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1 Introduction

1.1 Motivation

In the past few decades, light technologies have seen an outstanding development. First lasers were created
during the 1960’s and, since their first appearance, there have been great expectations about their huge
potential. In that time, it was said that they would completely change the world, from dentists’ tools to
telephone wires [1], and they did. Since the 60s, lasers have been highly improved in efficiency, cost and
reliability and nowadays we can find them everywhere around. In fact, many of the predictions that were
made about lasers when they first came out, have become real. For instance, laser tools for cutting or surgery
are now common practice. But among all those predictions that have come to life, maybe the one we are
most used to is the replacement of telephone wires (and telecommunications in general) with lines that use
laser light to transmit information from one point to another.

Of course, achieving light-based telecommunication systems has not been possible only thanks to lasers.
In order to transmit light from one point to another distant one, we need a medium for light to propagate
without major losses. This medium is the optical fiber. Optical fibers are a type of guided light system.
This had been theorized earlier on, but it was not until 1966 that optical fibers were proposed as a medium
for light transmission in telecommunications [2]. However, it was not until the 80s that optical fibers started
to be used for telecommunication purposes. In the beginning they were still quite lossy (around 20 dB/km)
but more sooner rather than later, they were highly improved [3] and nowadays they have been implemented
in telecommunication systems all around the world.

A necessity that arises in the field of telecommunications is not just to achieve lossless transmission,
in the sense that the output power equals the input power. But to prevent the signal from decaying and
getting a signal gain curve as flat as possible. This can be achieved by periodically amplifying at certain
points of the systems, as it is done with telephone or WiFi signal repeaters. However, this does not avoid
signal attenuation and it adds an important drawback: the amplification of noise along with the signal. This
problem can be avoided if, instead of periodical amplification, distributed amplification is used, so gains and
losses are compensated at every point. One way to achieve this distributed amplification is through the
Raman effect (we will discuss it on section 2.5.4) in systems like the one J.D. Ania-Castañón and his team
are developing.

A very brief explanation on lasers and optical fiber working principles will be given in section 2, but so
far, we have made clear the close relation between lasers and optical fiber in the field of telecommunications.
Since the 80s, a lot of research has been made on this topic in an effort to make these systems more and
more efficient and reliable. Following this effort, pulsed lasers were quickly introduced. Pulsed lasers present
many advantages compared with continuous wave lasers in the telecommunications field. Since the energy
of the pulse is concentrated in a short period of time, higher peak powers are achieved. In addition, pulsed
lasers are more compatible with the binary architecture that most digital systems use. However, higher peak
powers and the long interaction lengths provided by optical fibers come along with nonlinear effects that
could be, in principle, detrimental for the system performance. But they can also be studied and used in our
favour. J.D. Ania-Castañón et al. are working to achieve a virtually lossless system [4] that uses nonlinear
effects to compensate for fiber losses. Properly managing fiber losses and nonlinear effects would allow for
soliton1 transmission over a fiber span.

1We will talk about solitons a little later on section 2
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1.2 Goals

The main goal of the project is to study an ultra-long ring cavity fiber laser that operates in an ultra-short
pulse (hundreds of fs) regime. The characteristics of this type of lasers are ideal for the appearance of
numerous nonlinearities. We intend to study its applicability in solitonic, lossless transmission. While trying
to achieve that, we will be pursuing several goals:

• Study the behaviour of the ring laser in different pumping conditions.

• Learn what nonlinear effects have greater relevance under different conditions.

• Create a numerical model of the laser that can be numerically solved to obtain simulated results.

• Compare simulated and experimental results and correct the model if necessary.

• Finish with a design of a more stable and reliable fs laser

The goals stated up here are the ones that J.D. Ania-Castañón’s team and myself are pursuing. However, I
have set some personal goals for myself apart from the collective ones. I consider these ones more related to
my own formation and learning process:

• Design a code to simulate the model that can be used after my collaboration is over. Therefore, it
should be versatile, robust and user-friendly.

• Learn about the nonlinear effects that appear as a result of high peak powers. Since it is my first
contact with these type of phenomena, it is my main intention to achieve an understanding of them as
deep as possible by the end of my time with J.D. Ania-Castañón’s team.

• Understand the experiment design and the different parts of the setup while taking rigurous experi-
mental measurements that will be compared with my own simulation’s results.

• Use these experimental results to correct the model if necessary and try to end up with a model as
accurate as possible.

During the time spent under the supervision of J.D. Ania-Castañón and his team, I did my best to fulfill all
of my personal goals and help as much as possible with the team’s goals.

1.3 Outline

In chapter 2, explanations on the different effects that have to be considered when studying the propagation
of a light pulse through a silica fiber are given. This includes dispersive effects (section 2.4) and nonlinear
effects (2.5).

On section 3 I will give a detailed explanation of the whole setup and the experiment. I will also focus on
the part of the setup that I have been working on. I will show the experimental results and compare them
with the simulated data. In this section, I will also talk about the mathematical model and how it has been
solved to obtain numerical results.

On section 4 I will sum up all the information obtained both from simulations and experiments and give
an educated opinion on the whole experiment and topic.

Finally, on section 5 I will mention some of the applications that this setup might have once it is finished
and stable as well as some research lines that could come out of it in a near future.
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2 Theoretical background

2.1 Basic concepts of lasers and optical fibers

As mentioned in the introduction (section 1), the combined effects of a laser and an optical fiber span will be
used in our setup to produce a virtually lossless system. Hence, it is useful to provide a very brief reminder
of their working principles to set a base for the effects that will be later described. Because my work is more
centered around the study of the role that the fiber span plays in our system, I will elaborate more on this
topic than on lasers.

Laser is an acronym for Light Amplification by Stimulated Emission of Radiation. This means that they
generate, or more usually, amplify a small amount of light that is injected into it (called ‘pumping’). To
obtain a laser, one needs at least three elements: a medium, that will provide a large amount of atoms that
will radiate during de-excitation; a pumping process, to generate a population inversion (take the majority
of these atoms to excited states); and an optical feedback to allow for the beam to pass once through the
medium or bounce back and forth between its endings [5]. All three elements should provide something like
figure 2.1.1

Figure 2.1.1: Scheme of a laser’s working principle. Extracted from [5]

Obtaining the necessary population inversion in the medium when trying to generate laser light can be
challenging. This is typically achieved by using four-level lasers. In this type of lasers, atoms are excited
from their ground state to an excited state. From said excited state, the atoms will decay in a non-radiative
way to a lower-energy state. Then, the spontaneous emission takes place when atoms decay a second time
from the low-energy excited state to an even lower energy state. Finally, atoms will decay again in a non-
radiative way to the ground state. This is illustrated in figure 2.1.2. The excitement and decaying process
is a natural phenomenon called spontaneous emission, but when a pump sufficiently high is used to excite
the atoms, a threshold is surpassed and spontaneous emission becomes stimulated emission. In this regime,
a population inversion takes place, which means that the majority of the atoms are in a high-energy level.
Then, stimulated by said pump, the atoms decay providing an intense source of light which is coherent
and very monochromatic. This phenomenon can be enhanced with a feedback mechanism. For instance,
reflectors can be included at the ends of the medium, creating a resonator. Light would then bounce off of
them going back and forth, stimulating the emission of more light.
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Figure 2.1.2: Scheme of a laser’s working principle. Extracted from [6]

One last note I would like to add on this topic is the different working regimes that different lasers may
have. There are mainly two of them: continuous wave regime and pulsed regime. Different operating modes
will adequate to different purposes. For instance, pulsed lasers are widely used in materials processing or
photonics applications [7–9], whereas continuous wave lasers can be found in mechanical or engineering, and
also photonics applications [10–12]. The regime in which a laser works, usually depends on parameters of
the active medium such as the lifetime of the excited states [5]. Depending on this, it might be impossible
to maintain the continuous cycle of population inversion and decaying. Typically, pulsed lasers are achieved
with a pulsed pumping method or by using techniques such as Q-Switching [13] or mode-locking [14]. Pulsed
lasers can generate a wide range of pulse widths and the exploration of the lower limits of this width has
become a popular topic in the past few years. The reason why this is so is because many interesting physical
phenomena take place when really short pulses are reached [15]. On the one hand, small pulses focus the
energy of the pulse in a very short time, hence providing really high peak powers. On the other hand,
when interacting with matter, short pulses can reveal interesting phenomena derived from this extremal
light-matter interaction.

The characteristics of the light that exits the laser cavity have granted it a solid place in every labora-
tory around the world. Thanks to these devices, we can obtain powerful, colimated, coherent and almost
monochromatic light. Plus, nowadays, we can find a wide variety of lasers regarding their main wavelength,
working regime, portability, cost, etc. A lot could be said about lasers and I encourage the reader, if in
need or interested, to search through the literature. Reference [16] gives a little more insight on the basics
of lasers and reference [5] provides very extensive knowledge of the theoretical foundations of lasers. The
reader may also check references [6] for more advanced, fiber-focused laser knowledge; or reference [17] to
learn about the latest techniques that have been developed.

Because we are working with a fiber laser and I will be focused in the fiber span acting as a cavity during
my project, I think it is useful to include also a little summary of fiber optics working principle. Fiber optics
rely on a rather simple phenomenon: total internal reflection (TIR). TIR arises from Snell’s law of refraction
(2.1.1). If the refractive indices of the media fulfill the condition n1 > n2, TIR is achieved in the interface
for angles greater than a critical angle given by eq. 2.1.2

n1 sin θ1 = n2 sin θ2 (2.1.1)

θc = arcsin
n2

n1
(2.1.2)
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This phenomenon is used to make light bounce off of the internal surface of the fiber on and on as it
propagates through the span. This is illustrated in figure 2.1.3

Figure 2.1.3: Scheme of a fiber optics’ working principle. Extracted from [18]

Because of the necessary condition for TIR, light needs to propagate within a medium with higher
refractive index than air. Generally silica glass is used for this purpose, but a variety of materials, such as
plastics, can be used as well. There are numerous types of fiber optics with different properties, suitable for
different applications. However, they can all be sorted into two main categories: single mode fiber (SMF)
and multimode fiber (MMF). Depending on the fiber’s nature, light might be able to propagate in only one
way (SMF) or in several ways (MMF). These different ways in which light can travel inside the fiber are
called modes (see fig. 2.1.4).

Figure 2.1.4: Fiber modes in SMF and MMF. Extracted from [19]

The fact that the optical fiber provides a material medium for light to propagate is a source of interesting
phenomena by itself. These are usually referred to as dispersive effects and have to do with the dependence
of λ with the refractive index. But if we also consider the high-peak powers obtained from pulsed lasers, we
will be able to see other type of phenomena equally, if not even more, interesting, called nonlinear effects.
Both, dispersive and nonlinear effects will be discussed during sections 2.4 and 2.5.

As with lasers, a lot more could be said on this topic and I, again, encourage the reader to go through
the references if required or if willing to learn more about fiber optics. Reference [18] provides a very basic,
applied approach. In references [20] and [21] you can find broader, yet still quite fundamental explanations
about the main topics surrounding fiber optics. And in reference [2] a more advanced insight is given.

2.2 Fiber lasers and ring lasers

We have provided the basics on laser and optical fibers working principles. So it is time to put both of them
together and learn a little about fiber lasers. And specially, since the system I will be working with is a ring
fiber laser, I will also explain the main features of this type of lasers.
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An optical fiber is a great option to produce and study nonlinear phenomena. This is not because of
the material the fiber is made of itself (as silica is actually very “linear”), but rather because of the long
interaction length between the pulse and the medium and the small core area of the fiber. More on this will
be discussed through section 2.5, but one of these nonlinear phenomena that might appear in the fiber is the
stimulated Raman scattering (SRS). Very briefly (more is given in section 2.5.4), in the presence of a pump
wave, SRS can be responsible for the appearance of a so-called Stokes wave, which is downsfhited from said
pump. If this Stokes radiation is enclosed by mirrors, creating a cavity, a Raman oscillator is made [22].
Adding specific elements to this cavity can allow us to tune the oscillator over the broad Raman gain curve.
And once the threshold power pump has been surpassed, power conversion from the pump to the Stokes
wave begins to occur and an effective gain is achieved at the Stokes frequency.

The difference between a regular laser and a fiber laser is that the first ones use atomic energy levels
to create the three (or more usually four) level scheme to work, as was explained in section 2.1. But, fiber
Raman lasers rely on the phenomenon of Raman scattering, which involves vibrational molecular energy levels
and photon-phonon interaction to produce the stimulated emission. Thanks to it, a regular span of single
mode fiber can be converted into a somewhat tunable laser source, although to achieve said conversion,
one must dope the fiber with rare earths (typically erbium, ytterbium, neodymium...[23–25]). But they
present important advantages; for instance, since the active medium is a flexible material, it is much easier
to store and transport. Also, since the SRS phenomenon occurs througout the whole fiber span, Raman
lasers produce a distributed gain though all the fiber.

One of the main components of the laser is the resonator. The resonator is what allows radiation to
build up inside the cavity as light bounces on and off the mirrors at the ends. Now, we can substitute the
linear resonant cavity by a cavity with the shape of a ring. In such cavity, light instead of going back and
forth from one mirror to the other, propagates in the same direction uninterrupted. However, the ring cavity
allows for two independent propagation directions (see fig. 2.2.1). Ring lasers can be advantageous with
respect to regular line lasers because of several reasons, a major one being that, because there are no mirrors
with normal incidence, light can never go back directly into the source [26]. This can be critical in lasers
that are highly affected by feedback from the cavity

Figure 2.2.1: Resonator types. Linear (up) and ring (down) with the propagation directions they allow for
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Combining fiber lasers and ring cavities results in ring fiber lasers, which unite the advantages of ring
resonators with those of fiber lasers. Furthermore, the ring resonator in a fiber ring laser is obtained through
TIR, which happens naturally inside the fiber. So there is no need to include mirrors inside the fiber
(although it can be done for tuning or signal cleaning). That makes ring fiber lasers a great option for many
applications

2.3 Pulse propagation inside optical fibers

In this and the next sections (2.3 - 2.5) fairly detailed explanations are given on a series of dispersive and
nonlinear effects. The documentation for these sections has been mainly based on Govind P. Agrawal’s book
of nonlinear fiber optics. [27]. Agrawal’s book provides very exhaustive and top-quality explanations that
have been immensely helpful to understand and write the content of these sections.

The propagation of a light pulse within a material medium is defined by Maxwell’s laws (2.3.1 - 2.3.4)
and the constitutive relations (2.3.5 - 2.3.6)

∇×E = −∂B
∂t

(2.3.1)

∇×H = J +
∂D

∂t
(2.3.2)

∇ ·D = ρf (2.3.3)

∇ ·B = 0; (2.3.4)

D = ε0E + P (2.3.5)

H =
B

µ0
−M (2.3.6)

Where E is the electric field; H, the magnetic field; D the electric flux density; B, the magnetic flux density;
P , the electric polarization; M , the magnetization; J , the current density; µ0 and ε0 are electric permittivity
and magnetic permeability of vacuum respectively; and magnitudes in bold letters represent vectors.

