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Abstract

Building on recently derived inhomogeneous Mode-Coupling Theory, we extend the Generalised
Mode Coupling Theory (GMCT) of supercooled liquids to inhomogeneous environments. This pro-
vides a systematic and rigorous way of deriving high-point dynamical susceptibilities from varia-
tions of the many-body dynamic structure factors with respect to their conjugate field by treating
the equations of motion as a Landau theory. This provides a novel and fully microscopic frame-
work to probe for collective relaxation mechanisms in supercooled liquids near the glass transition.
We provide an in-depth exploration of these higher-order susceptibilities in the case of a simplified
schematic model by studying the behaviour and criticality of dynamical susceptibilities for different
glass transition scenarios.
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1 Introduction

1.1 The Glass Transition in a Nutshell

Glasses are ubiquitous in today’s world, from mere kitchenware to the latest smartphones, we can
find structural glasses everywhere. Glasses can be made out of an immense variety of base materials
: silica, polymers or even metals. In recent years we have seen the advent of colloidal and granular
glasses in our labs as prototypical glass-forming materials. It might thus come as a surprise that the
nature of the glass transition is still very poorly understood to this day [4].

Under regular conditions, as a liquid is cooled to its melting temperature TM , a first order phase
transition occurs and the liquid crystallises via nucleation processes. Suppose instead that the liq-
uid does not crystallise upon cooling it past TM . For instance we could temperature quench it fast
enough to simply forbid nucleation, or consider a complex material which does not admit any stable
crystalline structure. The liquid then enters a supercooled regime, which is a metastable state of
matter. As the temperature is further lowered, very little structural changes are observed, (see Fig.2
for a schematic illustration) yet there exists a small temperature window ∆T centred around TG in
which the viscosity increases dramatically (over 10 orders of magnitude) and full dynamical arrest,
on experimental timescales, is reached. This is commonly referred to as a glassy state, and TG is
called the glass transition temperature. The dramatic increase in relaxation time within the space of
minute changes in control parameters accompanied by an apparent decoupling between structure and
dynamics was referred to as “deepest and most interesting unsolved problem in solid state theory” [4]
by P.W. Anderson, the 1977 Nobel Laureate in Physics.

(a) (b)

Figure 2: (a) Schematic illustration of liquid-like behaviour. Particles are in a ballistic / diffusive
regime and the structural correlations are short-lived. (b) Schematic Illustration of deep supercooled
/ glass-like behaviour. Particles do not diffuse over experimental time-scales and vibrate randomly
around some effective equilibrium point.

We emphasise that the transition temperature is empirically defined. On general grounds, TG is
defined as the point where the viscosity ν ∼ 1013 [P], in CGS units. We also stress that the super-
cooled state being a non-equilibrium state, TG is highly protocol dependent. Furthermore, the glass
transition also has tints of a regular thermodynamic transition of second-order. This is notable in
the behaviour of the heat capacity, which has an abrupt but continuous jump across TG. This leads
to important properties of various macroscopic observables which may display hysteresis behaviour
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1.1 The Glass Transition in a Nutshell

across transition lines in the phase diagram.

It is then more appropriate to cast the glass transition as an ergodicity-breaking transition, rather
than a phase transition. We may think of it as a purely dynamical phenomena (a dramatic increase in
the kinetic coefficients) with some thermodynamic features. In the supercool regime, the free-energy
landscape becomes increasingly rugged and our system gets effectively stuck in some deep local min-
ima. It does not visit the neighbouring basins anymore, which breaks ergodicity. To detect this
ergodicity breaking point, we use an order parameter that we denote F2(k, t) ∝ 〈ρ̂k(0)∗ρ̂k(t)〉 where
ρ̂k(t) is a time-dependent Fourier mode of density fluctuations. F2 is then an autocorrelation function
of these density modes. This quantity has the advantage that at long-times it behaves as an order
parameter. We find that F2 = 0 in the liquid regime as we can effectively see a liquid as a Markoffian
system where the density field relaxes over short timescales, while F2 > 0 in the glassy state since
time-dependent structural correlation functions do not decay in solids. By long-time here we mean a
time too long to be observed over experimental timescales. We will come back to this order parameter
later on.

We briefly consider the thermodynamics of a deeply supercooled liquid. Once in the supercooled
regime (past the red-point in Fig.3), one may imagine that a liquid can be cooled indefinitely while
never turning into a glass using suitable protocols: the system remains on the blue curve. We can then
imagine delaying the glass transition to lower temperatures until the excess entropy Sexc(T ) of the
liquid with respect to the corresponding crystal state vanishes at some temperature TK (Sexc(TK) = 0,
purple point in Fig.3). This point is known as the Kauzmann temperature [42, 43] and is the source
of an interesting paradox : at TK , we find that the total entropies of a crystal and that of an
amorphous solid are equal ! To circumvent this paradox, a true thermodynamic phase transition has
been historically postulated to take place at TK , where spontaneous symmetry breaking into the true
thermodynamically stable crystalline state is expected. Since still little is known regarding the nature
of the very deep supercooled regime, we may not neglect other possible resolutions to this paradox.

Figure 3: Illustrated phase-diagram of a liquid at low temperatures and/or high packing densities. TM
is the melting temperature, TG the glass transition temperature and TK the Kauzmann temperature.
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1.2 Hopes for a Growing Lengthscale

1.2 Hopes for a Growing Lengthscale

1.2.1 Dynamical Heterogeneity in Supercooled Liquids

It has long been known that supercooled liquids display strongly heterogeneous dynamics, also of-
ten referred to as dynamical heterogeneity [72, 68, 13]. More precisely it is not uncommon to find
persistent correlations between particle motion in “effective” clusters of size say ξcl. We show an
example of dynamical heterogeneity in a system of binary hard-disks [56] in Fig.4. We clearly see that
there are regions of fast-moving particles (in green & red) that coexist with regions of slower moving
particles (in blue). This type of behaviour is actually common to a very wide variety of glass-forming
materials. The existence of these correlated clusters raises important questions about the true nature
of the glass transition and its connection with conventional thermodynamic phase transitions. We are
entitled to ask about the mechanisms leading to the emergence these structures, what their sizes are
and what quantities govern their size. We may also ask if there are particular structural patterns in
these correlated clusters with recent answers from machine learning aided studies [19, 71]. Yet despite
years of efforts, these questions are still central to the glass transition problem and are for mostly still
unanswered and poorly understood.

Figure 4: Mobility field for a simulation of binary hard-disks with radii σS , σL for the small and
large disks respectively. In blue : the slow particles and in red : fast particles. Fast particles have
travelled mean-square distance 〈r2〉 > σL and slow particles 〈r2〉 < 0.01σL over the principal structural
relaxation time τα. Adapted from [56]

The existence of these correlated clusters is in line with the early phenomenological approaches to
the glass transition of Adam-Gibbs [1], where the concept of cooperatively rearranging regions (CRRs)
was first introduced. This was later more rigorously formalised in the context of Random First Or-
der Transition Theory [17] (for a concise review), where it is argued that the size of these CRRs
(sometimes referred to as glassites) scales as ξcl ∼ 1/Sexc, the inverse excess configurational entropy
previously introduced. As the Kauzmann point is approached, we see that ξcl → ∞ as expected for
second order phase transitions. However, liquids tend to vitrify at much higher temperatures than
the Kauzmann point. So while the existence of a strictly diverging lengthscale at the structural glass
transition, which is of interest here, remains a hot debate in the field, we shall nonetheless accept that
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1.2 Hopes for a Growing Lengthscale

there exists at least an emerging and growing one from the combination of numerical and experimental
results available. These provide a compelling basis for a viable critical phenomena-like description of
glass formation. In this case, we would observe the growth of some sort of a long-ranged ‘amorphous’
order, hidden in high-order correlation functions indicating the onset of vitrification.

A gross measure of dynamical heterogeneity is the non-Gaussian parameter α2(t) [54] which can
be calculated from particle displacements. For 3D systems, the non-Gaussian parameter is defined as

α2(t) =
3

5

〈∆r(t)4〉
〈∆r(t)2〉2

− 1 (1)

The non-Gaussian parameter measures the deviation of the particle relaxation from the Gaussian pro-
cess expected of conventional equilibrium liquids. We show in Fig.5a an example of the non-Gaussian
parameter α2(t) for a supercooled Lennard-Jones mixture displaying dynamical heterogeneities. We
see that it has a peak-like behaviour and that this peak grows as the temperature is lowered. It is clear
that by construction α2(t) does capture dynamical heterogeneity in some way, as we observe growing
deviations from Gaussian relaxation as the system descends in the supercooled regime. However, this
quantity only provides evidence of such non-trivial relaxation processes which are generally assumed
to be of cooperative nature, even though nothing in α2(t) indicates that this might be the case.
Extracting a meaningful growing length-scale associated with collective effects from this quantity is
therefore impossible.

The established standard measure of dynamical heterogeneity takes the form of a 4-point dynam-
ical susceptibility denoted χ4(t) [13]. In resonance with critical phenomena, we may define χ4(t) as
the (spontaneous) fluctuations of some mobility field, say µ(r, t, t′) which quantifies the mobility of a
particle located at r in time interval t − t′. We can imagine this mobility as the continuum limit of
the one showed in Fig.4. Fluctuations in this mobility field indicate the presence of dynamical het-
erogeneities [30]. Mathematically, we write Var[µ(r, t, t′)] ≡ G4(r, t, t′), and the 4-point susceptibility
would then be given by the spatial integration of the latter:

χ4(t, t′) =

∫
drG4(r, t, t′) ∼

∫
drB(r, t, t′)e

− |r|
ξ4(T ) (2)

where ξ4(T ) is the length-scale that we seek to extract and B(r, t, t′) some scaling function. Numer-
ous studies (both experimental and numerical) [10, 46, 66, 11] demonstrate that χ4(t) grows in a
peak-like manner as the experimental glass transition is approached. This indicates a growing value
of ξ4(T → Tc) [63]. We provide an example of χ4(t) for a simulated supercooled liquid in Fig.5b. We
observe a similar behaviour as that of α2(t): χ4(t) displays a peak-like behaviour and as the temper-
ature is lowered, we see that the peak grows and is shifted in time. The location of the peak in time
is generally non-arbitrary and can be associated with structural relaxation timescales in the systems.
Obtaining an accurate measure of χ4(t) in the supercooled regime is a complicated task both numer-
ically and experimentally. Measuring 4-point susceptibilities requires long temporal (several decades)
and extensive spatial resolutions (sub-particle radii resolution over large length-scales) since we are
probing for correlations of collective fluctuations.
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1.2 Hopes for a Growing Lengthscale

(a) (b)

Figure 5: (a) Non-Gaussian parameter α2(t) for a supercooled Lennard-Jones liquid at dimensionless
temperatures T = 0.550, 0.480, 0.451. Reproduced from [45] (b) 4-point dynamic correlation function
χ4(t) for a supercooled interacting fluid. Reproduced from [11]

1.2.2 Conventional Critical Phenomena

An important question is whether or not we may cast the problem of the glass transition in the
conventional formalism of critical phenomena. Phase transitions are generally characterised by order
parameters, whose sign or value correspond to a particular phase. The order parameter is generally a
scalar, vector or tensor quantity. For instance the the density field ρ(r) acts as the order parameter

for the liquid-gas transition, or the magnetisation ~M(r) in a paramagnetic-ferromagnetic transition.

To see how the formalism of conventional critical phenomena might be applicable to the glass tran-
sition, we recapitulate standard results for the (continuum) paramagnetic-ferromagnetic transition.

The order parameter is the magnetisation ~M(r, T ), let us denote by TC the critical temperature at
which ferromagnetic ordering takes place (also known as the Curie temperature). Within the Landau
formalism of second order phase transitions, we may expand the free-energy F in powers of the order
parameter (and powers of its gradients) by simply requiring a Z2 invariant free-energy in M . This
gives :

F [M ] =

∫
dr
(
γ1(T )(~∇ · ~M(r))2 + γ2(T )| ~M(r)|2 + γ4(T )| ~M(r)|4 + µ ~H(r) · ~M(r)

)
(3)

by truncating the expansion at O(M4). The factors γj(T ) are continuous functions of the temperature,
and they dictate the behaviour of the system. The last term represents the coupling with the conjugate
field H, and we treat it as a source term to generate correlation functions in the partition function. We
can determine equilibrium states by finding solutions to δF [M ]/δM(r′) = 0. We define susceptibilities
as the variation of relevant order parameters with respect to their conjugate field. In the case of the
paramagnetic-ferromagnetic transition, the magnetic susceptibility reads:

χm(r, r′, T ) =
δM(r)

δH(r′)

which, assuming an isotropic medium can be written in Fourier q-space as:

9



1.2 Hopes for a Growing Lengthscale

χm(q) ∝ ξ2

1 + ξ2|q|2
(4)

where ξ is known as the correlation length, due to its physical dimension. It describes the length-scale
over which the response of magnetisation (i.e. individual spins) is correlated. More intuitively, a low
susceptibility implies a single-component response, while a large one implies a collective response to
an external stimulus. Near the critical point and in a vanishing external field, both the susceptibilities
and the correlation length diverge as:

lim
H→0;T→T±C

χm(T,H) ∝ (1− T/TC)γ± lim
H→0;T→T±C

ξ(T,H) ∝ (1− T/TC)ν± (5)

where quantities γ±, ν± are known as critical exponents. They govern the scaling of these divergences
at criticality. Calculating these critical exponents forms the basis of the modern approach to critical
phenomena and their classification into universality classes from renormalisation group methods for
instance.

1.2.3 Dynamical Non-Linear Susceptibilities

We have already mentioned in previous sections that χ4(t) is a historically important probe and
quantifier of dynamical heterogeneity. However we have also said that it was a very difficult quantity
to calculate. We have in mind to construct an equation of motion for a quantity that is capable of
capturing dynamical heterogeneity. We recall that we have an order parameter to detect the glassy
phase : our auto-correlation function of density modes F2(k, t). By interpreting the equation of motion
for this order parameter as a Landau theory (we need simply assume it exists for now), we would
then be able to consider variations of this order parameter with respect to its conjugate field that we
denote U(q0). We should have in mind that U(q0) is an external small pinning field, like a sine or a
cosine wave with wave-number q0, as schematically depicted in Fig.6. We can then define a dynamic
susceptibility, that we denote χ3(t) analogously to the magnetic susceptibility in conventional critical
phenomena :

lim
U→0

δF2(k; k′, t)

δU(q0)
= χ3(k; k′,q0, t) (6)

where we have written F2(k; k′, t) ∝ 〈ρ̂∗kρ̂k′(t)〉 with two explicit wave-number modes, because the
presence of the pinning field U breaks translational invariance. This type of 3-point susceptibility was
first proposed as an alternative to χ4(t) in a series of important papers [15, 14]. The 4-point and
3-point susceptibilities are actually intimately linked. In the case where the conjugate field is assumed
to be the density field, a simple combination of the Cauchy-Schwartz inequality and the Fluctuation
Dissipation theorem leads to the conclusion that χ4(t) ≥ ρ0κTβ

−1(χ3(t))2 [12, 15, 14], where ρ0 is
the bulk-fluid density, κT the isothermal compressibility and β the inverse temperature. That is, the
3-point susceptibility provides a strict lower bound to the 4-point one. Similar expressions also exist
in the case of different conjugate fields [12, 15, 14]. The 3-point susceptibility has the advantage of
being much easier to determine than the 4-point one. The reason is that obtaining a good-enough
signal for F2 and then taking a derivative with respect to the conjugate field is much easier (for both
simulations and experiments) than waiting for spontaneous fluctuations in the mobility fields in the
deep supercooled regime to determine a 4-point correlation function with sufficient accuracy.

Following the theoretical introduction of these 3-point susceptibilities in [12, 15, 14], several groups
were able to extract this 3-point susceptibility from high-precision dielectric spectroscopy experiments
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1.3 A Microscopic Framework

in supercooled glycerol [27, 9, 24]. More recently, the 5-point dielectric susceptibility χ5(t) [2] was
even extracted from supercooled glycerol and propylene carbonate. All these studies demonstrate
that χ3(t) (and χ5(t)) behave as ‘conventional’ critical susceptibilities near vitrification. Hence, the
3-point susceptibility (and its higher order counter-parts) could be very useful objects to probe for
the putative growing lengthscale at the onset of the glassy-regime in supercooled liquids. In light of
these promising experimental and theoretical results, our objective with this work is to derive a fully
microscopic framework that enables us to obtain an equation of motion for the non-linear suscepti-
bilities χ2n+1(t) of any order. For simplicity, we will consider a conjugate field U(q0) = gρ̂q0

that
couples exclusively to single density modes where g is a coupling strength.

Figure 6: Schematic illustration of the pinning field U(q0) and the collective response it induces in
a liquid in a supercooled regime. We denote ξ3(t) the lengthscale over which the 3-point correlated
response extends.

1.3 A Microscopic Framework

Despite decades of efforts, the Mode Coupling Theory (MCT) [20, 32] stands as the only fully micro-
scopic approach to the glass transition problem. The MCT allows for the derivation a self-consistent
equation of motion for the order parameter F2(k, t) (also commonly referred to as an intermediate
scattering function) which take as input structural information only. One of great successes of the
MCT is the prediction of an ergodic-to-non-ergodic transition at temperature TMCT from static struc-
ture factor input only. The theory is also capable of predicting qualitative phase-diagrams for rich
glass formers as shown in Fig.7a [67]. Furthermore, the theory also makes important predictions
relating power-law exponents of intermediate scattering functions at key physical timescales near the
glass transition which are consistent with experimental findings.

However despite the qualitative and quantitative successes, the critical temperature TMCT system-
atically overestimates the experimentally observed glass transition temperature TG. It is thus not
uncommon to find ‘shifted’ and rescaled MCT predictions in the literature to allow for direct com-
parison with experiments. We note that several attempts, commonly referred to as extended MCT
(eMCT) [36, 60] introduce additional couplings to the theory with the hope of curing the spurious
transition. This however poses serious problems in the case of Brownian dynamics, where no such
couplings actually exist. Lastly, we mention that MCT also fails to report on the notorious breakdown
of the Stokes-Einstein relation in the supercooled regime.

