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Abstract

In the last decades, graphene has been the case study material for many phe-
nomena in different fields of solid state physics. In particular, it has been
used to study the electron transport properties of 2D Weyl semimetals, a class
of materials characterized by the presence of massless quasi-particle excita-
tions. Recently, a new type of 2D Weyl semimetals, the Kagome system, has
been proposed as a better candidate for the realisation of strongly correlated
electron fluids. In this thesis, we will test this hypothesis by studying the
Coulomb-driven semimetal-insulator phase transition. Specifically, we analyse
the effects of the electron-electron interaction both in the weak and strong cou-
pling limit. The former is studied through the renormalization group analysis,
the second by numerically solving the self-consistent Schwinger-Dyson equa-
tion. Moreover, we discuss the differences between the symmetry breaking
process corresponding to the graphene and Kagome phase transition.





Chapter 1

Introduction

The study of 2 dimensional materials is one of the hottest topics in today’s
theoretical physics. Graphene and other similar systems are applied in a vast
range of different fields, from medicine to the development of new materials
and technologies. After their first experimental discovery, which occurred in
2004 with the isolation of 2D graphene [1], their use in almost every field of
scientific research has started to grow steadily. From a theoretical prospective,
they are interesting because of the simplicity that characterizes their structure,
and because of the multitude of peculiar phenomena that cannot be observed
otherwise. In this thesis, we will focus in particular on the electronic structure
of the so-called 2D Weyl semimetals [2]. We will use a combination of classic
and new approaches to study the interacting ground state of the well-known
graphene model [3] [4] and the Kagome lattice [5] [6].

1.1 Weyl Semimetals
In solid state physics many of the properties that characterize a material are
encoded in its band structure. In particular, we can think of its atoms as
fixed points that form a stationary lattice, to which the inner electrons are
strongly bounded. Hence, we are interested in the available energy states for
the external electrons, which are able to move along this lattice. The initial
band structure is derived by assuming that this electrons are non-interacting
and using the transnational invariance of the crystal. In this way, we can
construct the Bloch Hamiltonian in the momentum space, which describes the
single unit cell that composes the lattice. Consequently, the energy levels are
defined as the eigenvalues of this Hamiltonian on the Brillouin zone, and they
form the band structure of the corresponding material. All the energy lev-
els below the Fermi energy, i.e. the chemical potential at zero temperature,
are called valence bands, while those above this energy are the conduction ones.

From this description it is straightforward to distinguish between two lim-
iting cases: metals and insulators. The former are characterized by a gapless
spectrum, i.e. the valence and conduction bands live in a continuum and the
electrons are almost free to transit from one state to the other. On the con-
trary, insulators are defined by a finite energy gap between the highest valence
band and the lowest conduction band. As a consequence, the Fermi energy lies



2 Chapter 1. Introduction

within this gap, and a large energy is required to excite an electron between
these states.

In addition to these limit cases, it is also possible to observe intermediate
configurations. In particular, we will be interested in the so-called semimetals,
which are characterized by a gapless spectrum but where the density of states
vanishes at the Fermi energy. In general, even though this condition might ap-
pear unstable, most semimetals posses different mechanisms that protect their
structure. Thus, it is interesting to study under which circumstances, e.g. the
electron-electron or the electron-phonon interactions, we can break this picture
and lead to a semimetal-insulator or semimetal-metal phase transition.

An interesting subgroup of this category is represented by the Weyl semimet-
als [2] [3]. These materials are characterized by the presence of Weyl quasi-
particle excitations, i.e. massless chiral fermions. Because they are semimet-
als, the spectrum intersects the Fermi energy surface only in a finite number of
points, called the Weyl nodes, at which the density of states vanishes linearly.
Consequently, in the vicinity of these points, the electrons behave as massless
particles. This implies that at low energies the electrons mimic the physics of
relativistic fermions, hence they are able to show some of the peculiar charac-
teristics of quantum electrodynamics (QED). Furthermore, they propagate at
a typical velocity vF , that results much slower than the speed of light. Thus,
we expect this relativistic phenomena to occur at a completely different en-
ergy scale compared with that of QED. For instance, a famous example of the
massless behaviour of the conduction electrons is given by the Klein paradox [3].
It can be shown that the Weyl quasi-particle excitations propagate through a
square-well potential according to the same relation that holds for massless,
relativistic particles, i.e. preventing any kind of back-scattering along specific
directions.

1.1.1 2D Semimetal-Insulator Phase Transition
The Hamiltonian of a generic Weyl semimetal can be effectively expanded at
linear order in the vicinity of the Weyl nodes, i.e.

H = vFp · σ . (1.1)

Here vF is the electron velocity, p represents the momentum, and σ are the
common Pauli matrices. Now the question is how can we open an energy gap
at these nodes?

First of all, we have to observe that the large stability of the gapless structure
is guaranteed by the material topology [2]. In fact, in any Weyl semimetal we
always find an even number of independent nodes. For instance, the graphene
lattice that we will analyse in the next chapters present six Dirac points, only
two of which are independent. This implies that, in order to produce a gap,
we have to act on at least two distinct points of the Brillouin zone, i.e. by
means of a perturbation that is non-local in the momentum. It is worth notic-
ing that this represents an interesting difference with the usual behaviour of
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other topological materials, e.g. the topological insulators. In these cases, the
energy structure is gapped in the bulk and metallic on the edges, thus we need
to close the bulk Hamiltonian in order to be able to change the topological
invariant of the system, and thus produce a phase transition.

If we now reduce our discussion to the two dimensional materials, the linear
Hamiltonian reduces to

H = vF (pxσx + pyσy) . (1.2)

Hence the spectrum becomes gapped by introducing a mass term along the
excluded dimension, i.e. ∆(k)σz. We will present explicit examples for this
gap function ∆(k) in the next chapters of the thesis. In any case, it should
be clear at this point that this order parameter has to be related to a proper
global symmetry of the system. The form of the Hamiltonian (1.2) is a further
incentive to study this particular phase transition in the two dimensional case,
which can be gapped more easily than its three dimensional counterpart.

1.2 Motivations
The peculiar electronic structure of Weyl semimetals has been used to study
numerous phenomena within solid state physics. In particular, we are inter-
ested here in the electron transport properties of these materials [7]. In this
section we will give a brief justification of the project so as to include it in the
more general framework of which it is just a small part.

In general, if we aim to describe the interacting picture of electrons inside
a conducting material, we have to deal with at a large number of possible
contributions, e.g. electron-electron, electron-phonon and electron-impurities
interactions. Consequently, we can define some typical length scales to describe
these scattering processes, namely lee, l and W . The first measures the mean
free path for electron-electron collisions, the second is the mean free path with
respect to the all the interactions that do not preserve the electron momen-
tum, and lastly W is the sample size. In a typical conductor, the e-e scattering
length is much larger than the mean free path l, hence this interaction con-
tributes only marginally to the transport properties. This can be understood
by looking at the typical behaviour for different temperature regimes. At low
temperatures, the lattice vibrations decrease, thus making the length l longer.
However, also lee grows due to the Fermi statistics that limits the available
phase space for e-e collisions. On the contrary, at high temperatures both the
electron-phonon and the electron-electron scattering processes increase, thus
reducing the length l and lee. Experimentally, it has been found that there is
no metals for which the relation lee � l holds at any temperature scale.

Let assume now that such a material exists, namely such that the e-e in-
teraction gives the dominant contribution in the scattering process. Thus, the
conduction electrons would behave as a viscous fluid described by hydrody-
namic equations [7]. In fact, within this assumption, the thermal vibrations
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and the lattice impurities are not able to destroy the collective response of
electrons, as it happens instead in normal materials. This condition would
imply numerous peculiar consequences, which could be observed by studying
the electron transport properties of the material.

In the last decade it has been argued that Weyl semimetals at low temper-
ature might be a good candidate to observe these peculiar phenomena [7]. In
fact, thanks to the vanishing DOS at the Dirac nodes, the long range Coulomb
interactions are weakly screened, and thus collective electronic states might
be created. In particular, graphene has been object of numerous experiments
which studied its transport properties, and other 2D materials have been sug-
gested as possible alternatives.

In this thesis, we will not focus our attention on the electron hydrodynamic
regime per se. Instead, we are going to study quantitatively under which con-
ditions an energy gap is opened both in the graphene and Kagome lattice.
In fact, the latter has been recently proposed as a valid alternative for the
realisation of an electronic fluid [8]. In particular, if compared to graphene, the
proposed material is characterized by a stronger Coulomb interaction, i.e. the
corresponding coupling parameter is roughly three times larger. On one hand,
this might indeed enhanced the Coulomb interaction strength, thus facilitat-
ing the realisation of the hydrodynamic regime. At the same time, its stronger
interaction might compromise the gapless structure of the Weyl energy bands,
thus preventing the formation of collective states. For these reasons, we will
study the semimetal-insulator phase transition for these materials under the
action of the electron-electron Coulomb interaction alone.



Chapter 2

Renormalization Group
Analysis

In this chapter, we will present the electronic structure of pristine monolayer
graphene [3] [4], which is characterized by the presence of two independent Dirac
points. Then, we will study the effects of the electron-electron Coulomb inter-
action on its energy spectrum, with particular attention to the behaviour in
the low energy expansion. We will use the renormalization group theory [9] to
determine whether the coupling parameter becomes strong enough to open an
energy gap, or if it flows to the weak coupling regime.

2.1 Tight-binding Model
A single sheet of graphene is made out of carbon atoms arranged in hexagonal
configurations, as shown in Fig. 2.1. Therefore, it is possible to describe this
honeycomb structure as composed by two triangular sublattices, A and B, with
lattice vectors

a1 =
a

2

(
3,
√
3
)

, a2 =
a

2

(
3,−

√
3
)

.

Here a represents the carbon-carbon distance, that is of the order of a ≈ 1.42Å
for pristine graphene.

In neutral graphene, only one valence electron can move between different car-
bon atoms, thus generating the entire electronic structure. Throughout the
whole discussion, we will consider only hopping between nearest neighbour
sites. In fact, including the hopping to the next nearest neighbours contribu-
tion would only shift the energy spectrum by a constant factor without acting
on the linear expansion around the Dirac points. In other words, the correction
due to longer electron hopping is at least of second order, thus irrelevant to
the following discussion. The tight-binding Hamiltonian has then the form [3]

H = −t
∑

<i,j>,σ

(
a†σ,ibσ,j + b†σ,jaσ,i

)
, (2.1)

where t is the hopping parameter, a†σ,i(aσ,i) creates(annihilates) an electron
with spin σ on site i on sublattice A, and the sum is taken over the nearest



6 Chapter 2. Renormalization Group Analysis

Figure 2.1: (Left) : Lattice structure of graphene. The triangular sublattices,
A and B, are described by the lattice unit vectors a1 and a2, and they are
connected by the nearest neighbour vectors δi. (Right) The corresponding
Brillouin zone. The two independent Dirac points are located at K and K′.
(adapted from [3])

neighbour sites only.

We can now transform the Hamiltonian to the momentum space by using

a†i =
1√
N/2

∑
k

e−ik·ria†(k) and ai =
1√
N/2

∑
k

eik·ria(k) ,

with equivalent expressions for the sublattice B. Since the sum in (2.1) is
restricted only to the nearest neighbour sites, the vector positions on the sub-
lattice B can be rewritten as rj = ri + δ, with i ∈ A, j ∈ B and

δ1 =
a

2

(
1,
√
3
)

δ2 =
a

2

(
1,−

√
3
)

δ3 = a (−1, 0) ,

as shown in Fig. 2.1. Hence we get

Hσ = −t
∑
i∈A

∑
δ

∑
k,k′

(
1

N/2
e−iri·(k−k′)eiδ·k

′
a†σ(k)bσ(k′) + h.c.

)

= −t
∑
δ

∑
k

(
eiδ·ka†σ(k)bσ(k) + h.c.

