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Highlights 
 

• No difference in functional connectivity has been observed between human-human and 

human-robot interaction. 

• The right temporoparietal junction (rTPJ) and right fusiform face area (rFFA) are stronger 

connected during interaction.  

• The superior parietal lobule (SPL) is less connected with the rFFA. 

• No temporal effects of conversating have been found on the functional connections 

between the regions of interest. 
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Abbreviations 

 

HHI; human-human interaction, HRI; human-robot interaction, FFA; fusiform face area, FG; fusiform 

gyrus, TPJ; temporoparietal junction, MOG; middle occipital gyrus, MFG; middle frontal gyrus, STS; 

superior temporal sulcus, VMPFC; ventral medial prefrontal cortex, DMPFC; dorsal medial prefrontal 

cortex, FC; functional connectivity, FMRI; functional magnetic resonance imaging, BOLD; blood 

oxygenation level dependent, WOZ; Wizard of Oz, TR; repetition time, TE; echo time, MNI; Montreal 

Neurological Institute, EPI; echo-planar imaging, GM; general model, CSF; cerebrospinal fluid, GSR; 

global signal ratio, WM; white matter, ROI; region of interest, DMN; default-mode network 

 

 

 

 

 

 

 

 

 

 

 

 

Box 1. Integrating AI with interdisciplinary studies 

. 

The emergence of robotic agents in our social environment is accompanied by the co-

evolution of a new scientific field in which social- and beta sciences have to blend to satisfy 

future users. With a background in interdisciplinary studies, the resulting field of ‘human-robot 

interaction’ is ideal to integrate these multiple disciplines. Not only is the collaboration 

important for future inventions, investigating human-robot interaction allows me to personally 

develop on two tracks; coding and analyzing behavioral data. Curious? Check out GitLab for 

my artificial development and continue reading to explore the cognitive effect of humans 

communicating with robots! 
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Abstract 

 

The developments in artificial intelligence are leading us towards a new scientific frontier of socially 

engaged robots. This poses new questions regarding the impact of unfamiliar agents that alter our 

social environment. In order to optimise the communication with these robots, the question that has 

been answered in the current study is whether the social interaction between humans is distinct from 

the social interaction with robots. In previous studies the neural embodiment of social features has 

been examined through the activation of the main social networks, i.e. the person perception- and the 

theory-of-mind network. Here, a novel approach was performed by extracting the functional 

connections between the hubs of these networks (fusiform face area; FFA & temporoparietal junction; 

TPJ). In order to do so, an existing fMRI dataset was analysed. For the experiment the participants (N 

= 22) alternately conversated with a robot and a person during scanning. Correlation analysis 

between the extracted time series revealed identical connectivity patterns for human-human and 

human-robot interaction (HHI & HRI) that are stable over time. Specifically, the connection between 

the FFA and TPJ was increased, while control regions exhibited decreased functional connectivity 

with the FFA during conversation. As a result, I propose a novel theory concerning a general 

interaction network that is connected during communication regardless of the type of conversational 

agent. To further explore this theory, future research should include a full connectome study to 

ascertain whether functional connectivity during human-robot interaction remains similar to human-

human interaction. 
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1. Introduction  

 

A next frontier in the social life of humans is the interaction with artificial agents such as social robots. 

This may have many advantages, such as being a cure for loneliness, an educational tool for children 

with autism or for more practical uses in for example hospitals (Broadbent, 2017; Cross et al., 2019; 

Dautenhahn, 2007; Wiese et al., 2017). With such benefits it is likely that their introduction in our 

social environment will continue to grow. This poses many challenges regarding a new type of 

interaction with other autonomous agents. For example, one of the pitfalls in human-robot interaction 

(HRI) is that we have a desire to simulate mankind and create an as humanlike robotic exterior as 

possible. However a realistic appearance, while a robot is still an object, could actually be a deterrent 

(Mori et al., 2012). The fact that the human façade cannot easily be copied relates to the way in which 

humans are programmed. To predict behaviour, cognitive capacities like empathic concern and moral 

decision making are embedded in the brain (Adolphs, 2009; L. Schilbach, 2015; Wykowska et al., 

2016). These skills make it easier to predict human behaviour, however if it makes artificial behaviour 

predictable as well is the question. To implement our social capacities on non-human agents, 

engeneers in artificial intelligence try to optimise every feature of the robot that may shape our 

perception. Integrating a neuropsychological viewpoint is therefore crucial to deploy the knowledge of 

human behaviour that shapes the social experience induced by HRI.  

 To delineate the neural mechanism of social interaction, the brain should be examined as a 

functional network in the form of a multi-wired organ instead of a collection of isolated regions (van 

den Heuvel & Hulshoff Pol, 2010). This approach results in a pattern of connected brain areas, i.e. 

networks. Based on recent reviews, the most involved brain networks corresponding to social 

interaction are the person perception network and the theory-of-mind network (Adolphs, 2009; 

Redcay & Schilbach, 2019; Schurz et al., 2014). The involvement of the person perception network is 

straightforward, knowing that its function relates to the recognition of comparable agents (Hortensius 

et al., 2018; Hortensius & Cross, 2018). Secondly, the theory-of-mind network, is associated with the 

embodiment of the widely reviewed theory that humans are not only able to recognize others, but that 

we could predict thoughts, intentions and motives as well (Mitchell, 2008; Saxe & Baron-Cohen, 2006; 

Saxe & Kanwisher, 2003). The theory-of-mind network could be complementary to the person 

perception network by using the generated information of recognition to infer mental states, resulting 
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in a more global network of interaction. (Greven et al., 2016; Greven & Ramsey, 2017; Koster-Hale & 

Saxe, 2013). 