This caveat of the MCT can (amongst other things) be traced back to an uncontrolled approx-
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1.3 A Microscopic Framework

imation made to obtain a self-consistent equation of motion for F2(k, t). In 2003, an ambitious
theoretical framework was developed by Szamel [61] which effectively delays this uncontrolled approx-
imation by including physical higher-order density correlations in the picture. These higher-order
density correlation functions are defined as straight generalisations of F2(k, t): F2n(k1, ...,kn, t) ∝
〈ρ̂∗k1

...ρ̂∗kn ρ̂k1
(t)...ρ̂kn(t)〉. This framework is now formally known as the Generalised Mode Coupling

Theory (GMCT) [41]. By incorporating higher-order correlation functions, the hope was to cure
MCT’s overestimation of Tg. Initial results by Wu et al. [70] were promising in this light, and more
recent results seem to show that a ‘logarithmic convergence’ TGMCT → TG is attained by increas-
ing the number of considered many-density correlation functions in the theory [49, 50]. GMCT also
provides quantitative improvements on the power-law exponents of the MCT. Other recent GMCT
results [26] also show that it is capable of accurately predicting very different dynamics of interacting
glass formers from essentially indistinguishable (for the human eye) structural input. In this case as
well, we see from Fig.7b below that increasing the number nmax of many-body correlation functions
in the theory seemingly leads to a convergence towards the simulation results.

(a) (b)

Figure 7: (a) Phase diagram of binary hard-sphere system predicted by MCT. Parameter δ represent
the radii ratio of the binary system [67]. - (b) Comparison of relaxation time predicted from GMCT
for multi-component interacting glass formers with simulation [26].

In this work, we will make use of the fact that the GMCT of the glass transition can incorporate
an arbitrary number of many-density correlation functions F2n to obtain direct access to the higher-
order dynamical susceptibilities defined as straight generalisations to (6). In a first instance, we will
therefore extend the GMCT to inhomogeneous environments by appropriately considering a spatially
varying external field U(q0) that we recall is chosen to couple to the density modes. We stress that this
is a completely novel result, and refer to this new framework as iGMCT. By treating the equations of
motion for these F2n as a Landau theory [5], their functional variations with respect to the external field
U(q0) then results in an equation of motion for the odd-point susceptibilities χ2n+1(t) ≡ δF2n(t)/δU
of any order which can in turn be solved self-consistently. We note that progress in this line has already
been made in recent years with the development of the inhomogeneous MCT from which the 3-point
susceptibility has been derived [18, 52]. Additionally, the microscopic equation for the three-point
susceptibility χ3(t) has been solved in [64] with non-trivial results relating to the dependence on the
wave-numbers. The authors report on the emergence of a lengthscale from the iMCT framework but
more intriguingly on the absence of a dominant density mode ρ̂k that would drive these dynamical
heterogeneities in time. We stress however that the development of these non-linear susceptibilities is
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still in its infancy, and in-depth comparisons with the established χ4(t) are still lacking.

2 A Microscopic Framework for the Glass Transition in Inho-
mogeneous Environments

2.1 The Mori-Zwanzig Formalism & Generalised Langevin Equations

We seek to construct equations of motion for a set of classical dynamical observables in the language
of statistical mechanics. These observables will eventually turn out to be our order parameters F2n,
but we keep the discussion general for now. We demonstrate below how to construct a formal function
space out of classical dynamical variables and how to derive Generalised Langevin Equations (GLEs)
in this function space. This technique serves as the basis of mode-coupling theories.

Let A be a general dynamical variable of an arbitrary autonomous classical system with Hamil-
tonian H. Clearly A ≡ A({q}, {p}) is a function of the set of generalised positions and momenta
{q}, {p}. This dynamical variable evolves in time according to Hamilton’s equation of motion, which
can be casted in the following compact form using Poisson brackets:

dA(t)

dt
= {H,A} = iLA (7)

where the Liouvillian operator :

iL =
∑
j

[
∂H
∂pj

∂

∂qj
− ∂H
∂qj

∂

∂pj

]
(8)

has been defined. We note that (7) is a linear differential equation which admits solution

A(t) = eiLtA(t = 0)

=

∞∑
l=0

(iLt)l

l!
A(t = 0)

(9)

provided that L is bounded in the (function) space of dynamical variables. This demonstrates that
the Liouvillian is the infinitesimal generator of the time-translation group in classical mechanics [34].
Since iL is a linear operator, we may think of the dynamical variables on which it acts as members of
some vector space. To make this idea clearer, we introduce bra-ket notation : A → |A〉 ∈ H, where
H denotes the space of all dynamical variables. Additionally, we introduce an inner product on this
vector space with the help of a Gibbsian probability weight ψ(Γ) = exp[−βH(Γ)]

〈A|B〉 ≡ 1

Z

∫
dΓA∗Bψ(Γ) (10)

where A∗ denotes complex conjugation and Z the partition function. This choice of inner product is
commonly referred to as Zwanzig’s inner product [73]. Other suitable inner products also exist, see for
instance Mori’s inner product [38], which resembles a (classical) Kubo transform. A Euclidean metric
can be easily defined as d =

√
〈A|A〉. This completes the construction of our space of dynamical

variables, which is formally a Hilbert function space.

The formal solution (9) for the time evolution of dynamical variables is not very useful as evaluat-
ing the exponential of a differential operator is generally a complex task. Instead, it is more judicious
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to consider only a subset of dynamical variables {|Aj〉} ⊂ H, whose elements are referred to as slow
variables and are generally of greater physical interest such as the energy density, number density,
momentum density,or angular momentum density [58, 57, 51]. In our case, we will later restrict
the slow subspace to (multiplets) of density modes and their associated currents. If necessary, the
Gram-Schmidt procedure (or any other orthonormalisation method) can be employed to construct an
orthonormal basis for the subspace spanned by this set. The denomination slow stems from the fact
that these dynamical variables should evolve on macroscopic time-scales rather than microscopic.

We abuse notation and write |A(t = 0)〉 ≡ |A〉 for quantities evaluated at zero time from now on
and for the rest of this work. We may define a projector P, which projects any dynamical variable
onto the subspace spanned by our chosen subset {|Aj〉}. The physical motivation behind this is that
the equations of motion for a set of macroscopic ‘slow’ observables are generally self-determined in
physics. Formally, we write

P =
∑
l,l′

|Al〉 gll′ 〈Al′ | (11)

where gll′ ≡ 〈Al|Al′〉−1
is such that P2 = P, as for any projector. Let us denote the complement to

this projector by Q = 1− P. We may re-write the Liouville equation:

d |Aj(t)〉
dt

=
d

dt
eiLt |Aj〉

= eiLt(P +Q)iL |Aj〉

=
∑
l,l′

〈Aj |Al〉† 〈Al|Al′〉−1
eiLt |Al〉+ eiLtQiL |Aj〉

=
∑
l

iΩjl |Al(t)〉+ eiLtQiL |Aj〉

(12)

where the quantities iΩij are elements of a matrix iΩ which we call a frequency matrix since it has the
dimension of inverse time. We now decompose the time-evolution operator in a non-trivial manner
using the Dyson identity:

eiLt = eiLtO(t) + eiQLt

where it can be shown that [55]

O(t) = i

∫ t

0

dτe−iLτPLeiQLt

Upon substitution into (12), we obtain

d |Aj(t)〉
dt

=
∑
l

iΩjl |Al(t)〉+

∫ t

0

dτeiL(t−τ)iPL |fj(τ)〉+ |fj(t)〉 (13)

where the fluctuating force |fj(t)〉 ≡ eiQLtiQL |Aj〉 has been defined. At time zero, we can write

|fj〉 = (1− P)|Ȧj〉

= |Ȧj〉 −
∑
l

iΩjl |Al〉 (14)
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2.1 The Mori-Zwanzig Formalism & Generalised Langevin Equations

where we have used the following result: P|Ȧj〉 =
∑
l iΩjl |Al〉. Formally, the fast-fluctuating force

is composed of the time-derivative of the slow-variables, projected in the orthonormal (fast) subspace
and propagated in that same fast-subspace [55]. By construction we have that the fluctuating force is
orthogonal to the set of slow dynamical variables : 〈fi(t)|Aj〉 = 0 ∀ j and at all times, which motivates
its nomenclature. Next we need to determine iPL |fj(t)〉:

iPL |fj(t)〉 =
∑
l,l′

〈iLfj(t)|Al〉† 〈Al|Al′〉−1 |Al′〉

= i
∑
l,l′

〈fj(t)|LAl〉† 〈Al|Al′〉−1 |Al′〉

= i
∑
l,l′

〈fj(t)|QLAl〉† 〈Al|Al′〉−1 |Al′〉

= −
∑
l,l′

〈fj(t)|fl(0)〉† 〈Al|Al′〉−1 |Al′〉

= −
∑
l

Kjl(t) |Al〉

(15)

where in the third line we have made use of orthogonality of the fluctuating force |fj〉 with the slow
subset {|Al〉}. By substitution into (13), we obtain:

d |Aj(t)〉
dt

=
∑
l

iΩjl |Al(t)〉 −
∑
l

∫ t

0

dτKjl(τ) |Al(t− τ)〉+ |fj(t)〉 (16)

Since we are interested in correlation functions of slow variables Cij(t) = 〈Ai|Aj(t)〉, we close the above
expression to obtain, using matrix notation (and changing variables in the convolution integral):

dC(t)

dt
= iΩ ·C(t)−

∫ t

0

dτK(t− τ) ·C(τ) (17)

which is known as the Mori-Zwanzig (M-Z) equation. It is a type of Generalised Langevin Equation
due to its resemblance to the phenomenological equation for a Brownian colloid in a solvent if we as-
sociate the integral term with random stochastic forces. The M-Z equation differs from conventional
Fokker-Planck approaches of out-of-equilibrium statistical mechanics [65] by its delayed-feedback na-
ture encoded in the memory kernel K and the absence of explicit random processes. The M-Z equation
is microscopically exact and fully deterministic. As we will see, once the slow variables of a system
have been identified, the main difficulty lies in finding an approximate closed form for the memory
kernel K. We stress that while the memory kernel is proportional to the auto-correlation of the ran-
dom force, it does not necessarily imply that it is a fast-variable itself. Lastly, we emphasise that no
approximations have been made, and that (17) is a formally exact equation for the time evolution of
correlation functions.

The construction leading to (17) helps us understand the behaviour of the solutions in an abstract
manner. Since time evolution takes the form of a unitary operator, we may imagine the time evolution
of the vector of slow variables | ~A〉 as a rotation over the surface of a classical ‘Bloch hypersphere’.

At short times, | ~A〉 remains in the sub-space spanned by its elements, but at longer-times the time-

evolution will make | ~A〉 pick up character from the fast-subspace [73], which we associate with random
noise and non-trivial hydrodynamic effects in applications to liquid behaviour. It is this ‘interaction’
of | ~A〉 with the fast subspace that leads to the successes of mode-coupling theories in predicting
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the behaviour of supercooled liquids for instance. We additionally mention that the above formalism
is directly translatable to quantum systems where the language of Hilbert spaces is more common [53].

Figure 8: Schematic illustration of the Mori-Zwanzig projection operator formalism. The green blob
represents our functional space of all dynamical variables. In orange we represent the slow-subspace.
The exact solution to the slow variables (black trajectory) is projected onto the slow subspace (red
trajectory) with the help of projection operator P.

2.2 Inhomogeneous General Langevin Equations

We extend the formalism of the previous section to inhomogeneous environments. We consider a
classical fluid of N-particles in a spatially varying external field U(q0) which couples to density fluctu-
ations. The Hamiltonian reads : H = H0 +U(q0) where H0 contains the usual kinetic and interaction
potential contributions. In addition to the matrix structure of the equation of motion we introduce a
*-product, which takes into account integration over the relevant shared degrees of freedom (momenta
in our case below). This is due to translational-symmetry breaking from the external field. We should
think of it as a continuous matrix product as is common in Green’s function methods in field theories.
Using Einstein summation convention for repeated (matrix) Greek indices, (17) now reads:

Ċαβ(t)− iΩαγ ∗ Cγβ(t) +

∫ t

0

dτKαγ(t− τ) ∗ Cγβ(τ) = 0 (18)

where for instance, the frequency matrix now admits the following form : iΩαβ = 〈Ȧα|Aγ〉∗〈Aγ |Aβ〉−1.
Down the line we will also make use of a timescale separation approximation, which decomposes the
integral kernel into Kαβ(t) = ναβδ(t) +Mαβ(t). The fast decaying quantities are all concatenated in
an effective instantaneous friction parameter ναβ while the slow modes are kept in the memory term
Mαβ(t).

To obtain the final form of the equations of motion, we will have to invert correlation-functions,
which is a non-trivial exercise from the given ‘operator’-like structure of the latter. Accounting for
the fact that classical quantities commute with each other with an appropriate symmetry factor 1/m!,

we define the inverse of an arbitrary equal-time correlation matrix C
(2m)
αβ of dimension 2m in Fourier

space as follows [3, 62]:
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2.3 Inhomogeneous Mode Coupling Theory

(
C(2m)

)
αγ
∗
(
C(2m)

)−1

γβ
=

1

m!

∑
{k′′j }

(
C(2m)

)
αγ

(k1, ...,km; k′′1 , ...,k
′′
m)
(
C(2m)

)−1

γβ
(k′′1 , ...,k

′′
m; k′1, ...,k

′
m)

= δαβ
∑

σ({k′j})

δk1,k′1
...δkm,k′m

= δαβ Id2m(k1, ...,km; k′1, ...,k
′
m)

(19)

where the sum
∑
σ runs over all permutations of the elements of the set {k′j}. We have defined a

general identity that we denote Id2m(k1, ...,km; k′1, ...,k
′
m) ≡

∑
σ({k′j})

δk1,k′1
...δkm,k′m which is some-

times referred to as a symmetrised generalised Kronecker symbol. We note that we must pay careful
attention to algebraic manipulations in theories with an inhomogeneous environment as the nature of
the considered external field could breaks the hermicity of the Hamiltonian (H 6= H†) and thus that
of the Liouvillian as well (iL 6= −iL†).

In the present work, we will always have a subset of slow variables of dimension two, so that the
MZ equation is a 2 × 2 matrix integro-differential equation. Ultimately, only the 2-1 element of the
system will be of interest to us. Explicitly, we can always write (for reasons that will become clear
later on)

Ċ11(t) = iΩ12 ∗ C21(t)

and

Ċ21(t) = iΩ21 ∗ C11(t)−
∫
dτK22(t− τ) ∗ C21(τ)

We invert the first equation to close the second one in favour of C11(t), leading to :

C̈11(t)− iΩ12 ∗ iΩ21 ∗ C11(t) + ν Ċ11(t) +

∫
dτ iΩ12 ∗M22(t− τ) ∗ (iΩ12)−1 ∗ Ċ11(τ) = 0 (20)

which forms the basis of inhomogeneous mode coupling theories for the glass transition.

2.3 Inhomogeneous Mode Coupling Theory

We are now in a position to choose our set of dynamical variables and derive an inhomogeneous Mode-
Coupling Theory (iMCT). Since we seek to derive a theory for dynamical correlations of density fields,
a density fluctuation mode and its associated (longitudinal) current seems an appropriate starting
point. In Fourier space, these quantities take the following form :

|A(1)
k (t)〉 = |ρ̂k(t)〉 =

N∑
j=1

eik·rj(t) −

〈
N∑
j=1

eik·rj(t)

〉

|A(2)
k (t)〉 = |jLk (t)〉 =

N∑
j=1

k̂ · pj
m

eik·rj(t)

(21)

where the canonical average is performed with respect to the perturbed Hamiltonian H defined in

the previous section. The dynamic correlation matrix is thus Cαβ(k; k′, t) ≡ 〈A(α)
k |A

(β)
k′ (t)〉 where the
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2.3 Inhomogeneous Mode Coupling Theory

semi-column separates the vectors in the space of dynamical variables (to the right of the semi-column)
from those belonging to its dual (to the left of the semi-colomn). By convention, we will always assume
that time-dependent quantities belong to the space of dynamical variables and are thus to the right of
the semi-column. It is easy to see that for our choice of dynamical variables, the zero-time correlation
matrix is diagonal: Cαβ ∝ δαβ , as for any equal time variable x, 〈x|ẋ〉 = −〈x|ẋ〉 = 0 by integrating
by parts. We thus have

C(k1; k2, t = 0) =

(
NS(k1; k2) 0

0 NkBT
m (k̂1 · k̂2)φ(k1 − k2)

)
(22)

The first entry S(k1; k2) ≡ N−1 〈ρ̂k1
|ρ̂k2
〉 is known as the (inhomogeneous) static-structure factor.

