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Abstract

Last decade the interest in natural language inference has increased
because it serves as a task to test AI models on natural language un-
derstanding. This resulted in several models with new state-of-the-art
performance. While overall accuracy on different benchmarks has been
increasing steadily, little research is done on specific problem types that
are hard to solve. This paper explores different characteristics of the in-
ference problems, resulting in problem types that are hard to solve for
models based on certain architectures or trained on specific data set.
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1 Introduction

The Natural Language Inference, or NLI for short, task has gained a lot of atten-
tion since the introduction of the Stanford Natural Language Inference (SNLI)
data set [Bowman et al., 2015]. The goal of this task is to detect if a hypothesis
sentence h is neutral to, entailed, or contradicted from a premise p, a task that
requires natural language understanding. One example for this task is, given
the premise Four adults eat while sitting on a tile floor, if the hypothesis A group
of people eat food is an entailment, neutral, or contradiction, and in this case
is an entailment. While researchers come up with new models to compete over
the highest accuracy scores and focus on the quantitative measures, qualitative
measures are often left behind. Thus little is known about why a model does
or doesn’t solve certain problems. Qualitative analysis has been done before on
single models [Pavlick and Kwiatkowskil [2019]. However, to get a good under-
standing of common problems, an analysis over a wide range of models, varying
in architectures and training corpora, should be done. A way forward is to look
at what types of problems different, widely-used models fail on, and compare
their different points of failure. This would give an insight into where the prob-
lem lies: the training data, the model architecture, or possibly both. This thesis
will explore a few types of problems that may cause trouble for NLI models.
All annotated data collected during the research is made publicly available on

GitHutl

2 Method

The process of finding hard natural language inference problems for neural mod-
els can be divided into two parts: NLI model selection, and characteristic fea-
ture selection for NLI problems. This section will briefly describe on these parts.
Sections 3 and 4 will provide a more detailed description.

2.1 Model selection

NLI models will be selected based on various criteria. Since this is an experiment
that attempts to find problems that are hard in general for neural models, the
selected models have to vary in architecture and training data. Then, to verify
that the models actually behave differently from each other, each pair of models
will be assigned a similarity score (the percentage of sentence pair where both
models predict the same label).

The selected models are then evaluated on the test set of the SNLI corpus.
These predictions, combined with the features, are later used to determine if
problem types are hard or not.

2.2 Feature selection

In order to categorize sentence pairs, a number of features are selected. These
features represent problem types that intuitively could influence the perfor-
mance of a model (e.g. the occurrence of a negation). Then, using Python and
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the spaCy library, each sentence pair is assigned a true/false value for each of
the feature categories.

2.3 Model evaluation

In order to classify problems as hard, the NLI models’ predictions are analyzed

3 Model selection

We select the NLI models that are based on widely-used pre-trained language
models. Most of these models are based on transformers [Wolf et al.l [2020],
XLNet and ELECTRA being the two exceptions. To say something useful about
the relative performance on different criteria the models have to differ to some
extent from each other. To accomplish this models have to be selected based on
their underlying architectures and the used corpora. Due to the popularity of
BERT-like models, a large part of well-performing models are BERT-like, and is
visible in the selection of models. To allow for easy reproduction of the results,
the selection of models will be limited to pre-trained models available on [Hugging
Face. Table 1 lists the different combinations of corpora and architectures used
in this analysis. All models will be referred to by the name of the architecture
used for the rest of the thesis, with the exception of the two RoBERTa models,
which will have an additional tag, (1) or (2), to distinguish between them.

All of the used pre-trained models have accuracies similar to what can be
expected from their papers. Table 1 lists a full overview of the accuracy scores.

Architecture SNLI MNLI ANLI Accuracy
BERT base * 90.4
RoBERTa large (1) * 88.3
RoBERTa large (2) * * * 91.8
DistilRoBERTa base * * 90.0
DeBERTa xlarge * 89.7
ALBERT xxlarge * * * 91.9
BART large * * * 92.0
ELECTRA large * * * 91.1
XLNet large cased * * * 91.6

Table 1: Overview of models used in this experiment and their accuracy scores
on the SNLI test set. Each model is represented in a row, where a * in a column
means the model is trained on that data set.