The response of the medium (optical fiber in this case) to an electric field is governed by the electric
polarization P . And specially, since optical fibers are not magnetic, their electric polarization becomes our
main concern. In general, a quantum-mechanical approach would be necessary to address the form and value
of P , but if we are working with frequencies far away from the resonant frequencies of the medium, a more
classical, phenomenological approach can be used. Therefore, we can obtain the polarization vector from eq.
2.3.7

P = ε0

(
χ(1) ·E + χ(2) : EE + χ(3)

...EEE · · ·
)

(2.3.7)

Here, χ is the electric susceptibility. In general χ(i) is a tensor or rank i + 1. Note that there is no dot
between the Es in the second and third terms of the equation, meaning that they are operated with the dyad
product, whereas the two or three vertical dots in said terms represent the double and triple dot product. A
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very good conceptual approach to the basic ideas regarding tensors can be found in reference [28] and much
broader and profound insight on the topic can be found on reference [29].

Naturally, the major contribution to the polarization with this description is due to χ(1), the linear
susceptibility. The effect of the linear susceptibility is reflected in the familiar linear refractive index, n.
The next biggest contribution should be due to χ(2), but this is nonzero only for media with no inversion
symmetry on a molecular level (which is not the case for optical fibers). Hence, the second term of eq. 2.3.7
can be taken to be zero. So, the next term we need to consider is the one with χ(3). This will be responsible
for the nonlinear phenomena described in section 2.5 and will be reflected in the nonlinear refractive index,
ñ2.

Knowing that the main two contributions to the polarization come from χ(1) (linear) and χ(3) (nonlinear),
we can rewrite the polarization as P (r, t) = P L (r, t)+PNL (r, t), where P L and PNL are given by equations
2.3.8 and 2.3.9.

P L (r, t) = ε0

∫ ∞
−∞

χ(1) (t− t′) ·E (r, t′) dt′ (2.3.8)

PNL (r, t) = ε0

∫∫∫ ∞
−∞

χ(3) (t, t1, t2, t3)
...E (r, t1)E (r, t2)E (r, t3) dt1dt2dt3 (2.3.9)

Due to the high complexity of these expressions, we will need to apply significant simplifications to use
them. The first simplification we can make is use the fact that the nonlinear contribution is usually much
weaker than the lineal contribution, so we can treat the first as a small perturbation to the latter. The second
simplification is assuming that E is linearly polarized (for example along the x direction), so that the only

contributing terms of χ(1) and χ(3) are, respectively, χ
(1)
xx and χ

(3)
xxxx. Another significant simplification can be

made if we assume that the medium’s nonlinear response to the field is instantaneous. In that case, the time
dependence of χ(3) is given by the product of three delta functions δ (t− ti) (with i = 1, 2, 3) and equation
2.3.9 reduces to eq. 2.3.10. Note that this equation holds for pulses broader than 1 ps. Electronic response
to the medium is persé much faster than the nuclear response and we consider the electronic response to
be fast and the nuclear response to be slow. For fibers, the response of the nuclei (Raman or vibrational
response) is in the order of 0.1 ps. If the pulse is wider than that, both, the nuclear and electronic responses
can be considered fast and the approximation does not hold anymore.This assumption neglects the Raman
contribution to the nonlinear polarization, but it will be included later on, in section 2.5.4.

PNL (r, t) = ε0χ
(3)

...E (r, t)E (r, t)E (r, t) (2.3.10)

Making use of the Maxwell equations and the constitutive relations (eqs. 2.3.1 - 2.3.6), we can arrive at
the wave equation inside the fiber (2.3.11)

∇2E − 1

c

∂2E

∂t2
= µ0

∂2P L

∂t2
+ µ0

∂2PNL

∂t2
(2.3.11)

c being the speed of light

If we use the first simplification we mentioned (treating PNL as a weak perturbation) and assume that
losses in the fiber are negligible (low absorption coefficient), the first step would be to solve the wave equation
2.3.11 without the nonlinear term. This is much more easily done in the frequency domain. So, taking the
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Fourier transform of equation 2.3.11 (without the nonlinear term), we arrive at the well-known Helmlotz
equation 2.3.12:

∇2Ẽ + n2 (ω)
ω2

c2
Ẽ = 0 (2.3.12)

Where, n (ω) is the refractive index and ω is the frequency. The refractive index is related to the permittivity,
ε, through 2.3.13:

ε (ω) =
(
n+ i

αc

2ω

)2

(2.3.13)

At the same time, ε is related to the Fourier transform of the susceptibility (χ̃) through 2.3.14

ε (ω) = 1 + χ̃(1) (ω) (2.3.14)

If the absorption, α is small, equations 2.3.13 and 2.3.14 lead to the known relations 2.3.15

n (ω) =
√

1 + Re
[
χ̃(1) (ω)

]
, α (ω) =

ω

nc
Im
[
χ̃(1) (ω)

]
(2.3.15)

Since our current goal is to solve Helmholtz’s equation (2.3.12) inside a fiber, the easiest way is to take
advantage of the cylindrical symmetry of the medium and switch to cylindrical coordinates (eq. 2.3.16).
Doing so, allows us to find a general solution in the frequency domain using separation of variables that has
the form of 2.3.17

∂2Ẽ

∂ρ2
+

1

ρ

∂Ẽ

∂ρ
+

1

ρ2

∂2Ẽ

∂φ2
+
∂2Ẽ

∂z2
+ n2k2

0Ẽ = 0 (2.3.16)

Ẽz (r, ω) = A (ω)F (ρ) eilφeβz (2.3.17)

Where k0 is the wave number ω
c = 2π

λ ; l = 0, 1, 2..., is an integer; β, is the propagation constant, A is a
function that depends only on ω and F (ρ) is the solution to 2.3.18

d2F

dρ2

1

ρ

d2F

dρ
+

(
n2k2

0 − β2 − l2

ρ2

)
F = 0 (2.3.18)

To solve equation 2.3.18 one must consider two separate regions. Inside the core, the solution must not
diverge as r → 0, and outside the core, the solution should decay exponentially to account for the lack of
losses of the fiber (light travels bouncing on the core-cladding interface thanks to TIR, so no light escapes
the fiber and no energy should be lost). These considerations also impose a condition on the propagation
constant [30]. The propagation constant of a mode βlm can be understood as the longitudinal component
of the wave vector. So, the existing constraints when solving eq. 2.3.18 imply that condition 2.3.19 must be
satisfied

n2k < β < n1k (2.3.19)
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being n1 and n2, the refractive indices of core and cladding respectively;

The solutions to equation 2.3.18 with the considerations mentioned above, are the well-known Bessel func-
tions 2.3.20. This solution along with condition 2.3.19 reveal the existence of a cut-off frequency (wavelength)
above which (below which) no modes can propagate without losses.

F (ρ) =

{
Jl (pρ) , ρ ≤ a
Kl (qρ) , ρ ≥ a

(2.3.20)

Where p =
√
n2

1k
2
0 − β2 and q =

√
β2 − n2

2k
2
0 and a, the fiber core radius

We can follow the same procedure and solve the wave equation (2.3.16) in cylindrical coordinates for
the magnetic component of the field H̃. Then applying that tangential components (Ẽz and H̃z) must be
continuous across the core-cladding interface and angular components (Ẽφ and H̃φ) must be equal to each
other at ρ = a, we arrive at an eigenvalues equation 2.3.21 that will allow us to determine the propagation
constant β.

[
J ′l (U)

UJl (U)
+

K ′l (W )

WKl (W )

] [
J ′l (U)

UJl (U)
+
n2
c

n2
1

K ′l (W )

WKl (W )

]
= l2

(
1

U2
+

1

W 2

)(
1

U2
+
n2
c

n2
1

1

W 2

)
(2.3.21)

Where U = pa and W = qa so that the relation 2.3.22 defines a very important parameter of optical fibers:
the V parameter

√
U2 + V 2 = k0a

√
n2

1 − n2
2 = V (2.3.22)

Equation 2.3.21 gives multiple solutions for β for each integer value of l. These different solutions are
named βlm and each one represents a different way in which the pulse propagates within the fiber. They
are called modes and only two types (HElm and EHlm) can propagate through the fiber. These modes are
analogous to the TE and TM modes that appear in dielectric planar wave guides (see references [31, 32] or
[33] for more information and detailed derivation on wave guide modes), only that HElm and EHlm modes
have nonzero longitudinal components except for the l = 0 modes. For modes with l ≥ 1, all six components
of the magnetic and electric fields are nonzero. The V parameter determines the number of modes that can
propagate within a certain fiber and it is related with the cut-off frequencies mentioned earlier. Specifically,
the cut-off frequencies for each mode can be derived from equation 2.3.21 in the limit q → 0 (or W → 0).
Over a certain cut-off frequency, only one mode can propagate, the HE11, which is called the fundamental
mode. Fibers that only allow for propagation of the fundamental mode are referred to as Single Mode
Fibers, whereas if more than one modes are supported, they are called Multimode Fiber. The critical value
Vc that separates SMFs from MMFs can be calculated as mentioned above and turns out to be Vc ≈ 2.405.
Since V depends mainly on fiber parameters (a, n1, n2), it can be tailored to the desired value during fiber
manufacturing. This allows us to control the number of modes that can propagate inside the fiber.

The solution of equation 2.3.11 without the nonlinear term provides the basis to solve the complete
equation with the perturvative nonlinear term. But it also defines a key variable of pulse propagation inside
the fiber: the propagation constant β. β should be obtained from equation 2.3.21 but its form is rarely
known, so it is usually expanded in Taylor series around the carrier frequency ω0 to yield 2.3.23

β (ω) = β0 + (ω − ω0)β1 +
1

2
(ω − ω0)

2
β2 +

1

6
(ω − ω0)

3
β3 + ... (2.3.23)
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Where, β0 is the dispersion constant at the carrier frequency (β0 = β (ω0)) and the βm terms are defined as
2.3.24

βm =

(
dmβ

dωm

)
(2.3.24)

At this point we can go back to equation 2.3.11 and solve the complete equation, including the nonlinear
term. In order to do this, first we separate the electric field and polarization as in 2.3.25. This is called the
slowly varying amplitude method because E and P are separated in a part that varies rapidly with time
(given by the exponential proportional to ω) and a part that varies slowly compared to the first one (given
by the escalars E,PL, PNL).

E (r, t) =
1

2
x̂
[
E (r, t) e−iω0t + c.c.

]
P L (r, t) =

1

2
x̂
[
PL (r, t) e−iω0t + c.c.

]
PNL (r, t) =

1

2
x̂
[
PNL (r, t) e−iω0t + c.c.

] (2.3.25)

Where, x̂ is the polarization unit vector and c.c. stands for complex conjugate.

The slowly varying part of PL can be obtained by substituting the electric field from 2.3.25 in 2.3.8 and
using the convolution theorem 2 [34, 35] to give 2.3.26. And substituting the electric field from 2.3.25 in the
simplified equation for the nonlinear polarization 2.3.10 gives the expression for the slowly varying part of
the nonlinear polarization 2.3.27, where the nonlinear permittivity, εNL is defined as 2.3.28

PL (r, t) =
ε0
2π

∫ ∞
−∞

χ̃(1)
xx (ω) Ẽ (ω − ω0) e−i(ω−ω0)tdω (2.3.26)

PNL (r, t) ≈ ε0εNLE (r, t) (2.3.27)

εNL (r, t) =
3

4
χ(3)
xxxx|E (r, t) |2 (2.3.28)

With these definitions, we can try to solve the wave equation with the nonlinear term 2.3.11 in the Fourier
space. In general this is not possible because of the intensity dependence of the nonlinear term. However,
we can, as a first approach, take εNL as a constant during the process to get to the propagation equation.
This is a sensible approach because of the slowly varying envelope and perturbative approximations used for
the nonlinear term. With these considerations, we arrive again at the Helmholtz equation

∇2Ẽ + ε (ω) k2
0Ẽ = 0 (2.3.29)

Where, this time ε(ω) is given by 2.3.30

ε (ω) = 1 + χ̃(1)
xx + εNL (2.3.30)

2h(x) = {f ∗ g}(x) = F−1{F ·G}
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We can use this ε(ω) to redefine the refractive index and absorption coefficient and include in them the
effects of the nonlinear polarization, so relations 2.3.15 become 2.3.31

ñ = n+ ñ2I, α̃ = α+ α2I (2.3.31)

Using relations 2.3.13, 2.3.28 and 2.3.30; the nonlinear refractive index coefficient, n̄2 and the two-photon
absorption coeffiecient, α2 are given by 2.3.32

ñ2 =
3

8n
Re
(
χ(3)
xxxx

)
, α2

3ω0

4nc
Im
(
χ(3)
xxxx

)
(2.3.32)

In a similar way as we proceeded to solve the linear wave equation 2.3.11 we can try to solve the nonlinear
equation 2.3.29 in the Fourier space with an electric field of the form 2.3.33. This leads to equations 2.3.34
and 2.3.35 for the mode profile function, F and the slowly varying envelope, Ã respectively

Ẽ (r, ω − ω0) = F (x, y) Ã (z, ω − ω0) eiβ0z (2.3.33)

∂2F

∂x2
+
∂2F

∂y2
+
[
ε (ω) k2

0 − β̃2
]
F = 0 (2.3.34)

2iβ0
∂Ã

∂z
+
(
β̃2 − β2

0

)
Ã = 0 (2.3.35)

The eigenvalue equation 2.3.34 can be solved with a similar procedure to the one used for 2.3.18 but
using perturbation theory to replace ε with 2.3.36

ε = (n+ ∆n)
2 ≈ n2 + 2n∆n (2.3.36)

Where the small perturbation ∆n is given by 2.3.37

∆n = ñ2|E|2 +
iα̃

2k0
(2.3.37)

For a single mode fiber, F is the spatial distribution of the fundamental mode, which can be usually

approximated by a Gaussian shape F (x, y) ≈ e−
x2+y2

w . In the equation for Ã (2.3.35), we must apply
perturbation theory too on the propagation parameter, so β̃ becomes 2.3.38, where ∆β is defined as in eq.
2.3.39

β̃(ω) = β(ω) + ∆β(ω) (2.3.38)

∆β(ω) =
ω

c

∫∫∞
−∞∆n(ω)|F (x, y)|2dxdy∫∫∞
−∞ |F (x, y)|2dxdy

(2.3.39)
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Then, approximating β̃2 − β2
0 by 2β0(β̃ − β0), equation 2.3.35 can be rewritten in the form of equation

2.3.40

∂Ã

∂z
= i [β(ω) + ∆β(ω)− β0] Ã (2.3.40)

Just like we did with the propagation constant, ∆β is expanded in Taylor series 2.3.41, where ∆βm is
defined as 2.3.42

∆β(ω) = ∆β0 + (ω − ω0)∆β1 +
1

2
(ω − ω0)2∆β2 + ... (2.3.41)

∆βm =

(
dm∆β

dωm

)
ω=ω0

(2.3.42)

We can now take equation 2.3.40 back to the time domain to and use 2.3.39 to obtain the value of ∆β,
leading to 2.3.43

∂A

∂z
+ β1

∂A

∂t
+
iβ2

2

∂2A

∂t2
+
α

2
A = iγ|A|2A (2.3.43)

Where γ is referred to as the nonlinear parameter and is given by 2.3.44:

γ(ω0) =
ω0ñ2

∫∫∞
−∞ |F (x, y)|4dxdy

c
∫∫∞
−∞ |F (x, y)|2dxdy

(2.3.44)

The nonlinear parameter is usually redefined as in equation 2.3.45

γ(ω0) =
ω0n2

cAeff
(2.3.45)

where n2 and Aeff are given by expressions 2.3.46 and 2.3.47

n2 =
2ñ2

ε0nc
(2.3.46)

Aeff =

(∫∫∞
−∞ |F (x, y)|2dxdy

)2

∫∫∞
−∞ |F (x, y)|4dxdy

(2.3.47)

n2 is usually referred to as the Kerr coefficient and Aeff is the mode effective area. For SMFs, for example,
if the fundamental mode profile is approximated by a Gaussian, the effective area would be Aeff = πw2.
Equation 2.3.43 is usually called Nonlinear Schrödinger equation (NLSE) and it describes the evolution of
the longitudinal pulse profile along the fiber. The second and third terms of the left hand side describe
propagation including dispersive effects up to second-order (which are responsible for the group velocity dis-
persion, GVD). The last term in the left hand side describes attenuation of the pulse due to fiber absorption.
And the right hand side represents the nonlinear effects, such as self-phase modulation (SPM). Dispersive
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effects are governed by the propagation polynomial (β0, β1, β2...) and nonlinear effects are governed by the
nonlinear coefficient, γ. The NLSE can be modified to include higher-order dispersive and nonlinear effects
such as third-order dispersion or spontaneous Raman scattering (SRS). These will be treated in the following
sections, but with the exception of SRS, most of them provoke a negligible effect in our current experimental
setup.