)
,

where we used that
∑

i∈A eiri·(k−k′) = N
2
δ(k − k′). Thus, the tight-binding

Hamiltonian in the momentum space results

H =
∑
k,σ

Ψ̄σ(k)
(

0 −t
∑

δ e
iδ·k

−t
∑

δ e
−iδ·k 0

)
Ψσ(k) , (2.2)

with Ψ̄σ(k) =
(
a†σ(k) b†σ(k)

)
and Ψσ(k) = (aσ(k) bσ(k))T . Finally, the

eigenvalues of the Bloch Hamiltonian in (2.2) give the energy spectrum of
monolayer graphene [3] (see Fig. 2.2), namely

E±(k) = ± t

√√√√3 + 2 cos
(√

3aky

)
+ 4 cos

(√
3a

2
ky

)
cos

(
3a

2
kx

)
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The two energy bands are symmetric with respect to the Fermi energy and
touch each other at the Dirac points, which are located in the momentum
space at

KD =

(
2π

3a
,

2π

3
√
3a

)
K′

D =

(
2π

3a
, − 2π

3
√
3a

)
. (2.3)

Figure 2.2: Energy spectrum of the non-interacting graphene model (in units
of the hopping parameter t).

2.1.1 Linear Expansion
The Bloch Hamiltonian in (2.2) can be expanded at the Dirac points by writing
k = KD + q, with |q|/|KD| � 1, which leads to

h(KD + q) = 3

2
at

(
0 qx + iqy

qx − iqy 0

)
= vF q · σ , (2.4)

where σ are the common Pauli matrices. The linear dispersion implies that
the electrons at low energy behave as massless, chiral fermions [2] [3]. Moreover,
the Fermi velocity, defined as vF = 3

2
at, does not depend on the energy or

momentum but it is a property of the material itself. In the case of graphene,
the electrons propagate at vF ' 1× 106m/s ∼ c/300.

In the non-interacting case, we observed that the energy spectrum is gap-
less but with a vanishing density of states (DOS), i.e. graphene behaves as
a semimetal. In what follows we will study under which conditions it is pos-
sible to open an energy gap spontaneously by means of the electron-electron
Coulomb interaction. Thanks to the vanishing DOS, in fact, the long-range
Coulomb interactions are weakly screened, which may lead to a renormaliza-
tion of the band structure close to the Dirac points, i.e. a renormalization of
the Fermi velocity.
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2.2 Coulomb Interaction
In order to analyse the effects of the Coulomb interaction on the graphene
model, we go to the continuum limit in the second quantization language [10] [11].
The non-interacting Hamiltonian in the linear regime then becomes [11]

H =

∫ Λ∼1/a

|q|=0

dq
(2π)2

Ψ̄(q) vF q · σ Ψ(q) , (2.5)

where the momentum cut-off is introduced naturally from the lattice constant.
In fact, from the energy spectrum (Fig 2.2) and from the definition of the
Brillouin zone (Fig. 2.1), we can see that the linear expansion holds in a range
that is proportional to the inverse of the lattice constant. We can use this
result to write the free action as

S0[Ψ̄, Ψ] =

∫ β

0

dτ

∫ Λ∼1/a

|q|=0

dq
(2π)2

Ψ̄(q, τ)
(

d

dτ
+ vF q · σ

)
Ψ(q, τ) , (2.6)

which can be Wick rotated by means of the following Fourier transformations

Ψ̄(q, τ) =
∫

dω

2π
Ψ̄(q, ω)eiωτ Ψ(q, τ) =

∫
dω

2π
Ψ(q, ω)e−iωτ .

Then, equation (2.6) at zero temperature becomes

S0[Ψ̄, Ψ] =

∫ ∞

−∞

dω

2π

∫ Λ≈1/a

|q|=0

dq
(2π)2

Ψ̄(q, ω) (−iω1+ vF q · σ)Ψ(q, ω) . (2.7)

The action for the Coulomb interaction can be written in the coordinate space
as [11]

Sint[Ψ̄, Ψ] =

∫
dτ

∫
dr1
∫

dr2 Ψ̄(r1, τ)Ψ̄(r2, τ)VC(r1 − r2)Ψ(r2, τ)Ψ(r1, τ) .
(2.8)

It is worth noticing that the interaction term is completely independent of
time. This is because, as we discussed in the previous section, the electron
velocity is roughly 300 times smaller than the speed of light at which the
interaction propagates, i.e. the effects of retardation due to their relative speed
are completely irrelevant at this stage. Since graphene is a 2 dimensional
model, the Coulomb potential, VC(r) = e2

4πε
1
|r| , transforms differently to the

momentum space, namely

VC(q) =
∫

dr e2

4πε

1

|r|e
−ir·q

=
e2

4πε

∫ ∞

0

dr r

∫ 2π

0

dθ
e−irqcos(θ)

r

=
e2

4πε

∫ ∞

0

dr′

|q|2πJ0(r
′)

=
2πe2

4πε

1

|q| ,
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q

Ψ3

Ψ̄2 Ψ̄1

Ψ4

Figure 2.3: Diagrammatic representation of the Coulomb interaction. The
momentum q is transferred between the electrons (solid arrows) by means of
a photon (wiggly line).

where we defined r′ = rq, and J0(r
′) is a Bessel function of the first kind. In

order to transform equation (2.8) we need to perform the following Fourier
transformations

Ψ̄(r, τ) =
∫

dq
(2π)2

Ψ̄(q, ω)e−iq·r+iωτ

Ψ(r, τ) =
∫

dq
(2π)2

Ψ(q, ω)eiq·r−iωτ

VC(r) =
∫

dq
(2π)2

VC(q)eiq·r .

Combining all these expressions together, we get the general formula for the
Coulomb action in 2 dimensions, i.e.

Sint[Ψ̄, Ψ] =
4∏

n=1

∫ ∞

−∞

dωn

2π

∫ Λ∼1/a

|pn|=0

dpn

(2π)2

∫ Λ∼1/a

|q|=0

dq
(2π)2

Ψ̄(p1, ω1)Ψ̄(p2, ω2)
2πe2

4πε

1

|q| Ψ(p3, ω3)Ψ(p4, ω4)

(2π)2 δ (p1 − p4 − q) (2π)2 δ (p2 − p3 + q) (2π) δ (ω1 + ω2 − ω3 − ω4) .

(2.9)

In this expression, the first two delta functions represent the conservation of the
momentum, while the third one preserves the energy. The physical meaning
can be better understood by looking at its diagrammatic representation, which
is shown in Fig. 2.3. From this, it is easier to comprehend why also the integral
over the Coulomb potential is restricted to Λ, i.e. because the momentum is
completely transferred from one electron to the other, which are both limited
in the low energy approximation.

2.3 Renormalization Group
The renormalization group [9] [10] (RG) is a set of symmetry operations, i.e.
transformations that leave the physics invariant, which rescale the character-
istic length scales of the problem. Originally, it has been introduced to deal
with the ultraviolet divergences that appear in high-energy theories, such as
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QED. In these cases, a cut-off, called Λ, is needed in order to prevent the phys-
ical quantities from diverging, which thus means confining the problem to the
relevant energy scale we are looking for. The idea of the RG is to find a set of
Λ-dependent coupling functions, α(Λ), such that the relevant physical quanti-
ties result cut-off independent. This can be done for any renormalizable field
theory, for which exists a finite set of parameters that satisfy this condition.
Finding this group corresponds to work out how the set of coupling functions
behave under a change of the cut-off, which is usually expressed through the
β-function

β(α) =
dα

db
, (2.10)

where the cut-off is Λ = Λ(b). This method allows you to study how to modify
the coupling parameters while sending the cut-off to infinity, which is where
the field theory has physical meaning, meanwhile the relevant physical quan-
tities are invariant under these transformations.

In low-energy physics, however, this method acquires a completely new point
of view [9]. As we discussed in the previous sections, the cut-off Λ is no longer
an artefact of the theory, but it rather sets an upper limit to the energy scale
of interest. Moreover, the cut-off is often provided by some natural quantity of
the system, such as the inverse lattice spacing, and it does not hide any kind
of ultraviolet divergences. In this context, the RG approach consists of three
distinct steps.

Step 1 : mode elimination
Usually, when dealing with condensed matter systems, we are interested in
studying the divergence of some correlation length at the critical point. How-
ever, the relevant correlations are by definition those of modes that lie within
a ball of size Λ/b, with b > 1. This implies that we can separate the fields into
slow and fast modes, i.e.

φ< = φ(k) for 0 < k < Λ/b (slow modes)

φ> = φ(k) for Λ/b < k < Λ (fast modes) .
(2.11)

The first step consists of rewriting the theory as an effective theory for the
slow modes only, which can be done by expressing the action as

S[φ<, φ>] = S0[φ<] + S0[φ>] + Sint[φ<, φ>] . (2.12)
It is important to notice that the non-interacting part automatically separates
into slow and fast contributions since it is a quadratic function of the fields,
hence any term that contains both modes integrates to zero. Then, we use
equation (2.12) to write the effective partition function as following

Z =

∫
[dφ<] [dφ>] e

S0[φ<]eS0[φ>]eSint[φ<, φ>]

=

∫
[dφ<] e

S0[φ<]

∫
[dφ>] e

S0[φ>]eSint[φ<, φ>]

=

∫
[dφ<] e

S′[φ<] ,

(2.13)
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which defines the slow modes effective action S ′[φ<]. This partition function
provides a good description of the slow modes physics, integrating out of the
picture the short wavelengths contribution.

Step 2 : rescaling momenta
In principle, the next step would be to compute the β-function defined by
(2.10), i.e. compare the coupling functions that appear in the original action
S[φ] with the ones from the rescaled S ′[φ<]. However, this cannot be done
directly since they are defined on different domains, i.e. α(Λ) has no match in
the rescaled theory. To overcome this issue, we define new momenta after the
mode elimination through k′ .

= bk. In this way the slow modes still run up to
the original cut-off Λ again.

Step 3 : rescaling fields
A direct comparison of the actions would still not be free from redundancies
lacking of physical meaning. In fact, at this point the fields that appear in the
actions are not physically equivalent, thus we need to find some other quantity
that allows us to relate them. A possible solution is to identify one of the
coupling constant as an invariant under the renormalization group action, and
rescale the new fields accordingly. In other words, once we assume one of the
parameter is invariant, we transform the fields in such a way that it results
explicit under the RG.

Once all the three steps are accomplished, we are able to compare different
actions defined on the same space. In order to do this, we introduce the con-
cept of flow diagram, i.e. how the coupling constants change under the action
of the RG. In other words, we can picture the two actions, S[φ] and S ′[φ′], as
distinct points in a coupling constant space, and the RG tells you how these
two points are related, i.e. how the initial action flows to the transformed
one. This procedure allows us to find fixed points of the group action, namely
points of the flow diagram that do not transform under the RG action. This
means that the relevant physical quantities of these theories, i.e. the correla-
tion lengths, are either zero or infinite. While the first case represents a trivial
situation, the latter indicates we approached a critical point for the model in
exam.

In the next paragraphs we will apply this method to the linear, tight-binding
model of graphene with interacting electrons [3] [4]. We will see how to iden-
tify the proper coupling constant for the theory, and analyse the effects of the
Coulomb interaction using the flow diagram concept.

2.3.1 First Oder Approximation

To study the renormalization group action, we start with the zero temperature
partition function, namely

Z =

∫
d
[
Ψ̄
]
d [Ψ] e−S0

[
Ψ̄, Ψ

]
e−Sint

[
Ψ̄, Ψ

]
, (2.14)
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where S0

[
Ψ̄, Ψ

]
and Sint

[
Ψ̄, Ψ

]
are given by equation (2.7) and (2.9) respec-

tively. Hence, we apply the first step, i.e. the mode elimination, by splitting
the fields into slow and fast modes. The effective action defined in equation
(2.13) thus becomes

e−S′[Ψ̄<, Ψ<
]
= e−S0

[
Ψ̄<, Ψ<

] ∫
d
[
Ψ̄>

]
d [Ψ>] e

−S0

[
Ψ̄>, Ψ>

]
e−Sint

[
Ψ̄>, Ψ>, Ψ̄<, Ψ<

]

= e−S0

[
Ψ̄<, Ψ<

]
Z>

0

〈
e−Sint

[
Ψ̄>, Ψ>, Ψ̄<, Ψ<

]〉
>

= e−S0

[
Ψ̄<, Ψ<

]
Z>

0

(
e
−〈Sint〉>+ 1

2

(〈
S2
int

〉
>
−〈Sint〉2>

)
+O

(
S3
int

))
.

(2.15)

Here 〈 · 〉> represents the non-interacting average over the fast modes, and Z>
0

is the free partition function in the short wavelength regime, which is needed
to normalize the interacting average (see Appendix A).

