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We introduce a new frozen percolation model where we set the freezing condition on
open clusters intersecting the boundary of the box Λ(n). Using quite simple arguments,
it is easy to show that the probability of the origin freezing does not go exponentially
fast to zero nor to one as we let n grow large. We conjecture that in fact the probability
of the origin not being contained in a frozen cluster is bounded away from 0, uniformly
in n. It turns out that this is rather difficult to prove and we instead focus our attention
on a somewhat different model, where not every boundary point initiates the freezing
process, but for any ε > 0 a boundary vertex is a freezing trigger point with probability
n−ε. We compare this to a model as in [9] that independently puts holes around points
and closes all vertices contained in these holes. The major argument needed in this
thesis is a three-arm half-plane stability result, the proof of which follows along the
lines of the proof of a similar four-arm full-plane stability statement in [9].
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1 Introduction

Percolation theory is a rich subject of stochastic processes first introduced in its most
basic form in [10]. Given a graph G = (V,E), consider the processes in which we,
for some parameter p ∈ [0, 1], independently remove each edge e ∈ E with probability
(1 − p). If an edge is removed in this way, we say it is closed and otherwise we call it
open. We are now interested in the connection probabilities of the graph that remains
after this procedure. This model is called ordinary Bernoulli bond (or edge) percolation
with parameter p. The natural analogue where we instead open or close vertices is
called (ordinary) Bernoulli site (or vertex) percolation. In this case, only those edges
of which both endpoints are open will remain. Site percolation can in fact be seen as
a generalisation of bond percolation, as it turns out that we can represent every bond
percolation model as an equivalent site percolation version.

More formally, we set the sample space Ω as Ω = {0, 1}E and consider the σ-algebra
generated by cylinder sets of finite dimension. Elements of Ω are written as ω and can
be interpreted as 0/1 vectors of closed/open edges. We denote by Pp the corresponding
(product) measure of this space such that for any e ∈ E we have Pp(ωe = 1) = p,
i.e. edge e is open with probability p. For the site percolation process, we replace the
corresponding edge set with the vertex set.

The most common studied underlying graph is the hyper-cubic lattice Ld = (Zd,Ed)
in dimension d. The vertex set is given by the integer vectors Zd and the edge set Ed
consists of pairs (u, v) with ||u − v|| = 1. In dimension d = 2 and in high enough
dimensions [21] (d ≥ 11), a lot is known about the behaviour of these models. For
dimension d = 2 this is related to the fact that we may use planar duality, while in high
dimensions the lace expansion [19, 18] gives a strong tool in applications to Percolation
Theory. For instance, in both the above cases researchers were able to prove the famous
conjecture of θ(pc) = 0, as well as scaling relations of interesting functions of p close
enough to pc.

Throughout the years, many different variations of the Bernoulli model have been
introduced and intensively studied. Some examples of these variations include “self-
destructive percolation”, “oriented percolation” and “invasion percolation”. More infor-
mation on some of these variations, as well as other models, can be found in [16, Chapter
12]. Percolation theory can also be seen as a sub-field of the Random-Cluster Model,
which generalises the idea of random process on graphs to also include topics such as
the Ising and Potts models. See for example [17, Chapter 8] for some definitions and
relations.

The most relevant variation of percolation theory to this thesis is called frozen
percolation, of which there are again different versions. The earliest of these types of
models to be treated on the square lattice is the diameter frozen percolation [6], a model
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in which we stop the growth of any open cluster that becomes too large in diameter.
In volume frozen percolation [7, 5] we instead halt the growth of clusters that contain
too many vertices. In the model studied in this thesis, which we introduce in section
3.2, we follow a similar underlying framework. Here we instead restrict the growth of
open clusters that intersect the boundary of some large box Λ(n), where we let n go
to infinity. In other words, we are interested in the asymptotic properties of the model
when we let the box grow very large.

Notes about Constants

In this thesis, the reader will encounter various constants that, for simplicity reasons,
are not given a precise value. Since we are most often interested in the scaling relations
of functions, the exact values do not matter too much. The constants will often be
denoted by Ci, where we reset the counter i in each chapter. Furthermore, to make
equations more readable, in many proofs we will use a local constant c that arises from
simple calculations. If we make use of several of these local constants in one display
equation we denote them by ci.

Contribution and Difficulties

The goal of this thesis is to first present classical percolation type results and then to
introduce a new frozen percolation type model that has not been (as far as we know)
studied in the literature. Although this model shares similarities with the other frozen
percolation models, it is not trivial to apply the same techniques for this model. For
further possible research questions see also the last part of Chapter 5.

The original aim was to first prove Conjecture 3.1 using somewhat basic and well
known classical techniques. The next step would have been to show the even stronger
result of

PFn (0 is frozen at time 1)
n→∞−−−→ 0.

