
UTRECHT UNIVERSITY

MASTER’S THESIS

Agent-based modeling as a tool to support
decision making rules used by smart
contracts in DLT based communities

Author:
Tom PEIRS
6362915

Supervisor:
Dr. Slinger JANSEN
Dr. Frank DIGNUM

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Business Informatics
Department Information and Computing Sciences

May 31, 2021

https://www.uu.nl/en
t.h.peirs@students.uu.nl
t.h.peirs@students.uu.nl
https://scholar.google.com/citations?user=-e13z2YAAAAJ&hl=en
https://scholar.google.com/citations?user=1JLu0o4AAAAJ&hl=en
https://www.uu.nl/masters/en/business-informatics
https://www.uu.nl/en/organisation/department-of-information-and-computing-sciences

iii

UTRECHT UNIVERSITY

Abstract
Faculty of Science

Department Information and Computing Sciences

Master of Science

Agent-based modeling as a tool to support decision making rules used by smart
contracts in DLT based communities

by Tom PEIRS

6362915

Various issues are surrounding the relatively new area of smart contract design.
These problems are very diverse in nature ranging from performance issues to ex-
ploiting of contracts. The concerns stem from the transformation of domain informa-
tion to smart contract immutability to developers coding insecure smart contracts.
Hence, there is a compelling need to study smart contracts to find and address vul-
nerabilities before deployment on a ledger due to its immutability. This study aims
to support the design of a code search community platform through agent-based
modeling by simulating systems requirements. In this paper we present an abstract
replication of institutional emergence patterns. We used the ADICO grammar of
institutions as the basic structure to model system requirements. We establish a
common pool resource of institutional statements through a standardized method,
which is then used to simulate smart contracts through agent-based modeling. We
demonstrated through a case study the usage of the ADICO framework. We ob-
serve common institutional patterns which are used to study smart contract design
in an agent-based environment. Institutions made a major contribution to the gov-
ernance of common-pool resource systems in a simplified environment. In addition,
we show how different domain concepts regarding agent-based modeling and smart
contract design can be mapped. Furthermore, this study generates open-source soft-
ware to simulate a decentralized system as an agent-based model through Repast
Simphony, from which insights regarding sustainability can be gathered.
We conclude that agent-based modeling is a foundational tool for designing smart
contracts in new DLT based communities.
Keywords: Agent-Based Modeling, Smart Contracts, Complex Systems ,Institutional
Grammar, Model-Driven development, Blockchain, Solidity, Repast

HTTPS://WWW.UU.NL/EN
https://www.uu.nl/en/organisation/faculty-of-science
https://www.uu.nl/en/organisation/department-of-information-and-computing-sciences

v

Contents

Abstract iii

1 Introduction 1
1.1 Smart Contracts . 2
1.2 Problem Statement . 2
1.3 Research Focus . 3

1.3.1 Agent-Based Modeling . 3
1.4 Contributions . 5
1.5 Thesis Outline . 6

2 Research Approach 7
2.1 Research Questions . 7
2.2 Research Paradigm . 9

2.2.1 Research Methods . 10
2.3 Literature Review Protocol . 10

2.3.1 Phase 1: Multivocal Literature Review Planning 11
2.3.2 Phase 2: Search Process and Source Selection 11

Selecting source engines and search keywords 11
Application of inclusion/exclusion criteria 12
Final Pool of sources . 12

2.3.3 Phase 3: Data Classification . 13
2.3.4 Phase 4: Synthesis and Review 13
2.3.5 Summary . 13

2.4 Method Engineering . 13
2.4.1 Summary . 14

2.5 Case Study . 14
2.5.1 Case Study Requirements . 14

3 Literature Study 15
3.1 Agent-Based Modeling . 15

3.1.1 Introduction . 15
3.1.2 Agent-Based Modeling Requirements 16

To Summarize: Agent-Based Modeling Requirements 17
3.1.3 Autonomous Agents . 17

To Summarize: Autonomous Agents 19
3.1.4 Rules, Behavior, and Relationships 19

To Summarize: Rules, behavior, and Relationships 20
3.1.5 Agent Environments . 20

To Summarize Agent Environments 21
3.1.6 Methods for agent-based Modeling 21

(a) Agent model design . 21
(b) Agent model implementation 22
(c) Agent model services . 22

vi

3.1.7 Summary ABM . 23
3.2 Smart Contracts . 23

3.2.1 Consensus Layer . 24
To Summarize: Consensus . 26

3.2.2 Peer-to-Peer Network Layer . 26
To Summarize: P2P . 27

3.2.3 Ethereum Virtual Machine . 27
To Summarize: EVM . 28

3.2.4 Smart Contract Design with Solidity 28
3.2.5 Summary Smart Contracts . 30

3.3 Modeling Smart Contracts with Institutional Grammar 30
3.3.1 Bridging the gap between smart contracts and agent-based mod-

eling . 32

4 ABM Decision Support 37
4.1 ABM Tool Characteristics . 37

4.1.1 Scalability . 38
4.1.2 Development Effort . 38

4.2 ABM Tool Selection . 39

5 SearchSECO Case Study 41
5.1 Introduction to SearchSECO . 41
5.2 Behaviors of the Agents . 42
5.3 Scenarios . 42
5.4 Problem and Object Formulation . 43
5.5 ADICO statements . 45

6 Simulation 49
6.1 Purpose . 49
6.2 Entities, state variables, and scales . 49

6.2.1 Agents . 50
6.3 Process Overview and Scheduling . 51

6.3.1 Scheduled Method . 51
6.4 Design Concepts . 54

6.4.1 Interface . 55
6.4.2 Styles . 55
6.4.3 Data Sets & Charts . 56

6.5 Input Data . 56
6.6 Observations . 56

7 Outcome 57
7.1 Scenario 1: Towards an Equilibrium State 57

7.1.1 Iteration 1: Defining a neutral starting point with one agent . . 57
Run Conditions . 58
Expectations . 58
Outcome . 58
Interpretation . 58

7.1.2 Iteration 2: Increasing Download Ratio 59
Run Conditions . 59
Expectations . 60
Outcome . 60

vii

Interpretation . 60
7.1.3 Iteration 3: Increasing Upload Ratio 60

Run Conditions . 60
Expectations . 61
Outcome . 61
Interpretation . 61

7.1.4 Iteration 4: Increasing number of agents 62
Run Conditions . 62
Expectations . 62
Outcome . 62
Interpretation . 63

7.2 Scenario 2: Altering behaviors - adding complexity 63
7.2.1 Iteration 5: Adding new agent type empirical software engineer 64

Run Conditions . 64
Expectations . 64
Outcome . 64
Interpretation . 65

7.2.2 Iteration 6: Adding different behavior to agent types 66
Run Conditions . 66
Expectations . 66
Outcome . 67
Interpretation . 67

7.3 Scenario 3: Financial factors as incentives 68
7.3.1 Iteration 7: Financial factors as incentives 68

Run Conditions . 68
Expectations . 69
Outcome . 69
Interpretation . 70

7.3.2 Summary of Iteration 1 - 7 . 70
7.4 Observations . 71

8 Findings and Discussion 73
8.1 Major Findings . 73
8.2 Contributions . 75
8.3 Limitations . 77
8.4 Future Work . 78

9 Conclusion 81

A Structure of a smart contract 85

B Process Deliverable Diagrams 89

C ABM Tools 91

1

Chapter 1

Introduction

There have been contracts for as long as human beings have done business with
one another. One can denote a contract as a binding agreement between two or
more parties in its purest form. Over time, these contracts have evolved in size
and complexity. Today, contracts form the backbone of modern business and trade
across the globe. Lawyers and consultants are required as contracts become more
complicated, longer, and detailed to frame or defend them.

In response to complicated contracts, a dramatic increase in the popularity of
smart contracts has been seen in recent years (Clack, Bakshi, and Braine, 2016).
Smart contracts are small programs written in blocks running on top of a blockchain.
Smart contracts can autonomously receive and execute transactions without the need
of trusted third parties (Grishchenko, Maffei, and Schneidewind, 2018). The most
popular framework where smart contracts are deployed is Ethereum (Buterin et al.,
2014).

Removing trusted third parties such as lawyers or consultants becomes paramount
to delivering trustworthy smart contracts free of malicious intent. Like all software,
smart contracts may contain vulnerabilities or performance issues as the rules and
statements are not designed to fit the optimal solution. What makes the validation
of smart contracts even more crucial is the fact that transactions are immutable. Im-
mutability means that once the smart contract is deployed on a distributed ledger
technology (DLT) such as Ethereum, the smart contract’s state can not be reversed.

Unfortunately, malicious attackers or financial benefactors have proven to ex-
ploit smart contracts by abusing vulnerabilities in these contracts. Careful design
and execution do not protect against poorly written or unsafe contracts. An as-
pect is recently seen in the massive theft of funds from the most popular Decentral-
ized Autonomous Institution of Ethereum (DAO) (Finley, 2016). As a consequence,
many vulnerabilities in smart contracts were maliciously exploited. Several statis-
tical techniques and methods have been developed to find vulnerabilities in smart
contracts (Feist, Grieco, and Groce, 2019; Luu et al., 2016; Tikhomirov et al., 2018;
Tsankov et al., 2018). Many statistical analysis methods have been tested either on
custom data sets or data sets with a small number of exceptions (Durieux et al., 2020;
Parizi et al., 2018). Despite the prevalence of these statistic research instruments,
vulnerabilities abound (Perez and Livshits, 2019). This brings into question the ef-
fectiveness and related methods of these statistical techniques. It is critical to find
and address vulnerabilities that are thoroughly tested and evaluated before deploy-
ment on a ledger which indicates a compelling need to study smart contracts (Daian,
2016; Parizi et al., 2018).

2 Chapter 1. Introduction

1.1 Smart Contracts

Vending machines are referred to as the oldest piece of technology comparable to
smart contract implementation (Savelyev, 2017).

In the early 1990s, smart contracts were first proposed by Nick Szabo, who coined
the term, using it to refer to “a set of promises, specified in digital form, including
protocols within which the parties perform on these promises” (Schulpen, 2018).

However, Buterin defines the Bitcoin protocol as a weak version of the smart con-
tract definition. Since the rise of Ethereum, various cryptocurrencies support script-
ing languages that allow for more advanced smart contracts between unreliable par-
ties (Alharby and Van Moorsel, 2017). Smart contracts should be distinguished from
smart legal contracts. Smart legal contracts refer to a conventional natural language
legally binding agreement enforced in a machine-readable code (Cannarsa, 2018; Fi-
latova, 2020).

A smart contract is a computer program or transaction protocol designed to auto-
matically conduct, manage, or record legal events and activities in compliance with
the terms of a contract or agreement (Röscheisen et al., 1998; Savelyev, 2017). The
goals of smart contracts are to minimize the need for trusted intermediaries, arbitra-
tion and enforcement costs, fraud losses, and reduce malicious losses (Röscheisen
et al., 1998).

A smart contract is defined by the US National Institute of Standards
and Technology as a collection of code and data (sometimes referred to
as functions and state) that is deployed using cryptographically signed
transactions on the blockchain network (Yaga et al., 2019).

In this interpretation, used for instance by the Ethereum Foundation (Buterin et al.,
2014) or IBM (Cachin et al., 2016), a smart contract is not inherently linked to the clas-
sical smart contract. As its implementation and codified effects, such as the transfer
of any value between parties, are strictly implemented and can not be manipulated,
a smart contract can also be viewed as a protected, stored process after a transaction
with unique contract information is stored a blockchain or distributed ledger. This
is because the actual execution of contracts, not any arbitrary server-side programs
connecting to the platform, are managed and audited by the platform (Vo, Kundu,
and Mohania, 2018; Huckle et al., 2016).

1.2 Problem Statement

Various issues surround the relatively new area of the production of smart contracts,
and these problems are very diverse in nature. For instance, smart contracts are
immutable, meaning that the contracts are strictly implemented and can not be ma-
nipulated after deployment. Another concern with smart contracts is transferring
domain knowledge to developers. There is no clear way to determine at which stage
the issues are nested in the development stage. Formalization of requirements could
add structure to reduce the transformation of domain information concerns. There
are currently little to no advanced, formalized approaches to this area of develop-
ment. This leads to the following pitfalls parallel to those in software engineering’s
overarching sector. One of these drawbacks is that the software developer’s mental
work fully translates the domain concepts to software technology concepts (Stahl,
Voelter, and Czarnecki, 2006). This also results in a misalignment of goods and spec-
ifications. Model-Driven Engineering (MDE) may help overcome this misalignment

1.3. Research Focus 3

while helping the developer build higher-quality smart contracts that account for
vulnerabilities at the same time. MDE is a software engineering approach that uses
models and adjustments between models to support transferring domain informa-
tion and software product (Afonso, Vogel, and Teixeira, 2006).

Furthermore, smart contracts can contain vulnerabilities that could pose a dan-
ger for the organizations acting with them. Vulnerability issues in smart contracts
are seen from two separate viewpoints, namely from the developer’s point of view
and from the point of view of the domain expert. Developers have difficulty switch-
ing to the new smart contract architecture strategy, and domain experts do not have
the technical skills to convert existing contracts into smart contracts. Many of these
problems seem to emerge from a lack of understanding of Solidity’s programming
language and a general lack of programming expertise in the area of smart contracts.
The greatest benefits of smart contracts are that they hold the promise of low legal
and transaction costs relative to conventional financial contracts and can lower the
entry bar for users. However, this barrier of entry for users remains high through
the complexity of smart contract growth.

To summarize, smart contracts contain security vulnerabilities caused by the com-
plexity of developing smart contracts. This issue stems from the transformation of
domain information to developers. In addition, there is a compelling need to study
smart contracts to find and address vulnerabilities before deployment on a ledger
due to its immutability. Offering a standardized solution to participants in the
smart contract creation process.

1.3 Research Focus

Many smart contracts may contain security vulnerabilities caused by the complexity
of developing smart contracts. This issue stems from the transformation of domain
information to developers. In addition, there is a compelling need to study smart
contracts to find and address vulnerabilities before deployment on a ledger due to its
immutability. Offering a standardized solution to participants in the smart contract
creation process, such as a method, may lift the concerns addressed in the problem
statement. Therefore, this study aims to gain insight into the decision rules of smart
contracts through agent-based modeling by simulating systems requirements.

We hypothesize that smart contract design processes can be supported by agent-
based modeling

1.3.1 Agent-Based Modeling

In today’s high-tech age, one naturally assumes that US President Barack Obama’s
economic team and its international counterparts use sophisticated quantitative com-
puter models to guide us out of the current economic crisis. They are not. The best
models they have are of two types, both with fatal flaws. Type one is econometric:
empirical statistical models that are fitted to past data. These successfully forecast a
few quarters as long as things stay more or less the same but fail in the face of great
change. Type two goes by the name of ‘dynamic stochastic general equilibrium.
These models assume a perfect world, and by their very nature, rule out crises of the

4 Chapter 1. Introduction

type we are experiencing now. As a result, economic policy-makers base their deci-
sions on common sense and anecdotal analogies to previous crises such as Japan’s
‘lost decade’ or the Great Depression. People on Wall Street are using fancy mathe-
matical models. However, for a completely different purpose: modeling the poten-
tial profit and risk of individual trades. There is no attempt to assemble the pieces
and understand the behavior of the whole economic system. There is a better way:
agent-based models.

An agent-based model is a computerized simulation of a number of decision-
makers (agents) and institutions, which interact through prescribed rules.

The agents can be as diverse as needed, from consumers to policy-makers, and
the institutional structure can include everything from banks to the government.
Such models do not rely on the assumption that the economy will move towards
a predetermined equilibrium state, as other models do. Instead, at any given time,
each agent acts according to its current situation, the state of the world around it,
and the rules governing its behavior. An individual consumer, for example, might
decide whether to save or spend based on the rate of inflation, his or her current
optimism about the future, and behavioral rules deduced from psychology experi-
ments. The computer keeps track of the many agent interactions to see what hap-
pens over time. Agent-based simulations can handle a far wider range of nonlinear
behavior than conventional equilibrium models. Policy-makers can thus simulate an
artificial economy under different policy scenarios and quantitatively explore their
consequences.

Agent-based models potentially present a way to model the financial economy as
a complex system while taking human adaptation and learning into account. Such
models allow for creating a virtual universe in which many players can act in com-
plex and realistic ways. In some other areas of science, such as epidemiology or
traffic control, agent-based models already help policy-making.

To better understand the utility of agent-based modeling, consider one of the
earliest and best-known models, created by Schelling.

Schelling wanted to test the theory that segregated neighborhoods can
arise not just by active racism but due only to a mild preference for
neighbors of the same ethnicity (Schelling, 1971). The model consists of
majority-group and minority-group agents living on a grid who prefer
only several neighbors of the same group. When that preference is not
met, they move to a different grid cell. The model demonstrates that even
a mild preference for same-group neighbors leads to a dramatic degree
of segregation.

This is an example of the emergence of higher-order phenomena from the interac-
tions of lower-level entities and demonstrates the link between agent-based model-
ing and complexity theory, and complex adaptive systems in particular (Miller and
Page, 2009).

Summarizing the foregoing, an agent-based model (ABM) is a class of compu-
tational models for simulating the actions and interactions of agents to assess their
effects on the system as a whole. Agent-based modeling involves simulating the be-
havior and interaction of many autonomous entities or agents over time. Agents are

1.4. Contributions 5

FIGURE 1.1: The agent-based model demonstrates that segregated neighbourhoods
can arise due to a mild preference for neighbors of the same ethnicity over time
through a population. (a) Timestep = 0 (b) Timestep = 3 (c) Timestep = 35 (d)
Timestep = 137.

objects that have rules and states and act accordingly with each step of the simula-
tion (R. Axtell, 2000). These agents may represent individual organisms, humans,
entire organizations, or abstract entities.

Therefore, this research aims to support the design of smart contracts through
agent-based modeling by simulating system requirements.

In conclusion, to realize the aim of this research, a series of sub-questions guide
this study to answer how ABM can help translate a utility function to study the be-
havior of users interacting with the system. Four deliverables are required to enable
this case.

1. A decentralized system, serving as an influencing agent. For example, agents
interact with the central system but react differently based on the central sys-
tem’s incentives.

2. A data set containing user behavior. Users might interact differently with a
system based on their behavior. Therefore, a data set containing users’ behav-
ior could better understand how to tweak the central system to achieve optimal
utility with that system.

3. One, but preferably more smart contracts.

4. A utility function, which goal is to translate if the smart contract is successful
or not. For example, if we want to enable a system’s utility to reach 90%,
the utility function will provide an overview of the agent-based simulation
to summarize its outcome.

Through this study, we envision a decentralized system that has a rewarding mech-
anism that contains a smart contract. This incorporates a utility function that allows
measuring the influence of the behavior of users interacting with the systems.

1.4 Contributions

Work described in this study adds value in a variety of ways to the knowledge base.
First, it provides a holistic description of the principles of agent-based modeling and
smart contracts and an overview of the current state of research in applying ABM
to smart contracts. Work on ABM and smart contracts are partially embedded in re-
search. Still, for the most part, it is conducted in an online open-source environment

6 Chapter 1. Introduction

in which willing participants collaborate and expand on the work of others without
the need for detailed documentation. For this purpose, it is valuable to have a scien-
tifically written overview of the current state of smart contract design. Second, smart
contract developers are encouraged by the insights presented in this research. Smart
contract developers should strive to build high-quality smart contracts as efficiently
as possible. The development method supporting this goal could contribute to the
smart contracts’ efficiency, performance, and quality.

1.5 Thesis Outline

This research includes the following contributions. The research methodology, in-
cluding the research questions, the research paradigm, and the literature research
protocol for this thesis, is described in Chapter 2. Chapter 3 provides concrete steps
to construct a literature review, including identifying the sources needed, finding
the sources, a systematic method for summarizing and synthesizing the source, and
organizational and writing strategies for review to generate an excellent literature re-
view. Chapter 4 provides an overview of agent-based modeling characteristics used
to evaluate a range of various tooling and simulation programs currently available.
Chapter 5 discusses the preparation and selection of the case study. Thereafter the
simulations are performed in Chapter 6. Thereafter, in Chapter 7, the findings of
three scenarios are analyzed. Finally, the strengths and limitations of the study are
discussed, as well as recommendations for future research in addition to the conclu-
sion, in Chapter 8 and 9 respectively.

7

Chapter 2

Research Approach

This chapter explains the research approach utilized in this study. It opens by ad-
dressing the decision to adopt the approach of Design Science Research (DSR) and
elaborates on how aspects of this analysis integrate into the life cycle of the approach.
Visualization of the research methodology is presented through a Process Deliver-
able Diagram (PDD) and presented in Figure B.1 in Appendix B. A PDD consists of
two interconnected diagrams. The process view on the left-hand side is based on
a UML activity diagram, whereas the right-hand side of the diagram displays the
deliverable based on a UML class diagram (Weerd and S. Brinkkemper, 2009).

2.1 Research Questions

The design problem template presented by R. J. Wieringa (2014) structures the objec-
tives of the study through the problem context, artifacts, requirements, and desired
impact of the study as follows. To achieve the research objective, the key research
questions and the five sub-questions are proposed by the goal statement. This main
research question aims to evaluate the rules used by smart contracts through agent-
based modeling by simulating system requirements.

Research Question: Can agent-based modeling support the design of
smart contracts by simulating the systems requirements?

A selection of sub-questions needs to be addressed to answer this research question.
The first sub-question is to understand the principles used in this study related to
smart contracts and ABM. A literature review is performed to understand the prin-
ciples related to smart contracts and agent-based modeling. The literature review is
done by reviewing previous studies on the subjects through a study on the concepts.
This results in the following sub-questions:

Sub-Question 1: How can smart contracts and agent-based modeling be
defined based on prior literature?

The knowledge resulting from research sub-question 1 offers a summary of the con-
cepts. A study on the overlapping concepts will be the next step in this research,
with a clear definition and understanding of these concepts.

Based on initial research, it is expected that attempts have already been made
to combine the development of smart contracts with Model-Driven Engineering
(MDE), but not yet ABM in particular nor in a formalized structured way this thesis
intends to provide. The second sub-question this research proposes is as follows:

Sub-Question 2: What research into the application of agent-based mod-
eling to smart contract development has already been conducted?

8 Chapter 2. Research Approach

The perspectives of SQ1 and SQ2 will summarize the current state of smart contract
design and ABM research. Using these insights, a method engineering process can
be initiated. A method engineering approach focused on the use of existing method
fragments is applied. This means that a method base is generated, and the method
fragments from this method base are determined based on the criteria for the Smart
Contract Development Method. To pick the most suitable fragments, it is important
to set out the criteria for the method. Based on the specifications and available sys-
tem fragments, the method engineering phase will lead to the development of the
method. Method engineering will be discussed in a later chapter and used to build
a better contract. The criteria, activities, and deliverable of this approach will be
discussed in the third research sub-question:

Sub-Question 3: What are the requirements for agent-based modeling
and smart contract development?

A process deliverable diagram (PDD) that describes the process of agent-based mod-
eling to construct smart contracts will be the outcome of SQ3. The PDD describes
the activities and deliverables of agent-based modeling and smart contract develop-
ment.

Sub-Question 4: What is the most suitable agent-based modeling tool to
support the development of the goal’s requirements?

There exists a vast amount of ABM tools, each with its strengths and weaknesses.
Some tools focus on the models’ scalability level, whereas others model develop-
ment effort, ease of use, or other features. Therefore, an assessment of the existing
tools is required to allow for proper tool selection. This sub-question is answered in
section 3.1.6.

Sub-Question 5: Can agent-based modeling assist in creating insight into
the decision rules of a smart contract for a complex system?

The goal of Sub-Question five is to investigate whether the system achieves the de-
sired objectives. An assessment of the method is required. The main objectives of
this study, defined in chapter 1.2, are (i) to bridge the semantic gap between domain
knowledge and smart contract by lowering the domain expert threshold, and (ii) to
help developers create less uncertain smart contracts that accurately represent the
problem domain. The first objective will be assessed through a case study in which
the procedure is demonstrated. The second objective will be assessed through a sta-
tistical analysis in which the interpretation will be evaluated.

To summarize, the sub-research questions will be resolved using the following
approaches:

1. Sub-Question 1 is answered through Multivocal Literature Review (MLR). MLR
is a systematic literature review (SLR) that involves gray literature and pub-
lished (formal) literature. The literature review protocol is detailed in sec-
tion 2.3.

2. Sub-Question 2 is also answered by MLR based on the information gathered
from Sub-Question 1. The literature dealing with the interrelation between
concepts is discussed in sub-question 2. Attempts to apply ABM to smart con-
tracts will form a method base from which fragments of the method will be
selected.

2.2. Research Paradigm 9

3. Sub-Question 3 provides the basis for the method by setting out the objec-
tives of the method and the appropriate method fragments that can be used
to achieve those objectives. These objectives and process fragments are the
specifications for the method. Based on these criteria, a detailed overview of
the agent-based smart contract optimization method will be given. Knowl-
edge from Sub-Question 1 and Sub-Question 2 will be connected to generate
a method that ranges from domain knowledge to the fine-tuning of the smart
contract.

4. Sub-Question 4 is again answered through MLR. An assessment of the existing
tools is required to allow for proper tool selection.

5. Sub-question 5 is answered by discussing the case study and its effects seen
as a result in the agent-based model. The case study aims to evaluate the se-
mantic gap between domain knowledge and the smart contract aspect. The
experiment follows the goal-question-metric approach, which follows the ex-
perimental design framework.

Answers to the research sub-questions should provide a holistic view of creating
and evaluating the model-driven Smart Contract Development Method, which will
provide a context to address the key research question.

2.2 Research Paradigm

This study aims to support the design of smart contracts through agent-based mod-
eling by simulating systems requirements.

Research is defined by either behavioral science or design science in the disci-
pline of information systems (March and Smith, 1995). The paradigm of behavioral
science seeks to establish hypotheses that explain or predict the actions of individ-
uals or organizations. The science of design is a paradigm driven by the desire to
better the world by introducing new and creative objects and constructing these ar-
tifacts (March and Smith, 1995). Behavior and design should not be seen as two
distinct paradigms, although in the definition of theories (behavior) and usefulness
(design), they overlap (A. R. Hevner et al., 2004). The motivation for design science
is in line with the motivation for this study, as the goal is to strengthen the field of
smart contract creation by adding to this field a novel artifact.

Figure 2.1 presents the DSR methodology adopted from A. Hevner and Chatter-
jee (2010) which serves as a guideline for this study to create a scientifically qualita-
tive artifact.

There are three sub-cycles in Design Science Studies. The cycle of relevance, the
cycle of design, and the cycle of rigor. The cycles are based on information learned
during each preceding iteration. Design Science Analysis seeks to solve issues in the
real world, hence why this approach suits the thesis (R. J. Wieringa, 2014). The cycle
of relevance offers context, requirements, and acceptance criteria used to assess the
study results. It also involves field testing of the prototypes that were produced dur-
ing the design cycle. Finally, the rigor cycle provides the basis for the cycle of design
science through literature review and knowledge base development. Information
acquired through the rigor cycle provides feedback for the production of artifacts
in the design cycle. Consequently, designs are evaluated against specifications and
acceptance criteria from the relevance cycle until a final design is reached.

10 Chapter 2. Research Approach

FIGURE 2.1: The Design Science Research framework seeks to solve issues in the
real world though a cyclic process consisting of three sub-cycles A. Hevner and
Chatterjee (2010, p. 16). The cycle of relevance, the cycle of design, and the rigor
cycle are based on information learned during each preceding iteration.