We have also defined the average of a single density mode φ(k) = N−1〈
∑N
j=1 e

ik·rj 〉. Along with their
higher-order equivalents, many-body structure factors serves as sole initial conditions to the equations
of motion we derive. The 2-body static structure factor S(k1; k2) is related to the well known pair-
distribution function g(r1, r2), which can be calculated from integral equation theory [39]. Its time
dependent version will be denoted F2(k1; k2, t) ≡ N−1 〈ρ̂k1 |ρ̂k2(t)〉 which we recall serves as an order
parameter to detect the glass phase. F2 is often referred to as the dynamical structure factor. To
obtain the second non-zero entry, we make use of the following result :

〈A(2)
k |A

(2)
k′ 〉 =

〈
N∑

l,l′=1

k̂ · pl
m

e−ik·rl
k̂′ · pl′
m

eik
′·rl′

〉

≈ kBT

m

N∑
l,l′=1

δll′
〈

(k̂ · k̂
′
)e−ik·rleik

′·rl′
〉

=
NkBT

m
(k̂ · k̂

′
)φ(k− k′)

In the absence of an external field, we have φ(k)δk,0 = 1. We note that we make use of energy

conservation to write 〈vαl vα
′

l′ 〉 = δαα′kBT/m, as the direction vector k̂ only picks up a single ar-
bitrary direction α. The next quantity to be evaluated is the frequency matrix iΩαβ(k1,k2) ≡∑

k〈A
(α)
k1
|A(γ)

k 〉〈A
(γ)
k |A

(β)
k2
〉−1. It can be put into form

iΩ(k1; k2) =

(
0 i|k1|δk1,k2∑

k
kBT
m k̂1 · (ik)φ(k1 − k)S−1(k; k2) 0

)
(23)

At last the integral kernel needs to be evaluated. We recall the definition of the fluctuating force (14)
which in our case is a two-component vector where the first element is zero:

|fk〉 =

(
0

|Rk〉

)
and

|Rk〉 = |Ȧ(2)
k 〉 −

∑
k′

iΩ21 (k,k′) |A(1)
k′ 〉 (24)
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which can then be inserted in the definition of the memory kernel (15):

K(k1; k2, t) =
∑
k

〈fk1 |eiQLt|fk〉〈Ak|Ak2〉−1

=
∑
k

(
0 0

0 〈Rk1 |eiQLt|Rk〉

)(
NS(k; k2) 0

0 J2(k; k2)

)−1

=

(
0 0

0
∑

k〈Rk1 |eiQLt|Rk〉J−1
2 (k; k2)

)

This form justifies the inversion leading to (20), as all matrix elements of K are zero expect for the

lower-right corner. We note that we have defined J−1
2 (k; k′) ≡ 〈A(2)

k |A
(2)
k′ 〉
−1 to ease notation. In full,

we may now write the inhomogeneous GLE for the dynamic structure factor:

0 = F̈2(k1; k2, t) + νḞ2(k1; k2, t) +
kBT

m

∑
k,k′

(k1 · k)φ(k1 − k)S−1(k; k′)F2(k′; k2, t)

+
∑
k,k′

∫ t

0

dτ
|k1|∣∣k′∣∣ 〈Rk1 |eiQLt|Rk〉J−1

2 (k; k′)Ḟ2(k′; k2, τ)

(25)

The principal difficulty lies in the calculation of the propagation of the fluctuating force in the fast sub-
space : 〈Rk1

|eiQLt|Rk〉, as a closed form for Q is not directly obtainable, let alone its exponential. We

look for a first order approximation to this correlation-function. We remark that |Rk〉 ∝ |Ȧ(2)
k 〉 ∝ |

d
dtp〉

is an impulse term. Since any force can be expressed as the gradient of a potential, we heuristically
have, neglecting the external field contributions:

d

dt
p = −

∑
ll′

~∇ · Φ(|rl − rl′ |) ∝
∑
q

iqΦ̃(q)ρ̂∗qρ̂q

which contains a pair of fluctuating density modes. Moreover, a pair of density modes |ρ̂ρ̂〉 is the
simplest combination of dynamical variables at hand that satisfies the even-parity of |R〉 under time-
reversal. Surprisingly then, we find a slow variable hidden in the memory function which we thought
was governed by fast variables ! This result suggests that a pair of density modes is an appropriate can-
didate to construct a subspace which we can restrict the fast dynamics to. We replace the propagation
in the fast-subspace by a time-propagation in the entire space of dynamical variables, but projected
onto pairs of density modes. More formally, the following approximation is made eiQLt → P2e

iLtP2

[55, 34] where P2 is a projection operator onto the subspace spanned by pairs of density modes |ρ̂qρ̂q′〉:

P2 =
1

(2!)2

∑
q,...,q′′′

|ρ̂qρ̂q′〉 〈ρ̂qρ̂q′ | ρ̂q′′ ρ̂q′′′〉−1 〈ρ̂q′′ ρ̂q′′′ | (26)

It is easy to show that P2P2 = P2 is indeed a projector by using the definition of the inverse (19). We
emphasise that this approximation is uncontrolled at best, as important other important contributions
from the fast-subspace could be neglected. Denoting byG(q,q′; k,k′) ≡ 〈ρ̂qρ̂q′ |ρ̂kρ̂k′〉 static four-point
structure factors and F4(q,q′; k,k′, t) ∝ 〈ρ̂qρ̂q′ |ρ̂k(t)ρ̂k′(t)〉 the associated time-dependent quantity,
we may write:
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〈Rk1
|P2e

iLtP2|Rk〉 =
1

(2!)4

∑
q1,...,q4

∑
q′1,...,q

′
4

〈Rk1 |ρ̂q1
ρ̂q2
〉G−1(q1,q2; q3,q4)F4(q3,q4; q′1,q

′
2; t)

×G−1(q′1,q
′
2; q′3,q

′
4)〈ρ̂q′3 ρ̂q′4 |Rk〉

=
1

(2!)2

∑
q,q′

∑
q′′,q′′′

Vq0
(k1; q,q′)F4(q,q′; q′′,q′′′, t)V †q0

(k; q′′,q′′′)

(27)

where the following inhomogeneous vertices Vq0
have been defined:

Vq0
(k1; q,q′) =

1

2!

∑
q′′,q′′′

〈Rk1 |ρ̂q′′ ρ̂q′′′〉G−1(q′′,q′′′; q,q′)

≈ 1

2!N2

∑
q′′,q′′′

〈Rk1
|ρ̂q′′ ρ̂q′′′〉

[
S−1(q′′; q)S−1(q′′′; q′) + S−1(q′′; q′)S−1(q′′′; q)

]
=

1

N2

∑
q′′,q′′′

〈Rk1 |ρ̂q′′ ρ̂q′′′〉
[
S−1(q′′; q)S−1(q′′′; q′)

]
In the second line above, we made use of Gaussian factorisation of the four-point static correlation
functions [69]: G(k1,k2; k3,k4) ≈ GD(k1,k2; k3,k4) ≡ S(k1; k3)S(k2; k4) + S(k1; k4)S(k2; k3). The
form of the inverse G−1

D follows from the definition given in (19). We can simplify it further by writing
down explicitly the fluctuating force term :

〈Rk1 | ρ̂q′′ ρ̂q′′′〉 =
−iNkBT

m

[
(k̂1 · q′′)S−1(k1 − q′′; q′′′) + (q′′ ↔ q′′′)

]
+
iNkBT

m

∑
k,k′

k̂1 · kφ(k1 − k)S−1(k; k′)S3(k′; q′′,q′′′)
(28)

where S3(k; k′,k′′) ≡ N−1〈ρ̂k|ρ̂k′ ρ̂k′′〉 is a 3-point static correlator. Hence, the full inhomogeneous
mode coupling vertex can be written as

Vq0
(k; q,q′) = − ikBT

Nm

∑
q′′,q′′′

[
(k̂1 · q′′)S−1(k1 − q′′; q′′′) + (q′′ ↔ q′′′)

]
S−1(q′′; q)S−1(q′′′; q′)

+
ikBT

Nm

∑
q′′,q′′′

∑
k,k′

k̂1 · kφ(k1 − k)S−1(k; k′)S3(k′; q′′,q′′′)S−1(q′′; q)S−1(q′′′; q′)

(29)

By defining a reduced vertex function :

V̄q0
(k; q,q′) =

1

2
Vq0

(k; q,q′)

we may write down the full e.o.m. for dynamic structure factors F2 :
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0 = F̈2(k1; k2, t) + νḞ2(k1; k2, t) +
kBT

m

∑
k,k′

(k1 · k)φ(k1 − k)S−1(k; k′)F2(k′; k2, t)

+
kBT

m

∫ t

0

dτ
∑
k,k′

∑
q,q′

∑
q′′,q′′′

k1

k′
V̄q0

(k1; q,q′)F4(q,q′; q′′,q′′′, t− τ)V̄ †q0
(k; q′′,q′′′)J−1(k; k′)Ḟ2(k′; k2, τ)

(30)
where momentum conservation is implied : k1 = k2 + q0 in the statistically averaged quantities. We
observe that the effect of the external field is entirely implicit in (30), which has a very similar form
to that of homogeneous mode-coupling theory [20]. Indeed, all necessary information is contained
within the (many-body) static structure factors which serve as initial conditions to the equation of
motion. The reason for this is rooted in density functional theory, which tells us that the density
profile ρ(r) and higher order equivalents ρ(n)({rj}) (from which many-body structure factors can be
derived) are uniquely determined by the interaction potentials between particles, and the external
field. Furthermore, the reader familiar with statistical field-theoretic ideas may recognise the similar-
ity of (30) with the Dyson equation : F = F0 + F ∗Σ ∗ F0. The similarity with a phonon propagator
in the random phase approximation (RPA) is even more striking when (30) is expressed in Laplace
frequency-space, which heuristically gives F (z) ∝ [z −M(z)]−1 and where the memory kernel acts as
self-energy corrections. While there exists a large number of field-theoretic approaches to the prob-
lem of glass formation, the equivalence of equations of motion obtained from truncated perturbative
expansions and that obtained via projection operator techniques remains unclear [6, 5, 28, 29]

The next step to finalise the mode-coupling theory would be to render (30) self-consistent by
approximating the dynamic four-point structure factor

F4(q,q′; q′′,q′′′, t− τ) ≈ F2(q, ; q′′, t− τ)F2(q′, ; q′′′, t− τ) + (q′′ ↔ q′′′)

By applying this last factorisation approximation, we recover known results previously derived by
Biroli et al. [18]. However, we seek to derive an inhomogeneous Generalised Mode-Coupling theory
(iGMCT), in the spirit of [61, 41]. The idea is to delay the self-consistent approximation in order
to incorporate higher-order correlation functions in our framework. The incorporation and treatment
of higher-order correlation functions has been central to the understanding of glass physics in the
recent years. We can then follow the Mori-Zwanzig formalism once again to obtain a formally exact
equation of motion for the 4-point correlation function F4(q,q′; q′′,q′′′, t) by considering doublets
of density modes |ρ̂qρ̂q′〉 as slow dynamical variables. The equation of motion for F4 will in turn
have a memory function of its own, which to first order can be shown to be governed by 6-point
correlation functions F6 as we will see. This 6-point function will in turn be governed by an 8-point
function F8 etc. We then effectively obtain a hierarchy of coupled equations of motion for the set
of even dynamic many-body density correlation functions F2n. We may then imagine delaying the
self consistent approximation to infinity, which would effectively wash it away. With these ideas in
mind, we turn ourselves to the derivation of equations of motion for higher-order dynamic structure
factors F2n(k1, ...,kn; kn+1, ...,k2n, t) in the presence of a spatially varying external field from the
Mori-Zwanzig formalism. We note that the derivation of an inhomogeneous GMCT is a completely
novel result.
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2.4 Inhomogeneous Generalised Mode Coupling Theory

2.4.1 An Explicit Equation of motion for F4

We derive below an explicit equation of motion for the 4-point inhomogeneous dynamic correlation
function: F4(k1,k2; k3,k4, t) = N−1〈ρ̂k1

ρ̂k2
|ρ̂k3

(t)ρ̂k4
(t)〉. From the Mori-Zwanzig formalism de-

veloped for arbitrary dynamical variables, we know that (18) is correct for the following choice of

dynamical variables: a density mode doublet |A(1)
k,k′〉 = |ρ̂kρ̂k′〉 and the associated generalised current

|A(2)
kk′〉 = −i|Ȧ(1)

k,k′〉. By extracting the two necessary equations:

Ċ11(k1,k2,k3,k4; t) =
1

2!

∑
k,k′

iΩ12(k1,k2,k,k
′)C21(k,k′,k3,k4; t)

and

Ċ21(k1,k2,k3,k4; t) =
1

2!

∑
k,k′

iΩ21(k1,k2,k,k
′)C11(k,k′,k3,k4; t)

− 1

2!

∑
k,k′

∫
dt′K22(k1,k2,k,k

′; t′)C21(k,k′,k3,k4; t− t′)

we can then close this last one in favour of C11 to eventually give

C̈11(k1,k2,k3,k4; t) =
1

(2!)2

∑
k,...,k′′′

iΩ12(k1,k2,k,k
′)iΩ21(k,k′,k′′,k′′′)C11(k′′,k′′′,k3,k4; t)

− 1

(2!)3

∫
dt′

∑
k,...,k′′′′′

iΩ12(k1,k2,k,k
′)K22(k,k′,k′′,k′′′; t′)

× (iΩ12)−1(k′′,k′′′,k′′′′,k′′′′′)Ċ11(k′′′′,k′′′′′,k3,k4; t− t′)

(31)

From our choice of dynamical variables, we immediately have at zero time Cαβ ∝ δαβ . where we can
write the matrix

C(k,k′; q,q′) =

(
NG(k,k′; q,q′) 0

0 J4(k,k′; q,q′)

)
(32)

where G is the static 4-point structure factor introduced in the previous section. It will be Gaussian
decomposed as custom (G ≈ GD). The quantity J4 ≡ 〈A(2)|A(2)〉 is evaluated using similar tricks as
for J2. This essentially consists of :

J4(k,k′; q,q′) =
1

mβ

[
(k · q)〈ρ̂∗k′ ρ̂q′ ρ̂q−k〉+ (k · q′)〈ρ̂∗k′ ρ̂qρ̂q′−k〉

+ (k′ · q)〈ρ̂∗kρ̂q′ ρ̂q−k′〉+ (k′ · q′)〈ρ̂∗kρ̂qρ̂q′−k′〉
] (33)

where we remark that all 3-point correlators in (33) above are of the form 〈ρ̂aρ̂bρ̂c+d〉. We factorise
the terms as : 〈ρ̂aρ̂bρ̂c+d〉 ≈ 〈ρ̂c+d〉〈ρ̂aρ̂b〉, which is of O(N2). We note that we omit terms from the
decomposition that go as 〈ρ̂a〉〈ρ̂bρ̂c+d〉. This is due to the fact that in the zero field limit, such terms
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2.4 Inhomogeneous Generalised Mode Coupling Theory

go ∝ δa,0 which will be neglected as our theoretical development ignores all zero wave-vector modes.
This is an illustration of the N -ordering argument that is often used in mode-coupling theories [57].
Hence we may write:

J4(k,k′; q,q′) ≈ N2

mβ

[
(k · q)S(k′; q′)φ(k− q) + (k · q′)S(k′; q)φ(k− q′)

+ (k′ · q)S(k; q′)φ(k′ − q) + (k′ · q′)S(k; q)φ(k′ − q′)

] (34)

In turn, the frequency matrix also goes as iΩαβ ∝ (1−δαβ) where: iΩ12(k,k′; q,q′) = i Id2(k,k′; q,q′),
and

iΩ21(k,k′; q,q′) =
i

mβ

∑
n

(
(k · n)φ(k− n)

(
S−1(n; q)δk′,q′ + S−1(n; q′)δk′,q

)
+ (k↔ k′)

)
such that we may write the frequency term in (31) as

i2

2!

∑
k′′,k′′′

Ω21(k1,k2,k
′′,k′′′)C11(k′′,k′′′,k3,k4; t) =

= − 1

mβ

∑
n,q

(
(k1 · n)φ(k1 − n)S−1(n; q)C11(q,k2; k3,k4, t)

+ (k1 ↔ k2)

(35)

We notice the important similarity of the frequency term above with that of homogeneous GMCT

where it is found that iΩ
(4)
21 ∼ iΩ

(2)
21 + iΩ

(2)
21 [41]. Additionally, while the term seems divergent we must

keep in mind that momentum conservation must be enforced on each observable. This adds strong
constraints over the summations.

We now turn ourselves to the integral term. After insertion of the two iΩ12 in the third term of
(31) on the right hand side, we eventually have

1

2!

∫
dt′
∑
k,k′

K22(k1,k2,k,k
′; t′)

∂

∂t
C11(k,k′,k3,k4; t− t′)

where

K22(k1,k2,k3,k4; t) =
1

2!

∑
k,k′

〈Rk1,k2 |eiQLt|Rk,k′〉〈A
(2)
k,k′ |A

(2)
k3,k4

〉−1 (36)

with

|Rk1,k2
〉 = |Ȧ(2)

k1,k2
〉 − i

(2!)2

∑
k,...,k′′′

〈A(2)
k1,k2

|A(2)
k,k′〉〈A

(1)
k,k′ |A

(1)
k′′,k′′′〉

−1|A(1)
k′′,k′′′〉 (37)

the fluctuating force term associated with doublets of density modes. For analogous reasons as (24),
the propagator in the fast-subspace cannot be evaluated exactly. In the spirit of MCT we look for
the dominant terms in the fluctuating force. It is not hard to see that similar impulse terms arise and
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2.4 Inhomogeneous Generalised Mode Coupling Theory

that this time to leading order, |R〉 ∼ |ρ̂ρ̂ρ̂〉 : triplets of density modes. We then decide to restrict
the dynamics of the 4-point dynamic correlator onto the subsapce spanned by 6-point correlators.
Formally, we make the following approximation:

〈R|eiQLQt|R〉 → 〈R|P3e
iLtP3|R〉 (38)

with P3 a projector on density triplets. Contrary to homogeneous GMCT where the projection is
made on a set of two dominant density triplets denoted |αn〉, |βn〉 [41], we consider a projection onto
the subspace of all density triplets |γn1,n2,n3

〉 ≡ |ρ̂n1
ρ̂n2

ρ̂n3
〉. We show in Sec-2.3 that P3 reduces to

the homogeneous triplet projection in an appropriate vanishing field limit. The projector then reads:

P3 =
1

(3!)2

∑
{nj},{n′j}

|γn1,n2,n3
〉
〈
γn1,n2,n3

∣∣γn′1,n′2,n′3〉−1 〈
γn′1,n′2,n′3

∣∣ (39)

where we naturally have P3P3 = P3. We may then write the projected integral kernel:

〈Rk1,k2 |P3e
iLtP3|Rk,k′〉 =

1

(3!)2

∑
{nj},{n′j}

Vq0
(k1,k2; {nj})

〈
γn1,n2,n3

∣∣γn′1,n′2,n′3(t)
〉
V†q0

(k,k′; {n′j})

(40)

where a ‘generalised’ vertex analogous to the iMCT case can be defined:

Vq0
(k1,k2; n1,n2,n3) =

1

3!