However, most theories remain based on communication between humans. For the 

interaction with a robot instead of a person on the other hand, it has not been determined whether a 

similar mechanism is applicable (Chaminade et al., 2007; Peelen & Downing, 2007; Redcay & 

Schilbach, 2019; L. Schilbach, 2015). In the last decades some studies have been performed 

regarding the communication with robots. For example, Chaminade and colleagues have 

demonstrated increased activity in the fusiform face area (FFA; key hub person perception network) 

during HRI and decreased activation in the temporoparietal junction (TPJ; key hub theory-of-mind 

network) compared to HHI (2010). Suggesting differential engagement of the theory-of-mind and 

person perception network. However the mechanisms that are primarily related to the communication 

with robots are debatable (Adolphs, 2009). Clear evidence for the neural mechanism behind HRI is 

therefore still missing. A possible explanation may rely on the current methods that have been used to 

analyse HRI. Namely, communication with a robot has been investigated in terms of activity. 

However, interaction depicts a multifaceted type of behaviour concerning several brain areas. A 

different way in which these multiple areas could by combined, is by looking at the connections 

between them. For example, Greven and Ramsey have provided evidence that the person perception 

network, especially the fusiform gyrus, is effectively connected to hubs of the theory-of-mind network 

during HHI (2016). Functional connectivity may therefore be a useful method to obtain more 

information on interaction. Still, the question remains if the results from the study of Greven and 

Ramsey applies for the interaction with robots as well. With the rise of robotic agents in our 

environment it is important to know whether humans will react in a similar manner. A promising way to 

obtain these insights in HRI is therefore to examine the functional connectivity between brain areas 

that are important for social interaction. 

The question that will be answered in this article is to what extent humans communicate in a 

comparable way with robots as they do with humans. The aim of this study is thus to discover whether 

the functional connectivity during the interaction with humans is different from the functional 

connectivity observed during the interaction with robots. In order to do so, two key networks for social 

cognition, the person perception network and the theory-of-mind network, will be investigated. To 

narrow this study, the connectivity between the FFA, as part of the person perception network, and 
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the TPJ, as part of the theory-of-mind network, during HHI in comparison with HRI will be studied over 

several moments in time. By using functional connectivity as a measure in combination with these 

brain areas, two hypotheses were constructed. Firstly, it is expected that the functional connectivity 

between the TPJ and the FFA will be less for HRI than for HHI, because the prediction of robotic 

behaviour may not be as accurate as it is for human behaviour. Secondly, it is expected that the 

connection between the TPJ and the FFA will increase over time for HRI because participants may 

improve the skill to predict the behaviour of the robot, causing to see them as a more humanlike 

interlocutor by strengthening the connection. 

 

 

2. Methods 

 

2.1. Database 

A publicly available dataset extracted from OpenNeuro (Poldrack & Gorgolewski, 2017) was analysed 

(Rauchbauer et al. 2019; ID: ds001740). In their paradigm, a multimodal corpus was collected during 

the conversation with an artificial agent, consisting of eye tracking, physiological and fMRI data. This 

database was approved in France by the ethics committee ‘Comité de Protection des Personnes Sud 

Méditerrannée I’. The current secondary data analysis was approved by the Ethics Committee of the 

Faculty of Social and Behavioural Sciences of Utrecht University (protocol number: 20-0127).   

  

2.2. Participants 

Twenty-five participants (Mage = 28.5 yrs., s.d. = 12.4 yrs.) completed the experiment. They received 

information and provided written informed consent, but were naïve to the goal of the study. All had 

normal or corrected to normal vision and no history of psychiatric or neurological disorders. In the 

original study from Rauchbauer and colleagues, three participants were excluded from the final 

analysis because one participant did not perform the task correctly, while for other participants the 

scans revealed technical artefacts (2019). In the present study the same three participants were 

excluded, two based on excessive movement (> 3 mm) and one was removed due to technical issues 

during the data acquisition.  

 



Functional connectivity human-robot interaction 

 

- 7 - 

2.3. Experimental paradigm 

During the experiment participants were instructed to have a real-life bidirectional conversation with a 

person and an artificial agent. To maintain naivety on the goal of the experiment there was an 

alternative rationale for the study. The cover story entailed that participants had to discuss the 

effectiveness of a marketing campaign about fruit and vegetables. Participants were told that they had 

to talk freely about the intentions of the campaign so that the company could test whether the 

message was clear to the public.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The experimental paradigm demonstrating the fMRI setup. a) The participants have been recorded during the 

conversation with a human and with a robot, which were projected on a screen using a mirror. The robot was controlled 

through the Wizard of Oz (WOZ) paradigm by the same person as in the human condition (this figure was extracted from 

Rauchbauer et al., 2019). b) In the bottom panel the queue of the experimental paradigm is illustrated. First a screen 

depicting the picture of the cover story was shown for 8.3 sec. followed by a black screen for 3.3 sec. After that the 

conversation with either a person or the robot began for about 60 sec. The sequence was repeated three times during one 

run, resulting in twelve repetitions and 24 conversations. 

Experimental setup 
a) 

b) 
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Each participant underwent four repetitions of three conversations with a robot and three 

conversations with a person. The sequence of the conversations alternated from robot to human.  

A block consisted of the presentation of an image for 8.3 sec., followed by a black screen for 3.3 sec. 

and the conversation for 60 sec. (Figure 1). In total, 24 minutes of conversation was recorded, 

including twelve minutes with an artificial agent and twelve minutes with a person. Importantly, the 

‘Wizard of Oz’ (WOZ) paradigm was used, meaning that the robot was controlled by the same person 

as in the conversation with a human condition. Thus, possible differences found between the HHI and 

HRI conditions could be less likely ascribed to a quality difference in conversation per se. The 

participants were unaware of the WOZ set-up. 