2.2.1 Research Methods

The main questions of the research and its sub-questions described in section 2.1
are revealed during the iterative phase of designing and evaluating the method.
This study uses four approaches to answer the aforementioned questions, as shown
in Table 2.1. A Multivocal Literature Review is the first approach used to identify
and map key concepts and sub-concepts required for the method design. Using the
insights from SQ1 and SQ2 through MLR, a method engineering approach is taken
to lead to the development of the method. Furthermore, MLR is used once again to
provide decision support for the best suited ABM tool, which will answer SQ4. Data
from a case study is used to answer and analyze SQ5 through Statistical Analysis.

TABLE 2.1: A comparison the three methods used to address the sub-questions of
this study.

Method SQ1 SQ2 SQ3 SQ4 SQ5 Section

Multivocal Literature Review 3 3 7 3 7 2.3
Method Engineering 7 7 3 7 7 2.4
Statistical Analysis 7 7 7 7 3

Case Study 7 7 7 3 3 2.5

2.3 Literature Review Protocol

To plan and conduct the literature review, the popular systematic review guide-
line of Kitchenham and Charters (2007) is combined with the review guidelines

2.3. Literature Review Protocol 11

of Garousi, Felderer, and Mäntylä, 2019. The purpose of the guideline by Kitchen-
ham and Charters (2007) is to provide detailed recommendations for systematic lit-
erature reviews suitable for researchers in software engineering, including Ph.D. stu-
dents. A systematic review of the literature reviews and analyzes all existing studies
related to a specific study’s issue, subject field, or unusual phenomena. Systemic
reviews aim to present a fair assessment of a study subject using a trustworthy, sys-
tematic, and audit-able approach. The guidelines have been adapted to reflect the
specific problems of software engineering research. The recommendations cover
three stages of comprehensive literature analysis: planning of reviewing, carrying
out the review, and reporting. To suit the study, this analysis translates these instruc-
tions into four steps: the planning process, selection process, classification process,
and the review process.

2.3.1 Phase 1: Multivocal Literature Review Planning

According to Garousi, Felderer, and Mäntylä (2019) existing guidelines for conduct-
ing systematic literature studies in Software Engineering (SE) provide limited cover-
age for including practitioners’ sources and conducting multivocal literature reviews
(MLR), this paper filled that gap by developing and presenting a set of experien-
tial guidelines for planning, conducting and presenting MLR studies in SE. Conse-
quently, a review of academic and GL is necessary to fill any knowledge gaps left
by the lack of academic literature. The incorporation of GL enables the researcher
to benefit from various positive contributions from material produced by real-life
practices (M. Adams et al., 2014). The criteria for performing an MLR as set out
in Garousi, Felderer, and Mäntylä (2019) are followed to integrate academic and GL
into the literature review. Garousi, Felderer, and Mäntylä (2019) defines MLRs as a
type of Systematic Literature Review that includes GL and literature written.

2.3.2 Phase 2: Search Process and Source Selection

Step two of the literature review consists of three critical tasks during the selection
phase. In this process, the following steps were followed:

• Selecting source engines and search keywords

• Application of inclusion/exclusion criteria

• Final Pool of sources

Selecting source engines and search keywords

As for the gray literature search engine, many literature reviews in other fields, rec-
ommendations, and experiential papers such as Godin et al. (2015), Mahood, Van
Eerd, and Irvin (2014), and J. Adams et al. (2016) suggested using the standard Google
search engine which is used in this work. The search string is built iteratively to en-
sure optimizing coverage for all related sources on the internet. The initial search
string was: “agent-based modeling smart contracts” After one round of searches in
the Google engine and Google Scholar, a need to expand the search string to identify
and locate all the related sources.

To optimize the scope for relevant sources, synonyms of the word decentral-
ized and technology are interchanged. After a few iterations, the final search string
adopted to be:

12 Chapter 2. Research Approach

Search-Query:(agent-based modeling OR agent-based simulation) AND (smart
contract OR smart contracts) AND (optimization OR evaluation)

The pool would have missed many relevant sources without the broadening of the
query. When searching Google Scholar for published literature, Google Scholar re-
turned 19.300 results for the above query as of this writing. To cope with the can-
didate sources, traversing on Google Scholar results is done on several consecu-
tive pages. Actual candidates are only added to the candidate pool if the inclu-
sion/exclusion criteria mentioned in the next section are met. To collect grey litera-
ture, the same query to restrict the search space is used. A total of 3.640.000 results
are observed upon query execution at this time of writing. Relevant results and can-
didate sources are included based on the exclusion criteria mentioned in the next
section. Forward and backward snowballing is performed to ensure that every ap-
plicable technical paper is included as much as possible on a selection of papers
already in the pool as suggested by Claes Wohlin, 2014. Snowballing refers to us-
ing a reference list of a paper (backward snowballing) or the citation to the paper to
identify additional papers (forward) (Claes Wohlin, 2014).

Application of inclusion/exclusion criteria

A Quality Evaluation Checklist, including exclusion criteria, is used to ensure the
validity and integrity of the literature. The evaluation is tailored to this study, as
indicated by M. Adams et al. (2014). Table 2.2 indicates the criterion used during
evaluation and the questions used to evaluate the requirements. Furthermore, liter-
ature that is not written in English and is not openly accessible is excluded without
scoring. Requirements are addressed with a score of 1 for YES and a 0 for NO.

TABLE 2.2: The quality evaluation checklist used in applying M. Adams et al., 2014
criteria from grey literature.

Aspect Questions

Academic • “Is the literature relate to one of the concepts?”
Literature • “Is the literature written in English?”

• “Is the literature openly accessible?”
Authority • “Is an individual author associated with a reputable organization?”

• “Has the author published other work in the field?”
Accuracy • “Does the source have a clearly stated aim?”

• “Does the source have a stated methodology?”
• “Is the source supported by authoritative and documented references?”

Coverage • “Are any limits clearly stated?”
• “Does the work cover a specific question?”
• “Does the work refer to a particular population?”

Objectivity • “Does the work seem to be balanced in the presentation?”
• “Is the statement a subjective opinion?”
• “Are the conclusions biased?”

Date • “Does the item have a clearly stated date?”
Significance • “Does it enrich or add something unique to the research?”

• “Does it strengthen or refute a current position?”

Final Pool of sources

The scores from the quality assessment questions are summed up and standardized
by dividing them through the total number of questions. A threshold score of 50

2.4. Method Engineering 13

percent is maintained. Once the literature ranking is above the mark, it is included in
the final pool of sources. This review took place in iterations as the knowledge base
grew, requiring the Snowballing process to roll back to remove incorrectly added
papers and adjust search parameters. Online mapping repository and details of why
each source was excluded can be found in the Google Spreadsheet of this study
online.

2.3.3 Phase 3: Data Classification

To develop a systematic map, the studies in the pool are analyzed, and the initial
list of attributes is identified. Thereafter, attribute generalization, and iterative re-
finement are used to derive the final map. As studies were identified as relevant
to this study, are record was created in an online spreadsheet to facilitate the work
and further analysis. The next goal is to categorize the studies to build a complete
picture of the research area and answer the RQs. These broad interests are refined
into a systematic map using an iterative approach.

2.3.4 Phase 4: Synthesis and Review

The instructions for performing a thematic synthesis are taken from Cruzes and
Dyba (2011) to ensure the data synthesis process produces the right building blocks
for the framework. Braun and Clarke (2012) define thematic synthesis as a tool for
the systematic detection and development of insights into context through a data
set. High-level modules may be modified for the system depending on the infras-
tructure the application needs to support. During this process, sub-concepts for the
various high-level concepts are defined. This method is suitable as it provides op-
timal flexible procedures for researchers, addresses research questions about need,
appropriateness, and effectiveness, and copes well with pattern identification across
the various subjects. This thematic research meets instructions by Cruzes and Dyba
(2011) encouraging the researcher to analyze the data before a system draft is feasible
gradually.

2.3.5 Summary

MLR will be used to answer Sub-Question 1, Sub-Question 2, and Sub-Question
4. MLR will answer Sub-Question 1 and Sub-Question 2 by creating a summary of
concepts with clear definitions and will provide a better understanding of smart con-
tracts and agent-based modeling. Sub-Question 4 is also answered through MLR.
The aim is to provide a long-list short-list approach an overview of the best suited
ABM tools for this study.

2.4 Method Engineering

As mentioned earlier, a method engineering approach is used to focus on existing
method fragments. Based on the specifications and available system fragments, the
method engineering phase will lead to the development of the method.

Method Engineering is the engineering discipline to design, construct and adapt
methods, techniques, and tools for developing information systems (S. Brinkkem-
per, 1996). Situational Method Engineering (SME) is a subset of method engineering,
where development is adapted to the project at hand (Harmsen, J. N. Brinkkemper,
and Oei, 1994). In this case, the project at hand is relatively loosely used as a method

14 Chapter 2. Research Approach

for the creation of all kinds of smart contracts. Small and medium-sized enterprises
(SMEs) seek to identify information systems methods by reusing and assembling
existing process fragments (Ralyté and Rolland, 2001).

2.4.1 Summary

SME will be used to answer Sub-Question 3, and assist with creating a PDD that will
describe the process of ABM to construct smart contracts.

2.5 Case Study

Evaluation in Design Science Research (DSR) focuses on assessing the results of de-
sign science, including theory and artifacts. Walls, Widmeyer, and El Sawy (1992)
put forward IS Design Theories at DSR output. March and Smith (1995) presented
DSR’s outputs as artifacts: constructions, templates, methods and instances. March
and Smith (1995) also describe evaluation as one of two tasks in the DSR. A. R.
Hevner et al. (2004) describe evaluation as crucial and enable researchers to demon-
strate the usability, efficiency, and effectiveness of a design artifact using rigorous
methods of evaluation.

A case study can be seen as a means to prepare for data collection, collecting
evidence and analysis of collected data, and reporting. Case studies are more com-
monly exploratory, using qualitative data (Runeson and Höst, 2009). Runeson and
Höst point out five key steps for a case study:

1. Case study design

2. Preparation for data collection

3. Collecting evidence

4. Analysis of collected data

5. Reporting

2.5.1 Case Study Requirements

1. Data set needs to be available containing user behavior.

2. Statements of the type of agents need to be defined.

3. Statements of the agent’s behavior need to be defined.

4. Statements of the environment need to be defined.

5. The utility goal and threshold of the system need to be defined.

6. A goal could be to evaluate if we can optimize the usage of a system. For
example, can we incentivize a system so that more people vote?

This chapter describes the research methodology, including the research ques-
tions, the research paradigm, and the literature research protocol for this thesis.
The next chapter 3 provides a literature review covering agent-based modeling and
smart contracts and how these two components can be bridged.

15

Chapter 3

Literature Study

The literature review performed for this proposal is discussed in this chapter. In
chapter 2, the literature review protocol has been addressed previously. The first
section deals with the different principles and meanings of agent-based modeling
(ABM), smart contracts, and related terms. The following section continues with the
features and forms of agent-based modeling that have been described for smart con-
tracts and related subjects in the literature. Furthermore, a summary that describes
the process and requirements of ABM is listed. An assessment of existing ABM tools
for proper tool selection is conducted.

3.1 Agent-Based Modeling

3.1.1 Introduction

Agent-based modeling and simulation (ABMS) is a relatively new method com-
posed of interacting, autonomous ‘agents’ to model complex systems. Agents are
often defined by simple rules, behaviors, and relationships with other agents, affect-
ing their behaviors. It is possible to observe the full effects of the diversity among
agents in their attributes and behaviors by individually modeling agents. It gives
rise to the system’s behavior as a whole. In such models, self-organization can
also be observed by modeling structures from the ground up agent-by-agent and
interaction-by-interaction. There are patterns, mechanisms, and behaviors that are
not directly programmed into the models but occur from interactions with other
agents. As opposed to simulation techniques such as discrete event simulation and
system dynamics, the focus on modeling the heterogeneity of agents and a popula-
tion and the development of self-organization are two of the distinctive character-
istics of agent-based simulation. Agent-based modeling provides a way to model
social networks made up of agents that connect, influence each other, learn from
their experiences, and adjust their actions to suit their environment better.

Agent-based modeling implementations cover a wide variety of fields and disci-
plines. Applications range from modeling the behavior of agents in supply chains (C.
Macal, Sallach, and M. North, 2004) and the stock market (Arthur, 2018) to forecast-
ing the hazard of biowarfare (Carley et al., 2006) and the spread of epidemics (Bagni,
Berchi, and Cariello, 2002) and from modeling the adaptive immune system (Folcik,
An, and Orosz, 2007) to understanding customers’ buying behavior (M. J. North,
C. M. Macal, et al., 2010), and many others. These developments have been made
feasible by advances in the production of advanced agent-based modeling tools.
New approaches to agent-based model development allow for advancements in
computer efficiency and data availability at increasing granularity levels.

16 Chapter 3. Literature Study

FIGURE 3.1: Visualizing the workings of an ABM through a concept diagram, de-
rived from Hall and Virrantaus (2016)

Figure 3.1 displays the working of an agent-based model as a concept diagram.
ABM aims to seek an explanatory insight into the collective behavior of agents fol-
lowing simple rules. Agent-based models are usually practiced in natural systems.
Furthermore, agent-based models are a form of micro-scale model that simulates
several agents’ parallel activities and interactions to recreate and forecast the ap-
pearance of complex phenomena. The higher-level system properties arise from the
lower-level subsystem interactions. Alternatively, basic behaviors (meaning rules
followed by agents) create complicated behaviors (meaning state changes at the
whole system level) (Bonabeau, 2002).

3.1.2 Agent-Based Modeling Requirements

ABMs are typically implemented as computer simulations, either as custom soft-
ware or via ABM toolkits. This software can then test how changes in individual
behaviors will affect the system’s emerging overall behavior. In general, when we
build an ABM to simulate a certain phenomenon, we need to identify the actors first
(the agents). We then need to consider the processes (rules and relationships) gov-
erning the interactions among the agents. A typical agent-based model has three
elements, as seen in Figure 3.2:

1. A set of agents with their attributes and behaviors. Moreover, in Section 3.1.3.

2. A set of agent relationships and interaction methods: An underlying topology
of connectedness defines how and with whom agents interact. Moreover, in
Section 3.1.4.

3. The agents’ environment. Agents interact with their environment in addition to
other agents. Moreover, in Section 3.1.5.

3.1. Agent-Based Modeling 17

FIGURE 3.2: The structure and elements of an agent-based model, as in C. M. Macal
and M. J. North (2005)

Modelers introduce some type of spatial landscape (e.g., lattice, torus) in many
ABM applications that limits potential interactions with agents. This spatial environ-
ment is depicted as a strictly passive platform on which agents interact. However,
in other cases, the spatial landscape is interpreted as an entity with its own inter-
nal states and behavioral laws (e.g., a region of land with naturally growing food
sources).

To Summarize: Agent-Based Modeling Requirements

A model developer must define, model, and program agents, relationships, and envi-
ronment to construct an agent-based model. In Figure 3.2, the structure of a typical
agent-based model is shown. Sections 3.1.3, 3.1.4 and 3.1.5 address each of the com-
ponents in Figure 3.2. A computational engine is then necessary to simulate agent
behaviors and agent interactions to make the model work. This functionality is pro-
vided by a programming language, an agent-based modeling toolkit, or other im-
plementation. To run an agent-based model is to have its activities and interactions
executed by agents repeatedly. This approach frequently functions over a timeline,
as in time-stepped, activity-based, or discrete-event simulation systems, but is not
necessarily modeled.

3.1.3 Autonomous Agents

There is no general consensus between researchers on the exact meaning of the word
agent, with researchers constantly arguing whether the definition should be by the
application or environment of an agent. However, definitions appear to agree on
more points than they disagree (C. M. Macal and M. J. North, 2005). Diversity in
its implementation makes it difficult to extract agent characteristics from the litera-
ture coherently and concisely, as an agent-based model is mostly defined from the
perspective of its constituent parts (Bonabeau, 2002).

According to Wooldridge and Jennings (1995), there are many characteristics
common to most agents from a pragmatic modeling point of view. This standpoint

18 Chapter 3. Literature Study

is further clarified and expanded by Franklin and Graesser (1996) and C. M. Macal
and M. J. North (2005). These characteristics are presented briefly below:

• Self-Contained: An agent is an entity that is self-contained, modular, and
uniquely identifiable. The modular criterion means there is a boundary for
an agent. Agents have characteristics that allow other agents to differentiate
the agents from and identify them.

• Autonomous: Agents are autonomous units (i.e., managed without central-
ization), capable of processing and sharing information with other agents for
independent decision-making purposes. At least in a limited range of cases,
they can communicate with other agents, which does not (necessarily) affect
their autonomy.

• State: An agent has a state that changes over time. As a system has a state
comprising state variables, an agent often has a state representing the main
variables associated with its current situation. The state of an agent is made
up of a set or a subset of its attributes.

• Heterogeneity: Agents allow autonomous individuals to evolve, e.g., an agent
representing a human being may have characteristics such as age, sex, work,
etc. There could be groups of agents, but they are spawned from the bottom-up
and embody similar autonomous individuals.

• Active: Agents are active because, in a simulation, they have independent in-
fluence. These agents active features can be:

– Goal-directed: Agents are also called goal-oriented, having goals to ac-
complish (not necessarily goals to maximize) in terms of their behavior.

– Perceptive: agents can be constructed with an awareness of their sur-
roundings.

– Bounded Rationality: agents can be constructed through rational choice
models with access to data, foresight, and analytical abilities to allow for
adaptive choices that move them towards achieving goals (Parker et al.,
2003).

– Adaption/Learning: Agents can also be built to generate Complex Adap-
tive Systems to be adaptive (Holland, 1996). Agents may be programmed
to alter their state, allowing agents to adapt to a mode of memory or learn-
ing based on previous states.

This list is not exhaustive or exclusive; other characteristics can occur within the
application agent, and, for certain applications, some features may be more relevant
than others (Wooldridge and Jennings, 1995). Sometimes, there are several different
types of agents within a single simulation. However, the characteristics depicted
above are considered essential for this study from a practical modeling standpoint.
In Figure ,3.3 a typical agent structure is illustrated. An agent-based model, an agent
attribute, or even an agent method that operates on the agent is associated with
an agent. As the simulation progresses, agent attributes could be static, meaning
they are not subject to change during the simulation, or dynamic, meaning they can
change. A static attribute, for example, is the name of an agent; a dynamic attribute
is an agent’s memory of past experiences. Methods of agents include behaviors like
rules or more abstract representations like neural networks that connect the agent’s

3.1. Agent-Based Modeling 19

FIGURE 3.3: A typical agent structure modified from (C. M. Macal and M. J. North,
2005).

situation to its action or a set of possible actions. The method that an agent uses to
classify its neighbors is an example.

Agents may be representations of an autonomous body of some kind. For exam-
ple, this may be persons, plots of land, houses, vehicles, insects, or water droplets. It
should be noted that, while the object-oriented paradigm offers an effective medium
for the creation of agent-based models, ABM is not the same as object-oriented sim-
ulation. ABM systems are invariably object-oriented for this purpose (Gilbert and
Terna, 2000).

A collection of multiple interacting agents within a model or simulation envi-
ronment, such as the artificial world, is called an agent-based model. Agents may be
depictions of animate entities such as humans who can roam freely around, or agents
may be inanimate entities such as a petrol store, which has a fixed location but can
alter the state of rules or prices.

To Summarize: Autonomous Agents

Typically, individual agents are characterized as boundedly rational, assumed to be
acting in what they consider their own interests, such as reproduction, economic
gain, or social status, using heuristics or simple rules for decision-making (R. L. Ax-
tell, Andrews, and Small, 2003). ABM agents may have learning knowledge, adap-
tation, and reproduction (Bonabeau, 2002).

3.1.4 Rules, Behavior, and Relationships

Each of the above-mentioned inanimate and animate agents has rules that will influ-
ence their behavior and relationships with other agents and/or their environment.
Usually, laws are derived from expert experience, written literature, numerical work,
or data analysis and are the basis of the behavior of an agent.

You can apply one rule-set to all agents, or each agent (or agent category) can
have its own specific ruleset. For instance, in A. Heppenstall, A. Evans, and M.
Birkin (2006) retail petrol agents all work on the same basic rule set based on a desire
to optimize profits. In addition to their own “realistic” rule-sets based on reported
actions, data analysis, and numerical analysis, various forms of retailer agents, such

20 Chapter 3. Literature Study

as supermarkets, international, national, and independent stations, were seen in fur-
ther work (A. Heppenstall, A. Evans, and M. Birkin, 2006).

Typically, rules are based on if-else statements with agents taking action after a
specified condition has been met. However, in ignorance of other agents’ actions,
rules may be implemented. Agents can also be integrated into evolutionary compu-
tation with a notion of learning and ‘intelligence’ (Alison J Heppenstall, Andrew J
Evans, and Mark H Birkin, 2007).

More recently, there has been a shift towards integrating behavioral systems to
reflect human behavior within agent-based models better. For instance, to reflect the
motives and desires of offenders, Malleson, A. Heppenstall, and See (2010) used the
PECS (Physical conditions, emotional states, cognitive capacities, and social status)
paradigm. This style of work represents a step towards more nuanced handling of
the actions of agents. In agent-based models, Kennedy (2012) offers an overview of
various mechanisms for managing human behavior.

To Summarize: Rules, behavior, and Relationships

Agents can communicate with each other and with the world. Relationships can
be characterized in several ways, from purely reactive (i.e., agents only conduct
acts when some external stimulus triggers them to do so, e.g., actions by another
agent) to goal-directed actions (i.e., seeking a particular goal). Agents’ activity can
be scheduled to occur synchronously (i.e., each agent performs actions at each spe-
cific time phase, all adjustments occur simultaneously) or asynchronously (i.e., agent
actions are scheduled by other agents’ actions and/or clockwise).

3.1.5 Agent Environments

Environments describe the area in which agents work to facilitate their interactions
with the environment and other agents. For instance, relying on the defined space
for agent interactions, proximity can be defined by continuous space spatial dis-
tance, grid cell adjacency, or social network connectivity. Agents can be spatially
explicit within an area, meaning agents have a position in geometric space, while
the agent itself may be static. For instance, agents will be required to have a particu-
lar location to test their route strategy within a route navigation model. On the other
hand, agents within an environment can be spatially implicit; this implies that their
location is meaningless.

Agent-based models may be used in a modeling context as research tools for
conducting and analyzing agent-based simulations. To this point, they can be re-
garded as a miniature laboratory where agents’ characteristics and behavior, and
the atmosphere in which they are located, can be altered and the impacts observed
over several simulation runs.

The ability to simulate individual activities of several different agents and moni-
tor the resulting system behavior and results over time (e.g., shifts in traffic flow pat-
terns) means that agent-based models can be useful tools to research the impact on
multi-scale and organizational-level processes (Brown and Geist, 2006). ABM’s ori-
gins are in particular within the simulation of human social activity and individual
decision-making (Bonabeau, 2002). ABM has transformed social science research in
this sense by enabling scientists to replicate or produce the development of scientif-
ically complex social phenomenon from a collection of relatively simple micro-level
agent-based rules (Luke et al., 2003).

3.1. Agent-Based Modeling 21

To Summarize Agent Environments

Environments are the space inside which there are agents. An environment could
be abstract (empty space) or a layer representing actual geographical information
from your GIS. There are many environments in most simulations. Environments
can either be dynamic or static. When an environment is dynamic, it will change
over time.

3.1.6 Methods for agent-based Modeling

Building an ABM can be facilitated by using an object-oriented programming lan-
guage, modeling development toolkits, and platforms. These methods are briefly
discussed here, explaining their benefits and drawbacks. However, it is helpful to
ask a set of questions while designing an agent-based model, contributing to an ini-
tial agent model design.

(a) Agent model design

1. Which particular problem should the model solve? What particular questions
should be answered by the model? What added value can ABM bring to the
problem that other approaches do not bring?

2. What should the agents be in the model? Who are the decision makers in
the system? What are the entities that have behaviors? What data on agents
are simply descriptive (static attributes)? What agent attributes would be cal-
culated endogenously by the model and updated in the agents (dynamic at-
tributes)?

3. What is the agents’ environment? How do the agents interact with the envi-
ronment? Is an agent’s mobility through space an important consideration?

4. What agent behaviors are of interest? What decisions do the agents make?
What behaviors are being acted upon? What actions are being taken by the
agents?

5. How do the agents interact with each other? With the environment? How
expansive or focused are agent interactions?

6. Where might the data come from, especially on agent behaviors, for such a
model?

7. How might you validate the model, especially the agent behaviors?

An integral part of the ABM design process is to address these questions. To de-
sign and incorporate agent-based models, there are several approaches. M. J. North
and C. M. Macal (2007) discusses in detail both methodologies of design and chosen
environments of implementation. An initial methodology for identifying agent be-
haviors inside a framework for unmanned autonomous vehicles is given by Marsh
and Hill (2008). Overall, bottom-up, iterative development design methods seem to
be the most successful for functional model creation.

Although developing from the ground up enables full control over any element
of the agent-based model, unless the scientist is an experienced programmer, this
could be a time-consuming choice. Implementation of the model can be tedious,
and it is possible to spend considerable time on non-content-specific elements like
graphical user interfaces, presentation, and import of data.

22 Chapter 3. Literature Study

(b) Agent model implementation

ABM can be achieved using general, all-purpose tools or programming languages or
can be done using specifically developed toolkits that solve the special requirements
of agent modeling. ABM can be performed on a small scale, on a laptop, large scale,
or any scale between these extremes. Projects typically begin simple, using one of
the ABMS desktop tools, and then develop into larger ABMS toolkits in stages. Gen-
eral programming languages such as Java, Python, C++, and C can also develop a
simulation. However, development from scratch may be prohibitively costly, con-
sidering that this will entail developing many of the available resources by advanced
modeling tools. Many large-scale ABMs use specialized toolkits or development en-
vironments based on accessibility, cross-platform compatibility, ease of understand-
ing, and the need for sophisticated database connection features, graphical user in-
terfaces, and GIS. Widely used toolkits include the most common Repast, MASON,
and SWARM, although Crooks and Castle (2012) note that more than 100 toolkits
are currently available. These toolkits are also provided by predefined method and
feature libraries that can be easily integrated into an ABM and connected to other
software libraries.

Using a toolkit will significantly reduce model construction time, allowing more
time to be spent on research. However, risks include a significant time commitment
for the researcher to learn how to develop and incorporate a model throughout the
toolbox and the programming language used by the software. However, it is possi-
ble that after this time investment, the desired functionality may not be available.

(c) Agent model services

A range of services is commonly required for implementing large-scale models re-
gardless of the selected design methodology. This could include real data and geospa-
tial environments, which are becoming more prevalent. Some of the more common
capabilities include project specification services; agent specification services; input
data specification and storage services; model execution services; results storage and
analysis services. There are three common approaches, depending on how much
support the implementation environment provides for the modeler:

1. The library-oriented approach;
In a library-oriented approach to project specification, an agent modeling tool
consists of a routine library structured into an application programming inter-
face (API). Modelers build models through a series of calls to the various func-
tions of the modeling toolkit. It is the duty of the modelers to ensure that the
right call sequences are used and that all the appropriate files are present. In
return, modelers have a great deal of versatility in the way they describe their
models. Examples include the binary libraries used by Swarm (Terna et al.,
1998), the Java archives (JAR) used by Repast for Java (M. J. North and C. M.
Macal, 2007) or MASON (Dunham, 2005), and the Microsoft.NET assemblies
used by Repast for the Microsoft.NET framework (M. J. North, Collier, et al.,
2013).

2. The integrated development environment (IDE) approach;
The IDE project specification method uses a model editing program or code to
coordinate model creation. IDE also offers an integrated framework for com-
piling or interpreting, and then implementing models.