This concludes the necessary general explanations to understand the reasons behind the appearance of
nonlinear and dispersive phenomena and should be enough to obtain a clear conceptual idea of the main
effects of this types that are significant when working with fiber optics. In the next sections (2.4.1 - 2.5.4) I
will briefly explain some of this phenomena and the effect they have on our setup, as well as provide reasons
why they should or should not be accounted for in the models that describe our system.

2.4 Dispersive effects

Dispersive phenomena appear due to the different terms in the propagation polynomial (2.3.23) and are
independent of the intensity. This means that even for long pulses (low peak-powers) dispersive effects will
play an important role in the propagation of the pulse through the fiber. Dispersive effects up to any order
can be considered by expanding 2.3.23 up to the desired order. However, usually most terms are negligible
and we only consider up to the β2 term. This is responsible for the group velocity dispersion (GVD) and
represents the major contribution to the dispersive effects. Nonetheless, under certain circumstances (i.e.
near the zero-dispersion wavelength, where β2 vanishes), it might be crucial to include at least up to β3.
This gives rise to the third order dispersion (TOD).

2.4.1 Group Velocity Dispersion (GVD)

The second term of the propagation polynomial (2.3.23), β1 is obtained from setting m = 1 in 2.3.24, and
therefore, β1 = dβ/dω. But the group velocity of a wave is defined as vg = dω/dk and β is just the
longitudinal component of the wave vector, k. Therefore, the group velocity is related with the propagation

polynomial like 2.4.1. But β2 = d2β
dω2 = d

dωβ1. So, β2 = d
dω

1
vg

. β2 depends on the variation of the group

velocity with the frequency. Hence the name group velocity dispersion.

vg =
dω

dk
=

1

β1
(2.4.1)

If we look at the NLSE (2.3.43) and disregard the terms with β1 and α (group velocity and losses), there
are two remaining terms: one proportional to β2 (the group velocity dispersion) and the other proportional
to γ, the nonlinear parameter. The behaviour of a pulse inside the fiber will depend drastically on which of
these two terms dominates the equation. Therefore, it is extremely useful to know a priori which of the two
terms will be the strongest. We can get a nice feel about this by defining in 2.4.2, the dispersion length, LD,
and the nonlinear length, LNL

LD =
T 2

0

|β2|
, LNL =

1

γP0
(2.4.2)

Where T0 and P0 are the pulse width and peak power respectively.

If the length of the fiber reaches one of the lengths, the corresponding effects will start to be significant for
pulse propagation. That leaves us four regimes of propagation depending on the fiber and pulse parameters:
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1. L� LD, LNL

Fiber is not long enough for either dispersive or nonlinear effects to be significant and both terms will
be negligible in the NLSE

2. L ∼ LD but L� LNL

Fiber is long enough for dispersive effects to become significant but is still too short for relevant
nonlinear effects to appear. In this regime, the NLSE is governed by the GVD (β2) term

3. L ∼ LNL but L� LD

Fiber is too short for dispersive effects to cause a major impact, but long enough to be obliged to
consider nonlinear effects

4. L� LD, LNL

Fiber is long enough for both nonlinear and dispersive effects to take place. Both terms of the NLSE
equation will compete and there will be no clear dominant term in the equation, so pulse propagation
is highly affected by both

For simplicity, let us study the effects of the GVD by itself. That is, let us assume we operate the setup

within the dispersion-dominant regime, which is reached when LD

LNL
=

γP0T
2
0

|β2| � 1. We can study this regime

by setting to zero the nonlinear parameter and using the change of variables 2.4.3

τ =
T

T0
=
t− z/vg
T0

, A(z, τ) =
√
P0e
−α z2U(z, τ) (2.4.3)

τ and U are normalized time scale and amplitude respectively and the exponential factor in A(z, τ) accounts
for losses in the fiber due to absorption. With these changes, second and last terms of the left hand side of
the NLSE equation are absorbed by τ and U and 2.3.43 can be rewritten as 2.4.4

∂U

∂z
= − iβ2

2

∂2U

∂T 2
(2.4.4)

As usual, this equation can be much more easily solved in the Fourier space to give the general solution
2.4.5

U(z, T ) =
1

2π

∫ ∞
−∞

Ũ(0, ω)e
i
2β2ω

2z−iωT dω (2.4.5)

Ũ(0, ω) is the Fourier transform of the initial pulse (at z = 0), which can be any shape we desire. For
example, a Gaussian or a sech. To see what the GVD causes, let us use as an example, a Gaussian input
pulse of the form 2.4.6:

U(0, T ) = exp

(
− T 2

2T0

)
(2.4.6)

Substitution of 2.4.6 in 2.4.5 and integration leads to the pulse shape at every point z along the fiber
length 2.4.7:

U(z, T ) =
T0√

T 2
0 − iβ2z

e
− T2

2(T2
0 −iβ2z) (2.4.7)
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Therefore, the pulse maintains its Gaussian shape while propagating through the fiber, but it broadens
as 2.4.8:

T (z) = T0

√
1 +

(
z

LD

)2

(2.4.8)

Figure 2.4.1 shows the broadening of the pulse for two different values of the normalized length z/LD. But
the GVD also has effect on the pulse phase. If we compare 2.4.6 and 2.4.7, we will notice that an imaginary
exponential factor appears after propagation. This means that, even if the original pulse in unchirped 3, it
will become chirped during propagation

Figure 2.4.1: Broadening of an initially Gaussian pulse due to GVD. Reproduced from [27]

So, the effect of the GVD is to broaden the pulse. In fact, depending on certain conditions, it will broaden
or narrow the pulse. If the original pulse is unchirped, the pulse will broaden by the factor given in 2.4.8.
But if the pulse is chirped, as in 2.4.9 (linearly chirped pulse), the effect of the GVD will depend on the
signs of β2 and the chirp parameter, C.

U(0, T ) = exp

(
−1 + iC

2

T 2

T 2
0

)
(2.4.9)

When the pulse is down-chirped (C < 0) the instantaneous frequency decreases linearly from the leading
to the trailing edge of pulse. That means that, for a down-chirped pulse, wavelengths at the front of the
pulse are slightly shorter than at the end of the pulse. And when the pulse is up-chirped (C > 0) the
opposite happens. Instantaneous frequencies increase linearly from the leading to trailing edge of the pulse,
and wavelengths at the front of the pulse are larger than those at the end. If chirp parameter, C and β2 have

3Chirped pulses are those that have a time-dependent phase, φ(t). They have become quite popular in the past years and
have many applications. See refs [36–39]
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the same sign, the GVD-induced chirp adds to the original chirp and the pulse broadens monotonically, but
faster than in the unchirped case. On the other hand, if C and β2 have different signs, the GVD-induced
chirp compensates the initial chirp and the pulse narrows at the beginning of propagation until the initial
chirp is fully compensated. Afterwards, the pulse broadens as in the previous case. This can be seen in
figure 2.4.2 and has been conceptually illustrated in figure 2.4.3

Figure 2.4.2: Broadening factor (A) and chirp parameter (B) as a function of the normalised distance z/LD

for anomalous GVD. Extracted from [27]

Figure 2.4.3: GVD effect in pulse propagation

2.4.2 Third Order dispersion (TOD)

The GVD and β2 parameter explained in section 2.4.1 usually governs the dispersive effects on the pulse as
it propagates. However, under certain circumstances, it might be necessary to consider up to the third order
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term of the dispersion polynomial, β3. This is the case, for example, when the GVD parameter is nearly
zero. If β2 ≈ 0, the third order dispersion (TOD) parameter, β3 gains notorious relevance. In general, this
begins to happen in the vicinity of the so-called zero dispersion wavelength, λ0. Its name, of course, arises
from the fact that when a pulse of this wavelength is launched into the fiber, it suffers no dispersion (not
GVD at least). Including the TOD parameter might be also useful when the pulse width is rather short
(typically lower than 1 ps). As we did with the GVD, it is useful to introduce a third order dispersion length,
L′D defined as 2.4.10

L′D =
T 3

0

|β3|
(2.4.10)

As long as L′D ≥ LD, TOD can be neglected. In the occasions where TOD can’t be neglected, we can
study its effect by adding a second term to the right hand side of equation 2.4.7 to yield 2.4.11

∂U

∂z
= − iβ2

2

∂2U

∂T 2
+
β3

6

∂3U

∂T 3
(2.4.11)

This equation (2.4.11) can be solved in the Fourier space to give Airy function-like solutions. This
provokes an oscillatory effect in the trailing edge when β3 is positive and in the leading edge when β3 is
negative. If this occurs near the zero dispersion wavelength, this effect is intensified and the oscillations even
drop intensity to zero. This can be seen in figure 2.4.4

Figure 2.4.4: TOD oscillating effect. Reproduced from [27]

Third order dispersion also produces pulse broadening. Furthermore, unlike the GVD, the TOD always
broadens the pulse, regardless of the chirp parameter or β3 signs. This leads to a curious result. The
broadening factor might be bigger for β2 = 0 than for β2 6= 0. With a nonzero GVD parameter, the pulse
might be narrowed in the beginning. But this is never the case if the main contribution to dispersion is due
to TOD. The broadening of the pulse during propagation can be seen in figure 2.4.5
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Figure 2.4.5: TOD effect in pulse propagation. Reproduced from [27]

2.5 Nonlinear effects

As explained in section 2.3, nonlinear effects arise from the intensity-dependent refractive index and are
closely related with γ, the nonlinear coefficient. Commonly, nonlinear effects are disregarded because they
appear with really high powers, But due to the high length of the fibers, nonlinear effects begin to build up
and gain importance. The most relevant of the nonlinear effects are the self-phase modulation (SPM) and
the spontaneous Raman scattering (SRS), which I will discuss in sections 2.5.1 and 2.5.4 respectively. But
other effects such as cross-phase modulation (XPM) or four wave mixing (FWM) will be also briefly talked
about.

2.5.1 Self-phase modulation (SPM)

As we did when we studied the GVD effects, for simplicity, we consider now the case where LNL < L �
LD, L

′
D (These three characteristic lengths were defined by equations 2.4.2 and 2.4.10). So, we do not take

into consideration the effects of group velocity dispersion or TOD. Under these circumstances, equation
2.3.43 leads to 2.5.1

∂U

∂z
=
ie−αz

LNL
|U |2U (2.5.1)

Equation 2.5.1 can be solved with the substitution U = V eiφNL and then equating real and imaginary
parts on both sides of the expression 2.5.2

∂V

∂z
= 0;

∂φNL

∂z
=
e−αz

LNL
V 2 (2.5.2)
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Solving these two equations (2.5.2) leads to expressions 2.5.3 and 2.5.4 for the amplitude and phase:

U(L, T ) = U(0, T ) exp[iφNL(L, T )] (2.5.3)

φNL(L, T ) = |U(0, T )|2
(
Leff

LNL

)
(2.5.4)

Where the effective length, Leff is defined as 2.5.5

Leff =
1− e−αL

α
(2.5.5)

As we can see from equation 2.5.4, due to the nonlinearity, the phase acquires an intensity dependence.
This dependence is proportional to the effective length, which increases with the fiber length. Therefore, the
longer the fiber, the higher the nonlinear phase shift, φNL, will be. And the maximum phase shift occurs
at the center of the peak (where U(0, T ) is the highest). The fact that the phase depends on T, will cause
the appearance of new spectral components. That is, if the phase changes with time, the instantaneous
frequency will also change with T and a frequency shift from the central frequency of the pulse will appear.
This is given by 2.5.6

δω(T ) = −∂φNL

∂T
= −

(
Leff

LNL

)
|U(0, T )|2 (2.5.6)

The time dependence of δω is referred to as frequency chirping and it increases with length (because
it is proportional to Leff). This means that the longer the distance, the larger the frequency shift will
be. A higher frequency shift means that frequencies at the edges of the pulse differ more from the central
frequency. Therefore, as the pulse propagates, new frequencies appear continuously due to SPM. So, if the
pulse is originally unchirped, the SPM-induced frequencies will spectrally broaden it. Nontheless, the SPM
frequency chirp might compensate for an originally chirped pulse. The exact effect of the SPM will critically
depend on the pulse shape. However, it is interesting to note from eq. 2.5.6 that δω ∝ |U(0, T )|2, which
means that the SPM-induced frequency chirp imitates the shape of the initial pulse. Hence, for an initially
Gaussian pulse, the frequency chirp will be Gaussian. And for super-gaussian pulses 4 (which are more
rectangular with increasing Gaussian order), the frequency chirp will become more and more rectangular
with steeper edges as the Gussian order increases. This can be observed in figure 2.5.1

4super-gaussian pulses are those which take the form U(0, T ) = exp

[
− 1+iC

2

(
T
T0

)2m
]
, with C being the chirp parameter

and m, the Gaussian order. For m = 1, the original regular Gaussian pulse shape is recovered
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Figure 2.5.1: SPM effect. A: SPM-induced phase-shift for a gaussian (dashed line) and super-gaussian of
third order (contiuous line) initial pulse. B: SPM-induced frequency shift for a gaussian (dashed line) and
super-gaussian of third order (continuous line) initial pulse. Extracted from [27]

It is interesting to get a glimpse of how big the SPM-induced frequency shift can get for a Gaussian pulse.
In order to do that, we look for the maximum of equation 2.5.6, which turns out to be 2.5.7:

δωmax =
mf(m)

T0
φmax (2.5.7)

Where φmax is obtained by substitution of the maximum value of the pulse intensity in equation 2.5.4, m; the
Gaussian order (m = 1 for Gaussian pulses); and the f function is defined by 2.5.8. For m = 1, f(1) = 0.86
and using 1

T0
= ∆ω0, we can write the maximum frequency shift as 2.5.9 for Gaussian pulses. In the case

of super-Gaussian pulses, the shape of ∆ω0 is not so easy to obtain, although a nice approximation can be
achieved with the inverse of the rise time, Tr

5, as ∆ω0 = 1/Tr.

f(m) = 2

(
1− 1

2m

)1− 1
2m

exp

[
−
(

1− 1

2m

)]
(2.5.8)

δωmax = 0.86∆ω0φmax (2.5.9)

The spectral broadening given by equations 2.5.6 and 2.5.9 can become significantly large, specially for
ultrashort pulses. In these cases, it might produce pulses that extend over more than 100 THz (for compar-
ison, 100 THz is, roughly, the whole near IR spectrum region). This phenomenon can be enhanced by other
nonlinear effects and is called supercontinuum generation [40–42] and it has developed many applications in
the past few years ranging from telecommunications to biophysics or medical imaging [43–46].