Sections 2.1 and 2.2 will discuss the used corpora and architectures. Section
2.3 will briefly touch on how the different models perform with respect to each
other.

3.1 Corpora

SNLI [Bowman et al., |2015|

The Stanford Natural Language Inference data set was introduced by Bowman
et al. as a new data set to be used for natural language inference. With its


https://huggingface.co/
https://huggingface.co/

570K sentence pairs, it was, at the time, the largest publicly available data set.
Besides the increased number of sentences, it also attempts to solve a different
issue. Earlier corpora had issues with determining the correct semantic label.
Some cases where a case could be made for both a neutral or contradiction
label (e.g. A boat sank in the Pacific Ocean - A boat sank in the Atlantic
Ocean), resulted in inconsistent methods of labeling sentence pairs. To counter
this problem they set a constraint on how sentences were to be written; each
sentence pair has to be written from the same perspective.

For the creation of the sentence pairs workers from |Amazon Mechanical Turk
were presented a premise, a sentence from the Flick330k corpus [Young et al.,
2014], and were tasked to write a hypothesis for each of the labels. To validate
the created sentence pair, each was then labeled by four other annotators, and
the most common label was set as the correct golden label.

MNLI [Williams et al., [2018]

The Multi-Genre Natural Language Inference data set is a more recent data set
following the structure of SNLI. While it ‘only’ contains 433k sentence pairs,
thus smaller than the SNLI data set, the new data set is better suited for natural
language inference due to some other improvements. First of all, the sentences
are categorized by 10 different genres. This makes it easier to evaluate a model’s
performance on specific topics. The included sentence pairs also have more
variation in difficulty. This allows training and evaluating models on sentences
that cover all complexity levels of the language. After an evaluation comparing
MNLI and SNLI, the MNLI data set represents a more difficult task.

The data collection for MNLI is done in a similar fashion to SNLI. This time,
instead of using Amazon Mechanical Turk, Hybrid was used. The premises were
taken from existing text sources, and a human annotator was asked to create
three hypotheses, again, one for each label. However, this time the annotator
was also presented with example premises and hypotheses specific to each genre.

Adversarial NLI |Nie et al., |2019]

Unlike SNLI and MNLI, Adversarial Natural Language Inference is not a static
data set. It is a, possibly forever, evolving data set that tries to find more
sentence pairs that earlier models failed on. The general idea introduced is to
present a human annotator with a premise, and task them to write a hypothesis
that would be wrongly labeled by a pre-trained model, and the reason why the
annotator the model has wrongly labeled the hypothesis. These examples are
then validated to be sure the model is mistaken, and not the annotator.

The method used to create the data set introduced in the paper consists of
three rounds.

To start, a BERT model was trained on the SNLI and MNLI corpora. An-
notators are then provided with multi-sentence premises from the HotpotQA
data set [Yang et al., 2018], and are given the task described above.

In the second round, instead of BERT, RoBERTa was trained on SNLI,
MNLI, FEVER [Thorne et al [2018|, and the data collected in the first round.
To prevent annotators from exploiting vulnerabilities of a single model, a set
of models was trained based on random seeds. Again, a set of contexts, or
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premises, was selected from the HotpotQA data set and provided to the anno-
tators through the earlier described procedure.

The third round follows the same procedure as the second, with an expanded
data set. They added texts from news (extracted from Common Crawl), fiction
[Mostatazadeh et al., 2016 [Hill et al., [2015], spoken formal text [Ide et al.|[2010],
and causal or procedural text from [WikiHow!.

These three rounds resulted in a data set of 103k sentences, with more
saved for later rounds. This is smaller than both SNLI and MNLI, but, due to
the nature of the included sentences, will be more useful in natural language
inference tasks.

3.2 Architectures
BERT [Devlin et al., [2019]

BERT, or Bidirectional Encoder Representations from Transformers, uses the
transformers architecture introduced by [Vaswani et al.|[2017]. BERT pre trains
deep bidirectional representations from unlabeled text, and as a result, can
supply state-of-the-art models on various tasks by adding just one additional
output layer. Thus, BERT itself is not meant to be used for any natural language
inference tasks.