However, it turns out that even proving Conjecture 3.1 is much harder than expected.
Furthermore, originally we worked on bond percolation on the square lattice but we
realised that we required arm event results coming from conformal invariance that (so
far) only exist for site percolation on the triangular lattice. In particular, we consider
a percolation model at the critical parameter pc = 1/2 and need the 1-arm and 3-arm
critical half-plane exponents stated in Theorem 2.13 to prove Lemma 4.8.

Our attempt of proving Conjecture 3.1 is based on showing that the probability
of there exists a frozen circuit around the origin before some time t < 1 is uniformly
bounded away from 0. For a modified model we are able to prove a uniform lower bound
of a box-crossing event (at time t = 1/2) that can be used to construct a frozen circuit
around the origin. If we are able to conclude the same result for the original model,
then we would be able to prove Conjecture 3.1. See also Proposition 4.9 and how this
result is applied to the proof of Theorem 4.11.
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Two of the major difficulties that presented themselves were the fact that no general
type of monotonicity result exists and that frozen clusters do not behave in an inde-
pendent manner. The latter problem we handled by comparing the boundary frozen
percolation model to a model with holes as in [9]. Here we close vertices in boxes that
are independently generated around boundary points and are of diameter at least of the
size of frozen clusters at boundary points. Most of our results stem from analysing the
model with holes and using stochastic domination to give consequences of our frozen
percolation model. Heuristically speaking, in the model with holes there may be many
more closed vertices than in the frozen percolation model. This means it is possible
that the lower bounds coming from the approach of the model with holes may not be
sufficiently strong to prove Conjecture 3.1.
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2 Introduction to Bernoulli Site
Percolation

In this chapter, we will introduce the notions needed to understand ordinary Bernoulli
percolation on lattices. Furthermore, we will recap classical as well as more recent
results and tools in percolation theory that will be needed in the proofs of our new
model that will be introduced in section 3.2. Since these results are well-known and
studied in other literature, we will omit most of the proofs and instead refer to the
relevant sources.

2.1 Notation of the Triangular Lattice

For the purpose of this thesis, we will focus on Bernoulli site percolation on the triangu-
lar lattice. The proofs of the statements in the next two sections are easily adapted to
bond or site percolation on other given lattices and have been shown in various litera-
ture. However, we will need the results given in section 2.4 and these are currently only
proven for site percolation on the triangular lattice. It is conjectured that these results
hold on any well-behaved lattices as well as for bond percolation on those lattices (with
some other parameters), but currently, no rigorous proof is known for this. We define
the triangular lattice T = (G,E) via an embedding in the complex plane C. See figure
2.1 for a visualisation of the triangular lattice.

Definition 2.1 (Triangular Lattice T). Consider the basis given by 1 and eiπ/3 and the
infinity norm || · || with respect to these basis elements. A vertex of T is given by a linear
integer combination of these basis elements and we connect any two vertices by an edge
if their distance is exactly one. So,

V = {x+ yeiπ/3 : x, y ∈ Z} and E = {(u, v) : u, v ∈ V, ||u− v|| = 1}.

Occasionally we will use C(v) and R(v) to refer to the imaginary and real part of v.

As hinted to in the introduction, we set Ω = {0, 1}V with corresponding σ-algebra
generated by finite cylinder sets. For given p ∈ [0, 1] we set each vertex (independently)
open with probability p and closed otherwise. For ω ∈ Ω if the vertex v is open we
denote this by ωv = 1 and if it is closed we write ωv = 0. The product probability
measure of this process will be written as Pp. If ω, ω′ ∈ Ω such that ωv ≤ ω′v for all
v ∈ V , then we say that ω ≤ ω′. An edge e = (u, v) ∈ E is said to be open if both
u and v are open, otherwise it is closed. A path π = (v1, . . . , vr) is said to be open if
every edge (vi, vi+1) of π is an open edge. If every edge is closed instead, then we say π
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0

b1

b2

Figure 2.1: Depiction of a part of the triangular lattice in C. We work
with basis elements b1 = 1 and b2 = eiπ/3.

is a closed path. For the purpose of this thesis we require that paths are self-avoiding,
i.e. they do not contain any loops, which can be written as vi 6= vj for all i 6= j. In
the case where we consider circuits we drop this assumption for the starting and ending
vertices. In other words, a circuit π is a path (v1, . . . , vr) with v1 = vr and vi 6= vj for
i 6= j and (i, j) 6= (1, r).

Later on we will also be interested in the percolation process on the half-plane
triangular lattice TH = (V H, EH). This is defined analogously as above but with vertex
set

V H = {x+ yeiπ/3 : x, y ∈ Z, y ≥ 0}

instead.