3.2. Smart Contracts 23

3. The hybrid approach;
The hybrid approach enables modelers to use the environment either as a
stand-alone library or a multi-file IDE factor. Examples include AnyLogic (Bor-
shchev et al., 2014) and Repast Simphony (M. J. North, Collier, et al., 2013). In
return for this added versatility, these environments can require more exper-
tise to be used than other types of IDEs, but they also appear to be the most
efficient. Agent specification systems offer a way for modelers to describe the
characteristics and behaviors of agents.

3.1.7 Summary ABM

Agent-based modeling is composed of interacting, autonomous agents to model
complex systems. Agents are defined by simple rules and have behaviors and re-
lationships with other agents, which might affect their behaviors. The focus of ABM
lies in modeling the heterogeneity of agents and a population and the development
of self-organization. ABM provides a way to model social networks that are made
up of agents that connect, influence each other, and adjust their actions to suit their
environment better. Furthermore, ABMs aim is to seek an explanatory insight into
the collective behavior of agents following simple rules. They can go from small-
scale models to large-scale models or anything extreme in between. ABMS are typi-
cally implemented in computer simulations, either via custom software or via ABM
toolkits which assist the researcher in developing. However, before selecting an
implementation environment, the researcher should answer a series of particular
questions that the model should answer to allow for the optimal design of the ABM.
Questions include the goal statement of the model and the environment in which
the behaviors of the agents are denoted. Furthermore, data sources and validation
need to be taken into account before choosing an environment.

3.2 Smart Contracts

To date, Bitcoin is the most popular example of blockchain implementations. Bitcoin
uses consensus rules and reward mechanisms to reach consensus in an open-ended
peer-to-peer scheme. While discussions are commonly associated with Bitcoin as
the most popular example of blockchain technology, the implications of blockchain
technology extend well beyond digital currencies (Nakamoto, 2019).

Whereas earlier blockchain implementations focused on distributed state man-
agement, the most recent blockchain applications, such as Ethereum Buterin et al.
(2014) enable distributed not only state management but also the execution in the
form of smart contracts.

In a transparent, trustworthy, and verifiable peer-to-peer system, the ability to
express logic provides opportunities for organizations and individual users to del-
egate parts of their operations into a public blockchain. Voting-based decision-
making, crowdfunding, management of assets, or management of workflows are
examples hereof. However, the open nature of such mechanisms provides oppor-
tunities that go beyond the traditional integration of information systems or the
coordination of human actors. Smart contracts may be used by artificial entities
that participate in contractual commitments on their own or build contracts to pro-
vide an open audience with services. However, contractual specifications should
be available to all engaging individuals, whether artificial or human, while com-
municating in an open environment. Careful design and execution do not protect

24 Chapter 3. Literature Study

FIGURE 3.4: A traditional blockchain layered architecture

against poorly written or unsafe contracts. An aspect is recently seen in the mas-
sive theft of funds from the most popular Decentralized Autonomous Institution of
Ethereum (DAO) (Finley, 2016). Therefore, the human-readable contract and associ-
ated responsibilities must be codified, as with any programming activity, and then
checked to ensure that the machine-readable representation conforms to the stated
behavior. Therefore, as in every programming activity, the human-readable contract
and related responsibilities must be codified and subsequently verified to ensure
that machine-readable implementation complies with the specified behavior.

Figure 3.4 aims to overview a traditional blockchain layered architecture to which
smart contracts can be deployed. Some of these layered components need clarifica-
tion to understand better how smart contracts are built and deployed. In contrast,
other components are not relevant for this study. As displayed in Figure 3.4, Smart
contracts are deployed on top of the application layer and create an agreement in
the consensus layer. Consensus is reached when nodes on the peer-to-peer network
layer reach an agreement based on the type of consensus mechanism. The execution
of the smart contracts is executed on a specially designed blockchain virtual machine
called Ethereum Virtual Machine. Here the code is executed in a distributed fashion
across all the nodes that validate the transactions.

As mentioned, a trustworthy, transparent, and verifiable peer-to-peer system has
the ability to express logic and provides opportunities to delegate parts of its oper-
ations into a public blockchain. Thus it becomes important to understand some
consensus mechanisms described in section 3.2.1, as well as peer-to-peer network-
ing, which is highlighted in 3.2.2. The execution of smart contracts through the
Ethereum Virtual Machine is detailed in section 3.2.3. Lastly, in section 3.2.4, the
means to smart contract development is detailed.

3.2.1 Consensus Layer

How to achieve consensus among the untrustworthy nodes in the blockchain is a
transformation of the problem of the Byzantine Generals (BG), as posed in Lamport,
Shostak, and Pease (2019). Byzantine Generals refers to a group of commanders

3.2. Smart Contracts 25

who control a portion of the army circled the Byzantine area. While some generals
prefer to withdraw, some generals prefer to attack. The attack would, however, fail
if only a portion of the generals attacked the city. Thus, to strike or retreat, they
have to reach an agreement. Reaching consensus in distributed systems strikes as
a problem, just like the blockchain network is distributed. There is no central node
in the blockchain that guarantees that ledgers on distributed nodes are the same.
Several protocols are required to ensure the integrity of ledgers in various nodes.
Farshidi et al. (2020) describes several common approaches to reach consensus in a
blockchain in Table 3.1. There are several approaches to reach consensus, as seen in

TABLE 3.1: Consensus Mechanisms of blockchains and their definition depicted
by Farshidi et al. (2020)

Blockchain Feature Description

Proof-Of-Work (PoW)

is a consensus mechanism employed to confirm transactions and
generate new blocks to the chain. With PoW, miners compete
against each other to perform transactions on the network and
gain rewards.

Proof-of-Stake (PoS)

is a consensus algorithm by which a cryptocurrency blockchain
network aims to achieve distributed consensus. In PoS-based
cryptocurrencies, the next block producer, are chosen based on
diverse combinations of random selection, wealth, or age.

Delegated Proof of Stake
(DPoS)

is a consensus mechanism for maintaining the final agreement
across a blockchain network, validating transactions, and
performing as a form of digital democracy.

Federated Byzantine
Agreement (FBA)

is a form of Byzantine fault tolerance where each byzantine
general is responsible for their blockchain. An FBA has high
throughput, scalability, and low transaction costs. Notable
cryptocurrencies using the FBA include Stellar and Ripple. Stellar
was the first cryptocurrency that implemented a secure FBA

Proof-of-Authority (PoA)

is a replacement for PoW, which can be utilized for private
blockchains. It does not depend on nodes solving arbitrarily
severe mathematical problems but instead uses a set of
“authorities” - nodes explicitly permitted to generate new blocks
and secure the blockchain.

Table 3.1. However, only a few spark interest in this study. In this research, a deeper
look into the Proof-of-Work (PoW) consensus mechanism is described as it is used
by Ethereum, which is a good candidate for deploying smart contracts due to its
popularity.

A consensus technique used for the Bitcoin network is Proof-of-Work (Nakamoto,
2019). One has to be appointed to record transactions in a decentralized network.
Random selection is the simplest process. Random selection, though, is vulnerable
to attacks. So, if nodes want to publish a transaction block, much work needs to
be done to show that the network is not likely to be targeted by the node. The role
normally includes machine calculations. In PoW, the hash value of a block header is
determined for each node of the network.

A nonce is contained in the block header, and to get various hash values, miners
will regularly change the nonce. Consensus demands that the value measured must
be equal to, or less than, a certain value. As one node achieves the target value, the
block will be broadcast to other nodes, and all other nodes must mutually check the
validity of the hash value. Other miners will add this new block towards their own
blockchains when the block is validated. Nodes that measure hashing values are

26 Chapter 3. Literature Study

depicted as miners, and in Bitcoin, the PoW process is called mining. Once multiple
nodes find a suitable nonce almost simultaneously in a decentralized network, valid
blocks could be generated simultaneously. As a consequence, branches can be gen-
erated. It is unlikely, however, that competing forks would simultaneously produce
the next block.

In PoW, miners do many machine calculations, but these operations waste so
much money. Some PoW protocols wherein operations have been built to minimize
the loss of computational power. For instance, Primecoin looks for unique prime
number chains that could be used for mathematical analysis (King, 2013).

To Summarize: Consensus

Different consensus algorithms have different advantages and disadvantages. Ta-
ble 3.1 gives a comparison between different consensus algorithms. We denote that
the consensus mechanism for PoW is based on computational work, whereas PoS
consensus is based on ownership of the currency. PoA consensus is based on cur-
rency discovery, whereas FBA is based on majority voting systems.

A successful consensus algorithm implies performance, security, and comfort.
A variety of attempts have recently been made to develop blockchain consensus
algorithms. Novel consensus algorithms are being designed to solve some unique
blockchain problems. For example, PeerCensus’s idea is to decouple transaction
confirmation and block formation so that the speed of consensus can be dramatically
increased (Decker, Seidel, and Wattenhofer, 2016). A novel consensus approach was
also proposed by Kraft (2016) to guarantee a block is produced at a reasonably stable
pace. It is understood that high rates of generation blocks weaken the security of
Bitcoin.

3.2.2 Peer-to-Peer Network Layer

Peer-to-peer is a network in which nodes establish an autonomous network in which
data is requested and given on an equal footing between these nodes. A node is
a physical/virtual machine that communicates with other nodes via TCP/IP and
UDP (Prieto et al., 2017). It is in opposition to the classic client-server system in
which one party is responsible for providing and storing the data. This leading party
is a centralized server, and clients ask for and receive their data from this centralized
server.

Any elements of a network become much more complicated by not providing
a client/server architecture. For example, it is important to consider how data is
transmitted and the transmission of data between peers (Fox, 2001). The network
is open for all nodes for a blockchain to run properly and that replication functions
proficiently. Peer-to-peer communication techniques are used to form a distributed
network, removing a single point of failure (Levy and Silberschatz, 1990). Thus
it plays a crucial role in verifying and generating blocks that are appended to the
blockchain (Zheng et al., 2017).

Schollmeier (2001) refers to a peer-to-peer network as a distributed network ar-
chitecture if users share part of their own hardware resources. These mutual re-
sources are required to provide the Infrastructure and the content provided by the
network. They are immediately available to other peers without going through in-
termediary bodies. The members in such a network are also both resource users and
resource providers.

3.2. Smart Contracts 27

To Summarize: P2P

The overall cost of a P2P network is relatively inexpensive as there is no central
configuration. Furthermore, the network is not dependent on a centralized system
which means that connected nodes can function independently while reducing bot-
tlenecks. P2P offers great scalability while the performance of the network remains
the same.

3.2.3 Ethereum Virtual Machine

On a specially built blockchain virtual machine, named Ethereum Virtual Machine
(EVM), smart contracts are executed (Buterin et al., 2014). The EVM is a virtual ma-
chine built on a stack that functions in the byte code language. Ethereum nodes all
share the same EVM specification, and nodes that validate the transactions execute
the code in a distributed fashion. Program execution is often bound by the up-front
supply of the consumable energy, a unit of execution cost incurred by each machine
code command, and by each byte of storage used by the contract, in time and space.
The fees underlie the same concept as in Bitcoin but instead rely on the ether denom-
ination.

Although the byte code language of Ethereum is designed for efficient delivery
and execution, several high-level programming languages have evolved to simplify
contract development, such as Serpent, Solidity, and LLL. With the de facto norm for
contract production being Solidity (Delmolino et al., 2016). Python, JavaScript, and
C++ influence the syntax of Solidity, but it incorporates inheritance, statically typing
libraries, and other beneficial features.

Furthermore, the EVM facilitates events for callback notification or execution.
Notice that although the EVM needs code execution on all the connected nodes, no
type of parallel computation as part of the code is supported. Solidity recognizes
structs as well as enumerations, in addition to functions. Within the contract code,
you can access the invoking message properties, like sender address, function ex-
ecution funds, numerous cryptographic controls, as well as a predefined contract
destruction self-destruct() function. It is worth noting that the object in Ethereum
itself can only accomplish the termination of the life of an entity. Therefore, the public
existence of the blockchain makes careful creation and management of the life cycle important.

New contracts are compiled to EVM byte code to instantiate. Users must receive
an appropriate amount of ether to finance the execution of a contract based on the
expected complexity of the code submitted. Transactions will then trigger features
at the address of the contract. Ethereum handles two types of transactions for this
purpose, which consist of the following essential attributes:

• Ether amount;

• Receiving address;

• Byte array containing the payload;

• The sender’s private key signature;

When a receiving address is missing, a new contract added to the network must
be the transaction payload. The EVM will determine the validity of the transaction
requests dependent on the sender’s signature before executing a transaction and will
validate the added ether required to sponsor the execution of the EVM code.

28 Chapter 3. Literature Study

To Summarize: EVM

The Ethereum Virtual Machine is an efficient sandbox virtual stack responsible for
contract byte code execution, embedded within each complete Ethereum node. Con-
tracts, such as Solidity, are commonly described in higher-level languages, then com-
piled into EVM byte code.

This means that machine code is totally disconnected from the host computer’s
network, file system, or any operation. Each node runs an EVM instance on the
Ethereum network, enabling them to agree to execute the same instructions.

In the Ethereum Protocol, the EVM is central and is instrumental in the consensus
engine of the Ethereum network. It enables everyone to execute code in an unreliable
environment in which it is possible to guarantee the outcome of execution and is
completely deterministic (i.e.) to execute smart contracts.

3.2.4 Smart Contract Design with Solidity

Contracts represent classes in object-oriented programming languages and can con-
tain typed state variables. Furthermore, contracts can include functions that are in-
voked externally. To carry out preliminary checks (e.g., for validation) in a declar-
ative way, function modifiers may also be added to one or more functions, thus
representing the features of aspect-oriented programming (Kiczales et al., 1997).

FIGURE 3.5: Visualizing the workings of a smart contract through a concept dia-
gram, derived from Hall and Virrantaus (2016)

Figure 3.5 displays the working of a smart contract as a concept diagram. A
Smart Contract comprises rules, which could translate to structs, function modifiers,
events, or alternative flows. The smart contract is compiled with a Solidity compiler
which compiles to Byte Code. This byte code can, in its turn, be deployed on a
blockchain node.

The use of high-level programming languages makes smart contracts fairly easy
to establish and encode. However, possible use of smart contracts as intermedi-
aries in open platforms makes them a vital asset. If blockchain technologies and
smart contracts were to be implemented to provide critical public services, such as
land ownership records, this might refer to the operation of a single company, a gov-
ernment, and even countries. The consequences can be far-ranging if contracts are

3.2. Smart Contracts 29

poorly written or exploitable. In addition, few methods are available at the cur-
rent stage that endorses the systemic modeling of contracts to resemble real-world
entities.

If source code is available, confidence in a contract can be better developed. The
Solidity compiler promotes the use of SPDX license identifiers that are machine-
readable because having source code available often affects legal issues concerning
copyright. In addition, Pragmas makes the critical design of a Solidity source file for
function tests, whereas versions are used to reject conflicting changes. The exam-
ple Source Code 3.1 gives an overview of the layout to which a Solidity source file
should respect.

SOURCE CODE 3.1: Layout of a Solidity Source File

1 // SPDX-License-Identifier: GPL-3.0
2 pragma solidity >=0.4.21 <0.9.0;
3

4 /** @title Shape calculator. */
5 contract ShapeCalculator {
6 /// @dev Calculates a rectangle's surface and perimeter.
7 /// @param w Width of the rectangle.
8 /// @param h Height of the rectangle.
9 /// @return s The calculated surface.

10 /// @return p The calculated perimeter.
11 function rectangle(uint w, uint h) public pure returns (uint s, uint p)

{↪→

12 s = w * h;
13 p = 2 * (w + h);
14 }
15 }

As seen in Source Code 3.1, every source file should begin with a comment in-
dicating its license. Thereafter, the SPDX license identifier on line two is followed.
As seen in line two, a pragma keyword is used to make certain compiler features
or tests. The Pragma Directive applies to the source file only. It is important to ap-
ply the Pragma Directive to all files to allow it for the whole project. If you import
another file, the importing file does not immediately add a pragma from that file.
Source files should be annotated with a version pragma to deny compatibility with
forthcoming compiler versions that could incorporate incompatible modifications.
Only because of that, reading at least for changes that need breaking modifications
through the changelog is always a good idea. These releases also have a version also
seen on line two in the form of 0.x.0 or x.0.0.

The Solidity contracts structure is comparable to classes in object-oriented pro-
gramming languages. Function Modifiers, State Variables, Events, Struct Forms, and
Enum Types declarations may be included in each contract. In addition, contracts
can be inherited from other contracts. Special types of contracts, namely libraries
and interfaces, also exist. Source Code A.1 in Appendix A gives an overview of
these declarations.

Contracts can be generated via Ethereum transactions from outside or through
Solidity contracts from within. When a contract is produced, it is executed once by
its builder. The final code of a contract is saved on the blockchain after the con-
structor has executed it. This code contains both public and external functions that
function calls from there can access. If a contract wishes to produce another contract,
the creator must be aware of the contract’s source code.

30 Chapter 3. Literature Study

3.2.5 Summary Smart Contracts

In a transparent, trustworthy, and verifiable peer-to-peer system, the ability to ex-
press logic provides opportunities for organizations and individual users to delegate
parts of their operations into a public blockchain. Smart contracts may be used by
artificial entities that participate in contractual commitments on their own or build
contracts to provide an open audience with services. Careful design and execution
do not protect against poorly written or unsafe contracts. An aspect is recently seen
in the massive theft of funds from the most popular Decentralized Autonomous In-
stitution of Ethereum (DAO) (Finley, 2016). Consensus on a blockchain is reached
when nodes on the peer-to-peer network layer reach an agreement based on the
type of consensus mechanism. The execution of the smart contracts is executed on
a specially designed blockchain virtual machine called Ethereum Virtual Machine.
Here the code is executed in a distributed fashion across all the nodes that validate
the transactions. A successful consensus algorithm implies performance, security,
and comfort. The use of smart contracts as intermediaries in open platforms makes
them a vital asset. In addition, few methods are available at the current stage that
endorses the systemic modeling of contracts to resemble real-world entities.

It can be denoted that smart contracts offer many advantages to automate or fa-
cilitate as a decentralized entity. Besides automation, also transparency, joint owner-
ship, and immutability are potential improvements smart contracts bring. However,
it is important to be aware of significant drawbacks. Smart contracts are highly tech-
nical contracts, meaning that faulty code should be a big concern. Owning to the
immutability of blockchain technology, a bug or security concern in a deployed smart
contract cannot be removed. At the same time, they might process high costs or be
resource-intensive. Furthermore, implications scalability brings, such as increased
interaction with the smart contract, might impact the system, which cannot always
be easily predicted due to the complexity of the infrastructure.

We hope to find valuable findings through this study by translating smart con-
tracts to agents in an agent-based model. This agent-based model could potentially
evaluate factors like scalability, faulty or improvable code of the smart contract. The
number of agents carrying such smart contracts can be modified and simulated eas-
ily.

3.3 Modeling Smart Contracts with Institutional Grammar

Crawford and Ostrom present an agent-based approach to the modeling of smart
contracts with institutional grammar in the paper “From Institutions to Code: To-
wards Automated Smart Contract Generation.” (Crawford and Ostrom, 1995). It is
based on Helbing (2012)’s definition of Grammar of Institutions, which lies in the
field of institutional study. For decomposing institutions into rule-based statements,
this grammar of institutions is used. In a systematic formalization, these statements
are compiled below.

In agent-based modeling, the grammar of institutions is rooted in (ABM). ABM
is a paradigm of computational modeling in which phenomena are modeled as in-
teracting agent stochastic systems (Helbing, 2012). The model consists of a collection
of agents that encompass the behaviors of the different people that make up the sys-
tem, and the execution emulates these behaviors (Parunak, Savit, and Riolo, 1998).
Sometimes, agents’ behavior is modeled by collections of sentences in which the be-
havior becomes explicit. The statements are constructed from five components, in
this case, abbreviated jointly to ADICO:

3.3. Modeling Smart Contracts with Institutional Grammar 31

• Attribute: The actor’s characteristics or attributes;

• Deontic: the nature of the statement as an obligation, permission or prohibi-
tion;

• Aim: the action or outcome that the statement regulates;

• Conditions: The contextual conditions under which the statement holds;

• Or else: Describing the consequences associated with non-conformance to the
statement

Frank Dignum and Conte (1997) specifies that the use of deontic reasoning provides
the ability to specifically decide what should occur in cases of infringement of obliga-
tions in these cases. Deontic logic could be used to model the principles that agents
communicate with each other according to. Deontic logic provides the ability to de-
fine specifically the principles that can be used to enforce agent-to-agent interactions.
Dignum, Meyer, and R. Wieringa (1994) reasons about sub-ideal states (in which an
obligation is violated). In the description of this method, an example of a voting
system is given using these components:

People (A) must (D) vote (I) every four years (C), or else they face a fine
(O).

We can define the important domain-specific constructs by exploring its structural
elements between contracts and institutional grammar and suggest a mapping that
simplifies contract generation. For instance, the conceptual equivalent of the at-
tributes portion of ADICO is the structure of Solidity. In analogy, objectives essen-
tially describe functions and events, while the combination of Deontic and the part
of the corresponding conditions are reflected. In function modifiers, which imple-
ment declarative checks preempting the execution of functions. Table 3.2 illustrates
the ADICO-Solidity mapping proposed.

TABLE 3.2: Mapping of ADICO components to Solidity declarations

ADICO component SOLIDITY construct

Attribute Structs
Deontic Function modifiers
Aim Functions, Events
Conditions Function modifiers
Or Else throw statements/alternative control flow

This mapping of core constructs gives the basis for converting institutional spec-
ifications to solidity contracts. ADICO’s component structure, however, can be opti-
mized in addition to high mapping. A transparent collection of rules attached to the
component attributes (i.e., the actor properties) is added to translate the elements
of the Solidity struct. Aims (representing the behavior and institutional statement
controls) are refined by allowing the object and aim associated with a given action
to be defined, all of which correspond to the Solidity function parameters. A special
case is activated based on encoded conditions being met (e.g., reaching a deadline).
A further refinement requires the possible annotation of the property data types of
attributes to enhance code generation. Operationalization of ADICO is possible by
defining attributes specifically and by further allowing objects associated with ac-
tions to be specified as well as possible targets of action. In addition, in theory,

32 Chapter 3. Literature Study

several conditions may be merged into a single argument. Using logical operators
such as AND, OR, and XOR, several ADICO statements can be combined.

Example: Voting with Result Notification To further clarify how the ADICO
mapping could work, the syntax for ADICO-Solidity is shown, and an example
is given and reflected in Figure 3.6. First, a collection of statements is made rep-
resenting simple rules that permit registered voters to cast a vote. The individual
statements decompose to individual permissible actions and constraints. Take the
following example: Voters need to be registered and may only vote once but may only vote
before a given deadline.

1. Statement 1: Voters need to be registered,

2. Statement 2: may only vote once,

3. Statement 3: But may only vote before a given deadline.

The above statements can be translated into the following ADICO mapping:

SOURCE CODE 3.2: ADICO Mapping based on three statements

1 Adico(
2 A("Voters"),
3 D(may),
4 I("cast", object("vote", "string"), target("candidate")),
5 C(IF("voter", "is" , "registered") AND
6 IF("vote", "before", "deadline"))) AND
7 Adico(
8 A("Voters"),
9 D(may),

10 I("cast", object("vote", "string"), target("candidate")),
11 C("only", "once")) AND
12 Adico(
13 A("System"),
14 D(must),
15 I("notify", object("vote count"), target("contract",
16 "address")),
17 C(IF("votes.length", Operator.>, "100")))

The mapping as seen in Source Code 3.2 generates the corresponding contract
illustrated in Figure 3.6, including both the event generated and the associated func-
tion.

Figure 3.6 illustrates the corresponding contract generated, including both the
event generated and the associated function. The classification of events could be
of limited accuracy, similarly to other constructs, such as omitting type parameters.
To represent the necessary semantics, the contract approach involves manual refine-
ment. At this point, the contract skeleton created reflects an interface that captures
the intent of the contract at an abstraction level specified by institutional statements
without revealing details of execution.

3.3.1 Bridging the gap between smart contracts and agent-based model-
ing

ADICO itself is not a framework nor an automated method to writing either smart
contracts or architecture for defining agents and their rules for an agent-based model.

3.3. Modeling Smart Contracts with Institutional Grammar 33

FIGURE 3.6: Contract generated based on ADICO statements.

34 Chapter 3. Literature Study

However, it could bridge the gap between designing agents for an agent-based model
and designing smart contracts starting from a collection of ADICO statements that
correspond to the rules of both these entities. This approach is proven to have poten-
tial, which can be seen in the paper “from Institutions to Code: Towards Automated
Smart Contract Generation.” (Crawford and Ostrom, 1995). Also Smajgl, Izquierdo,
and Huigen (2008) propose a sequence where one could model endogenous institu-
tional rule change for agents. This is done by identifying the structural components
of a general rule from a modeling perspective, followed by providing an agent ar-
chitecture overview. Parts of the proposed sequence are implemented in a NetLogo
model.

The first sub-question of this research asks how smart contracts and agent-based
modeling be defined based on prior literature. We find that both concepts heavily
depend on a set of rules translated from functional requirements through literature
review.

An agent-based model is a computerized simulation of many decision-makers
(agents) and institutions that interact through prescribed rules. Figure 3.7 visualizes
how the different domain concepts relate to each other.

Figure B.2, in Appendix B, illustrates how a smart contract definition influences
the simulation outcome based on the rule-based statements defined through a case
study. Firstly, the case study criteria are defined, which results in a goal statement, a
collection of rules, and a utility threshold the infrastructure should answer to. Sec-
ondly, These statements from the case study are used as criteria for the agent-based
model’s agents, relationships, and environment. These statements could be trans-
lated to ADICO statements translated in smart contracts and agent definitions in the
ABM. Thirdly, the ABM tool selection procedure is executed corresponding to the
case study requirements at hand. Finally, the simulation is performed, an evaluation
is done through a utility function with summarizes. It exports the results of the data
to which analysis can be done, such as statistical analysis. Therefrom, a conclusion
can be formed.

3.3. Modeling Smart Contracts with Institutional Grammar 35

FIGURE 3.7: Commonalities found between smart contracts and agent-based mod-
eling.

37

Chapter 4

ABM Decision Support

This chapter discusses the ABM Tool Selection process as described in B in more
detail. The table4.1 provides an overview of agent-based modeling characteristics
used to evaluate various tooling and simulation programs currently available.

Abar et al., 2017 introduces the state-of-the-art Agent-Based Modeling and Sim-
ulation techniques with a detailed comparative analysis. A detailed characterization
of almost the entire range of agent-based modeling and simulation tools is described
in the paper, outlining the salient features, merits, and limitations of such applica-
tion software. Consequently, this paper uses a valuable guide to enable engineers,
researchers, and learners to easily pick an acceptable agent-based modeling and sim-
ulation toolkit for the requirements addressed in this paper to design and develop
system models and prototypes.

The computational algorithms, mathematical expressions, and equations that en-
capsulate a system’s action and output in real-world scenarios are referred to in a
simulation model. There is a minimal set of basic characteristics that describe a soft-
ware agent. A software agent is autonomous, can function as a standalone mecha-
nism, and performs actions without user intervention (Ballard, 2011).

ABMS ’theory is to model complex systems using a bottom-up approach to sim-
ulate practical scenarios with a group of self-governing agents, starting with the
individual agents (Moon, 2017). Each approach marks the agents with specific pro-
gramming syntax and semantics and has a different basis concerning generality, us-
ability, modifiability, scalability, and performance. Based on the aforementioned fea-
tures Abar et al. (2017) mapped the following ABMS based on ease of model devel-
opment effort and computational modeling strength/scalability level.