 

2.3.1. Artificial agent 

The participants conversated with an artificial agent from Furhat robotics (Al Moubayed et al., 2012). 

This is a robot in the form of a semi-transparent mask on which a human face is projected (Figure 1). 

To make the robot more humanlike, the authors added a wig, glasses and clothes. The Furhat robot 

can be controlled through the WOZ method, i.e. when a researcher would press ‘yes these are 

superheroes’, this was said by the robot. These words have to be programmed on forehand, which 

means that a limited amount of answers can be replied during the conversation. Rauchbauer and 

colleagues stated that 30 French conversational feedbacks were scripted for each image. 

 

2.4. fMRI data acquisition 

All images are obtained through a 3 Tesla MRI scanner (Siemens Medical, Erlangen, Germany), 

equipped with a 20-channel coil. BOLD sensitive functional images using an EPI sequence were 

obtained [functional parameters: TR = 1205 ms, TE = 30 ms, 2.5 mm isotropic voxels, 65° flip angle, 

54 axial slices, a field of view from 210mm – 210mm, a matrix of 84-84 mm, and multiband acquisition 

factor 3]. For the anatomical scans, the images were obtained with a GR_IR sequence [structural 

parameters: TR = 2,4 ms, TE = 0,00228 ms, 0.8 mm isotropic voxels, 320 axial slices, a field of view 

from 204.8 – 256 – 256 mm (Rauchbauer et al., 2019). 
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2.5. Preprocessing 

First of all, to check the quality of the data and calculate the imaging quality-metrics, MRIQC was 

used (version 0.15.2; Esteban et al., 2019; Figure S1 ). After the quality check, further steps were 

taken in form of preprocessing the raw images. The results included in this manuscript come from 

preprocessing performed using fMRIPrep 20.2.1 (Esteban, Markiewicz, et al. (2018); Esteban, Blair, 

et al. (2018); RRID:SCR_016216), which is based on Nipype 1.5.1 (Gorgolewski et al. (2011); 

Gorgolewski et al. (2018); RRID:SCR_002502). 

 

2.5.1. Anatomical data preprocessing 

A total of 2 T1-weighted (T1w) images were found within the input BIDS dataset. All of them were 

corrected for intensity non-uniformity (INU) with N4BiasFieldCorrection (Tustison et al., 2010), 

distributed with ANTs 2.3.3 (Avants et al., 2008, RRID:SCR_004757). The T1w-reference was then 

skull-stripped with a Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs), 

using OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid (CSF), 

white-matter (WM) and grey-matter (GM) was performed on the brain-extracted T1w using fast (FSL 

5.0.9, RRID:SCR_002823, Zhang, Brady & Smith, 2001). A T1w-reference map was computed after 

registration of 2 T1w images (after INU-correction) using mri_robust_template (FreeSurfer 6.0.1, 

Reuter, Rosas & Fisch, 2010). Volume-based spatial normalization to two standard spaces 

(MNI152NLin2009cAsym, MNI152NLin6Asym) was performed through nonlinear registration with 

antsRegistration (ANTs 2.3.3), using brain-extracted versions of both T1w reference and the T1w 

template. The following templates were selected for spatial normalization: ICBM 152 Nonlinear 

Asymmetrical template version 2009c [(Fonov et al., 2009), RRID:SCR_008796; TemplateFlow ID: 

MNI152NLin2009cAsym], FSL’s MNI ICBM 152 non-linear 6th Generation Asymmetric Average Brain 

Stereotaxic Registration Model [(Evans et al., 2012), RRID:SCR_002823; TemplateFlow ID: 

MNI152NLin6Asym], 

 

2.5.2. Functional data preprocessing 

For each of the four BOLD runs found per subject (across all tasks and sessions), the following 

preprocessing steps were performed. First, a reference volume and its skull-stripped version were 

generated using a custom methodology of fMRIPrep. A B0-nonuniformity map (or field map) was 
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directly measured with an MRI scheme designed with that purpose (typically, a spiral pulse 

sequence). The field map was then co-registered to the target EPI (echo-planar imaging) reference 

run and converted to a displacements field map (amenable to registration tools such as ANTs) with 

FSL’s fugue and other SDCflows tools. Based on the estimated susceptibility distortion, a corrected 

EPI (echo-planar imaging) reference was calculated for a more accurate co-registration with the 

anatomical reference. The BOLD reference was then co-registered to the T1w reference using flirt 

(FSL 5.0.9, Jenkinson & Smith, 2001) with the boundary-based registration (Greve & Fisch, 2009) 

cost-function. Co-registration was configured with nine degrees of freedom to account for distortions 

remaining in the BOLD reference. Head-motion parameters with respect to the BOLD reference 

(transformation matrices, and six corresponding rotation and translation parameters) are estimated 

before any spatiotemporal filtering using mcflirt (FSL 5.0.9; Jenkinson et al., 2002). BOLD runs were 

slice-time corrected using 3dTshift from AFNI 20160207 (Cox & Hyde, 1997; RRID:SCR_005927). 