The first order approximation consists of considering only the first term in
the above expansion, i.e. e−〈Sint〉> . According to equation (A.1), this can be
written in the following expression

〈Sint〉> =
〈
Sint

[
Ψ̄<, Ψ<

]〉
>,1

+
〈
Sint

[
Ψ̄>, Ψ>, Ψ̄<, Ψ<

]〉
>,2

, (2.16)

where the right-hand terms are given by equation (A.2) and (A.5) respectively.
The next step of the RG analysis is to rescale the momenta such that the
original cut-off is restored, namely

p′ = b p

ω′ = b ω .
(2.17)

Finally, we need to transform the fields according to the third step of the
RG method. In this case, the idea is to formally rewrite the partition func-
tion (2.14), where now 〈Sint〉>,1 provides for the whole interacting term, while
〈Sint〉>,2 modifies the free contribution. This can be achieved by using

Ψ̄′ (p′, ω′) = b−2 Ψ̄< (p, ω)

Ψ′ (p′, ω′) = b−2 Ψ< (p, ω) ,
(2.18)

which formally transforms 〈Sint〉>,1 into equation (2.9) with the new, primed
fields.

The non-interacting contribution is now composed by the original action plus
the one-loop correction due to 〈Sint〉>,2. Finally, we have to analyse the effect
of this term as a function of the cut-off Λ in the low energy limit. Hence, we
need to study the self energy term given by equation (A.6), namely

Σ(1) (q) =
∫ ∞

−∞

dω

2π

∫ Λ

Λ/b

dp
(2π)2

1

|p − q|G0,> (p, ω) . (2.19)
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= +

Figure 2.4: Diagrammatic representation of the first order Hartree-Fock ap-
proximation [10].

This is the usual one-loop correction that comes from the first order pertur-
bation theory (see Fig. 2.4). The non-interacting Green’s function can be
obtained by its inverse, which is defined implicitly in equation (2.7), leading
to [4]

G0 (p, ω) = (−iω1+ vF p · σ)−1

=
iω1+ vF p · σ
ω2 + v2F |p|2

.
(2.20)

Inserting this equation into the self energy expression, and noticing that the
terms that are odd in frequency becomes zero when integrated, we get

Σ(1) (q) =
∫ ∞

−∞

dω

2π

∫ Λ

Λ/b

dp
(2π)2

1

|p − q|
vF p · σ

ω2 + v2F |p|2
.

The goal of this term is to renormalize the Fermi velocity that appears in the
non-interacting action (2.7). Hence, we can rewrite the above expression in
such a way that the momentum dependency goes explicitly like ∼ q · σ. We
can achieve this by defining a new function Σ(1) (q) = Σ̄ (q)q · σ, which then
satisfies

Tr
(
q · σΣ(1) (q)

)
= Tr

(
q · σ Σ̄ (q) q · σ

)
= |q|2 Σ̄ (q) Tr (1) .

(2.21)

In the end we get

Σ̄ (q) = 1

2|q|2Tr
(
q · σΣ(1) (q)

)
=

1

2|q|2

∫ ∞

−∞

dω

2π

∫ Λ

Λ/b

dp
(2π)2

1

|p − q|
Tr ((q · σ) (vFp · σ))

ω2 + v2F |p|2

=
1

2|q|2

∫ Λ

Λ/b

dp p

(2π)2

∫ π

0

dθ
|q| cos(θ)√

p2 + |q|2 − 2p|q| cos(θ)
,

(2.22)

where we used that

Tr ((q · σ) (vFp · σ)) = vFTr ((q · p)1+ i (q × p) · σ)

= 2vF q · p ,
(2.23)

and ∫ ∞

−∞

dω

2π

1

ω2 + v2Fp
2
=

1

2vFp
.
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To integrate equation (2.22) we notice that, while the integrated momenta p
runs from Λ/b to Λ, the variable q is restricted to the low energy limit. This
implies that we can expand the denominator in the limit |q|/|p| � 1, i.e.

Σ̄ (q) = 1

2|q|

∫ Λ

Λ/b

dp

(2π)2

∫ π

0

dθ p cos(θ)

(
1 +

|q|
p

cos(θ) +O
(
|q|2

p2

))

' 1

16π
(log (Λ)− log (Λ/b)) .

(2.24)

Finally, we can substitute the self energy expression into the equation (A.5) to
obtain the correction to the non-interacting action. However, it is important
to notice that the original action is proportional to the Fermi velocity alone,
while the term we just computed is still related to the Coulomb strength e2

4πε
,

as shown by equation (2.9). In fact, we are studying here how the electronic
interaction acts on the kinetic part of the Hamiltonian, which is expressed by
the tight-binding model. This problem is solved by introducing a coupling
term between these two contributions, namely

α =
e2

4πε

1

vF
. (2.25)

First of all, we see that this term allows us to express the relevant correction,
i.e. 〈Sint〉2, as a function of the Fermi velocity. In fact, combining 〈Sint〉2 with
S0

[
Ψ̄<, Ψ<

]
according to (2.15), we get [4]

S0 =

∫ ∞

−∞

dω

2π

∫ Λ/b

|p|=0

dp
(2π)2

Ψ̄< (p, ω)
[(

1 +
α

4

(
log (Λ)− log

(
Λ

b

)))
vF p · σ

]
Ψ< (p, ω) .

(2.26)

Before we analyse what this expression means in terms of the renormalization
group theory, it is important to give a physical interpretation to the coupling
constant (2.25). We see from the definition that it represents the ratio between
the electrostatic and the kinetic energy, that is proportional to vF . In other
words, we expect the linear picture, i.e. the massless character of the electrons,
to break down when α becomes large, namely when the Coulomb interaction
dominates. On the contrary, if the coupling parameter flows to small values,
the gapless structure is preserved.

We observed that the slow modes contribution to the interaction, i.e. 〈Sint〉1,
transforms into the original Coulomb action under the RG process. Similarly,
equation (2.26) has to become the original non-interacting action now that
we included the one-loop correction through the self energy diagram. This is
obtained by introducing a scale dependency in the Fermi velocity, and writing
the expression (2.26) as the non-interacting, slow modes contribution, i.e. [4]

vF

(
Λ

b

)
=

[
1 +

α

4

(
log (Λ)− log

(
Λ

b

))]
vF (Λ) . (2.27)

We are considering here the low energy limit, which corresponds to taking
a large value of the renormalization parameter b such that the momentum
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shell becomes Λ/b � Λ. If we study the above relation as a function of the
renormalized cut-off k = Λ/b, we get

vF (k) =

[
1 +

α

4
log

(
Λ

k

)]
vF (Λ) .

Thus, introducing the RG scale l = log(Λ/k) and using the definition of the
coupling parameter (2.25), we end up with

dvF (k)

dl
=

vF (Λ)α

4
=

e2

16πε
. (2.28)

If we now use that the electronic charge does not flow, i.e. it is invariant under
the RG transformations, we find

de2

dl
= 0 = α

dvF
dl

+ vF
dα

dl
, (2.29)

which, together with the first relation of (2.28), becomes

dα

dl
= −α2

4
. (2.30)

This is the most important result of the renormalization group method. In
fact, integrating (2.30) in the low energy limit, we obtain

α(k) ∼ 4

log (Λ/k)
, k → 0 , (2.31)

which means the coupling parameter flows to the weak coupling regime. In the
language of the RG theory, this means that α = 0 is a fixed point towards which
it flows logarithmically, i.e. the Coulomb interaction is irrelevant. Moreover,
since they are related through the definition (2.25), and the electronic charge
is not renormalized, this is equivalent to a logarithmically divergent Fermi
velocity. In other words, at the first order analysis the Coulomb interaction
flows to the weak coupling regime. This means the energy spectrum remains
gapless at the Dirac points, and thus the electrons are still free and massless.

2.3.2 Random Phase Approximation
In the last section, we presented the first order approximation with the bare
Coulomb interaction. In principle, this picture can be improved by includ-
ing the contribution from all the relevant loop diagrams to the interacting
term. However, this problem is generally not traceable due to the infinite
number of different kind of diagrams that participate to the process. Hence,
the idea is to consider the infinite order expansion, necessary to preserve the
self-consistency of the expression, in which only the most significant type of
diagram is included [12].

In order to find this diagram, we observe that the fermion flavour of graphene
is N = 4, since we have 2 independent Dirac points and 2 independent spin
components. Thus, in the limit of large N , the only relevant contribution is
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k

G0(q)

G0(k + q)

k

Figure 2.5: Diagrammatic representation of the polarization function.

Figure 2.6: Diagrammatic representation of the RPA potential.

given by the bubble diagram shown in Fig. 2.5. In fact, this is the only term
that is proportional to the fermion flavour, hence the n-th order expansion will
be proportional to Nn. It is straightforward to observe that, even in the case
of N = 4, the contribution from any other diagram type is dominated by the
loop one.

Polarization Function
This approximation is called the random phase approximation (RPA), and can
be solved exactly. In fact, we can express the infinite order expansion through
the self-consistent equation shown in Fig. 2.6. The polarization function, i.e.
the bubble diagram in Fig. 2.5, is then defined as

Π(k, ω) = N

∫
dν

2π

dq
(2π)2

Tr (G0 (k + q, ω + ν)G0 (q, ν)) . (2.32)

Hence, using the formula (2.20) for the non-interacting Green’s function and
the expression (2.23) to work out the trace, we get

Π(k, ω) = N

∫
dν

2π

dq
(2π)2

Tr

(
i (ω + ν)1+ vF (k + q) · σ

(ω + ν)2 + v2F |k + q|2
iν1+ vF q · σ
ν2 + v2F |q|2

)

= N

∫
dν

2π

dq
(2π)2

(
−2ν (ω + ν) + 2v2F (k + q) · q[

(ω + ν)2 + v2F |k + q|2
]
[ν2 + v2F |q|2]

)
.

(2.33)

In order to solve this equation analytically, we rewrite the denominator’s prod-
uct using the Feynman’s trick, i.e.

1

AB
=

∫ 1

0

dx
1

(xA+ (1− x)B)2
. (2.34)

In this way, we can find a coordinate transformation that makes the denomi-
nator an even function of both frequency and momentum. In particular, intro-
ducing the integral (2.34) and then performing the following transformation
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ν → ν − xω

q → q − xk ,
(2.35)

we obtain

Π(k, ω) = −2N

∫
dν

2π

dq
(2π)2

∫ 1

0

dx
(ν − xω)(ν − xω + ω)− v2F (q − xk + k) · (q − xk)[

ν2 + v2F |q|2 + x(1− x) (ω2 + v2F |k|2)
]2

= −2N

∫
dν

2π

dq
(2π)2

∫ 1

0

dx
ν2 − v2F |q|2 − x(1− x) (ω2 − v2F |k|2)[
ν2 − v2F |q|2 + x(1− x) (ω2 + v2F |k|2)

]2 .

(2.36)

In the last line we dropped all the terms that were odd either in q or ν. At this
point we can integrate the frequency using the residue theorem and transform
the momentum in the polar coordinates. Solving all the remaining integrals
analytically, we end up with the following expression for the polarization func-
tion [4] [12]

Π(k, ω) = −N

16

|k|2√
ω2 + v2F |k|2

. (2.37)

The interaction term with the random phase approximation is deducted by
the diagrammatic representation in Fig. 2.6, namely

V RPA (k, ω) = VC(k) + VC(k)Π (k, ω)V RPA (k, ω)

=
1

V −1
C (k)− Π(k, ω)

=
1

4πε|k|
2πe2

+ N
16

|k|2√
ω2+v2F |k|2

.

(2.38)

It is worth noticing that in the limit of large fermion flavour, i.e. large N , this
expression becomes exact. In what follows we will derive the RG equations in
this limit, which is a good approximation of the graphene case.

Self Energy
The next step towards the renormalization of the Fermi velocity consists of cal-
culating the self energy [10]. In analogy to what we did in the previous section,
we define this function as

ΣRPA(k, ω) = −
∫ Λ

Λ/b

dp
(2π)2

dν

2π
G0 (k + p, ω + ν)V RPA (p, ν) , (2.39)

where now the bare Coulomb interaction has been replaced by V RPA(p, ν).
We recall from the first order derivation that the integration variables belong
to the outermost shell, while (k, ω) are defined on the renormalized domain.
Hence, we can expand the Green’s function up to the first order, i.e.