The study of Abar et al. (2017) provides a great foundation of state-of-the-art
agent-based modeling and simulation tools. At the time of this writing, the afore-
mentioned synthesis of ABMS might be outdated. Therefore, we will review and
update the resources and provide a few extra ABM tool characteristics gaining trac-
tion. These characteristics are detailed in Section 4.1. The full list of ABM tools is
enclosed in Appendix C.

4.1 ABM Tool Characteristics

The main objective is to define almost the entire range of various agent-based mod-
eling and simulation programs currently available and position them in a repertoire,
effectively refining these multifaceted application software’s noteworthy features,
merits, and demerits. Overall, the significant features, merits, shortcomings, and
limitations of the agent-based modeling and simulation software tools surveyed are
considered in this analysis. Evaluation criteria are described in Table 4.1 and include:

38 Chapter 4. ABM Decision Support

TABLE 4.1: Definitions of agent-based modeling and simulation characteristics
used as criteria for the agent-based modeling domain.

ABM Characteristic Definition

Development Effort The availability of approaches to reduce LOC to achieve the desired outcome.
Scalability The computational modeling strength or scalability of the models developed

through the use of particular toolkits.
Type of License The source-code specification, online availability, distribution license/legibility

as an open or closed source.
Type of Agents The implementation types of agents are primarily based on the interaction

mechanism during simulation activity.
Programming Language The requirements and provision of an Application Programming Interface

(API) together with the availability of built-in libraries for incorporation within
the user’s source code for developing agent-based models.

Application Domain The assessment of coverage of application areas/domains covered by the ABMS
tool

Source Code The identification of the compiler, operating system support, and plat-
form/hardware requirements/constraints for the model implementation.

GIS capabilities A geographic information system (GIS) is a conceptualized structure that en-
ables spatial and geographic data to be collected and analyzed.

3D Capabilities 3D modeling is the method of constructing a three-dimensional mathematical
representation of the surface of an entity.

4.1.1 Scalability

Scalability is called “the ability to handle increased workload” (Lorig et al., 2015).
From distributed systems, getting better scalability has become an important chal-
lenge for developers for years (Neuman, 1994). While performance is described as
how quickly and effectively a software can perform a specific task, scalability de-
scribes changes in performance when increasing system load.

A system is deemed ’not scalable’ in the event of a dramatic output decline re-
sulting from increased load (Liu, 2011). Korba and Song (2002) defined load and
complexity as two key factors affecting the scalability of agent-based systems. Load
is extracted from the number of CPU and Memory threads used by the multiagent
framework. Complexity, by contrast, defines the computation time of an agent-
based system(Korba and Song, 2002).

Scalability can be considered vertically and horizontally through two distinct
viewpoints, often referred to as the scale-up and scale-out. The deployment with
one large server providing several core processors and sufficient RAM is defined
by vertical scalability. In comparison, horizontal scalability incorporates a range of
smaller servers into one device to spread the load of a system (Michael et al., 2007).

The scalability of an ABM is dependent on validating population size based
on time. The level of scalability depends on incorporating distributed computing
frameworks, the ability to map cluster and supercomputer architectures, and de-
ployment complexity. Furthermore, using data-parallel algorithms on GPUs and the
number of multi-processor GPUs plays an important factor. To summarize, ABM-
Tools that incorporate features such as distributed computing frameworks, cluster
and supercomputer architectures, light deployment complexity, data-parallel algo-
rithms on GPUs, and multi-processor GPUs increase the level of scalability.

4.1.2 Development Effort

Evaluation of the development effort regarded the size of simulation models to mea-
sure the effort necessary to generate them. We used code lines (LoC) more explicitly,

4.2. ABM Tool Selection 39

which are also used as a metric for the software scale (Boehm et al., 1995; Jensen,
1983; Putnam and Myers, 1991). In fact, LoC is a metric used in MDD approaches
to assess and evaluate development and design implementation efforts (Osis and
Asnina, 2010).

There are several approaches to reduce LOC to achieve the desired outcome. A
graphical programming interface is available for code editing and simulation running
or an intuitive visual programming user interface for the model rendering tasks. When
using MDD, transformation engines and code generators decrease or suppress the de-
velopment effort. Model-to-code changes are the foundation of source code engines
that, in turn, simplify the creation of low-level software objects (e.g., lines of code).
General-purpose languages, such as Java, may be used to simulate these modules, but
constructing such abstractions from scratch will require additional effort and pro-
gramming skills. ABMS is expanding its application domain to a wider community
of users by reducing the amount of programming knowledge needed(Mernik, Heer-
ing, and Sloane, 2005).

4.2 ABM Tool Selection

We defined a big set of various agent-based modeling and simulation programs cur-
rently available and represented in Table C.1 in Appendix C. The evaluation criteria
are described in Table 4.1. The meaning of scalability and development effort is
detailed in section 4.1.1 and 4.1.2 subsequently. To allow the ABM community to
benefit from this research, a repository is created on Github. Furthermore, as seen in
Figure C.1 in Appendix C shows a website that has been deployed to allow for easy
searching based on features.

The website provides a table with over 80 records. It is possible to filter data for
each column to refine your search based on your interests. As a proof of concept,
this website will create a shortlist of possible ABM-Tools for this study.

In case the requirements state that we would like to simulate a high population
number, then scalability is an important factor to consider. Furthermore, if one likes
to simulate a complex system as there are multiple different types of agents with
different types of behavior, then complexity becomes an important factor.

For this study Repast, Simphony is chosen as the respective toolkit as the scope or
application domain involves The latter two traits are significant application domains
that lay in line with this study. Moreover. Repast Simphony uses Java Runtime
Environment with Eclipse platform-based user interfaces, which I am more familiar
with.

Though similar simulations can be done in various tools, the decision was made
to perform the simulation in Repast Simphony for research beyond this study. This
simulation is performed for the SearchSECO project. SearchSECO is a project that
tries to maintain a hashed index of software methods of the worldwide software
ecosystem. The simulations done during this study will serve as a guide for Search-
SECO. However, more complex contexts and behaviors will be added in the future
to gain a deeper understanding of the SearchSECO data. Hence, by choosing Repast
Simphony, we allow the simulations to scale and become more complex. Moreover,
SearchSECO in the following chapter.

41

Chapter 5

SearchSECO Case Study

5.1 Introduction to SearchSECO

In this chapter, we address the case study SearchSECO. SearchSECO is a project that
tries to maintain a hashed index of software methods of the worldwide software
ecosystem (Jansen et al., 2020).

Repository mining research is a data-intensive domain with a focus on source
code. There are many ways to search for code in the worldwide software ecosystem,
but these search methods are inefficient and only cover small parts of the software
ecosystem. One of the problems is granularity: it is possible to search through code
on a file level and cover a significant part of the software ecosystem or search for a
line of code and only cover a small part of the software ecosystem, but not both.

SearchSECO proposes a language-agnostic search engine and research platform
that searches through abstract representations of source code methods. SearchSECO
is used to search across the worldwide software ecosystem and index the encoun-
tered methods. With SearchSECO, the field is advanced because it (1) provides finer-
grained and more efficient searches, (2) covers more of the software ecosystem than
other search mechanisms, and (3) provides mechanisms for source code provenance.

The main challenge of SearchSECO is to make it sustainable. With the billions of
code lines currently made available in public repositories, it is a monumental task to
download, parse, and store the data needed to make SearchSECO successful.

SearchSECO assumes the following actors in the SearchSECO community.

1. SearchSECO Project Team - The SearchSECO project team is made up of mul-
tiple companies and universities that collaboratively try to establish the Search-
SECO platform. Currently, the team is carrying all the costs of the platform.

2. Empirical software engineers - many researchers wish to use the platform for
their research. Empirical software engineers will occasionally use the platform
for their research.

3. Software producing organizations - The organizations that produce software
will want to use SearchSECO to establish that their software is theirs, to check
for copyright violations in their own code, and to co-evolve their systems with
other systems.

SearchSECO must create a model in which they reach equilibrium, i.e., where the
whole community carries the major costs of the SearchSECO platform.

There are three main costs in this proposal: storage of data fragments (terabytes),
parsing of these fragments (CPU), and spidering and downloading the fragments
(network). SearchSECO assumes that these costs are constant. Currently, they envi-
sion the platform as a distributed system, in which the tasks modeled in Figure 5.1
are distributed over the different parties.

42 Chapter 5. SearchSECO Case Study

Method Finder

Method
Stack

SMKB

Method
Identification

Report
Search

Method Committer

Method
Stack

SMKB

Method
Commit
Report

Commit

Artifact Processor

Artifact
Stack

A
rti

fa
ct

 P
ar

se
r

N
on

-s
ou

rc
e

fil
e

fil
te

r

Language Recognizer
Method extractor

Hasher
AST extractor

Gitlab Spider

G
itl

ab

P
ar

se
r

G
itl

ab

Project 1
Project 2

Project r

...

SHG Spider

S
H

G

P
ar

se
r

S
H

G

Project 1
Project 2

Project p

... Project Processor

P
ro

je
ct

P

ar
se

r

P
ro

je
ct

Artifact 1
Artifact 2

Artifact p

...

Site Spider

S
ite

P

ar
se

r

W
eb

si
te

Artifact 1
Artifact 2

Artifact q

...

Call graph extractor

…

X Spider

X
 P

ar
se

r

X

Project 1
Project 2

Project r

...

FIGURE 5.1: The extraction process follows a three-step process. First, projects are identified on
different project forums, such as the Software Heritage Graph, Gitlab, and other project repositories.
Different artifacts are extracted from web sites such as stackoverflow.com. Secondly, these projects are
parsed into artifacts from which fragments are extracted, including their out-calls to other methods.
Thirdly, this information is stored in the SMKB.

TABLE 5.1: Assumed constants in the simulation.

Item Value Unit
Costs of Storage 0.20 euro per GB per month
Costs of CPU 1.00 euro per 10000 data items collected
Number of empirical software engineers 50,000 people
Number of SPOs 200,000 companies
Number of data items accessed by SPOs 10,000 Code fragments per month
Number of data items accessed by ESERs 100,000 Code fragments per year
Initial funding 50,000 euro
Speed per client 15,000 GitHub calls per hour

5.2 Behaviors of the Agents

The project is initiated by the SearchSECO project team, who initially carry the brunt
of the work. As the platform grows, SearchSECO becomes more interesting to empir-
ical software engineers in the community, to the point where around 50% of all active
empirical software engineers have used the platform. Software producing organiza-
tions expect to mostly explore whether their own code is legal and will therefore
perform far fewer reads from the system. However, for these software-producing
organizations, the reads are very valuable.

5.3 Scenarios

SearchSECO has the following scenarios available:

1. Force empirical software engineers to Perform Part of the Work - A demand-
based approach is taken. When an empirical software engineer wishes to read
an item from the database, she also needs to add an item.

2. Force empirical software engineers to Store the Data in a Distributed Man-
ner - It is asked that empirical software engineers run a server with 10-20GB

5.4. Problem and Object Formulation 43

to ensure that the data is collected and stored redundantly. However, as em-
pirical software engineers are “flaky”, they might not provide the persistence
necessary.

3. Ask software producing organizations to Pay for Reading Access - To make
the infrastructure sustainable, SearchSECO can ask software producing orga-
nizations to pay for reading access to the database.

4. Ask software producing organizations to Provide Data Stores - SearchSECO
provides read access for free if the software producing organizations provide
data stores in which we can store the data.

5.4 Problem and Object Formulation

To better understand the scenario’s requirements, a comprehensive list of questions
is used as a guideline to translate some statements. These statements will aid in the
development of the agents’ criteria and rules to which the corresponding contracts
should adhere. Furthermore, the questionnaire is grouped into sections to create an
overview of the related goal these questions aim to solve.

Identifying agents, accurately specifying their behaviors, and appropriately rep-
resenting agent interactions are key to developing useful agent models. One begins
developing an agent-based model by identifying the agent types (classes) along with
their attributes. Agents are generally the decision-makers in a system, whether they
be human, organizational, or automated. Next, the behaviors of the agents are de-
picted, followed by the relationships between the agents. Finally, the agents’ envi-
ronment is discussed.

Topic: Model Purpose

1. What specific problem is the model being developed to address?
SearchSECO is a complex system as multiple user types (with different behaviors) interact with
the system. Different types of users will use SearchSECO differently for different purposes,
and the behavior of these users is therefore different. The load on the system and the number of
transactions cannot be forecasted with traditional statistical analysis to understand the usage.

2. What specific questions should the model answer?
How can SearchSECO become sustainable? Can we create a model where the community
carries the major costs of the SearchSECO platform?

3. What kind of information should the model provide to help make or support a
decision?
Reward per action of:

• Storage of data fragments

• parsing of data fragments

• spidering and downloading data fragments

Costs for accessing:

• code fragments per month as a software producing organization

• code fragments per year as an empirical software engineer

4. Why might agent-based modeling be a desirable approach?
With agent-based modeling, we want to evaluate metrics such as usage, workload, and trans-
actions on the system in case the incentive mechanism on which the platform relies changes.
For example, if the amount of GAS or Ether changes, this might impact the number of users

44 Chapter 5. SearchSECO Case Study

interacting with the system. These rules rely on the behavior of the users interacting with the
system, hence why agent-based modeling is an ideal fit to evaluate such changes beforehand to
optimize the utilization of the system.

5. What value-added does agent-based modeling bring to the problem that other mod-
eling approaches cannot bring?
As the system matures, we will collect more user behavior. Hence once we mapped the basic
behavior of our user base, we can further optimize our system. We can easily monitor the im-
pact on the system when certain costs for the system would change based on the behavior of
our users. This could help us in decision-making processes to avoid a decrease of utility on our
system.

Topic: Agents

6. Who should be the agents in the model?

• SearchSECO Project Team - The SearchSECO project team consists of companies and
universities which are the founders who collaboratively aim to establish the platform.
This team carries the setup costs of the platform.

• empirical software engineers - Researchers who wish to use the platform for their re-
search. These researchers will occasionally use the platform for their research.

• software producing organizations - these organizations will use the platform to establish
that their software is theirs, check for copyright violations in their own code, and co-
evolve their systems with other systems.

7. Who are the decision-makers in the system?
The SearchSECO platform aims to be a self-sustaining platform with no central authority,
hence no central decision-makers. The platform aims to be open. Hence the community will
further develop the platform, and decisions might be made through decision protocols. Exam-
ples of such protocols can be Proof-Of-Work.

8. What are the entities that have behaviors?
Both the empirical software engineer and the software producing organization will have moni-
tored behaviors, as they are the main stakeholders for creating a self-sustainable platform. The
SearchSECO project team is not modeled with behavior as the predicted involvement of these
agents will descale once the system grows. Furthermore, it is expected that the behavior of the
SearchSECO Project Team has a low impact on the sustainability of the platform.

9. Where might the data come from, especially for agent behaviors?
The initial model will be modeled through toy data as no historical data for this specific platform
is available. As user interaction grows, more data is collected through the SearchSECO in-
frastructure, which iteratively optimizes empirical software engineers and software-producing
organizations’ behavioral rulesets.

Topic: Agent Data

10. What data on agents is simply descriptive (static attributes)?
neither exhaustive nor exclusive

11. What agent attributes are calculated endogenously by the model and updated for
the agents (dynamic attributes)?
Time spent seeding data, number of commits, number of fixes, volume seeded (GB), volume
downloaded (GB)

12. What is the agents’ environment?
SearchSECO Platform - The SearchSECO platform itself will be an autonomous platform en-
visions as a distributed system that holds its own rule sets upon which it can interact. This
allows for automation of the system.

13. How do the agents interact with the environment?
The agents in the model are spatially implicit as their location is not important.

5.5. ADICO statements 45

14. Is agent mobility in space an important consideration?
Yes, we deal with phenomena in space and time. More concretely, the system aims to be decen-
tralized, which will deploy smart contracts on Ethereum. Ethereum is fluctuating; it often de-
pends on factors such as the valuation of Bitcoin, which is valued based on the cost of electricity
as these are the basic costs needed to perform heavy calculations with machines. Furthermore,
factors such as expert forecasts and political factors influence the crypto market.

Topic: Agent Behaviors

15. How would we represent the agent behaviors?
By If-Else Statements. More concretely by ADICO statements which can be translated to agent
definitions as well as smart contracts.

To summarize, we identified a set of agents, their behaviors, and their interac-
tions which are specified based on natural text. These descriptions are vital for
developing a useful agent model. Based on these questions and answers, we can
derive a set of ADICO statements, which is a great starting point for developing an
agent-based model as the types and their attributes are clearly mapped out.

5.5 ADICO statements

We can define the important domain-specific construct based on the case study goal.
However, many interesting use cases were discussed and listed below. Unfortu-
nately, for the scope of this research, we cannot fulfill all the use-cases of Search-
SECO.

• Use case 1: “How can SearchSECO maintain a self-governed entity and reach
an equilibrium as an endogenous system.”

• Use case 2: “How can SearchSECO win over end-users to start using the sys-
tem.”

• Use case 3: “What is the effect of a token-based approach, and how is the value
of a token calculated?”

• Use case 4: “What is the adoption rate of people committing to SearchSECO
after big events such as conferences and publications domains of interest.”

Use case one is chosen because SearchSECO lacks the behavioral data of its end-
users. As use cases two, three, and four rely more on behavioral data, we decide to
get involved in use case 1. The goal of the case study is defined as follows:

Use case: How can SearchSECO maintain a self-governed entity and
reach an equilibrium as an endogenous system.

The goal of SearchSECO is to maintain self-governed. This means that SearchSECO
can be seen as a non-profit organization maintained by the agents interacting with
the system. This can be accomplished by reaching a balance where users add value
and resources to the system in return for fragments of interest. We consider endoge-
nous factors, meaning that data on agents is not simply descriptive (static), but agent
attributes are calculated by the model and updated (dynamically).

Table 5.2 gives an overview of the ADICO statements derived from the systems
requirements. To allow for separating the components, a color scheme is used as
follows.

ADICO = Attribute Deontic Aim Conditions Or Else.

46 Chapter 5. SearchSECO Case Study

TABLE 5.2: Mapping of ADICO statements based on case study criteria.

ADICO statement

1 Software producing organizations must contribute to the system
if they wish to demand resources from the system or else the
agent runs out of credits and possibly restricted access.

2 SearchSECO should remain sustainable under the influence of
agents with varying behavior.

3 Empirical software engineers should pay for reading access
after losing all credits or else the agent is removed from the
network.

4 SearchSECO could invest where 50,000 euro for the initial
funding of the framework.

5 SearchSECO must provide an infrastructure where two or more PCs
(agents) can connect AND share resources without going through a
separate server Or Else SearchSECO cannot exist.

6 software producing organization might access 10,000 code
fragment per month Or Else.

7 empirical software engineer might acess 100,000 code framents
per year Or Else.

8 Each agent interacting with the SearchSECO platform could
perform 15,000 GitHub calls per hour or else a ratelimit will
safeguard the infrastructure.

9 SearchSECO might host 200,000 software producing organizations
on the platform.

10 SearchSECO might host 50,000 empirical software engineers on the
platform.

11 It is contingent that SearchSECO defines 0.20 euro per GB per
month as a cost of storage or else no self-sustainable business
model exists .

12 It is contingent that SearchSECO defines 1 euro per 10,000
items collected as a cost of processing power (CPU) or else
no self-sustainable business model exists .

5.5. ADICO statements 47

The statements aim to describe the rules upon which agents act. The aforemen-
tioned rules serve as a common source pool for both agent-based simulations and
smart contracts. This study aims to evaluate if agent-based modeling can help in
designing a smart contract. A smart contract is written on rules which stem from
the systems requirements. Hence, by mapping the system requirements through
ADICO statements, we inherently create a source pool that allows easy mapping
between agent-based modeling and smart contracts.

49

Chapter 6

Simulation

In this chapter, the performed steps in the evaluation process (as described in B.2)
are discussed in more detail. Three scenarios based on the case study discussed in
Chapter 5 have been conducted. The first scenario aims to represent a peer-to-peer
sharing network where data supply and demand are balanced. This scenario aims
to evaluate if such a framework can be built upon the ADICO statements conducted
from the case study as seen in Table 5.2. A second scenario aims to add complexity
by bringing multiple agent types into the context. The third scenario aims to bring
economic factors to evaluate whether or not the system could remain sustainable
once money comes into play.

This simulation is detailed in full using the Overview, Design Concepts, and
Details protocol (Grimm et al., 2006). Repast Simphony is used to develop the simu-
lation.

6.1 Purpose

The study aims to seek an approach to support smart contract development. Hence,
the simulation aims to understand how different types of agents and their respec-
tive properties influence the models’ outcomes. The output of the simulation pro-
vides findings that can be used to adapt decision-making policies on smart contracts.
These decision-making rules stem from ADICO statements derived from the systems
requirements at hand. ADICO components can be mapped to SOLIDITY constructs
which are used to generate smart contracts. The dynamics that emerge from the sys-
tem are that there will be a sustainable network. Every agent needs an incentive to
contribute to the network to profit from the network. This dynamic can be disturbed
if the incentives are not optimized.

6.2 Entities, state variables, and scales

The entities that make up the simulation are agents interacting as a P2P network.
The agent-based model demonstrates the main features in a peer-to-peer network
on an abstract level. SearchSECO agents, software producing organization agents,
and empirical software engineer agents are three agent types that comprise a virtual
network.

At the core, peer-to-peer network architectures enable resource sharing directly
between autonomous individual network users. Hence, an abstract peer-to-peer net-
work is a simulation for the SearchSECO case study as they share a similar infras-
tructure. The simulation’s resources are most commonly files containing informa-
tion content such as code. No actual data is shared in this simulation but rather

50 Chapter 6. Simulation

arbitrary data in the form of integer values. This decision is made to capture find-
ings based on the ADICO statements were monitoring the content of data (code
fragments) explicitly is not mentioned. More valued are the defining characteristics
of the network, which are resource availability, consumption patterns, and most im-
portantly, reaching an equilibrium state so that the network remains stable under
varying conditions.

6.2.1 Agents

All agents are participants of the network. They use many state variables (Table 6.1).
Each agent has a unique IP address. The starting credits indicate the number of credits
an agent receives before initializing to the network. This parameter indicates an
incentive that serves to lower the entry barrier to participate in the network. The
starting money indicates the capital this type of agent possesses at the start of the
initialization, consumed once consumption for that agent is particularly high and
exceeds the balance ratio. Download rate and upload rate are variables that can be
set to manipulate the equilibrium state of that agent. Lastly, a request distribution and
upload distribution are variables that map to a convenience method that gets a yes/no
decision based on the p-value set when the distribution is created.

TABLE 6.1: Overview of state variables for agents

Parameter Type Default Value

IP Float Random
startingCredits Double 20
startingMoney Double 2
downloadRate Double 0.1
uploadRate Double 0.1
requestDistribution Distribution p-value = 0.1
UploadDistribution Distribution p-value = 0.1

Software producing organizations and empirical software engineers are inher-
ited from the same abstract class, meaning their properties are equal. This allows
mapping goals for both agents while configuring different properties for those agents.
For instance, software-producing organizations could have a higher upload ratio to
the network as they produce more code respective to empirical software engineers.
The goal of SearchSECO agents is to establish a network to which different types
of agents can connect and interact. Furthermore, insights over the whole model are
stored through the SearchSECO agent. For instance, an overall number of uploads
and downloads or the economic balance over time.

Each agent is configured through a series of parameters that can be changed be-
fore initializing the model. Like this, multiple different scenarios can be simulated.
For the first scenario to obtain equilibrium across different agent types, a config-
uration has been provided where software producing organizations and empirical
software engineers have an equal upload and download rate. Furthermore, both
agent types started with an equal amount of credits, and an equal amount of nodes
were configured. However, through a random seed as well as a uniform distribution
based on a probability value, a decision for each node will be made as to whether or
not the node will contribute in a given iteration to the network or not.

6.3. Process Overview and Scheduling 51

6.3 Process Overview and Scheduling

The model performs discrete steps that come in one temporal form, namely ticks.
This process is executed in a serial order. The algorithm listed as Listing A.2 in
the appendix aims to provide a simplified overview of the scheduled process and
serves as a starting point for the simulation. Listing A.2 serves as a reference to the
flowcharts that represent an abstract visualization of the code.

6.3.1 Scheduled Method

FIGURE 6.1: Process flow of the scheduled method responsible for established a
connection.

The model initializes with a process starting from the first tick. This method is
annotated with the scheduled annotation, which can be used to configure and sched-
ule tasks. This translates into a method that is executed at a fixed interval of time.
Figure 6.1 initializes the context of the agent and obtains the projection in which
this agent will serve. Nodes can randomly participate in the network based on a

52 Chapter 6. Simulation

probability configured via parameter. The decision either lets the agent connect or
disconnect from the network. By connection, the agent will perform an action based
on the configuration of that agent. The behavior of the agent is configured through
parameters. A resulting upload or download method is called. Once the down-
load or upload is completed, the process ends. The next process flow details the
upload/download method in more detail.

FIGURE 6.2: Process flow of upload-download scenario.

The process displayed in Figure 6.2 builds further on the scheduled method. This
listing displays how the agents iterate over a collection of objects which are chosen
at random. However, the object must be of the SearchSECOAgent type, meaning that
this type of agent can only establish a relationship with SearchAgents. If the agent
type is not of the SearchAgent type, then an evaluation is done to detect whether
or not all nodes have been iterated. Iteration through nodes either happens as long
as the node is not of the SearchSECO type or if the agent in question cannot supply
the demanded data. Fortunately, if the agent type is of the SearchSECo type and
the agent contains the requested data, the process can continue. A new balance will
be calculated after the agent established a connection to the SearchAgent. Note that
the calculation of the balance depends on a series of factors. This will be further
discussed in Figure 6.3.

6.3. Process Overview and Scheduling 53

FIGURE 6.3: Process flow of the balance update.

54 Chapter 6. Simulation

The process displayed in Figure 6.3 is called once the agent connects to the search-
SECO network, or in other words, the SearchAgent. The responsibility of this method
is to reward or deduct credits to the agent-based upon the action performed. If the
agent uploads to the network, then this agent will be rewarded with credits. Vice
versa, consuming data or downloading results in a deduction of credits. Note that if
the agents do not hold credits, money should be used instead. Once the reserves of
credits and funds are gone, this agent will be removed from the context.

6.4 Design Concepts

The simulator is implemented over Repast Simphony 2.8.0, extending its capabili-
ties to deal with the P2P scenario. Its architecture has three components: a Graphi-
cal User Interface (GUI), an Agent Simulator, and a Network Simulator. Figure 6.4
depicts a GUI screenshot that illustrates its general appearance. The Control toolbar
pertains to the original Repast GUI and allows, among other features, to play the
simulation, pause it or execute it step by step. On the left area. Users can modify
different agent options.
Emergence
In theory, agents will change their behavior based on their reward upon contribut-
ing to the network. The difference in value satisfaction leads to different behavior in
the network. For instance, if an agent needs to perform much work to obtain a small
piece of data or information in return, then the drop-out rate might increase.

Adaption
The model could implement several adaptive traits within agents. Agents might per-
form certain actions based on dependencies. For instance, if tasks A and B results in
an equal amount of effort, but the reward for task A is higher, then the agents might
prefer to perform an action on task A over B. The agent might change their behavior
based on such treats allowing them to satisfy certain values. The model at hand did
not implement such adaption parameters.

Objectives
The agent’s objective is to participate and demand value from the network by con-
tributing a certain effort. The objective might defer from agent to agent. A software-
producing organization might have more interest in uploading to the network but
receiving validation rather than credits. In contrast, an empirical software engineer
might have more interest in gathering data for research.