The BOLD time-series (including slice-timing correction when applied) were resampled onto their 

original, native space by applying a single, composite transform to correct for head-motion and 

susceptibility distortions. These resampled BOLD time-series will be referred to as preprocessed 

BOLD in original space, or just preprocessed BOLD. The BOLD time-series were resampled into 

standard space, generating a preprocessed BOLD run in MNI152NLin2009cAsym space. First, a 

reference volume and its skull-stripped version were generated using a custom methodology of 

fMRIPrep. Automatic removal of motion artefacts using independent component analysis (ICA-

AROMA; Pruim et al., 2015) was performed on the preprocessed BOLD on MNI space time-series 

after removal of non-steady state volumes and spatial smoothing with an isotropic, Gaussian kernel of 

6mm FWHM (full-width half-maximum). Corresponding “non-aggressively” denoised runs were 

produced after such smoothing. Additionally, the “aggressive” noise-regressors were collected and 

placed in the corresponding confounds file. Several confounding time-series were calculated based 

on the preprocessed BOLD: framewise displacement (FD), DVARS and three region-wise global 

signals. FD was computed using two formulations following Power (absolute sum of relative motions; 

Power et al., 2014) and Jenkinson (relative root mean square displacement between affines; 

Jenkinson et al., 2002). FD and DVARS were calculated for each functional run, both using their 

implementations in Nipype (following the definitions by Power et al. 2014). The three global signals 

are extracted within the CSF, the WM, and the whole-brain masks. Additionally, a set of physiological 
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regressors were extracted to allow for component-based noise correction (CompCor; Behzadi et al., 

2007). Principal components were estimated after high-pass filtering the preprocessed BOLD time-

series (using a discrete cosine filter with 128s cut-off) for the two CompCor variants: temporal 

(tCompCor) and anatomical (aCompCor). tCompCor components were then calculated from the top 

two percent variable voxels within the brain mask. For aCompCor, three probabilistic masks (CSF, 

WM and combined CSF+WM) are generated in anatomical space. The implementation differed from 

that of Behzadi and colleagues, in that instead of eroding the masks by two pixels on BOLD space, 

the aCompCor masks have subtracted a mask of pixels that likely contain a volume fraction of GM. 

This mask was obtained by thresholding the corresponding partial volume map at 0.05, and it ensures 

components are not extracted from voxels containing a minimal fraction of GM. Finally, these masks 

were resampled into BOLD space and binarized by thresholding it at 0.99 (as in the original 

implementation). Components were calculated separately within the WM and CSF masks. For each 

CompCor decomposition, the ‘k’ components with the largest singular values were retained, such that 

the retained components’ time series are sufficient to explain 50 percent of variance across the 

nuisance mask (CSF, WM, combined, or temporal). The remaining components were dropped from 

consideration. The head-motion estimates calculated in the correction step were placed within the 

corresponding confounds file. The confound time series derived from head motion estimates and 

global signals were expanded with the inclusion of temporal derivatives and quadratic terms for each 

(Satterthwaite et al., 2013). Frames that exceeded a threshold of 0.5 mm FD or 1.5 standardised 

DVARS were annotated as motion outliers. All resamplings can be performed with a single 

interpolation step by composing all the pertinent transformations (i.e. head-motion transform matrices, 

susceptibility distortion correction when available, and co-registrations to anatomical and output 

spaces). Gridded (volumetric) resamplings were performed using antsApplyTransforms (ANTs), 

configured with Lanczos interpolation to minimize the smoothing effects of other kernels (Lanczos, 

1964). Non-gridded (surface) resamplings were performed using mri_vol2surf (FreeSurfer). 

 

2.6. fMRI data analysis  

This study included the replication of the whole-brain analysis results from Rauchbauer et al. (2019). 

This analysis was conducted on the preprocessed BOLD images obtained from fMRIPrep (not the 

AROMA denoised images, as they will be used for the functional connectivity analysis) using SPM12 
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(Wellcome Trust Centre for Neuroimaging, London) in MATLAB 2020a (Mathworks, Natick, MA, 

USA). To reveal activated areas, a set of three contrasts was used 1) baseline > HRI + HHI, 2) HRI > 

HHI, 3) HHI > HRI. First-level analysis included a design matrix, containing these contrasts, several 

noninterest regressors (framewise displacement, head-motion correction, and a subset of the 

anatomical CompCor confounds, i.e. white matter and CSF decompositions), four times three HRI 

events and four times three HHI events. Before conducting group-analysis (p = 0.05; false discovery 

rate at cluster level) the obtained images were smoothed using a 5mm smoothing kernel.  

 

2.6.1. Functional connectivity extraction 

Nuisance regression was conducted on the ICA-AROMA non-aggressively denoised images 

produced by fMRIPrep. Included parameters consisted of white matter, cerebrospinal fluid and global 

signal ratio to minimize the influence of motion and physiological artefacts on further processing. For 

denoising, the Toolbox ‘denoiser’ was used using Python 3 (Tambini & Gorgolewski, 2020). The 

obtained files were used for further steps in the functional connectivity analysis. 

Figure 2. Region of Interest’s (ROI's) have been extracted in a 9mm3 sphere. The included regions are a) temporoparietal 

junction (TPJ); yellow, b) fusiform face area (FFA); blue, c) middle frontal gyrus (MFG); red, d) superior parietal lobule (SPL); 

orange, e) middle occipital gyrus (MOG); green. See the supplementary material for the exact coordinates (Table S2).  
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Based on existing literature, seed-based regions-of-Interest (ROI’s) were established, namely 

the: fusiform face area (FFA), temporoparietal junction (TPJ), middle frontal gyrus (MFG), middle 

occipital gyrus (MOG) and superior parietal lobule (SPL) (Figure 2). The brain areas on which have 

been focussed in this analysis were the FFA, which is one of the main hubs in the person perception 

network, and the TPJ, which is in a central hub of the theory of mind network. However, no consensus 

has yet been reached on which areas would be of critical importance to HRI (Chaminade et al., 2018; 

Henschel et al., 2020; Krach et al., 2008; Rauchbauer et al., 2019; Wang & Quadflieg, 2014). 