We say that two sets A and B are connected if there exists an open path π from a
vertex in A to a vertex in B. This event will be denoted by {A↔ B} and if we require
that one of these open paths is exactly π′, then we write {A π′←→ B} instead. In the
case where A (or B) consist of just a single point v we drop the set notation of A and
write {v ↔ B} instead. If we furthermore require that the path π only uses vertices
of a subset R ⊆ V , then we denote this event by {A ↔ B in R}. For v ∈ V we let
C(v) ⊆ V be the set of vertices that are connected to v, i.e. we set

C(v) = {u ∈ V : v ↔ u}.

Lastly, given a set of vertices A ⊂ V we let the boundary of A be given by

∂A = {v ∈ A : ∃w ∈ Ac s.t. (v, w) ∈ E}.

Matching Graph

One important concept relevant to this thesis is the notion of the matching (planar)
graph. Given any planar graph G = (V,E) the process of constructing the matching
graph G′ = (V ′, E′) is as follows: we set V ′ = V and for each face F of G (including the
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(a) Square Lattice. (b) Matching graph of the Square Lattice.

Figure 2.2: In each face of the square lattice we add edges until all
vertices are connected to each other. Since the triangular lattice is self-

matching, we do not need to add any edges for that lattice.

infinite face, if it exists) we connect all vertices to each other, forming a complete graph
of F . It is easy to see that the triangular lattice is self-matching in the sense that the
matching graph of T coincides with T. This fact makes the proofs of many properties
of the triangular lattice much simpler.

In the literature the notion of dual graphs is often used in bond percolation models
(as well as in general graph theory), which is constructed in a slightly different way.
It is however still true that the properties listed below also hold for the dual graph.
In particular, the square lattice is also self-dual, allowing for similar methods to prove
properties in the next sections.

The construction of the matching graph is completely deterministic and we now
want to add randomness to G′. The matching graph G′ is coupled together with the
original graph G in the sense that the open/closed status of any vertex in G′ is equal
to the state of the corresponding vertex in G. An edge e ∈ E′ is said to be closed (in
the matching graph) if both endpoints are closed vertices. Paths in the matching graph
will be called dual paths and a closed dual path is a path π such that each edge of π
is closed. Keep in mind that G′ may have a different edge set than G and hence this
could lead to other edges being opened/closed in G′ than in G. We refer to figure 2.2
for an example of the matching graph of the square lattice.

The matching graph possesses the following crucial topological characteristics:

i) For a parallelogram R (see section 2.1 for a precise definition) there either exists
a vertical (resp. horizontal) open path in G or a horizontal (resp. vertical) closed
path in G′;

ii) Any open cluster C(v) in G is surrounded by a closed circuit in G′.

Crossings of Parallelograms

For the remainder of the thesis we work with the basis elements 1 and eiπ/3. Let a1 ≤ a2

and b1 ≤ b2 be given, then we define the parallelogram R = [a1, a2]× [b1, b2] as the set
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with corners

c11 = a1 + b1e
iπ/3, c12 = a1 + b2e

iπ/3, c21 = a2 + b1e
iπ/3, c22 = a2 + b2e

iπ/3,

i.e. R is the convex hull of the above points. Furthermore, we denote by

the “left” side of R = Conv(c11, c12),

the “right” side of R = Conv(c21, c22),

the “bottom” side of R = Conv(c11, c21),

the “top” side of R = Conv(c12, c22),

where Conv denotes the convex hull of points.

In the case where a2 = b2 = −a1 = −b1 = n we denote the corresponding parallel-
ogram by Λ(n) and call this the box of size n around the origin. For v ∈ V the box
around v with size n is given by Λ(v, n) = v + Λ(n). One important class of sets are
annuli centred around the origin. For N > n ≥ 1 we define the annulus A(n,N) as

A(n,N) = Λ(N) \ Λ(n− 1).

In the half-plane percolation process, the definitions follow analogously as above but
we instead consider the intersection of these sets with the upper half-plane.

For a subset of vertices W ⊂ V we denote its size |W | by the number of vertices in
W . Given some A ⊂ C we implicitly write |A| for |A∩ V |. Note that for some suitably
chosen constants Ci, C ′i it is

i) C1n
2 ≤ |Λ(n)| ≤ C ′1n2,

ii) C2n ≤ |∂Λ(n)| ≤ C ′2n,

iii) C3(N − n)2 ≤ |A(n,N)| ≤ C ′3(N − n)2.

These simple observations, which also hold for the half-plane process, will often be used
throughout this thesis without any further reference.