G0 (k + p, ω + ν) ' G0 (p, ν) + ω
∂G0 (p, ν)

∂ν
+
∑
i=x,y

ki
∂G0 (p, ν)

∂pi
. (2.40)
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Furthermore, since V RPA(p, ν) is even in all its variables, we drop out all the
terms in (2.40) that result odd in any of those, obtaining

ΣRPA(k, ω) = −
∫ Λ

Λ/b

dp
(2π)2

dν

2π

[
ω

(
i1

ν2 + v2F |p|2
− 2iν21

(ν2 + v2F |p|2)
2

)

+
∑
i=x,y

ki

(
vFσi

ν2 + v2F |p|2
− 2v3Fpip · σ

(ν2 + v2F |p|2)
2

)]
V RPA (p, ν)

= −
∫ Λ

Λ/b

dp
(2π)2

dν

2π

[
iω

(
ν2 + v2F |p|2 − 2ν2

(ν2 + v2F |p|2)
2

)
1

+

(
vFk · σ

ν2 + v2F |p|2
−

2v3F
(
kxσxp

2
x + kyσyp

2
y

)
(ν2 + v2F |p|2)

2

)]
V RPA (p, ν) .

(2.41)

This integral can be easily expressed in terms of a three-vector that puts to-
gether frequency and momentum, namely ~q = (ν, vFp). Moreover, using this
variable the interaction term (2.38) becomes

V RPA (p, ν) = 16v2Fλ/N

|~q| sin θ (1 + λ sin θ)
with λ =

π

8
Nα . (2.42)

This new parameter measures the importance of the loop diagram contribution
with respect to the bare Coulomb interaction. Besides, we can use it to describe
the coupling strength between the free theory and the interaction term, namely
with λ � 1 corresponding to the large fermion flavour limit and λ � 1 to the
weak coupling. Hence, the self energy function becomes [4]

ΣRPA(k, ω) = −
∫ Λ

Λ/b

d~q

v2F (2π)
3

[
−iω

|~q|2
(
cos2 θ − sin2 θ

)
1+ vF

k · σ cos2 θ

|~q|2

]
V RPA(~q)

= −
∫ Λ

Λ/b

∫ π

0

∫ 2π

0

dqdθdφ q2 sin θ

v2F (2π)
3

[
−iω

q2
(
cos2 θ − sin2 θ

)
1

+ vF
k · σ cos2 θ

q2

]
16v2Fλ/N

q sin θ (1 + λ sin θ)

= − 8

Nπ2

[
log(Λ)− log

(
Λ

b

)]
(−iωF0,λ1+ vFk · σF1,λ) ,

(2.43)

where we used the integral formulas

F0,λ =
λ

2

∫ π

0

dθ
cos2 θ − sin2 θ

1 + λ sin θ
=

{
π
λ
− 2− 2−λ2

λ
√
1−λ2 arccosλ λ < 1

π
λ
− 2 + λ2−2

λ
√
λ−1

log
(
λ+

√
λ2 − 1

)
λ > 1

(2.44)
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F1,λ =
λ

2

∫ π

0

dθ
cos2 θ

1 + λ sin θ
=

{
π
2λ

− 1−
√
1−λ2

λ
arccosλ λ < 1

π
2λ

− 1 +
√
λ2−1
λ

log
(
λ+

√
λ2 − 1

)
λ > 1 .

(2.45)

Dyson Equation
Finally, we can study the effects of the self energy on the Fermi velocity renor-
malization by means of the Dyson equation [10] [11], i.e.

G−1(k, ω) = G−1
0 (k, ω)− ΣRPA(k, ω) . (2.46)

In analogy with the Fermi liquid theory [10], we rewrite the the Green’s functions
by introducing the quasi-particle residue Z, namely

G−1(k, ω) = Z−1(Λ/b)
(
− iω1+ Z(Λ/b)vF (Λ/b)k · σ

)
G−1

0 (k, ω) = Z−1(Λ)
(
− iω1+ Z(Λ)vF (Λ)k · σ

)
,

(2.47)

with Z(Λ) = 1. Consequently, defining r
.
= Λ/b and l

.
= log(Λ/r) as we did in

the previous section, the Dyson equation becomes

−iω1+ Z(r)vF (r)k · σ
Z(r)

=

(
1 + F0,λ

8l

Nπ2

)[
−iω1

Z(Λ)
+ vF (Λ)k · σ

1 + F1,λ
8l

Nπ2

1 + F0,λ
8l

Nπ2

]

'
(
1 + F0,λ

8l

Nπ2

)[
−iω1

Z(Λ)
+ vF (Λ)k · σ

(
1 + (F1,λ − F0,λ)

8l

Nπ2

)]
.

(2.48)

In the last line we expanded up to the first order in 1/N since we are considering
the large fermion flavour limit. From this relation we can derive the RG
equations both for Z(r) and vF (r), namely [4]

Z−1(r) = Z−1(Λ)

(
1 + F0,λ

8l

Nπ2

)
⇒ dZ

dl
= − 8

Nπ2
F0,λZ (2.49)

vF (r) = vF (Λ)

(
1 + (F1,λ − F0,λ)

8l

Nπ2

)
⇒ dvF

dl
=

8

Nπ2
(F1,λ − F0,λ) vF

(2.50)

Renormalization Group Analysis
We can study these solutions both in the strong and weak coupling limit, i.e.
for λ � 1 and λ � 1 respectively [4]. In the first case, equations (2.49) and
(2.50) go like

dZ

dl
= − 8

Nπ2
log(2λ)Z and dvF

dl
=

8

Nπ2
vF ,
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considering the limit λ � 1 in the integral formulas (2.44) and (2.45). More-
over, we can integrate these equations in the low energy limit, namely for
r → 0. For the quasi-particle residue we obtain

Z(r) = Z(Λ)e−
8

Nπ2 log(2λ) log(Λ/r)

' 1− 8

Nπ2
log(2λ) log(Λ/r) ,

where we used Z(Λ) = 1 and we expanded up to the first order in 1/N . For
the Fermi velocity, using vF (Λ) = vF , we get

vF (r) = vF

(
Λ

r

)8/Nπ2

,

which means it is still renormalized towards higher values. Hence, recalling
that the electronic charge is RG invariant, we recover the old result for the
interaction parameter α, namely it flows to the weak coupling regime. This
also implies the quasi-particle residue remains finite due to the competition
between the diverging term, log(Λ/r), and the coupling parameter log(2λ),
which evolves towards lower values.

In the weak coupling limit, the RG equations (2.49) and (2.50) become

dZ

dl
= − 8

Nπ2

λ2

3
Z = −Nα2

24
Z and dvF

dl
=

8

Nπ2

πλ

4
vF =

α

4
vF ,

using the definition (2.42) to rewrite the coupling parameter. It is worth
noticing that we recovered the old result for the Fermi velocity renormalization,
namely equation (2.28), which was obtained for the weak coupling in the first
order approximation. We can integrate the quasi-particle residue to get

Z(r) = e−
Nα2

24
log(Λ/r) ' 1− Nα2

24
log (Λ/r) ,

expanding up to the first order in Nα.

To sum up, the random phase approximation leads to the same results that
we found studying the simpler, first order approximation, namely the weak
coupling regime flows to zero. Furthermore, the interesting result comes from
the strong coupling analysis. In fact, we observed that even if we start in this
regime, i.e. for λ(Λ) � 1, the theory flows to weak coupling in the low energy
limit, thus the interaction term becomes irrelevant. However, these results
were obtained in the large fermion flavour limit, i.e. expanding up to the first
order in 1/N . Even though this is a good approximation to understand the
dominant contribution of the polarization function, it may not be good enough
to describe the graphene model correctly. Therefore, in the next chapter we
will adopt a different prospective to study the spontaneous mass generation,
and the consequent finite energy gap.



Chapter 3

Spontaneous Mass Generation

If the electron-electron Coulomb interaction becomes strong enough, a finite
energy gap may be opened at the Fermi energy [4] [13]. In this chapter, we will
test this observation by computing the electron mass as a function of the cou-
pling parameter. We already studied how this phenomenon is prevented in
the large fermion flavour limit, in which the theory flows to the weak coupling
regime. Hence, we will also analyse how this critical behaviour depends on
the electron flavour N [14]. In order to study this process, we will solve the
self-consistent Schwinger-Dyson equation [15] both in the low energy limit, in
analogy to what we did in the last chapter, and also for the complete Hamil-
tonian (2.2).

3.1 Charge Density Wave
In the introduction we already explained the motivations that drive us to study
the electronic Coulomb interaction specifically. However, it is worth noticing
that other kind of interactions may lead to a finite energy gap in the 2D Weyl
model. For instance, we could consider the electron-phonon or the spin-orbit
coupling, and study their effects on the tight-binding model. Even if we are
not doing this, it is worth mentioning that different types of interactions may
lead to interesting, non-trivial phases for the graphene lattice.

Going back to the main discussion, we see the mass function can be introduced
by looking directly at the non-interacting Bloch Hamiltonian (2.2), namely

h(k) = −t

(
0

∑
δ e

iδ·k∑
δ e

−iδ·k 0

)
= −t

∑
δ

(
cos(k · δ)σx − sin(k · δ)σy

) (3.1)

Thus, we can write the most general gap term as a combination of the Pauli
matrices, i.e.

∆ = ∆01+ (∆xσx +∆yσy) + ∆zσZ .

It is simple to prove that the first contribution would only shift the Dirac cone
away from the Fermi level, without affecting its geometry. In the same way,
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the central term moves the position of the cone in the momentum space, i.e.
it just changes the coordinates of the Dirac points. On the contrary, the last
contribution is capable of opening a finite gap, and the corresponding spectrum
becomes

E±(k) = ±

√√√√∆2(k) + t2

(
3 + 2 cos

(√
3aky

)
+ 4 cos

(√
3a

2
ky

)
cos

(
3a

2
kx

))
.

(3.2)
Hence, the energy bands remain gapped as long as the function ∆(k) is finite.

To understand the physical meaning of this term for the graphene lattice,
we start analysing its initial ground state. In the neutral case, the lowest en-
ergy is reached when all the carbon atoms are occupied by exactly one valence
electron. In this way, in fact, the tight-binding energy is minimised and the
two triangular sublattices are equivalent. This is also shown by the Hamilto-
nian in the coordinate space (2.1), in which the hopping between adjacent sites
is equally favoured in both directions. On the contrary, the gap term that we
found corresponds to a non-zero value of the order parameter∑

k,α

Ψ̄α(k) ∆(k)σz Ψα(k) =
∑
k,α

∆(k)
(
a†α(k)aα(k)− b†α(k)bα(k)

)
. (3.3)

The gap function ∆(k) measures exactly the charge imbalance between the
two sublattices, thus determining the formation of a site-centred charge density
wave (CDW) [16] [17] [18]. This means the two sublattices are no longer equivalent,
thus the initial lattice symmetry gets broken and a semimetal-insulator phase
transition takes place. In particular, the order parameter (3.3) breaks the U(4)
chiral symmetry that characterises the initial ground state, hence

U(4) −→ U(2)⊗ U(2) . (3.4)

3.2 Low Energy Analysis
So far, we started from the non-interacting model and studied the perturbation
effects of the Coulomb interaction by means of the RG theory. In this chapter,
we will no longer threat the electromagnetic contribution as a perturbation,
but rather we will consider the strong coupling condition explicitly [13] [19]. We
expect an energy gap to be opened in this regime, thus we can include it a
priori in the model. The idea, in fact, is to assume that a finite gap does
exist, and then solve a self-consistent equation to determine its value. In the
previous section, we argued which form such a gap function should take, hence
we can write the corresponding Green’s function as

G−1(k, ω) = −iω1+ vF k · σ +∆(|k|)σz . (3.5)

For simplicity’s sake, we take the mass to be a function of the momentum
magnitude only. A more general solution will be discussed later in the chapter
when we will analyse the entire Hamiltonian structure. Moreover, we assume
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that the RPA interaction satisfies the on-shell condition, thus equation (2.38)
becomes

V RPA(k, ω = vF |k|) =
2πe2(

4πε+
√
2Nπe2

16vF

)
|k|

. (3.6)

It is worth noticing that we will consider here the random phase approxima-
tion even though the large fermion flavour limit is no longer applied. In fact,
this is a good approximation as long as N > 1, which is the case of the model
considered.

The interacting Green’s function can be related to the system by means of
the Schwinger-Dyson equation [15] [19] i.e.

G−1(k, ω) = G−1
0 (k, ω) +

∫
dp

(2π)2
dν

2π
V (k + p, ω + ν)G(p, ν) . (3.7)

This is a self-consistent equation that connects the Green’s function to the
system interaction. In our case, the potential is given by V RPA(k, ω = vF |k|),
and the Green’s function follows from equation (3.5), namely

G(k, ω) = iω1+ vFk · σ +∆(|k|)σz

ω2 + v2F |k|2 +∆2(|k|) . (3.8)

Hence, we can obtain an expression for the gap function by multiplying both
sides of (3.7) by σz, and then taking the trace, i.e.