∑
n′1,n

′
2,n
′
3

〈Rk1,k2
|γn′1,n′2,n′3〉〈γn′1,n′2,n′3 |γn1,n2,n3

〉−1

=
1

3!

∑
n′1,n

′
2,n
′
3

〈Ȧ(2)
k1,k2

|γn′1,n′2,n′3〉〈γn′1,n′2,n′3 |γn1,n2,n3
〉−1

+
1

3!

∑
n′1,n

′
2,n
′
3

ikBT

m

∑
k′′,k′′′

∑
n

(
(k1 · n)φ(k1 − n)S−1(n; k′′)δk2,k′′′ + (k1 ↔ k2)

)
× 〈A(1)

k′′,k′′′ |γn′1,n′2,n′3〉〈γn′1,n′2,n′3 |γn1,n2,n3
〉−1

(41)

We notice that the quantity 〈γ|γ〉 is a 6-point static density correlation function, which we Gaussian
factorise into 6 terms : 〈γ|γ〉 ∼

∑
σ N

3SSS. We also apply the usual set of approximations on the
other static correlation functions. Lengthy algebraic manipulations eventually lead to

Vq0
(k1,k2; n1,n2,n3) ≈ −6ikBT

mN

∑
n

(k1 · n)S−1(n; n1)δk1−n,n2
δk2,n3

+
ikBT

mN2

∑
n′1,...,n

′
3

∑
k′′,n

(
(k1 · n)φ(k1 − n)S−1(n; k′′)S5(k′′,k2; n′1,n

′
2,n
′
3)

× S−1(n′1; n1)S−1(n′2; n2)S−1(n′3; n3)

)
+ (k1 ↔ k2)

(42)

While the first and second terms of (42) above seem to differ by a factor of 1/N , both go as O(1) in
the thermodynamic limit, and thus must be regarded on equal footings. Hence, the full equation of
motion for the 4-point dynamic structure factor F4 can be written in full as:
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2.4 Inhomogeneous Generalised Mode Coupling Theory

0 = F̈4(k1,k2; k3,k4, t) + νḞ4(k1,k2; k3,k4, t) +
kBT

m

∑
k,k′

(k1 · k)φ(k1 − k)S−1(k; k′)F4(k′,k2; k3,k4, t)

+
kBT

m

∑
k,k′

(k2 · k)φ(k2 − k)S−1(k; k′)F4(k1,k
′; k3,k4, t)

+
N

(2!)2(3!)2

∑
{nj},{n′j}

∑
k,...,k′′′

∫ τ

0

Vq0
(k1,k2; n1,n2,n3)F6(n1,n2,n3; n′1,n

′
2,n
′
3, t− τ)V†q0

(k,k′; n′1,n
′
2,n
′
3)

× J−1
4 (k,k′; k′′,k′′′)Ḟ4(k′′,k′′′; k3,k4, τ)

(43)
We would like to emphasise that this is the first fully microscopic equation of motion for a dynamic
4-point correlation function of density modes in the presence of a spatially varying external field,
and provides way to go beyond iMCT which is ultimately still cluttered by the same issues as its
homogeneous counterpart. This is an important first step towards the development of an iGMCT. We
will see later that a variation of (43) with respect to the conjugate field will in turn give an equation
of motion for the 5-point susceptibility χ5.

2.4.2 Generalisation to Arbitrary Order

Having derived the first two levels of the hierarchy explicitly, we are in position to write down the
iGMCT equation of motion at any hierarchy level provided that : a) the chosen slow variables are
always density multiplets and their associated currents, b) the memory kernel is projected onto the
(n+ 1)-th density multiplet. Indeed it is not hard to show inductively that the memory kernel in the
equation of motion for the 2n-th dynamic correlator is always proportional to 2(n + 1)-th collective

modes analogously to [41]. Let us adopt the general notation |A(1)
k1,...,kn

〉 ≡ |ρ̂k1 . . . ρ̂kn〉 for density mul-

tiplets and |A(2)
k1,...,kn

〉 ≡ −i|Ȧ(1)
k1,...,kn

〉 for the associated current. Then, the equation of motion for the

many body dynamic structure factor F2n(k1, ...,kn; kn+1, ...,k2n, t) ≡ N−1〈A(1)
k1,...,kn

|A(1)
kn+1,...,k2n

(t)〉
reads:

0 =F̈2n(k1, ...,kn; kn+1, ...,k2n, t) +
1

n!

∑
{k′j}

Ω2n(k1, ...,kn; k′1, ...,k
′
n)F2n(k′1, ...,k

′
n; kn+1, ...,k2n)

+ν2nḞ2n(k1, ...,kn; kn+1, ...,k2n)

+
1

(n!)2

∑
{k′j},{k′′j }

∫ t

0

dτM2n(k1, ...,kn; k′1, ...,k
′
n, t− τ)J−1

2n (k′1, ...,k
′
n; k′′1 , ...,k

′′
n)

× Ḟ2n(k′′1 , ...,k
′′
n; kn+1, ...,k2n, τ)

(44)

where the following constraint must be satisfied
∑n
j=1 kj −

∑2n
j=n+1 kj − q0 = 0. The bare frequency

term may be written as:
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Ω2n(k1, ...,kn; q1, ...,qn) =
1

n!

∑
{pj}

〈A(2)
k1,...,kn

|Ȧ(1)
p1,...,pn

〉〈A(1)
p1,...,pn

|A(1)
q1,...,qn

〉−1

≈ 1

n!

∑
{pj}

〈Ȧ(1)
k1,...,kn

|Ȧ(1)
p1,...,pn

〉〈A(1)
p1,...,pn

|A(1)
q1,...,qn

〉−1

=
kBT

n!m

∑
{pj}

(
(k1 · p1)〈ρ̂k1−p1

ρ̂k2 ...ρ̂kn |ρ̂p2
...ρ̂pn〉+ (p1 ↔ p2) + ...+ (p1 ↔ pn)

)
× 〈ρ̂p1

...ρ̂pn |ρ̂q1
...ρ̂qn〉

−1 + (k1 ↔ k2) + ...+ (k1 ↔ kn)

We now Gaussian factorise the inverse n-point static correlator as usual, and employ an N -ordering
argument for the static (n−1)-th dimension correlator. More precisely, we keep only Sn−1 ≈ φS...S ∼
O(Nn) in its factorisation. It is easy to see that factorisation into products of many-body structure
factors (> 2) leads to a quantity of order O(Nm), m < n. Then, writing explicitly the k1-term only
and using n-fold permutation symmetries over dummy summation variables {pj}, we find

≈ kBTn(n− 1)!n!NNn−1

n!mNn

∑
{pj}

(k1 · p1)φ(k1 − p1)S(k2; p2)× ...× S(kn; pn)S−1(p1; q1)× ...× S−1(pn; qn)

+ (k1 ↔ k2) + ...+ (k1 ↔ kn)

=
kBTn!

m

∑
p1

(k1 · p1)φ(k1 − p1)S−1(p1; q1)δk2,q2
δk3,q3

× ...× δkn,qn + (k1 ↔ k2) + ...+ (k1 ↔ kn)

(45)

Whence we can write in full that

1

n!

∑
{k′j}

Ω2n(k1, ...,kn; k′1, ...,k
′
n)F2n(k′1, ...,k

′
n; kn+1, ...,k2n) =

=
kBT

m

∑
p,k′

(k1 · p)φ(k1 − p)S−1(p; k′)F2n(k′,k2, ...,kn; kn+1, ...,k2n)

+ (k1 ↔ k2) + ...+ (k1 ↔ kn)

(46)

We then see that analogously to the homogeneous GMCT bare frequencies, the inhomogeneous GMCT
has a bare frequency term of arbitrary order 2n that can essentially be written as a sum of n bare
frequencies of order 2 : Ω2n ∼ Ω2 + ...+ Ω2 [41]. Moving onto the memory termM, it can be written
as:

M2n(k1, ...,kn; k′1, ...,k
′
n, t) = 〈Rk1,...,kn |eiQLt|Rk′1,...,k

′
n
〉

≈ 〈Rk1,...,kn |Pn+1e
iLtPn+1|Rk′1,...,k

′
n
〉

(47)

where we have defined the projector on the (n+ 1)-th set of density modes:
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Pn+1 =
1

((n+ 1)!)2

∑
{pj},{p′j}

|A(1)
p1,...,pn+1

〉〈A(1)
p1,...,pn+1

|A(1)
p′1,...,p

′
n+1
〉−1〈A(1)

p′1,...,p
′
n+1
|

≈ 1

(n+ 1)!Nn+1

∑
{pj},{p′j}

|A(1)
p1,...,pn+1

〉S−1(p1; p′1)× ...× S−1(pn+1; p′n+1)〈A(1)
p′1,...,p

′
n+1
|

We recall from the generalised Langevin equation (12) the definition of the arbitrary second element
of the fluctuating force vector:

|Rk1,...,kn〉 = |Ȧ(2)
k1,...,kn

〉 − 1

n!

∑
{qj}

iΩ2n(k1, ...,kn; q1, ...,qn)|A(1)
q1,...,qn

〉

= |R1(k1, ...,kn)〉+ |R2(k1, ...,kn)〉
(48)

Hence, the memory term can be written as

M2n(k1, ...,kn; k′1, ...,k
′
n, t)

=
N

((n+ 1)!)2

∑
{pj},{p′j}

V2n(k1, ...,kn; p1, ...,pn+1)F2(n+1)(p1, ...,pn+1; p′1, ...,p
′
n+1, t)

× V†2n(k′1, ...,k
′
n; p′1, ...,p

′
n+1)

(49)

where the generalised vertex function reads

V2n(k1, ...,kn; p1, ...,pn+1) =
1

(n+ 1)!

∑
{qj}

〈Rk1,...,kn |A(1)
q1,...,qn+1

〉〈A(1)
q1,...,qn+1

|A(1)
p1,...,pn+1

〉−1

≈ 1

Nn+1

∑
{qj}

〈Rk1,...,kn |A(1)
q1,...,qn+1

〉S−1(q1; p1)× ...× S−1(qn+1; pn+1)

(50)

We can evaluate the term 〈R|A〉 ≡ 〈R1|A〉+ 〈R2|A〉 by construction using the same set of tricks used
in prior parts of this work. For the first term 〈R1|A〉, we only write the k1 element, the others can be
written by mere variable exchange. This gives:
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1

(n+ 1)!

∑
{qj}

〈Ȧ(2)
k1,...,kn

|A(1)
q1,...,qn+1

〉〈A(1)
q1,...,qn+1

|A(1)
p1,...,pn+1

〉−1

=
1

Nn+1

∑
{qj}

〈Ȧ(2)
k1,...,kn

|A(1)
q1,...,qn+1

〉S−1(q1; p1)× ...× S−1(qn+1; pn+1)

=
−i

Nn+1

∑
{qj}

〈Ȧ(1)
k1,...,kn

|Ȧ(1)
q1,...,qn+1

〉S−1(q1; p1)× ...× S−1(qn+1; pn+1)

=
−ikBT
mNn+1

∑
{qj}

(
(k1 · q1)〈ρ̂k1−q1

ρ̂k2 ...ρ̂kn |ρ̂q2
...ρ̂qn+1

〉+ (q1 ↔ q2) + ...+ (q1 ↔ qn+1)
)

× S−1(q1; p1)× ...× S−1(qn+1; pn+1) + (k1 ↔ k2) + ...+ (k1 ↔ kn)

=
−ikBT (n+ 1)

mNn+1

∑
{qj}

(k1 · q1)〈ρ̂k1−q1
ρ̂k2

...ρ̂kn |ρ̂q2
...ρ̂qn+1

〉S−1(q1; p1)× ...× S−1(qn+1; pn+1) + (k1 ↔ k2) + ...

≈−ikBT (n+ 1)n!Nn

mNn+1

∑
{qj}

(k1 · q1)S(k1 − q1; q2)S(k2; q3)× ...× S(kn; kn+1)S−1(q1; p1)× ...

× S−1(qn+1; pn+1) + (k1 ↔ k2) + ...+ (k1 ↔ kn)

=
−ikBT (n+ 1)!

mN

∑
q1

(k1 · q1)S−1(q1; p1)δk1−q1,p2
δk2,p3

× ...× δkn,pn+1
+ (k1 ↔ k2) + ...+ (k1 ↔ kn)

(51)

where in the 6-th line we have Gaussian decomposed the 2n-point static structure factor, we then
systematically apply the identity (19) for the static structure factors. For the second term 〈R2|A〉,
making use of the bare frequency result (46) we may write

ikBT

m(n+ 1)!

∑
{t′j}

∑
p,q

(
(k1 · p)φ(k1 − p)S−1(p; q)〈A(1)

q,k2...kn
|A(1)

t′1,...,t
′
n+1
〉〈A(1)

t′1,...,t
′
n+1
|A(1)

t1,...,tn+1
〉−1
)

+ (k1 ↔ k2) + ...+ (k1 ↔ kn)

=
ikBT

mNn

∑
{t′j}

∑
p,q

(k1 · p)φ(k1 − p)S−1(p; q)S2n+1(q,k2, ...,kn; t′1, ..., t
′
n+1)S−1(t′1; t1)× ...× S−1(t′n+1; tn+1)

+ (k1 ↔ k2) + ...+ (k1 ↔ kn)

(52)

Whence, in full the arbitrary vertex can be written as :
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V2n(k1, ...,kn; p1, ...,pn+1) =
−ikBT
m

[
(n+ 1)!

N

∑
q

(k1 · q)S−1(q; p1)δk1−q,p2
δk2,p3

× ...× δkn,pn+1

− 1

Nn

∑
{t′j}

∑
p′,q′

(k1 · p′)φ(k1 − p′)S−1(p′; q′)S2n+1(q′,k2, ...,kn; t′1, ..., t
′
n+1)

× S−1(t′1; p1)× ...× S−1(t′n+1; pn+1)

]
+ (k1 ↔ k2) + ...+ (k1 ↔ kn)

(53)

The last term to be evaluated is the inverse current J−1
2n (k1, ...,kn; kn+1, ...,k2n) ≡ 〈A(2)

k1,...,kn
|A(2)

kn+1,...,k2n
〉−1.

Due to the number of terms arising from both the use of equipartition and that of factorisation ansatz,
a closed form satisfying (19) could not be found. We suggest instead to find the inverse numerically
if one desires to solve these equations.

The general coupled hierarchy of equations of motions that (44) defines for the many-body dynamic
structure factors F2n is to our knowledge the most general inhomogeneous GMCT that can be written.
Indeed, the inclusion of a spatially varying external field forces the framework to consider all possible
couplings between the modes which in this case presents itself with the large number of running
summations over k-space. This hierarchy also provides a good starting point to develop a GMCT
for geometrically constrained systems, along the lines of [47, 59]. We point out however that in the
case of extreme geometric confinements it could be useful to decompose the set of slow variables into
longitudinal and transverse Fourier density modes.

2.5 Off-Diagonal Homogeneous Generalised Mode Coupling Theory

In order to make sure that the inhomogeneous theory developed in the previous sections is coherent and
consistent, we take the zero-field limit U(q0)→ 0 from which we should recover standard (diagonal)
GMCT [41] within a suitable set of approximations. Furthermore, this zero field limit also provides
a consistent way of deriving a more complete version of homogeneous GMCT which is referred to
as off-diagonal GMCT. The GMCT derived in [41] indeed only develops equations of motion for the
diagonalised many-density correlation functions F2n(k1, ...,kn; k1, ...,kn, t), and does not include the
incorporation of off-diagonal terms. The most general many-density correlation function is given
by F2n(k1, ...,kn; kn+1, ...,k2n, t) with the only requirement of momentum conservation:

∑n
j=1 kj −∑2n

j=n+1 kj = 0. We see that taking the zero-field limit of (44) and simply enforcing momentum
conservation gives direct access to this off-diagonal GMCT. We mention that to our knowledge only
one attempt to the derivation of this off-diagonal GMCT exists for the 4-point dynamic correlation
function F4 [25]. We note however that their approach is different than ours.

2.5.1 Recovering Mode-Coupling Theory

We consider the zero-field limit of the inhomogenous MCT given by (30). We first note that the two
derivative terms are trivial since limU→0 F2(k; k′, t) = F2(k, t)δk,k′ where we abuse notation slightly.
The frequency term reads
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2.5 Off-Diagonal Homogeneous Generalised Mode Coupling Theory

lim
U→0

kBT

m

∑
k,k′

(k1 · k)φ (k1 − k)S−1 (k; k′)F2 (−k′; k2, t)

=
kBT

m

∑
k,k′

(k1 · k)φ (k1 − k)S−1 (k; k′)F2 (k′; k2, t) δk,k′δk1,kδk2,k′

=
kBT

m

|k1|2

S (k1)
F2 (k1, t)

(54)

which is the standard MCT-result. We then look at the individual terms of the vertices individually.
The zero-field vertices read :

lim
U→0

Vq0
(k; q,q′) = lim

U→0

1

2!

∑
q′′,q′′′

〈Rk1
| ρ̂q′′ ρ̂q′′′〉G−1

D (q′′,q′′′; q,q′)

= lim
U→0

1

2!

∑
q′′,q′′′

〈Ȧ(2)
k1
| ρ̂q′′ ρ̂q′′′〉G−1

D (q′′,q′′′; q,q′)

− lim
U→0

1

2!

