβ(µσν)λ,

T(1) = −
1
2

χ
(1)
1

(
k + k̃ + 2M− κA

)
− 1

2
χ
(1)
2 (Θ + κT) + χ

(1)
3 Θ +

∂χ
(1)
3

∂T
uα∇̊αT. (7.5)

Furthermore, when we take the variation of first order corrected effective action with
respect to the spin connection, we find the corrections to the spin current, which are
also listed as

sµ

(0) = 0, S(0) = −4χ
(1)
3 ,

ςT(0) = −2χ
(1)
1 , ς

αβ
S (0) = 0,

ςA(0) = −2χ
(1)
2 , Σµ

(0) = 0.

(7.6)

7.2.2 Second Order Corrections

As we have mentioned before, we have to introduce the second order corrections to
the anti-symmetric part of the energy-momentum tensor to keep the theory consistent
since that part acts as a source to the first order spin current. Now, we make use
of (7.2) and table (7.3) once more to introduce the second order corrections. However,
this time we will omit the corrections to spin current and the symmetric part of energy-
momentum tensor. The correction effective action is given by:

W(2) =
∫

d3x|e|
17

∑
j=1

(
χ
(2)
j S

(2)
j

)
. (7.7)
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Therefore, the anti-symmetric corrections to energy-momentum tensor is given by:

hλ
(2) = 2u[β∆λ

α]T
αβ

BR,(2) + εµναuµKν∆λακTχ
(2)
1 − εµναkµuνk∆λαχ

(2)
10

+ 1
2 εµναuµkmν∆λαχ

(2)
11 − εµναkµuν M∆λαχ

(2)
11

+ 1
2 εµναuµkKν∆λαχ

(2)
12 − kλκAχ

(2)
12 − 2εναβkµuν∆λακSµ

βχ
(2)
12

− εµναkµuν∆λακTχ
(2)
12 + εµναuµ MKν∆λαχ

(2)
13 −mλκAχ

(2)
13

− 2εµαβuµmν∆λακSν
βχ

(2)
13 + εµναuµmν∆λακTχ

(2)
13

− 2KλκAχ
(2)
14 − 4εµαβuµKν∆λακSν

βχ
(2)
14

+ 2εµναuµKν∆λακTχ
(2)
14 −

1
2 kmλχ

(2)
15 + kλ Mχ

(2)
15

− 1
2 kKλχ

(2)
16 − εµναkµuν∆λακAχ

(2)
16 − 2kµκS

λ
µχ

(2)
16

+ kλκTχ
(2)
16 −MKλχ

(2)
17 + εµναuµmν∆λακAχ

(2)
17

− 2mµκS
λ

µχ
(2)
17 + mλκTχ

(2)
17 −K

λκAχ
(2)
2

− 4εµναkµuνk∆λαχ
(2)
3 + 1

2 εµναuµKν∆λακAχ
(2)
4 −

1
2K

λκTχ
(2)
4

+ 1
2 εµναuµkKν∆λαχ

(2)
5 − 2εµναkµuν∆λακTχ

(2)
5

+ 1
2 εµναuµ MKν∆λαχ

(2)
6 + εµναuµmν∆λακTχ

(2)
6 − 1

2 kKλχ
(2)
7

− 2εµναkµuν∆λακAχ
(2)
7 − 1

2 MKλχ
(2)
8 + εµναuµmν∆λακAχ

(2)
8

+ εµναuµkmν∆λαχ
(2)
9 − 2εµναkµuν M∆λαχ

(2)
9 ,

T(2) =
1
2

εαβρuρTαβ

BR,(2) + κAκTχ
(2)
1 + 1

2 εµνρkµuνKρχ
(2)
12 −

1
2 εµνρuµmνKρχ

(2)
13

− 1
2 kµKµχ

(2)
16 −

1
2 mµKµχ

(2)
17 − κAκTχ

(2)
2 + 1

2 κA
2χ

(2)
4

− 1
2 κT

2χ
(2)
4 + 1

2 kκAχ
(2)
5 + 1

2 MκAχ
(2)
6 − 1

2 kκTχ
(2)
7

− 1
2 MκTχ

(2)
8 , (7.8)

where

Tµν

BR,(2) = ∇̊λ

(
Bλµν − Bµλν − Bνλµ

)
,

Bµ
αβ = − δβ

µuακTχ
(2)
1 + δα

µuβκTχ
(2)
1 − kβuαuµχ

(2)
10 + kαuβuµχ

(2)
10

+ 1
2 uβuµmαχ

(2)
11 −

1
2 uαuµmβχ

(2)
11 + εαβκkµuκχ

(2)
12

+ 1
2 uβuµKαχ

(2)
12 −

1
2 uαuµKβχ

(2)
12 + εαβκuκmµχ

(2)
13

+ 2εαβκuκKµχ
(2)
14 −

1
2 εβκλuαuκuµmλχ

(2)
15 + 1

2 εακλuβuκuµmλχ
(2)
15

− δβ
µkαχ

(2)
16 + δα

µkβχ
(2)
16 + kβuαuµχ

(2)
16 − kαuβuµχ

(2)
16

− 1
2 εβκλuαuκuµKλχ

(2)
16 + 1

2 εακλuβuκuµKλχ
(2)
16 − δβ

µmαχ
(2)
17
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− uβuµmαχ
(2)
17 + δα

µmβχ
(2)
17 + uαuµmβχ

(2)
17

+ εβ
µ

κuαuκκAχ
(2)
2 − εα

µ
κuβuκκAχ

(2)
2 + 2εαβκuκuµkχ

(2)
3

− 1
2 δβ

µuακAχ
(2)
4 + 1

2 δα
µuβκAχ

(2)
4 + 1

2 εβ
µ

κuαuκκTχ
(2)
4

− 1
2 εα

µ
κuβuκκTχ

(2)
4 −

1
2 δβ

µuαkχ
(2)
5 + 1

2 δα
µuβkχ

(2)
5

+ εαβκuκuµκTχ
(2)
5 − 1

2 δβ
µuα Mχ

(2)
6 + 1

2 δα
µuβ Mχ

(2)
6

+ 1
2 εβ

µ
κuαuκkχ

(2)
7 − 1

2 εα
µ

κuβuκkχ
(2)
7 + εαβκuκuµκAχ

(2)
7

+ 1
2 εβ

µ
κuαuκ Mχ

(2)
8 − 1

2 εα
µ

κuβuκ Mχ
(2)
8 + εαβκuκuµ Mχ

(2)
9 . (7.9)