∆(|k|) =
∫ Λ

0

dp
(2π)2

∫ ∞

−∞

dν

2π

vF(
4πεvF
2πe2

+ N
16

√
2

)
|k + p|

∆(|p|)
ν2 + v2F |p|2 +∆2(|p|) .

(3.9)
This is a self-consistent equation for the energy gap in the linear regime. The
goal is to solve it numerically to find its non-trivial solutions, which thus
correspond to a finite gap at the Dirac points. We can simplify this expression
by defining a new parameter

λ(α,N)
.
=

1

4π

1(
4πεvF
2πe2

+ N
16

√
2

) =
1

4π

1
1

2πα
+ N

16
√
2

, (3.10)

where we used the coupling parameter definition (2.25). Furthermore, we can
integrate out the frequency dependence by using the residue theorem, i.e.∫ ∞

−∞

dν

2π

1

ν2 + v2F |p|2 +∆2(|p|) =
1

2
√
v2F |p|2 +∆2(|p|)

. (3.11)

Finally, we redefine the gap as ∆′ → ∆/vF , namely in such a way that the
expression becomes formally independent on the Fermi velocity. In the end
the self-consistent gap equation becomes

∆(|k|) =
∫ Λ

0

dp
2π

λ

|k + p|
∆(|p|)√

|p|2 +∆2(|p|)
. (3.12)
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3.2.1 Numerical Results
The equation (3.12) can be solved numerically for different values of the cou-
pling function λ(α,N) [19]. First of all, we can work out the angular dependence
by introducing the polar coordinates, hence the integral over the angular con-
tribution becomes

fk(p) =
∫ 2π

0

dθ
1√

|p|2 + |k|2 + 2|p||k| cos θ

=
1√

|p|2 + |k|2

∫ 2π

0

dθ
1√

1 + 2|p||k|
|p|2+|k|2

(
1− 2 sin2(θ/2)

)
=

4√
|p|2 + |k|2

∫ π/2

0

dφ
1√

1 + 2|p||k|
|p|2+|k|2

(
1− 2 sin2(φ)

)
=

4√
|p|2 + |k|2

1√
1 + 2|p||k|

|p|2+|k|2

∫ π/2

0

dφ
1√

1− 4|p||k|
|p|2+|k|2 sin

2(φ)

=
4

|p|+ |k| K
(

4|p||k|
|p|2 + |k|2

)
.

(3.13)

In the last line we used the definition of the elliptic integral of the first kind
K(x). The gap equation is now expressed as a function of the momentum
magnitude alone. The integral runs from 0 up to the cut-off Λ = 1/a, which
can be set to 1 in the numerical integration.

The solution can be found by using a recursive method, i.e. integrating un-
til the new solution differs from the old one by less than a fixed cutoff ε
(see Appendix B). In particular, inserting the angular integral (3.13) into the
Schwinger-Dyson equation (3.12), we can write the n-th recursive step as

∆n(|k|) =
λ

2π

∫ Λ

0

dp
4p

p+ |k|
∆n−1(p)√

p2 +∆2
n−1(p)

K

(
4p|k|

p2 + |k|2

)
. (3.14)

In this way, we can find two distinct approximations of the exact solution,
which we know it will be enclosed between them. In fact, when we start from
an initial guess for the gap function, the numerical solution will approach the
exact result without actually reaching it. Hence, the exact solution satisfies

∆ansatz
λ,1 < ∆num

λ,1 < ∆exact
λ < ∆num

λ,2 < ∆ansatz
λ,2 . (3.15)

This method has two important consequences. First of all, it allows to esti-
mate the numerical error for each solution, which is related to the cutoff ε in a
non-trivial way. Secondly, we can use it to find the critical parameter λc, below
which there is no finite solution. In fact, if the numerical result is lower than
the initial ansatz regardless the function that starts the recursive algorithm,
this implies there is not a region that contains the exact result, namely the
equation admits only the trivial solution.
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Figure 3.1: Mass gap in the strong coupling regime. The electrons acquire
a finite mass around the Dirac points, i.e. for |k| → 0 (left portion of the
domain).

The first important result comes from the strong coupling regime. If λ is large
enough, in fact, we see that a non-trivial solution of the gap equation exists.
This confirms our initial hypothesis about the possibility to open an energy
gap by means of the Coulomb interaction.

If we further decrease the coupling parameter, we quickly reach a region where
the gap function becomes small. In particular, we estimate the critical value
of the coupling parameter at λc = 0.272, below which it is not possible to find
a non-trivial solution for the mass.
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Figure 3.2: Mass gap in the critical region. We see the numerical solution
becomes more unstable when we approach this regime.
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3.2.2 Semimetal-Insulator Phase Transition
We can combine the critical value that we found in the last section, i.e. λc =
0.272, with its definition (3.10). In this way, we derive a relationship between
the critical coupling parameter, αc, and the fermion flavour, namely

αc =
2λc

1− πN
4
√
2
λc

with λc = 0.272 . (3.16)

We can plot this result in the αc−N plane (see Fig. 3.3). This phase diagram
shows that if the coupling constant of the material lies above the critical line
(blue line in Fig. 3.3), then a semimetal-insulator phase transition [14] should
take place. It is worth noticing that this diagram admits a maxim value for
the electron flavour, beyond which the material remains gapless regardless the
coupling strength. This agrees with the result that comes from the RG anal-
ysis. In fact, in the last chapter we found that the theory flows to the weak
coupling regime in the limit of large fermion flavour.

For N = 4, which corresponds to the graphene model, the critical coupling
parameter is αc(N = 4) = 1.37. The value for pristine monolayer graphene
is about αgraphene = 2.16 [20], thus we expect the actual ground state to be
gapped. However, the simple theory that we used to describe the graphene
model does not include lots of important contributions, which may affect the
gap value that we found. Moreover, the measure is made difficult by other
effects that we did not consider in our theory, such as the thermal fluctuations
that play a crucial role in experiments like these. In the next section, we will
propose a more complete description of the problem, which overcomes some of
the structural concerns listed here.
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Figure 3.3: Phase diagram of 2D Weyl semimetals in the αc−N plane. Above
the blue line the material is an insulator, below it is a semimetal.
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3.3 Complete Hamiltonian Approach
In this section we will study the energy gap for the entire graphene lattice.
In this way, our derivation will no longer depend on the momentum cutoff,
and all the effects given by the non-linear contributions will be automatically
included. However, this method does not allow to study the general 2D Weyl
semimetal with electron flavour N , but it is specific for the lattice in exam.
Further motivations for this method will become clear in the next chapter,
when it will be applied to study the Kagome lattice.

3.3.1 Polarization Function
The non-interacting Green’s function is obtained by substituting the tight-
binding Hamiltonian (3.1) into the free action (2.7), namely

G−1
0 (k, ω) = −iω1− t

∑
δ

(
cos(k · δ)σx − sin(k · δ)σy

)
(3.17)

G0(k, ω) =
iω1− t

∑
δ

(
cos(k · δ)σx − sin(k · δ)σy

)
ω2 + t2

∑
δ,δ′ e

ik·(δ−δ′)
. (3.18)

The second expression can be used to compute the polarization function shown
in Fig. 2.5. In this case, the two independent Dirac points are both included
in the structure of (3.18). However, the form of the tight-binding Hamiltonian
(2.2) highlights that we are not including the spin contribution in our model,
thus we need to introduce its degeneracy manually. Hence, the polarization
function becomes

Π(k, ω) = 2

∫
dν

2π

dq
(2π)2

Tr (G0 (k + q, ω + ν)G0 (q, ν)) , (3.19)

where the general fermion flavour N that appears in (2.32) is substituted by
the two-fold spin degeneracy. The important difference with respect to the
linear case is that now the momentum integration runs over the first Brillouin
zone, rather than a disk of radius Λ. Working out the trace that appears in
the expression (3.19), the polarization can be written as

Π(k, ω) = −4

∫
dν

2π

dq
(2π)2

ν(ν + ω)− t2
∑

δ,δ′ cos
(

k · δ + q · (δ − δ′)
)

[
(ν + ω)2 + t2

∑
δ,δ′ e

i(q+k)·(δ−δ′)
][
ν2 + t2

∑
δ,δ′ e

iq·(δ−δ′)
] .

(3.20)
The integral over ν can be performed as usual by means of the residue the-
orem. The resulting expression is integrated numerically using the Gaussian
quadrature method (see Appendix B). To deal with the frequency dependence,
we solve this integral with the on-shell condition, i.e. for ω = vF |k|. The Fermi
velocity comes out from setting the lattice constant to one, hence making the
hopping parameter proportional to the Fermi velocity according to vF = 3

2
t.

This is consistent with the theory since the action of the Coulomb interaction
does not affect the geometrical structure of graphene, hence it does non change
the lattice constant. The polarization function (3.20) results proportional to
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the hopping parameter, similarly to the linear approximation result (2.37),
which goes like 1/vF within the on-shell condition. Hence, we can define the
function Π̃(k, ω′ = ω/t)

.
= tΠ(k, ω), that results independent on the hopping

parameter value. The numerical result for this reparametrized polarization
function is shown in Fig. 3.4.

Figure 3.4: Polarization function for the graphene lattice within the on-shell
condition.

It is worth noticing that in the low energy regime, i.e. for (k, ω) → 0, we
recover the result found in the linear approximation given by equation (2.37).

3.3.2 Schwinger-Dyson Equation
The interacting Green’s function is given by (3.18) plus the gap term that
produces the CDW ground state, i.e. ∆(k)σz. In this case, we consider the
mass to be a function of the momentum vector, thus it is defined over the
entire Brillouin zone. We can multiply the Schwinger-Dyson equation by σz

and then take the trace to work out an expression for the gap function, namely

∆(k) =
∫

dp
(2π)2

dν

2π
V RPA(k + p, ω + ν)

∆(p)
ν2 +∆2(p) + t2

∑
δ,δ′ e

ip·(δ−δ′)
.

(3.21)
The RPA potential within the on-shell condition is derived from the diagram-
matic equation in Fig. 2.6, i.e.

V RPA(k, ω = vF |k|) =
1

4πε|k|
2πe2

− Π(k, ω = vF |k|)

=
vF

|k|
2πα

− 3
2
Π̃(k, ω = 3|k|/2)

.

(3.22)
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At this point we can use equation (3.11) to integrate the frequency. Moreover,
we can rewrite the sum using the definition of the nearest neighbour vectors,
namely

g(p) .
=
∑
δ,δ′

eip·(δ−δ′)

= 3 + 2

[
cos
(√

3apy

)
+ 2 cos

(
3a

2
px

)
cos

(√
3a

2
py

)]
.

Lastly, we can use the same reparametrization that we applied in the linear
regime, i.e. ∆′ → ∆/vF . In this way, equation (3.21) becomes

∆(k) =
∫
BZ

dp
(2π)2

1
|k+p|
2πα

− 3
2
Π̃(k + p)

∆(p)

2
√
∆2(p) + 4

9
g(p)

, (3.23)

which can be solved numerically for different values of the coupling parameter
α.

3.3.3 Numerical Results
The gap equation (3.23) can be integrated using the Gaussian quadrature
method. In particular, we use the same recursive procedure presented in the
linear expansion analysis. For each value of the coupling parameter, we find a
similar profile for the mass equation over the first Brillouin zone. An example
of the solution is given in Fig. 3.5.

Figure 3.5: Numerical solution of the gap equation (3.23) with coupling pa-
rameter α = 2.0.

At this point, we can derive the semimetal-insulator phase diagram by com-
puting the energy gap as a function of the coupling parameter (see Fig. 3.6).
In fact, we saw at the beginning of the chapter that the mass function can be
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thought as the order parameter that leads to a charge imbalance of the neutral
ground state. Thus, according to Landau’s classification, we find a continuous
phase transition that breaks the chiral symmetry of the system. The criti-
cal coupling parameter is αc = 1.333, which is similar to the result that we
found with the linear expansion. The difference between the two results is due
to the non-linear contributions that we automatically included in this second
derivation.
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Figure 3.6: Mass gap as a function of the coupling parameter α.