We say that there exists an open vertical crossing in R = [a1, a2] × [b1, b2] if the
event

{the “top” side of R↔ the “bottom” side of R in R}

occurs. This event is often abbreviated as CV ([a1, a2] × [b1, b2]). In the case where
we consider a horizontal crossing (the definition of which should be obvious) we write
CH([a1, a2] × [b1, b2]) instead. If we want to observe closed vertical (resp. horizon-
tal) crossings in the matching graph we denote this by C∗V ([a1, a2] × [b1, b2]) (resp.
C∗H([a1, a2]× [b1, b2])). See also figure 2.3 for a visualisation of a horizontal crossing in
Λ(n) for n = 8.
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00

LL RR

(a) Crossing with non-standard basis elements.

0

L R

(b) Simplified drawing.

Figure 2.3: In figure 2.3a we observe the event of a horizontal crossing
from the Left side of Λ(8) to the Right side. The coordinate axes are
given by the basis elements 1 and eiπ/3. For simplicity sake, this event

will instead be drawn as in figure 2.3b.

When referring to the left most open vertical crossing we mean the path π =
(v1, . . . , vn) such that for any other open vertical crossing π′ = (w1, . . . , wm) the impli-
cation

C(vi) = C(wj)⇒ R(vi) ≤ R(wj) ∀1 ≤ i ≤ n, 1 ≤ j ≤ m

holds. In other words, if vi and wj are at the same “height” (i.e. they have the same
imaginary part), then vi must be more “left” of wj (i.e. vi has a real value part smaller
or equal than the real value part of wj). The definition for the right/top/bottom-most
path follows similarly. The benefit of defining these paths is that if they exist then they
are uniquely determined. For instance, the existence of a vertical crossing can be written
as the disjoint union over all possibilities of a left most crossing. In the literature, there
are also further uses cases of this. For example, conditioning on the left-most vertical
crossing gives no information to the right of said crossing.

Lastly, we are also interested in open and closed dual circuits surrounding a vertex
(often the origin). It is also helpful to consider circuits in annuli. We define the event
O(n,N) as

O(n,N) := {∃ open circuit in A(n,N) surrounding 0}.

and let the dual equivalent be given by

O∗(n,N) := {∃ closed dual circuit in A(n,N) surrounding 0}.

Critical Parameter

The most interesting event related to connections is that there exists an open path
from the origin to the boundary of the box Λ(n). We are particularly interested in the
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probability of this event as n tends to infinity. We define

θ(p) := lim
n→∞

Pp(0↔ ∂Λ(n)).

It is easy to check that the above equals Pp(|C(0)| =∞) and furthermore by translation
invariance is independent of the choice of origin.

The above definition of θ(p) naturally gives rise to the definition of the critical
parameter.

Definition 2.2 (Critical Parameter). For any graph G = (V,E) we denote by

pc = pc(G) = sup{p : θ(p) = 0}

the critical percolation threshold.

One of the main goals in percolation theory is to study the behaviour of θ(p) with
p close to pc. The regime with p < pc is called “subcritical”, while for p > pc the
model is in its “supercritical” phase. Clearly, if the model is subcritical, then it contains
no infinite cluster, and if it is supercritical there exists such an infinite cluster. An
important question that we wish to know an answer to is, what happens when p = pc?
As it turns out, it is very hard to answer this question even for “simple” lattices such as
Ld. In section 2.3 this will be discussed a bit more.

2.2 Useful Tools in Percolation Theory

Before we showcase some well-known classical results in percolation theory, we describe
a few useful tools that are used in the proofs in the literature as well as later on in this
thesis. The reader is advised to read chapters 3 to 5 in [17] or parts of [16] for more
information.

Definition 2.3. An event A ⊂ Ω is called increasing if for any ω, ω′ with ω ≤ ω′ the
following implication holds

ω ∈ A⇒ ω′ ∈ A.

In other words, if event A already holds and we open more vertices, then A must
still hold. The following indispensable tool in percolation theory states an intuitive
dependence of two increasing events.

Theorem 2.4 (FKG Inequality). If A,B ⊂ Ω are both increasing events, then

Pp(A ∩B) ≥ Pp(A)Pp(B).

Proof. See for example Theorem 4.11 in [17].

Furthermore, for two events A,B ⊂ Ω we let A�B be the set of ω ∈ Ω with the
property that there exist disjoint U,W ⊂ V such that the open/closed states of vertices
in U (resp. W ) imply that event A (resp. B) holds. For our purposes, it suffices to
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understand that the events of the form {there exist two disjoint open paths from V1 to
V2 using only vertices in R with |R| <∞} can be written as {V1 ↔ V2 in R}�{V1 ↔ V2

in R}. The reader is advised to also have a look at section 4.3 of [17].

Theorem 2.5 (BK-Reimer Inequality). Let A and B be two events depending on finitely
many vertices, then

Pp(A�B) ≤ Pp(A)Pp(B)

Proof. See Theorem 4.17 in chapter 4 of [17].