Furthermore, first order corrections to spin current is given by:

sµ

(1) = 2kµχ
(2)
10 + kµχ

(2)
11 + mµχ

(2)
11

+Kµχ
(2)
12 +Kµχ

(2)
13 + εµ

λνkλuνχ
(2)
15

+ εµ
λνuλmνχ

(2)
15 + εµ

λνuλKνχ
(2)
16

+ εµ
λνuλKνχ

(2)
17 ,

S(1) = − 8kχ
(2)
3 − 4κTχ

(2)
5 − 2κTχ

(2)
6

− 4κAχ
(2)
7 − 2κAχ

(2)
8 − 2kχ

(2)
9

− 4Mχ
(2)
9 ,

ςT(1) = − 4κTχ
(2)
1 − 2κAχ

(2)
4 − 2kχ

(2)
5

− 2Mχ
(2)
6 ,

ς
αβ
S (1) = 0,

ςA(1) = − 4κAχ
(2)
2 − 2κTχ

(2)
4 − 2kχ

(2)
7

− 2Mχ
(2)
8 ,

Σµ

(1) = 4kαχ
(2)
12 + 4mαχ

(2)
13 + 8Kαχ

(2)
14

+ 4ελµνkλuµ∆α
νχ

(2)
16 − 4ελµνuλmµ∆α

νχ
(2)
17 . (7.10)

7.2.3 Full Form of Currents

Finally, we give the full list of energy-momentum tensor components as

E = ε + E(1) + fE , P = P + P(1) + fP ,

qµ = Qµ + qµ

(1) + f µ
q , hµ = Qµ + hµ

(1) + hµ

(2) + f µ
h ,

πµν = π
µν

(1) + f µν
π , T = T(1) +T(2) + fT ,

(7.11)
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and spin current as

sµ = uνρµν + sµ

(1) + f µ
s , S = εabcρabuc − 4χ

(1)
3 +S(1) + fS,

ςT = −2χ
(1)
1 + ςT(1) + fςT , ς

µν
S = f µν

ςS ,

ςA = −2χ
(1)
2 + ςA(1) + fςA , Σµ = Σµ

(1) + f µ
Σ ,

(7.12)

where the objects { f } give the out-of-equilibrium contributions which we discuss in
the next section.
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Chapter 8

First Order Spin Hydrodynamics in
2+1D

8.1 Frame Choice

There is no microscopic definition of fluid temperature, velocity and chemical poten-
tial out of equilibrium. On the other hand, the currents we are interested in do have
a microscopic definition. This means we are free to choose a “frame" as long as our
definitions give the same values four these three variables in equilibrium and do not
change the currents in any regime. This leads to the freedom of shifting the defini-
tions by a function of gradients which vanish in equilibrium. We can state a frame
transformation as

T′ = T + δT,
u′µ = uµ + δuµ,

µ′ab = µab + δµab,

(8.1)

where δT, δuµ, and δµab are first order in gradients and vanish in equilibrium. Under
a frame transformation, sectors of energy-momentum tensor and spin current change
as

δE = 0, δP = 0

δqµ = −2
∂P
∂T

Tδuµ, δhµ = 2T εµβρuρδuβ

δT =
1
2

εαβρuαhβδuρ, δπµν = 0

δS = 0, δςT = 0,

δς
µν
S = 0, δςA = 0,

δsµ = −
(

P− χ
(1)
2 + 2χ

(1)
3

)
εµ

λαuαδuλ − χ
(1)
1 δuµ,

δΣα = −2
(

P− χ
(1)
2 + 2χ

(1)
3

)
δuα−2χ

(1)
1 εαλβuβδuλ.

(8.2)
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At this point, we can choose δuµ such that f µ
q = 0. Furthermore, if we write down the

frame transformation rule for E and sab explicitly, we get

f ′E = fE −
(

∂E
∂T

)
µab

δT −
(

∂E
∂µab

)
T

δµab,

f ′s
cd = f cd

s −
(

∂scd

∂T

)
µab

δT −
(

∂scd

∂µab

)
T

δµab.
(8.3)

Thus, we can choose δT and δµab such that f ′E = f ′s cd = 0. This choice with our previ-
ous choice of δuµ form the frame called “Landau frame" which was used throughout
Landau-Lifschitz’s book of fluid mechanics. However, we will postpone choosing
Landau frame until the end of entropy current calculation and stay at our current
frame, namely, “thermodynamic frame"

8.2 First order constraints

To build the hydrodynamics, we need to constrain the non-equilibrium contributions
as much as possible. These constrains will be induced by the equations of motion and
the second law of thermodynamics. In first order, equations of motion give us two
scalar and two vector constraints. We can state them as

uν∇̊µTµν = 0,

∆λ
ν∇̊µTµν = 0,

εabcuc∇̊λSλ
ab = −4T ,

ub∇̊λSλ
ab = ha −

∂P
∂M

εabcubkc,

(8.4)

and we use the field decompositions from the previous section on the LHS to find,

s
(

∂s
∂T

)−1

Θ + uµ∇̊µT = 0,

Taµ + ∆µν∇̊νT = 0,

2 fT = Θ
∂P
∂M

+ uµ ∂

∂M
∇̊µP,

f a
h =

∂P
∂M

εabcub (ac + kc −mc) ,

(8.5)

where s = ∂P
∂T . These equations are correct at first order in gradient expansion with-

out any assumption of equilibrium. Thus, we can simplify them by using the equi-
librium condition. Notice that f a

h and ac + kc − mc vanish at equilibrium since f a
h is

a non-equilibrium contribution by definition and k̃c := −ac − kc + mc = 0 due to
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(6.4).Therefore, the equations are consistent. Finally, the whole solution is given by

uµ∇̊µT = −s
(

∂s
∂T

)−1

Θ,

aµ = − 1
T

∆µν∇̊νT,

fT =
Θ
2

[
∂P
∂M
− s

(
∂s
∂T

)−1 ∂s
∂M

]
= 0,

f a
h = − ∂P

∂M
εabcub k̃c,

(8.6)

where we should point out that equating the third equation to zero is only applicable
in the first order approximation in gradients. This concludes our discussion of first
order equations of motion. We will use these results while constructing the out-of-
equilibrium contributions and analysing the entropy current.