∑
q′′,q′′′

∑
k

iΩ21 (k1,k) 〈A(1)
k | ρ̂q′′ ρ̂q′′′〉G−1

D (q′′,q′′′; q,q′)

where it is possible to show that

lim
U→0

1

2!

∑
q′′,q′′′

〈Ȧ(2)
k1
| ρ̂q′′ ρ̂q′′′〉G−1

D (q′′,q′′′; q,q′) = − ikBT
Nm

[
k̂1 · q
S(q)

δk1−q,q′ +
k̂1 · q′

S (q′)
δk1−q′,q

]

as well as

lim
U→0

1

2!

∑
q′′,q′′′

∑
k

iΩ21 (k1,k) 〈A(1)
k | ρ̂q′′ ρ̂q′′′〉G−1

D (q′′,q′′′; q,q′) =
ikBT

Nm
|k1|

where we have used the convolution approximation for S3 [8]. We then find that

lim
U→0

Vq0 (k1; q,q′) = V (k1; q,q′) = − ikBT
Nm

[
k̂1 · q
S(|q|)

+
k̂1 · q′

S (|q′|)
− |k1|

]
δk1,q+q′ (55)

which corresponds to the well-known MCT-vertex function [34] (up to a factor of 1/2 which is present
in front of the time-integral as a symmetry factor). Focusing now on the integral term as a whole, we
write:

1

(2!)2

∫ t

0

dτ
∑
k,k′

∑
q,...,q′′′

k1

k′
V (k1; q,q′)δk1,q+q′F4(q,q′; q′′,q′′′, τ)δq+q′,q′′+q′′′V

†(k′; q′′,q′′′)δk′,q′′+q′′′

× J−1(k)δk,k′ Ḟ2(k2, t− τ)δk′,k2

=
1

4

∫ t

0

dτ
∑
q,q′′

k1

k2
V (k1; q,k1 − q)F4(q,k1 − q; q′′,k2 − q′′, τ)δk1,k2

V †(k2; q′′,k2 − q′′)

× J−1(k2)Ḟ2(k2, t− τ)

30



2.5 Off-Diagonal Homogeneous Generalised Mode Coupling Theory

Whence, the full equation of motion in the vanishing field limit, where we slightly abuse notation
writing F2(k1; k1, t) ≡ F2(k1, t) :

F̈2(k1, t) +
kBT |k1|2

mS(k1)
F2(k1, t) + νḞ2(k1, t)

+
1

4

∫ t

0

dτ
∑
q,q′

V (k1; q,k1 − q)F4(q,k1 − q; q′,k1 − q′, τ)V †(k1; q′,k1 − q′)J−1(k1)Ḟ2(k1, t− τ) = 0

(56)

To recover standard diagonal MCT, we use the diagonal approximation [40] which enforces q = q′.
Lastly noting that J−1(k) = m/NkBT , we eventually obtain after absorbing the 1/4 factor inside the
vertices:

F̈2(k1, t) +
kBT |k1|2

mS(k1)
F2(k1, t)

+
m

NkBT

∫ t

0

dτ
∑
q

|V (k1; q,k1 − q)|2F4(q,k1 − q; q,k1 − q, τ)Ḟ2(k1, t− τ) = 0

(57)

which is the standard result before the self-consistent approximation F4(q,k1 − q; q,k1 − q, t) ≈
F2(k1 − q, t)F2(q, t) to recover the homogeneous Mode Coupling Theory.

2.5.2 Recovering Generalised-Mode-Coupling Theory

In this section we look at the zero field limit of the iGMCT hierarchy developed earlier. We begin with
the equation of motion for F4(k1,k2; k3,k4, t). Clearly the terms in Ḟ4(k1,k2; k3,k4, t), F̈4(k1,k2; k3,k4, t)
are trivial, as we only require momentum conservation:

lim
U→0

F4(k1,k2; k3,k4, t) = F4(k1,k2; k3,k4, t)δk1+k2,k3+k4

Moving onto the frequency term, we find that

lim
U→0

1

2!

∑
k,k′

Ω4(k1,k2; k,k′)F4(k,k′; k3,k4, t)

= lim
U→0

kBT

2m

∑
k,k′

∑
n

(
(k1 · n)φ(k1 − n)

(
S−1(n; k)δk2,k′ + S−1(n; k′)δk2,k

)
+ (k1 ↔ k2)

)
F4(k,k′; k3,k4, t)

=
kBT

2m

∑
k,k′

∑
n

(
(k1 · nδk1,n)

(
2δk2,k′δn,k
S(n)

)
+ (k1 ↔ k2)

)
F4(k,k′; k3,k4, t)

=
kBT

m

(
|k1|2

S(k1)
+
|k2|2

S(k2)

)
F4(k1,k2; k3,k4, t)δk1+k2,k3+k4

(58)

as expected. Now regarding the integral term, enforcing momentum conservation leads to :
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N

(3!)4(2!)2

∫ t

0

dτ
∑
n1,n2

∑
n′1,n

′
2

∑
k,k′

V(k1,k2; k1 − n1,k2 + n2,n1 − n2)

× F6(k1 − n1,k2 + n2,n1 − n2; k1 − n′1,k2 + n′2,n
′
1 − n′2)V†(k,k1 + k2 − k; k1 − n′1,k2 + n′2,n

′
1 − n′2)

× J−1
4 (k,k1 + k2 − k; k′,k1 + k2 − k′)Ḟ4(k′,k1 + k2 − k′; k3,k1 + k2 − k3, t− τ)

from which we immediately see the form of the two conserved modes have the same form as the modes
{|αn〉, |βn〉} [41] upon a shift in wave-vector summations and diagonal approximation (n1 = n2). It
is possible to show, following the simple simplification ansatze used in this work that :

lim
U→0

∑
n1,n2,n3

V(k1,k2; n1,n2,n3)F4(n1,n2,n3; ...) ∼
∑
n

kBT

mN

(
k1 · (k1 − n)

S(k1 − n)
+

k1 · n
S(n)

− |k1|2
)
F4(k1 − n,n,k2; ...)

+
∑
n

kBT

mN

(
k2 · (k2 − n)

S(k2 − n)
+

k2 · n
S(n)

− |k2|2
)
F4(k1,n,k2 − n; ...)

(59)

which is equivalent to [41]. The homogeneous equation of motion for the four-point dynamic correlator
can now be written down and is analogous to the one found in [41]. We omit it here for brevity however.
We emphasise once more that off-diagonal GMCT has the potential of solving some caveats of the
diagonal GMCT and that our very general framework provides a consistent approach to obtain off-
diagonal GMCT. We believe that the off-diagonal contributions could be important to the theory,
giving possible insights into what the diagonal GMCT is still missing. Especially relating to the
break-down of the Stokes-Einstein relation in the deep supercooled regime.

3 Equations of Motion for the Dynamical Susceptibilities

3.1 Linear Response Theory

Having developed a hierarchy of equation of motion for dynamic multi-point correlators in the presence
of an external field and having verified that the zero field limits gave consistent results, we now move
onto a linear response expansion of the order parameters F2n. In the spirit of [18], we define a
generalised multi-point dynamic susceptibility as

χ2n+1(k1, ...,kn; kn+1, ...,k2n,q0, t) ≡ lim
U→0

δF2n(k1, ...,kn; kn+1, ...,k2n, t)

δU(q0)
(60)

We must also look at the response of the many-body static structure factors S2n, the inverses S−1 and
the generalised inverse currents J−1

2n , since variations of static quantities do not necessarily vanish. We
recall that our external field couples to density modes, and thus acts as a source term in the partition
function Z:

Z ∝
∫
dΓe−βH(Γ)−βU(q0)

where U(q0) = gρ̂q0
, with g an infinitesimal coupling constant that fixes the units. Then, for any

static observable On(k1, ...,kn) ∝ 〈ρ̂k1
...ρ̂kn〉 (which may also contain time-derivatives, omitted here

for simplicity), we find that
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3.1 Linear Response Theory

lim
U→0

δ

δU(q0)
On(k1, ...,kn) = lim

U→0

δ

δU(q0)

∫
dΓρ̂k1 ...ρ̂kne

−βH(Γ)−βU(q0)

= −β
∫
dΓρ̂k1 ...ρ̂kn ρ̂q0

e−βH(Γ)

= −βÕn+1(k1, ...,kn,q0)δk1+...+kn+q0,0

(61)

where in the last line we enforce momentum conservation explicitly. Õn+1 is then the response of the
static quantity observable On. We see that the response of an object with n degrees of freedom has
(n+ 1) degrees of freedom. We summarise the response of the necessary static quantities below:

• The statistical average of single density modes

lim
U→0

δ

δU(q0)
φ(k) = −βS(k; q0)δk,q0

• The 2n-many body symmetric static structure factors

lim
U→0

δ

δU(q0)
S2n(k1, ...,kn; kn+1, ...,k2n) = −βS2n+1(k1, ...,kn; kn+1, ...,k2n,q0)δk1+...+kn,kn+1+...+k2n+q0

which may then be simplified using the convolution approximations in Appendix A.

• The inverse 2-point correlation, obtained from functional differentiation of identity (19)

lim
U→0

δ

δU(q0)
S−1(k1; k2) = β

S3(k1; k2,q0)

S(k1)S(k2)
δk1,k2+q0

≈ βS(q0)δk1,k2+q0

Other inverse quantities should be obtainable via analogous methods.

We then start by taking limU→0 δ/δU(q0) of (30), which we re-write below :

0 = lim
U→0

δ

δU(q0)
F̈2(k1; k2, t) + lim

U→0

δ

δU(q0)
νḞ2(k1; k2, t)

+ lim
U→0

δ

δU(q0)

kBT

m

∑
k,k′

(k1 · k)φ(k1 − k)S−1(k; k′)F2(k′; k2, t)

+ lim
U→0

δ

δU(q0)

kBT

m

∫ t

0

dτ
∑
k,k′

∑
q,...,q′′′

k1

k′
Ṽq0

(k1; q,q′)F4(q,q′; q′′,q′′′, t− τ)Ṽ †q0
(k; q′′,q′′′)J−1(k; k′)Ḟ2(k′; k2, τ)

3.1.1 3-Point Dynamical Susceptibilities

The principal task is to evaluate the response of the static coefficients. We find that for the bare-
frequency term
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3.1 Linear Response Theory

lim
U→0

δ

δU(q0)

kBT

m

∑
k,k′

(k1 · k)φ(k1 − k)S−1(k; k′)F2(k′; k2, t)

=
S(|q0|)
m

(
|k1|2 −

k1 · (k1 − q0)

S(|k1 − q0|)

)
F2(k1 − q0, t)δk1,k2+q0

− |k1|2

mS(|k1|)
χ3(k1; k2 + q0)δk1,k2+q0

(62)

Moving onto the integral term. The variation of the vertex

lim
U→0

δ

δU(q0)
Vq0

(k1; q,q′) = lim
U→0

δ

δU(q0)

−ikBT
2mN

(
k̂1 · (k1 − q)S−1 (k1 − q; q′) + (q↔ q′)

)
+ lim
U→0

δ

δU(q0)

ikBT

2mN

∑
q′′,q′′′

∑
k,k′

k̂1 · kφ (k1 − k)S−1 (k; k′)S3 (k′; q′′,q′′′)

× S−1 (q′′; q)S−1 (q′′′; q′)

≈ −i
2mN

S(q0)

[
k̂1 · (k1 − q) + k̂1 · (k1 − q′) + k̂1 · (k1 − q0)− 2|k1|

]
δk1,q+q′+q0

= 0

(63)

This means that the term δ/δU(V V †J−1) = V V †δ/δUJ−1 in the integral term. Hence, the equation
of motion for the three-point susceptibility χ3 reads

χ̈3(k1; k2, t)δk1,k2+q0
+
S(|q0|)
m

(
|k1|2 −

k1 · (k1 − q0)

S(|k1 − q0|)

)
F2(k1 − q0, t)δk1,k2+q0

− |k1|2

mS(|k1|)
χ3(k1; k2, t)δk1,k2+q0

+
m

NkBT

∫ t

0

dτ
∑
q,q′

k1

k2
V (k1; q,k1 − q)F4(−q,q− k1; q′′,k1 − q′′, τ)V †(k1; q′′,k1 − q′′)

× (k̂1 · k̂1 − q̂0)S(q0)Ḟ2(k2, t− τ)δk1,k2+q0

+
m

NkBT

∫
dτ
∑
q,q′

k1

k2
V (k1; q,k1 − q)χ5(q,k1 − q; q′,k2 − q′, τ)V †(k2; q′,k2 − q′)Ḟ2(k2, t− τ)δk1,k2+q0

+
m

NkBT

∫
dτ
∑
q,q′

k1

|k2 + q0|
V (k1; q,k1 − q)F4(−q,q− k1; q′,k2 + q0 − q′, τ)V †(k2 + q0; q′,k2 + q0 − q′)

× χ̇3(k2 + q0; k2, t− τ)δk1,k2+q0
= 0

(64)
We remark that if we were to truncate the hierarchy in the Mode Coupling Approximation, the integral
containing χ5 would instead go as ∼ 2χ3F2, as found in [18, 52]. This is an important result, as we
have derived an explicit and first-principles based equation for the three-point dynamical susceptibility
of a supercooled liquid. As mentioned, we could in principle use the Mode Coupling Approximation
here, but given the generality of the framework developed in the previous sections, we can derive
similar microscopic equations for all the other odd-point susceptibilities.
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3.2 Inclusion of Higher-Order Susceptibilities

3.2 Inclusion of Higher-Order Susceptibilities

3.2.1 5-point Dynamical Susceptibility

We apply the same methods as for the previous section on (43), the equation of motion for the 4-th
point dynamic structure factor. Calculations for the time-derivative terms and the frequency terms
are identical to the ones presented in the previous section, we write them down directly:

lim
U→0

δ

δU(q0)

(
F̈4(k1,k2; k3,k4, t) + νḞ4(k1,k2; k3,k4, t)

)
= −βχ̈5(k1,k2; k3,k4,q0, t)δk1+k2,k3+k4+q0

− βνχ̇5(k1,k2; k3,k4,q0, t)δk1+k2,k3+k4+q0

and

lim
U→0

δ

δU(q0)

1

mβ

∑
n,q

(
(k1 · n)φ(k1 − n)S−1(n; q)F4(q,k2; k3,k4, t) + (k1 ↔ k2)

)
=
S(q0)

m

[
|k1|2 −

k1 · (k1 − q0)

S(k1 − q0)

]
F4(k1 − q0,k2; k3,k4, t)δk1+k2,k3+k4+q0

+
S(q0)

m

[
|k2|2 −

k2 · (k2 − q0)

S(k2 − q0)

]
F4(k1,k2 − q0; k3,k4, t)δk1+k2,k3+k4+q0

−

(
|k1|2

S(k1)
+
|k2|2

S(k2)

)
χ5(k1,k2; k3,k4,q0, t)δk1+k2,k3+k4+q0

(65)

from which we will be later able extract inductively all higher-order variations of the bare-frequency
terms. Moving onto the integral term, we write from (42)

lim
U→0

δ

δU(q0)
V4(k1,k2; n1,n2,n3) =

6i

Nm
k1 · (n1 + q0)S(q0)δk1−n1−q0,n2

δk2,n3

− i

N2m

k1 · (k1 − q0)S(q0)S5(k1 − q0,k2; n1,n2,n3)

S(k1 − q0)S(n1)S(n2)S(n3)
δk1−q0+k2,n1+n2+n3

+
i

N2m

|k1|2S(q0)S5(k1 − q0,k2; n1,n2,n3)

S(n1)S(n2)S(n3)
δk1−q0+k2,n1+n2+n3

− i

N2m

|k1|2S6(k1,k2; n1,n2,n3,q0)

S(k1)S(n1)S(n2)S(n3)
δk1+k2,n1+n2+n3+q0

+
i

N2m

|k1|2S(q0)S5(k1,k2; n1 + q0,n2,n3)

S(k1)S(n2)S(n3)
δk1+k2,n1+n2+n3+q0

+
i

N2m

|k1|2S(q0)S5(k1,k2; n1,n2 + q0,n3)

S(k1)S(n1)S(n3)
δk1+k2,n1+n2+n3+q0

+
i

N2m

|k1|2S(q0)S5(k1,k2; n1,n2,n3 + q0)

S(k1)S(n1)S(n2)
δk1+k2,n1+n2+n3+q0

+ (k1 ↔ k2)

≡ Ṽ4(k1,k2; n1,n2,n3,q0)δk1+k2,n1+n2+n3+q0

(66)

It would be an interesting result that the response of the vertices for the 4-point dynamic correlation
function vanish much like in the iMCT case. From a strictly mathematical point of view, we know that
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3.2 Inclusion of Higher-Order Susceptibilities

the vertices of the homogeneous GMCT (both diagonal and off-diagonal) are simply linear combina-
tions of the homogeneous MCT vertices [41, 25]. Given the striking resemblance of the homogeneous
and inhomogeneous hierarchies, it would not be surprising that within a reasonable set of approxima-
tions we could also write the inhomogeneous vertex (42) as a linear combination of (29), which would
in turn lead to the following result : Ṽ4 = 0. This is however a combinatorially complicated task, but
we believe that a well written script in a symbolic programming language could manage this task. We
leave this for future work.

Lastly we need to determine the variation δ/δUJ−1
4 . To do so, consider the following identity

involving J4 ∝ 〈A(2)|A(2)〉:

1

2!