The above inequality was first shown to hold for increasing events A and B by van
den Berg and Kesten in [4]. In many applications it requires to only consider the case
when A and B are increasing, however, van den Berg and Kesten conjectured that the
inequality also holds for general events A and B. This was finally proven by Reimer in
[27].

Next, we introduce a coupling process of percolation with uniformly [0, 1] distributed
variables. Namely, consider times (τv)v∈V such that each τv ∼ U([0, 1]) independently
of all other vertices. For percolation with parameter p ∈ [0, 1] we consider any vertex
v open if and only if τv < p. This coupling process is very useful in many situations
and will play an important role in the later chapters. For instance, if A is an increasing
event, then the function

p 7→ Pp(A) (2.1)

is a non-decreasing function. As an immediate consequence we get that connection
probabilities, such as θ(p), are non-decreasing functions in p. Also note that if A only
depends on a finite vertex set S ⊂ V , then the function in (2.1) is differentiable with
respect to p (any probability is the sum of monomials in p and (1− p)).

The last ingredient needed for Russo’s formula is the concept of pivotal vertices. Let
ω ∈ Ω and v ∈ V . Denote by ωv the element of Ω such that ωvv 6= ωv and ωvu = ωu for
all other u ∈ V . In other words, to construct ωv we flip the entry in ω corresponding
to v and let all other entries be the same. Finally, we define

{v is pivotal for A} = {ω ∈ Ω : exactly one of ω and ωv is contained in A}.

For increasing A this means that if v is pivotal for A, then A occurs if and only if v is
open.

With these preliminaries in mind, the famous Russo’s formula may now be stated.

Theorem 2.6 (Russo’s Formula). If A is an increasing event depending on a finite
vertex set S, then

d

dp
Pp(A) =

∑
v∈S

Pp(v is pivotal for A)

Proof. The proof can be found for instance in section 2.4 of [16].
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RSW Theory

The last tool needed for this thesis is the theory of RSW uniform lower bounds. This
technique is essential to understand the literature and is used very frequently. The
following is stated for site percolation on the triangular lattice T, however, very similar
results also hold for bond percolation on the square lattice L2.

Theorem 2.7 (RSW). For every n ∈ N,

P1/2(CV ([0, n]× [0, n])) =
1

2
.

Furthermore, for any k ≥ 1 there exists a δ(k) > 0 such that for all n ∈ N,

P1/2(CV ([0, n]× [0, kn])) ≥ δ(k).

Proof. The results come from Russo [28], Seymour and Welsh [29], leading to the ab-
breviation of RSW. See also section 5.5 of [17].

The above theorem together with the FKG inequality allows us to show a uniform
lower bound for various combinatorial structures. For example, we can give a lower
bound for open circuits in annuli.

Corollary 2.8. For every ε > 0 there exists a δ(ε) > 0 such that for all n ∈ N,

P1/2(O(n, (1 + ε)n)) ≥ δ(ε).

Proof. Notice that we can “glue” together an open circuit in the annulus A(n, (1 + ε)n)
by taking two suitable horizontal and two well-chosen vertical crossings. The statement
then immediately follows from the above theorem and the FKG inequality.

By symmetry reasons (recall that the triangular lattice is self-matching) all the
above results also hold for closed paths/crossings in the matching graph.

2.3 Classical Results

As stated in earlier sections, we wish to know if at p = pc we have that 0 is contained
in an infinite cluster with positive probability, or equivalently if there a.s. exists an
infinite cluster. For a long time there existed no proof, even for bond percolation on
the square lattice, of what value pc exactly was and if an infinite cluster occurs at pc.
Harris showed first in [20] that θ(1/2) = 0 for bond percolation on the square lattice.
Only 20 years later Kesten [23] showed that pc(L2) ≤ 1/2, which allows us to conclude
that pc = 1/2 and θ(pc) = 0. These (and other) results are considered classical now.

The natural analogue of Harris’s and Kesten’s arguments for site percolation on the
triangular lattice gives a similar statement about pc.

Theorem 2.9. The critical parameter of site percolation on the triangular lattice equals
1/2. Furthermore, it is θ(pc) = 0.
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Proof that pc ≥ 1/2. To illustrate the usefulness of RSW theory we will prove that
θ(1/2) = 0 and hence pc ≥ 1/2. For a full proof of the theorem we refer the reader to
section 5.6 of [17].

Consider the annuli A(3i, 2 · 3i) for i ≥ 0. All these annuli are disjoint and by RSW
there exists a δ > 0 such that

P1/2(O∗(3i, 2 · 3i)) ≥ δ.

This means for p = 1/2 there a.s. exists an i0 such that O∗(3i0 , 2 ·3i0) occurs. Therefore,
with probability 1, there is a closed dual circuit surrounding the origin, which implies
the open cluster of 0 can not be infinite.