Furthermore, we know how the derivative of temperature behaves now. A care-
ful reader may remember that we have introduced two out-of-equilibrium tensors in
chapter 6 using the first expression in (6.4). We have omitted second and third expres-
sions. Now, you can see why we did not construct an out-of-equilibrium vector from
the third expression since it would have been an off-shell vector which we have no
interest in. On the other hand, we can construct six tensors from the second expres-
sion since we now know how the derivative of temperature behaves. As a side note,
these definitions will look intimidating but they are nothing but expanded forms of
Riemann tensor.

f̃α := − 1
2

εα
βλuβkm λ + εα

βλuβmλ M + uβ∇̊βmα + uαuβuλ∇̊λ mβ,

f̃ := uα∇̊α M,

f̃T := − R̊αβuαuβ − 1
2

k2 + 2M2 + kκA − ∇̊αkα + ∇̊αmα + uα∇̊ακT,

f̃
µν
S := kµkν − kνmµ − kµmν + mµmν − 1

2
kαkα∆µν + kαmα∆µν − 1

2
mαmα∆µν

+
1
2

R̊αλβρuαuβ∆λρ∆µν − R̊αλβρuαuβ∆µλ∆νρ +
1
4

εαβλuαk∆νβκS
µλ

− 1
2

εαβλuα M∆νβκS
µλ +

1
4

εαβλuαk∆µβκS
νλ − 1

2
εαβλuα M∆µβκS

νλ

− 1
2

uα∆βλ∆µν∇̊ακSβλ + uα∆µβ∆νλ∇̊ακSβλ −
1
2

uα∆µβ∆νλ∇̊βκSαλ

+
1
2

∆αβ∆µν∇̊βkα − 1
2

∆µ
β∆ν

α∇̊βkα − 1
2

∆µ
α∆ν

β∇̊βkα

− 1
2

∆αβ∆µν∇̊βmα +
1
2

∆µ
β∆ν

α∇̊βmα +
1
2

∆µ
α∆ν

β∇̊βmα

+
1
2

uα∆βλ∆µν∇̊λκSαβ −
1
2

uα∆µβ∆νλ∇̊λκSαβ,
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f̃A := − kκT + εαβκuα∇̊κkβ − εαβκuα∇̊κmβ + εβκλuαuβ∇̊λκSα
κ,

F̃µ := − εα
κλR̊µβκλuαuβ − 4kµ M + 4mµ M + uα∇̊αKµ − ∇̊µk

+ 2∇̊µ M− uα∇̊µKα. (8.7)

These definitions will be useful to posit second order out-of-equilibrium contributions
to the anti-symmetric part of energy-momentum tensor

8.3 Second order constraints

Although first order equations of motion provide us a significant amount of informa-
tion, it is not enough to complete the first order entropy analysis. To make the full
analysis, we need to know the second order scalar constraints that our system abides.
We can find them by investigating the expressions uν∇̊µTµν, ∆λ

ν∇̊µTµν, εabcuc∇̊λSλ
ab,

and ub∇̊λSλ
ab in second order. Before carrying on the calculation, one should notice

that the second derivative of the velocity components are not fully independent. The
geometric relation in (5.18) implies

∇̊µaµ = R̊u + uµ∇̊µΘ +
Θ2

2
− 2Ω2 + σµνσµν,

∇̊µ (Ωuµ) = −1
2

εµνρuµ∇̊νaρ,
(8.8)

where we defined R̊u := uνuρR̊µ
ρµν in chapter 5. Now, one can find the equations for

the aforementioned expressions by using the equations of motion. Similar to the first
order equations of motion, we use the field decompositions to evaluate the equations.
After the evaluations uν∇̊µTµν and ∆λ

ν∇̊µTµν give us the second order corrections
to the gradient of the temperature. However, these corrections are irrelevant in our
level level of approximation. The evaluation of εabcuc∇̊λSλ

ab and ub∇̊λSλ
ab produce

the second order corrections to fT and f µ
h . We will use these constraints to analyze

the entropy current in the rest of this chapter. In addition, full form of equations of
motion can be found in appendix A.

8.4 Pure out-of-equilibrium contributions to the currents

In the previous sections, we have found first- and second-order corrections to the ef-
fective action and calculated their contribution to the currents. Since we relate the
effective action to the partition function, these corrections fail to capture all out-of-
equilibrium terms in the currents. That is why we need to add the most general out-
of-equilibrium terms ad hoc and restrict them using the equations of motion. We can
characterize the out-of-equilibrium contributions to the energy-momentum tensor as

fE = c1Θ + c2k̃,
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fP =c3Θ + c4k̃,

f µ
q = c5k̃µ + c6εµνρuν k̃ρ,

f µ
h = c21k̃µ + c22εµνρuν k̃ρ + f (2)h

µ,

f µν
π = c7σµν + c8σ(µ

λεν)ρλuρ,

fT = c23Θ + c24k̃ + f (2)T , (8.9)

where cjs are functions of temperature and f (2)h
µ, f (2)T are second-order contributions

which can be constructed by using appendix B. In addition, equations of motion have
no restriction on the spin current. Thus, we can express its out-of-equilibrium contri-
butions as

f µ
s = c9k̃µ + c10εµνρuν k̃ρ,

fS = c11Θ + c12k̃,

fςT = c13Θ + c14k̃,

f µν
ςS = c15σµν + c16σ(µ

λεν)ρλuρ,

fςA = c17Θ + c18k̃,

f µ
Σ = c19k̃µ + c20εµνρuν k̃ρ.

(8.10)

These contributions complete all the missing terms in the currents. Therefore, we
have the final forms of the energy-momentum tensor and spin current in the Navier-
Stokes level of approximation. Now, we have all the tools to investigate the behavior
of entropy.

8.5 First order entropy

Following [30] we postulate that an entropy current, Jµ
S , exists such that it satisfies

∇̊µ Jµ
S ≥ 0 under the equations of motion. For an ideal fluid, the current is given

by Jµ
S = suµ with s = ∂P/∂T. On the other hand, for a non-ideal fluid, we take

Jµ
S = suµ +O(∂) where O(∂) denotes corrections to the entropy current coming from

explicit derivative terms appearing in the constitutive relations. Thus, the most gen-
eral entropy current we may construct, to first order in derivatives is given by

Jµ
S = Jµ

c + Jµ
nc , (8.11)
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where

Jµ
c = suµ − uν

T
(
Tµν − Tµν

id

)
− 1

2
µab

T
(
Sµ

ab − Sµ
idab
)

,

Jµ
nc =

(
j1Θ + j2κT + j3κA + j4k + j5k̃ + j6M

)
uµ

+ j7kµ + j8k̃µ + j9mµ + j10Kµ

+ εµνρuν

(
j11kρ + j12k̃ρ + j13mρ + j14Kρ

)
(8.12)

are referred to as the canonical part and non-canonical part of the entropy current
respectively.