BERT is almost identical to the original architecture by Vaswani et al, and
thus, follows the encoder-decoder structure.

RoBERTa [Liu et al., 2019]

RoBERTa, short for Robustly optimized BERT approach, is the result of a repli-
cation study on BERT. They claim that, despite BERT being a great per-
former, it was undertrained. By evaluating hyperparameters and training set
size, ROBERTa outperforms all models released after BERT.

DistilRoBERTa [DistilRoBERTa]

DistilRoBERTa is a distilled version of the RoBERTa base model. It follows the
training procedure introduced for DistilBERT [Sanh et al., [2019]. Sanh shows
that the distilled BERT model reduces the size of BERT by 40%, is 60 % faster,
and retains 97% of its performance. They accomplish this by leveraging knowl-
edge distillation during the pretraining phase. While larger models, like BERT,
are able to learn inductive biases during pretraining, distilled models miss out
on those advantages. To compensate for these losses, DistilBERT introduces
three new methods; triple loss combining language modeling, distillation, and
cosine-distance losses.
The used distilled version of RoBERTa is twice as fast as the original RoBERTa

model.

DeBERTa [He et al., [2020]

To improve over BERT, DeBERTa, or Decoding-enhanced BERT with disen-
tangled attention, uses two new techniques. First is the disentangled attention
mechanism. Here, each token in a sequence is represented by two vectors, rep-
resenting the token contents, and its position relative to another token.


https://wikihow.com

ALBert [Lan et al., 2019]

ALBert is A Lite Bert model that does not necessarily attempt to increase per-
formance in terms of accuracy but in terms of speed. They introduce two meth-
ods of parameter reduction to reduce memory usage and increase the training
speed. The first is a factorized embedding parameterization. They decompose
the single vocabulary embedding matrix into two smaller matrices, separating
the size of the hidden layers from the size of the vocabulary embedding. Thus,
they allow easier growth of the hidden layers, without significantly affecting
the size of the vocabulary embedding. Then they use a cross-layer parameter
sharing technique, preventing the number of parameters from growing with the
depth of the network. These techniques allow for a reduction in the number of
parameters without significantly reducing the model performance

BART |[Lewis et al., 2019|

Just like BERT, BART uses the standard sequence-to-sequence Transformers
architecture from [Vaswani et al.2017] and thus have very similar architectures.
While very similar, there still are two differences. First, in each layer the decoder
performs cross-attention over the final hidden layer of the encoder, this does not
happen in BERT. But, BERT has a feature not included in BART, namely an
additional feed-forward network before word prediction. In the end, BART has
a roughly 10% increase in parameters compared to an equivalent BERT model.

ELECTRA |[Clark et al., |2020|

ELECTRA improves over other pre-trained models in how it handles token
replacements. In training, models like BERT the input is corrupted and replaced
by [MASK], and the model is then tasked to reproduce the original tokens. This
produces good results, but at the cost of requiring a large amount of computing
power. ELECTRA uses a method more sample-efficient method called replaced
token detection. Here the tokens are replaced by plausible alternative tokens,
and then the model has to predict whether or not a token has been replaced.
This makes better use of samples, since it trains on every token, and not just
the those that are masked.

XLNet [Yang et al., 2019|

While models like BERT often perform better than those that rely on auto-
regressive language modeling, due to the reliance on corrupting the input the
dependencies between the masked tokens are lost and suffer from a pre train-
finetune discrepancy. With XLNet, a new generalized auto-regressive pretrain-
ing method was introduced that overcomes the limitations of BERT-like models.

3.3 Relative performance

Since most of these models are similar to, or expansions of BERT, and are
trained on combinations of the SNLI, MNLI, and ANLI corpora, the similarity
between the models has been analyzed. The similarity score is the percentage
of predictions where the two compared models predict the same label. With
accuracy scores of 90%, the lower bound for these scores is 0.8. The scores for
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ALBERT 92 90 95 92 91 100 95 94 93
BART 93 90 95 93 91 95 100 95 93
XLNet 93 90 95 93 92 94 95 100 93
ELECTRA 91 89 93 91 91 93 93 93 100

Table 2: Similarity scores between the analyzed models as the percentage of
equally labeled sentence pairs. Per row: bold faced numbers are the most
similar models, red numbers are least similar.

these models are in the range from 0.88 to 0.95, and thus, being only 0.08 (at
minimum) above the lower bound, the selected models differ enough from each
other. A full overview of the relative accuracy scores is available in table 2.