The proof of the above theorem makes use of the planar duality of the underlying
graph, which does not exist for arbitrary dimensions d. In fact, it remains unanswered
if an infinite cluster occurs at the critical point for all d. It is however conjectured, that
indeed the origin is a.s. not contained in an infinite cluster when p = pc.

Conjecture 2.10. For bond percolation on the hypercubic lattice Ld with d ≥ 2 it is

θ(pc) = 0.

As mentioned in the introduction, for d large enough, say d ≥ 11, the above conjec-
ture holds true. Furthermore, there is hope that the same techniques can be extended
to d ≥ 7 and possibly even to d = 6. The question still remains of what happens in the
intermediate dimensions between d = 2 and d = 6.

Characteristic Length and Exponential Decay

It is now well known that for certain small enough scales, percolation with parameter
smaller than pc “looks” similar to percolation at the critical parameter. This was stated
formally and proved rigorously in Kesten’s celebrated paper [22], which also gave im-
portant applications. A central role in his paper is played by the characteristic length.
For ε > 0 and p < pc we define the characteristic length Lε(p) as

Lε(p) := min{n ≥ 1 : Pp(CV ([0, n]× [0, n])) ≤ ε}.

For p > pc we let Lε(p) = Lε(1 − p). We will fix L = L0.001 for the remainder of the
thesis, but note that there is no particular reason to pick ε = 0.001, as long as it smaller
than the constants produced from RSW theory, we are guaranteed that L(p) → ∞ as
p → pc. Furthermore, as it turns out for other ε′ we have that Lε(p) and Lε′(p) differ
only by a multiplicative constant C(ε, ε′) uniformly in p. See for instance Corollary 37
of [26].

The characteristic length for example dictates how fast the probabilities of connec-
tion events decay.

Theorem 2.11. There exist constants C3, C4 > 0 such that for all p < pc and n ∈ N,

Pp(CV ([0, n]× [0, n])) ≤ C3e
−C4

n
L(p) ,
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Proof. See Lemma 39 in [26].

In particular, if n is much larger than L(p), the probability of having connection
events is exponentially small. By the definition of pc it follows that Pp(0 ↔ ∂Λ(n))
goes to zero for all p < pc, however, the above theorem implies that this decay is
exponentially fast. By application of the matching graph, the above also shows that for
p > pc the probability of there not existing an open crossing in a box of order n goes
exponentially fast to zero.

In fact, we have that exponential decay exists for bond percolation on the hypercubic
lattice in arbitrary dimensions d ≥ 2.

Theorem (Exponential Decay). For d ≥ 2 and p < pc(Ld) there exists ψ(p) > 0 such
that

Pp(0↔ ∂Λ(n)) ≤ e−nψ(p).

Proof. See for instance Theorem 5.1 of [17].

The above theorem for Bernoulli percolation was first proved by [1] as well as inde-
pendently by [25]. Later in 2015 the authors of [13] showed another proof for exponential
decay for a large class of percolation (as well as Ising) models. In section 2.5 we will
adapt the simpler version of this argument for Bernoulli percolation (as presented in
[14]) to another percolation type model.

Other Classical Results

Lastly, we will also list a few well-known results in percolation theory that will not be
used in this thesis but are of interest themselves.

i) For all d ≥ 2 it is 0 < pc(Ld) < 1.

ii) For all d ≥ 11 we have that θ(pc) = 0 for the hypercubic lattice Ld. It is believed
that the proof technique may be extended to all d ≥ 7.

iii) If there exists an infinite cluster it is almost surely unique.

For the proofs of items i) and ii) see [17, Chapter 3] and [21], while for item iii) see
for instance [15].

2.4 Detailed Results

For the triangular lattice, there exist some strong scaling results of certain events. The
results that are needed for this thesis are summarised in Theorem 2.13. It is believed
that similar versions of these results can also be extended to other two-dimensional
lattices as well as to bond percolation, however, currently, there are no proofs of this.
The main tool used for showing these statements depends on conformal invariance of site
percolation on the triangular lattice [31, 30] and that percolation has Schramm-Löwner
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evolution SLE6 as a scaling limit [11]. If one is able to show conformal invariance
for other lattices, then it should be reasonable that we can also conclude that similar
statements as those in Theorem 2.13 (with some other parameters of course) hold for
those lattices.

One of the tools used in proving conformal invariance is the so-called Cardy’s for-
mula. It states that connection probabilities between boundary segments of a (suitably
chosen) set can be related to the length of a segment of an equilateral triangle. Cardy
first hypothesised (a version of) this formula in [12], but it was only proven by Smirnov
in [31]. For a recollection and parts of proof see section 5.6 of [17].

First we introduce some standard notation of asymptotically equivalence between
two functions. Namely, if there exists some finite constants λ1, λ2 > 0 such that we have
λ1g ≤ f ≤ λ2g, then we write f � g. Moreover, we also need a weaker equivalence for
f and g when their parameter k tends to some kc, where for notational sake we allow
kc =∞.