Learning
The agents in this model do not learn. However, one could learn from the output
by changing the number of agents and their parameters. For instance, when there is
no network balance left after two steps based on altering the number of agents, one
could conclude that more agents are required for a stable or sustainable network.

Stochasticity
There are several stochastic choices. For instance, through a random seed as well
as a uniform distribution based on a probability value, a decision for each node
will be made as to whether or not the node will contribute in a given iteration to
the network or not. The probability is not completely random as they depend on
a probability factor given at the configuration. The probability is a value of one by

6.4. Design Concepts 55

ten. The search for a relationship between the Upload distribution and download
distribution is randomly determined.

6.4.1 Interface

The model’s interface is illustrated in Fig 6.4, where the layout comprises a context,
data loaders, a 2D projection display, and model parameters. The context describes
the hierarchy of the model. This context hierarchy is composed of the projections
associated with the contexts the model uses. The projection display comprises a
continuous space, a grid, and a network. The order of the projection elements does
not matter, and the order of the attributes within also does not matter.

FIGURE 6.4: The Model in Repast Simphony

6.4.2 Styles

The model incorporates different styles for different agents. Software producing or-
ganizations are displayed as blue nodes, whereas empirical software engineers are
displayed as red nodes. The network nodes which represent SearchSECO are dis-
played in orange. Furthermore, the size of each node changes dynamically based on
the number of credits each node owns. In addition, the connection between nodes
is displayed with edges which can either be green for contributing to the network or
red for retrieving from the network.

56 Chapter 6. Simulation

6.4.3 Data Sets & Charts

To interpret the model and the output, thereof an aggregate data set is configured.
The selected data sources added to the data set are of the Agent Type ‘SearchSECOA-
gent’ and a Method ‘getSearchCredits’ on which a sum operation is performed. This
aggregate data can be written to a text sink used in analytical tools such as RStudio.
Furthermore, Time Series Charts inside the tool can be created in Repast Simphony.
The data represents the SearchSECO Network balance over time. The first scenario
aims to hold a stable number of credits so that no power nodes are created.

6.5 Input Data

The model does not use input data to represent processes over time.

6.6 Observations

For the initialization, the default parameters in section entities, state variables, and
scales are used. There can be exceptions, but these will be denoted. To analyze the
simulation, an initialization run will first be done. The abstract values can now be
varied, and by using the initialization run data as a starting point, it is possible to
see how those values influence the simulation. Thereafter the simulation will be run
for a couple of hundred ticks. The model’s output is written to a text sink that can be
interpreted through charts in the simulation or interpreted through statistical tools
to perform deeper statistical analysis.

57

Chapter 7

Outcome

This chapter describes the outcome of the simulations based on the stated scenar-
ios in section 5.3. The chapter describes three scenarios. First, a brief introduction
describes the context of the scenario. Second, the run conditions of the scenario are
given, which describes the agents’ properties. Third, the expected behavior is de-
tailed. Followed by the outcome. Subsequently, the outcome is analyzed, and an
interpretation of the results is given.

7.1 Scenario 1: Towards an Equilibrium State

The scenario in question aims to force software producing organizations to con-
tribute to the system if they wish to demand resources from the system. We
can take a demand-based approach, that when a software producing organization
wishes to read an item from our database, she also needs to add an item. This sce-
nario stems from one of the systems requirements discussed in the case study. This
requirement has been mapped as the first ADICO statement, as seen in Table 5.2.
These decision-making rules stem from ADICO statements derived from the systems
requirements at hand. ADICO components can be mapped to SOLIDITY constructs
which are used to generate smart contracts.

Software Producing Organizations must contribute to the system
if they wish to demand resources from the system or else the agent
runs out of credits and possibly restricted access.

The design of the framework is based on a peer-to-peer sharing network. We
learned that these networks perform well when there the law of supply and demand
is in balance. Supply and demand is an economic model of market value determina-
tion in microeconomics. It assumes that, in a competitive market, the unit value of
a particular good, or other traded object such as labor or liquid financial assets, will
fluctuate until the quantity demanded equals the quantity supplied, resulting in an
economic equilibrium for value and quantity transacted (Gale, 1955). It forms the
theoretical basis of modern economics Gale, 1955, and it forms the theoretical basis
of the first scenario at hand.

7.1.1 Iteration 1: Defining a neutral starting point with one agent

In a first iteration, one SearchSECO agent is simulated together with one software
producing organization agent type. The simulation aims to measure the network
balance in the form of arbitrary credits within a network. In this context, there is little
to no influence on the agent types. The software producing organization agent type
will connect with the SECO agent based on a ten percent probability. The simulation

58 Chapter 7. Outcome

is run for three different periods. That being 100 ticks, 200 ticks, and 500 ticks. The
settings share no difference across each run.

Run Conditions

TABLE 7.1: Run Conditions Iteration 1 - The effect of one agent on the network
balance.

SECO SPO
Ticks Nodes Credits Nodes Credits Up: Down:

100-500 1 30 1 10 .1 .1

In the first iteration, the run conditions serve as a neutral starting point for the
upcoming iterations where more complex scenarios are modeled. The first iteration
displays one SECO node and one software-producing organization node. The SECO
network balance initiates with 30 credits, whereas the software producing organiza-
tion network balance initiates with only ten credits. Furthermore, the upload ratio
is equal to the download ratio, which is 0,1. The translates into a contribution to the
network of ten percent. The simulation is run multiple times between a range of 100
to 500 ticks.

Expectations

Based on the run conditions described in 7.1, one would expect a stable network
balance. Though the network balance might slightly go up or down during the
simulation, one would expect the sum at the end to deviate little from the starting
credits.

Outcome

Figure 7.1 Indicates the number of network credits during the run based on different
time periods while one software producing organization agent is connected to the
network. Figure 7.1d displays the variance of a long-term simulation. The network
balance of the software-producing organization decreases steadily over time, as seen
in Figure 7.1c. At about 300 ticks, the agent loses all of its initial ten credits and can
no longer request data from the SearchSECO network. Hence the curve remains
unchanged after 300 ticks. Note that only long-term simulations are displayed in
future iterations to keep a constant pattern to ease comparison between iterations.

The mean value of the SECO network balance is 36,54, with a minimum value
of 29 and a maximum value of 40. Furthermore, the mean value of the software-
producing organization is 3,46, with a minimum value of zero and a maximum value
of 11.

Interpretation

It was expected to find a stable curve with little to no deviation from the mean value
(36,54) of the network balance. However, as shown in Figure 7.1, it can be concluded
that the network balance could either increase or decrease steadily over a longer
time span. This can be explained by the fact that simulating only one agent does not
contribute enough value to evaluate the effect described as a network. Furthermore,
the simulations are run based on a random seed, which does not guarantee that an

7.1. Scenario 1: Towards an Equilibrium State 59

0

10

20

30

40

0 25 50 75 100
Ticks

C
re

di
ts

SECO Credits

SPO Credits

(A) Balance: short-term

0

10

20

30

40

0 50 100 150 200
Ticks

C
re

di
ts

SECO Credits

SPO Credits

(B) Balance: medium-term

0

10

20

30

40

0 100 200 300 400 500
Ticks

C
re

di
ts

SECO Credits

SPO Credits

(C) Balance: long term

0

10

20

30

40

SECO SPO

C
re

di
ts

SECO

SPO

(D) Comparing balance of software producing or-
ganization with SECO

FIGURE 7.1: Iteration 1 - The effect of one agent on the network balance.

exact normal distribution is delivered through the upload and download distribu-
tion function. The distribution function allows a node to connect and download or
upload to the network based on a probability.

7.1.2 Iteration 2: Increasing Download Ratio

In the second iteration, we aim to evaluate if behavior can be added to an agent. Iter-
ation two aims to evaluate the effect of an increased download ratio of the software-
producing organization agent. Other run conditions remain unchanged in compari-
son to iteration 1.

Run Conditions

TABLE 7.2: Run Conditions Iteration 2 - Increasing download ratio of software
producing organization

SECO SPO
Ticks Nodes Credits Nodes Credits Up: Down:

100-500 1 30 1 10 .1 .2

The parameters for iteration two remain mostly unchanged to iteration one. How-
ever, the Download ratio of the software producing organization agent is doubled
to 20 percent instead of the ten percent seen in iteration one.

60 Chapter 7. Outcome

Expectations

It is expected that for every run performed, the network balance of the software
producing organization agent depletes to zero, while the network balance for the
SECO agent increases to 40. This can be explained by the fact that the software-
producing organization agent obtains only ten credits at the start of the run. Hence
these credits will be added to the SearchSECO network balance.

Outcome

0

10

20

30

40

0 100 200 300 400 500
Ticks

C
re

di
ts

SECO Credits

SPO Credits

(A) Balance increase download ratio

0

10

20

30

40

SECO SPO

C
re

di
ts

SECO

SPO

(B) Comparing variance software producing orga-
nization and SECO

FIGURE 7.2: Iteration 2 - Increasing download ratio of software producing organi-
zation

Figure 7.2a displays the network balance of both the software producing organi-
zation agent and SearchSECO agent. After roughly 300 ticks, the software producing
organization credits deplete to zero, while the SearchSECO network balance totals
40 credits. Figure 7.2b, indicates the variance of iteration 2 through a box plot.

Interpretation

The outcome of the simulation poses no unexpected results based on the expecta-
tions of the model. The simulation shows that by increasing the download ratio of
the software-producing organization agent, the network credits of that agent will
with certainty deplete to zero. This simulation was run multiple times to confirm
this conclusion. Hence the simulation shows evidence that the download behavior
of one agent can be successfully configured.

7.1.3 Iteration 3: Increasing Upload Ratio

Similar to the second iteration, we aim to evaluate if behavior can be added to an
agent. As opposed to iteration two, where the download behavior of an agent has
been configured, the upload ratio of an agent is configured. Hence, the upload ratio
of the software producing organization agent is doubled to twenty percent in itera-
tion three. In contrast, the download ratio is against set back to ten percent, as seen
in Table 7.3.

Run Conditions

Following up on iteration two, the parameters for iteration four remain mostly un-
changed. As opposed to iteration two, the download ratio will be set back to ten

7.1. Scenario 1: Towards an Equilibrium State 61

TABLE 7.3: Run Conditions Iteration 3 - Increased Upload Ratio for software pro-
ducing organization

SECO SPO
Ticks Nodes Credits Nodes Credits Up: Down:

100-500 1 30 1 10 .2 .1

percent, whereas the upload ratio will be double to twenty percent. The simulation
is run between a range of 100 to 500 ticks. The number of nodes for each agent type
remains unchanged, which is one.

Expectations

Based on the run conditions described in 7.3, one would expect the network bal-
ance of SearchSECO to decrease to zero with certainty. On the contrary, the network
balance of the software-producing organization agent should, however, increase.

Outcome

0

20

40

60

0 100 200 300 400 500
Ticks

C
re

di
ts

SECO Credits

SPO Credits

(A) Balance increase download ratio

0

20

40

SECO SPO

C
re

di
ts

SECO

SPO

(B) Comparing variance software producing orga-
nization and SECO

FIGURE 7.3: Run Conditions Iteration 3 - Increased Upload Ratio for software pro-
ducing organization

Figure 7.3a Indicates the number of network credits during a run of 500 ticks
while one software-producing organization agent is connected to the network with
an increased upload ratio. Figure 7.3b displays the variance of a long-term simula-
tion. The network balance of the software-producing organization increases steadily
over time, as seen in Figure 7.1c. At about 100 ticks, the software producing orga-
nization agent doubles its ten credits to twenty. In a very steady fashion, this curve
keeps increasing.

Interpretation

Although it was expected that the balance of the software producing organization
agent would increase, it was not considered that the network balance of Search-
SECO would deplete below zero. However, as no fallback logic is configured if
SearchSECO goes below, the network will have to bear the consequences. It can be
concluded that it could potentially be unwanted that a user becomes a power used
if one keeps performing upload tasks which will damage the network balance of
the network. At this point, we find that finding a good balance is important for a
network to survive.

62 Chapter 7. Outcome

We find that one agent might not be enough to evaluate the effects of a certain
behavior on a network. Hence, in the following iterations, an increased number of
agents will be configured to obtain a more realistic scenario and evaluate the effects
of multiple agents performing tasks on a network.

7.1.4 Iteration 4: Increasing number of agents

As concluded in the previous iterations, it is possible to configure a certain behavior
for an agent type. However, the effects on the network could be rather extreme and
bring the network out of balance since only one node was simulated while striving
for one goal only. That was either uploading or downloading. Hence, to overcome
this barrier, more agents will be added in this iteration.

Run Conditions

TABLE 7.4: Run Conditions Iteration 4 - Increased number of nodes in the network.

SECO SPO
Ticks Nodes Credits Nodes Credits Up: Down:

100-500 5 30 5 10 .1 .1

The parameters for iteration four display an equal download and upload ratio
for the software-producing organization agent. The number of nodes for each agent
type increased from one to five. The simulation is run multiple times for different
time periods ranging between 100 to 500 ticks.

Expectations

By increasing the number of nodes of each agent type, one would expect a more
stable network balance during iteration four. As could be seen in the first iteration,
there was much variance in the network. The simulation could not be predicted
accurately due to the nature of randomization and a probability factor of the distri-
bution to which the agents connect to the network. However, by adding more nodes
to the network and aggregating the network balance of these agents, one would ex-
pect a more stable scenario. During this simulation, the network balance of a single
software-producing organization agent is simulated and makes even more interpre-
tations.

Outcome

Figure 7.4a displays a stable network balance for both the software producing or-
ganization agents and SearchSECO compared to Figure 7.1c. Figure 7.4b concludes
these findings by summarizing this data. The SearchSECO network balance reaches
a minimum of 29 credits and a maximum of 33 network credits. The mean value
of the SearchSECO network credits is 31,54, which is only an additional 1,54 credits
from the starting point. In addition to the SearchSECO network balance and the soft-
ware producing organization network balance, the balance of one single software
producing organization agent in the simulation is simulated. Looking at the data of
the Single software producing organization agent, a minimum number of credits is
measured to be 9. In contrast, the maximum network credits are to be measured at
17 credits towards the 500 tick mark.

7.2. Scenario 2: Altering behaviors - adding complexity 63

0

10

20

30

40

0 100 200 300 400 500
Ticks

C
re

di
ts

SECO Credits

SPO Credits

SPO Credits Single

(A) Stable balance

10

15

20

25

30

SECO SPO SPO Single

C
re

di
ts

SECO

SPO

SPO Single

(B) Comparing variance software producing orga-
nization and SECO

FIGURE 7.4: Iteration 4 - Increased number of nodes in the network.

Interpretation

As we increase the agents, we can tell there is less variance in the data. Hence,
the box plots are very narrow as the min value of 29 credits and the max value
of 33 is very close to the mean value of 31,54 credits. Although the same number
of credits per agent is used as the starting point, the box plots vary greatly due to
increased agents, stabilizing the curve and box plots. Hence, an interesting finding,
more agents equal more stability on the network. Furthermore, one agent’s extreme
behavior has less effect on the network, which can be seen at the 500 tick mark where
a single agent’s software-producing organization credits increase heavily. However,
the aggregated number of credits and, therefore, the linear model remains very flat.

7.2 Scenario 2: Altering behaviors - adding complexity

The first scenario simulates a set of agents connected to the network who share some
data by either uploading or downloading the data. The upload and download ratio
of the empirical software engineer agent type is ten percent. This translates into a
convenience method that gets a yes or no decision. The probability is set when the
distribution is created based on the upload and download ratio for that agent. The
equilibrium state is evaluated in terms of time and network actions during the shar-
ing process. The longer the network remains stable, the better the trustworthiness of
the model. We conclude that the model simulates a fairly stable outcome as the de-
viation of the mean remains within ten percent of the starting point. Only one agent
type interacted with the network in the previous scenario, which prevents gather-
ing more complex insights. The simulation should provide capabilities that can aid
decision-makers in gaining insight into different types of behaviors.

In this scenario, the second type of agent is introduced, which is the empirical
software engineer. The empirical software engineer aims to bring a varying behav-
ior as opposed to the software producing organization. The empirical software en-
gineer will aim to gain knowledge from the network on a theoretical level and thus
download more data from the network. In contrast to the empirical software en-
gineer, the software producing organization aims to potentially upload more data
to the network to gain insights into their data from SearchSECO. For instance, the
software producing organization would push data to the network, evaluated against
security metrics, code quality checks, and potentially a risk score by the SearchSECO
network. Therefore, this scenario aims to keep remain a sustainable infrastructure

64 Chapter 7. Outcome

under the influence of actors with varying behaviors. This scenario stems from
one of the case study requirements. This requirement has been mapped as the sec-
ond ADICO statement, as seen in Table 5.2. These decision-making rules stem from
ADICO statements derived from the systems requirements at hand. ADICO com-
ponents can be mapped to SOLIDITY constructs which are used to generate smart
contracts.

SearchSECO should remain sustainable under the influence of agents
with varying behavior.

7.2.1 Iteration 5: Adding new agent type empirical software engineer

With the fifth iteration, the empirical software engineer is added to the simulation.
Iteration five aims to evaluate if the network could remain stable when multiple
agent types are present. In further iterations, the behavior will be altered to gain
more interesting findings, but for now, the simulation is kept simple to monitor if
any problems arise.

Run Conditions

TABLE 7.5: Run Conditions Iteration 5 - Adding the empirical software engineer to
the network.

SECO SPO ESER (New)
Ticks Nodes Credits Nodes Credits Up: Down: Nodes Credits Up: Down:

100-500 5 30 5 10 .1 .1 5 10 .1 .1

As seen in Table 7.5 run conditions remain similar as seen in Table 7.4. The num-
ber of agents per agent type remains five. In addition, the upload and download ra-
tio remains stable. However, it can be denoted that the empirical software engineer
agent is added to the network with identical properties as the software producing
organization agent type.

Expectations

In the fifth iteration, it is expected that the network balance of SearchSECO has more
variance, as seen in iteration four. This can be expected as the total number of the
agents is doubled. Hence there is a lot more interaction with the network. Compar-
ing this to iteration one, we concluded that a stable network could not be guaranteed
for long-term iterations due to the nature of randomness, as one agent could show
more interest in gaining from the network rather than contributing. However, in it-
eration four, we concluded that by adding more agents to the network, a more stable
network is expected as the balance of the network is aggregated with the number of
agents. Even though that there might be twice as much interaction with the net-
work, the outcome of SearchSECO’s network balance should remain stable despite
more interaction.

Outcome

Figure 7.5a displays the output of the fifth iteration where the empirical software
engineer is added to the network. In contrast to Figure,7.4a this simulation shows a

7.2. Scenario 2: Altering behaviors - adding complexity 65

10

20

30

0 100 200 300 400 500
Ticks

C
re

di
ts

ESER Credits

ESER Credits Single

SECO Credits

SPO Credits

SPO Credits Single

(A) Stable balance

10

15

20

25

30

ESER ESER Single SECO SPO SPO Single

C
re

di
ts

ESER

ESER Single

SECO

SPO

SPO Single

(B) Comparing variance software producing orga-
nization and SECO

FIGURE 7.5: Iteration 5 - Adding the empirical software engineer to the network.

wider variety in the network balance of the SearschSECO agent type (orange line).
However, the final network balance of SearchSECO totals 29,8 credits.

Furthermore, the output of iteration five displays the balance of the software
producing organization agents on the network and the balance of the empirical soft-
ware engineer. In addition to the aggregated sum of network credits, the simulation
displays the network credits of one single agent in addition. The network balance
of the empirical software engineers remains very stable over time, whereas the net-
work balance of the software-producing organizations slowly increases over time.
The network balance of the single software-producing organization, which is simu-
lated, seems to display a high increase in network credits.

Figure 7.5b displays a box plot for every agent type in the network. Both the
aggregated network balance of the empirical software engineer and the single node
contains some outliers. The mean value of the SearchSECO network balance is 29,2,
with a minimum value of 25,67 and a max value of 33 network credits. The mean
value of the empirical software engineer is 10,2, with a minimum value of seven and
a maximal value of 15. Furthermore, the mean network balance of the software pro-
ducing organization is 11,4, with a minimum value of 9,2 and a maximum network
balance of 13,6. However, note that the software producing organization network
balance of a single node is displayed. The mean value of that node is 18,6, with a
minimum network balance of nine and a maximum network balance of 25.

Interpretation

As described in the output of iteration five, it can be concluded that the overall net-
work balance of the SearchSECO network remains stable despite having many vari-
ations in it. This behavior was, however, expected. This is since the network totals
twice as many nodes in the network by adding five empirical software engineer
agents.

As described in the output of iteration five, and as shown in Figure 7.5b, there
is much variance on the single node of the software producing organization agent.
However, having such an outlier is balanced out as the aggregated sum of software-
producing organization agents cancels this extreme behavior. Hence, why the blue
linear line in Figure 7.5a only increases slightly and not extremely.

66 Chapter 7. Outcome

7.2.2 Iteration 6: Adding different behavior to agent types

Previous iterations display the capabilities of the simulation when all agent types
have equal properties. The upload and download ratio is tuned to be in balance.
Both agent types (software producing organizations & empirical software engineers)
have an equal amount of credits.

The following scenario shows the system’s capabilities by configuring the agents
with different properties, making it a complex scenario. The aim is to bring a varying
behavior as opposed to the software producing organization. The empirical software
engineer will aim to gain knowledge from the network on a theoretical level and thus
download more data from the network. In contrast to the empirical software engi-
neer, the software producing organization aims to potentially upload more data to
the network to gain insights into their data from SearchSECO. In iteration five, only
the empirical software engineer agent was introduced but displayed very similar
behavior to the software producing organization agent type.

Hence, in the sixth iteration, the configuration of the empirical software engineer
and software producing organization will be altered to answer the aim of the second
scenario, which is to introduce a demand-based driven behavior for the empirical
software engineer and a producing-based behavior for the software producing orga-
nization.

Run Conditions

TABLE 7.6: Run Conditions Iteration 6 - Demand based empirical software engi-
neer configuration in contrast to producing based software producing organization
configuration.

SECO SPO ESER (New)
Ticks Nodes Credits Nodes Credits Up: Down: Nodes Credits Up: Down:

100-500 5 30 5 10 .2 .1 5 10 .1 .2

In contrast with iteration five, the configuration for iteration six displays a higher
upload ratio of 0,2 for the software producing organization, which is twice as much
as seen in iteration five. Furthermore, the download ratio of the empirical software
engineer is also doubled to 0,2 in contrast to iteration five. Other parameters remain
unchanged in respect to the previous iteration. For each agent type, there will be
five nodes representative in the network. The software producing organization and
the empirical software engineer agent will start with ten network credits, whereas
the SearchSECO agent starts with 30 credits. The simulation is run multiple times
over a time span between 100 and 500 ticks.

Expectations

By configuring the simulation so that software producing organization agents rep-
resent a producing behavior in contrast to the empirical software engineer agent
who represents a demanding behavior, it is expected that the linear models for these
agents are very different from each other. It is expected that the software producing
organization network balance will steadily increase, at the same rate the software
producing organization network balance will decrease. It is expected that this rate
at which there is a demand concerning producing is as high. Hence, one could expect
that the total network balance of SearchSECO would remain stable as the behavior

7.2. Scenario 2: Altering behaviors - adding complexity 67

of the software producing organizations is configured so that it would lift the be-
havior of the empirical software engineer. empirical software engineer agents will
download twice as fast as usual, but software-producing organizations will balance
this behavior by uploading twice as fast.

Outcome

0

10

20

30

40

0 100 200 300 400 500
Ticks

C
re

di
ts

ESER Credits

ESER Credits Single

SECO Credits

SPO Credits

SPO Credits Single

(A) Stable balance

0

10

20

30

40

ESER ESER Single SECO SPO SPO Single

C
re

di
ts

ESER

ESER Single

SECO

SPO

SPO Single

(B) Comparing variance software producing orga-
nization and SECO

FIGURE 7.6: Iteration 6 - Demand based empirical software engineer configuration
in contrast to producing based software producing organization configuration.

Figure 7.6a displays the output of the sixth iteration where the empirical soft-
ware engineer demands twice as much from the network as opposed to the software
producing organization who produces twice as much to the network as described in
the expectations the network balance of the software producing organization, which
is displayed in blue increases twice as much as seen in iteration five. In addition,
the network balance of the empirical software engineer, which is displayed in red,
decreases twice as much as seen in iteration five.

At around 300 ticks, the empirical software engineer runs out of network credits.
At this point, the SearchSECO network balance, which is displayed as an orange line,
will decrease heavily and no longer be stable. Also, the SearchSECO network bal-
ance displayed in orange will decrease and eventually deplete to 15 network credits
at 500 ticks in contrast to the 30 network credits this agent started with.

Figure 7.6b displays a box plot for every agent type in the network. The mean
value of the SearchSECO network balance is 28,2, with a minimum value of 16 and
a max value of 34 network credits. The mean value of the empirical software engi-
neer is 2,9, with a minimum value of zero and a maximal value of 10. Furthermore,
the mean network balance of the software-producing organization is 18,4, with a
minimum value of 9,8 and a maximum network balance of 28,4.

Interpretation

Unlike the expectations of this iteration, it was expected that the network balance
of SearchSECO would remain stable. However, as the empirical software engineer
Agents reach a below zero credit score, they are eliminated from the network; hence,
the software producing organizations will overtake the network and gain power. We
will see an imbalance, and the SECO network will, from that point on, lose credits
and deplete direction zero. This effect can be seen at around 300 ticks in the simu-
lation where the empirical software engineer will hold no more credits and cannot
maintain the contribution to the network.

68 Chapter 7. Outcome

Therefore, users of the network must have the possibility to participate again in
the network despite their behavior. In response to this conclusion, a third scenario
is simulated where financial factors play to mitigate this problem.

7.3 Scenario 3: Financial factors as incentives

The scenario in question aims to request empirical software engineers to pay for
reading access. To make the infrastructure sustainable, we can ask empirical soft-
ware engineers to pay for reading access to our database. The second scenario dis-
plays the effect of complex systems as various agents are performing actions on the
network. This scenario stems from one of the case study requirements. This require-
ment has been mapped as the third ADICO statement, as seen in Table 5.2.

Empirical software engineers should pay for reading access after
losing all credits or else the agent is removed from the network.

These decision-making rules stem from ADICO statements derived from the systems
requirements at hand. ADICO components can be mapped to SOLIDITY constructs
which are used to generate smart contracts.

A financial factor has been added, which the agent will consume if that agent
leans towards a higher download or consumption rate. Hence, if the agent is out of
credits, the agent will be forced to use actual funds. If the agent cannot contribute to
the network and has no more funds, that agent will be removed from the network.

7.3.1 Iteration 7: Financial factors as incentives

In the sixth iteration, behavior is added to both the software-producing organization
to perform more supply to the network. In contrast, empirical software engineers
demand more from the network. One of the findings in iterations six is that the total
network balance of SearchSeco depletes to zero. The reason for this is that agents can
run out of virtual credits. In response to running out of credits, the user will have
no opportunity to demand or participate in the network anymore. Therefore, in this
iteration, a fallback mechanism is added to which agents can use financial credits to
participate with the network.