Chapter 4

Kagome Lattice

In this chapter, we will study the effects of the Coulomb interaction on the
Kagome lattice [5] [6] [21] [22]. We will use the same techniques that we presented
so far in our analysis, namely studying the Schwinger-Dyson equation within
the random phase approximation. Particular attention will be paid to evidence
the parallelisms and differences between this novel material and graphene.

We already discussed in the introduction that the Kagome metals have been
suggested to be a valid alternative to graphene in the study of electron hydro-
dynamics [8]. In fact, we saw how this phenomenon is favoured by the strong
coupling that takes place in these materials. However, it should be clear at
this point that enhancing the effects of the Coulomb interaction may lead to
significant consequences on the energy structure of 2D Weyl semimetals. The
goal of this chapter is to address this question quantitatively, aiming to prove
whether this novel material could represent a revolutionary step forward in the
electron hydrodynamics field.

4.1 Tight-binding Model
The Kagome lattice is also composed by identical atoms arranged in a 2D
hexagonal structure. However, unlike graphene, these are positioned along the
edges rather than the vertices of the hexagons (see Fig. 4.1). Consequently,
each atom has four nearest neighbour sites rather than just three, hence we
need three distinct sublattices to describe the entire structure. In particular,
the lattice vectors that compose each of these sublattices A, B and C are given
by

a1 = a
(
2, 0
)
, a2 = a

(
1,
√
3
)

, a3 = a
(
−1,

√
3
)

. (4.1)

Hence, each atom is surrounded by other four atoms positioned at ±ai/2 for
i = 2, 3.

We assume here that each atom contributes to the electronic structure with
exactly one valence electron. Moreover, we take into account only the nearest
neighbour hopping, thus excluding the possibility for next nearest or longer
exchanges. In fact, we already argued that this is a good approximation for
the phenomena that we aim to study here. The tight-binding Hamiltonian
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Figure 4.1: (Left) : Lattice structure of Kagome. The sublattices, A, B and C,
are described by the lattice unit vectors a1 and a2, and they are connected by
the nearest neighbour vectors δi (adapted from [23]). (Right) The corresponding
Brillouin zone. The two independent Dirac points are located at K− and K+

(adapted from [6]).

then becomes

H = −t
∑

<i,j,l>,σ

(
a†σ,ibσ,j + a†σ,icσ,l + b†σ,jcσ,l + h.c.

)
. (4.2)

Here a†σ,i(aσ,i) creates(annihilates) an electron with spin σ on site i on sublattice
A, t is the hopping parameter, and the sum is taken over the nearest neighbour
sites only. We can now transform the Hamiltonian to the momentum space in
analogy to what we did for the graphene lattice, i.e. by Fourier transforming
the operators as

a†i =
1√
N/3

∑
k

e−ik·ria†(k) and ai =
1√
N/3

∑
k

eik·ria(k) . (4.3)

Equivalent expressions can be written down also for the sublattices B and C
by transforming the operators b†j(bj) and c†l (cl) respectively. Moreover, we can
rewrite the vector positions on the sublattices B and C by using the lattice
vectors (4.1), namely rj = ri±δ12 and rl = ri±δ13, where i ∈ A, j ∈ B, l ∈ C
and

δ12 =
a

2

(
−1,

√
3
)

δ13 =
a

2

(
1,
√
3
)

. (4.4)
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Hence, the spinless Hamiltonian becomes

Hσ = −t
∑
i∈A

∑
k,k′

1

N/3

(
e−iri·(k−k′)eik

′·δ12a†(k)b(k′) + e−iri·(k−k′)e−ik′·δ12a†(k)b(k′)

+ e−iri·(k−k′)eik
′·δ13a†(k)c(k′) + e−iri·(k−k′)e−ik′·δ13a†(k)c(k′) + e−iri·(k−k′)

e−ik·δ12eik
′·δ13b†(k)c(k′) + e−iri·(k−k′)eik·δ12e−ik′·δ13b†(k)c(k′) + h.c.

)

= −t
∑
i∈A

∑
k,k′

1

N/3

(
2cos (k′ · δ12) e

−iri·(k−k′)a†(k)b(k′) + 2cos (k′ · δ13)

e−iri·(k−k′)a†(k)c(k′) + 2cos (k · δ12 − k′ · δ13) e
−iri·(k−k′)b†(k)c(k′) + h.c.

)

= −2t
∑

k

(
cos (k · δ12) a

†(k)b(k) + cos (k · δ13) a
†(k)c(k) + cos (k · δ23)

b†(k)c(k) + h.c.

)
,

(4.5)

where we used that
∑

i∈A eiri·(k−k′) = N
3
δ (k − k′), and we defined the vector

connecting the B and C sublattice as

δ23 = δ13 − δ12 = a
(
1, 0
)
. (4.6)

At this point, we can define the total creation and annihilation operator as, re-
spectively, Ψ̄σ(k) =

(
a†σ(k) b†σ(k) c†σ(k)

)
and Ψσ(k) = (aσ(k) bσ(k) cσ(k))T .

Hence, the tight-binding Hamiltonian transformed in the momentum space be-
comes [6]

H = −2t
∑
σ,k

Ψ̄σ(k)

 0 cos(k · δ12) cos(k · δ13)
cos(k · δ12) 0 cos(k · δ23)
cos(k · δ13) cos(k · δ23) 0

Ψσ(k) . (4.7)

The energy spectrum is given by the eigenvalues of the Bloch Hamiltonian in
(4.7), i.e. E1,2(k) = −t

(
1±

√
3 + 2

∑
j cos(2k · δj)

)
E3(k) = 2t

(4.8)

which is shown in Fig. 4.2. Compared to the graphene spectrum, Kagome’s
is composed by two bands which recall the old structure, plus an additional
flat band sitting on top. In principle, we might expect this flat band to play
a relevant role in the spontaneous mass generation. Thus, studying the entire
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Hamiltonian as we did for graphene allows to include automatically all the
effects due to the coupling between the flat band and the low energy expansion
at the Dirac points. The two non-flat energy bands touch each other at the
Dirac points, which are located at

KD =

(
2π

3a
, 0

)
K′

D =

(
−2π

3a
, 0

)
. (4.9)

Figure 4.2: Energy spectrum of the non-interacting Kagome model (in units
of the hopping parameter t).

4.1.1 Low Energy Expansion
In the graphene lattice, the two energy bands that compose the non-interacting
ground state result naturally decoupled. In other words, it is sufficient to
expand the Bloch Hamiltonian around one of the two independent Dirac point
in order to obtain the linear Dirac cone structure that determines the massless
electron dispersion. For the Kagome lattice, the picture seems different since
the tight-binding model (4.7) does not show the same simple structure. In
fact, if we expand the Bloch Hamiltonian up to the first order in |q|/|KD| we
get

h(q) ' −t

 0 1−
√
3
2
aqx +

3
2
aqy 1−

√
3
2
aqx − 3

2
aqy

1−
√
3
2
aqx +

3
2
aqy 0 −1−

√
3aqx

1−
√
3
2
aqx − 3

2
aqy −1−

√
3aqx 0

 .

We can find a unitary transformation matrix that is able to decouple the three
energy levels at the Dirac point. This is done by taking a set of orthogonal
eigenvectors of the liner Hamiltonian h(q = 0) corresponding to the different
bands. However, we need to work out a combination of eigenstates that is able
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to preserve the Hermitian structure of the initial matrix. For example, this
can be achieved by

U =

 1√
2

 0
1
−1

 , 1√
6

2
1
1

 , 1√
3

−1
1
1

 . (4.10)

In this way, the linear expansion matrix transforms into

U−1 h(q) U = t


−1−

√
3aqx −

√
3aqy

√
3
2
aqy

−
√
3aqy −1 +

√
3aqx

√
3
2
aqx√

3
2
aqy

√
3
2
aqx 2

 . (4.11)

The 2x2 matrix at the upper-left corner recalls exactly the structure of the
graphene linear expansion. The other terms are due to the flat band contribu-
tion at the Dirac point, i.e. the third diagonal term with corresponding energy
2t, plus the remaining bands coupling in the vicinity of the Dirac point. In
fact, the decoupling process is not exact since we have considered h(q = 0)
to work out the transformation matrix U . In principle, we could derive a
unitary transformation that depends explicitly on the momentum and that is
is able to decouple the flat band in the whole linear regime. However, this
becomes exponentially more expensive in terms of computational time, and it
does not have relevant consequences to our current discussion. Thus, focusing
on the 2x2 submatrix, we can write down the linear theory in the low energy
expansion, namely

hlinear(q) = −t

(
1 +

√
3aqX

√
3aqy√

3aqy 1−
√
3aqx

)
= µ+ vF

(
qxσz + qyσx

)
. (4.12)

Here µ is the chemical potential at the Dirac point and vF =
√
3at is the

Kagome Fermi velocity. The important result is that we recovered the same
linear dispersion that we had found for the graphene lattice. Hence, we see
that ignoring completely the additional flat band, the Kagome analysis would
coincide perfectly with the derivation in section (3.2). Naturally, this result
could have been understood directly from the energy structure (4.8). However,
this derivation allows us to introduce the Fermi velocity in analogy to what
we did for graphene, and also it will represent the starting point of the next
section.

4.2 Dimerization
The central question now is how can we open an energy gap at the Dirac
points of the Kagome lattice? The first step could be to take the linearized
Hamiltonian (4.12) and introduce a mass term in analogy to what we did for
graphene. It is worth noticing that now the electron momentum is proportional
to the Pauli matrices along the x− and z−direction, thus the gap function
should look like ∆lin(k) = ∆lin(k)σy. If we now use the unitary matrix U to



36 Chapter 4. Kagome Lattice

transform the interacting contribution back to the original coordinate system,
we end up with

U

∆lin(K)σy
0
0

0 0 0

 U−1 =
i∆lin(k)√

3

 0 1 −1
−1 0 −1
1 1 0

 . (4.13)

This result cannot be used directly to derive the Schwinger-Dyson equation,
since we already discussed the problems related to the derivation of the linear
Hamiltonian. However, it shows some interesting characteristics that we are
willing to preserve in our actual gap function, in particular it is a complex
Hermitian matrix. To understand the consequences of this property, we can
look at the complete Hamiltonian (4.7). It is worth noticing that each term
above the diagonal is related to an equivalent term in the lower-left triangle
of the matrix. Together, each of these couples expresses that the hopping be-
tween two sublattices is independent on the direction. On the contrary, the
complex structure of the gap matrix (4.13) explicitly breaks this symmetry,
i.e. for instance A → B is now different from B → A.

This fundamental characteristic can be effectively described by a dimerization
process within the Kagome lattice [6]. The corresponding spinless Hamiltonian
can be derived similarly to the non-interacting term, namely we start with

H = −δt
∑
i

(
a†ibi+δ12 − a†ibi−δ12 + b†i+δ12

ci+δ13 − b†i−δ12
ci−δ13 + c†i+δ13

ai − c†i−δ13
ai − h.c.

)
.

(4.14)
Here we used the lattice vectors definition to express the different nearest
neighbour indexes, so that the sum reduces to the sublattice A only. The
minus sign that appears in all the couples like (a†ibi+δ12 − a†ibi−δ12) indicates
that, for instance, while the hopping from the site i + δ12 to i is favoured,
the one from i − δ12 to i results dumped. This condition prevents the site i
to become an accumulation points towards which the nearby electrons are at-
tracted. Moreover, also the hermitian conjugate enters with a minus sign in the
Hamiltonian. In this way, the dimerization process can take place since it guar-
antees that the hopping in any opposite direction is equally forced(dumped) if
the original orientation results dumped(forced). At this point, we can perform
the same Fourier transformation that we used in (4.5), hence the dimerization
Hamiltonian becomes [6]

Hdim = −2δt
∑
σ,k

Ψ̄σ(k)

 0 i sin(k · δ12) i sin(k · δ13)
−i sin(k · δ12) 0 i sin(k · δ23)
−i sin(k · δ13) −i sin(k · δ23) 0

Ψσ(k) .