∑
k,k′

〈 ˙̂ρk1 ρ̂k2 | ˙̂ρkρ̂k′〉〈 ˙̂ρkρ̂k′ | ˙̂ρk3 ρ̂k4〉−1 = δk1,k3δk2,k4

To obtain the response of the inverse generalised current J−1
4 , one must consider the variation of the

identity :

lim
U→0

δ

δU(q0)

∑
k,k′

〈 ˙̂ρk1 ρ̂k2 | ˙̂ρkρ̂k′〉〈 ˙̂ρkρ̂k′ | ˙̂ρk3 ρ̂k4〉−1 = 0 (67)

where we can apply the chain rule and then re-arrange in favour of the wanted result. We note
however that the right hand side of this identity is a simple combination of Kronecker deltas due to
the presence of the time derivatives which breaks the exchange symmetry k1 ↔ k2. Unfortunately
a closed form for this inverse could not be found analytically without any justified approximations.
We will therefore simply write δ/δU(q0)J−1

4 = J̃−1
4 for the current-current correlation response and

suggest determining this inverse numerically when the equations are solved. We now write down the
equation of motion for the 5-point susceptibility:

T̂4[F4, F6,q0, t] = χ̈5(k1,k2; k3,k4,q0, t)δk1+k2,k3+k4+q0
+ ν4χ̇5(k1,k2; k3,k4,q0, t)δk1+k2,k3+k4+q0

+

(
|k1|2

S(k1)
+
|k2|2

S(k2)

)
χ5(k1,k2; k3,k4,q0, t)δk1+k2,k3+k4+q0

+
1

(2!)2(3!)2

∑
k,k′

∑
t1,t2

∑
t′1,t
′
2

∫ t

0

dτV4(k1,k2; t1, t2,k1 + k2 − t1 − t2)

× χ7(t1, t2,k1 + k2 − t1 − t2; t1, t2,k1 + k2 − t′1 − t′2,q0, t− τ)

× V†4(k,k1 + k2 − q0 − k; t′1, t
′
2,k1 + k2 − q0 − t′1 − t′2)

× J−1
4 (k,k1 + k2 − q0 − k; k′,k1 + k2 − q0 − k′)

× Ḟ4(k′,k1 + k2 − q0 − k′; k3,k4, τ)δk1+k2,k3+k4+q0

+
1

(2!)2(3!)2

∑
k,k′

∑
t1,t2

∑
t′1,t
′
2

∫ t

0

dτV4(k1,k2; t1, t2,k1 + k2 − t1 − t2)

× F6(t1, t2,k1 + k2 − t1 − t2; t′1, t
′
2,k1 + k2 − t′1 − t′2, t− τ)

× V†4(k,k1 + k2 − k; t′1, t
′
2,k1 + k2 − t′1 − t′2)

× J−1
4 (k,k1 + k2 − k; k′,k1 + k2 − k′)

× χ̇5(k′,k1 − k2 − k′; k3,k4,q0, τ)δk1+k2,k3+k4+q0

(68)
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3.2 Inclusion of Higher-Order Susceptibilities

where we have collected all terms which do not contain any susceptibilities in a general functional of
the 4 and 6-point dynamic correlation function that we denote T̂4. We see that just as χ3 is dependent
on χ5, we find that χ5 in turn depends on χ7, the 7-point dynamical susceptibility. Equation (68)
above forms the second iteration of the infinite hierarchy of equations of motion for the dynamical
susceptibilities that our framework can generate.

3.2.2 Generalisation to Arbitrary Order

Akin to inhomogeneous GMCT, we may extend the hierarchy of the dynamical susceptibilities to
arbitrary order. This new hierarchy inherits the properties of the GMCT one, with the exception
that it is now a set of linear coupled integro-differential equations. Starting from (44) We find for the
variation of the frequency term:

lim
U→0

δ

δU(q0)
Ω2

2n(k1, ...,kn; q1, ...,qn) =

[
− n!

m
(k1 · q1)S(q0)δk1,q1+q0

δk2,q2
× ...× δkn,qn

+
n!

m
|k1|2S(q0)δk1,q1+q0

δk2,q2
× ...× δkn,qn

]
+ (k1 ↔ k2) + ...+ (k1 ↔ kn)

(69)

Moving onto the the variation of the vertices, we find

lim
U→0

δ

δU(q0)
V2n(k1, ...,kn; p1, ...,pn+1)

=

[
−i(n+ 1)!

Nm
(k1 · (p1 + q0))S(q0)δk1−p1−q0,p2

δk2,p3
× ...× δkn,pn+1

− ik1 · (k1 − q0)

Nnm

S2n+1(k1 − q0,k2, ...,kn; t1, ..., tn+1)

S(k1 − q0)S(t1)× ...× S(tn+1)
δk1+...+kn,t1+...+tn+1+q0

+
i|k1|2

Nnm

S(q0)S2n+1(k1 − q0,k2, ...,kn; t1, ..., tn+1)

S(t1)× ...× S(tn+1)
δk1+...+kn,t1+...+tn+1+q0

− i|k1|2

Nnm

S2(n+1)(k1, ...,kn; t1, ..., tn+1,q0)

S(t1)× ...× S(tn+1)
δk1+...+kn,t1+...+tn+1+q0

+

{
i|k1|2

Nnm

S2n+1(k1, ...,kn; t1 + q0, t2, ..., tn+1)

S(k1)S(t2)× ...× S(tn+1)
+ (t1 ↔ t2) + ...+ (t1 ↔ tn+1)

}]
+ (k1 ↔ k2) + ...+ (k1 ↔ kn)

≡ Ṽ2n(k1, ...,kn; p1, ...,pn+1,q0)δk1+...+kn,p1+...+pn+1+q0

(70)

To generalise the discussion around (66), showing that the response of an arbitrary vertex vanishes
within a reasonable set of approximations would have two principal consequences. Firstly, it would
drastically simplify the equations of motion for the susceptibilities by removing two integrals involving
memory kernel evaluations. Secondly, vanishing vertex responses of any order would imply that the
‘coupling’ of the modes is insensitive to external perturbations (at least to linear order) which in turn
implies a very strong robustness of the hierarchy of equations of motion.
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3.2 Inclusion of Higher-Order Susceptibilities

Hence, we may then write the equation of motion for an arbitrary (2n+ 1)-th dynamical suscep-
tibility as :

T̂2n[F2n, F2(n+1),q0, t] = χ̈2n+1(k1, ...,kn; kn+1, ...,k2n,q0, t)δk1+...+kn,kn+1+...+k2n+q0

+ ν2nχ̇2n+1(k1, ...,kn; kn+1, ...,k2n,q0, t)δk1+...+kn,kn+1+...+k2n+q0

+

(
|k1|2

S(k1)
+ ...+

|kn|2

S(kn)

)
χ2n+1(k1, ...,kn; kn+1, ...,k2n,q0, t)δk1+...+kn,kn+1+...+k2n+q0

+
1

(n!)2((n+ 1)!)2

∑
{tj},{t′j}

∑
{k′j},{k′′j }

∫ t

0

dτV2n(k1, ...,kn; t1, ..., tn,k1 + ...+ kn − t1 − ...− tn)

× χ2(n+1)+1(t1, ..., tn+1; t′1, ..., t
′
n+1,q0, t− τ)

× V†2n(k′1, ...,k
′
n−1,k1 + ...+ kn − k′1 − ...− k′n−1 − q0; t′1, ..., t

′
n,k1 + ...+ kn − t′1 − ...− t′n − q0)

× J−1
2n (k′1, ...,k

′
n−1,k1 + ...+ kn − k′1 − ...− k′n−1 − q0; k′′1 , ...,k

′′
n−1,k1 + ...+ kn − k′′1 − ...− k′′n−1 − q0)

× Ḟ2n(k′′1 , ...,k
′′
n−1,k1 + ...+ kn − k′′1 − ...− k′′n−1 − q0; kn+1, ...,k2n, τ)δk1+...+kn,kn+1+...+k2n+q0

+
1

(n!)2((n+ 1)!)2

∑
{tj},{t′j}

∑
{k′j},{k′′j }

∫ t

0

dτV2n(k1, ...,kn; t1, ..., tn,k1 + ...+ kn − t1 − ...− tn)

× F2(n+1)(t1, ..., tn,k1 + ...+ kn − t1 − ...− tn; t′1, ..., t
′
n,k1 + ...+ kn − t′1 − ...− t′n, t− τ)

× V†2n(k′1, ...,k
′
n−1,k1 + ...+ kn − k′1 − ...− k′n−1; t′1, ..., t

′
n,k1 + ...+ kn − t′1 − ...− t′n)

× J−1
4 (k′1, ...,k

′
n−1,k1 + ...+ kn − k′1 − ...− k′n−1; k′′1 , ...,k

′′
n−1,k1 + ...+ kn − k′′1 − ...− k′′n−1)

× χ̇2n+1(k′′1 , ...,k
′′
n−1,k1 + ...+ kn − k′′1 − ...− k′′n−1; kn+1, ...,k2n,q0, τ)δk1+...+kn,kn+1+...+k2n+q0

(71)
where again the general functional T̂2n contains all terms generated by the linear response expansion
but that do not contain any susceptibility terms.

3.2.3 General Comments on Non-Linear Susceptibilities

From the above derivation, we note that we can cast the dynamical susceptibilities into the following
form :

∫ t

0

dτD̂2n [{F2j({kj})}, {χ2j+1({kj})},q0; t, τ ] ∗ χ2n+1(k1, ...,k2n,q0, τ) = T̂2n[{F2j({kj})}, t] (72)

where j < n and D̂2n is a linear non-local differential operator. We hypothesise that D̂2n becomes
singular at the transition temperature TGMCT, akin to the (G)MCT where an eigenvalue of a critical
operator vanishes [32] ; this would lead to a true divergence of the dynamical susceptibilities and
justify that the structural glass transition predicted by GMCT is indeed a Landau mean-field theory.
In fact, the association of the singularity of some linear operator to a growing lengthscale at the glass
transition is not a new idea and has been present for some years in field-theoretical approaches to the
problem [22, 16]. This extended framework is also an important test for the validity of GMCT as a
valid theory of the structural glass transition.

We emphasise that (71) is a really novel result which gives us direct theoretical access to non-linear
susceptibilities, and thus collective effects in supercooled liquids from a fully first-principles framework.
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While it will prove to be a herculean task, we believe that this hierarchy can be numerically tackled, at
least for the first few susceptibilities. We have high hopes that direct comparison with experimentally
measured non-linear susceptibilities [27, 9, 24] as well as from molecular dynamics simulations in the
presence of external pinning fields [44] will finally shed light on the putative idea of emerging and
growing lengthscales in supercooled liquids approaching the glass transition.

4 Toy Models of the Glass Transition & Extensions to Dy-
namical Susceptibilities

4.1 Definitions of Toy Models

In order to get an idea of the qualitative behaviour of both GMCT and the associated dynamical
susceptibilities, we study simplified versions of the microscopic equations derived in this work. These
simplified models are known as schematic models in the glass literature. Schematic models have
proven useful to study semi quantitative behaviour of different glass transition scenarios [23, 40].
These simplified models are obtained from the microscopic equations (44) and (71) by dropping all
wave-vector dependence and retaining only the time-dependence in the observables. This is equivalent
to restricting all-physical processes to a single arbitrary shell in momentum space. From (44) and
(71), we then perform the following ‘substitutions’:

• The wave-number dependent many-body intermediate scattering functions

F2m(k1, ...,km; km+1, ...,k2m, t)→ φ2m(t)

become simple functions of time

• The wave-number dependent dynamical susceptibilities

χ2m+1(k1, ...,km; km+1, ...,k2m,q0, t)→ χ2m+1(q, t)

become schematic susceptibilities. We note that we retain a single wave-number (modulus) q, to
effectively account for the lengthscale over which the system is perturbed, as displayed in Fig.6.

• The frequency term and its response expansion :

Ω2m(k1, ...,km; km+1, ...,k2m)→ µ2m

Ω̃2m(k1, ...,km; km+1, ...,k2m,q0)→ µ̃2m

where we do not retain the q dependence in µ̃2m for simplicity, so as to reduce the number of
parameters in the model.

• The vertices and inverse current terms are combined into a single effective coupling term that
we may interpret as an inverse temperature:

V2m ∗ V†2m ∗ J
−1
2m → Λ2m

and the 3 integrals that come from linear response are combined into the same coupling{
W2m ∗ V†2m ∗ J

−1
2m + V2m ∗W†2m ∗ J

−1
2m + V2m ∗ V†2m ∗ J̃

−1
2m

}
→ Λ2m

This means that the 3-integrals that arise in the general functional T̂ in (72), the eigenvalue
equation for the susceptibilities are effectively combined into a single integral equivalent to the
integral term arising the schematic GMCT.
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4.1 Definitions of Toy Models

• We note that the coupling on the response of the memory function takes the following form
: λ2m(q) = Λ2m(1 − Γ2mq

2). This form arises from symmetry arguments (namely rotational
invariance) [18, 52]. Since it corresponds to a perturbative expansion truncated beyond linear
order, we require that the product Γ2mq

2 < 1.

By applying the above ‘simplifications’, we formally obtain two infinite hierarchies coupled integro-
differential equations. By allowing for generalisation of the functional form of the integral kernels, we
write:

∂2φ2n

∂t2
+ ν2n

∂φ2n

∂t
+ µ2nφ2n + Λ2n

∫ t

0

dτM
(φ)
2n (t− τ)

∂φ2n

∂t

∣∣∣∣
t=τ

= 0 (73)

subject to initial conditions φ2n(t = 0) = 1 and φ̇2n(t = 0) = 0. While the dynamical susceptibilities
read :

[
∂2

∂t2
+ ν2n

∂

∂t
+ µ2n

]
χ2n+1(q; t) + µ̃2nφ2n(t)

+

∫ t

0

dτ

{
Λ2nM

(φ)
2n (t− τ)

∂χ2n+1(q; t)

∂t

∣∣∣∣
t=τ

+ λ2n(q)M
(χ)
2n (q; t− τ)

∂φ2n

∂t

∣∣∣∣
t=τ

+ Λ2nM
(φ)
2n (t− τ)

∂φ2n

∂t

∣∣∣∣
t=τ

}
= 0

(74)

subject to initial conditions χ2n+1(q, t = 0) = 1 and χ̇2n+1(q, t = 0) = 0. We note that the

generalisation of the integral kernels formally reads M
(φ)
2n ≡ M[{φ2(j)}] some functional of corre-

lators and M
(χ)
2n = M′[{χ2(j+1)}, {φj′}] some other functional of both the correlators and their

suscepibilities which is in fact directly obtained from M[{φ2(j)}]. The first hierarchy considered

has M
(φ)
2n (t) = φ2(n+1)(t), and is referred to as schematic generalised mode coupling theory where

each variable φ2n can be heuristically associated with the many-body dynamic structure factors
F2n from earlier sections. Various parametrisation have been thoroughly studied through the years
[48, 21, 33, 35] and analytical results exist for the infinite limit n → ∞ in the case of the Mayer-
Miyazaki-Reichmann (MMR) parametrisation [40]. For the second hierarchy considered, we find that

M
(χ)
2n (q; t) ≡ χ2(n+1)+1(q; t) by simple generalisation from 71. Numerical treatments of the hierarchies

requires truncation at an appropriate order Nc. Three common closure types can be identified from
the literature:

• Exponential closure : where M
(φ)
2Nc

(t) = 0 is enforced by hand. Then, the corresponding φ2Nc(t)
decouples from the rest of the hierarchy and exhibits (oscillatory) decay behaviour. We formally
denote this closure type EXP−Nc

• Mean-field closures of type I : where M
(φ)
2Nc

(t) is self-consistently approximated with a product
of different φ’s :

M
(φ)
2Nc

(t) = φ2i1(t)φ2i2(t)...φ2ip(t) =

p∏
j=1

φ2ij (t)

possibly under the constraint that
∑p
j=1 ij = Nc (in the case of schematic GMCT). We formally

denote this closure type MF−2Nc[..., i
n
j , ...].
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4.2 Ergodicity Breaking in Schematic Models

• Mean-field closures of type II : a slightly more general case of Mean-field closures of type I which
allows for multi-linear products of lower order φ’s

M
(φ)
2Nc

(t) = αφ2i1(t)φ2i2(t)...φ2ip(t) + βφ2i′1
(t)φ2i′2

(t)...φ2i′p
(t) + ...

Mean-field closures of type II can be found in the spin glass literature [7, 21], or can be relevant
for systems where different modes of observables couple in asymmetric ways. They provide a some-
what consistent way of introducing additional parameters which unfold the parameter space into new
dimensions, leading to richer bifurcation structures.

We emphasise that by construction the choice of self-consistent closure immediately determines that

of the susceptibility hierarchy. It is a trivial exercise to see that exponential closures give M
(χ)
2Nc

(q; t) =
0. Mean-field closures of type I are slightly more complex. By the chain-rule, we find that

M
(χ)
2Nc

(t) = χ2i1+1(q; t)φ2i2(t)...φ2ip(t) + φ2i1(t)χ2i2+1(q; t)...φ2ip(t) + ...+ φ2i1(t)φ2i2(t)...χ2ip+1(q; t)

and analogously for the Mean-field closures of type II. We would like to emphasise the flexibility of
these two coupled hierarchies of equations of motion for the schematic structure factors φ2n(t) and
their associated susceptibilities χ2n+1(q; t). In addition to the freedom in the choice of self-consistent
closure relation, the level dependent coefficients µ2n, µ̃2n,Γ2n as well as the coupling parameters Λ2n

can in principle be any desired real-number.

4.2 Ergodicity Breaking in Schematic Models

We know from prior studies [40] that closure of exponential type systematically lead to avoided glass
transition singularities. This in turn implies (and we have checked this rigorously) that the associ-
ated schematic dynamical susceptibilities do not display critical-like behaviour, and are thus of no
true interest in the context of this work. In the case of mean-field closures of type I & II however,
the schematic generalised mode coupling theory possesses an ergodicity breaking transition that is
analogous to the one encountered in the microscopic equations of motion. We can therefore hope to
see diverging non-linear susceptibilities near this transition. The non-ergodic state (glass state) is
defined as φ2(t → ∞) > 0, while the ergodic state (liquid) is identified as φ2(t → ∞) = 0. Denoting
φ2(t→∞) ≡ φ∞2 , this quantity serves as an order parameter akin to F2(t) in the microscopic theory.
We recall that in the glass regime, the long-time limit of F2(t) serves as an order parameter for the
transition, and that in the case of these schematic models we can analyse the true asymptotic limits.