The self-phase modulation by itself does not affect the pulse amplitude, and, in principle, does not cause
temporal broadening of the pulse. However, spectral changes are often closely related with temporal changes
and the spectral broadening will, in most cases, induce a temporal broadening or narrowing. This is, actually,
consecuence of the interplay between the GVD and the SPM. The SPM generates new frequencies which are
then delayed or hasten by the GVD. This combination of phenomena can eventually lead to soliton formation
and will be discussed later in this work, in section 2.5.5.

5The rise time is the time it takes for the spectral edges to get to the peak intensity and is given approximately by Tr = T0/m
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2.5.2 Cross-phase modulation (XPM)

The cross-phase modulation phenomenon is conceptually, closely related with the SPM, but rather more
complicated mathematically. XPM is negligible in our setup, mainly because of the low PMD6 coefficient
of our fibers and and even if the PMD coefficient was a little larger, the length of the fiber would not be
sufficient for it to be relevant. However, it should be taken into account when studying the propagation of
the pulse, specially in fibers with high PMD coefficients. For these reasons, I believe it unnecessary to include
the whole mathematical derivation. But, of course, I encourage the interested reader to check chapter 7 of
Agrawal’s book [27].

Qualitatively, the XPM occurs when two pulses overlap in the fiber during propagation. They might have
different wavelengths, different phases or different polarization states. This can be the case for example in a
multimode fiber. When two pulses propagate inside the same fiber span overlapping, we need to extend the
theory and demonstrations of section 2.3 to two coexisting pulses. This leads to a pair of coupled non-linear
Schrödinger equations (2.3.43), which means that the propagation of one pulse has an effect on the second
and vice versa. Specifically, if we focus only on one of the pulses, we will observe it is affected by SPM.
SPM causes an intensity dependent phase shift (and frequency shift). But with two pulses propagating at
the same time inside the fiber, the intensity involved in the SPM equations is not only due to the first pulse,
but caused by both pulses.

XPM can appear also when only one pulse propagates trhough a birrefringent fiber. If a pulse is introuded
at a certain angle with respect to the optical axes (slow and fast) of the fiber, the pulse will suffer from PMD
and can be viewed as decomposed in two pulses: one on the fast axis and one on the slow axis. These “two”
pulses can interact through XPM. This is illustrated in figure 2.5.2

Figure 2.5.2: Effect of the cross-phase modulation on a single pulse that travels through birrefringent fiber
decomposing into two pulses. Extracted from [49]

So, when two pulses coexist in the same fiber span, they are both affected by SPM due to their own
intensity and by XPM due to the intensity of the other pulse. Because this effect arises from the nonlinear
terms of the NLSE (2.3.43), the nature of this feedback and the relation between SPM and XPM and
XPM and the different intensities is rather complicated, but I hope the conceptual underlying basis is now
sufficiently clear

6PMD: Polarization Mode Dispersion is a phenomenon caused the difference in refractive index depending on the direction.
This leads to the appearance of a fast axis and a slow axis and broadening of the pulse caused by the different velocities of the
two components of the pulse. More information can be found on [47] or [48]
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2.5.3 Four wave mixing (FWM)

Although the theory and equations governing this phenomenon are also rather complex, we can still get a
good idea of where this effect comes from without diving too deep in complicated mathematical expressions.
The conditions for FWM to occur do not usually happen naturally. Rather than that, the experiment should
be designed deliberately to enhance FWM effects, and this is not the case for our setup. Therefore, FWM
will have little to zero impact in our setup and so. For this reason, I do not think it is necessary to include
a detailed explanation.

The process of four wave mixing arises from the nonlinear polarization. The different nonlinear terms of
the polarization (eq. 2.3.7) are responsible for second-, third- or higher-order nonlinearities depending on
the relevant susceptibility (χ(i)). Second-order nonlinear effects such as second harmonic generation are not
usually relevant in fiber optics because fibers have inversion symmetry and χ(2) becomes zero for such kind of
media. But the following term (χ(3)) will cause third-order nonlinearities such as third harmonic generation
or four wave mixing. Let us consider the case where four continuous waves (CW) propagate inside the fiber
with frequencies ωj , (with j = 1,2,3,4) and, for simplicity, they do so with linear polarization along the same
axis. We can write the electric fields and polarizations in a similar way as we did in equation 2.3.25 to give
2.5.10:

E =
1

2
x̂

4∑
j=1

Ej exp [i (βjz − ωjt)] + c.c

P =
1

2
x̂

4∑
j=1

Pj exp [i (βjz − ωjt)] + c.c

(2.5.10)

Substitution of 2.5.10 in the nonlinear term of 2.3.7 leads to the coefficients Pj having the form of 2.5.11,
where j = 4 has been used as an example:

P4 =
3ε0
4
χ(3)
xxxx

[
|E4|2E4 + 2

(
|E1|2 + |E2|2 + |E3|2

)
E4 + 2E1E2E3e

iθ+ + 2E1E2E
∗
3e
iθ− + ...

]
(2.5.11)

Where the θ+ and θ− phases are given by 2.5.12

θ+ = (β1 + β2 + β3 − β4) z − (ω1 + ω2 + ω3 − ω4) t

θ− = (β1 + β2 − β3 − β4) z − (ω1 + ω2 − ω3 − ω4) t
(2.5.12)

The first four terms in equation 2.5.11 are actually responsible for SPM (the first) and XPM (the other
three) and the other terms, that combine the different frequencies of all four waves, are the ones that cause
FWM. FWM will only be considerable if the phase mismatching between Ej and Pj is nearly zero. For this
to happen, both frequencies and wave vectors need to match (phase matching condition). Physically, FWM
occurs when three or two photons interact (annihilate) to generate another or another two photons. In the
process of four wave mixing, apart from the phase matching (wave vector matching) condition, frequency
matching must be complied. This means that the sum of the frequencies of the “incoming” photons must
equal the sum of the frequencies of the “outgoing” photon(s). As a consequence of this, only two types of
FWM can occur. One that involves the θ+ phase in which three photons of different or the same frequency
(third harmonic generation) annihilate to generate just one photon whose frequency is the sum of the other
three. The other is related with the θ− phase and it destroys two photons of frequencies ω1 and ω2 to give
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rise to another two photons of frequencies ω3 and ω4 with the condition ω1 + ω2 = ω3 + ω4. This has been
illustrated in figure 2.5.3

(a) 3rd harmonic generation through FWM (b) Four wave mixing process illustration

(c) Feynman diagram of FWM

Figure 2.5.3: Illustration of the process of four wave mixing

In general, the phase-matching condition is not fulfilled unless on purpose. So, FWM has little effect on
setups not designed to enhance this phenomenon. FWM has several applications, for example, in tomography,
phase-conjugation (which can have many applications such as holography), or single-photon experiments [50–
52]. And once again, if interested, I encourage the reader to learn more about this topic by seeing the full
Agrawal’s demonstration [27] or references [53] and [54]

2.5.4 Stimulated Raman Scattering (SRS)

When an optical field propagates inside a fiber, a small fraction of its power can be converted into light
at lower frequency due to spontaneous Raman scattering. This phenomenon was discovered by Raman [55]
(hence the name). It is a quantum effect caused by the conversion of a photon from the pump wave to
another from the so-called Stokes or anti-Stokes wave. Usually, the amount of the pump pulse affected
by spontaneous Raman scattering is very low (around 10−6). But if the pump power is large enough, it
might provoke stimulated Raman scattering (SRS) which has a significant impact on the pump and pulse
propagation.
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The anit-Stokes wave is blue-shifted (higher frequency than the original) and the Stokes wave is red-
shifted (lower frequency than the original), although the latter is much more common. The process behind
the creation of the Stokes or anti-Stokes wave is a photon-phonon interaction. Phonons are particle-like
vibrations of the atomic lattice of the medium. So, when a photon of the pump beam hits the atomic lattice,
two things might happen. In the first case, the energy of the photon will be employed in sending a molecule
to an excited state, and creating a phonon that propagates through the lattice. Then, the molecule will go
back to the ground state emitting a photon of lower energy (red-shifted) than that of the pump. This is
called Stokes Raman scattering. In the other case, the photon might hit the molecule at the same time that
a phonon arrives at it. Consequently, the molecule will absorb the energy of both the phonon and the photon
and jump to a higher excited stace. Immediately after, it will decay to the ground level again, but this time,
emitting a photon which has higher energy (blue-shifted) than that of the pump. This is the anti-Stokes
Raman scattering. An illustration of the phenomenon can be found on figure 2.5.4

(a) Anti-Stokes Raman shift

(b) Stokes Raman shift

Figure 2.5.4: Illustration of the Raman effect

At a very fundamental level, we can characterize the build-up of the Stokes wave with equation 2.5.13

dIs
dz

= gR(Ω)IpIs (2.5.13)

Where gR(Ω) is the Raman gain and Ω is the frequency shift between the pump and the Stokes wave
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(Ω = ωp − ωs). The Raman gain, gR is the main parameter to describe the SRS. It depends on several
factors such as material of the core, dopants in the fiber or relative polarization of the Stokes and the pump
waves. So, it is usually found experimentally. For silica fibers, this has been thoroughly studied and the
Raman gain dependence on the frequency shift looks like figure 2.5.5

Figure 2.5.5: Raman gain dependence on frequency shift. Extracted from [56]

If a probe beam is introduced in the fiber along with the pump, it will be amplified whenever the frequency
shift between pump and probe lies within the Raman gain bandwidth. The main peak of the graph in 2.5.5
is located at about 13 THz, so, naturally, if said shift matches the peak, the amplification effect will be
maximum. If no probe is introduced, spontaneous Raman scattering will act itself as a probe and will be
amplified during propagation. In this case, spontaneous Raman scattering is generated at all frequencies of
the Raman gain bandwidth, but at a much greater rate at the gain peak (∼13 THz). So the Stokes wave
generated by spontaneous Raman scattering is downshifted 13 THz from the pump.

One of the first questions we can ask ourselves about this phenomenon is at what point the spontaneous
process becomes stimulated. To find out, let us revisit equation 2.5.13 and account for the fact that there
are losses in the fiber and that the pump and the Stokes wave will interact non-linearly with each other.
Then, we arrive at 2.5.14

dIs
dIz

= gRIpIs − αsIs

dIp
dIz

= −ωp
ωs
gRIpIs − αpIp

(2.5.14)

Where αp and αs represent losses at the pump and Stokes frequencies respectively. In a first approach, we
can consider there is no pump depletion and neglect the first term of the Right hand side of the second
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equation in 2.5.14. This gives an easy solution for said equation of the form Ip(z) = Ip(0)e−αpz, which we
can substitute in the first equation of 2.5.14 to give 2.5.15

dIs
dz

= gRI0e−αpzIs − αsIs (2.5.15)

Where, I0 is the pump intensity.Equation 2.5.15 can be easily solved to arrive at 2.5.16

Is(L) = Is(0) exp (gRI0Leff − αsL) (2.5.16)

Where Leff =
[
1− e−αpL

]
/αp is the effective length. Is(0) is the input intensity, which would be our probe

beam. But let us consider for a moment that this Is(0) is the one due to inserting just one photon per mode.
With this consideration, the power of the Stokes wave is given by 2.5.17

Ps(L) =

∫ ∞
−∞

h̄ω exp [gR(ωp − ω)I0Leff − αsL]dω (2.5.17)

This can be solved approximately thanks to the fact that the biggest contribution to gR is due only to
small region of the whole bandwidth. Doing so, we arrive at an expression for the power of the Stokes wave
2.5.18

Ps(L) = P eff
s0 egR(ΩR)I0Leff−αsL (2.5.18)

Where, P eff
s0 , the effective input power is given by 2.5.19

P eff
s0 = h̄ωsBeff , Beff =

(
2π

I0Leff

)1/2 ∣∣∣∣∂2gR
∂ω2

∣∣∣∣−1/2

ω=ωs

(2.5.19)

Where Beff is the effective bandwidth of the Raman gain. Now, we can define a Raman threshold at the
point where the Stokes wave power built-up by the spontaneous Raman scattering at the end of the fiber
reaches the pump power. With such condition (Ps(L) = Pp(L)), the threshold power can be found to be
given approximately by 2.5.20

Pth ≈ 16
Aeff

gRLeff
(2.5.20)

Where Aeff is the effective core area as defined in 2.3.47.

Of course, if we want to have a better understanding of the SRS, we should take into account effects that
have already been mentioned in previous sections such as SPM, XPM, GVD or FWM. This can be done
by applying the complete NLSE 2.3.43 to both the pump and Stokes wave. By doing so, and after a lot of
algebra, we arrive at equations 2.5.21 and 2.5.22 that describe pulse propagation including SRS effect

∂Ap
∂z

+
1

vgp

∂Ap
∂t

+
iβ2p

2

∂2Ap
∂t2

= −αp
2
Ap + iγp(1− fR)(|Ap|2 + 2|As|2)Ap +Rp(z, t) (2.5.21)

∂As
∂z

+
1

vgs

∂As
∂t

+
iβ2s

2

∂2As
∂t2

= −αs
2
As + iγs(1− fR)(|As|2 + 2|Ap|2)As +Rs(z, t) (2.5.22)
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In fact, we can clearly identify each contribution in equations 2.5.21 and 2.5.22. On the left hand side,
second and third terms are due to dispersion (group velocity and GVD respectively). On the right hand
side, the first term is caused by losses in the fiber and second and third terms, are caused by SPM and XPM
respectively. The last term is the one due to SRS (although SRS also contributes with the fR factor in the
second and third terms).