Therefore, three control areas were included as well, namely the MFG, MOG and the SPL. The SPL 

and the MOG are central hubs of the object recognition network and studies have reported increased 

activity for the perception of robotic agents versus human agents (Henschel et al., 2020). These brain 

areas were used as control parameters to assess whether HRI activated more object-specific regions, 

instead of person perception related regions. The MFG is known to be a key hub in a more domain-

general network of executive functioning, and will therefore control for a possible general effect of 

cognitive control (Shenhav et al., 2016). A nine mm3 sphere was used for each ROI using the 

MarsBar toolbox (Brett et al., 2002) (for coordinates see Table S2) . For each participant, the overall 

mean time courses were extracted from these ROI’s separately per run. 

 

2.6.2. Statistical analysis 

To delineate the strength of the connections between the ROI’s the analysis has been divided into two 

sections, both comparing HHI and HRI. Correlation coefficients were normalised using Fisher’s r-to-z-

test. These values were tested according to Welch’s t-test of unequal means, to discover whether 

there was a significant effect (α = 0.05) between the three contrasts (Baseline > HRI+HHI, HHI>HRI, 

HRI>HHI. The divisions were as follows: 1) the total mean of all z-transformed time courses from 

each of the five ROI’s (ten in total; right/left) have been correlated using Pearson’s correlation test and 

were depicted in a correlation matrix. 2) Temporal results included all of the four runs separately to 

ascertain whether functional connectivity changes over time. To control for habituation effects, the 

relation between the conversations has been analysed over time as well. For this, the mean for each 

conversation was taken from all four runs per ROI.  
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3. Results  

 

3.1. Whole-brain analysis 

To test whether significant activity is detected in the FFA and TPJ while conversating, the contrasts 

Baseline>HHI+HRI, HHI>HRI and HRI>HHI were analysed with the FDR-corrected activity maps (p = 

0.05). Replicating the findings of Rauchbauer and colleagues, similar activation patterns have been 

found for all contrasts (Figure 3). Compared to baseline, activation during overall interaction is found 

mainly in the occipital and temporal lobes, including the superior temporal sulcus (STS), and inferior 

frontal gyrus (IFG). For HRI parietal and frontal lobes are more activated, including the middle frontal 

gyrus (MFG) and inferior parietal lobule (IPL). Lastly, for HHI temporal regions coding for social 

interaction (e.g. TPJ & fusiform gyrus; FG) are activated. For a detailed overview, see the article of 

Rauchbauer et al. 2019. For both HHI and HRI, the TPJ and FFA were activated.  

 

 

 

 

 

 

 

 

Figure 3. Results from Rauchbauer et al. (2019) have been replicated using the published untresholded contrast maps for the 

conditions: a) Baseline-Interaction b) human-robot interaction (HRI) - human-human interaction (HHI) c) human-human 

interaction (HHI) – human-robot interaction (HRI). The results from Rauchbauer et al. are depicted on the rendered MNI brain 

in the top row in blue (2019). Results from the current study are depicted in yellow. Whole-brain analyses revealed activation 

in the superior temporal sulcus (STS), inferior frontal gyrus (IFG), temporoparietal junction (TPJ), inferior parietal lobule (IPL), 

middle frontal gyrus (MFG), fusiform gyrus (FG). Small changes could be ascribed to different preprocessing procedures. 
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3.2. Functional connectivity analysis FFA-TPJ 

For the functional connectivity analysis, I first sought to delineate the connections between the main 

regions of interest (FFA & TPJ) during the conversation with a robot and with a person. Overall, in 

contrast to the first hypothesis, no differences have been discovered between the conditions HRI and 

HHI (Figure 4). That is, no significant effect was obtained for the type of conversational partner, 

however the functional connectivity interaction did differ from baseline. In line with previous studies on 

social interaction (Hari et al., 2015; L. Schilbach, 2015), correlation analysis revealed significant (p < 

0.001) functional connectivity between the core hubs of the person perception network (FFA) and the 

theory-of-mind network (TPJ) while conversating. Surprisingly this pattern was found for HRI and HHI, 

providing new evidence for a shared mechanism. Specifically, the TPJ demonstrates bilateral 

increased functional connectivity to the right FFA for HHI (rTPJ: r = 0.27, lTPJ: r = 0.16) and HRI 

(rTPJ:r = 0.26, lTPJ: r = 0.14; Figure 4a and 4b). The connection between the bilateral TPJ and the left 

FFA exhibits no significant change from baseline (HHI; rTPJ: r = -0.08, lTPJ: r = -0.02 & HRI; rTPJ: r = 

-0.07, lTPJ: r = -0.02; Figure 4c and 4d).  

 

Figure 4. Boxplots (median; 25:75th percentiles, 95% confidence interval) depicting the relation between the contrasts 

baseline (dark blue), human-human interaction (HHI; orange), human-robot-interaction (HRI; light blue). Each boxplot displays 

the functional connectivity (FC) between two ROI’s: a) left fusiform face area (lFFA) - left temporoparietal junction (lTPJ), b) 

left fusiform face area (lFFA) - right temporoparietal junction (rTPJ), c) right fusiform face area (rFFA) – left temporoparietal 

junction (lTPJ), d) right fusiform face area (rFFA) - right temporoparietal junction (rTPJ). The main FC between the rFFA and 

the bilateral TPJ is significantly different from baseline, while there was no such effect observed for the lFFA. Values can be 

found in the correlation matrices, depicted in Figure 5. 
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3.2.1 Changes over time  

In contrast to the second hypothesis, no increase in functional connectivity has been demonstrated 

between the FFA and TPJ for HRI over time (p > 0.1). This includes that nor development over time 

from the three conversations per agent, nor development over the four runs was observed (Figure S3) 

A similar pattern was observed for HHI. This however does mean that participants did not habituate to 

the paradigm, verifying the other results. Furthermore, time consistency validates the experiment 

because different conversations did not influence the overall functional connectivity.  