In these schematic models, the breadth of possible parametrisations can lead to very different types
of glass transition singuarities [33, 35, 37, 21]. In order to study these, we consider the long-time limit
of the schematic GMCT hierarchy, which can be investigated in Laplace frequency space (using the
well known property limt→∞ f(t) = limz→0 zL{f}(z)), where we find that

µ2mφ
∞
2m

1− φ∞2m
= Λ2mM

(φ)∞
2m (75)

determines the long-time behaviour of the order parameters. The glass singularity manifests itself as
the point where φ∞2m, (also referred to as a form factor) is no longer zero for a given point in param-
eter space. We note that there are strong constraints on the solutions that we allow. For instance all
physical solutions must satisfy : φ∞2m ∈ [0, 1]. We follow the terminology of bifurcations introduced by
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4.3 Numerical Results

Arnol’d [34]. Solving for the form factors generally amounts to solving a set of polynomial equations
in these. The singularities are characterised by the degeneracy of these roots, and we denote Al the
bifurcation point associated with an l-th order degeneracy. The simplest glass transition scenario is
then the A2 transition, where non-ergodic and ergodic form factor collide. This is also known as a
fold bifurcation in the literature. More generally, a singularity of type Al consists of the coalescence
of two singularities of type Al−1 in parameter space. Singularities of type A3 and A4 are known as
cusps and swallowtails in the bifurcation literature. These higher order bifurcation scenarios however
require a certain minimal number of variable parameters to be observed.

4.3 Numerical Results

4.3.1 Hierarchy Parametrisations

For the rest of this work, we turn our attention to two special cases of mean-field closures of type I: (i)

M
(φ)
2Nc

(t) = φ2(t)Nc+1 that we abbreviate with MF−2Nc[1
Nc+1] and (ii) M

(φ)
2Nc

(t) = φ2(t)φ2Nc(t) which

we abbreviate MF−2Nc[1
1, N1

c ]. For any closure level Nc, the hierarchy of coupled relaxators with MF
closures exhibit glass transition singularities of type A2. We identify two important parametrisations
for the hierarchies [23]:

(A) {µ2n = n and Λ2n = Λn1−ν , with ν > 0}

(B) {µ2n = n and Λ2n = Λ(n+ c), with c ≥ 0}

which will be referred to as model A and model B respectively from now on. For simplicity, in all
cases considered we will assume that µ̃2n = µ2n. Model A is interesting because it allows us to probe
for 3 different regimes. In the case where the exponent ν < 1, we have a coupling strength Λ2n which
increases as the total hierarchy level Nc increases. Physically speaking, this case increases the influ-
ence of many-body correlators on the solution of the lowest order one φ2(t). Vice-versa when ν > 1,
where we attribute less ‘weight’ to the higher-order correlators as the hierarchy height Nc increases.
The special case ν = 1 recovers the MMR model [23] previously mentioned. In the case of model B,
we consider a linearly increasing coupling throughout throughout the hierarchy.

4.3.2 Numerical Methods

We define the principal characteristic timescale τ
(2n)
α of the 2n-th correlator as φ2n(τ

(2n)
α ) = 1e-1,

which we interpret as a de-correlation time and corresponds to the principal α-relaxation regime.

Hence, whenever φ2n(t) ≤ φ2n(τ
(2n)
α ) we have a liquid configuration. Similarly, the secondary β re-

laxation time τ
(2n)
β is defined as φ2m(τ

(2n)
β ) = φc2n, where φc2n is the long-time limit of the the 2n-th

correlation function at the critical point. In glasses, the β-regime is often associated with the onset
of caging mechanisms where particles are effectively kinetically trapped by their neighbours.

The time-dependent solutions to the hierarchies are obtained using the algorithm described in
[31], which has been suitably modified for the dynamical susceptibilities hierarchy. In brief, the two
hierarchies are solved in parallel using a modified Euler’s integration method with a logarithmically
increasing time-step and solving for fixed-point equations until convergence at each time-step. We
point out that the logarithmically increasing time-step size employed in this work can introduce very
subtle errors near critical points. In our case this is especially true for growing hierarchy closure
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4.3 Numerical Results

level N . While it is very easy to solve for say N = 10000 on both sides of the transition, systematic
studies of scaling laws near criticality are in practice very difficult to do. The results from direct in-
tegration techniques presented in the rest of this work are henceforth restricted lower values of N < 20.

Figure 9: Schematic illustration of the GMCT hierarchy of coupled relaxators.

4.3.3 Phase Diagrams

We plot below phase diagrams of Model-A and Model-B for various parameter values of ν and c. We
remark that the location of the transition point is strongly dependent on the choice of parametrisation
as we increase the hierarchy height N . This is especially true for model-A where as N is increased, we
systematically observe that Λc2 grows continuously and is expected to diverge as N →∞. Given that
we interpret Λ2 as an inverse temperature, we find that the structure of the hierarchy systematically
accelerates the dynamics. This has also been demonstrated in the fully microscopic theory [49, 26],
where increasing the hierarchy heights leads to lower Tg. We also note that for Model A, there is a
notable difference in the phase-curve for a given self-consistent closure relation : mixed closures such
as MF−2Nc[1

1, N1
c ] systematically have higher transition points, which means that they display faster

dynamics. This behaviour is intuitively expected: below the transition, we anticipate higher-order
correlations to decay (much) faster than the two-body correlation function. Using a self-consistent
closure involving higher-order correlation function will make the highest level of the hierarchy decay
faster than if it only involved low-order ones, amd thus the whole spectrum of the dynamics will be
accelerated.
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4.3 Numerical Results

(a) (b)

Figure 10: (a) Phase Diagrams for schematic GMCT Model A with exponents ν = 1/2, 1, 2 and mean-
field closures discussed in the text. (b) Phase Diagrams for schematic GMCT Model B with parameter
c = 1/2, 1 and mean-field closures discussed in the text

The two models A & B of the hierarchies above display a bifurcation at some critical Λc2, beyond
which the 2n-th point correlators admit finite values at long-times. In effect, have a single bifurcation
parameter: Λ in both model A and model B, and for all parametrisations of similar types, we have an
A2 singularity. By virtue of the strong topological classification of bifurcation types we expect very
similar qualitative behaviour from both models. We have verified this claim numerically for a very
wide range of points in parameter space. The following discussion on the results therefore focuses on
Model A, but the conclusions also extend to Model B.

4.3.4 Scaling Laws at Criticality

We study scaling relations for the principal relaxation time τ
(2n)
α as we approach the A2 singularity.

We begin by looking at the scaling of the principal relaxation time τ
(2n)
α ∝ ε−γn . We systematically

verify that the analytical results presented in [40] and find that γ2n = 1.769 is actually independent of

the level of the hierarchy, as displayed for τ
(2)
α , τ

(4)
α in Fig.11 below. We emphasise that this result is

actually independent of the parametrisation Λ2n of the system, provided that we remain at an A2 point.

The β regime previously defined also offers interesting scaling laws. We define a relative trajectory
for the 2n-th correlator : ∆φ2n(t) = |φ2n(t)− φc2n| where by definition we expect ∆φ2n(τβ) = 0.
Arbitrarily close to the transition point, we numerically observe power-law regimes for correlators of
any level and make the ansatz : ∆φ2n(t) ∼ t−an for t < τβ and ∆φ2n(t) ∼ tbn for t > τβ for an, bn level
dependent exponents. We also find that the exponents extracted all satisfy the established general
relations [23, 40]:
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4.3 Numerical Results

γn =
1

2an
+

1

2bn

1 =
Γ(1 + bn)2

Γ(1 + 2bn)
× Γ(1− 2an)

Γ(1− an)2

(76)

which hold valid arbitrarily close to the critical A2 point. This relation is one of the great successes
of the Mode Coupling Theory. A possible numerical solution to (76) give γ = 1.769, a = 0.395
and b = 1. Numerical verification for different cases are shown in Fig.12. We numerically find that
an, bn and γn are independent of n for the model considered. Within reasonable numerical accuracy
we are also able to confirm that the fitted exponents agree with the solution proposed above. The
independence of the scaling exponents from the hierarchy level show that the inclusion of higher order
correlation functions in the framework does not damage the successful parts of MCT. We note that as
we study higher-order correlation functions, the time-window for the existence of these scaling laws
shortens. This is expected as the criticality of higher-order correlation functions is thought to emerge
only asymptotically close to the bifurcation point.
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4.3 Numerical Results

(a) (b)

(c) (d)

Figure 11: (a)-(b) Scaling relation for the principal relaxation time τ
(2)
α associated with correlation

function φ2(t) for Model A with parameters ν = 0, 2. (c)-(d) Scaling relation for the principal

relaxation time τ
(4)
α associated with correlation function φ4(t) for Model A with parameters ν = 0, 2.
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4.3 Numerical Results

(a) (b)

(c)

Figure 12: (a)-(b)-(c) Relative trajectories with respect to the glass-plateau value |∆φ2m(t)| =
|φ2m(t)− φ∞2m| for two parametrisations of Model-A with ν = 0, 2.

4.3.5 Schematic Nonlinear Susceptibilities at Criticality

Now that the behaviour of the dynamic correlation functions is better understood near the critical
point, we move on to the study of their associated dynamical susceptibilities. We pay particular at-
tention to their global behaviour as well as near the important timescales (α, β regimes) at the onset
of criticality.

We show in Fig.13 the solutions to the dynamical susceptibilities χ3(q; t), χ5(q; t) and χ21(q; t) for
various value of q, relative distances ε = |Λ2 − Λc2|/Λc2 to the critical point Λc2 and hierarchy levels
Nc = 1, 2, 10 respectively. This means that we do not show the effect from the inclusion of higher-order
correlation functions to lower-order susceptibilities. Firstly, we observe that the plotted non-linear sus-
ceptibilities shown display critical-behaviour as we approach criticality. We checked consistently and
we are in position to say that this extends to all dynamical susceptibilities, of any order asymptotically
close to the critical point for the two models considered. Additionally, we remark a behaviour that is
very similar to that of the non-Gaussian parameter α2(t) and the 4-point function χ4(t) measured from
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4.3 Numerical Results

simulations shown in Fig.5a-5b ; as the glass transition is approached, we see that the susceptibilities
grow and are shifted in time. We also consistently checked and are able to say that the location of the

peaks of the susceptibilties χ∗2n+1 coincides with the principal structural time τ
(2n)
α of the association

2n-point correlation function. Our schematic model also displays a non-trivial dependence on the
perturbative wave-number q. We systematically find for all susceptibilities that the peak is highest in
the limit q → 0 and smallest for q → 1 (we recall the value of Γ2nq

2 < 1 is bounded). This indicates
that our model captures a dependence on the lengthscale over which the system is perturbed, with
highest responses for larger perturbation lengthscales. This observation suggests that we are really
probing for collective dynamical responses. We hypothesise that such a perturbation lengthscale also
exists in both the microscopic solutions to the hierarchies derived in the previous sections as well as
in real structural glass forming materials. This would provide concrete evidence that the nonlinear
susceptibilities χ2n+1(t) are indeed appropriate probes for macroscopic collective dynamical responses.

We recall that in the schematic GMCT, increasing the level Nc of the hierarchy systematically
accelerates the dynamics, but at relative distances to the critical points the scaling laws are rigorously
preserved. In Fig. 14-15 we verify that the time-evolution of the susceptibilities has unchanged scaling.
We find that at fixed ε, q = 0 and increasing Nc, the curves are simply shifted in time to the right.
This holds true for susceptibilities of any order. In the case of large perturbation scales (q � 1),

we notice a two step growth of all dynamical susceptibilities around τ
(2n)
β that governed by scaling

laws χ2n+1(q = 0; t) ∼ tan for t < τ
(2n)
β and χ2n+1(q = 0; t) ∼ tbn for t > τ

(2n)
β . The exponents

an, bn are actually the same as the ones discussed in the previous sections for the behaviour of the
correlation functions φ2n(t) in the β-regime. We have verified this numerically, and we see in Fig.
14-15 that increasing the hierarchy level Nc does not affect the scaling of this growth. While all the
high-point non-linear susceptibilities behave critically close to the transition, they are ‘polluted’ by

an increasing number of non-linearities and the window to observe these scalings around τ
(2n)
β are

shortened, much like for the dynamical correlation functions studied in the previous section. This
type of two-step growth behaviour has sometimes been associated to a change in regime from dilute
to dense collectively responding structures in the glassy regime [18], but more rigorous studies in this
regime are necessary to shed light on this.
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4.3 Numerical Results

(a) (b)

(c) (d)

Figure 13: (a) q-dependence of the 3-point susceptibility for Model A χ3(q; t) for various relative dis-
tances to the critical point ε at hierarchy level Nc = 1. (b)-(c) q-dependence of the 5-point susceptibility
for Model A χ5(q; t) for various relative distances to the critical point ε and parameters ν = 0, 2 at
hierarchy level Nc = 2.. (d) q-dependence of the 21-point susceptibility for Model A χ21(q; t) for vari-
ous relative distances to the critical point ε and parameters ν = 2 at hierarchy level Nc = 10.
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4.3 Numerical Results

(a) (b)

Figure 14: (a)-(b) behaviour of the three-point susceptibility χ3 at q = 0 and ε = 1e-6 and parameter
ν = 0, 2 for increasing hierarchy level N .

(a) (b)

Figure 15: (a)-(b) Behaviour of the five-point susceptibility χ5 at q = 0 and ε = 1e-6 and parameter
ν = 0, 2 for increasing hierarchy level N . Exponents a = 0.395, b = 1 are the schematic (G)MCT
exponents.

We now look of χ∗2n+1(q) the peak of the non-linear susceptibilities as we approach the bifurcation
point. At short wavelengths, we find that the peaks of the first few levels stabilises at a constant value
of order O(103 − 104) for ε = 1e-4, while for larger wavelengths we observe a continuous decay of
χ∗2n+1(q) for q > 10−2. As displayed in Fig.16, for large wave-numbers the continuous decay follows a
power-law behaviour whose exponent is quantitatively dependent on both the system parametrisation
and hierarchy level. We remark however that χ∗2n+1(q → 1) ∝ q−∆n with ∆n ∈ [3.7, 3.9] fitted
numerically for n = 1, 2. By taking into account this tail-like behaviour of χ∗2n+1(q) at long wave-
lengths, we consider a generalised scaling law also found in [64]

50



4.3 Numerical Results

χ∗2n+1(q) ∝ ξ4
n

αn + βn(qξn)2 + θn(qξn)4
(77)

to which the data is fitted. We note that ξn is the ‘lengthscale’ (should we restore units) associated
to the (2n + 1)-th susceptibility χ2n+1. We anticipate this lengthscale to diverge as well ξm ∝ ε−νn

along with χ∗2n+1(q → 0) ∝ ε−ψn . Analysis of χ∗2n+1(q → 0) with respect to ε for n = 1 lead to the
conclusion that χ∗3(q → 0) × ε ∼ O(1). Looking at the scaling of χ3 with ε in detail and find that
the associated exponent is ψ1 = 1. Similar analysis performed on the higher-order susceptibilities
lead to the conclusion that ψn = 1 for all levels n tested, independent of MF-closure type as well.
Akin to the observations made for the scaling laws of φ2n’s, this scaling relation is robust to different
parametrisation of models A and B. At low wave-numbers, the quadratic and quartic terms in the
denominator of (77) can be neglected, and so we find that χ∗2n+1(q) ∝ ξ4

n ∼ ε−ψn ⇒ ξn ∝ ε−1/4,
independent of the closure level Nc. Interestingly, these exponents are identical to the ones determined
for for fully microscopic calculations of the three-point dynamic susceptibility [64, 52].
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4.3 Numerical Results

(a) (b)

(c) (d)

Figure 16: Scaling of χ∗3 ((a)-(b)) and χ∗5 ((c)-(d)) for Model A with ν = 0., 2. and various closure
levels ranging from 1 to 20. Results fitted with (77). Inset to guide the eye at the short-wavelength
power-law decay with exponents ∆m.
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5 Conclusion

In this work we extended the recently derived generalised mode-coupling theory of glass-forming liq-
uids to inhomogeneous environments in the presence of a spatially varying external field. We find that
the form of the inhomogeneous and homogeneous hierarchies of order parameters are very similar, the
main differences coming in the form of non-translationally invariant quantities. Taking the zero-field
limit of this new theory provides a way to consistently obtain off-diagonal Generalised Mode Coupling
Theory, which is believed to be an important improvement on diagonal Generalised Mode Coupling
Theory. Indeed, the theory developed in [23] employs a diagonal approximation, which restricts some
momentum integrations to specific shells in k-space. Regarding inhomogeneous Generalised Mode
Coupling Theory as a Landau theory for phase transitions [5], our formalism enables us to system-
atically take variations of the many-body intermediate scattering functions F2m with respect to the
pinning field to obtain equations of motion for the many-body dynamical susceptibilities χ2m+1(q)
where q is the wave-length of the induced perturbation. much like in spin glasses, these non-linear
susceptibilities are excellent candidates to probe for collective effects in the structural glass transition.

From the hierarchical structure of iGMCT, we find that the dynamical susceptibilities form of hi-
erarchy of coupled linear integro-differential equations which take as initial conditions full solutions to
the homogeneous GMCT. This is the main drawback of solving for the microscopic equations as solving
for GMCT is already a herculean task [49, 50]. In the spirit of early GMCT studies [23, 40], we ex-
plore numerically a mathematically similar but much simpler hierarchy of coupled integro-differential
equations where all wave-vector dependence has been dropped. In this simpler model, we find that
that dynamical susceptibilities of any order are critical-like near the A2 glass transition singularity,
and we are able to extract diverging length scales with critical exponents ν = 1/4 for susceptibilities
of any order in the limit of q → 0. Furthermore, we report on a multi-step responses in time to an
external perturbation hinting at very complicated dynamical processes.