The SRS and the Raman effect in general has found many applications since its discovery specially in
spectroscopy [57–59], but also in biological imaging [60] and, of course, lasing [61]. If the reader would like
to know a little more, extra information can be found on Agrawal’s book [27] or references [62–64]

2.5.5 Solitons

Under certain circumstances, the interplay between nonlinear and dispersive effects may have a really in-
teresting consequence: the formation of a wave packet that can propagate for very long distances without
losses or changes in its spectrum. This kind of waves are called solitons. Solitons appear in many branches
of physics and have drawn a lot of attention onto them since they were first observed in 1834 by John Scott
Russell [65], who followed “a solitary elevation, a rounded, smooth and well-defined heap of water which
continued its course along the channel apparently without change of form or diminution of speed [...] for
one or two miles”, as described by himself. More than a century later, the existence of solitons in fiber was
observed [66] and attributed to a compensation between nonlinear and dispersive effects [67]

To begin with the study of this interesting phenomenon, we take the nonlinear Schrödinger equation
(2.3.43) but we consider only GVD and SPM effects and neglect losses7. With those assumptions, equation
2.3.43 reduces to 2.5.23

i
∂A

∂z
=
β2

2

∂2A

∂T 2
− γ|A|2A (2.5.23)

We can find the stationary state solution for this equation by making the time derivative equal to zero,
which yields to a simple ODE whose solution can be easily found to be A =

√
P0e

iφNL , where φNL = γP0z, is
the nonlinear phase-shift induced by the SPM. Note that this simplified equation and its solution is the same
that would be obtained from solving 2.5.23 for a CW because for the continuous wave case, the amplitude,
A, does not depend on the time. To check if this solution is stable we need to apply a small perturbation to
the amplitude, so that A =

(√
P0 + a

)
eiφNL . Substituting this perturbed amplitude in 2.5.23 and linearizing

around a, we obtain equation 2.5.24

i
∂a

∂z
=
β2

2

∂2a

∂T 2
− γP0(a+ a∗) (2.5.24)

This equation can be solved in the Fourier space to give 2.5.25:

a(z, T ) = a1e
i(Kz−ΩT ) + a2e

−i(Kz−ΩT ) (2.5.25)

Where K and Ω are the wave number and frequency of the perturbation. Substitution of 2.5.25 in 2.5.24

7The assumption of lossless propagation, although it might seem bizarre, is actually quite descriptive since solitons do not
change in amplitude (hence do not lose energy)
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yields to the pair of coupled equations 2.5.26

[
K −

(
γP0 +

β2Ω2

2

)]
a1 − γP0a

∗
2 = 0[

K +

(
γP0 +

β2Ω2

2

)]
a2 − γP0a

∗
1 = 0

(2.5.26)

Which has a nontrivial solution only when the dispersion relation 2.5.27 is satisfied

K = ±1

2
|β2Ω|

√
Ω2 + sgn(β2)Ω2

c (2.5.27)

Where sgn is the mathematical function sign, which takes the value 1 or −1 depending on whether its
argument is positive or negative respectively; and Ωc is a critical frequency defined by 2.5.28

Ωc =
4γP0

|β2
=

4

|β2|LNL
(2.5.28)

The dispersion relation 2.5.27 defines two very distinct regimes. If the fiber presents normal GVD
(β2 > 0), K will be real for any value of Ω. But in the case of anomalous GVD (β2 < 0), for some
frequencies, Ω might be smaller than Ωc and K will take imaginary values. In the first case the solution is
stable against small perturbations. But in the second case, the perturbation will grow exponentially and lead
to temporal modulation. This is called instability modulation. Therefore, even if a CW beam is propagating
inside a fiber with anomalous GVD, the instability modulation will automatically break the beam into a
train of pulses. To see how the instability evolves exactly, it is necessary to find its gain and, eventually, as
the instability grows, solve the NLSE (2.5.24) numerically. This feature was applied as soon as in 1989 to
create pulse widths of around 130 fs with repetition rates of 2 THz.

It is clear that the case where the GVD parameters is negative is drastically different from the positive
GVD. But, apart from the modulation instability that can give rise to ultrashort pulses, equation 2.5.23
happens to have specific solutions that do not change during propagation through the fiber, or change in a
periodic way (so that the initial shape of the pulse is recovered after some distance). These solutions are
called solitary waves or solitons (to stress their particle-like nature). Equation 2.5.23 can be solved with
the inverse scattering method [68, 69]. To do so, it is better to previously normalize the equation with the
parameters defined in 2.5.29

U =
A√
P0

; ξ =
z

LD
; τ =

T

T0
; N =

√
LD
LNL

=

√
γP0T 2

0

|β2|
(2.5.29)

Where a new parameter, N, has been introduced so equation 2.5.23 can be written as 2.5.30 after choosing
the sign of β2 to be −1 since that is our case of interest.

i
∂U

∂ξ
= sgn(β2)

1

2

∂2U

∂τ2
−N2|U |2U (2.5.30)

Which can be taken to the standard form 2.5.31 by using u = NU =
√
γLDA:

i
∂u

∂ξ
+

1

2

∂2u

∂τ2
+ |u|2u = 0 (2.5.31)
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This equation can now be solved with the inverse scattering method to give general solutions for solitons
of the form 2.5.32

u(ξ, τ) = −2

N∑
j=1

λ∗jψ
∗
2j (2.5.32)

The λj coefficients in equation 2.5.32 are given by 2.5.33 and the ψ2j functions are obtained by solving the
set of algebraic linear equations given by 2.5.34

λj =
√
cje

iζjτ+iζ2j ξ (2.5.33)

ψ1j +

N∑
k=1

λjλ
∗
k

ζj − ζ∗k
ψ∗2k = 0

ψ∗2j +
N∑
k=1

λjλ
∗
k

ζj − ζ∗k
ψ1k = λ∗j

(2.5.34)

In equations 2.5.33 and 2.5.34, ζj are the eigenvalues of the scattering problem (inverse scattering) associated
with the NLSE (2.5.31). The inverse scattering method involves residues calculation theorem and a solid
understanding of complex variable calculus. The cj in 2.5.33 is actually the residues at the j-th pole and
there are as many eigenvalues as complex poles. In general, the eigenvalues will be complex (ζj = δj + iηj).
The number poles, N defines the order of the soliton. So, the fundamental soliton (N = 1) appears when
the scattering problem presents only one pole.

Making j = k = N = 1 in equations 2.5.32 to 2.5.34 we can find the shape of the fundamental soliton.
This is the only one whose shape is preserved at all times during propagation. Higher-order solitons recover
the initial shape periodically. We can, therefore, write the expression for a general soliton as in 2.5.35

u(ξ, τ) = ηsech[η(τ − τs + δξ)] exp

[
i(η2 − δ2)

ξ

2
− iδτ + iφs

]
(2.5.35)

Where the parameters δ and η are the real and imaginary parts of the eigenvalue ζ respectively and τs and
φs are defined through 2.5.36

−c1
η

= eητs−iφs (2.5.36)

So, in fact, a four-parameter family of fundamental solitons is supported inside the fiber. The four
parameters η, δ, τs and φs have a physical meaning. They represent, respectively, the amplitude, frequency,
position and phase of the soliton. But equation 2.5.35 can be much simplified with a wise choice of the
parameters. For instance, an overall constant phase has no physical significance, so we can drop the term
with φs. τs represents the position of the maximum of the pulse, but we can choose our origin of times so
that τ = 0 when ξ = 0 which leads to τs being zero as well. δ can be seen as a frequency shift from the
carrier frequency ω0 which will change the original frequency to ω′ = ω0 + δ/T0 and provoke a change in the
group velocity (β′1 = β1 + δ|β2|/T0). But it can also be removed from 2.5.35 by choosing the right carrier
frequency. Lastly, the parameter η determines the amplitude of the soliton and its width (as a matter of fact,
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amplitude and width of the soliton are inversely related) and it can be chosen to be equal to 1 by making
u(0, 0) = 1. With all these considerations, equation 2.5.35 reduces to 2.5.37

u(ξ, τ) = sech(τ)eiξ/2 (2.5.37)

As mentioned before, higher-order solitons, with values of N larger than 1 are supported in the fiber.
The power requirements to launch a soliton of the N-th order into the fiber can be obtained from equation
2.5.29 and it will be N2 times the power needed for the fundamental soliton. Higher-order solitons recover
the original shape periodically with a period ξ0 = π/2, as we can see in figure 2.5.6

Figure 2.5.6: Evolution of pulse shape and pulse spectrum of a third order soliton. Extracted from [27]

A really interesting feature of the solitonic behaviour is that if the power with which the pulse is launched
into the fiber is slightly higher than the required for a certain order soliton, the pulse will adjust itself (and
disperse some energy) to match the propper value. We can see this in figure 2.5.7 where the pulse is launched
with N = 1.2 instead of N = 1 and the pulse gradually changes its peak power to reach the correct value of
N = 1
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Figure 2.5.7: Evolution of pulse shape that initially presented a value of N = 1.2. The pulse gradually
evolves into the fundamental soliton (N = 1). Extracted from [27]

A lot more information can be found to get a more profound insight on this topic. Agrawal’s book [27]
contains more detailed explanations and mathematical demonstrations. References [70] and [71] explore
deeper into the mechanic soliton (in a material medium) like the one observed by John Scott Russel; and
references [72] and [73] deal entirely with optical solitons. Solitons have numerous application not just in
the field of optics [74, 75], but also in electronics [76] or magnetism [77]

3 The experiment and numerical approach

We have now given short, but hopefully insightful explanations of the main phenomena that can take place
inside an optical fiber span when a pulse (or CW) of light propagates through it. Once that the necessary
clarifications have been made, it is time to present the experiment itself.

The motivation behind this experiment is to get the laser to generate ultra-short pulses in a stable way,
for which solitonic transmission in the fiber span must be achieved. As we saw in section 2.5.5, solitons
are waves that can travel long distances maintaining their shape and spectrum due to an interplay between
nonlinear and disipative effects. Therefore, to obtain this kind of transmission, one must provide a virtually
lossless medium. Even though fibers are themselves a rather low-loss medium, even for short distances
(∼ 1km), losses are sufficiently high to prevent solitonic transmission from happening.

One way to overcome the losses inherent to the fiber is to amplify the signal, so that gains compensate
for losses. Probably the first option that comes to the reader’s mind to do this is to amplify the signal
periodically (lumped amplification) every time a certain distance is traveled. This is actually the scheme
nowadays in telecommunication applications. However, it is an unsuitable method for solitonic transmission.
This is because in the space between two optical amplifiers, the signal will have decayed enough for the signal
to loose its solitonic behaviour. So, even if you end up with an output signal power equal to the input signal
power, lossless solitonic transmission would not have taken place. Of course, you could put the amplifiers
close enough to compensate losses soon and maintain a soliton during transmission, but that would require
an exorbitant amount of lump amplifiers to cover a significant length.

On the other hand, one may also wonder why it is really necessary to achieve the lossless, solitonic
transmission, if we can already send a signal thousands of kilometers across by amplifying at certain points.
The answer is that lumped amplification has two major setbacks. First, it needs a number of optical
amplifiers that elevate the cost and maintenance tasks of the system. Second, when the signal decays, the
optical-signal-to-noise ratio (OSNR) might drop to values near 1. That is, the power of the signal might
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become comparable to the noise. Then, when the signal is amplified, it is amplified along with the noise,
leading to a rather noisy signal which might be source of errors while decoding it. For these reasons, achieving
solitonic transmission in long distances would be not only extremely interesting from a scientific point of
view, but also extremely useful from an applied perspective.

3.1 Experimental setup

A way to overcome the disadvantages of lumped amplification is to use distributed amplification [78–81].
In these kind of setups, the gain is not provided to the signal at specific points, but spread throughout the
whole fiber span. With this, we get to compensate for the losses ideally at every point of the fiber, so the
signal never gets to decay and solitonic transmission is achieved. The main mechanism to obtain distributed
amplification is through Raman amplification, which is based on the SRS (section 2.5.4). The idea behind
this kind of setups is to use a Raman cascade. A pump is introduced in the fiber at a wavelength close to
the Raman gain peak so that a Stokes wave is created at the signal wavelength, and the signal is amplified.
The experimental setup we have used is included below in figure 3.1.1. The Erbium-Doped fiber amplifier
(EDFA) generates the signal and the semiconductor saturable absorber mirror (SESAM) is used to adjust
the length of the cavity so that it matches an integer multiple of the soliton period, and to clean the signal
from noise [82]

Figure 3.1.1: Schematic depiction of the experimental setup.

The right part of this setup, between the attenuator and the circulator is what I will be focusing on
during my work and what simulations are based on. The main elements of this part are the pump laser and
the fiber span. Although it is not the case, the fiber span can act as a resonant cavity when FBGs are placed
on its end, but mainly it is there where we can test if lossless transmission is achieved. And the pump laser
is the responsible for generating the Raman cascade mentioned earlier. For the experimental measurements
two different pumping modes will be used with three different lengths: 5.317 km, 10.000 km and 18.807
km. All of them of the same type of fiber, so that their properties don’t change from one to the others.
With these three fibers, one of the pumping schemes that will be used is primary backward pumping (see
figure 3.1.2 (a)). That is, a 1455 nm pump is injected in the counter-propagating direction (with respect to
the signal propagation direction) which, by SRS, generates radiation at the signal wavelength (1550 nm),
amplifying it.
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(a) Primary backward pumping scheme (b) Secondary forward, primary backward pumping
scheme

Figure 3.1.2: Pumping schemes of the experiment

The other configuration is a secondary forward, primary backward pumping scheme (fig. 3.1.2 (b)). This
means that the pump is injected in both the forward and backward directions. In the forward direction, a
double Raman cascade takes place. In other words, a primary pump is injected at 1366 nm at the beginning
of the fiber span that generates radiation at 1455 nm which acts itself as a secondary pump creating radiation
at 1550 nm that amplifies the signal. In the other end, a 1455 nm pump is injected as in the previous case.

For the sake of data acquisition, the setup (fig. 3.1.1) is slightly modified to replace the EDFA with an
optical time domain reflectometer (OTDR) (see fig. 3.1.3). The OTDR now provides the signal and collects
experimental measurements of signal power evolution. The ‘cavity’ in fig. 3.1.3 can be any of the three
lengths mentioned before and, by switching on or off the 1365 nm laser, we can alternate between the two
pumping schemes depicted in fig. 3.1.2

Figure 3.1.3: Experimental setup with the OTDR

37



3.2 Modelling and simulation

The main goal of this project was to simulate the experimental system in order to compare some theoretical
results with experimental results. The idea behind this simulation should be not only to get a numerical or
graphic representation of the system, but also to optimize it. That is, we are looking for the set of parameters
that provide the flattest signal gain curve while fulfilling the necessary boundary conditions.

The first thing we need to simulate the system is a mathematical model that physically describes our
experimental setup. This will be dealt with in section 3.2.1. Once the mathematical model is clear, we
need to find a way to integrate (or propagate) it through the fiber to reach a satisfactory solution, which
we explain in section 3.2.2. Lastly, in section 3.2.3, once a solution has been found, we try to optimize the
system.