  

Figure 5. Functional connectivity (FC) expressed as Pearson’s correlation coefficient (r) between a) the three main ROI’s. 

Results illustrate a significant correlation (lines) between the average extracted time series per area for the temporoparietal 

junction (TPJ), fusiform face area (FFA) and the superior parietal lobule (SPL). Correlations in yellow correspond to human-

robot interaction (HRI), white to human-human interaction (HHI). b) The main ROI’s are depicted in the correlation matrices for 

HHI and HRI (navy blue; r = 1.0, orange; r = 0). No significant differences are found between HHI and HRI. For a total 

overview of the correlation coefficients, including control areas, see supplementary material.  

, 
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3.3. Object-specific areas and control areas 

Lastly, additional results concern the control areas included in this study. Aside of connective variance 

between the social networks, connections with the object-specific network have altered as well. The 

connections between the hubs are depicted in Figure 5, all differed from baseline. For HHI and HRI a 

decrease in functional connectivity is observed (p < 0.01) between the bilateral superior parietal 

lobule (SPL) and the right FFA (HHI; rSPL: r = 0.05, lSPL: r = 0.21 & HRI; rSPL: r = 0.07, lSPL: r = 

0.24). Even though no hypothesis was included on forehand for the effect between the object-specific 

and social networks, the result is opposing to prior findings (Henschel et al., 2020), because the SPL 

is often activated during HRI, in that robots may be perceived as object instead of agents. For all 

conditions, the left FFA is predominantly connected to the SPL (HHI; lSPL: r = 0.45, lSPL: r = 0.58 & 

HRI; rSPL: r = 0.41, lSPL: r = 0.57).  

Furthermore, another control area was included; the middle frontal gyrus (MFG). In this area  

increased functional connectivity is bilaterally found with the TPJ compared to baseline (∆r = 0.03-

0.18, Figure S4). In addition, a reversed but increased connection (negative correlation to positive 

correlation) between the lMFG and the rTPJ is found (Baseline; r = -0.04, HHI & HRI; r = 0.14, Figure 

S5). The functional connectivity between the lMFG and lTPJ is slightly increased as well (HRI; ∆r = 

0.09, HHI; ∆r = 0.15). All other regions of interest demonstrated a decrease in functional connectivity 

with the MFG. The other control area included in this study was the middle occipital gyrus (MOG). 

This area depicts decreased functional connectivity to the FFA, SPL and MFG, however is increased 

connected to the TPJ (Figure S4). To conclude, the control areas show decreased functional 

connectivity with the bilateral FFA and increased functional connectivity with the TPJ.  

 

 

4. Discussion 

 

The aim of this study was to connect the activated regions associated with human-robot and human-

human interaction, and to compare the functional connectivity differences between these regions for 

both types of interaction. The addressed question was therefore whether social interaction between 

humans is distinct from the social interaction with artificial agents. While recent work has solely 

focussed on the activity of the brain during the interaction with robots, no research has been done 
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regarding the connectivity between the related brain areas (Redcay & Schilbach, 2019). 

Subsequently, with the use of the existing database presented by Rauchbauer and colleagues (2019), 

two hypotheses have been tested. First, the main hypothesis predicted differences in functional 

connectivity between human-robot (HRI) and human-human interaction (HHI) for the fusiform face 

area (FFA) and the temporoparietal junction (TPJ). Here, no evidence was found for a difference in 

connectivity between these core hubs of the person perception network and the theory of mind 

network for HRI versus HHI. Compared to a static state however interaction does induce significantly 

increased functional connectivity between the FFA and TPJ, suggesting that these areas may be 

similarly connected during interaction. The second hypothesis predicted an increase in functional 

connectivity over time between the FFA and TPJ during HRI. Likewise, no effect was found. This 

provides evidence for a novel theory concerning a common mechanism for social interaction.  

 

4.1. General interaction network 

No evidence is found for a division between HRI and HHI in terms of functional connectivity. As a 

result, the question rises whether the social neural networks that are known for the interaction with 

humans are similarly connected during interaction with social artificial agents (Henschel et al., 2020). 

Within the paradigm most regions of interest are similarly connected, insinuating a possible general 

mechanism for social interaction. In a previous study from Cross and colleagues analogues results 

have demonstrated that the function of the FFA not only depicts human face recognition, but more 

general recognition based on agency as well (2016). In accordance with their study, Gobbini and 

colleagues revealed similar activity in the FFA during the interaction with a robot (2011). These 

findings indicate that an interaction mechanism may not altogether be devoted to solely to 

communication between humans. 

Within the current study the most significant increase in functional connectivity is found 

between the FFA and TPJ. Both regions are part of social networks, indicating that while interacting 

with other individuals these areas are activated to predict and respond to the behaviour of other 

agents (Carrington & Bailey, 2009). Greven and colleagues suggest that these hubs of the person 

perception and the theory-of-mind network are connected during the communication between humans 

and form a feedback circuit, providing each other information about perceptual and intentional traits 

(2016). In this study the same functional connectivity pattern for HRI is demonstrated, that is, the 
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connection between the FFA and TPJ seems to have sustained. Consistent functional connectivity 

during HRI could therefore imply the involvement of a general mechanism for the interaction with 

humans and robots, that does not differ for the communication between two persons.  