(4.15)
First of all, we see that the complex Hermitian structure of matrix (4.13) is
preserved. Furthermore, if we compute the dimerization matrix at the Dirac
point KD =

(
2π
3a
, 0
)
, we get

hdim (KD) = i
√
3δt

 0 1 −1
−1 0 −1
1 1 0

 ,
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that looks exactly as (4.13) for a mass gap equal to ∆lin(KD) = 3δt. At this
point we can study how the total Bloch Hamiltonian h(k) = h0(k) + hdim(k)
behaves for a non-zero dimerization parameter δt 6= 0. The new energy bands
areE1,2(k) = −t

(
1±

√
2δt2

(
3−

∑
j cos(2k · δj)

)
+ t2

(
3 + 2

∑
j cos(2k · δj)

))
E3(k) = 2t

(4.16)
At each Weyl nodes in the first Brillouin zone we have

∑
j cos(2KD · δj) =

−1.5, thus a finite energy gap equal to 6δt is opened. Moreover, we see that
the flat band is not affected by the dimerization process. This is due in part to
the vanishing structure of the Bloch Hamiltonian (4.15) for k = 0. However,
we also need to assume that the dimerization happens with the same intensity
along each possible direction, i.e. δt does not depend on the sublattices consid-
ered. This is not necessary true in general, and we could deal with a vectorial
parameter η = (η1, η2, η3), where the three components correspond to δ12, δ13

and δ23 respectively. Under this assumption, the middle band would still touch
the flat one at E = 2t, but away from the origin the flat band would no longer
have a constant energy. However, throughout the rest of the thesis we will
assume that the dimerization happens symmetrically, i.e. we will ignore its
vectorial character.

To sum up, we found that if we introduce a mass function proportional to
this dimerization matrix, we will be able to open an energy gap at the Dirac
points. In other words, this is the analogue to the symmetry breaking process
that leads to the CDW ground state in the case of graphene. In fact, while for
graphene we were able to distinguish the two sublattices by the net charge dif-
ference, now the time-reversal symmetry gets broken by the internal hopping
direction of the dimers. This implies that we can take the order parameter
to be the function proportional to the matrix (4.15). In the next sections we
will study how this parameter behaves as a function of the coupling parameter
α = e2/(4πεvF ).

4.3 Polarization Function
In order to derive the polarization function, we can start introducing the non-
interacting inverse Green’s function

G−1
0 (k, ω) = −iω1+ h0(k) , (4.17)

where h0(k) is the Bloch Hamiltonian of the non-interacting system (4.7).
Due to the presence of an additional energy band in the Kagome structure,
the Green’s function is now a 3x3 matrix rather than just 2x2. We can also
invert this expression to work out the actual non-interacting Green’s function

G0(k, ω) =
M

(2t− iω)
(
ω2 − 2itω + 2t2

(
1 +

∑
j cos(2k · δj)

)) , (4.18)
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where M is a 3x3 matrix that comes from G−1
0 . What we want to show here

is that the denominator of (4.18) recalls exactly the non-interacting energy
structure (4.8), which will be useful to integrate out the frequency using the
residue theorem in the complex plane. At this point, we can define the po-
larization function in complete analogy to what we did for graphene, namely
equation (3.19), and the analytical expression becomes

Π(k, ω) =2

∫
dν

2π

dq
(2π)2

∑
j

[
(ω + ν)2 − 2t2 (1 + cos(2(k + q) · δj))

]
×

(2t− iν)
(
ν2 − 2itν + 2t2

(
1 +

∑
j cos(2q · δj)

))
[
ν2 − 2t2 (1 + cos(2q · δj))

]
+ 8t2

∑
j

[
ν2 cos(q · δj) + 2t cos(q · δj+1) cos(q · δj+2)

]
×

(2t− i(ω + ν))
(
(ω + ν)2 − 2it(ω + ν) + 2t2

(
1 +

∑
j cos(2(k + q) · δj)

))
[
(ω + ν)2 cos((k + q) · δj) + 2t cos((k + q) · δj+1) cos((k + q) · δj+2)

]
.

(4.19)

Here we are using a cyclic relation for the indices, i.e. δ12 → δ13 → δ23 →
δ12. Even though the explicit formula results more complex than equation
(3.20), we see that also in this case the entire argument is proportional to 1/t2,
which becomes 1/t once we integrate out the frequency dependence. Thus, it
is possible to define the reparametrized polarization function as Π̃(k, ω′ =
ω/t) = tΠ(k, ω), which is independent on the hopping parameter value, i.e.
it does not depend on the Fermi velocity. It is possible to compute equation
(4.19) numerically, using the on-shell condition to get rid of the frequency
dependence. The result for the reparametrized function is shown in Fig. 4.3.
We see that the outcome recalls almost identically what we got for the graphene
case.

4.4 Schwinger-Dyson Equation
The interacting Green’s function can be obtained by summing the dimerization
matrix to the non-interacting function (4.17). If we define the gap function
∆(k) as the measure of the dimerization strength, which is proportional to the
energy gap at the Dirac points, we get

G−1(k, ω) = −iω1−2

0 t cos(k12) + i∆(k) sin(k12) t cos(k13) + i∆(k) sin(k13)
0 t cos(k23) + i∆(k) sin(k23)

0

 .

(4.20)
Here we defined kj

.
= k·δj, and the lower triangle of the second matrix is under-

stood to be filled so that the matrix is hermitian. In principle this expression
could lead to three independent self-consistent equations for the directional
components of the dimerization parameter. However, since we assumed the
dimerization to be symmetric in the different directions, they all reduce to the
same equation. In fact, we can write down the Schwinger-Dyson equation for
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Figure 4.3: Polarization function for the Kagome lattice within the on-shell
condition.

each conjugate couple, i.e. for the corresponding lattice direction, as

2i∆(k) sin(k · δj) =

∫
dp

(2π)2
dν

2π
V RPA(k + p) 2i∆(p) sin(p · δj)(2t− iν)

(ν+ − ν)(ν− − ν)(2t− iν)
,

(4.21)
where the poles ν± are

ν± = i

t±

√√√√2∆(p)
(
3−

∑
n

cos(2p · δn)

)
+ t2

(
3 + 2

∑
n

cos(2p · δn)

) .

(4.22)
We see from equation (4.21) that the flat band vanishes from the gap equation.
This is a direct consequence of the dimerization symmetry, which preserves the
flat band entirely. We can now shift the frequency according to the chemical
potential t, namely ν ′ → ν + it. In this way the poles become symmetric
around the real axis, i.e. ν ′

± = ν± − it, and we can integrate the Schwinger-
Dyson equation (4.21) using the residue theorem. The self-consistent equation
for the gap becomes

∆(k) =
∫
BZ

dp
(2π)2

V RPA(k + p) ∆(p)
2iν ′

+ (p,∆(p))
sin(p · δj)

sin(k · δj)
. (4.23)

It is worth noticing that this expression is actually independent on the specific
direction j that we choose. In fact, it is reasonable to assume that the gap
function ∆(p) will be symmetric in all the Dirac points, i.e. symmetric under
a rotation of the Brillouin zone of 2π/3 radians. This is because we know
that only two of the six Weyl nodes are truly independent, however, we are
still free to choose any pair of opposite points. In other words, the invariance
under a rotation of 2π/3 radians is necessary to preserve the equivalence be-
tween the three possible pairs of independent Dirac points. Moreover, both
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the RPA interaction term and the pole function are invariant under the same
rotation. Hence, the entire integral results independent on the direction j that
we choose, i.e. invariant under a rotation of 2π/3 radians.

It is also worth noticing from equation (4.23) that thanks to the presence of
V RPA(k+p), which diverges at p = −k, the maximal contribution to the inte-
gral is given in the region p ' −k. In those points we have that sin(p·δj)

sin(k·δj) ' −1,
which gets rid of the minus sign that comes from the complex product iν ′

+.
Therefore, when the contribution to the integral is maximum, we recover the
same structure of the graphene Schwinger-Dyson equation (3.23).

4.5 Numerical Results
The gap equation (4.23) can now be solved numerically for different values
of the coupling parameter α. We use the same technique that we presented
for the graphene case, namely we integrate the function using the Gaussian
quadrature formula and we find the solution through the iteration algorithm.
A representative example of the gap solution profile is shown in Fig. 4.4. We
see that it recalls the typical solution of the graphene lattice, according to
what we argued in the last section.

Figure 4.4: Numerical solution of the gap equation with coupling parameter
α = 2.0.

In order to derive the phase diagram for the Kagome lattice we can look at its
energy spectrum (4.16), where now the dimerization parameter δt is substi-
tuted by ∆(k). We see that the actual energy gap at the Dirac point is equal
to 6∆(KD), thus we can plot half of this quantity as a function of the coupling
parameter in analogy to what we did for graphene. The semimetal-insulator
phase diagram is shown in Fig. 4.5.
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Figure 4.5: Mass gap at the Dirac point as a function of the coupling parameter
α.

The critical coupling parameter results αc = 1.224. As we have seen at the
beginning of the chapter, a low energy expansion would have lead to the same
result of graphene linear theory. Hence, the difference between the Kagome
critical coupling parameter and graphene’s is partially due to the non-linear
part of the models. Moreover, the order parameter is different for the two
lattices, which may also play a role in the semimetal-insulator phase transi-
tion. In any case, studying the entire Hamiltonian rather than put the focus
exclusively on the low energy expansion has allowed us to highlight the differ-
ences between the two models. Nevertheless, the two results are similar, which
agrees with the hypothesis that the linear contribution is dominant.



Chapter 5

Conclusions

In this thesis we studied the role of the Coulomb interaction in two examples
of Weyl semimetal [2]. We first analysed the linear model using the renor-
malization group theory [9]. This tells us that in the weak coupling limit the
interaction contribution becomes irrelevant. However, it is sufficient to draw
the analogy with the relativistic QED theory to understand that this is not a
sufficient analysis in our case. In fact, we introduce the coupling parameter in
our theory as the analogue of the fine-structure constant, namely α = 1/137,
where now the light speed is substituted by the Fermi velocity of the material.
However, we expect this velocity to be roughly of the order of 100 times smaller,
which means the coupling parameter would become αmaterial ∼ 100α ∼ 1. This
shows that the weak coupling limit is not a good description for the model.

Then, we analysed the graphene lattice in the strong coupling limit [4] [13] by
studying both its low energy expansion and the whole Hamiltonian. This sec-
ond approach has allowed us to overcome some internal issues related to the
linear expansion of the model. In particular, we get rid of the cut-off momen-
tum Λ, which is not uniquely defined by the theory. We found that in the
strong coupling limit an energy gap is opened at the Weyl nodes. Also, we
identified the critical coupling parameter below which the material continues to
be a gapless semimetal. For the graphene model this parameter is αc = 1.333,
thus smaller than the coupling parameter of graphene αgraphene ' 2.16. This
suggests that the ground state of the graphene lattice is an insulator rather
than a Weyl semimetal, however we also discussed why the experimental ev-
idence of this result is difficult to observe. Finally, we gave an interpretation
of the mass function, i.e. of the symmetry breaking process that leads to
the semimetal-insulator phase transition. In the case of graphene, this order
parameter measures the charge imbalance between the two sublattices that
composes the material [17].

In the last part of the thesis we analysed the Kagome lattice [5]. We saw
that the low energy expansion of the Hamiltonian leads to the same result of
the graphene linear theory. We thus used the complete Hamiltonian approach
to include automatically all the corrections due to the non-linear contributions
and, in particular, of the additional flat band. The phase diagram resulted
similar to the one from the graphene lattice, with αc = 1.224. In this case
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the symmetry breaking process related to the phase transition is due to the
dimerization that occurs between the three triangular sublattices [6].

In the introduction we saw that a new material has been proposed to be a
valid alternative to graphene for the realisation of a strongly correlated vis-
cous electron fluid [8]. In particular, this material posses a Kagome lattice and
its coupling parameter is roughly three times larger than the graphene one.
Hence, we can conclude that a transition to the insulating phase will probably
take place naturally. Consequently, this novel material is not a good candidate
to study the hydrodynamic regime in two dimensional Weyl semimetals.



Appendix A

First Order Renormalization
Group

In chapter 2 we presented the most significant outcomes from the RG analysis
applied to the 2 dimensional linear theory. In this appendix, we will explicitly
derive the majority of those results and discuss some of the technical details.
For a complete review of the problem we invite you to read the works of
Shankar [9].