It is straightforward to show that

T∇̊µ Jµ
c = T∇̊µ (suµ)− T∇̊µ

(uν

T

)
Tµν

(1) −
T
2
∇̊µ

(
µab

T

)
Sµ

(0)ab

− uν∇̊µTµν

(1) −
µab

2
∇̊µSµ

(0)ab

= −T∇̊µ

(uν

T

)
Tµν

(1) −
T
2
∇̊µ

(
µab

T

)
Sµ

(0)ab

− uνRρσνλS(0)ρλσ + (kab − µab) Tab
(1) − µabSλ

(0)caKλb
c. (8.13)

Now, we will expand this result in its full glory to identify the contributions of all in-
dependent second order scalars. In particular, all those contributions have to vanish
since they can take any value and break the positive semi-definiteness of the diver-
gence. The complete form of the divergence of the canonical entropy current is given
by

T∇̊µ Jµ
c = − c4k̃Θ− c3Θ2 − c7σαβσαβ + kα k̃αχ

(1)
1

+ k̃α k̃αχ
(1)
1 − k̃αmαχ

(1)
1 −Θ2χ

(1)
1 −ΘκTχ

(1)
1

+ 2εαβλkα k̃βuλχ
(1)
2 − 2εαβλ k̃αuβmλχ

(1)
2 −ΘκAχ

(1)
2

− 2MΘχ
(1)
3 − χ

(1)
1 ∇̊α k̃α − 2uαχ

(1)
3 ∇̊α M− uαχ

(1)
1 ∇̊αΘ

− uαχ
(1)
2 ∇̊ακA − uαχ

(1)
1 ∇̊ακT − εαβλuαχ

(1)
2 ∇̊

λkβ

+ εαβλuαχ
(1)
2 ∇̊

λmβ − kα k̃αT
∂χ

(1)
1

∂T
− k̃α k̃αT

∂χ
(1)
1

∂T

+ k̃αmαT
∂χ

(1)
1

∂T
− εαβλkα k̃βuλT

∂χ
(1)
2

∂T
+ εαβλ k̃αuβmλT

∂χ
(1)
2

∂T

+
c2k̃Θ ∂P

∂T

T ∂2P
∂T2

+
c1Θ2 ∂P

∂T

T ∂2P
∂T2

−
Θ2χ

(1)
1

∂P
∂T

T ∂2P
∂T2

−
ΘκTχ

(1)
1

∂P
∂T

T ∂2P
∂T2

−
kΘχ

(1)
2

∂P
∂T

T ∂2P
∂T2

−
k̃Θχ

(1)
2

∂P
∂T

T ∂2P
∂T2
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−
2MΘχ

(1)
2

∂P
∂T

T ∂2P
∂T2

−
ΘκAχ

(1)
2

∂P
∂T

T ∂2P
∂T2

+
2kΘχ

(1)
3

∂P
∂T

T ∂2P
∂T2

+
2k̃Θχ

(1)
3

∂P
∂T

T ∂2P
∂T2

+
2MΘχ

(1)
3

∂P
∂T

T ∂2P
∂T2

+
Θ2 ∂χ

(1)
1

∂T
∂P
∂T

∂2P
∂T2

+
ΘκT

∂χ
(1)
1

∂T
∂P
∂T

∂2P
∂T2

+
ΘκA

∂χ
(1)
2

∂T
∂P
∂T

∂2P
∂T2

−
kΘ ∂χ

(1)
3

∂T
∂P
∂T

∂2P
∂T2

−
k̃Θ ∂χ

(1)
3

∂T
∂P
∂T

∂2P
∂T2

. (8.14)

We observe that there are non-trivial independent scalar contributions to the diver-
gence. To have a positive semi-definite divergence, we need to cancel those contribu-
tions using the non-canonical entropy current to obtain a thermodynamically mean-
ingful entropy current. To achieve our purpose, we calculate the divergence of the
non-canonical entropy current as

∇̊µ Jµ
nc = − εµαβ j11kµ k̃αuβ + εµαβ j12kµ k̃αuβ − j7R̊µαuαuµ + 1

2 j7k2

+ j7kk̃ + 1
2 j7k̃2 − εµαβ j11kµuαmβ − εµαβ j13kµuαmβ

− εµαβ j12k̃µuαmβ − εµαβ j13k̃µuαmβ + 2j7kM + 2j7k̃M

+ 2j7M2 − εµαβ j14kµuαKβ − εµαβ j14k̃µuαKβ

− εµαβ j14uµmαKβ − j4k̃Θ + j5k̃Θ− 2j4MΘ + j6MΘ

+ j1Θ2 − 1
2 j7Θ2 + j3ΘκA + j2ΘκT − j7σµασµα

+ εµαβ j11uµ∇̊βkα − εµαβ j4uµ∇̊βkα + εµαβ j12uµ∇̊β k̃α

− εµαβ j4uµ∇̊β k̃α + εµαβ j13uµ∇̊βmα + εµαβ j4uµ∇̊βmα

+ εµαβ j14uµ∇̊βKα − j7∇̊µ k̃µ + j8∇̊µ k̃µ − j4uµ∇̊µ k̃

+ j5uµ∇̊µ k̃ + j7∇̊µmµ + j9∇̊µmµ − 2j4uµ∇̊µ M

+ j6uµ∇̊µ M + j10∇̊µKµ + j1uµ∇̊µΘ− j7uµ∇̊µΘ

+ j3uµ∇̊µκA + j2uµ∇̊µκT + kµTKµ
∂j10

∂T
+ k̃µTKµ

∂j10

∂T

−mµTKµ
∂j10

∂T
+ εµαβkµ k̃αuβT

∂j11

∂T
+ εµαβkµuαmβT

∂j11

∂T

− εµαβkµ k̃αuβT
∂j12

∂T
+ εµαβ k̃µuαmβT

∂j12

∂T

+ εµαβkµuαmβT
∂j13

∂T
+ εµαβ k̃µuαmβT

∂j13

∂T

+ εµαβkµuαTKβ ∂j14

∂T
+ εµαβ k̃µuαTKβ ∂j14

∂T
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+ εµαβuµmαTKβ ∂j14

∂T
+ kµkµT

∂j7
∂T

+ kµ k̃µT
∂j7
∂T

− kµmµT
∂j7
∂T

+ kµ k̃µT
∂j8
∂T

+ k̃µ k̃µT
∂j8
∂T
− k̃µmµT

∂j8
∂T

+ kµmµT
∂j9
∂T

+ k̃µmµT
∂j9
∂T
−mµmµT

∂j9
∂T
−

Θ2 ∂j1
∂T

∂P
∂T

∂2P
∂T2

−
ΘκT

∂j2
∂T

∂P
∂T

∂2P
∂T2

−
ΘκA

∂j3
∂T

∂P
∂T

∂2P
∂T2

−
kΘ ∂j4

∂T
∂P
∂T

∂2P
∂T2

−
k̃Θ ∂j5

∂T
∂P
∂T

∂2P
∂T2

−
MΘ ∂j6

∂T
∂P
∂T

∂2P
∂T2

. (8.15)

Now, we choose jn such that independent scalar contributions vanish. The choice
eventuates in

j1 =
χ
(1)
1
T

,

j2 =
χ
(1)
1
T

,

j3 =
χ
(1)
2
T

,

j4 =
∫ T

dτ

(
2χ

(1)
3 (τ)