4 Features

Due to the nature of the task, where the occurrence of a certain feature in the
premise can be vastly different than when that same feature would occur in the
hypothesis, features have to be specified such that they are directional. The
following sections will, for each feature, discuss what they are, and why they
may be hard to classify for natural language inference models. An overview of
the features, their occurrence, and the number of sentence pairs is available in
table 3.

Negations

A sentence contains a negations if it contains the word not, including other
variations such as don’t and can’t. While there are other words that could be
considered a negation, like no or none, they are also used in other contexts (e.g.
There are no cars on the parking lot) and therefore are not included. Since
a sentence pair with a negation often is a contradiction, it makes sense that
a model could correlate the two, causing a mislabeling of entailed and neutral
sentences. One thing to keep in mind is that there are only 102 unique sentences
in the SNLI test set that contain a negation, and therefore also very few (1%)
sentence pairs where there is at least one occurrence of a negation.



Feature Group %  Count

No-No 98.8 9706
No-Yes 0.9 91
Negation Yes-No 0.2 25
Yes-Yes <0.1 2
—(No-No) 1.2 118
Yes-Yes 68.0 6684
Yes-No 7.6 744
Sentence No-Yes 20.5 2018
No-No 3.8 378
—(Yes-Yes)  32.0 3140
Act-Act 97.3 9554
Act-Pas 1.1 115
Voice Pas-Act 1.4 142
Pas-Pas 0.1 13
—(Act-Act) 2.7 270
No-No 89.2 8786
No-Yes 3.9 379
Quantifiers Yes-No 5.9 581
Yes-Yes 0.8 78
—(No-No) 10.6 1038
Equal 5.6 550
(Lv‘igfglsl) Premise 838 8236
Hypothesis  10.6 1038
Equal 20.0 1952
(er;lfrtlhchunks) Premise 73.8 7252
Hypothesis 6.3 620

Table 3: Distribution and occurrences of sentence pairs per feature.

Complete sentence

Whether a sentence is complete or not can be determined by the root of the
parse tree, available in the SNLI data set, of a sentence; if the root is equal to
S, the sentence is a complete sentence. Incomplete sentences may miss crucial
elements, such as the subject or verb, in a way that the sentence still makes
sense to a human reader but is harder for a model to understand. This lack of
information can make natural language inference tasks harder. In the SNLI test
set, there are 11046 complete and 1915 incomplete sentences, and 68% of the
sentence pairs contain two complete sentences.

Sentence voice

Since active sentences are more common than passive sentences in natural lan-
guage, the sentence voice may be another important feature to look at. Not
necessarily because passive sentences are harder to understand, but since they
are less common than active ones, corpora simply include less of them. This is



clearly visible in the SNLI data set, only 180, or 1%, are passive sentences.

Passive sentences can easily be used by annotators to paraphrase the premise
to create an entailment. If this is the case, models could correlate the active
voice of the premise and the passive voice of the hypothesis with an entailment,
making it prone to errors when the hypothesis is either neutral or a contradic-
tion.

Quantifiers

The quantifiers feature includes sentences that contain quantifiers, words like
some, none, all. The occurrence of a quantifier in a sentence can be an ad-
vantage in natural language inference tasks. These words can easily be used to
distinguish between sentences such as some children are playing and all children
are playing. Cases like these make it easy to see why features have to be defined
directionally. When some children play, it is not necessarily true that all of
them play. But when all of the children play, then we can be sure that some of
them are playing.

On the other hand, quantifiers single words that have a lot of semantic value.
In the sentence The men are both wearing glasses the word both adds a lot of
value. It implies that there are exactly two men in the picture, and that the
two of them are wearing glasses. There could be other people in the picture,
but they could not be men, and whether or not they wear glasses also would not
matter. All of this information is added to that short sentence by the word both,
and could be hard for natural language inference models to label as entailment,
neutral, or contradiction.