Definition 2.12. For two positive functions f, g we say that f and g are logarithmic
asymptotically equivalent if

lim
k→kc

log f(k)

log g(k)
= 1

and we write f ≈ g. If the above fraction is smaller than one we write f � g.

Although the base of the above logarithms does not matter, when referring to log k
in this thesis we mean the logarithm of k with respect to base 2.

The main use of this equivalence will be when f and g are functions of p ∈ [0, 1]
and kc = 1/2, or when f and g are functions of n ∈ N and kc = ∞. If it is f � g
and f, g → 0 (or both tending to infinity), then it clearly also is f ≈ g. Furthermore,
assume that for some functions f1, f2 we have f1 ≈ kα and f2 ≈ kβ , then the following
properties hold true:

i) In the case kc = ∞ we have that for any ε > 0 there exist C(ε), C ′(ε) > 0 such
that C(ε)kα−ε ≤ f1(k) ≤ C ′(ε)kα+ε.

ii) If f = f1 · f2, then f ≈ kα+β .

The proof of the above items follows from basic properties of the log function and we
will use these without further notice.

Arm Events

We now proceed to define arm events. The values of the probabilities of arm events
play crucial roles in the proof of many statements. For j ≥ 1 we consider a colour
sequence σ = (σ1, . . . , σj), where each σi is either “open” or “closed”, which we denote
by σi ∈ {o, c}. Furthermore, we identify two sequences if they are equal up to a cyclic
permutation. For example, the sequences σ1 = (o, o, c, c) and σ2 = (c, o, o, c) are equal
to each other, while σ3 = (c, o, c, o) is a different colour sequence.
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0 n N−n−N

Figure 2.4: Consider the event AH3 (A(n,N)). We see 2 closed dual
paths (indicated as dashed red paths) and one open path from the bound-

ary of Λ(n) to ∂Λ(N).

We say that a path π is of colour o (resp. c) if all edges of π are open (resp. dual
closed) and write Col(π) = o (resp. Col(π) = c). For n ≤ N the event Aj,σ(A(n,N)) is
defined as

Aj,σ(A(n,N)) := {∃ disjoint π1, . . . , πj such that the πi are ordered counterclockwise,

Col(πi) = σi and ∂Λ(n)
πi←→ ∂Λ(N)}.

Note that for small enough n and large j the geometry of the triangular lattice neces-
sarily makes the event Aj,σ(A(n,N)) empty. For example, if we take j > |∂Λ(n)|, no
j disjoint paths originating from ∂Λ(n) can exist. Therefore, sometimes we will write
n0(j) for the smallest integer allowing the existence of j disjoint arms. The exact value
of n0(j) is irrelevant, see also page 1574 of [26].

In the case where we consider the half-plane lattice TH we write AHj,σA((n,N))
instead. For notational sake when the length of σ is clear, then the subscript j will be
omitted. Furthermore, we will use

AH1 (A(n,N)) := AH(o)(A(n,N)) and AH3 (A(n,N)) := AH(c,o,c)(A(n,N)),

so AH1 (A(n,N)) is the open 1-arm event, while AH3 (A(n,N)) is the 3-arm event where
two closed arms surround an open one. Figure 2.4 displays the 3-arm event.

The following theorem gathers the results we need in chapter 4.

Theorem 2.13. For the triangular lattice T the following relations hold:

1. As p→ pc it is L(p) ≈ |1/2− p|−4/3.

2. If k ≤ L(p), then Pp(Aj,σ(n0(j), k)) � P1/2(Aj,σ(n0(j), k)).

3. For any colour sequence σj it is P1/2(AHσj (n,N)) ≈ (N/n)−βj for N,n→∞ with
βj = j(j + 1)/6.

4. It is P1/2(AH3 (n,N)) � (N/n)−2.

Proof. We respectively refer to Theorem 33, Theorem 27, Theorem 22, Theorem 24 in
[26]. For the last two items an application of quasi-multiplicativity (Proposition 17 of
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[26]) must also be used. Also see [32] for the original statement and proofs of these
results.

Note that item 4 is a stronger version of item 3 for j = 3. The main use of item 3
will be for j = 1, i.e. the one arm half-plane exponent is 1/3.

2.5 Simpler Proof of Exponential Decay in a Percolation
Model Motivated by Spatial Epidemics

In the previous sections, we have seen that there is exponential decay for connection
probabilities if p < pc. We end this chapter by providing a simpler proof of exponential
decay to a (directed edge) model from [3]. In relation to the main results in chapters 3
and 4, this section can be skipped as it is independent of the rest.