Such a general social interaction network has been found in the primate brain, overlapping 

some of the areas homologues to the human theory-of-mind and mirror neuron networks (Sliwa & 

Freiwald, 2017). Succeeding the studies on the primate brain, in a recent study from Thompson and 

colleagues evidence for the development of a social- vs non-social interaction network has been 

established (2020). The development of an interactive learning network would imply a distinct 

mechanism specifically for interaction. To what extent this network would be active for non-humanlike 

cues has not yet been investigated, notwithstanding that in a theoretical review done by Cerulo it 

appears that non-human agents, such as robots, are treated as autonomous beings (2011). In 

consistency with these findings, there was no change of functional connectivity over time for all 

conversations. This stability over time could mean that interaction with robots did not require or did 

not reach habituation effects. For HHI no habituation effect has been observed either, insinuating that 

the conversation partner per se does not induce different connectivity patterns related to social 

interaction (Schilbach et al., 2006) over time between the FFA and the TPJ. Taken together, the fact 

that no differences are observed between HHI and HRI indicates the existence of a general 

interaction network.  

 

4.2. Functional connectivity  

Most studies have proved clear differences in brain activity between HHI and HRI (Chaminade et al., 

2012; Cross et al., 2019; Henschel et al., 2020; Rosenthal-Von Der Pütten et al., 2014). Likewise, the 

whole-brain analysis in the current study revealed distinct neural correlates for HHI and HRI either. 

However, activation differences not necessarily induce the same connectivity differences. A robot may 

therefore be differently processed in separated brain areas, but the connections between the areas 

coding for interaction could sustain. For example, Rauchbauer and colleagues focussed on a cluster 

including the middle fusiform gyrus (MFG) during HRI (2019) and found increased activity. While in 

the current study a decrease in functional connectivity is found between the SPL, FFA and MOG with 

the MFG. Although these findings appear opposite, i.e. a decrease versus an increase, differential 

processing of information within these areas does not necessarily affect the connections between the 
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areas as well (Rogers et al., 2007). A possible reason for the reduction in functional connectivity 

between the regions of interest and the MFG is that this region is one of the hubs from the resting-

state default-mode network (DMN; Passow et al., 2015). Meaning that while in rest, this network 

becomes more connected. The reduction with the MFG may thus be ascribed to the deactivation of 

the DMN, that is, participating in a task (interaction). The diverse patterns during HHI and HRI 

observed in the whole-brain analysis may reflect specific processing within the activated regions. In 

the current study, nevertheless, no difference is found between the functional connections. Therefore, 

even though different activation during HRI is evident, there still may be a wider network devoted for 

interaction that is not embedded in a particular brain region. Functional connectivity is however never 

based on solely one connection as all regions function in networks (van den Heuvel & Hulshoff Pol, 

2010). Therefore, despite the fact that the functional connectivity patterns are comparable in this 

study during HRI and HHI, connections between undistinguished regions of interest may still differ. 

Another compelling discovery entails reduced functional connectivity between the SPL and 

FFA during interaction. Importantly, in the current study the baseline condition included the eight 

seconds within the paradigm in which a participant was concentrating on a picture of humanised fruit 

from the cover story. It is likely that this task induced object-specific areas such as the SPL and the 

MOG, as well as the FFA to activate. For example, anthropomorphism stimulates the activation within 

the FFA and the IPL which is spatially close and functionally similar to the SPL (Henschel et al., 2020; 

Kühn et al., 2014). However, no research has been done on the connectivity between these regions, 

so as is discussed previously no definite assumptions could be made from these activation studies. 

The findings from the current study nonetheless do indicate a relation between the SPL and the FFA 

when concentrating on the anthropomorphised pictures.  

 

4.3. Limitations and future recommendations 

There were however a few limitations to this study which should be considered in future research. 

First of all, an article from the same research group is recently published, dividing conversating and 

listening in separated conditions (Chaminade, 2020). This distinction has not been included in this 

study, which could have had several implications. Talking to a robot may not be as different as talking 

to a person, however listening may actually evoke unique connectivity (Ghosh et al., 2008; Sörös et 

al., 2006). Combining the events of listening and speaking could reflect that interacting is similar 
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between humans and robots, however one of the mechanisms behind conversation may be 

independently different. In future research the conditions of talking and listening should therefore be 

separated. 

Secondly, our paradigm consists of a virtual environment, which could influence the results in 

a manner that it is more difficult to distinguish between the behavioural aspects of a robot and a 

person via a screen. In line with this hypothesis, Schilbach and colleagues have demonstrated similar 

activation patterns in the brain during the interaction with a virtual person (2006). The interaction with 

a robot per screen could therefore have caused similar processing in the brain in the current study. 

However, results from the whole-brain analysis did illustrate that HRI and HHI activate different brain 

areas, suggesting that the conditions were indeed observed differently. Therefore, future research 

should be conducted in a more realistic setting. In addition, a full connectome study should be done 

without selecting regions-of-interest on forehand to ascertain whether functional connectivity during 

HRI still remains similar to HHI.  

Finally, there may have been bias from the preprocessing procedure, specifically the last step 

of denoising the preprocessed images. Although this is one of the most important steps for functional 

connectivity analysis, it is still an ongoing debate until what extent the regression should be done. For 

this analysis, global signal regression was included as well, because it is still one of the most common 

procedures. However, in the recent years there has been controversy about the insertion of the global 

signal ratio (Xu et al., 2018). A possible downside of regressing out the global signal is that a 

reintroduction of noise arises, which could give more negative correlations. Interpretations of negative 

functional connectivity should therefore be made with great caution (Chen et al., 2011), i.e. it could be 

a result of artefacts. In the current study, negative functional connectivity was found between the lFFA 

and rTPJ, which can possibly be ascribed to a type-II error, that is, a false rejection of the hypothesis. 