Sentence length (words)

While longer sentences may be harder to parse, and thus harder to assign a
label to, the relative sentence length might be a better indication. Since longer
sentences contain more information than shorter ones, it makes sense that longer
sentences are less likely to not entail from shorter ones. A longer hypothesis
entailing from the premise is still possible, and does occur in the SNLI data set.
Some are sentences a person could reasonably use; A biker races as the premise,
A person is riding a bike as the hypothesis. But others are vague descriptions
using an excessive number of words to describe simple events; premise: A dog
jumping for a Frisbee in the smow., hypothesis: An animal is outside in the
cold weather, playing with a plastic toy.) The second example is clearly an
entailment, it simply generalizes the premise.

Sentence length (noun chunks)

To somewhat compensate for longer descriptions of the same thing, it is possible
to use noun chunks instead of the number of words. When a longer sentence
has the same meaning as a shorter sentence (or at least parts of the sentences
have the same meaning), the number of noun chunks is a better indication of
the amount of information in the sentences. A cruise ship can be described as
a large passenger ship without adding any additional information. This does
not solve the problem we find with the first example of the previous section
(A biker races vs. A person is riding a bike.) But should the second sentence
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entail from the first one? A person can be a biker, without being on a bike!
Thus, the racing biker could be a person that happens to also be a biker but
is participating in a foot race. Despite the implications this can have for these
sentence length features, it will not be further discussed here, since this is a
semantics problem out of the scope of this thesis.

Using the number of noun chunks in a sentence as a measure compared to the
number of words has moved some sentences to a different group. The share of
sentence pairs of equal length has increased from 5.6% to 20.0%, with a decrease
of 10.0% for those where the premise is longer, and a decrease of 4.6% of those
sentences where the hypothesis is longer.

5 Experiments and results

The following sections will discuss the pre-processing done for the features, and
model performance on the different problem types. The models are run on the
SNLI test set ignoring sentence pairs where there is no gold label, those sentence
pairs where the gold label is set as *-’, then 9824 out of the 10k sentence pairs
remain. Only those results that stand out and have some significance will be
discussed, but a complete overview of the results is available in table 4.

5.1 Pre-processing

All of the linguistic features in this thesis are extracted from the SNLI data set
using basic Python (v3.8) and the spaCy (v3.0) library using the en_core_web_trf
pipeline. The Negations, sentence voice, and quantifiers are found using spaCy
matchers. The number of noun chunks in a sentence corresponds to the noun_chunks
property in spaCy. Sentence length in words corresponds to the number of to-
kens in a sentence, ignoring those where the part of speech tag corresponds to
punctuation. Whether a sentence is complete is read sentence_parse field in the
SNLI data set. These features are acquired in a single iteration over all the
sentence pairs.

5.2 Model performance
Negations

The SNLI data set includes very few negations, therefore these results possibly
do not translate well to other corpora where negations are more common. While
it is interesting to see that all models correctly labeled all sentence pairs where
both sentences have a negation, there are only two of these sentence pairs, and
therefore will not be discussed due to a lack of data.

Despite also having very few entries, the sentences where there is an occur-
rence of a negation in one of the sentences are worth mentioning. It is obvious
how the transformer-based models (all but XLNet and ELECTRA) really suffer
from the lack of sufficient data. They lose, on average, 8.5% in accuracy in pairs
where the premise contains a negation, while the more data-efficient XLNet and
ELECTRA do not lose at all, or even increase accuracy by 1%. On pairs where
only the hypothesis contains a negation, all models perform similarly, with a
4% loss compared to sentence pairs where neither sentence contains a negation.
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Table 4: The accuracy scores per feature and feature-class (in % relative to a
model’s overall score). Boldfaced and red values are those mentioned in the text.
In superscript are the data sets the model is trained on, S=SNLI, M=MNLI,
A=ANLI