Run Conditions

TABLE 7.7: Run Conditions Iteration 7 - Financial factors as incentives

SECO SPO ESER (New)
Ticks Nodes Credits Nodes Credits Up: Down: Nodes Credits Up: Down:

100-500 5 30 5 10 .2 .1 5 10 .1 .2

In this scenario, all agents obtained ten network credits as an incentive to partic-
ipate in the network. This translates into the fact that after performing ten consecu-
tive downloads without any upload (or gathering data twice without a return), the
agent will be forced to use actual funds to make further use of the network. In addi-
tion to the network credits, an additional 10 financial credits are given to overcome
the obstacle of network depletion, as seen in iteration six. Other run conditions
remain the same as in iteration six. The software producing organization keeps a
supply-based behavior, whereas the empirical software engineer keeps the demand-
based behavior. This is seen through the configuration. The upload ratio is twice as

7.3. Scenario 3: Financial factors as incentives 69

high as the download ratio for the software producing organization and vice versa
for the empirical software engineer. Multiple simulations are run between a time
span of 100 to 500 ticks.

Expectations

It is expected to have a very similar output for the network balance for all types of
agents to iteration six, up until 300 ticks. This was when empirical software engi-
neers ran out of virtual credits, and in response to that, could no longer participate
in the network. As an incentive, the agents are given ten financial credits, which can
overcome this obstacle. Therefore it would be expected that the financial balance
would rise from that point on for the SearchSECO network.

Outcome

0

10

20

30

0 100 200 300 400 500
Ticks

C
re

di
ts

ESER Credits

ESER Credits Single

ESER Money

ESER Money Single

SECO Credits

SECO Money

SPO Credits

SPO Credits Single

(A) Stable balance

0

10

20

30

1ESER 1ESER$ 1SPO ESER ESER$ SECO SECO$ SPO

C
re

di
ts

1ESER

1ESER$

1SPO

ESER

ESER$

SECO

SECO$

SPO

(B) Comparing variance software producing orga-
nization and SECO

FIGURE 7.7: Iteration 7

Figure 7.7a displays the output of the seventh iteration where the empirical soft-
ware engineer demands twice as much from the network as opposed to the software
producing organization who produces twice as much to the network. In addition,
the agents are given a financial balance that can be used once they run out of virtual
credits to enable engagement with the network.

Firstly the behavior of the single empirical software engineer is described. The
single empirical software engineer is modeled with a light pink color in Figure 7.7a.
At tick 140, an interesting finding can be picked up as the single empirical software
engineer simulated and displayed in light pink loses all his credits. For losing his
virtual credits, this node needs to use financial funding, which can be seen directly
as the yellow line starts inclining. The yellow line represents the financial balance of
SearchSECO, and so this node uses funding instead. This allows the single empirical
software engineer to upload to the network once again, which can be seen at tick
200. At tick 200, the single empirical software engineer contributes to the network
again as its credits rise again. This phenomenon was not possible until the inclusion
of financial reserve. Unfortunately, due to the nature of this agent’s behavior after
about 255 ticks will have demanded so much of the network that both virtual credits,
as well as financial credits (purple line), are used up at tick 300 to which the node
can no longer participate to the network.

Secondly, the collective behavior of all empirical software engineers is described
through the red curve, which represents the network balance, as well as the dark
pink curve, which represents the financial balance in Figure 7.7a. It can be concluded

70 Chapter 7. Outcome

that the collective behavior is the same as for a single empirical software engineer
with one difference. The difference is that the curve is stalled to a later point in
time. This can be explained as the collective nodes will survive simply longer as
some nodes contribute more to the network, as seen for the behavior of the single
node. Nevertheless, in conclusion, similar to the behavior of a single node, it can be
seen that the financial balance of the empirical software engineers starts declining at
about 160 ticks once the virtual credit balance is near zero. The collective empirical
software engineers can contribute longer than 500 ticks in contrast to iteration six,
where these agents already ran out of business.

Thirdly, it was expected that the network balance of SearchSECO would decline
heavily at 300 ticks as this was the result of iteration six. This iteration is also true
where a little bit earlier, at about 250 ticks, the network balance decreases heavily, as
seen in the orange curve. However, at this point, the yellow curve, which represents
the financial credits balance of SearchSECO, started inclining already. SearchSECO
would remain once again stable by aggregating the financial balance with the net-
work credits.

Figure 7.7b shows that the first quartile starts at zero, but the third quartile has
a value of 6,3 financial credits. However, the maximum value is twice as much at
about 13,6 because the financial credits in this scenario can only rise. This would
not be true by adding more complicated behavior to the network. However, the em-
pirical software engineer will run dry of both network credits and financial credits
in this scenario. There is no way to earn financial credits from the network at this
point. However, this could be an interesting finding for the SearchSECO case study
who could use this finding to fund its network maintainability.

Interpretation

The seventh iteration aims to prevent the SECO network from collapsing under the
influence of actors who purely gain from the network. As seen in iteration six, the
empirical software engineer has a very high demand-based behavior, which leads to
the effect that this group of nodes cannot balance out the opposite behavior. That
is the software-producing organization that contributes greatly through supplying
data to the network. In its turn, the software-producing organization is rewarded
with credits, making the network unstable once there are no nodes left who can bal-
ance this behavior out. This can be seen in Figure 7.7a. After about 250 ticks, the
network balance decreases heavily. Fortunately, by introducing financial capabili-
ties, the network can remain stable for a longer period of time and allow the agents
to participate and contribute to the network again. Although not discussed in detail,
the values of the network credits are purely arbitrary, meaning that they do not hold
an actual value. The same goes for the financial credits. In this simulation, both
hold an equal value. However, one could state that by aggregating the SearchSECO
financial balance to the SearchSECO network balance, the network becomes stable
once again.

7.3.2 Summary of Iteration 1 - 7

Table 7.8 describes, in short, the main findings of each iteration. Every iteration is
built on top of the previous iteration to add complexity and better descriptions of
insights into what is happening in that simulation.

7.4. Observations 71

TABLE 7.8: Main findings and lessons learnt from SearchSECO simulations.

Iteration Finding
Scenario 1: Towards an equilibrium state

1 One would expect a stable network balance if the configuration of the agent type holds
an equal upload to download ratio. However, the aforementioned is not true. Due to
a distribution function configured through probability and a random seed, the agent’s
behavior cannot be guaranteed to be stable.

2 By doubling the demand behavior, the network balance of SearchSECO depletes to zero
more rapidly.

3 By doubling the supply behavior, the network balance of SearchSECO increases to a
maximum value of 40 more rapidly. This can be explained as the software-producing
organization starts with 10 network credits transferred to the 30 network credits Search-
SECO initialized with.

4 Increasing the number of nodes for each agent type increases more network stability.
Furthermore, we conclude that extreme behavior of one agent has less effect on the
network as the aggregated sum of network credits cancels this behavior out.

Scenario 2: Altering behaviors - adding complexity
5 Adding an empirical software engineer and the existing software producing organiza-

tion displays more variance on the network balance. The total number of nodes can
explain this is doubled as opposed to the previous iteration. However, even though
there is more variance during the run, the final network balance of SearchSECO totals
29,8 credits which is only a 0,2 difference from the starting point. Hence, the network
is even more stable than it was before.

6 Different from the previous iteration, behavior is added to each agent type. The empiri-
cal software engineer holds a demand-based behavior, whereas the software producing
organization holds a supply-based behavior. It is expected that the network balance of
SearchSECO would remain stable as the agents configured are each other’s negatives.
However, an imbalance could be picked up after a while, and the SECO network will
deplete direction zero. This can be explained as the users who performed a few con-
secutive demands from the network could no longer participate in the network as they
ran out of funding. In respect to this problem iteration, seven or scenario three is intro-
duced.

Scenario 3: Financial factors as incentives
7 The last iteration aims to request agents to pay for access to the network after demand-

ing consequently from the network. This to make the infrastructure sustainable. Hence,
by providing a financial fallback mechanism, we found that SearchSECO could bene-
fit in new ways from their user base by collecting financial credits once the nodes run
out of artificial network credits. In addition, the nodes have a possibility to contribute
to the network rather than purely demanding from the network by paying a financial
amount.

7.4 Observations

The current implementation of an abstract P2P system in Repast Simphony is shown
in Fig 6.4. The model serves as a demonstrably useful educational tool where in-
sights can be obtained by modifying various nodes within a network. The tool is
suitable for learners to show that data is propagated through the nodes in the over-
lay according to predefined behavior. The model also includes analyses facilities
through charts and text-sinks. The text sinks serve as good input for deeper statisti-
cal analysis.

The proposed model demonstrates the important features, such as topology adap-
tion and an unbiased random selection. As seen in Figure ,6.4 the interface de-
sign displays how the nodes interact differently, indicating their relative capacity (in
terms of funds). Furthermore, the model includes a different collection of modifiers
to control the number of nodes in the network and their respective properties.

73

Chapter 8

Findings and Discussion

This chapter forms the discussion around the main findings of studying an agent-
based simulator for optimizing smart contracts. The advantages and the limitations
of the research are discussed based on the findings of the case study scenarios. Im-
plications and Limitations are presented, followed by recommendations which state
future directions for this research.

To reveal the answer to the main research question, a series of findings will be
discussed by answering the sub-questions. These insights indicate how well the
study objectives are achieved.

8.1 Major Findings

Sub-Question 1: How can smart contracts and agent-based modeling be
defined based on prior literature?

The features of smart contracts, as well as agent-based modeling, are defined in
Chapter 3. Figure 3.1 visualizes the working of an ABM through concept diagrams.
Figure 3.5 visualizes the working of a smart contract through a concept diagram.
The concepts of smart contracts and agent-based modeling are defined through def-
initions that are mapped to concept diagrams.

Sub-Question 2: What research into the application of agent-based mod-
eling to smart contract development has already been conducted?

Kolvart, Poola, and Rull (2016) argues that ICT applications work for and against
social interaction, so powerful tools are devised to understand the complexities of
the current socioeconomic system. The study emphasizes observing sociological in-
teractions with a system. Boogaard, 2018 makes use of a model-driven approach
to develop smart contracts. While Boogaard (2018) mentions ADICO as a possible
model-driven approach to design smart contracts, the study in question used a state
machine approach instead and did not dig deeper into the topic of agent-based mod-
eling. The work of (Frantz and Nowostawski, 2016), displays a modeling approach
that supports the semi-automated translation of human-readable contract represen-
tations into computational equivalents is proposed. Frantz and Nowostawski (2016)
identifies smart contract components that correspond to real-world institutions and
proposes a mapping that is operationalized using a domain-specific language to sup-
port the contract modeling process. The work of Frantz and Nowostawski (2016)
serves as a great source of inspiration for this thesis. However, it does not dedi-
cate enough attention to linking agent-based modeling and smart contracts. When
looking at previous work in software development, there are several of the same
concerns with smart contracts, and various ideas have been suggested (Pressman,

74 Chapter 8. Findings and Discussion

2005). Ideas range from sociological analysis to statistical analysis to model-driven
engineering. Nevertheless, it can be denoted that the aforementioned concerns stem
from a lack of understanding of requirements, the transformation of domain infor-
mation (Lucassen et al., 2016). Despite a broad range of interesting research in the
domain of agent-based modeling and smart contract design, there deems little con-
crete research that brings these domains together. To the best of our knowledge,
there is no systematic method to evaluate smart contracts regarding their effective-
ness in finding the optimal method by using agent-based modeling.

Sub-Question 3: What are the requirements for agent-based modeling
and smart contract development?

A set of agents with their attributes and behaviors. Moreover, in Section 3.1.3. A
set of agent relationships and interaction methods: An underlying topology of con-
nectedness defines how and with whom agents interact. Moreover, in Section 3.1.4.
The agents’ environment. Agents interact with their environment in addition to other
agents. Moreover, in Section 3.1.5.

In conclusion, for both agent-based models and smart contracts, the higher-
level system properties arise from the lower-level subsystem interactions. Alter-
natively, basic behaviors (meaning rules followed by agents) create complicated
behaviors (meaning state changes at the whole system level) (Bonabeau, 2002).

Sub-Question 4: What is the most suitable agent-based modeling tool to
support the development of the goal’s requirements?

A big set of various agent-based modeling and simulation programs currently
available and represented in Table C.1 in Appendix C is defined. The evaluation
criteria are described in Table 4.1. The meaning of scalability and development effort
is detailed in section 4.1.1 and 4.1.2 subsequently. To allow the ABM community to
benefit from this research, a repository is created on Github. Furthermore, as seen in
Figure C.1 in Appendix C shows a website that has been deployed to allow for easy
searching based on features.

Sub-Question 5: Can agent-based modeling assist in creating insight into
the decision rules of a smart contract for a complex system?

There is no direct evidence that agent-based modeling creates a concrete insight into
smart contract development. However, we found various interesting findings on
how agent-based modeling and smart contracts can be linked. Both agent-based
models and smart contracts have higher-level system properties that arise from the
lower-level subsystem interactions. Alternatively, basic behavior rules create com-
plicated state changes at the whole system level. We found that institutional gram-
mar could be used to extract functional requirements and system requirements.

Research Question: Can agent-based modeling support the design of
smart contracts by simulating the systems requirements?

This study shows how different domain concepts regarding agent-based modeling
and smart contract design can be mapped, as seen in Figure 3.7. A novel approach
displays how collective ADICO statements are created from functional requirements
at the operational level. Figure B.2, in Appendix B illustrates a method for gathering

8.2. Contributions 75

insights from agent-based simulations which can guide smart contract development.
Hence, agent-based modeling could support the design of a code search community
platform by simulating common source rules on which the platform functions.

This method is summarized as follows:

1. Define case study goals, requirements, and validation criteria.

2. Transform case study criteria to ADICO statements.

3. Select agent-based modeling toolkit.

4. Transform ADICO statements to functional code.

5. Evaluate the Utility function by forming a statistical summary resulting in con-
clusions.

First, case study goals, requirements, and validation criteria are transformed into
ADICO statements. Thereafter an agent-based modeling toolkit is selected. As So-
lidity code for smart contracts can be mapped to ADICO statements and share a
similar abstract level, one could transform these statements to functional code. In
this study, this transformation has been done manually. However, the automatic
transformation could potentially reduce development efforts through transpiling.
Transpiling is the act of taking source code written in one language and transform-
ing it into another language. Meaningless errors will be made if the agent-based
model code is automatically mapped to Solidity code. Lastly, the utility function of
the model is based on the evaluation criteria defined with the case study require-
ments and validation criteria. The goal of the utility function is to write results that
can be interpreted either through a summary, text analysis, or statistical analysis.
Therefrom, we conclude that ABM aids decision-makers in smart contract design.

8.2 Contributions

Mapping ABM and smart contract domain concepts
The first sub-question of this research asks how smart contracts and agent-based
modeling be defined based on prior literature. We find that both concepts heav-
ily depend on a set of rules translated from functional requirements through litera-
ture review. An agent-based model is a computerized simulation of many decision-
makers (agents) and institutions that interact through prescribed rules. Figure 3.7
visualizes how the different domain concepts relate to each other.
Abstraction through Institutional Grammar
A novel approach was utilized to extract architectural information from require-
ments. Institutional grammar was used to comprise a list of ADICO statements from
which conditions could be derived on both an operational and a collective level. The
operational level affects actions and outcomes at the core of the operation. Collective
statements are created to be used at the operational level.

ADICO itself is not a framework nor an automated method to writing either
smart contracts or architecture for defining agents and their rules for an agent-based
model. However, it could bridge the gap between designing agents for an agent-
based model as well as designing smart contracts starting from a collection of
ADICO statements that correspond to the rules of both these entities. This ap-
proach is proven to have potential, which can be seen in the paper “from Institutions
to Code: Towards Automated Smart Contract Generation.” (Crawford and Ostrom,
1995). Also Smajgl, Izquierdo, and Huigen (2008) proposes a sequence where one

76 Chapter 8. Findings and Discussion

could model endogenous institutional rule change for agents. This is done by iden-
tifying the structural components of a general rule from a modeling perspective, fol-
lowed by providing an agent architecture overview. Parts of the proposed sequence
are implemented in a NetLogo model.

To shortly recap, for both agent-based models and smart contracts, the higher-
level system properties arise from the lower-level subsystem interactions. Alterna-
tively, basic behaviors (meaning rules followed by agents) create complicated be-
haviors (meaning state changes at the whole system level) (Bonabeau, 2002). Institu-
tional grammar could be used to extract architectural information from requirements
in the form of ADICO statements. We can define the important domain-specific
constructs by exploring its structural elements between contracts and institutional
grammar and suggest a mapping that simplifies contract generation.
Mapping smart contract domain with agent-based modeling domain
Figure B.2 in Appendix B illustrates how a smart contract definition influences the
simulation outcome based on the rule-based statements defined through a case study.
Firstly, the case study criteria are defined, which results in a goal statement, a col-
lection of rules, and a utility threshold the infrastructure should answer to. Sec-
ondly, These statements from the case study are used as criteria for the agent-based
model’s agents, relationships, and environment. These statements could be trans-
lated to ADICO statements translated in both smart contracts and agent definitions
in the ABM. Thirdly, the ABM tool selection procedure is executed corresponding to
the case study requirements at hand. Finally, the simulation is performed, an eval-
uation is done through a utility function with summarizes. It exports the results of
the data to which analysis can be done, such as statistical analysis. Therefrom, we
conclude that ABM aids decision-makers in smart contract design.
ABM Software for simulating P2P networks
This thesis shows how a decentralized system can be implemented in an agent-
based modeling tool and provides agents with unique properties. The ABM mod-
els a decentralized system with different agents that can resemble a particular be-
havior based on different input types. Furthermore, different group types can be
modeled. For instance, in this work, software producing organizations, empirical
software engineers, and the SearchSECO network are modeled with their typical be-
havior. The model gives insight into the sustainability of the network. Furthermore,
the model gives insight into the effect of ratios of nodes connecting to the network.
The aforementioned insights could help the owner of the network to mitigate imbal-
ance when composing smart contracts. Insights could be the evaluation of growing
power nodes, an imbalance of the upload/download ratio of the network, a deple-
tion of the financial balance of the network. The ABM software serves as a good
starting point for evaluating decentralized networks on which can build further.
Case Study
This study contributes by performing a case study for SearchSECO by gathering in-
sights on the sustainability of the SearchSECO network. The development of agent-
based models and smart contracts is partially embedded in research. However, for
the most part, it is conducted in an online open-source environment in which willing
participants collaborate and expand on the work of others without the need for de-
tailed documentation. A valuable scientifically written overview of the current state
of smart contract design is presented through this case study. Furthermore, smart
contract developers are encouraged by the insights presented in this case study.
Smart contract developers should strive to build high-quality smart contracts as effi-
ciently as possible. The development method supporting this goal could contribute
to the smart contracts’ efficiency, performance, and quality.

8.3. Limitations 77

8.3 Limitations

Many conventional simulators do not offer an easy way to analyze or visualize the
results with larger nodes (Xu, Yu, and Sepehrnoori, 2019). To overcome this bar-
rier, additional scripts to the main implementation of export to another tool are
needed. Nevertheless, the process of analyzing data is straightforward with Repast
Simphony (Garcia and Rodriguez-Paton, 2016). Furthermore, real-time graphs and
text sinks are generated (after configuration), which allows for improved analysis.
To conclude, the simulator comes with a friendly interface, demonstrating the dy-
namic communication between nodes, collecting input fields to customize the simu-
lation, and taking control of the variable inputs and outputs illustrating the current
statistics.

It is noticeable that the time needed in Repast Simphony to implement a peer to
peer like protocol is high. This conclusion is made based on a four-week implemen-
tation span after the requirements were set out. The implementation of the algorithm
was completed with an aggregate of 490 lines of code. In addition, the visualization
and configuration cost another 220 lines of code.

Further limitations of this research are discussed according to the four aspects of
validity for case studies: construct validity, internal validity, external validity, and
reliability (Wohlin et al., 2012).

Firstly, concerning construct validity, one threat can be identified. Construct va-
lidity refers to the degree to which the study measures its claims (Claes Wohlin,
Höst, and Henningsson, 2003). This study adheres to DSR guidelines, as seen in
Section 2.2, and the methodology’s cycles are iterated properly to support the trace-
ability of the design decisions. Additionally, since one researcher performed all anal-
yses, there is no risk of different data interpretation and results. However, one major
threat is found due to the lack of expert interviews. This can be explained by the fact
that the case study was performed on a prototypical project where no historical data
is present. Hence, a truthful discussion about the results of the simulation could not
be established.

Secondly, with internal validity, several threats can be identified. Internal valid-
ity describes the extent to which a piece of evidence supports a claim about cause
and effect within the context of the study (Claes Wohlin, Höst, and Henningsson,
2003). Two important factors play a role in the outcome of the validity of the simula-
tion. Firstly, the sociological aspect of the agents is missing. There are no sociological
rules implemented in the current artifact that describe the agents’ rules within the
system. This means that the adoption rate of agents interacting with the system is
rather abstract and based on artificial input parameters. Second, the input param-
eters do not stem from historical data, which causes an unrealistic output of the
simulation. Lastly, data should hold a relation to either financial or digital currency.
This could be handled through an API endpoint, which retrieves financial data in
time and space. However, this threat is mitigated due to the nature of the case study
where an arbitrary data value has been given.

Thirdly, concerning external validity, there are few threats. The model is imple-
mented of an abstract Gnutella-like P2P system in Repast Simphony. The model
serves as an educational tool where insights can be obtained by modifying various
nodes within a network. The model can be further developed as the system lays a
simple foundation that does not restrict the user to a specific scenario. The system is
highly generalizable and could serve different companies or institutions. The only
aspect which needs modification is the rules and nature of the agent types.

78 Chapter 8. Findings and Discussion

Finally, concerning reliability few threats are discussed. Reliability describes to
what extend the data and analysis depend on the specific researcher and the degree
of decision traceability (Roberts and Priest, 2006). By following the DSR guidelines,
research bias is mitigated to some degree. This is further improved by using Mul-
tivocal Literature Review, which captures both academic and practitioner insights.
The preparation and the analysis activities are documented in detail, and a proto-
col is followed. These protocols leave little interpretations and lower the reliability
threat.

However, even though the procedure of generating ADICO statements based on
institutional grammar is straightforward, the process of translating this into code is
not. There is currently not enough evidence to produce an automated compiler that
transpiles these statements into valid code. Transpiling is a specific term for taking
source code written in one language and transforming it into another language with
a similar abstraction level (Nunnari and Heloir, 2018). Therefore, the mapping be-
tween ADICO statements and conditional code may vary between researchers. One
can hypothesize that automating ADICO statements based on natural language and
transpiling such statements to conditional code would mitigate this threat. How-
ever, there are not enough facts to produce a conclusive statement, but this was to
be expected due to the study’s exploratory nature.

8.4 Future Work

A first barrier to overcome is manual effort activities to determine system require-
ments and functional requirements for the smart contract. This manual effort could
potentially be automated through natural language processing by applying the con-
cepts of institutional grammar. Through natural language processing, this process
could potentially be automated. Natural Language Processing is a subtopic of nat-
ural language processing (NLP) in artificial intelligence that deals with machine
reading comprehension (Dalpiaz et al., 2018). NLP could assist by automatically
translating system requirements into ADICO statements (Tripathy, Agrawal, and
Rath, 2014). If this linguistic structure proves applicable between smart contracts
and agent-based modeling requirements, then automatically deriving such features
is quite straightforward. The effort to transform the statements would be worth
it. Finally, deriving ADICO statements from the requirements facilitates traceability
since the terms and concepts used in the requirements can be easily linked to the
statements.

A second barrier to overcome is lowering the barrier of compiling Java code and
Solidity code and vice versa. Automatic code generation would greatly improve
traceability, automation, and validity. Automatic Code Generation. could lead to
a method that automatically converts smart contract code into Java code which can
be used to simulate the behaviors of that smart contract. In computer science, the
term automatic programming identifies a type of computer programming. Some
mechanism generates a computer program to allow human programmers to write
the code at a higher abstraction level (Mur, 2006). Automation of the manual pro-
cess referred to translation of high-level programming languages can be identified
as a compiler (Parnas, 1985). To be more concrete, one could explore the area of tran-
spiling. A Transpiler is a type of translator that takes the source code of a program
written in a programming language as its input and produces an equivalent source
code in the same or a different programming language (Nunnari and Heloir, 2018).

8.4. Future Work 79

One direction is the generation of validation code based on a more detailed interme-
diary representation of ADICO rules and advanced Solidity-specific concepts.

The most exciting aspect of future work could be the ability to achieve auto-
matic translation of smart contracts. Is it possible for humans or automated entities
to verify a smart contract’s contractual semantics and responsibilities? Is it pos-
sible to produce ADICO-style institutional statements using just the EVM machine
code rather than a high-level language like Solidity? Addressing the aforementioned
questions might clarify whether institutional statements could serve as a vehicle to
determine coordination mechanisms for collective adaptive systems, regardless of
whether smart contracts are encoded by humans or, eventually, by machines.

81

Chapter 9

Conclusion

This research aims to identify if smart contract design can be supported through
agent-based modeling by simulating systems requirements. We found that agent-
based models and smart contracts share high-level system properties that arise from
the lower-level subsystem interactions through systematic literature reviews. In
other words, basic behavior or rules create complicated behaviors or state changes to
the whole system level (Bonabeau, 2002). We learned that institutional grammar is
used to generate ADICO statements from which conditions can be derived on both
an operational and a collective level (Frantz and Nowostawski, 2016).

This study concludes that ADICO statements can bridge the gap between
agent-based modeling and smart contract design by serving as a com-
mon source pool from which decision-making policies are derived on
both operational and collective levels.

This approach is proven to have potential, which can be seen in the paper “from
Institutions to Code: Towards Automated Smart Contract Generation.” (Crawford
and Ostrom, 1995). Also Smajgl, Izquierdo, and Huigen (2008) proposes a sequence
where one could model endogenous institutional rule change for agents. This is
done by identifying the structural components of a general rule from a modeling
perspective, followed by providing an agent architecture overview. Parts of the pro-
posed sequence are implemented in a NetLogo model. Finally, Ghorbani and Bravo
(2016) confirms that institutions significantly contribute to the sustainable manage-
ment of common-pool resource systems.

This study cannot claim that the output agent-based simulations provide con-
crete findings to adapt decision-making policies on smart contracts automatically.
This research did not generate and deploy smart contracts based on a shared code
base with the agent-based simulation. Secondly, a smart contract’s influence should
be evaluated against historical data by comparing the simulation output with the
output of smart contract data. Unfortunately, this data could not be acquired, which
forms a threat to the model’s validity. We learned that ADICO is not a framework
nor an automated method for designing smart contracts. ADICO can not design
agents and their rules for an agent-based model, but it can serve as a common source
pool from which condition can be derived on operational and collective level (Frantz
and Nowostawski, 2016).

Hence, we conclude that agent-based modeling is a foundational tool for
designing smart contracts in new DLT based communities.

The aforementioned conclusions came to stand by following the Design Science
Research approach presented by R. J. Wieringa (2014) in which the research objective
is answered through a series of sub-questions.

82 Chapter 9. Conclusion

In a first step, this study defines smart contracts and agent-based modeling based
on prior literature. A smart contract is defined by the US National Institute of Stan-
dards and Technology as a collection of code and data deployed using cryptograph-
ically signed transactions on the blockchain network (Yaga et al., 2019). Secondly, an
agent-based model (ABM) is a class of computational models for simulating the ac-
tions and interactions of agents to assess their effects on the system as a whole (Miller
and Page, 2009). Furthermore, an agent-based model is a computerized simulation
of many decision-makers (agents) and institutions that interact through prescribed
rules.
This study contributes by visualizing how these commonalities relate to each other, as seen
in Figure 3.7.