3.2.1 The Model

Through section 2 we have seen that light propagation inside a fiber can become a rather complex problem.
The effects that have been presented in sections 2.4 and 2.5 must be taken into account when studying the
propagation of pulses. For this purpose, equations 2.5.21 and 2.5.22 should be solved with all of its terms,
as these are the equations that include all the effects previously described. However, because of the high
complexity of these equations, an alternative way to assess the problem is needed. So, instead of trying to
directly solve equations 2.5.21 and 2.5.22, we study the evolution of the average signal and pump powers in
the stationary state. By doing so, the time dependence is erased and modulation effects are left out of the
study. That means that the effects of GVD, SPM and XPM disappear. Furthermore, in our setup, TOD can
be neglected because we are working far from the zero dispersion wavelength and FWM can be negelected as
well because the conditions for phase and frequency matching are not fulfilled. So, from the dispersive and
nonlinear effects explained in sections 2.4 and 2.5, only SRS plays a role in the power evolution equations.
The reason to study the power evolution is that, it will allow us to obtain an effective gain αeff(z) that
we can then use to solve the propagation equations in a much simpler way. With this consideration, the
differential equations governing the model are given by [4, 83] equations 3.2.1 - 3.2.7.
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Where P±P1 are the primary forward (+) and backward (−) pumps; P±P2 are the secondary forward (+) and
backward (−) pumps; PS is the signal power; νi are the frequencies of primary and secondary pump and
signal; ∆νi are the bandwidths of the pumps and signal (or the FBG when necessary) αi are the attenuation
coefficients; εi are the backscattering coefficients; gi are the Raman gain coefficients; N±S are the forward
(+) and backward (−) noise; z, the distance; h, Planck’s constant; KB , Boltzmann’s constant and T , the
temperature

This set of coupled ODEs that describe the system is subject to boundary conditions that vary slightly
depending on the cavity configuration (presence or absence of FBGs, double or single pumping) and will
be specified in section 3.2.2. Alternatively, the model can be simplified if we consider single pumping only,
which leads to equations 3.2.8 - 3.2.12
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This simplification becomes specially useful when we run the simulation as simpler models are easier to
integrate and less computationally expensive.
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3.2.2 Simulation

As seen in equations 3.2.1 - 3.2.7, the complete model is characterized by a set of seven ordinary differential
equations. But it is not defined uniquely by this set of equations. The real problem implies finding a
solution that not only satisfies the equations, but also fulfills the boundary conditions imposed by the
physical constraints of the system. These boundary conditions vary slightly depending on cavity design, so
they have been summarized in table 3.2.1 and equations 3.2.13

Pumping mode Primary Secondary

FBG at beginning

P+
P1(0) = R1P

−
P1(0)

P−P1(L) = P−P1,in

P+
P2(0) = P−P2(0) = 0

P+
P2(L) = P−P2(L) = 0

P+
P1(0) = P+

P1,in

P−P1(L) = P−P1,in

P+
P2(0) = R1P

−
P2(0)

P−P2(L) = P−P2,in

FBG at end

P+
P1(0) = P+

P1,in

P−P1(L) = R2P
+
P1(L)

P+
P2(0) = P−P2(0) = 0

P+
P2(L) = P−P2(L) = 0

P+
P1(0) = P+

P1,in

P−P1(L) = P−P1,in

P+
P2(0) = P+

P2,in

P−P2(L) = R2P
+
P2(L)

FBG at both ends

P+
P1(0) = R1P

−
P1(0)

P−P1(L) = R2P
+
P1(L)

P+
P2(0) = P−P2(0) = 0

P+
P2(L) = P−P2(L) = 0

P+
P1(0) = P+

P1,in

P−P1(L) = P−P1,in

P+
P2(0) = R1P

−
P2(0)

P−P2(L) = R2P
+
P2(L)

No FBGs

P+
P1(0) = P−P1,in

P−P1(L) = P−P1,in

P+
P2(0) = P−P2(0) = 0

P+
P2(L) = P−P2(L) = 0

P+
P1(0) = P+

P1,in

P−P1(L) = P−P1,in

P+
P2(0) = P+

P2,in

P−P2(L) = P−P2,in

Table 3.2.1: Different boundary conditions depending on cavity design

PS(0) = PS,in; N+
S (0) = N0; N−S (L) = 0 (3.2.13)

Now, when solving a system of ODEs, the common practice is to use some integrator to get from the
initial point (at z = 0) to the last point of the integration interval (z = L). There are several numerical
integration methods (like Bulirsch-Stoer method, predictor-corrector mehtods, etc. [84]), but one of the most
common is the Runge-Kutta (RK) method.

Actually the Runge-Kutta methods are a broad family of methods (Euler method, Runge-Kutta-Fehlberg
method [85], etc.), each of which might be better than others for certain systems. Their working principle is,
in fact, rather simple and straight-forward and very easy to implement. The main idea is to take Euler-style
steps8, but to make them more accurate, the derivative is not just calculated with the starting and ending
points of the step. Rather than that, a half-step is taken to calculate the derivative at the midpoint and use
that information to take the real step. This would give a second-order RK method. This is illustrated in
figure 3.2.1

8The Euler method computes the value of a function at point n+1 given the value of it at the point n. It uses the derivative
to go from n to n+ 1 [84]
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Figure 3.2.1: RK method. Black points represent calculated values of the function. White points represent
midpoints, where only the derivative information was used. Figure extracted from [84]

The method can be extended to smaller fractions of the step to improve accuracy, giving higher-order
RK methods. Amongst these, probably the all-time favorite is the fourth-order RK method, which can be
easily implemented following the equations in 3.2.14

k1 = hf(xn, yn)

k2 = hf(xn +
h

2
, yn +

k1

2
)

k3 = hf(xn +
h

2
, yn +

k2

2
)

k4 = hf(xn + h, yn + k3)

yn+1 = yn +
k1

6
+
k2

3
+
k3

3
+
k4

6
+O(h5)

(3.2.14)

Where h is the step size and f would be the derivative of the system

This method in particular is already perfectly implemented in the MATLAB® built-in function ‘ode45’.
This function takes a system of ODEs, an integration interval and an initial set of values and uses the
Rung-Kutta algorithm with an additional improvement: adaptive step-size9, to return the evolution of the
system through a number of points of the integration interval. This would be just right if we knew the exact
values at the beginning of said interval. This is called an initial value problem (IVP). But we do not have
an IVP. Our system has boundary conditions, which lead to a boundary values problem (BVP). That is, we
are seeking for a solution of our system that fulfills some requirements at z = 0 but some other requirements
at z = L.

MATLAB® has as well a built-in function able to numerically solve a system of ODEs subject to a
BVP: The ‘bvp4c’ function, which uses ‘ode45’ and a collocation method. The collocation method used by
‘bvp4c’ was introduced in 1972 by Russel and Shampine [86]. Collocation methods are a group of numerical
methods utilised to solve BVP. To get an idea of how they work, let us imagine a second-order ODE 3.2.15

9The adaptive step-size is an improvement to the RK routine that adjusts the size of the step, h depending on the error to
guarantee that the integration is accurate if the function varies rapidly for example
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with boundary conditions 3.2.16

d2y

dx2
= f(x, ẏ, y) (3.2.15)

y(xa) = a; y(xb) = b; (3.2.16)

One option (used by the shooting method [87] for example) is to transform the BVP into an IVP by
iteratively “shooting” the equations to get to a solution and use the difference between the desired values
and the obtained values to correct the initial condition and shoot again. Thus, targeting more accurately
each time the value of y(xa) that leads to the correct value of y(xb). This is a very simple method that works
quite well when the system is not very complex or when you want to specify the values of certain variables
at the beginning of the interval and the values of the other variables at the end of the interval. In fact, we
have tried this method, although unsuccessfully. Most likely, due to the complexity of the system.

So, having discarded the shooting method, another thing one might try to do is, instead of directly
matching the initial condition to the ending condition, we subdivide the interval in a number of N subintervals.
Every subinterval is enclosed by two points xi. These are the collocation points. The aim of the collocation
method [86] is to adjust these interior points so that they all satisfy the ODE 3.2.15. In order to do that,
the finite differences approximation [88, 89] is used to obtain numerical values of the derivatives.

But there is one small inconvenience about ‘bvp4c’ with which we must be careful. This function does
not allow to specify constraints to the solutions (apart from the boundary conditions), such as restricting
the variables to a certain region. In our case, it would have no physical meaning to obtain a solution with
negative powers. So we should constrain our variables to only positive values. Since ‘bvp4c’ does not allow
us to do so, we need to find a workaround. The easiest we can think of (although probably not the best)
is to integrate repeatedly until a solution with no negative values is found. Of course this could end up in
an infinite loop which is taken care of by defining a maximum number of iterations. If a solution can not
be found within said maximum of iterations, an error is thrown and the user is suggested to try a slightly
different starting point.

As mentioned at the beginning of this text (section 1.2), one of my personal goals for this project was to
produce a user-friendly, robust and versatile code to run simulations of the system with a high variability
in cavity design elements, parameters, etc. With this in mind, the model, along with its different possible
boundary conditions have been built into a user interface (UI) created with MATLAB App Designer®. This
interface allows the user to specify the pumping conditions, signal power, fiber length and all the relevant
parameters and simulate the evolution of the system. A screenshot of it is shown in figure 3.2.2
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Figure 3.2.2: Screenshot of the simulator user interface

The app or UI takes as input from the user, parameters concerning the primary and secondary pumps
and signal such as power, wavelength, Raman gain, backscattering coefficient, attenuation coefficient, etc.
It also allows the user to specify whether there are or not FBGs at the beginning and/or at the end of
the cavity as well as their reflectivities if applicable. Lastly, under the ‘Others’ tab, the user may modify
parameters such as the initial noise, temperature or tolerance10 of the simulation. Clicking on the ‘Abort’
button will stop the simulation, which can be useful if the user realizes that some parameters are incorrect
or if it is taking too long for the simulation to finish. The ‘Running’ lamp turns red when simulation stars
and green again when it finishes to let the user know that the job is done. Finally, pushing the buttons ‘To
Workspace’ and ‘Save’ will, respectively, save the results of the simulation to your MATLAB® workspace
and to a text (‘.txt’) file.

Since we want our UI to be robust and versatile. If the user inputs one of the simpler cases (for example
single backward pumping), equations 3.2.8 to 3.2.12 are completed with 3.2.17

dP+
P2

dz
= 0;

dP−P2

dz
= 0 (3.2.17)

This allows us to always work in a seven-dimensional variable space so the code becomes more versatile.

10The tolerance of the simulation is taken into account mainly when fulfilling boundary conditions. So for example if a certain
variable should take the value a at a certain point, the simulator will aim to leave that variable between a − tolerance and
a+ tolerance

43



As a test to check that the simulator works properly, we reproduce the results in [4]. There, they simulated
the system of figure 3.2.3. Which is a secondary bidirectional scheme with FBGs on the ends of the span
for cavity lengths of 100 km and 60 km. A comparison between that paper and my simulation is shown in
figure 3.2.4 and, as we can see, they are in very good agreement, which poses a good starting point for the
interface.

Figure 3.2.3: Schematic setup for which the ‘test’ simulation was run. Extracted from [4].

(a) J.D. Ania Castañón simulation [4] (b) Simulation from my UI

Figure 3.2.4: Comparison between simulations

3.2.3 Optimization

Now that we have found a stable and trustworthy way to simulate our system given certain initial values,
our next target is to find the set of parameters that lead to the flattest signal gain curve (while keeping the
condition of no losses). The model defined by equations 3.2.1 - 3.2.7 has seven independent variables, so we
need to use multidimensional optimization techniques.

There are several numerical optimization algorithms, but most of them rely on the calculation of the
derivative (or the gradient in N dimensions). Optimization problems in N-dimensions usually require the
evaluation of a certain cost function. It is the value of this cost function what we want to maximize or
minimize. In addition to the optimization problem, there might be some constraints. Imagine, for example,
that we wanted to find the maximum of the function f(x, y) but subject to the region x, y ≥ 0.

In our case, we want to make the signal gain curve as flat as possible, which means bringing 3.2.18 to its
minimum value. But this should be achieved while maintaining a lossless system. So, our problem would be
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to optimize 3.2.18 subject to the constraint |∆PS | < tol

F = PS,max − PS,min (3.2.18)

The way we have chosen to face the problem is with the Nelder-Mead (NM) method [90] (also knwon as
downhill simplex, amoeba or polytope) as optimization algorithm together with the penalty method [91] to
add the lossless condition constraint. Let us briefly explain what these two methods consist of:

The NM algorithm is quite distinct from other optimization algorithms. The fundamental difference is
that, unlike most if these algorithms, the NM method does not need information about the derivative or the
gradient of the function to optimize, rather than that, it uses only function evaluations at N + 1 points (N
being the dimensionality of the system). A simplex is the simplest N-dimensional geometrical figure one can
construct with N + 1 points in an N-dimensional space. That is, in 2D, a triangle is a simplex and in 3D, a
tetrahedron would be a simplex (see fig. 3.2.5). Unfortunately, human consciousness is unable to visualize
figures in more than 3D, but the abstract idea can be extended to as many dimensions as needed.

Figure 3.2.5: Simplex in a) one dimension; b) two dimensions; c) three dimensions

So, the NM, amoeba or downhill simplex algorithm evaluates the cost function at every vertex of the
simplex and substitutes the worst point according to one of the moves that are shown in figure 3.2.6. In order
to do this, the vertices of the simplex need to be sorted from best (lowest in our case) to worst (highest)
value of the cost function. And it is the worst point the one that moves at every iteration except when
the simplex shrinks. As a result, the simplex moves at every iteration in a way that reminds of an amoeba
(hence the name), always reaching towards the best points it finds.
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Figure 3.2.6: a) Reflection. b) Expansion. c) Outside contraction. d) Inside contraction. e) Shrinking.
Points in red are the ones being substituted by the points in green. In purple, the centroid; and in blue,
vertices that remain unchanged in the iteration. The darker green point in e) marks what was the best point
before the shrinking. Dashed lines show the simplex after the corresponding move

A little more mathematically, the process begins with sorting the vertices of the simplex so that equation
3.2.19 is fulfilled

f(x1) ≤ f(x2) ≤ ... ≤ f(xN−1) (3.2.19)

Where xi are the vertices of the simplex ordered from best to worst, and f is the function to optimize

Once the simplex has been sorted, at every iteration the following steps are followed [92]:

1. Reflection. Compute reflection point with 3.2.20

xr = x̄+ α(x̄− xN+1) (3.2.20)

If f(x1) ≤ f(xr) ≤ f(xN ), substitute worst point with reflected point

2. Expansion. If f(xr) < f(x1) compute expansion point with 3.2.21

xe = x̄+ β(xr − x̄) (3.2.21)

If f(xe) < f(xr), substitute worst point with expanded point. Otherwise, substitute worst point with
reflected point.