τ2 − χ
(1)
2 (τ)

τ2 − 1
τ

∂χ
(1)
3 (τ)

∂τ

)
,

j5 = j4,

j6 = 2j4 + 2
χ
(1)
3
T

,

j8 =
χ
(1)
1
T

,

j11 = j4 +
χ
(1)
2
T

,

j12 = j4,

j13 = − j4 −
χ
(1)
2
T

,

(8.16)

where we included only non-vanishing terms and the absence of the lower limit in the
integral indicates the lower limit can be any constant. This choice of jns gives rise to
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the total divergence of the form

∇̊µ Jµ
S = −

c7σαβσαβ

T
− c3Θ2

T
+

c1Θ2 ∂P
∂T

T2 ∂2P
∂T2

− c4k̃Θ
T

+
c2k̃Θ ∂P

∂T

T2 ∂2P
∂T2

≥ 0. (8.17)

To guarantee positive semi-definiteness, we need

η = −c7 ≥ 0,

ζ = −c3 +
c1

T
∂P
∂T

(
∂2P
∂T2

)−1

≥ 0,

c4 =
c2

T
∂P
∂T

(
∂2P
∂T2

)−1

,

(8.18)

where we introduced the shear viscosity, η, and bulk viscosity, ζ whose positivities
are guaranteed by the unitarity of the underlying theory. This expression shows us
spin current is non-dissipative at first order. A non-dissipative spin current gives a
qualitative justification for the energy efficiency of spintronics over electronics [49].
For completeness, we present the resulting entropy current as

Jµ
S = suµ − εµ

αβ j4kαuβ − εµ
αβ j4k̃αuβ + j4uµk + j4uµ k̃

− εµ
αβ j4uαmβ + 2j4uµ M +

c5k̃µ

2T
+

c(1)2 uµ k̃
T

+
c(1)1 uµΘ

T

+
εµ

αβkαuβχ
(1)
2

T
+

εµ
αβ k̃αuβχ

(1)
2

T
− uµkχ

(1)
2

T
− uµ k̃χ

(1)
2

T

+
εµ

αβuαmβχ
(1)
2

T
− 2uµ Mχ
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. (8.19)

This concludes our discussion on spin hydrodynamics in the scope of this thesis.





61

Chapter 9

Conclusion and Outlook

9.1 Conclusion

Throughout this thesis, we have touched upon various topics and techniques. Before
we started to build our framework, we had introduced the preliminary knowledge
required.

In chapter 2, we presented a brief review of non-relativistic hydrodynamics. To
generalize this framework to both relativistic and quantum cases, we have discussed
the finite temperature behavior of quantum field theories. During that discussion, we
have realized that quantum statistical mechanics became inadequate to describe out-
of-equilibrium behavior. To overcome this issue, we have expanded our discussion to
finite temperature field theories, which characterize quantum fields coupled to a heath
bath. We have identified how finite temperature field theories could characterize time
and temperature at the same time. Following that discussion, we have constructed rel-
ativistic hydrodynamics as a low-energy effective field theory of an underlying finite
temperature field theory. In particular, we have derived the hydrodynamic equations
in a curved background and shown how to introduce gauge fields to couple hydro-
dynamics to other currents. Then, we outlined how to use the relativistic framework
by considering an ideal fluid. Moreover, we have demonstrated that relativistic hy-
drodynamics reduces exactly to the non-relativistic case in the proper limit. All these
discussions combined to form the backbone of the hydrodynamic description spin
current.

Having established the preliminary knowledge, we have pointed out that the gauge
group producing the spin current was nothing but the Lorentz group. Therefore, we
needed to build the gauge theory of SO(1, N) to build spin hydrodynamics. That is
precisely how we have begun chapter 3. After the gauge discussion, we established
the vielbein formalism to describe spacetime in its most general form, that is, with
non-trivial torsion. In this formalism, we have discussed how we push forward and
pull back tensorial objects between the spacetime manifold and the tangent bundle.
Moreover, vielbein description led us to identify the spin connection as the gauge field
of the Lorentz group. These discussions set our formalism up to begin the construction
of spin hydrodynamics.

In chapter 4, we have considered an arbitrary effective action and identified energy-
momentum tensor and spin current. After our identifications, we have encountered an
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ambiguity in the definition of spin current. To resolve the ambiguity, we have singled
out the underlying cause as the pseudo-gauge freedom of spin current, also known
as Belinfante-Rosenfeld freedom. Then, we have lifted the ambiguity by including
torsion in our theory. We have further pointed out that the inclusion of torsion was
not a claim that the universe had non-trivial torsion necessarily. Taking the vanishing
torsion limit at the end of our calculations does not re-introduce the ambiguity. Af-
ter securing that the currents were well-defined, we have derived the hydrodynamic
equations by demanding gauge and diffeomorphism invariance of the theory. As a
result, we have found that spin current couples to the curvature, torsion, and the anti-
symmetric part of the energy-momentum tensor. In the remaining part of the thesis,
we have focused on the solution of hydrodynamic equations.

To solve the hydrodynamic equations systematically, we have constrained our-
selves to a 2+1D spacetime and introduced the notion of hydrodynamic decomposi-
tion in chapter 5. In particular, we have decomposed every object in the theory into
the tensors of SO(2) ⊂ SO(1, 2) where we preserved the Lorentz symmetry by the
velocity profile of the fluid. This decomposition had enabled us to identify physical
quantities like energy density, pressure, heat currents, torque, and spin sub-currents.
This discussion has facilitated us to carry out the solutions of spin hydrodynamics.

In chapter 6, we have considered an ideal fluid and used its effective action to
calculate its energy-momentum tensor and spin current. Our results concluded that
source-free effective Lagrangian is the pressure of the ideal fluid. Furthermore, we
have found out that spin accumulation was possible even in vanishing spin potential.
This phenomenon is the signature of a 2+1D spacetime, and it does not exist in higher
dimensions [17, 18]. Finally, we have concluded the chapter with the investigation of
ideal entropy current. We have observed that the ideal entropy was conserved, which
was what we expected from an ideal fluid.

We have extended our discussion to real fluids in chapter 7 by introducing correc-
tions to the effective action. After a tedious investigation, We had determined 3 first-
order and 17 second-order correction in the most general case. Analogous to chapter
6, we have calculated the corrections to the currents and presented the complete form
of the currents up to our approximation level.