This study analyzes What research into applying agent-based modeling to smart
contract development has already been conducted concerning the second research
question. Despite a broad range of interesting research in the domain of agent-based
modeling and smart contract design, there deems little concrete research that brings
these domains together. The research of Kolvart, Poola, and Rull (2016) mentions
both the ABM and smart contract domain, but the research emphasizes the socio-
logical interactions between such systems. An interesting study by Boogaard, 2018
makes use of a model-driven approach to develop smart contracts. While Boogaard
(2018) mentions ADICO as a possible model-driven approach to design smart con-
tracts, the study in question used a state machine approach instead and did not
dig deeper into the topic of agent-based modeling. Further studies which investi-
gate both the domain of ABM and smart contracts such as the work of Frantz and
Nowostawski (2016) or Frantz and Nowostawski (2016) do not dedicate enough
attention between linking agent-based modeling and smart contracts. Lucassen et
al. (2016) argues about a lack of requirements understanding as well as domain in-
formation transformation, which is an important factor in agent-based modeling as
well as smart contract design. This argument can be confirmed by Pressman (2005)
who states that previous work in software development shares the same concerns
as smart contract design. That is a lack of understanding of functional requirements
and a transformation of domain information.
However, the work described in this study adds value in various ways to the knowledge-
based of agent-based modeling and smart contracts. Firstly, this study provides a holistic
description of the principles of agent-based modeling and smart contracts, and it provides
an overview of the current state of research in these domains. Secondly, the work on ABM
and smart contracts is only partially embedded in research. However, for the most part, it
is conducted in an online open-source environment without a need for detailed documenta-
tion (Pressman, 2005). This study’s scientific approach adds value to the current state stat
of smart contract design and agent-based modeling.

In response to the third research question, we found that higher-level system
properties arise from lower-level subsystem interactions for both agent-based mod-
els and smart contracts. Basic behaviors or rules create complicated behaviors. Hence,
agent-based modeling and smart contracts development requirements are consoli-
dated, and commonalities found between smart contracts and agent-based modeling
are modeled through a concept diagram and visualized in Figure 3.7.

Through the fourth research question, we conclude that various agent-based
modeling and simulation programs exist. We concluded that important evaluation
criteria are domain, scalability, agent type, programming language, development ef-
fort, and licensing.
This study contributes to the agent-based modeling community by creating a repository that

Chapter 9. Conclusion 83

lists this data set of tools and their metadata. Furthermore, as seen in Figure C.1 in Ap-
pendix C shows a website that has been deployed to allow for easy searching based on fea-
tures. Access to the data is granted, free of charge, to any person obtaining a copy of the data
without restriction to contribute to the agent-based modeling domain.

Finally, the study encompasses traits to believe that ABM assists in gathering
smart contract development. Institutional grammar can bridge the gap between
designing agents for an agent-based model and designing smart contracts starting
from collecting ADICO statements that correspond to the smart contract require-
ments. This means that insights are gathered through agent-based simulation by
identifying the structural components of a smart contract. Figure B.2 in Appendix B
illustrates how a smart contract definition influences the simulation outcome based
on the rule-based statements defined through a case study.

The research presented provides the following contributions. Firstly, through
literature review, we find that agent-based modeling concepts and smart
contracts concepts heavily depend on a set of rules translated from func-
tional requirements. Secondly, this study shows how different domain
concepts regarding agent-based modeling and smart contract design can
be mapped, as seen in Figure 3.7. Thirdly, abstraction of requirements
through institutional grammar displays how collective ADICO statements
are created from functional requirements to be used at the operational
level. Furthermore, figure B.2, in Appendix B illustrates a method for
gathering insights from agent-based simulations which can guide smart
contract development. Additionally, this study generates open source
software that simulates a decentralized system as an agent-based model
through Repast Symphony. The model gives insight into the sustainabil-
ity of a P2P-like network. In addition, the model gives insight into the
effect of ratios of nodes connecting to the network. The aforementioned
insights could help the owner of the network to mitigate imbalance when
composing smart contracts. The ABM software serves as a good starting
point for evaluating decentralized networks on which can build further.
Second, to last, to allow the ABM community to benefit from this re-
search, a repository with ABM available ABM tools is created on Github.
Furthermore, as seen in Figure C.1 in Appendix C shows a website that
has been deployed to allow for easy searching based on features. Lastly,
This study contributes by performing a case study for SearchSECO by
gathering insights on the sustainability of the SearchSECO network. A
valuable scientifically written overview of the current state of smart con-
tract design is presented through this case study.

The aforementioned contributions display that progress was made in smart con-
tract development by analyzing the possibilities with agent-based modeling. How-
ever, not all results are fully conclusive. The activities to determine system require-
ments and functional requirements for the smart contract are currently manual ef-
forts. Through natural language processing by applying the concepts of institutional
grammar, manual labor could be mitigated. Furthermore, the models’ validation
would benefit from historical data as well as expert interviews. Finally, a method
to lower the barrier of compiling Java code and Solidity code and vice versa would
greatly improve traceability, automation, and validity.

84 Chapter 9. Conclusion

Acknowledgements

First and foremost, I want to thank Dr. Slinger Jansen and Dr. Frank Dignum for
their guidance, feedback, comments and discuss possibilities. I want to thank Dr.
Slinger Jansen, who allowed me to do this fascinating project. Secondly, a special
thanks to the SecureSECO project. The SecureSECO project collaborates between
five companies and five universities with over 10 researchers and tool developers
who collaboratively contribute to the vision of a safer and more secure worldwide
software ecosystem. Academic research is performed, participation in hackathons,
and academic research data providence for other research groups about software.
Lastly, I would like to thank my family, particularly Dorna Alvandi, who helped
me a lot with the mental burden of dealing with the issues during these COVID-19
times.

85

Appendix A

Structure of a smart contract

SOURCE CODE A.1: Structure of a Solidity source file which serves to provide a
quick overview of State Variables, Functions, Function Modifiers, Events, Struct
Types and Enum Types declarations

1 // SPDX-License-Identifier: GPL-3.0
2 pragma solidity >=0.4.0 <0.9.0;
3

4 contract SimpleStorage {
5 //State Variables
6 uint storedData;
7

8 // Function
9 function bid() public payable {

10 // ...
11 }
12

13 // Modifiers
14 address public seller;
15 modifier onlySeller() { // Modifier
16 require(
17 msg.sender == seller,
18 "Only seller can call this."
19);
20 _;
21 }
22 function abort() public view onlySeller { // Modifier usage
23 // ...
24 }
25

26 //Events
27 event HighestBidIncreased(address bidder, uint amount); // Event
28 function bid() public payable {
29 // ...
30 emit HighestBidIncreased(msg.sender, msg.value); // Triggering

event↪→

31 }
32

33 // Structs
34 struct Voter { // Struct
35 uint weight;

86 Appendix A. Structure of a smart contract

36 bool voted;
37 address delegate;
38 uint vote;
39 }
40

41 //Enums
42 //enum State { Created, Locked, Inactive } // Enum
43 }

SOURCE CODE A.2: Scheduled Method - Connecting, uploading and updating net-
work balance code snippets

1 @ScheduledMethod(start = 1, interval = 2)
2 public void tick() {
3 Context<Object> context = ContextUtils.getContext(this);
4 Network<Object> network = (Network<Object>)

context.getProjection("searchNetwork");↪→

5 if (config.UploadDistribution.getDecision()) {
6 upload(network, context);
7 }
8 if (config.RequestDistribution.getDecision()) {
9 download(network, context);

10 }
11 }
12

13 public void upload(Network<Object> network, Context<Object> context) {
14 searchAgent = (SearchSECOAgent)

context.getRandomObjects(SearchSECOAgent.class,
1).iterator().next();

↪→

↪→

15 network.addEdge(searchAgent, this, 1);
16 updateBalance(true, searchAgent,context);
17 }
18

19 public void download(Network<Object> network, Context<Object>
context) {↪→

20 searchAgent = (SearchSECOAgent)
context.getRandomObjects(SearchSECOAgent.class,
1).iterator().next();

↪→

↪→

21 network.addEdge(this, searchAgent, 2);
22 updateBalance(false, searchAgent,context);
23 }
24

25 public void updateBalance(boolean upload, SearchSECOAgent
searchAgent,Context<Object> context) {↪→

26 if(upload) {
27 credits += 1;
28 searchAgent.credits -= 1;
29 }
30 else {
31 if(credits > 0)
32 {
33 credits -= 1;
34 searchAgent.credits += 1;
35 }

Appendix A. Structure of a smart contract 87

36 else if(credits == 0) {
37 if(money > 0) {
38 money -= 1;
39 searchAgent.money +=1;
40 }else {
41 context.remove(this);
42 }
43 }
44 }
45 }

89

Appendix B

Process Deliverable Diagrams

FIGURE B.1: Visualization of the research approach using a PDD. The process view
is displayed on the left-hand side based on a UML activity diagram, where the
right right-hand side of the diagram displays the deliverables based on a UML
class diagram (Weerd and S. Brinkkemper, 2009).

90 Appendix B. Process Deliverable Diagrams

FIGURE B.2: The figure illustrates how the smart contract definition influences the
outcome of the simulation based on the rule-based statements defined in the case
study.

91

Appendix C

ABM Tools
For more information about ABM Tool Characteristics and definitions, see Chapter 4.

FIGURE C.1: https://peirstom.github.io/

92
A

ppendix
C

.
A

BM
Tools

TABLE C.1: Question Guideline used to formulate requirements of the case study.

Tool Dev Effort Scalability License Type of Agents Programming Language Domain

Agent Cell H H GPL Reactive java interlinks among behaviour of individual cells and stochastic intracellular processes
Agent Factory M M LGPL Mobile; reactive; belief-desire-

intention; Bespoke; Deliberative
java Rapic prototyping visualisation, testing, debugging, and deployment of multi-agent

based systems for social network analysis
AgentScript L S GPLV3 Turtles Model libraries and add-ons available, CoffeeScripts

directly within the browser
Minimalist ABMS framework based on netlogo agent semantics for social sciences,
education/learning

AgentSheets L S - M Proprierty Reactive visual drag drop conversational programming inter-
face

teaching agent-based simulations to students in social studies, mathematics, natural
sciences, social sciences

Altreva Adaptive
modeler

L H Proprierty Reactive; Evolutionary Visual model deployment, easy to use drag and drop
user interface, real-time charts and plots to visualise
model evolution, behaviour and performance, user
configurable, genetic programming engine for trad-
ing rules creation

Financial market’s simulation models for the purpose of forecasting prices of real
world market traded stocks or securities

Anylogic M H Proprierty Java Classes Java UML-RT, user friendly graphical environemnt
for visual model development

Interactive 2D/3D simulations in manufacturing business strategy and innovation
analysis, transportation, healthcare social sciences, economics, urban dynamics,
supply chains, computer networkds, logistics, warehousing, power grids, complex
adaptive dynamic discrete event systems

AOR Simulation M H GPL Cognitive Java; JavaScript Agent-based discrete event simulations, management, social sciences, economics, bi-
ology

Ascape M M - H BSD Java Classes Models library’s built-in routines available, java ec-
plise

General-purpose modelling and simulation, social science, evolutionar, game theory,
organizational processes, economics, anthropology, sociology political science

BehaviourComposer L S - M BSD Prototyp; scheduler models library consisting of modular code fragments
micro behaviours independent processes threads or
repeatedly scheduled events avaiable. In Ajac,
javascript and XML, netlogo programming language,
can use extensions api thereby making calls to java-
based routines

2D/3D basic simulations in social/natural sciences

Brahms H H Open Source Cognitive, Belief-Desire Intention BDI Language Multi-agent based system to model and simulate people’s activity and situated be-
haviour (location, artifacts, communication) and collaboration/coordination in or-
ganizational processes

Breve M M GPL Stimulus responsive simple mobile
agents

Python Builds 3D simulations of agent-based systems representing artifical life

Bsim H H OSI-MIT Reactive Behavioural agents Java Simulations in 2D/3D related to: stohastic interactions of bacterial populations and
particles in a fluids, multi-cellular computing in synthetic bioloigy

CloudSim M H GNU Lesser GPL Logic of agent/objects implemented
as policies for cloud, provisioning,
scheduling, migration

Java; IDE eclipse Modelling and simulation of cloud computing / virtualised datacentre based infras-
tructures and services

Cormas M M Open Source Agents/objects implemented as class
constructs

SmallTalk Simulations of natural renewable resource management, geographic information
systems, marketing, ecology

CRAFTY M M - H Open Source Configurable spatical data structures
as objects (cells/regions) with differ-
ent production functions in thresh-
olds, component role-based agents

R Simulations of a wide range of land uses and logistics (goods/services)

CybelePro M H Proprierty Reactive agent/objects implemented
as java classes

Java-based cybelePro API Modelling and simulations of high performance infrastructures and large-scale dis-
tributed systems (such as robotics, planning and scheduling, communication net-
work systems and cross-enterprises, data-mining, control of air and ground trans-
portation systems)

D-Omar H H Proprierty Cognitive agents SCORE (a procedural language) Simulation development environment designed to explore and model human multi-
ple task-based behaviours (air-crew air-traffic control and communication)

DigiHive H M Proprierty Evolutionary Prolog Simulations of artificial life, emergent phenomena, self-adaption, self-replication
Echo H H Open Source Adaptive Evolutionary agents C Simulation environments for complex adaptive systems, ecological modelling
Table C.1 – Continued on next page

A
ppendix

C
.

A
BM

Tools
93

Table C.1 – Continued from previous page
Tool Dev Effort Scalability License Type of Agents Programming Language Domain
EcoLab H H Open Source MPI-based agents implemented as

C++ classes
C++ Simulations of complex dynamics of evolution

Envision M M Open Source Reactive Behavioural agents C++ Multi-paradigm GIS (Geographic Information System based tool for analysing
scenario-based coupled natural/human resource systems and community/regional
integrated planning and environmental assessments

Eve M S - M Open Source Agents/objects implemented as Java
classes

Java General multi-purpose modelling and simulations

ExtendSim M S - M Proprierty Object oeriented agents or entities in-
teracting via discrete events

ModL 2D/3D simulations in a variety of fields (business, industry, healthcare, meteorology,
air defence, and academic)

FLAME M H GNU Lesser GPL Agents as objects characterized by
states functions and sets of variables

GUI General multi-purpose simulations (cellular automata, economics, biology, medical,
traffic, situations)

FLAME GPU H H GPU Reactive processing agents as commu-
nicating X-Machines with inputs and
outputs

CUDA 3D simulations for emergent complex behaviours in biology/medical domains (tis-
sue cultures and signaling pathways) with multi massive amounts of agents on GPU

FlexSim L S - M Proprierty Agents/objects implementd as C++
classes

FlexSim’s library of standard customizable objects
available

2D/3D simulations for manufacturing, production, distribution of logistics, supply
chains, transportation, oil field or mining process, networking data flow, healthcare
optimizations with OptQuest plugin

Framsticks L S GPL LGPL Evolutionary Java Runtime Environments 2D/3D simulations of evolving agent-based systems and articicla life for research
and education

Gama M M - H GNU Gplv2 Reactive Behavioural agents GAML 2D/3D modelling and development platform for building spatially explicit
agent0based simulations (arbitrary complex GIS data as the bases of agents), land-
use and land-planning, social instituational, economical ecological or biophysical
systems

GALATEA M M Open Source Logic-based agents or objects (as
observe-reason-act-processes)

Java Modeling and simulatino of discrete -event simulation, continuous, combined and
multi agent systems e.g. hardware and software co-design, communication, systes,
manufacturing systems, biology, sociology, economics

GridABM H H GPL Reactice, BDI agents Java High-performance agent-based distributed cellular automation models based on
repast

GROWLab M S - M Open Source Agents/objects implemented as Java
classes

Java Social phenomena

HLA_Agent H H Open Source Reactive, Deliberative, Cognitive
agents

C++ Complec adaptive systems, evolutionary computation, social and naturaal sciences,
mapping passenger flow, manufacturing military combat scenarios, high perfor-
mance computing

HLA_RePast H H Open Source Reactive/BDI object oeriented agents Java Cellular automata, complex adaptive ystems, evolutionary computation, social and
natural sciences, mapping passenger flow, manufacturing military combat scenarios,
high performance computing

IDEA M M Open Source Reactuve, proactive, deliberative
agents

Java IDE Applied sciences (knowledge based systems, multimedia, micro-grid operation, dis-
tributed network management, ubiquitous care-support or assisted services, infor-
mation retrieval)

InsightMaker M S - M GPLV3 Reactive Behavioural agents JavaScript Differntial equation or dynamical systems modelling, such as spatially-aware model
of infectious disease spread

JAMEL L S GPL Reactive Java Building agent0based macroeconomic simulations
JAMSIM M M Open Source Agents composed as a scapes hierar-

chy or collectino of agents that repre-
sent basic building blocks such as an
offspring parent, or household nit

Casper model implementation in Java Dynamic discrete-time policy-oriented microsimulation government projects (taxa-
tion/pensions)

Janus M M GPLv3 Recursive holon agent (composed of a
set of structures + Various agents as
extra-modules)

Groovy, Javascript, Ruby, Python General purpose platform with organizational and holonic agent0based simulation
layers

JAS L M GNU LGPL Agents/objects implemented as Java
classes

Java Simulations of dynamic social systems, genetic algorithms and neural networks

JASA M M GPLv2 Adaptive trading agents Java Simulations of computational economics
JAS-mine M M Open Source Agents/objects implemented as Java

classes
Java Simulations of data-driven models, discrete-event/continuous simulation, dynamic

microsimulations of specific processes (aging, educational choices, labor market
events, houshold fomrations), statistical analysis

Table C.1 – Continued on next page

94
A

ppendix
C

.
A

BM
Tools

Table C.1 – Continued from previous page
Tool Dev Effort Scalability License Type of Agents Programming Language Domain
JCASim L S Proprierty Interactive Reactive agents Java Microscopic cellular automata simulated in different lattices 1D/2D/3D
jES L S Open Source Objects or decision nodes based on

independent piece of code or ac-
tion rules and algorithms to represent
agents as avatars of actual people

Java Simulations in the context of enterprise behaviour and activities

LSD M H GPL Agents/objects implemented as C++
classes

C++ LSD language in Eclipse Economic and social science simulations; can generate multiple formats for graphs:
time series, cross-section, 2D and 3D scatter plots, frequency histograms

MACSimJX M M Proprierty JADEs (Java Agent Development
framework and FIPA-complian agent
classes)

C/C++ or Java Modelling and simulation environment integrated with Matlab-Simulink for devel-
oping dynamic, embedded, decentralised control systems. E.g. aircraft Boeing 747
sensor unit’s flight dynamics and kinematics undergoing a complex series of manou-
veres using JADA (an environment for developing agents)

MASON H M-H Open Source Agents/objects implemented as Java
classes

Java General multi-purpose 2D/3D simulations (social complexity, physical and abstract
modelling, artificial intellgince, robotics and machine learning)

MASS M H Proprierty Agents/objects implemented as Java
classes

Java General purpose distributed simulations (complex social economic system, traffic
situations)

MASyV H M Open Source Agents/objects inplemented as C
class constructs

Client simulations in C language trough GUY repre-
sentatino of client simulations

2D/3D visualisations of cellular automate

Mathmatica (Wol-
fram)

M M Proprierty Agents/objects implemented as class
constructs

Wolfram multi paradigm programming language and
its interface with C/C++/Java

Simulation of social and behavioural sciences, customer movements in a store, com-
plex adaptive social systems or articial societies.

MATSim H E GPL Agents/objects implemented as Java
classes

Java Simulations of transport mobility systems and Geographical Informatino Systems
(GIS) Based evacuation scenarios

MESA M S - M Apache 2.0 Agents as class constructs (having a
unique identifier consisting of vari-
able and actions)

Python General purpose artifical life related simulations (Basically, Meas is a Python 3 based
alternative to Netlogo, Repast, or MASON)

Mimosa M M LGPLv2, CIRAD Agents/objects implemented as java
classes

Java Building conceptual models for running the economic, ecological, social simulations

MIMOSE M M GPL Agents/objects implemented as java
classes

A model description language GUI Simulation in social sciences, epidemiology, eductation/research

MOBIDYC L S GPL Agents/objects implemented as class
constructs

Smalltalk Academic simulations in ecology, cellular automata, biology, and environment

Mobility Testbed M M GPL Agents/objects implemented as class
constructs

Java Simulations for transportation networks, activities, life-cycles and mobility. Multi-
modal route and journey planning services

Modgen M M Proprierty Agents/objects implemented as
linked actors having specific charac-
teristics as states/events

C++ Modgen Language Dynamic social science microsimulations for the socio-economic and demographic
development of societies

NETLOGO L M GPL Active objects with simple goals im-
plemented as mobile agents (tutles,
patches, links and the observer)

NetLogo Language 2D/3D simulations in social and natural sciences, teaching/research

OBEUS M M Proprierty Agents/objects implemented as C++
classes

Microsoft.NET languages C#, C++, Visual Basic Simulations of Geographic Automata Systems (GAS) or urba or regional planning
areas.

Pandora M H Proprierty Agents/objects implemented as
C++/Python classes

Python or C++ High-performance computing environments, GIS support, social and environmental
phenomena archeaology

PDES-MAS H E Open Source Situated agents as MPI-based agent
Logical Processes ALPs implemented
as C++ classes

C++ Complex adaptive systems, social and natural sciences, mapping passenger flow,
manufacturing military combat scenarios, high performance computing

PedSim L S GPL Agents/objects implemented as C++
classes

C++ Simulation system and library for microscopic pedestrian crowd mapping

PS-I L S GPLv2 Agents/objects implemented as class
constructs

Models Library available, declarative model specifi-
cation language; TCL/TK scripts to apply graphic ef-
fects

Simulations of political phenomena, cultural, psychological, administrative, geo-
graphical, and other social factors

Repast-J H H BSD Reactive/BDI object-oriented agents Java; C# managed C++ Lisp Prolog Visual Basic .NET
python

Simulations of social networks and integrated support for GIS, genetic algorithms

Repast HPC M - H E BSD Reactive/BDI object oeriented agents Standard or Logo-styel C++ Simulations incomputational social sciences, cellular automata, complex adaptive
systems.

Table C.1 – Continued on next page

A
ppendix

C
.

A
BM

Tools
95

Table C.1 – Continued from previous page
Tool Dev Effort Scalability License Type of Agents Programming Language Domain
Repast Simphony H H BSD Reactive/BDI object-oriented agents Java, Groovy, ReLogo (Repasts’s NetLogo-like lan-

guage)
2D/3D simulations in social sciences, consumer products, supply chains, GIS, cellu-
lar automata, complex adaptive systems

Scratch L S GPLv2, CC-BY-SA
2.0 License

Sprites or objects encapsulating state
and behaviour

Programming scripts made by snapping graphical
chunks/blocks in the form of stacks

Self-directed creative learning software for students and educators to make 2D/3D
animated games in social sciences, geography, mathematics, linguistics, arts, com-
puter science

SeaS M S EULA Agents/objects implemented as C++
classes

Tactical Programming Language TPL 2D/3D simulations of complex adaptive systems, military war-fighting scenarios

SeSam L H LGPL Agents/objects implemented as java
classes

Visual Modelling Language Simulations in social sciences (logistics, production, traffic, passenger flow, health-
care, biology, urban planning), research/teaching

SimAgent H H MIT/XFREE86 Reactive, Deliberative, Cognitive
agents

Robust extensible multi-purpose coding format
which support programming in Prolog, Common
Lisp or standard ML

Simulations in research/education social sciences (biology, psychology) evolution-
ary computation

SimBioSys M M ALA Agents/objects implemented as C++
classes

class librearies available in C++ Evolutionary simulations in biological and social sciences

SimEvents(Matlab) M M - H Proprierty Collectino of independent object oe-
riented agents/entities interacting via
discrete events

SimEvents with Matlab Simulink and stateflow func-
tions libraries, toolboxes and add-ons in MATLAB
coding syntax

Simulations to optimize supply chain processes for manufacturing and operations,
forecasting, capacity, planning aerospace, automotive mission plans.

Simio M M - H Proprierty Agents as objects characterized by
properties states and behaviours

Standard object libraries available built-in GUI 2D/3D simulations in advanced predictive analysis tourist flow, manufacturing, mil-
itary solutions, production, scheduling, transportation, logistics, supply chain, min-
ing, industry, healthcare, maritime/ports airfreight services, optimizations with Op-
tQuest

SimJr L S BSD Cognitive agents JavaScript Simulations of air and ground forces, military scenarios, different aspects of human
behaviours or actions modelling, command and control modules intelligence analy-
sis and informatino visualisation.

SimSketch L S Proprierty Reactive Behavioural agents Java Web Start (JavaWS) Educational relevant scientific phenomena for young learnerns
Simul8 M M - H Proprierty Agents as physical logical or activity-

based objects
Visual Logic 2D/3D simulations in education healthcare, manufacturing, logistics, contact cen-

tre or client-based services, supply chains, capacity planning, administrative work-
flows, optimization with OptQuest plugin

SOARS L S Open Source Role-Based Agents Javascripts Simulations of social, business, public health and organizational system, GIS, epi-
demiology

StarLogo L S Clearthrough
Software License
V1.0

Procedural agents having a range of
potential functions

Template wizzard available for creating different
types of active objects or turtles with simple goals

Simulation in social and natural sciences, education, for depicting the behaviour of
decentralized models (bird flocking, traffic jamming, and ant colony formations)

StarLogo TNG L S Proprierty Procedural agents having a range of
potential functions

StarLogo TNG block based scripting - GUI 3D simulations of educational models and video games

Sugarscape L S GPL Agents/objects implemented as java
classes

Java Simulations in social sciences, cellular automata, education

Swarm H E GPL Collection (swarms) of independent
object-oriented agents interacting via
discrete events

Objective-C; Swarm code; Java Biological sciences; supply chain optimization and logistics; consumer behaviour
with social network effects; distributed computing workforce/traffic/portfolio man-
agement

TerraME M M Open Source Agents/objects implemented as
C++/Lua scripts classes

TerraMe’s modelling models libraries and API Multi-paradigm spatial dynamical systems, cellular automata, GIS, terrestrial sys-
tems, land change, hydrologic, species dispersion, climate models

UrbanSim M H GNU Agents/objects implemented as class
constructs of Python-based cus-
tom domain-specific programming
language "Tekoa"

Model librry available on Opus-based GUI Support planning, analysis and modelling of urban developmnet/land use/ trans-
portation/ housing affordability/ environmentally sensitive habitats and green-
house gas emissions

VisualBots L S EULA Agents/objects implemented as class
constructs

GUI in Excel VBA Simulations in social and political science, economics, emergent behaviours, cellular
automata, educations and teaching

VSEit L M Proprierty Agents/objects implemented as java
classes

Java Social sciences (ecology and economy), object-oriented stochastic event-drive simu-
lations, cellular automate) and education and teaching

Xholon M M LGPL Reactive Behavioural agents XML/JAVA support for UML; Turtle geometry using
an optional NetLogo-like syntax

2D/3D simulations in cellular automata, biology, biochemistry, statistical modelling,
controllers and other embedded systems.

97

Bibliography

Abar, Sameera, Georgios K Theodoropoulos, Pierre Lemarinier, and Gregory MP
O’Hare (2017). “Agent Based Modelling and Simulation tools: A review of the
state-of-art software”. In: Computer Science Review 24, pp. 13–33.

Adams, Jean, Frances C Hillier-Brown, Helen J Moore, Amelia A Lake, Vera Araujo-
Soares, Martin White, and Carolyn Summerbell (2016). “Searching and synthe-
sising ‘grey literature’and ‘grey information’in public health: critical reflections
on three case studies”. In: Systematic reviews 5.1, p. 164.

Adams, Mike, Shannon Bearly, David Bills, Sean Foy, Margaret Li, Tim Rains, Micheal
Ray, Dan Rogers, Frank Simorjay, Sian Suthers, and Jason Wescott (2014). “An in-
troduction to designing reliable cloud services”. In: Microsoft Corporation, pp. 1–
14.