In equation (2.15) we defined the slow modes, effective action by means of
the fast modes average, which can be written as

〈Sint〉>
.
=

∫
d
[
Ψ̄>

]
d [Ψ>] e

−S0

[
Ψ̄>,Ψ>

]
Sint

[
Ψ̄>, Ψ>, Ψ̄<, Ψ<

]∫
d
[
Ψ̄>

]
d [Ψ>] e−S0

[
Ψ̄>,Ψ>

]

=
1

Z>
0

∫
d
[
Ψ̄>

]
d [Ψ>] e

−S0

[
Ψ̄>,Ψ>

]
Sint

[
Ψ̄>, Ψ>, Ψ̄<, Ψ<

]
,

where the definition of the free partition function Z>
0 is implicit. From this

expression we can derive all the possible terms that contribute to the effective
action. Hence, recalling that the interacting action defined by equation (2.9) is
quartic in the fields, there are only three non-vanishing contributions, namely

〈
Sint

[
Ψ̄>, Ψ>, Ψ̄<, Ψ<

]〉
>
=
〈
Sint

[
Ψ̄>, Ψ>

]〉
>,0

+
〈
Sint

[
Ψ̄<, Ψ<

]〉
>,1

+
〈
Sint

[
Ψ̄>, Ψ>, Ψ̄<, Ψ<

]〉
>,2

.

(A.1)

The first term, where all the fields present their short wavelength component
only, there is not dependence on the slow modes. This means that the average
integral produces a constant contribution, thus irrelevant to the RG analysis.
The second term coincides with equation (2.9) for the slow modes only, in fact

〈
Sint

[
Ψ̄<, Ψ<

]〉
>,1

=
1

Z>
0

∫
d
[
Ψ̄>

]
d [Ψ>] e

−S0

[
Ψ̄>,Ψ>

]
Sint

[
Ψ̄<, Ψ<

]
= Sint

[
Ψ̄<, Ψ<

] (A.2)
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Finally, the last term is non-zero only if both the creation and the annihila-
tion operators have one slow and one fast modes component. Thus, recalling
equation (2.9), we can write it in its generic form

〈Sint〉>,2 = 2
4∏

n=1

∫ ∞

−∞

dωn

2π

∫ Λ

Λ/b

dp1

(2π)2
dp3

(2π)2

∫ Λ/b

0

dp2

(2π)2
dp4

(2π)2

∫ Λ

|q|=0

dq
(2π)2

2πe2

4πε

1

|q|

Ψ̄<(p2, ω2) (2π)3 δ (p3 − p1) δ (ω3 − ω1)G0,> (p3, ω3) Ψ<(p4, ω4)

(2π)2 δ (p1 − p4 − q) (2π)2 δ (p2 − p3 + q) (2π) δ (ω1 + ω2 − ω3 − ω4) .

(A.3)

The factor 2 in front of the expression counts the symmetry between the two
electrons involved in the process (see Fig. 2.3). The Green’s function has been
introduced using its canonical definition, namely

1

Z>
0

∫
d
[
Ψ̄>

]
d [Ψ>] e

−S0

[
Ψ̄>,Ψ>

]
Ψ̄> (p1, ω1)Ψ> (p3, ω3) =

〈
Ψ̄> (p1, ω1)Ψ> (p3, ω3)

〉
>

.
= G0,> (p1,p3, ω1, ω3)

= (2π)3 δ (p3 − p1) δ (ω3 − ω1)G0,> (p3, ω3) .

(A.4)

It is worth noticing that the last equation in (A.4) is in particular true for
translationally invariant system, like the one in exam, but it does not hold
in general. The expression in (A.3) can be developed by integrating out the
redundant dependencies, i.e.

〈Sint〉>,2 = 2
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−∞

dωn
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(2π)2
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dq
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4πε

1

|q|

Ψ̄<(p2, ω2) G0,> (p3, ω3) Ψ<(p4, ω4) (2π)
2 δ (p3 − p4 − q)

(2π)2 δ (p2 − p3 + q) (2π) δ (ω2 − ω4)

= 2
4∏

n=3

∫ ∞

−∞

dωn

2π

∫ Λ

Λ/b

dp3

(2π)2

∫ Λ/b

0

dp4

(2π)2

∫ Λ

|q|=0

dq
(2π)2

2πe2

4πε

1

|q|

Ψ̄<(p3 − q, ω4) G0,> (p3, ω3) Ψ<(p4, ω4) (2π)
2 δ (p3 − p4 − q)

= 2
4∏

n=3

∫ ∞

−∞

dωn

2π

∫ Λ

Λ/b

dp3

(2π)2

∫ Λ/b

0

dp4

(2π)2
2πe2

4πε

1

|p3 − p4|
Ψ̄< (p4, ω4)

G0,> (p3, ω3) Ψ<(p4, ω4)

= 2
2πe2

4πε

∫ ∞

−∞

dω4

2π

∫ Λ/b

0

dp4

(2π)2
Ψ̄< (p4, ω4) Σ

(1) (p4)Ψ< (p4, ω4) ,

(A.5)



46 Appendix A. First Order Renormalization Group

where, in the last equation, we implicitly defined

Σ(1) (p4) =

∫ ∞

−∞

dω3

2π

∫ Λ

Λ/b

dp3

(2π)2
1

|p3 − p4|
G0,> (p3, ω3) . (A.6)

This function represents the usual self energy due to the one-loop correction
(see Fig. 2.4). It is worth noticing that here we are considering the low-
momenta regime, i.e. the long wavelength limit. In other words, this means
the significant corrections due to the electron-electron Coulomb interactions
are those in the long range limit, which are usually screened. This is due to the
vanishing density of states that we observe in the vicinity of the Dirac points.
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Numerical Methods

In this appendix we will present some of the numerical techniques that we
used throughout the entire project. In particular, we will justify the recursive
algorithm employed to solve the Schwinger-Dyson equation, and describe the
Gaussian integration formula.

B.1 Recursive Algorithm

Each of the Schwinger-Dyson equations derived in the previous chapters can be
seen as integral equations for the gap function ∆(k). Often, these type of ex-
pressions do not have an analytical solution, consequently, finding an efficient
method to solve them can be fundamental. In our case, it was worth noticing
that the numerical solutions produced by initial guesses had two significant
properties: they varied slowly both over the whole domain and between con-
secutive steps. Moreover, the closer the numerical solution is to the exact mass
function, the slower it transforms at each step.

Combining all these properties together, we can assume that if the (n-1)-th
recursive step lies completely above or below the actual non-trivial solution,
so it will its integral result, i.e. ∆n(k). In fact, we can see the evolution of
the recursive algorithm as a classic double-well potential problem. If the cou-
pling parameter is larger than its critical value, the Schwinger-Dyson equation
admits both the trivial and a non-trivial solution, which play the role of local
minima for the algorithm. The error function, defined as the relative difference
between two consecutive solutions (eq. B.1), can be thought as a measure of
this potential. Hence, observing that the recursive steps evolve monotonously
and slowly, we conclude that the non-trivial solutions can be approached from
opposite sides, i.e. according to the relation (3.15).

With this method we find two distinct solutions for each value of the cou-
pling parameter. Consequently, we are able to evaluate the error associated to
each numerical result given that we assumed the actual solution lies between
these two. This is an important consequence of the recursive method since
the error function used to run the algorithm is not directly associated to the
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solution error. In particular, the error function is defined as

fn
.
=
∑
i

∣∣∆n(ki)−∆n−1(ki)
∣∣∣∣∆n(ki) + ∆n−1(ki)
∣∣ , (B.1)

where the sum is taken over the grid that covers the first Brillouin zone. Thus,
we stop the recursion when the condition fn < ε is satisfied for an arbitrary
ε fixed a priori. However, choosing the same ε for each value of the coupling
parameter does not guarantee that the error associated to the actual solution
will be fixed. In particular, we observed that approaching the critical coupling,
both the number of steps required to satisfy the aforementioned condition and
the total error, i.e. the difference between the two numerical solutions, increase
rapidly (see Fig. B.1 and B.2).
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Figure B.1: Relative error defined by (B.1) for each numerical solution of the
graphene model.
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Figure B.2: Number of iteration steps as a function of the coupling parameter
α for the graphene model.
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B.2 Gaussian Quadrature
We argued that the recursive algorithm is an effective method to solve the
integral gap equations that we found in the previous chapters. However, each
step of this algorithm requires that we compute a two-dimensional integral
over a grid that contains enough points to cover the first Brillouin zone effec-
tively. In other words, if the mass function is sampled over an M ×M grid,
each step corresponds to compute M2 integrals over the Brillouin zone. An
effective method to deal with such a high volume of integrals is given by the
Gaussian quadrature formula [24] [25], which is able to reduce the integration to
a very limited number of points.

Every numerical integration method comes down to choose the appropriate
grid {xi} and the corresponding weights {wi} for the general formula∫ b

a

f(x)dx =
N−1∑
i=0

wif(xi) . (B.2)

It is worth noticing that a Taylor expansion based integration formula over N
points would be able to integrate exactly a polynomial of degree (N − 1). The
core idea of the Gaussian quadrature formula is to improve this method by
choosing the weights by means of N orthogonal polynomials. In this way we
add N further constrains to the formula, that means we can integrate exactly
a polynomial of order (2N − 1) using only N integration points. We can think
of the quadrature formulas as a sequence determined by its N -th element

QN(f) =
N−1∑
i=0

w
(N)
i f

(
x
(N)
i

)
, (B.3)

which converges if

QN(f) −−−−−→
N→∞

Q(f) =

∫ b

a

f(x)dx . (B.4)

The next step is to find the correct grid and weights such that the following
integral ∫

P2N−1(x)dx =
N−1∑
i=0

wiP2N−1(xi)

results exact for a generic (2N − 1)-th order polynomial.

In the standard Gaussian quadrature this is done by using the Legendre poly-
nomials. They are defined by the recursive formula

Ln+1(x) =
1

n+ 1

(
(2n+ 1)xLn(x)− nLn−1(x)

)
, (B.5)

where we also have

L0(x) = 1 and L1(x) = x .
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Furthermore, the N -th order Legendre polynomial has exactly N zeros in the
open interval (−1, 1), and they satisfy the following orthogonality relation∫ 1

−1

Li(x)Lj(x)dx =
2

2i+ 1
δij . (B.6)

At this point, we notice that a (2N − 1)-th order polynomial can be written
generally as

P2N−1(x) = LN(x)PN−1(x) +QN−1(x) ,

where LN(x) is the Legendre polynomial defined above, while PN−1(x) and
QN−1(x) are any two polynomial of order (N − 1). Hence, if we approximate
the integrated function with this polynomial, we get∫ 1

−1

f(x)dx '
∫ 1

−1

P2N−1(x)dx

=

∫ 1

−1

(
LN(x)PN−1(x) +QN−1(x)

)
dx

=

∫ 1

−1

QN−1(x)dx ,

(B.7)

where we used the Legendre orthogonality (B.6) to obtain the final expression.
The survived function can be defined by means of the Legendre zeros, i.e.
given {xk}(k=0,...,N−1) such that LN(xk) = 0, we get P2N−1(xk) = QN−1(xk).
Thus, since the polynomial QN−1(x) is of order (N − 1), it results completely
determined by its value in N distinct points. However, this function can also
be expressed in terms of the Legendre polynomials

QN−1(x) =
N−1∑
i=0

αiLi(x)

by choosing the correct factors α’s. Hence, knowing that L0(x) = 1 and using
the orthogonality (B.6), we can write∫ 1

−1

QN−1(x) =
N−1∑
i=0

αi

∫ 1

−1

L0(x)Li(x)dx = 2α0 . (B.8)

Finally, we define the Legendre matrix by

QN−1(xk) =
N−1∑
i=0

αiLi(xk) =
N−1∑
i=0

αiLik ,

where xk are the zeros of the N -th order Legendre polynomial. Since the
Legendre polynomials are linearly independent, because they are orthogonal,
we can invert the matrix to get

N−1∑
i=0

(
L−1

)
ki
QN−1(xi) = αk .
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In particular, we can work out the first coefficient α0 as

α0 =
N−1∑
i=0

(
L−1

)
0i
QN−1(xi)

=
N−1∑
i=0

(
L−1

)
0i
P2N−1(xi) .

(B.9)

Hence, combining this result with equations (B.7) and (B.8), we obtain the
Gaussian quadrature formula [24]

∫ 1

−1

f(x)dx '
N−1∑
i=0

2
(
L−1

)
0i
P2N−1(xi) . (B.10)

This is an integration formula with weights wi = 2 (L−1)0i, and the grid is
defined by the N zeros in the interval (−1, 1) of the N -th order Legendre
polynomial. It is worth to emphasise that this is an exact method to integrate
a (2N − 1)-th order polynomial, thus the only approximation we are doing in
the equation (B.9) is due to f(x) ' P2N−1(x). In order to use this integration
method, we can determine the Legendre polynomials by means of the recursive
formula (B.5), and find their zeros using a combination of the bisection method
and the Newton-Raphson algorithm.
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