3. Outside contraction. If f(xN ) ≤ f(xr) < f(xN+1), compute outside contraction point with 3.2.22

xoc = x̄+ γ(xr − x̄) (3.2.22)

If f(xoc) ≤ f(xr), substitute worst point with outside contracted point. Otherwise, shrink simplex
(step 5)

4. Inside contraction. If f(xr) ≥ f(xN+1), compute inside contracted point with 3.2.23

xic = x̄− γ(xr − x̄) (3.2.23)
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If f(xic) < f(xN+1), substitute worst point with inside contracted point. Otherwise, shrink simplex
(step 5)

5. Shrink. When necessary, shrink simplex using 3.2.24 with every vertex of the simplex except the best
point

xi = x1 + δ(xi − x1) (3.2.24)

The x̄ that appears in equations 3.2.20 - 3.2.24 is the centroid11 of all the vertices of the simplex except the
worst one. The α, β, γ and δ parameters are scalar magnitudes characteristic of each move. Their standard
values are respectively 1, 2, 1/2 and 1/2 [93–96]. However, high dimensionality can affect the performance
of the Nelder-Mead algorithm, so we chose an adaptive set of parameters that depend on it [97] given by
3.2.25.

α = 1; β = 1 +
2

N
; γ = 0.75− 1

2N
; δ = 1− 1

N
(3.2.25)

With N being the dimensionality of the problem.

The whole process is illustrated in a flowchart in figure 3.2.7

Figure 3.2.7: Flowchart for the Nelder-Mead algortihm

As with any iterative process, we need a way to tell the amoeba when to stop moving and hopefully settle
for a point where it has converged to the optimum solution. Otherwise, it would go on and on forever in an
infinite loop. How we do this is by implementing a termination criterion, and note that I say termination
criterion and not convergence criterion. A convergence criterion is one that is fulfilled when the optimizer
has converged to the optimum solution, the one that satisfies our problem with all the possible constraints

11The centroid of a set of points is the mean point of all of them
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we may have had to add. A termination criterion is just the one that tells the optimizer to stop because
it makes no sense to go on with the iterative process as iterations are now simply revolving the optimizer
around a certain point. There are different termination criteria one may choose. The one I used stops the
process when the values of the cost function at the best and worst points in the simplex differ by 0.001 or
less. This automatically means that all the vertices in the simplex lead to values in a range of just 0.001
from the best point, which implies that all the vertices are sufficiently close to one another. Of course, as
every iterative algorithm of this kind, the termination criterion is complemented with a break command to
stop the process also when a certain number of iterations is reached even if the termination criterion is not
fulfilled. This is so to avoid getting the optimizer stuck in an infinite loop. The convergence criterion is
probably more straight-forward in our case. We want to minimize 3.2.18, but we know exactly what its
minimum value can be: 0. So, we defined the convergence criterion to be fulfilled when the value of the cost
function at the best point of the simplex was below a certain tolerance (also fixed at 0.001).

One of the main difficulties one might come across while optimizing a certain function is the existence
of local minima (or maxima) that may trick the optimizer into thinking that its work is done and it has
converged to an optimum value when, in fact, it has not. To overcome this, as recommended in [84] we
“kick” the simplex once the termination or convergence criteria have been fulfilled to begin again from a
different starting point. We do this a number of times and store the information of the best point of each
kick. After the final kick is finished, the results of every kick are compared and the best final point is picked
as the optimum. This ensures that we do not get stuck in local critical points.

As mentioned earlier, we need to optimize the flatness of the signal gain curve. But we need to do so
while keeping losses at zero, so the cost function that would be originally 2.3.18 is modified with a penalty
factor. To briefly illustrate how the penalty method works, I am going to use an example from [98], which
I found quite descriptive. Imagine we have a highway (with a toll) and we want to limit the speed to 120
km/h. We could use signs and forbid going faster than that, which would mean adding a constraint. But we
could also make the highway free as long as you keep your speed under 120 km/h, but with a 500e toll if
you surpass that limit. In this case, there would be no rules (no constraints) against going over 120 km/h,
and yet, most people will not pass that limit because there is a significant penalty if they do so. This is a
way to keep the problem unconstrained but slightly forced to comply with the constraints.

With all these things in mind, the only step left to do is to define our cost function, which, by this point,
we should guess it would look like f = PS,max − PS,min + ∆PS . But we have actually modified it a little
more. So, our cost function (the one being optimized) is given by 3.2.26

f =
PS,max − PS,min

PS,max + PS,min︸ ︷︷ ︸
Magnitude to minimize

+
|PS(L)− PS(0)|
PS(L) + PS(0)︸ ︷︷ ︸

Penalty factor

(3.2.26)

We have normalized the cost function so that both of its terms always take values in the range [0, 1].
The reason why we do this, apart from making the cost function a bounded function is because with this
expression we know that the best value that f can take is zero. This allows us to define a convergence
criterion. Note that only if PS,max = PS,min and PS(0) = PS(L), f = 0. Given that, we have defined the
convergence criterion as f ≤ tol, with tol = 0.001. This means that for the convergence criterion to be
fulfilled, neither of the two terms in 3.2.26 can be higher than 0.001. But, the first term being equal to 0.001
means that

PS,max

PS,min
= 1.001

0.999 ⇒ PS,max ≈ 1.002PS,min. And, analogously, the second term being 0.001 would

mean either PS(0) ≈ 1.002PS(L) or PS(0) ≈ 0.998PS(L). Therefore, such definitions of the cost function
and the convergence criterion seem rather suitable for our problem.
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3.3 Results

As specified in section 3.1, we test up to six different configurations in the laboratory and obtain the evolution
of the signal for each of them with an OTDR12. The OTDR is mainly used in on-field applications to localize
singular points in the fiber where losses are higher than they should. These kind of events occur at the
connections between two spans of fiber or, for example, at points where a macro- or micro-bending is present
or the fiber is burnt, etc. It works really well to measure the relative power of the signal at every point of the
fiber. However, because of how it works, the measurements obtained from around the first two kilometers
of the fiber can not be used. This is sometimes compensated by introducing a ‘launch’ fiber, which is a
span of fiber of around that length. But since, fiber length is a critical parameter in the setup, we did not
want to modify or alter this. Therefore, we decided to use use it without the launch fiber and consider the
measurements only after 2.5 km. Also because the initial section is neglected and the input power from the
OTDR is not really known (manufacturer says the input pulse is between 150 µW and 300 µW), we decide
to represent the power excursion. This is given by the difference, in dB, between the power at any point
and the initial power (considering here the initial power as PS(z = 2.5km)) and it is actually a magnitude
of interest because the aim of the setup is to achieve solitonic transmission and for that to occur, a lossless
system should be achieved but also the signal gain curve should be as flat as possible.

In figure 3.3.1 the power excursion is represented for the three different lengths: 5.317 km, 10.000 km
and 18.807 km. For each of these lengths, several powers of primary backward pumping at 1455 nm were
tried in the range from 40 mW to 400 mW. The OTDR provides a measurement of the slope, in dB/km of
the signal power decay. Although when pumping is introduced, the evolution of the signal can not really
be adjusted by a line (in dB scale), it gives a good idea of at what point the signal stops losing power and
starts to gain it. The results of these measurements are summed up in table 3.3.1

Figure 3.3.1: Comparison between simulation and experimental measurements for three different lengths and
two different powers, one that gives overpumping and one that gives underpumping

12Stands for Optical Time Domain Reflectometer and it is a device capable of measuring signal power through the fiber based
on Rayleigh backscattering
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Power (mW)
Slope (dB/km)

5.317 km 10.000 km 18.807 km
experiment simulation experiment simulation experiment simulation

0.00 -0.227 -0.191 -0.220 -0.191 -0.203 -0.191
48.0 -0.152 -0.129 -0.155 -0.134 -0.156 -0.148
119 -0.044 -0.038 -0.066 -0.054 -0.078 -0.084
145 -0.005 -0.006 -0.019 -0.026 -0.058 -0.061
223 0.111 0.090 0.066 0.053 0.030 0.007
296 0.220 0.179 0.161 0.138 0.094 0.069
377 0.297 0.289 0.235 0.227 0.148 0.142

Table 3.3.1: Comparison of experimental and simulated slope measurements for the single backward pumping
scheme

Seeing figure 3.3.1 we can notice that the agreement between the experimental (continuous line) and the
simulated (dashed line) results is rather good for all of the distances. Furthermore, we can clearly see that,
better results are obtained when the distance is higher (10km and 20 km). This has to do with the fact that
the OTDR measurements are more accurate when the fiber span is longer, but also with the fact that the
model itself is a better approximation when the distance is long enough.

Similar measurements are taken for a different pumping configuration: secondary forward, primary back-
ward pumping. That is, a 1366 nm pump is injected in the same direction as the signal and a 1455 pump
is injected in the opposite direction. The results are shown in figures 3.3.2 and 3.3.3. Again we see that
simulations fit the experimental data reasonably well, although a little bit worse than for primary pumping
schemes. Furthermore, looking at 3.3.3 we notice again that simulation matches the experimental results
better when the fiber span is longer.

Figure 3.3.2: Comparison between simulation and experimental measurements at a length of 20 km for
three different pumping schemes: 164.9 mW forward pumping with 48.04 mW backward pumping; 704,4
mW forward pumping with 48.04 mW backward pumping; and 1179 mW forward pumping with 80.99 mW
backward pumping.
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Figure 3.3.3: Comparison between simulation and experimental measurements for three different lengths
with the same pumping scheme: 164.9 mW forward pumping with 48.04 mW backward pumping

Since the simulations fit well the experimental results, we can use them, to obtain an effective length-
dependent attenuation αeff(z) that can be used to get the evolution of the pulse thanks to the toolbox
SSPROP [99] that solves the NLSE. The best-fitting simulation is the one obtained for the 20 km fiber span
and 223 mW of backward pumping, so we use that one to extract the effective attenuation and simulate the
evolution of a pulse close to a first-order soliton, which can be guaranteed by adjusting the input power.
This can be seen in figure 3.3.5, where a comparison between the unpumped and pumped cases is shown.
This figure represents the evolution of a pulse like that of figure 3.3.4, with a hyperbolic secant shape and
around 100 fs full at width half maximum (FHWM).

(a) Autocorrelation traces, showing the width of
the pulses (around 100 fs)

(b) Optical spectrum (up) and broadened individual pulse
(down) obtained after propagation showing the shape of
the pulses

Figure 3.3.4: The autocorrelation traces in (a) show the width of the pulse is around 100 fs. The shape of the
pulse is obtained by broadening and transforming the original output, so it can be viewed on an oscilloscope.
Figures by courtesy of Inés Cáceres Pablo et al.
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(a) Pulse evolution in the unpumped case

(b) Pulsed evolution in the pumped case

Figure 3.3.5: Pulse evolution comparison between the pumped and umpumped cases for the 20 km long fiber
span

As we can observe, in figure 3.3.5, the effect of the right amount of pumping in the pulse propagation
is outstanding. We can clearly see how the pulse maintains its shape perfectly during propagation when
it is pumped, while it gradually decreases in amplitude (almost fades away) and increases in width when
unpumped.

Although it could not be experimentally contrasted because of the limitations of the OTDR, I find it
really illustrating to show the evolution of the signal (simulated) in different pumping situations. This way
we can clearly see how the pumping affects the signal and why some pumping schemes might be better than
others even if all of them end up compensating the overall losses. This is shown in figure 3.3.6
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(a) Single forward pumping scheme (b) Single backward pumping shceme

(c) Single bidirectional pumping scheme (d) Double bidirectional pumping scheme

Figure 3.3.6: Signal evolution through 50 km fiber span for different pumping configurations. Pumping
powers are not included because this is just for illustrative purposes

In the first row of figure 3.3.6, we can observe how the forward pump creates a gain at the beginning
of the fiber that fades away with the distance, so the signal first rises quickly and then after about 15 km
decays more slowly. On the other hand, the backward pump creates a gain more towards the end of the
fiber so, in this case (up, right panel in fig. 3.3.6), the signal decays for around 30 km and then rises. In
both cases the overall variation (max. - min.) is of roughly around 150 microwatts (about 67% of the input
signal).

Looking at the second row of fig. 3.3.6 we can notice how the two behaviours described above come
together to create a gain at the beginning and the end of the fiber. This way, the signal first increases due
to the forward pump for around 10 km; then it decays slowly for around 30 km and from 40 km until the
end, the signal increases again due to the backward pump. This is similar for both panels of the bottom
row of fig. 3.3.6, but there is an important difference between these two graphs: the overall variation is of
roughly 60 µW (∼ 27%) for the primary bidirectional pumping scheme but just of about 25 µW (∼ 11%)
for the secondary bidirectional pumping scheme.

So, choosing between forward, backward or bidirectional pumping will let us select different types of gain
curves. For example, imagine that we need to maintain the signal always below the input power. In that
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case we would probably choose the primary backward configuration because although it does not provide a
really flat signal, it keeps the power below the input power. If we did not have such limitation but instead
we could not set a secondary pumping scheme, we would probably decide to use the primary bidirectional
pumping scheme as it provides a smaller signal variation than forward or backward configurations. On the
other hand, choosing between primary or secondary pumping will have an important effect on the variation
of the signal. The use of Raman cascades (secondary pumping. See sections 3.1 and 2.5.4) will smooth out
the gain curve a little, while primary pumping schemes present higher signal variations.

Naturally, as in every physical system, its parameters play an important role. The most important of
these parameters can easily be modified from the UI. As an example, we have reproduced figure 3.3.6 (up,
right) with three different values of the Raman gain and plotted the results in figure 3.3.7. The parameters
that were used for all the simulations are listed in table 3.3.2

Figure 3.3.7: Comparison between simulations with three different Raman gain coefficients

Parameter at 1366 nm at 1455 nm at 1550 nm

α (10−5m−1) 5.2 6.2 4.4
ε (10−8m−1) 10 6.0 4.3

gR (10−4W−1/m) 5.3 3.4 —
∆λ (nm) 8.0 8.0 10

Temperature (K) 298

Table 3.3.2: Simulation parameters

The solution presented in [4], that can be seen in fig 3.2.4 is known to be optimum, because for such
system, that is the configuration that provides the lowest power excursion (flattest signal gain curve), which
is what they aim for. Since this is a known optimum solution, we decide to test the optimization feature
of the UI with this configuration. In [4] the conclusion they reached was that, for the optimum solution, a
secondary bidirectional symmetrical pumping of 849 mW at 1366 nm was needed to get a maximum signal
variation of 3.08 dB with the parameters shown in table 3.3.3.
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Parameter at 1366 nm at 1455 nm at 1550 nm

α (dB/km) 0.38 0.27 0.19
ε (km−1) 1.0·10−4 6.0·10−5 4.3·10−5

gR (W−1/km) 0.53 0.43 —

Table 3.3.3: Simulation parameters used in [4]

We specify in the UI that the optimizer searches for the optimum solution near a starting point with
the backward and forward pumps at 1366 nm equal to 0.8 W and the parameters shown in table 3.3.3. The
optimizer finishes the simulation at an optimum point with a forward primary pump power of 846 mW and
backward primary pump power of 852 mW which yields to a maximum signal variation of 3.09 dB.