Likewise, reversed functional connectivity (from negative to positive) has been observed between the 

TPJ and the control regions. Due to the possible bias of negative functional connectivity artefacts, no 

assumptions have been made for these changes in functional connectivity. To test whether these 

signal changes may indeed be a result of interaction, the same analysis should be conducted without 

regressing out the global signal. 
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5. Conclusion 

 

In this study, a functional connectivity analysis has been conducted to delineate the extent to which 

humans communicate in a comparable way with robots as they do with humans. At the moment, 

engineers in artificial intelligence develop advanced humanlike agents that will be deployed in our 

social environment, however, previous studies demonstrated that these robots are still perceived in a 

unique manner not comparable to humans (Henschel et al., 2020; Hortensius & Cross, 2018). The 

altering of the novel social agents in our current context will therefore enquire adaptation from artificial 

development, as well as from human behaviour. The aim of the current study was to investigate this 

behavioural effect on humans and, specifically, whether different perception implies that the 

interaction with robots is different as well. Surprisingly, no such differences have been found in terms 

of functional connectivity. This may provide the basis for a general interaction network that is 

connected regardless of the type of conversational agent. Evidence supports this theory for human-

human interaction (Greven et al., 2016), here it is demonstrated that this theory may sustain for 

human-robot interaction. Within the current paradigm, the fusiform face area (FFA) and the 

temporoparietal junction (TPJ) show increased functional connectivity during the conversations. This 

indicates stronger wiring between the person perception network and the theory-of-mind network, 

because the FFA and TPJ are the core hubs of these social networks. To further explore the theory of 

a general interaction network, more brain regions should be included for a complete overview. A full 

connectome study is therefore suggested to indicate whether the communication with robots induces 

similar network wiring to human interaction.  
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Region of interest 
 

             MNI coordinates   
Hemisphere x y z 

Temporoparietal junction 
(Julian et al., 2012)  

(TPJ) L -48 -62 30 
  

R 48 -60 30 

Fusiform face area 
(Julian et al., 2012) 

(FFA) L -40 -52 -18 
  

R 38 -42 -22 
Middle occipital gyrus 
(Henschel et al., 2020) 

(MOG) L -30 -84 12 
  

R 36 -84 12 

Superior parietal lobule 
(Julien et al., 2012) 

(SPL) L -24 -56 60 
  

R 24 -52 64 
Middle frontal gyrus 
(Camilleri et al., 2018) 

(MFG) L -44 32 22 
  

R 44 36 20 

Table S2 Regions of interest locations for left and right hemispheres 

Fig. S1 These plots contain the output from the quality check performed with MRIQC. The included plots illustrate a) 

framewise displacement, which is an index of head movement. The three plots contain the head movement per volume 

in millimeters (mm; median = 0.21, Q1 = 0.16, Q3 = 0.27), timepoints (median = 166.50, Q1 = 106.75, Q3 = 209.50) and 

percentage timepoints (median = 43.25, Q1 = 27.73, Q3 = 54.52). Movement varied from 0.064 – 0.36 mm within the 

confidence interval (95%). One of the outliers includes participant 19 which has been removed from the results due to 

overall excessive movement. The remaining outliers have been included in the analysis. b)  DVARS, which is the 

standard deviation of the root mean square from the temporal signal change in 1) std, whole brain signal (median = 1.14, 

Q1 = 1.10, Q3 = 1.16), 2) vstd, voxel wise signal change (median = 1.11, Q1 = 1.04, Q3 = 1.35). The outlier shown at 

DVARS_vstd 17.57 has been removed from the analysis. This participant (number 10) encountered technical problems 

while scanning. 

 

MRIQC outcomes 



      Functional connectivity human-robot interaction  
 

 
 

- 2 - 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig. S3 Examples of stable temporal functional connectivity (y-axis) per conversation (x-axis) between the regions of 

interest (ROI’s). In this figure connections between the main regions of interest are depicted, including a) left fusiform face 

area (lFFA) – left superior temporal lobule (lSPL), b) right fusiform face area (rFFA) – left superior parietal lobule (lSPL), c) 

left fusiform face area (lFFA) – left temporoparietal junction (lTPJ), d) right fusiform face area (rFFA) – left temporoparietal 

junction (lTPJ). No significant changes have been found between the mean of the separated conversations for human-

human and human-robot interaction. This applies for every included ROI in this study. 
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Fig. S5 The depicted plots are identical to Figure 5, however contain control areas and the baseline condition as well 

(navy blue; r = 1.0, orange; r = 0). Three heatmaps are included, each coding for one contrast (a. HHI, b. HRI, c. 

Baseline). From left to right the regions of interest are the fusiform face area (FFA), temporoparietal junction (TPJ), 

superior parietal lobule (SPL), middle occipital gyrus (MOG). Middle frontal gyrus (MFG), all regions are illustrated for 

left and right hemispheres. No significant differences are found between HHI and HRI. 

Fig. S4 In this figure the boxplots illustrate functional connectivity between the control areas and main areas included in 

the analysis. The left panel demonstrates the left hemisphere, vice versa for the right panel. From upper to lower rows, 

the connections are: a) lTPJ – lMFG & rTPJ - lMFG b) lTPJ – lMOG & rTPJ - lMOG c) rFFA - rMFG & lFFA - rMFG d) 

rFFA - rMOG & lFFA – rMOG. Hemispheres for the control areas are picked at random, however the temporal results 

are bilaterally the same for the control areas. No effect of time was found over multiple runs, suggesting no habituation 

effect during the interaction with a robot nor with a human.  