When looking at all sentence pairs where at least one of the sentences con-
tains a negation, all models perform worse, on average 4.4% lower, compared
to their overall score. Three models lose more than 4.4% in accuracy, BERT,
ALBERT, and BART. This may seem surprising for ALBERT and BART at
first since they are trained on SNLI, MNLI, and ANLI. However, when compar-
ing the two models using the RoBERTa large architecture, RoBERTa (1) only
loses 3.6% in accuracy compared to RoBERTa (2)’s 4.6%. This difference could
indicate that the MNLI data set used to train RoBERTa(1) is better suited to
solve these types of problems. But then, why do XLNet and ELECTRA per-
form relatively well compared to the other models trained on ANLI? If it is the
case, which is very likely, that the number of negations in the ANLI data set
is very small, then XLNet and ELECTRA have an advantage over the other
models. The XLNet and ELECTRA architectures were designed in such a way
that they are able to learn from a smaller amount of samples.
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Complete sentence

Out of the analyzed models, most are very insensitive to whether or not a sen-
tence is complete. This can have a few causes. First of all, the incomplete sen-
tences still provide enough information for a human to make a correct inference.
If models can make correct inferences from the same amount of information as
humans, which is true for all sentence pairs in the SNLI data set where the gold
label is not ‘-’ then it does not matter if a sentence is complete or not in the
context of the SNLI data set.

On sentence pairs where at least one of the sentences is incomplete, there is
no model that gains or loses more than 1% in accuracy, and most do not change
at all (<1%). BART is the only model that loses 1.5% on any of the feature
types, the one where neither of the sentences is complete. In general, models
seem to be insensitive to whether or not a sentence is complete.

Sentence voice

As noted earlier, passive sentences are uncommon (around 1.4% of the unique
sentences, 3% of sentence pairs with at least one passive sentence). With few
samples to train on, it is unsurprising that most models perform worse on these
types of problems. What is surprising, however, is that the models which are
trained exclusively on the MNLI data set manage to correctly label all the
Passive-Passive sentence pairs. Despite the low number of sentence pairs with
this feature, it is a massive difference compared to the other models, that, with
the exception of BERT, score lower. This improvement on Passive-Passive sen-
tence pairs does not translate to sentence pairs with only one passive sentence,
where RoBERTa (1) scores similar to their overall accuracy, and DeBERTa loses
5.2% on Passive-Active sentence pairs.

BART achieves an accuracy 15.1% lower than its overall score on Passive-
Passive sentence pairs. While other models trained on the same corpora also
perform worse, BART’s accuracy drop by at least 8% more, more than double,
compared to the others. It seems like the architecture is less suited to deal with
these problems.

Looking at the accuracy scores for all problems with at least one passive sen-
tence, all models, with the exception of BERT, score similar or worse compared
to their overall accuracy.

While the increase in performance for RoOBERTa (1) and DeBERTa have a
simple possible explanation, namely that MINLI is a data set better suited for
these problems, the high decrease in accuracy for BART has no easy explana-
tion. The problem most likely lies in the BART architecture, despite being very
similar to other transformer-based models.

Quantifiers

When introducing the quantifiers feature, two possible outcomes were men-
tioned. As it turns out, sentence pairs containing quantifiers are harder to
correctly label than those that do not. The model that loses the most in accu-
racy in a single measure is DeBERTa, losing 5.1% on the sentence pairs where
both sentences contain a quantifier. Right behind are BERT, ALBERT, and
ELECTRA, losing around 4% on the same problems. This is not surprising for
BERT, DeBERTa, and ALBERT, since there are very few sentence pairs with
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this feature. ELECTRA, however, is designed to be efficient with sample size,
and a better accuracy should be expected. Meanwhile, RoBERTa (2), trained
on the same corpora as ALBERT and ELECTRA, improves by 2% on these
problems.

Looking at the accuracy of all sentence pairs with at least one quantifier,
DeBERTa performs worst again, with a 2.6% loss on its overall score. The rest
of the models score slightly, but consistently worse when there is a quantifier.

Sentence length (words)

Looking at relative sentence length based on the number of words the accuracy
scores do not change by much, <1% for most models. The exceptions are
DeBERTa and XLNet. DeBERTa scores 1% higher on sentences of equal length,
and 1.4% on sentence pairs with a longer hypothesis. XLNet scores 1.2% lower
on sentence pairs where the hypothesis is longer.