As we can see, the agreement between the optimum parameters found by the program and those found
experimentally by J.D. Ania and his team is very good, which leads us to think that the optimizer is also
working properly. However, we also run a test with a starting point a little further from the optimum solution
than the first test. This time, with the same configuration, we try a forward and backward pump power of
0.5 W at 1366 nm and the optimizer reaches an optimum solution with 0.170 W of power in the primary
forward pump and 1.38 W of power in the primary backward pump, which leads to a 0.74% loss in the signal
power and an overall variation of 8.99 dB. This does not mean that the program is not able to successfully
find an optimum. What can be inferred from this result is that the space of solutions of the problem is,
quite likely, rather “bumpy”, in the sense that it probably has multiple local minima. What minimum the
optimizer arrives at will depend critically on the initial guess.

4 Conclusions

Throughout this work I have learnt about how light pulses propagate through optical fibers and the dispersive
and nonlinear effects that arise from the interaction between this medium and the light. A system has
been presented that is able to achieve lossless transmission with distributed amplification thanks to the
Raman effect, therefore becoming a potentially suitable system for solitonic transmission and long-haul
telecommunications in general. The equations that govern this system were implemented in a model that
we want to be able to solve with different configurations and parameters.

To solve said model, we built a user interface that allows us to specify several characteristic parameters
of the system such as length, attenuation and Raman gain coefficients, power of the pump, signal and noise,
temperature, etc. The interface consists of two separate features: a simulator and an optimizer. The first
one works based on the collocation method and its function is to solve the model given certain boundary
conditions and an initial guess. The second one works based on the results of simulations at different points
in the variable space and the Nelder-Mead algorithm and its function is to find the set of parameters (initial
power values) near an initial guess that provide the flattest signal gain curve.

The results of the simulator appear to fit quite well the experimental measurements and were more
accurate for the longer distances and the user interface makes it very comfortable to change parameters and
run simulations to “play around” with the system as much as we want.

Although the results might not represent a breakthrough in the field, I believe that the goals that I
defined for myself and this project have been fulfilled. All in all, I have learnt a lot about the physics of
optical fibers and the interesting and numerous applications that the nonlinear and dispersive phenomena
present in this kind of medium can have.
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Furthermore, I have also learnt a lot about numerical methods in two fields that I believe will be extremely
useful in a near future: simulation and optimization. The expertise I have acquired and the methods I have
learnt in both of these areas of computing science seem very handy and interesting to me. Multivariate
optimization, integration methods for simulations or machine learning techniques are a powerful resource
that I have now added to my scientific toolbox.

5 Further research

The project J.D. Ania-Castañón and his team are developing is a system that will surely let us learn a
lot about the formation and propagation of ultra-short pulses in optical fiber, which can find numerous
applications in several fields. Not just in telecommunications, but rather in biomedical applications, optics
or chemistry

Regarding the experimental part of this project, some further research could be done in the line of
comparing simulated and experimental results and testing solitonic transmission. The idea would be to use
an extended setup like that of figure 5.0.1 and observe the shape of the pulse at different points of the fiber
span and compare them with the simulations.

Figure 5.0.1: Extended setup to obtain measurements of pulse shape and compare them with simulations.
The autocorrelator (AC) and optical spectrum analyser (OSA) are used to obtain the measurements of pulse
shape and pulse spectrum respectively

As for my part in the project, I have been focused mainly on simulated, numerical results. I believe that
the goal that I set for myself were successfully fulfilled, but still some aspects could be improved.
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Regarding the simulation part of the UI, it could probably be sped up and made more efficient by
changing the method used to integrate the system. Let us recall that in the physical problem, solutions
that go through making any of the variables negative at any point should not exist. Because MATLAB®’s
‘bvp4c’ does not allow to specify such restriction (added to the boundary conditions), this was dealt with
via running the simulation from a starting point and randomly adjusting said point until a non-negative
solution was found. Of course, this is computationally rather expensive. So, the first thing that could be
done to improve the UI a little, would be to code an algorithm that implements the collocation method but
allows to specify the non-negative constraint in the variables. This could be implemented in two ways: using
MATLAB®’s ‘ode45’ with the parameter ‘nonnegative’ or programming as well a RK routine that takes this
limit into account.

That improvement on the simulator alone would boost the optimizer performance. But still a couple
of adjustments could be made in this part of the UI as well. First of all, the optimizer uses the Nelder-
Mead algorithm. This is a safe, easy-to-implement algorithm, but it is not known for its efficiency. In fact,
many other multivariate optimization methods will outperform the Nelder-Mead algorithm in almost every
scenario. This algorithm was chosen because of robustness and simplicity, not because of its speed. So,
naturally the first thing that could be done to improve the UI would be to change the optimizer method to
some of the others that were mentioned in section 3.2.3.

Lastly, but probably most interestingly, I believe that the performance of the program could be extremely
improved with some machine learning techniques. Specifically, using a neural network. Neural networks (NN)
are really in vogue these days in many fields of science and technology or even finances [100–103].

Neural networks are a type of machine learning technique inspired by animals’ brains (hence the name)
proposed around the 1940’s by McCulloch and Pitts [104]. They consist of a series of nods or neurons than
can pass a signal from the input to the output. The neurons are layered from the first (input layer) to the
last (output layer) with as many hidden layers in between as the user wants. Each neuron is characterised
by an activation function (although this can be the same for all the neurons) and a weight. The activation
function is usually a sigmoid or an arctangent and is used mainly to keep the data restricted and normalized.
The weights are actually the most important part of the NN as it learns through them. The first thing one
has to do with a NN is train it, and this is done by supplying inputs whose outputs are known to the NN.
Then, the error between the real output and the NN’s output is used to adjust the weights of each neuron.
For clarity, the output of the NN would look like equation 5.0.1, and a scheme is shown in figure 5.0.2

y = σ (Wx+ b) (5.0.1)

Where y is the output; x, the input; W , the weight; σ, the activation function; and b, a bias to fit better
inputs and outputs.
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Figure 5.0.2: Neural network scheme. A NN with two hidden layers is presented here. Input is passed onto
hidden layer 1 through the first set of weights. Then, from hidden layer 1 to hidden layer 2 by the second
set of weights. And finally, to the output through the last set of weights.

So implementing a neural network would bring one main advantage. Once the NN is trained (with
the simulator), it can substitute the simulator itself. Neural networks are, in general, far faster than any
integrator because they reduce any problem to a series of products between input variables and weight
matrices. Of course, training the NN will depend on the cavity configuration, but if, the simulator is fast
enough, it should not take much time to run, for example, around a hundred simulations to train the NN.

Finally, one last thing that could be done is to use automatic differentiation [105, 106]. Automatic
differentiation is a relatively novel differentiation method that is easier to implement and faster than symbolic
differentiation and, at the same time, more accurate than numerical differentiation. For these reasons, its
use has been increasing in the past few years, specially in the field of machine learning. Its working principle
is relatively simple: it uses the chain rule to compute at the same time the evaluation of a function and its
derivative. Of course, its implementation is more complex than that and if the reader is interested, I highly
recommend having a look at reference [106], where further details of the method and how to implement it
specifically in Matlab can be found. Apart from the previously mentioned advantages, another one is that
it can be used to find the derivatives of a function when it has been implemented by a NN. Being able to
calculate the derivative rapidly facilitates the implementation of other optimization methods that need the
evaluation of the function and its derivative (unlike the Nelder-Mead method, that only requires the value
of the function) and are more efficient and accurate than the Nelder-Mead algorithm.

Seeing the improvements that can still be made and the applications and research lines that might come
out of this setup makes me believe that this ring fiber laser scheme holds a great potential and applicability
and will be tremendously useful in a near future.
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Appendix A: User Interface guide

When the program is run a window like that of figure 5.0.3 appears. This is the optimization window. By
clicking on the right tab in the upper left corner, labeled with ‘simulation’, we can access the simulation
window. We can switch from optimization mode to simulation mode by clicking on the corresponding tabs
(see fig. 5.0.4)

Figure 5.0.3: Initial window of the UI

Figure 5.0.4: Simulation and optimization tabs in the UI
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Optimization tab

In the optimization tab we can use the frame in the left of the UI to select the cavity design (fig 5.0.5). That
is, we should specify if our system uses primary or secondary pumping mode. We can specify this by ticking
the different boxes in this window. We can switch from tab to tab in this window to change the ‘Primary
pumping’, ‘Secondary pumping’ and ‘FBGs’ configurations. In this last tab, we can select whether or not
our system has FBGs and where they are (at the beginning and/or at the end). Lastly, in the bottom left
corner of the ‘Cavity design’ frame, we can specify the length of the fiber span.

Figure 5.0.5: ‘Cavity design’ window in UI. Here we can see the ‘Cavity design’ tab from the UI, where we
can specify the pumping mode, the position of FBGs and the length

Note that as long as there are two wavelengths apart from the signal it is a secondary pumping scheme,
even if we choose to give the primary or secondary pump an initial value of zero. So, only if one is operating
with just one pump wavelength should the ‘secondary pumping’ boxes be left unticked.

Once the pumping configuration is set, we can move to the ‘Simulation parameters’ tab (fig. 5.0.6). There
we can modify the parameters of the simulation and adjust them to our system. Under the ‘Primary pump’
and ‘Secondary pump’ tabs, we can find the forward and backward powers; the wavelength; the bandwidth
and the Raman, backscattering and attenuation coefficients for each of the pumps. In the ‘Signal’ tab, we
can modify the power of the input signal, its wavelength and its bandwidth as well as its backscattering and
attenuation coefficients. And in the ‘Others tab’, we can modify the initial Noise, temperature and tolerance
and the reflectances and bandwidth of the FBGs.

On the bottom left corner of the optimization window, we can see a series of buttons (see fig. 5.0.7a) with
which we can operate the interface. The ‘Run’ button gets the optimization started. Once it has finished, we
can use the ‘Plot’ button to print a graph of the results in the central figure. The ‘Export to workspace’ and
‘Export to file’ buttons will respectively generate the corresponding variables in your MATLAB® workspace
or a text file. The ‘Display results’ button will show the values of primary and secondary forward and
backward pumping in the empty fields on the bottom right corner (see fig. 5.0.7b). Finally, the ‘Abort’
button will stop the simulation. We can use this if we have made a mistake when introducing the parameters
for example or if it is taking too long. Right below the ‘Abort’ button, there is a light labeled ‘Running’. It is
green when the UI is opened and turns red when the optimization is running. Then, when the optimization
is finished, it turns green again to let the user know the work is done and results can now be plotted and
displayed. If the abort button is pushed, the light will turn orange
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Figure 5.0.6: ‘Simulation parameters’ window in UI. Here we can see modify different parameters from the
primary pump, secondary pump and signal.

(a) Buttons to get the interface running, get results, etc (b) Fields where results appear after the ‘Display re-
sults´button is clicked

Figure 5.0.7: Operating the interface: buttons and results management

Simulation tab

The simulation tab(fig. 5.0.8) is very similar to the optimization tab. It has a main tab where we can modify
the same things we could change in the optimization tab (see fig. 5.0.9). Under this box, we can find the
buttons to run the simulation and export results (fig. 5.0.10). The ‘Save’ button at the right, exports the
results to a text file. The rest of the buttons have the same functions as in the ‘Optimization’ tab.
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Figure 5.0.8: ‘Simulation’ tab in the simulator feature of the UI. Here we can specify the parameters that
we are using in the laboratory and run a simulation

Figure 5.0.9: ‘Simulation parameters’ tab in the simulator feature of the UI. As in the ‘Optimization’ tab,
here we can modify all the relevant parameters of the simulation

Figure 5.0.10: Buttons to operate the UI in the ‘Simulation’ tab. They are fundamentally the same as in
the ‘Optimization’ tab.

62



Results and what to expect from the program

The results that are output to a text file or the workspace are an array named ‘results’ and two arrays named
‘z’ and ‘x’. The components in ‘results’ are: primary forward pump power, primary backward pump power,
secondary forward pump power, secondary backward pump power, percentage of error in the signal output
power with respect to the input, forward propagating noise at the beginning and backward propagating
noise at the end. The two arrays labeled ‘z’ and ‘x’ generated hold the data of distance and power at every
distance step of the seven variables that appear in the model. These same arrays are the ones that the ‘To
Workspace’ and ‘To file’ buttons generate in the ‘Optimization’ tab. The only difference between the two
modes is the ‘Display results’ feature

When we run either the simulator or the optimizer, the first thing that appears on the workspace is a
statement saying ‘caseis = ’ and a number under it. This is left there on purpose to let the user know what
case (configuration) is being used. The legend for the cases is the following:

• Case 1: No pumping

• Case 2: Primary backward pumping

• Case 3: Secondary backward pumping

• Case 4: Primary forward pumping

• Case 5: Secondary forward pumping

• Case 6: Primary bidirectional pumping

• Case 7: Secondary backward, primary forward pumping

• Case 8: Secondary forward, primary backward pumping

• Case 9: Secondary bidirectional pumping

After this message, when using the simulator, it should not take long until the light turns green in the
UI. However, a progress bar has been included that lets the user know when 10%, 20%, etc of the maximum
iterations have been reached. There is a chance that a singular Jacobian is found during the simulation. If
that is the case, a message will be printed saying ‘Singular Jacobian found’ and the simulation process will
stop. If this happens, the user should try again with slightly different parameters. If after the maximum
number of iterations have been reached, the simulator has not gotten to a satisfactory solution, an error
will be thrown saying ‘Convergence could not be reached’. This is an unlikely case, but if it happened, the
recommendation is to slightly change the power values.

In the case of the optimizer, it is a little different. After the message stating the case is printed, the
optimizer will print the simplex at some points and alert whether or not it meets the termination and
divergence criteria. Also, during the iterative process it will most likely print a lot of warning messages on
orange saying that tolerance could not be met or a singular Jacobian has been found. These warnings can
be ignored.

Appendix B: The code

Because my main goal was to build a robust, versatile and user-friendly code and it is, indeed what has
taken most of the hours of work, I think it should be included here, so the reader can see how everything I
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have talked about has been implemented and even change it at will to suit another application or improve
its performance. Because the code is implemented in an UI, it is divided in ‘Callbacks’ and ‘Functions’.
Callbacks are lines of code that are executed when the user clicks a certain button. For instance, when the
user clicks the buttons ‘Start’ or ‘Run’ in the simulation and optimization tabs respectively, the lines in the
corresponding callback are executed. The ‘Functions’ are pieces of code that might be invoked during the
callback execution.

Dividing the code this way keeps things much cleaner and easier to modify if needed and, in fact, it is
good practice to avoid long functions in the code and use instead smaller subfunctions that can be called
from the main function.

Because the code ends up being rather large and has lines that can not be breaken up in two or more,
it is not explicitly included in this document. Rather than that, to keep things neat and clean, a link to a
Github repository is included right bellow and in reference [107]

https://github.com/FernandoSolisFernandez/Lossless-transmission-system-simulator-optimizer-/

blob/main/User%20Interface%20code
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