Future endeavors will have the intention to build on this work for more complicated (polydisperse)
glass-formers to investigate growing length-scales in different glass transition scenarios. Accounting
for polydispersity will involve a generalisation of the dynamic structure factors and non-linear dy-
namical susceptibilities to tensor quantities : Fα1,...,αn

2n and χα1,...,αnγ
2n+1 with the presence of multiple

infinitesimal generating terms accounting for each species: Uγ(q0).

Lastly, we point out that carefully designed experiments are capable of measuring these high-point
dynamical susceptibilities [12, 2]. It would be interesting to compare these with microscopic results
from our susceptibility hierarchy. The novel framework developed in this work promises to build an
important bridge between dynamical and thermodynamical theories of the structural glass transition.
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A Convolution Approximations

We show the general framework required to derive generalised convolution approximations for high-
point static structure factors within the formalism of Density Functional Theory (DFT). These
quantities are useful since many-body static structure factors serve as initial conditions for (Gen-
eralised) Mode Coupling Theories. We first briefly summarise the results from [8]. We consider a
one-component fluid in an external field. We denote Ξ the grand-canonical partition function (GPF),
z(r) = Λ−3 exp[βψ(r)] the local activity, with ψ(r) = µ−ϕ(r) which are respectively the chemical po-
tential and the external potential. As usual the microscopic density is defined as ρ(r) =

∑
i δ(r− rj).

We denote F [ρ(r)] the free-energy of the system, which is a functional of the density. We now introduce
a set of important distribution functions.

1. The n-particle density, denoted ρ(n)(r1, ..., rn) which is generated by derivatives of the GPF

ρ(n)(r1, ..., rn) ≡
(∏n

j=1 z(rj)
)

Ξ

δnΞ

δz(r1)...δz(rn)
(78)

2. The n-particle distribution function g(n)

g(n)(r1, ..., rn) =
ρ(n)(r1, ..., rn)∏n

j=1 ρ
(1)(rj)

(79)

3. The correlation function h(n)

h(n)(r1, ..., rn) =

(∏n
j=1 z(rj)

)(∏n
j=1 ρ

(1)(rj)
) δn log(Ξ)

δz(r1)...δz(rn)
(80)

4. The density correlation function H(n)

H(n)(r1, ..., rn) =
〈[
ρ(r1)− ρ(1)(r1)

]
...
[
ρ(rn)− ρ(1)(rn)

]〉
=

δn log(Ξ)

δ log(z(r1))...δ log(z(rn))

(81)

Following [39], we note that H(n) is also generated by the Grand potential Ω, for n ≥ 2:

H(n)(r1, ..., rn) = − δβΩ

δβψ(r1)...δβψ(rn)
(82)

and also that this many-body distribution functions is directly proportional to the many-body
structure factors that Generalised Mode Coupling Theories take as input : Sn(k1, ...,kn−1) =
ρ−1H̃(n)(k1, ...,kn−1).

5. The inverse of H(n), denoted K(n)

K(n)(r1, ..., rn) = − δnβF
δρ(1)(r1)...δρ(1)(rn)

=
(−1)n(n− 2)!

[ρ(1)(r1)]n−1
δ(r1 − r2)...δ(r1 − rn)− c(n)(r1, ..., rn)

(83)
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and its version in Fourier-space, assuming translational invariance :

K̃(n)(k2, ...,kn) =
(−1)n(n− 2)!

ρn−1
b

− c̃(n)(k2, ...,kn) (84)

6. The direct correlation function c(n), generated by the excess free energy Fexc

c(n)(r1, ..., rn) =
δc(n−1)(r1, ..., rn−1)

δρ(1)(rn)
= − δβFexc

δρ(1)(r1)...δρ(1)(rn)
(85)

We note that the following functional identity immediately follows∫
dr3K

(2)(r1, r3)H(2)(r3, r2) = δ(r1 − r2) (86)

We refer to this equation as OZ-2 from now on. Substituting the results summarised above gives :

∫
dr3

(
1

ρ(1)(r1)
δ(r1 − r3)− c(2)(r1, r3)

)
δ2 log(Ξ)

δ log(z(r3))δ log(z(r2))
= δ(r1 − r2)

⇒
∫
dr3

(
1

ρ(1)(r1)
δ(r1 − r3)− c(2)(r1, r3)

)(
ρ(1)(r2)ρ(1)(r3)h(2)(r2, r3) + ρ(1)(r2)δ(r2 − r3)

)
= δ(r1 − r2)

⇒ h(2)(r1, r2) = c(2)(r1, r2) +

∫
dr3c

(2)(r1, r3)ρ(1)(r3)h(2)(r2, r3)

which is the Ornstein Zernike [39] relation ! We seek to generalise to higher order correlation functions
in order to derive convolution approximations in momentum space. To do so we consider successive
functional derivatives of the functional identity above. For instance:

δ

δρ(1)(r4)

∫
dr3K

(2)(r1, r3)H(2)(r3, r2) =

∫
dr3

{
K(3)(r4, r1, r3)H(2)(r3, r2) +K(2)(r1, r3)

δH(2)(r3, r2)

δρ(1)(r4)

}
=

∫
dr3

{
K(3)(r4, r1, r3)H(2)(r3, r2) +

∫
dr5K

(2)(r1, r3)
δ log(z(r5))

δρ(1)(r4)

δH(2)(r3, r2)

δ log(z(r5))

}
=

∫
dr3

{
K(3)(r4, r1, r3)H(2)(r3, r2) +

∫
dr5K

(2)(r1, r3)H(3)(r3, r2, r5)
δ log(z(r5))

δρ(1)(r4)

}
=

∫
dr3

{
K(3)(r4, r1, r3)H(2)(r3, r2) +

∫
dr5K

(2)(r1, r3)H(3)(r3, r2, r5)K(2)(r5, r4)

}
and hence, OZ-3 reads:∫

dr

{
K(3)(r4, r1, r)H(2)(r, r2) +

∫
dr′K(2)(r1, r)H(3)(r, r2, r

′)K(2)(r′, r4)

}
= 0 (87)

which, up to relabelling this result is in agreement with [8]. Assuming translational invariance, OZ-3
(87) above reads in Fourier space after rearranging in favour of H̃(3):

H̃(3)(k1,k2) =
−K̃(3)(k1,k2)H̃(2)(k2)

K̃(2)(k1)K̃(2)(k1 + k2)
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From which we easily obtain:

S3(k1,k2) ≈ S(k1)S(k2)S(k1 + k2) (88)

by neglecting higher-order direct correlation functions c̃(n) for n ≥ 3. To obtain the higher-order
convolution approximations, the same method applies.

S4 convolution : We consider a variation of OZ-3 with respect to the density field, which gives
OZ-4, then expressed in Fourier space

H̃(4)(k1,k2,k3) =− 1

K̃(2)(k1)K̃(2)(k2)K̃(2)(k3)

[
K̃(4)(k1,k2,k3)H̃(2)(k1 + k2 + k3)

+K̃(3)(k1,k2)H̃(3)(k1 + k2,k3)K̃(2)(k3) + K̃(3)(k1,k3)H̃(3)(k1 + k3,k2)K̃(2)(k2)

+K̃(2)(k1)H̃(3)(k2 + k3,k1)K̃(3)(k2,k3)

]
which eventually gives

S4(k1,k2,k3,k4) = S(k1)S(k2)S(k3)S(k4)

(
S(k1 + k2) + S(k1 + k3) + S(k2 + k3)− 2

)
(89)

We summarise below the results for the next two orders.

S5 convolution :

S5(k1,k2,k3,k4,k5) =S(k1)S(k2)S(k3)S(k5)

{
6S(k4)− 2

(
S3(k4,k1 + k2 + k3)

S(k5)
+
S3(k1,k4)

S(k1)

+
S3(k2,k4)

S(k2)
+
S3(k3,k4)

S(k3)

)
− S3(k1 + k2,k4)− S3(k1 + k3,k4)− S3(k2 + k3,k4)

+
1

S(k5)

(
S4(k1 + k2,k3,k4)

S(k3)
+
S4(k1 + k3,k2,k4)

S(k2)
+
S4(k2 + k3,k1,k4)

S(k1)

)
+
S4(k2,k3,k4)

S(k2)S(k3)
+
S4(k1,k2,k4)

S(k1)S(k2)
+
S4(k1,k3,k4)

S(k1)S(k3)

}
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S6 convolution :

S6(k1,k2,k3,k4,k5)

= S(k2)S(k3)S(k4)S(k5)S(k6)

{
− 24S(k1) + 6

(
S3(k1,k5)

S(k5)
+
S3(k1,k4)

S(k4)
+
S3(k1,k3)

S(k3)

+
S3(k1,k2)

S(k2)
+
S3(k1,k2 + k3 + k4 + k5)

S(k6)

)
+ 2

(
S3(k1,k4 + k5) + S3(k1,k3 + k5)

+S3(k1,k3 + k4) + S3(k1,k3 + k4 + k5) + S3(k1,k2 + k5) + S3(k1,k2 + k4)

+S3(k1,k2 + k4 + k5) + S3(k1,k2 + k3) + S3(k1,k2 + k3 + k5) + S3(k1,k2 + k3 + k4)

)
− 2

(
S4(k1,k4,k5)

S(k4)S(k5)
+
S4(k1,k3,k5)

S(k3)S(k5)
+
S4(k1,k3,k4)

S(k3)S(k4)
+
S4(k1,k2,k5)

S(k2)S(k5)
+
S4(k1,k2,k4)

S(k4)S(k2)

+
S4(k1,k2,k3)

S(k2)S(k3)
+
S4(k1,k2,k3 + k4 + k5)

S(k2)S(k3 + k4 + k5)
+
S4(k1,k3,k2 + k4 + k5)

S(k3)S(k2 + k4 + k5)
+
S4(k1,k4,k2 + k3 + k5)

S(k4)S(k6)

+
S4(k1,k5,k2 + k3 + k4)

S(k5)S(k6)

)
−
(
S4(k1,k3,k4 + k5)

S(k3)
+
S4(k1,k4,k3 + k5)

S(k4)

+
S4(k1,k5,k3 + k4)

S(k5)
+
S4(k1,k2,k4 + k5)

S(k2)
+
S4(k1,k4,k2 + k5)

S(k4)
+
S4(k1,k5,k2 + k4)

S(k5)

+
S4(k1,k2,k3 + k5)

S(k2)
+
S4(k1,k3,k2 + k5)

S(k3)
+
S4(k1,k2,k3 + k4)

S(k2)
+
S4(k1,k3 + k4,k3 + k5)

S(k6)

+
S4(k1,k3,k2 + k4)

S(k3)
+
S4(k1,k3 + k5,k2 + k4)

S(k5)
+
S4(k1,k2 + k3,k5)

S(k5)
+
S4(k1,k4,k2 + k3)

S(k4)

+
S4(k1,k2 + k3,k4 + k5)

S(k6)

)
+
S5(k1,k2,k4,k5)

S(k2)S(k4)S(k5)
+
S5(k1,k2,k3,k5)

S(k2)S(k3)S(k5)
+
S5(k1,k2,k3,k4)

S(k2)S(k3)S(k4)

+
S5(k1,k2,k3,k4 + k5)

S(k2)S(k3)S(k6)
+
S5(k1,k2,k4,k3 + k5)

S(k2)S(k4)S(k6)
+
S5(k1,k3,k4,k2 + k5)

S(k3)S(k4)S(k6)

+
S5(k1,k2,k5,k3 + k4)

S(k6)S(k2)S(k5)
+
S5(k1,k2 + k3,k4,k5)

S(k4)S(k5)S(k6)
+
S5(k1,k3,k5,k2 + k4)

S(k6)S(k3)S(k5)
+
S5(k1,k3,k4,k5)

S(k3)S(k4)S(k5)

}
We note that the equations for S5,6 above can be further simplified by plugging in the appropriate
convolution approximations of lower order.
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B Numerical Methods for Schematic Models & Parametrisa-
tion Details

We outline the numerical algorithm used to solve the schematic GMCT and schematic dynamical
susceptibilities. The essence of the numerical technique lies in the treatment of the convolution
integral, where we use:

∫ t

0

duM(t− u)Ḟ (u) =

∫ t2

0

duM(t− u)Ḟ (u) +

∫ t

t2

duM(t− u)Ḟ (u)

= M(t− t2)F (t2)−M(t)F (0)−
∫ t2

0

duṀ(t− u)F (u) +

∫ t

t2

duM(t− u)Ḟ (u)

= M(t− t2)F (t2)−M(t)F (0)−
N∑
j=1

∫ tj

tj−1

duṀ(t− u)F (u)−
N ′∑
j=1

∫ tj

tj−1

duM(u)Ḟ (t− u)

≈M(ti−i2)F (ti2)−M(ti)F (0)−
N∑
j=1

(M(ti−j)−M(ti−j+1))I[F (tj)]

−
N ′∑
j=1

(F (ti−j)− F (ti−j+1))I[M(tj)]

(90)

where the sum limits satisfy N∆t = t2 and N ′∆t = t− t2. WLOG we will assume ∆t = 1. We have
also used ∫ tj

tj−1

duα̇(u)β(u) ≈ 1

2
(α(tj)− α(tj−1))(β(tj) + β(tj−1)) (91)

We can re-write the hierarchies (73), (74) in the form Aφ2n(ti)+BM
(φ)
2n (ti)+C = 0 and AXχ2n+1(ti)+

BXM
(χ)
2n (ti) + CX = 0. The exact coefficients are

A =

(
µn +

3νn
2δt

+
2

δt2

)
+ ΛnI[M (φ)

n (t1)] (92)

B = −Λnφn(0) + ΛnI[φn(t1)] (93)

C = −2νn
δt

φn(ti−1) +
νn
2δt

φn(ti−2)− 5

δt2
φn(ti−1) +

4

δt2
φn(ti−2)− 1

δt2
φn(ti−3)

+ Λn

(
Mφ
n (ti−i2)φn(ti2)−M (φ)

n (ti−1)I[φn(t1)]− φn(ti−1)I[M (φ)
n (t1)]

)
− Λn

i2∑
j=2

(
M (φ)
n (ti−j)−M (φ)

n (ti−j+1)
)
I[φn(tj)]

− Λn

i−i2∑
j=2

(φ(ti−j)− φ(ti−j+1)) I[M (φ)
n (tj)]

(94)

for the hierarchy of the dynamical correlation functions and are
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AX =

(
µn +

3νn
2δt

+
2

δt2

)
+ ΛnI[M (φ)

n (t1)] (95)

BX = −λn(q)φn(0) + λn(q)I[φn(t1)] (96)

CX = −2νn
δt

χ2n+1(ti−1)− 5

δt2
χ2n+1(ti−1) +

νn
2δt

χ2n+1(ti−2) +
4

δt2
χ2n+1(ti−i2)− 1

δt2
χ2n+1(ti−3) + µ̄nφn(ti)

+ Λn

(
M (φ)
n (ti−i2)φ(ti2)−M (φ)

n (ti)φn(0)− (M (φ)
n (ti−1)−M (φ)

n (ti))I[φn(t1)]− (φn(ti−1)− φn(ti))I[M (φ)
n (t1)]

)
+ Λn

(
M (φ)
n (ti−i2)χ2n+1(ti2)−M (φ)

n (ti−1)I[χ2n+1(t1)]− χ2n+1(ti−1)I[M (φ)
n (t1)]

−M (φ)
n (ti)χ2n+1(0) +M (φ)

n (ti)I[χ2n+1(t1)]

)
+ λn(q)

(
M (χ)
n (ti−i2)φn(ti2)−M (χ)

n (ti−1)I[φn(t1)]− φn(ti−1)I[M (χ)
n (t1)] + φn(ti)I[M (χ)

n (t1)]
)

− Λn

i2∑
j=2

(
M (φ)
n (ti−j)−M (φ)

n (ti−j+1)
)
I[χ2n+1(tj)]

− Λn

i−i2∑
j=2

(χ2n+1(ti−j)− χ2n+1(ti−j+1)) I[M (φ)
n (tj)]

− Λn

i2∑
j=2

(
M (φ)
n (ti−j)−M (φ)

n (ti−j+1)
)
I[φn(tj)]

− Λn

i−i2∑
j=2

(φ(ti−j)− φ(ti−j+1)) I[M (φ)
n (tj)]

− λn(q)

i2∑
j=2

(
M (χ)
n (ti−j)−M (χ)

n (ti−j+1)
)
I[φn(tj)]

− λn(q)

i−i2∑
j=2

(φn(ti−j)− φn(ti−j+1)) I[M (χ)
n (tj)]

(97)

for the dynamical susceptibilities. The algorithm requires as input the first 2N points of the solution
for χ2n+1(q; t). We do so by considering a Taylor development.

φn(t) = φn(0) + φ̇n(0)t+
1

2
φ̈n(0)t2 +O(t3)

χ2n+1(t) = χ2n+1(0) + χ̇2n+1(0)t+
1

2
χ̈2n+1(0)t2 +O(t3)

(98)

OVERDAMPED scheme : then we have as initial conditions φn(0) = χ2n+1(0) = 1. From the
e.o.m. we determine that
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φn(t) = 1− µn
νn
t+

µn
ν2
n

[
µn +M (φ)

m (0)
]
t2

χ2n+1(t) = 1− µn + µ̄n
νn

t+
µn
ν2
n

[
µn + µ̄n + µnµ̄n +M (χ)

n (0)
]
t2 +

µn + µ̄n
ν2
n

M (φ)
n (0)t2

(99)

UNDERDAMPED scheme : then we have as initial conditions φn(0) = χ2n+1(0) = 1 and
φ̇n(0) = χ̇2n+1(0) = 0. This leads to the following initialisation terms :

φn(t) = 1− mun
2

t2

χ2n+1(t) = 1− µn + µ̄n
2

t2
(100)
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