Finally, we have introduced all possible out-of-equilibrium contributions to the
currents in chapter 8. We have started with the introduction of hydrodynamic frame
choice. This freedom of choice originated from the lack of out-of-equilibrium defi-
nitions of hydrodynamic degrees of freedom. Then, we have solved the first- and
second-order constraints on the out-of-equilibrium contributions enforced by the hy-
drodynamic equations. These constraints produced the final form of the spin current
and the energy-momentum tensor. We have finalized our discussion with the en-
tropy investigation of the real fluid. As a result, we have discovered that the causes
of dissipation were only shear and bulk viscosities. In other words, the spin current
is non-dissipative in our level of approximation reinforcing the efficiency claims of
condensed matter physics [49].
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9.2 Outlook

In addition to our whole work, there is still room for improvement in the spin hy-
drodynamics framework. The most straightforward addition is to derive the Kubo
formulae for the first-order transport coefficients from the two-point functions of the
underlying field theory. Moreover, our framework has second-order transport coef-
ficients that contribute to first-order spin current and second-order anti-symmetric
energy-momentum tensors. These transport coefficients can be extracted from the
four-point functions of the underlying theory.

Apart from that straightforward improvement, we have more recommendations
that might have practical implications in condensed matter physics. Firstly, we have
assumed spatial torsion was first-order in derivatives for simplicity. We can further
generalize the theory to include zeroth-order torsion. In that case, we can model a
crystal structure that incorporates defects. In particular, defects in a crystal can be
modeled using zeroth-order spatial torsion [23, 27, 36], and one might find ways to
generate spin polarization exclusive to defective crystals.

Furthermore, it is common practice in condensed matter physics to model spin
in 3D even if the considered system is in 2D [49]. Our framework lacks this kind of
dimension difference between spin and spacetime. To generalize our framework to
include this dimension difference, one has to sacrifice Einstein-Cartan formalism that
we have used throughout the thesis. A promising way to implement the dimension
difference is to treat the spin connection as a pure gauge field.
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Appendix A

Second-order Equations of Motion
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∂M

+ 1
2 ελ

ρσR̊µνρσuλuµ∆βν ∂P
∂M
− ελµνkλmµ∆βν ∂P

∂M

− 1
2 ελµν k̃λmµ∆βν ∂P

∂M
− 1

2 ελµνkλuµ∆βνΘ
∂P
∂M
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+ 1
4 ελµν k̃λuµ∆βνΘ

∂P
∂M

+ ελµνuλmµ∆βνΘ
∂P
∂M

− ελµνkλuµσβν ∂P
∂M
− 1

2 ελµν k̃λuµσβν ∂P
∂M

− 1
2 εµνρuλuµ∆βρ∇̊λ k̃ν ∂P

∂M
+ εµνρuλuµ∆βρ∇̊λmν ∂P

∂M

+ 1
2 uλ∆β

µ∇̊λKµ ∂P
∂M
− 1

2 ∆β
λ∇̊λk

∂P
∂M

+ ∆β
λ∇̊λ M

∂P
∂M
− 1

2 uλ∆β
µ∇̊µKλ

∂P
∂M

+ dT (2)λ∆β
λ

∂P
∂T

+
kβΘ ∂χ

(1)
1

∂T
∂P
∂T

∂2P
∂T2

+
2k̃βΘ ∂χ

(1)
1

∂T
∂P
∂T

∂2P
∂T2

−
2mβΘ ∂χ

(1)
1

∂T
∂P
∂T

∂2P
∂T2

−
ελµνuλKµ∆βνΘ ∂χ

(1)
1

∂T
∂P
∂T

2 ∂2P
∂T2

−
∆β

λ∇̊λΘ ∂χ
(1)
1

∂T
∂P
∂T

∂2P
∂T2

+
KβΘ ∂χ

(1)
2

∂T
∂P
∂T

2 ∂2P
∂T2

−
ελµνkλuµ∆βνΘ ∂χ

(1)
2

∂T
∂P
∂T

∂2P
∂T2

−
KβΘ ∂χ

(1)
3

∂T
∂P
∂T

∂2P
∂T2

−
2ελµν k̃λuµ∆βνΘ ∂χ

(1)
3

∂T
∂P
∂T

∂2P
∂T2

−
2ελµνuλmµ∆βνΘ ∂χ

(1)
3

∂T
∂P
∂T

∂2P
∂T2

−
ελµνuλ∆βν∇̊µΘ ∂χ

(1)
3

∂T
∂P
∂T

∂2P
∂T2

−
ελµν k̃λuµ∆βνΘ ∂P

∂T
∂2P

∂T∂M

2 ∂2P
∂T2

−
ελµνuλmµ∆βνΘ ∂P

∂T
∂2P

∂T∂M
∂2P
∂T2

+
kβTΘ ∂χ

(1)
1

∂T
∂P
∂T

∂3P
∂T3(

∂2P
∂T2

)2

+
k̃βTΘ ∂χ

(1)
1

∂T
∂P
∂T

∂3P
∂T3(

∂2P
∂T2

)2 −
mβTΘ ∂χ

(1)
1

∂T
∂P
∂T

∂3P
∂T3(

∂2P
∂T2

)2

−
ελµνkλuµT∆βνΘ ∂χ

(1)
3

∂T
∂P
∂T

∂3P
∂T3(

∂2P
∂T2

)2

−
ελµν k̃λuµT∆βνΘ ∂χ

(1)
3

∂T
∂P
∂T

∂3P
∂T3(

∂2P
∂T2

)2

−
ελµνuλmµT∆βνΘ ∂χ

(1)
3

∂T
∂P
∂T

∂3P
∂T3(

∂2P
∂T2

)2 . (A.2)
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uβ∇̊β M
(

2χ
(2)
9 −

∂2P
∂M2

)
= − 2 f (2)T − εβλµ fs

β k̃λuµ + 1
2 fςT k + 1

2 fςT k̃− εβλµ fs
βuλmµ + fςT M

+ 1
2 fςA Θ− 1

2 fςTκA − εβµν fςS
λµuβκSλ

ν + 1
2 fςAκT − εβµν fςS

λµuβσλ
ν

− εβλµkβ k̃λuµχ
(2)
11 − εβλµ k̃βuλKµχ

(2)
13 − kβ k̃βχ

(2)
15 −

1
2 fSΘ

+ k̃βKβχ
(2)
17 + ΘκTχ

(2)
6 + ΘκAχ

(2)
8 − kβKβχ

(2)
9

− k̃βKβχ
(2)
9 + mβKβχ

(2)
9 − k̃Θχ

(2)
9 − 2MΘχ

(2)
9 − 1

2 uβ∇̊β fS

+ 1
2∇̊β fΣ

β − uβχ
(2)
9 ∇̊β k̃ + uβχ

(2)
8 ∇̊βκA + uβχ

(2)
6 ∇̊βκT

+ uβuλχ
(2)
9 ∇̊λKβ + uβuλuµχ

(2)
6 ∇̊µκSβλ − εβλµuβχ

(2)
9 ∇̊

µkλ

− εβλµuβχ
(2)
9 ∇̊

µ k̃λ + εβλµuβχ
(2)
9 ∇̊

µmλ + MΘ
∂2P
∂M2

− 2εβλµ k̃βuλmµ ∂P
∂m2 + dT (2)βuβ

∂2P
∂T∂M

−
ΘκT

∂χ
(2)
6

∂T
∂P
∂T

∂2P
∂T2

−
ΘκA

∂χ
(2)
8

∂T
∂P
∂T

∂2P
∂T2

−
kΘ ∂χ

(2)
9

∂T
∂P
∂T

∂2P
∂T2

−
MΘ ∂P

∂T
∂3P

∂T∂M2

∂2P
∂T2

. (A.3)