Sentence length (noun chunks)

When we use the number of noun chunks instead of the number of words to
determine relative sentence length, we can observe a small change in the accu-
racy scores. Overall, the accuracy scores increase from -0.3% to +0.2% relative
to the overall scores. This is not surprising for a few reasons. First of all, the
number of sentence pairs with equal length based on noun chunks is four times
larger than the number based on the number of words, increasing the number
of training samples available. A second reason is that when the amount of in-
formation in both sentences is equal, it is easier for a model to compare the
information.

This increase in performance for sentences of equal length comes from sen-
tences that were in the other categories when using number of words, thus, on
sentence pairs where the premise and hypothesis are not of equal length, the
models achieve a lower accuracy.

When looking at individual models, the same observations can be made
on almost all models. DeBERTa gains the most from this change, where its
accuracy on equal sentences goes from +1.0% to +1.9%, but also loses the most
on those pairs where the hypothesis is longer, from +1.4% to -0.5%.

In contrary to the other models, BERT, RoBERTa (1), and XLNet now score
lower on sentence pairs with a longer hypothesis.

6 Discussion

The following paragraphs will discuss the linguistic features that were found to
have an impact on the accuracy scores, and possible reasons as to why models
have trouble with them.

Considering all of the explored types of problems, we observe the biggest loss
in accuracy in problems where at least one of the sentences contains a negation.
It is hard to say why exactly models fail on these problems, but there are a few
possible explanations. Since the number of negations in the corpora is so low,
models have very few samples to learn from. A second possibility is than the
problem is actually hard for natural language inference.
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Other hard sentence pairs to correctly label are those containing passive
sentences. It is surprising to see that models that are trained on either SNLI
or MNLI perform better than their overall scores on sentence pairs where both
sentences are passive. What is surprising at first glance is that DistilRoBERTa,
which is trained on both SNLI and MNLI, performs worse. It could indicate
that certain kinds of problems, in this case, sentences in the passive voice,
accuracy can be highly increased by using a better data set, but they require
larger architectures to do so.

The third type of problem that proves a challenge for the models are the
sentences with quantifiers. On these problems, there is no recognizable pattern
as to how models perform. They score worse across the board, with the excep-
tions of ROBERTa (2) on sentence pairs where both sides have a quantifier, and
XLNet on sentence pairs that contain a quantifier in the premise. Therefore it
is not possible to tell where these losses in accuracy originate from.

When we compare two models with the same architecture, ROBERTa (1)
(trained on MNLI) and (2) (trained on SNLI, MNLI, and ANLI), we can see
the importance of the used training data. Overall RoBERTa (2) performs 3.5%
better. However, when we look at sentence pairs where both sentences are
in passive voice, suddenly RoBERTa (1) outperforms RoBERTa (2), and also
almost all other models, DeBERTa being the only exception. Coincidentally,
DeBERTa is also trained on the MNLI data set. This indicates that the MNLI
data set is very good at solving this type of problem. This shows that different
corpora have their own strengths and weaknesses and that even the corpora
with state-of-the-art performance are not able to consistently solve every type
of problem.

7 Future work

To get a better understanding of common hard problems for natural language
inference models there are multiple directions further research can go. First of
all, the SNLI test set used to evaluate the models is limited in size, and therefore
the number of samples for certain problem types, specifically the negations, are
very uncommon. Using a multitude of corpora (e.g. SNLI, MNLI, and ANLI)
would increase the number of sentence pairs to test on, resulting in more reliable
results. An even better approach, despite being an enormous task, is to create
a new test set designed in such a way that certain linguistic features that may
prove to be a challenge occur more often.

Secondly, there is room for improvement in regards to the selected linguistic
features. Ome can test on entirely different features (e.g. antonyms or verb
tense), or improve on those explored here. Let’s take a look at the quantifiers.
Here, the list of selected contains 16 quantifiers, and all are grouped together.
It remains unknown on which quantifiers models fail more often. There could
be just a few specific ones that are hard for these models, while the rest are
easy to correctly label and pull the accuracy scores up on these problems.

And lastly, this experiment has only categorised sentence pairs based on a
single feature. While it is a good place to start, it is not unlikely that specific
feature combinations are more indicative of a problem’s difficulty. While this
allows a more specific analysis of the task, it also brings a new challenge. As
it is, some single features occur infrequently. Adding additional constraints to
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these features would then further reduce the already low number of sentence
pairs.
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