Afonso, Margarida, Regis Vogel, and Jose Teixeira (2006). “From code centric to
model centric software engineering: practical case study of MDD infusion in a
systems integration company”. In: Fourth Workshop on Model-Based Development
of Computer-Based Systems and Third International Workshop on Model-Based Method-
ologies for Pervasive and Embedded Software (MBD-MOMPES’06). IEEE, 10–pp.

Alharby, Maher and Aad Van Moorsel (2017). “Blockchain-based smart contracts: A
systematic mapping study”. In: arXiv preprint arXiv:1710.06372.

Arthur, W Brian (2018). The economy as an evolving complex system II. CRC Press.
Axtell, Robert (2000). “Why agents?: on the varied motivations for agent computing

in the social sciences”. In:
Axtell, Robert L, Clinton J Andrews, and Mitchell J Small (2003). “Agent-based mod-

els of industrial ecosystems”. In: Rutgers University, October 6.
Bagni, Raul, Roberto Berchi, and Pasquale Cariello (2002). “A comparison of sim-

ulation models applied to epidemics”. In: Journal of Artificial Societies and Social
Simulation 5.3.

Boehm, Barry, Bradford Clark, Ellis Horowitz, Chris Westland, Ray Madachy, and
Richard Selby (1995). “Cost models for future software life cycle processes: CO-
COMO 2.0”. In: Annals of software engineering 1.1, pp. 57–94.

Bonabeau, Eric (2002). “Agent-based modeling: Methods and techniques for simu-
lating human systems”. In: Proceedings of the national academy of sciences 99.suppl
3, pp. 7280–7287.

Borshchev, Andrei, Sally Brailsford, Leonid Churilov, and Brian Dangerfield (2014).
“Multi-method modelling: AnyLogic”. In: Discrete-event simulation and system dy-
namics for management decision making, pp. 248–279.

Braun, Virginia and Victoria Clarke (2012). “Thematic analysis”. In: APA handbook
of research methods in psychology, Vol 2: Research designs: Quantitative, qualitative,
neuropsychological, and biological. 2, pp. 57–71.

Brinkkemper, Sjaak (1996). “Method engineering: engineering of information sys-
tems development methods and tools”. In: Information and software technology
38.4, pp. 275–280.

Brown, D and H Geist (2006). “The earth’s changing land: An encyclopedia of land-
use and land-cover change”. In: CT: Greenwood Publishing Group Westport.

98 Bibliography

Buterin, Vitalik et al. (2014). “A next-generation smart contract and decentralized
application platform”. In: white paper 3.37.

Cachin, Christian et al. (2016). “Architecture of the hyperledger blockchain fabric”.
In: Workshop on distributed cryptocurrencies and consensus ledgers. Vol. 310. 4.

Cannarsa, Michel (2018). “Interpretation of Contracts and Smart Contracts: Smart In-
terpretation or Interpretation of Smart Contracts?” In: European Review of Private
Law 26.6.

Carley, Kathleen M, Douglas B Fridsma, Elizabeth Casman, Alex Yahja, Neal Alt-
man, Li-Chiou Chen, Boris Kaminsky, and Démian Nave (2006). “BioWar: scal-
able agent-based model of bioattacks”. In: IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans 36.2, pp. 252–265.

Clack, Christopher D, Vikram A Bakshi, and Lee Braine (2016). “Smart contract tem-
plates: foundations, design landscape and research directions”. In: arXiv preprint
arXiv:1608.00771.

Crawford, Sue ES and Elinor Ostrom (1995). “A grammar of institutions”. In: Amer-
ican political science review, pp. 582–600.

Crooks, Andrew T and Christian JE Castle (2012). “The integration of agent-based
modelling and geographical information for geospatial simulation”. In: Agent-
based models of geographical systems. Springer, pp. 219–251.

Cruzes, Daniela S and Tore Dyba (2011). “Recommended steps for thematic synthe-
sis in software engineering”. In: 2011 international symposium on empirical software
engineering and measurement. IEEE, pp. 275–284.

Daian, Phil (2016). “Analysis of the DAO exploit”. In: Hacking, Distributed 6.
Dalpiaz, Fabiano, Alessio Ferrari, Xavier Franch, and Cristina Palomares (2018). “Nat-

ural language processing for requirements engineering: The best is yet to come”.
In: IEEE software 35.5, pp. 115–119.

Decker, Christian, Jochen Seidel, and Roger Wattenhofer (2016). “Bitcoin meets strong
consistency”. In: Proceedings of the 17th International Conference on Distributed Com-
puting and Networking, pp. 1–10.

Delmolino, Kevin, Mitchell Arnett, Ahmed Kosba, Andrew Miller, and Elaine Shi
(2016). “Step by step towards creating a safe smart contract: Lessons and insights
from a cryptocurrency lab”. In: International conference on financial cryptography
and data security. Springer, pp. 79–94.

Dignum, F, J-J Ch Meyer, and R Wieringa (1994). “A dynamic logic for reasoning
about sub-ideal states”. In: ECAI Workshop on Artificial Normative Reasoning. Cite-
seer, pp. 79–92.

Dignum, Frank and Rosaria Conte (1997). “Intentional agents and goal formation”.
In: International Workshop on Agent Theories, Architectures, and Languages. Springer,
pp. 231–243.

Dunham, Jill Bigley (2005). “An agent-based spatially explicit epidemiological model
in MASON”. In: Journal of Artificial Societies and Social Simulation 9.1.

Durieux, Thomas, João F Ferreira, Rui Abreu, and Pedro Cruz (2020). “Empirical
review of automated analysis tools on 47,587 Ethereum smart contracts”. In: Pro-
ceedings of the ACM/IEEE 42nd International Conference on Software Engineering,
pp. 530–541.

Farshidi, Siamak, Slinger Jansen, Sergio España, and Jacco Verkleij (2020). “Decision
support for blockchain platform selection: Three industry case studies”. In: IEEE
Transactions on Engineering Management.

Feist, Josselin, Gustavo Grieco, and Alex Groce (2019). “Slither: a static analysis
framework for smart contracts”. In: 2019 IEEE/ACM 2nd International Workshop

Bibliography 99

on Emerging Trends in Software Engineering for Blockchain (WETSEB). IEEE, pp. 8–
15.

Filatova, Nataliia (2020). “Smart contracts from the contract law perspective: out-
lining new regulative strategies”. In: International Journal of Law and Information
Technology 28.3, pp. 217–242.

Finley, Klint (2016). “A $50 million hack just showed that the DAO was all too hu-
man”. In: Wired https://www. wired. com/2016/06/50-million-hack-just-showed-dao-
human/(June 2016).

Folcik, Virginia A, Gary C An, and Charles G Orosz (2007). “The Basic Immune Sim-
ulator: an agent-based model to study the interactions between innate and adap-
tive immunity”. In: Theoretical Biology and Medical Modelling 4.1, p. 39.

Fox, Geoffrey (2001). “Peer-to-peer networks”. In: Computing in Science & Engineering
3.3, pp. 75–77.

Franklin, Stan and Art Graesser (1996). “Is it an Agent, or just a Program?: A Tax-
onomy for Autonomous Agents”. In: International Workshop on Agent Theories,
Architectures, and Languages. Springer, pp. 21–35.

Frantz, Christopher K and Mariusz Nowostawski (2016). “From institutions to code:
Towards automated generation of smart contracts”. In: 2016 IEEE 1st International
Workshops on Foundations and Applications of Self* Systems (FAS* W). IEEE, pp. 210–
215.

Gale, David (1955). “The law of supply and demand”. In: Mathematica scandinavica,
pp. 155–169.

Garcia, Antonio Prestes and Alfonso Rodriguez-Paton (2016). “Analyzing Repast
Symphony models in R with Repast package”. In: bioRxiv, p. 047985.

Garousi, Vahid, Michael Felderer, and Mika V Mäntylä (2019). “Guidelines for in-
cluding grey literature and conducting multivocal literature reviews in software
engineering”. In: Information and Software Technology 106, pp. 101–121.

Ghorbani, Amineh and Giangiacomo Bravo (2016). “Managing the commons: a sim-
ple model of the emergence of institutions through collective action”. In: Interna-
tional Journal of the Commons 10.1.

Gilbert, Nigel and Pietro Terna (2000). “How to build and use agent-based models
in social science”. In: Mind & Society 1.1, pp. 57–72.

Godin, Katelyn, Jackie Stapleton, Sharon I Kirkpatrick, Rhona M Hanning, and Scott
T Leatherdale (2015). “Applying systematic review search methods to the grey
literature: a case study examining guidelines for school-based breakfast programs
in Canada”. In: Systematic reviews 4.1, p. 138.

Grimm, Volker, Uta Berger, Finn Bastiansen, Sigrunn Eliassen, Vincent Ginot, Jarl
Giske, John Goss-Custard, Tamara Grand, Simone K Heinz, Geir Huse, et al.
(2006). “A standard protocol for describing individual-based and agent-based
models”. In: Ecological modelling 198.1-2, pp. 115–126.

Grishchenko, Ilya, Matteo Maffei, and Clara Schneidewind (2018). “A semantic frame-
work for the security analysis of ethereum smart contracts”. In: International Con-
ference on Principles of Security and Trust. Springer, pp. 243–269.

Hall, Andreas and Kirsi Virrantaus (2016). “Visualizing the workings of agent-based
models: Diagrams as a tool for communication and knowledge acquisition”. In:
Computers, Environment and Urban Systems 58, pp. 1–11.

Harmsen, Anton Frank, Jacobus Nicolaas Brinkkemper, and JL Han Oei (1994). Situ-
ational method engineering for information system project approaches. Citeseer.

Helbing, Dirk (2012). Social self-organization: Agent-based simulations and experiments
to study emergent social behavior. Springer.

100 Bibliography

Heppenstall, AJ, AJ Evans, and MH Birkin (2006). “Application of multi-agent sys-
tems to modelling a dynamic, locally interacting retail market”. In: Journal of Ar-
tificial Societies and Social Simulation 9.3, p. 2.

Heppenstall, Alison J, Andrew J Evans, and Mark H Birkin (2007). “Genetic algo-
rithm optimisation of an agent-based model for simulating a retail market”. In:
Environment and Planning B: Planning and Design 34.6, pp. 1051–1070.

Hevner, Alan and Samir Chatterjee (2010). Design Research in Information Systems.
Vol. 28, pp. 63–86. ISBN: 978-1-4419-5652-1.

Hevner, Alan R, Salvatore T March, Jinsoo Park, and Sudha Ram (2004). “Design
science in information systems research”. In: MIS quarterly, pp. 75–105.

Huckle, Steve, Rituparna Bhattacharya, Martin White, and Natalia Beloff (2016). “In-
ternet of things, blockchain and shared economy applications”. In: Procedia com-
puter science 98, pp. 461–466.

Jansen, Slinger, Siamak Farshidi, Georgios Gousios, Tijs van der Storm, Joost Visser,
and Magiel Bruntink (2020). “SearchSECO: A Worldwide Index of the Open Source
Software Ecosystem”. In:

Jensen, Randall (1983). “An improved macrolevel software development resource
estimation model”. In: 5th ISPA Conference, pp. 88–92.

Kennedy, William G (2012). “Modelling human behaviour in agent-based models”.
In: Agent-based models of geographical systems. Springer, pp. 167–179.

Kiczales, Gregor, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin (1997). “Aspect-oriented programming”. In:
European conference on object-oriented programming. Springer, pp. 220–242.

King, Sunny (2013). “Primecoin: Cryptocurrency with prime number proof-of-work”.
In: July 7th 1.6.

Kitchenham, Barbara and Stuart Charters (2007). “Guidelines for performing sys-
tematic literature reviews in software engineering”. In:

Kolvart, Merit, Margus Poola, and Addi Rull (2016). “Smart contracts”. In: The Future
of Law and etechnologies. Springer, pp. 133–147.

Korba, Larry and Ronggong Song (2002). “Modeling and Simulating the Scalability
of A Multi-agent Application System”. In: National Reseach Council of Canada.

Kraft, Daniel (2016). “Difficulty control for blockchain-based consensus systems”. In:
Peer-to-Peer Networking and Applications 9.2, pp. 397–413.

Lamport, Leslie, Robert Shostak, and Marshall Pease (2019). “The Byzantine generals
problem”. In: Concurrency: the Works of Leslie Lamport, pp. 203–226.

Levy, Eliezer and Abraham Silberschatz (1990). “Distributed file systems: Concepts
and examples”. In: ACM Computing Surveys (CSUR) 22.4, pp. 321–374.

Liu, Henry H (2011). Software performance and scalability: a quantitative approach. Vol. 7.
John Wiley & Sons.

Lorig, Fabian, Nils Dammenhayn, David-Johannes Müller, and Ingo J Timm (2015).
“Measuring and comparing scalability of agent-based simulation frameworks”.
In: German Conference on Multiagent System Technologies. Springer, pp. 42–60.

Lucassen, Garm, Fabiano Dalpiaz, Jan Martijn EM van der Werf, and Sjaak Brinkkem-
per (2016). “Improving agile requirements: the quality user story framework and
tool”. In: Requirements Engineering 21.3, pp. 383–403.

Luke, Sean, Gabriel Catalin Balan, Liviu Panait, Claudio Cioffi-Revilla, and Sean
Paus (2003). “MASON: A Java multi-agent simulation library”. In: Proceedings of
Agent 2003 Conference on Challenges in Social Simulation. Vol. 9. 9.

Luu, Loi, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor (2016).
“Making smart contracts smarter”. In: Proceedings of the 2016 ACM SIGSAC con-
ference on computer and communications security, pp. 254–269.

Bibliography 101

Macal, C, D Sallach, and M North (2004). “Emergent structures from trust relation-
ships in supply chains”. In: Proc. Agent 2004: Conf. on Social Dynamics, pp. 7–9.

Macal, Charles M and Michael J North (2005). “Tutorial on agent-based modeling
and simulation”. In: Proceedings of the Winter Simulation Conference, 2005. IEEE,
14–pp.

Mahood, Quenby, Dwayne Van Eerd, and Emma Irvin (2014). “Searching for grey
literature for systematic reviews: challenges and benefits”. In: Research synthesis
methods 5.3, pp. 221–234.

Malleson, NS, AJ Heppenstall, and LM See (2010). “Simulating burglary with an
agent-based model”. In: Computers, Environment and Urban Systems 34.3, pp. 236–
250.

March, Salvatore T and Gerald F Smith (1995). “Design and natural science research
on information technology”. In: Decision support systems 15.4, pp. 251–266.

Marsh, William E and Raymond R Hill (2008). “An initial agent behaviour modelling
and definition methodology as applied to unmanned aerial vehicle simulations”.
In: International Journal of Simulation and Process Modelling 4.2, pp. 119–129.

Mernik, Marjan, Jan Heering, and Anthony M Sloane (2005). “When and how to
develop domain-specific languages”. In: ACM computing surveys (CSUR) 37.4,
pp. 316–344.

Michael, Maged, Jose E Moreira, Doron Shiloach, and Robert W Wisniewski (2007).
“Scale-up x scale-out: A case study using nutch/lucene”. In: 2007 IEEE Interna-
tional Parallel and Distributed Processing Symposium. IEEE, pp. 1–8.

Miller, John H and Scott E Page (2009). Complex adaptive systems: An introduction to
computational models of social life. Princeton university press.

Moon, Young B (2017). “Simulation modelling for sustainability: a review of the lit-
erature”. In: International Journal of Sustainable Engineering 10.1, pp. 2–19.

Mur, Ricardo Aler (2006). “Automatic inductive programming”. In: Proceedings of the
23rd international conference on machine learning, tutorial.

Neuman, B Cli ord (1994). “Scale in distributed systems”. In: ISI/USC, p. 68.
North, Michael J, Nicholson T Collier, Jonathan Ozik, Eric R Tatara, Charles M Macal,

Mark Bragen, and Pam Sydelko (2013). “Complex adaptive systems modeling
with Repast Simphony”. In: Complex adaptive systems modeling 1.1, p. 3.

North, Michael J and Charles M Macal (2007). Managing business complexity: discover-
ing strategic solutions with agent-based modeling and simulation. Oxford University
Press.

North, Michael J, Charles M Macal, James St Aubin, Prakash Thimmapuram, Mark
Bragen, June Hahn, James Karr, Nancy Brigham, Mark E Lacy, and Delaine Hamp-
ton (2010). “Multiscale agent-based consumer market modeling”. In: Complexity
15.5, pp. 37–47.

Nunnari, Fabrizio and Alexis Heloir (2018). “Write-once, transpile-everywhere: re-
using motion controllers of virtual humans across multiple game engines”. In:
International Conference on Augmented Reality, Virtual Reality and Computer Graph-
ics. Springer, pp. 435–446.

Osis, Janis and Erika Asnina (2010). Model-driven domain analysis and software develop-
ment: Architectures and functions: Architectures and functions. IGI Global.

Parizi, Reza M, Ali Dehghantanha, Kim-Kwang Raymond Choo, and Amritraj Singh
(2018). “Empirical vulnerability analysis of automated smart contracts security
testing on blockchains”. In: arXiv preprint arXiv:1809.02702.

Parker, Dawn C, Steven M Manson, Marco A Janssen, Matthew J Hoffmann, and
Peter Deadman (2003). “Multi-agent systems for the simulation of land-use and

102 Bibliography

land-cover change: a review”. In: Annals of the association of American Geographers
93.2, pp. 314–337.

Parnas, David Lorge (1985). “Software aspects of strategic defense systems”. In: Com-
munications of the ACM 28.12, pp. 1326–1335.

Parunak, H Van Dyke, Robert Savit, and Rick L Riolo (1998). “Agent-based modeling
vs. equation-based modeling: A case study and users’ guide”. In: International
Workshop on Multi-Agent Systems and Agent-Based Simulation. Springer, pp. 10–25.

Perez, Daniel and Benjamin Livshits (2019). “Smart contract vulnerabilities: Does
anyone care?” In: arXiv preprint arXiv:1902.06710.

Pressman, Roger S (2005). Software engineering: a practitioner’s approach. Palgrave macmil-
lan.

Prieto, Luis P, Maria Jesus Rodriguez Triana, Marge Kusmin, and Mart Laanpere
(2017). “Smart school multimodal dataset and challenges”. In: Joint proceedings of
the sixth Multimodal Learning Analytics (MMLA) workshop and the second cross-LAK
workshop co-located with 7th international learning analytics and knowledge conference.
Vol. 1828. CONF. CEUR, pp. 53–59.

Putnam, Lawrence H and Ware Myers (1991). Measures for excellence: reliable software
on time, within budget. Prentice Hall Professional Technical Reference.

Ralyté, Jolita and Colette Rolland (2001). “An assembly process model for method
engineering”. In: International Conference on Advanced Information Systems Engi-
neering. Springer, pp. 267–283.

Roberts, Paula and Helena Priest (2006). “Reliability and validity in research”. In:
Nursing standard 20.44, pp. 41–46.

Röscheisen, Martin, Michelle Baldonado, Kevin Chang, Luis Gravano, Steven Ketch-
pel, and Andreas Paepcke (1998). “The Stanford InfoBus and its service layers:
Augmenting the Internet with higher-level information management protocols”.
In: Digital Libraries in Computer Science: The MeDoc Approach. Springer, pp. 213–
230.

Runeson, Per and Martin Höst (2009). “Guidelines for conducting and reporting case
study research in software engineering”. In: Empirical software engineering 14.2,
p. 131.

Savelyev, Alexander (2017). “Contract law 2.0:‘Smart’contracts as the beginning of
the end of classic contract law”. In: Information & Communications Technology Law
26.2, pp. 116–134.

Schelling, Thomas C (1971). “Dynamic models of segregation”. In: Journal of mathe-
matical sociology 1.2, pp. 143–186.

Schollmeier, Rüdiger (2001). “A definition of peer-to-peer networking for the classi-
fication of peer-to-peer architectures and applications”. In: Proceedings First Inter-
national Conference on Peer-to-Peer Computing. IEEE, pp. 101–102.

Smajgl, Alex, Luis R Izquierdo, and Marco Huigen (2008). “Modeling endogenous
rule changes in an institutional context: The adico sequence”. In: Advances in
Complex Systems 11.02, pp. 199–215.

Stahl, Thomas, Markus Voelter, and Krzysztof Czarnecki (2006). Model-driven soft-
ware development: technology, engineering, management. John Wiley & Sons, Inc.

Terna, Pietro et al. (1998). “Simulation tools for social scientists: Building agent based
models with swarm”. In: Journal of artificial societies and social simulation 1.2, pp. 1–
12.

Tikhomirov, Sergei, Ekaterina Voskresenskaya, Ivan Ivanitskiy, Ramil Takhaviev, Evgeny
Marchenko, and Yaroslav Alexandrov (2018). “Smartcheck: Static analysis of ethereum
smart contracts”. In: Proceedings of the 1st International Workshop on Emerging Trends
in Software Engineering for Blockchain, pp. 9–16.

Bibliography 103

Tripathy, Abinash, Ankit Agrawal, and Santanu Kumar Rath (2014). “Requirement
analysis using natural language processing”. In: Fifth International Conference on
Advances in Computer Engineering, pp. 26–27.

Tsankov, Petar, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian Buen-
zli, and Martin Vechev (2018). “Securify: Practical security analysis of smart con-
tracts”. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security, pp. 67–82.

Vo, Hoang Tam, Ashish Kundu, and Mukesh K Mohania (2018). “Research Direc-
tions in Blockchain Data Management and Analytics.” In: EDBT, pp. 445–448.

Walls, Joseph G, George R Widmeyer, and Omar A El Sawy (1992). “Building an in-
formation system design theory for vigilant EIS”. In: Information systems research
3.1, pp. 36–59.

Weerd, Inge van de and Sjaak Brinkkemper (2009). “Meta-modeling for situational
analysis and design methods”. In: Handbook of research on modern systems analysis
and design technologies and applications. IGI Global, pp. 35–54.

Wieringa, Roel J (2014). Design science methodology for information systems and software
engineering. Springer.

Wohlin, Claes (2014). “Guidelines for snowballing in systematic literature studies
and a replication in software engineering”. In: Proceedings of the 18th international
conference on evaluation and assessment in software engineering, pp. 1–10.

Wohlin, Claes, Martin Höst, and Kennet Henningsson (2003). “Empirical research
methods in software engineering”. In: Empirical methods and studies in software
engineering. Springer, pp. 7–23.

Wooldridge, Michael J and Nicholas R Jennings (1995). “Intelligent agents: Theory
and practice”. In: The knowledge engineering review 10.2, pp. 115–152.

Xu, Yifei, Wei Yu, and Kamy Sepehrnoori (2019). “Modeling dynamic behaviors of
complex fractures in conventional reservoir simulators”. In: SPE Reservoir Evalu-
ation & Engineering 22.03, pp. 1110–1130.

Yaga, Dylan, Peter Mell, Nik Roby, and Karen Scarfone (2019). “Blockchain technol-
ogy overview”. In: arXiv preprint arXiv: 1906.11078.

Zheng, Zibin, Shaoan Xie, Hongning Dai, Xiangping Chen, and Huaimin Wang (2017).
“An overview of blockchain technology: Architecture, consensus, and future trends”.
In: 2017 IEEE international congress on big data (BigData congress). IEEE, pp. 557–
564.

105

Grey Literature

Ballard, Dan (Nov. 2011). URL: http://www.agentbuilder.com/Documentation/
whyAgents.html.

Buterin, Vitalik (2013). Ethereum Whitepaper. URL: https : / / ethereum . org / en /
whitepaper/.

Holland, J (1996). Holland, Hidden order: how adaptation builds complexity.
Nakamoto, Satoshi (2019). Bitcoin: A peer-to-peer electronic cash system. Tech. rep. Manubot.
Schulpen, Ruben (2018). A legal research regarding the use of smart contracts within

Dutch contract law and legal framework. URL: http://arno.uvt.nl/show.cgi?
fid=146860.

Wohlin, C, P Runeson, M Höst, M Ohlsson, B Regnell, and A Wesslén (2012). Experi-
mentation in software engineering: A practical guide.

http://www.agentbuilder.com/Documentation/whyAgents.html
http://www.agentbuilder.com/Documentation/whyAgents.html
https://ethereum.org/en/whitepaper/
https://ethereum.org/en/whitepaper/
http://arno.uvt.nl/show.cgi?fid=146860
http://arno.uvt.nl/show.cgi?fid=146860

	Abstract
	Introduction
	Smart Contracts
	Problem Statement
	Research Focus
	Agent-Based Modeling

	Contributions
	Thesis Outline

	Research Approach
	Research Questions
	Research Paradigm
	Research Methods

	Literature Review Protocol
	Phase 1: Multivocal Literature Review Planning
	Phase 2: Search Process and Source Selection
	Selecting source engines and search keywords
	Application of inclusion/exclusion criteria
	Final Pool of sources

	Phase 3: Data Classification
	Phase 4: Synthesis and Review
	Summary

	Method Engineering
	Summary

	Case Study
	Case Study Requirements

	Literature Study
	Agent-Based Modeling
	Introduction
	Agent-Based Modeling Requirements
	To Summarize: Agent-Based Modeling Requirements

	Autonomous Agents
	To Summarize: Autonomous Agents

	Rules, Behavior, and Relationships
	To Summarize: Rules, behavior, and Relationships

	Agent Environments
	To Summarize Agent Environments

	Methods for agent-based Modeling
	(a) Agent model design
	(b) Agent model implementation
	(c) Agent model services

	Summary ABM

	Smart Contracts
	Consensus Layer
	To Summarize: Consensus

	Peer-to-Peer Network Layer
	To Summarize: P2P

	Ethereum Virtual Machine
	To Summarize: EVM

	Smart Contract Design with Solidity
	Summary Smart Contracts

	Modeling Smart Contracts with Institutional Grammar
	Bridging the gap between smart contracts and agent-based modeling

	ABM Decision Support
	ABM Tool Characteristics
	Scalability
	Development Effort

	ABM Tool Selection

	SearchSECO Case Study
	Introduction to SearchSECO
	Behaviors of the Agents
	Scenarios
	Problem and Object Formulation
	ADICO statements

	Simulation
	Purpose
	Entities, state variables, and scales
	Agents

	Process Overview and Scheduling
	Scheduled Method

	Design Concepts
	Interface
	Styles
	Data Sets & Charts

	Input Data
	Observations

	Outcome
	Scenario 1: Towards an Equilibrium State
	Iteration 1: Defining a neutral starting point with one agent
	Run Conditions
	Expectations
	Outcome
	Interpretation

	Iteration 2: Increasing Download Ratio
	Run Conditions
	Expectations
	Outcome
	Interpretation

	Iteration 3: Increasing Upload Ratio
	Run Conditions
	Expectations
	Outcome
	Interpretation

	Iteration 4: Increasing number of agents
	Run Conditions
	Expectations
	Outcome
	Interpretation

	Scenario 2: Altering behaviors - adding complexity
	Iteration 5: Adding new agent type empirical software engineer
	Run Conditions
	Expectations
	Outcome
	Interpretation

	Iteration 6: Adding different behavior to agent types
	Run Conditions
	Expectations
	Outcome
	Interpretation

	Scenario 3: Financial factors as incentives
	Iteration 7: Financial factors as incentives
	Run Conditions
	Expectations
	Outcome
	Interpretation

	Summary of Iteration 1 - 7

	Observations

	Findings and Discussion
	Major Findings
	Contributions
	Limitations
	Future Work

	Conclusion
	Structure of a smart contract
	Process Deliverable Diagrams
	ABM Tools