∂P
∂m2 uλ∆µ

ν∇̊λmν

= − 1
2 f (2)h µ − 1

4 fςT kµ − 1
4 fςT k̃µ +

1
4 εµλν fςA kλuν − 1

4 εµλν fSk̃λuν

+ 1
4 εµλν fςA k̃λuν + 1

8 fΣµk− 1
4 εµλν fs

λuνk + 1
8 fΣµ k̃ + 1

4 fςT mµ

− 1
4 εµλν fSuλmν + 1

4 εµλν fςA uλmν + 1
4 fΣµ M + 1

8 fςAKµ − 1
4 εµλρ fςS ν

ρuλKν

− 1
8 εµλν fςT uλKν − 1

2 fsµΘ− 1
8 εµλν fΣ

λuνΘ− 1
8 fΣµκA + 1

4 εµνρ fΣ
λuνκSλ

ρ

− 1
8 εµλν fΣ

λuνκT + 1
4 εµνρ fΣ

λuνσλ
ρ − 1

4 εµλνkλuνkχ
(2)
11

+ 1
2 εµλνkλuν Mχ

(2)
11 −

1
2 kµΘχ

(2)
11 + 1

2 kλκSµλχ
(2)
11

+ 1
2 k̃λκSµλχ

(2)
11 −

1
2 mλκSµλχ

(2)
11 + 1

4 εµλνuλkKνχ
(2)
13

− 1
2 εµλνuλ MKνχ

(2)
13 −

1
2KµΘχ

(2)
13 + 1

2 εµλνkλ k̃νχ
(2)
15

+ 1
2 ελνρkλ k̃νuµuρχ

(2)
15 + 1

4 kµkχ
(2)
15 −

1
2 εµλνkλmνχ

(2)
15

+ 1
2 ελνρkλuµuνmρχ

(2)
15 −

1
2 kµ Mχ

(2)
15 −

1
2 εµλνkλuνΘχ

(2)
15

− 1
2 εµνρkλuνκSλ

ρχ
(2)
15 −

1
2 εµνρ k̃λuνκSλ

ρχ
(2)
15
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+ 1
2 εµλρuλmνκSν

ρχ
(2)
15 −

1
4 kKµχ

(2)
17 + 1

2 MKµχ
(2)
17

+ 1
2 εµλνkλKνχ

(2)
17 + 1

2 εµλν k̃λKνχ
(2)
17 −

1
2 εµλνmλKνχ

(2)
17

− 1
2 ελνρkλuµuνKρχ

(2)
17 −

1
2 ελνρ k̃λuµuνKρχ

(2)
17

− 1
2 ελνρuλuµmνKρχ

(2)
17 −

1
2 εµλνuλKνΘχ

(2)
17 + 1

2 εµλν k̃λuνκTχ
(2)
6

+ 1
2 εµλν k̃λuνκAχ

(2)
8 + 1

2 εµλν k̃λuνkχ
(2)
9 − 1

2 uλ∇̊λ fsµ +
1
2∇̊λ fςS µ

λ

− 1
2 uλχ

(2)
11 ∇̊λkµ +

1
2 εµνρuλuνχ

(2)
15 ∇̊λkρ − 1

2 uλχ
(2)
13 ∇̊λKµ

− 1
2 εµνρuλuνχ

(2)
17 ∇̊λKρ + 1

4 ∆µλ∇̊λ fςT − 1
2 uλuµuν∇̊ν fsλ

+ 1
2 uλuµ∇̊ν fςS λ

ν − 1
2 uλuµuνχ

(2)
11 ∇̊νkλ − 1

2 uλuµuνχ
(2)
13 ∇̊νKλ

+ 1
2 εµραuλuνuρχ

(2)
15 ∇̊νκSλ

α − 1
2 uλuνχ

(2)
11 ∇̊νκSµλ + 1

4 εµλνuλ∇̊ν fςA

− 1
2 uλuµuνuρχ

(2)
11 ∇̊ρκSλν +

1
2 εµλν k̃λuν M

∂2P
∂M2

+ 1
2 εµλνuλkmν ∂P

∂m2 − εµλνuλmν M
∂P

∂m2 −mµΘ
∂P

∂m2

+
kµΘ ∂χ

(2)
11

∂T
∂P
∂T

2 ∂2P
∂T2

+
KµΘ ∂χ

(2)
13

∂T
∂P
∂T

2 ∂2P
∂T2

+
εµλνkλuνΘ ∂χ

(2)
15

∂T
∂P
∂T

2 ∂2P
∂T2

+
εµλνuλKνΘ ∂χ

(2)
17

∂T
∂P
∂T

2 ∂2P
∂T2

+
mµΘ ∂P

∂T
∂2P

∂T∂m2

∂2P
∂T2

. (A.4)
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Appendix B

Tables of all tensors

TABLE B.1: Full list of first order scalars

i S (1)i Hydrostatic O(∂n) Parity Type
1 M 3 1 - Fluid
2 Θ 7 1 + Fluid
3 k 3 1 - Torsion
4 k̃ 7 1 - Fluid/Torsion
5 κT 3 1 + Torsion
6 κA 3 1 - Torsion

TABLE B.2: Full list of second order scalars

i S (2)i Hydrostatic O(∂n) Parity Type
1 MM 3 2 + Fluid
2 MΘ 7 2 - Fluid
3 Mk 3 2 + Fluid/Torsion
4 Mk̃ 7 2 + Fluid/Torsion
5 MκT 3 2 - Fluid/Torsion
6 MκA 3 2 + Fluid/Torsion
7 mµmµ 3 2 + Fluid
8 mµkµ 3 2 + Fluid/Torsion
9 mµ k̃µ 7 2 + Fluid/Torsion
10 mµKµ 3 2 - Fluid/Torsion
11 ΘΘ 7 2 + Fluid
12 Θk 7 2 - Fluid/Torsion
13 Θk̃ 7 2 - Fluid/Torsion
14 ΘκT 7 2 + Fluid/Torsion
15 ΘκA 7 2 - Fluid/Torsion
16 σµνσµν 7 2 + Fluid
17 σµνκSµν 7 2 + Fluid/Torsion

Continued on next page
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Table B.2 – continued from previous page

i S (2)i Hydrostatic O(∂n) Parity Type
18 kk 3 2 + Torsion
19 kk̃ 7 2 + Fluid/Torsion
20 kκT 3 2 - Torsion
21 kκA 3 2 + Torsion
22 kµkµ 3 2 + Torsion
23 kµ k̃µ 7 2 + Fluid/Torsion
24 kµKµ 3 2 - Torsion
25 k̃µ k̃µ 7 2 + Fluid/Torsion
26 k̃µKµ 7 2 - Fluid/Torsion
27 k̃k̃ 7 2 + Fluid/Torsion
28 k̃κT 7 2 - Fluid/Torsion
29 k̃κA 7 2 + Fluid/Torsion
30 κTκT 3 2 + Torsion
31 κTκA 3 2 - Torsion
32 κAκA 3 2 + Torsion
33 κS

µνκSµν 3 2 + Torsion
34 KµKµ 3 2 + Torsion
35 R̊ 3 2 + Curvature
36 R̊u 3 2 + Curvature
37 f̃ 7 2 - Fluid
38 f̃T 7 2 + Curv./Fluid/Torsion
39 ˜fA 7 2 - Fluid/Torsion
40 ∇̊µmµ 3 2 + Fluid
41 ∇̊µkµ 3 2 + Torsion
42 ∇̊µ k̃µ 7 2 + Fluid/Torsion
43 ∇̊µKµ 3 2 - Torsion

TABLE B.3: Full list of first order vectors

i
(
V (1)

i

)
Hydrostatic O(∂n) Parity Type

1 mµ 3 1 + Fluid
2 kµ 3 1 + Torsion
3 k̃µ 7 1 + Fluid/Torsion
4 Kµ 3 1 - Torsion
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TABLE B.4: Full list of second order vectors

i
(
V (2)

i

)
Hydrostatic O(∂n) Parity Type

1 Mmµ 3 2 - Fluid
2 Mkµ 3 2 - Fluid/Torsion
3 Mk̃µ 7 2 - Fluid/Torsion
4 MKµ 3 2 + Fluid/Torsion
5 mµΘ 7 2 + Fluid
6 mµσµ

ρ 7 2 + Fluid
7 mµk 3 2 - Fluid/Torsion
8 mµ k̃ 7 2 - Fluid/Torsion
9 mµκT 3 2 + Fluid/Torsion
10 mµκA 3 2 - Fluid/Torsion
11 mµκSµ

ρ 3 2 + Fluid/Torsion
12 Θkµ 7 2 + Fluid/Torsion
13 Θk̃µ 7 2 + Fluid/Torsion
14 ΘKµ 7 2 - Fluid/Torsion
15 σµνkν 7 2 + Fluid/Torsion
16 σµν k̃ν 7 2 + Fluid/Torsion
17 σµνKν 7 2 - Fluid/Torsion
18 kkµ 3 2 - Torsion
19 kk̃µ 7 2 - Fluid/Torsion
20 kKµ 3 2 + Torsion
21 kµ k̃ 7 2 - Fluid/Torsion
22 kµκT 3 2 + Torsion
23 kµκA 3 2 - Torsion
24 kµκSµ

ρ 3 2 + Torsion
25 k̃µ k̃ 7 2 - Fluid/Torsion
26 k̃µκT 7 2 + Fluid/Torsion
27 k̃µκA 7 2 - Fluid/Torsion
28 k̃µκSµ

ρ 7 2 + Fluid/Torsion
29 k̃Kµ 7 2 + Fluid/Torsion
30 κTKµ 3 2 - Torsion
31 κAKµ 3 2 + Torsion
32 κS

µνKν 3 2 - Torsion
33 Υµ 3 2 + Curvature
34 f̃µ 7 2 + Fluid
35 F̃µ 7 2 + Curv./Fluid/Torsion
36 ∇̊µ M 3 2 - Fluid
37 ∇̊µΘ 7 2 + Fluid
38 ∇̊µσµ

ρ 7 2 + Fluid
39 ∇̊µk 3 2 - Torsion

Continued on next page
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Table B.4 – continued from previous page

i
(
V (2)

i

)
Hydrostatic O(∂n) Parity Type

40 ∇̊µ k̃ 7 2 - Fluid/Torsion
41 ∇̊µκT 3 2 + Torsion
42 ∇̊µκA 3 2 - Torsion
43 ∇̊µκSµ

ρ 3 2 + Torsion

TABLE B.5: Full list of first order rank 2 tensors

i
(
T (1)

i

)
Hydrostatic O(∂n) Parity Type

1 σµν 7 1 + Fluid
2 κS

µν 3 1 + Torsion

TABLE B.6: Full list of second order rank 2 tensors

i
(
T (2)

i

)
Hydrostatic O(∂n) Parity Type

1 Mσµν 7 2 - Fluid
2 MκS

µν 3 2 - Fluid/Torsion
3 mµmν 3 2 + Fluid
4 mµkν 3 2 + Fluid/Torsion
5 mµ k̃ν 7 2 + Fluid/Torsion
6 mµKν 3 2 - Fluid/Torsion
7 Θσµν 7 2 + Fluid
8 ΘκS

µν 7 2 + Fluid/Torsion
9 σµνσν

λ 7 2 + Fluid
10 σµνk 7 2 - Fluid/Torsion
11 σµν k̃ 7 2 - Fluid/Torsion
12 σµνκT 7 2 + Fluid/Torsion
13 σµνκA 7 2 - Fluid/Torsion
14 σµνκSν

λ 7 2 + Fluid/Torsion
15 kκS

µν 3 2 - Torsion
16 kµkν 3 2 + Torsion
17 kµ k̃ν 7 2 + Fluid/Torsion
18 kµKν 3 2 - Torsion
19 k̃µ k̃ν 7 2 + Fluid/Torsion
20 k̃µKν 7 2 - Fluid/Torsion
21 k̃κS

µν 7 2 - Fluid/Torsion
22 κTκS

µν 3 2 + Torsion
23 κAκS

µν 3 2 - Torsion
Continued on next page
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Table B.6 – continued from previous page

i
(
T (2)

i

)
Hydrostatic O(∂n) Parity Type

24 κS
µνκSν

λ 3 2 + Torsion
25 KµKν 3 2 + Torsion
26 ξµν 3 2 + Curvature
27 f̃S

µν 7 2 + Curv./Fluid/Torsion
28 ∇̊µmν 3 2 + Fluid
29 ∇̊µkν 3 2 + Torsion
30 ∇̊µ k̃ν 7 2 + Fluid/Torsion
31 ∇̊µKν 3 2 - Torsion
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