As mentioned previously, both [1] and [25] independently found proofs for exponen-
tial decay in the subcritical phase for Bernoulli percolation. In [3] the authors modified
these proofs to show that there also exists exponential decay in a percolation model
with local dependencies that is used to model a spatial epidemics process. Since later
in 2015 the paper [14] (and it’s more general version [13]) showed a shorter argument
for exponential decay than Aizenman-Barsky and Menshikov did, it is natural to ask if
the same proof technique can be adapted to the model introduced by [3]. This section
is devoted to showing that this is indeed the case.

Notation

First, we describe the model and recall some notation from [3]. We consider a collection
of independent random sets {Nu ⊆ {±e1, . . . ,±ed} | u ∈ Zd} each sampled according
to some probability measure ν. These sets generate a random directed subgraph Γ of
Ld by taking the vertex set Zd and directed edges of the form [u, v〉 for v − u ∈ Nu.

This model can be interpreted as an epidemics model in the following way: if an
individual u becomes sick, they (immediately) infect all their neighbours in u + Nu.
Now assume that the sickness emerges from the origin, we are interested in “how far
the sickness spreads” and if it will “eventually die out”. The latter can for instance be
interpreted as the event of the origin being contained in a finite cluster in our model.

Definition 2.14. The measure ν (stochastically) moderately dominates µ if for all non-
trivial increasing events A with µ(A) > 0 we have ν(A) > µ(A).

This notion of dominance is slightly different from strict dominance in [3]. Namely,
we also allow the possibility of having ν(A) = µ(A) = 0. One can easily verify that
strict dominance implies moderate dominance.

As in the start of proof of 2.1 in [3], for any given probability measure ν we define
a new measure νp with p ∈ [0, 1] by independently setting each vertex open with prob-
ability p and closed with probability 1− p. A vertex v is called pivotal for the event B
if B occurs if v is open and B does not occur when v is closed. It follows that Russo’s
formula holds for increasing (in terms of open/closed states) events B. Also note that
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we use a more general form of the BK-inequality (Theorem 5.1 in [3]), which we can
apply to vertex disjoint paths, where the last vertex of one path can possibly be the
first of another (a self-avoiding path from v to w gives no information about the state
of edges at w).

For vertices u0 6= um+1, we let {u0 → um+1} be the event that there exist (distinct)
u1, . . . , um such that [ui, ui+1〉 are edges in Γ and ui is open for 0 ≤ i ≤ m. The event
{u0 → um+1 in A} is defined analogously as above but now requiring that u0, . . . , um ∈
A. If u0 = um+1 both events are just defined as the trivial event of probability 1.
Furthermore, we let θ(ν) := Pν(0→∞) be the probability that the origin is contained
in a cluster of infinite size.

Next, we define ∆A ⊆ ∂A as the following (deterministic) set

∆A := {v ∈ ∂A | Pν((v +Nv) ∩Ac 6= ∅) > 0}.

In other words, the set ∆A contains those vertices that with positive probability are
connected to a vertex outside of A after sampling w.r.t. to ν. In particular, since there
are only finitely many configurations of outgoing edges for each vertex, there exists a
C∆ > 0 (independent of choice of A) such that Pν((v + Nv) ∩ Ac 6= ∅) > C∆ for all
v ∈ ∆A. Lastly, we set Ao as A \∆A.

Adaption of Proof of Theorem 5.1 in [17]

Consider the slightly stronger version of Theorem 2.1 from [3] given by

Theorem 2.15. If ν moderately dominates µ and θ(ν) = 0, then there exists c(ν) > 0
such that

Pµ(0→ ∂Λ(n)) ≤ e−c(ν)n.

Proof. The proof follows as the argument of proof Theorem 5.1 in [17]. For any set of
vertices S ⊂ Λ(L) with 0 ∈ S we have (almost surely) that

{0→ ∂Λ(kL)} =
⋃
v∈∆S

{0→ v in So ◦ v → ∂Λ(kL)}.

This holds true since for any open path π that satisfies the l.h.s. we can consider the
self-avoiding version of that path with v the first vertex reached in ∆S. Hence, for any
such S we have using the BK inequality that

Pνp(0→ ∂Λ(kL)) ≤
∑
v∈∆S

Pνp(0→ v in So)Pνp(v → ∂Λ(kL))

≤ Pνp(0→ ∂Λ((k − 1)L))
∑
v∈∆S

Pνp(0→ v in So).

Now define

φp(S) :=
∑
v∈∆S

Pνp(0→ v in So).
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If we show that for any p < 1 there exists a finite S such that φp(S) < 1, then we can
conclude exponential decay. Namely, for any µ moderately dominated by ν there exists
a p < 1 such that µ ≤ νp and therefore by iteration

Pµ(0→ ∂Λ(n)) ≤ Pνp(0→ ∂Λ(bn/LcL)) ≤ φp(S)bn/Lc,

which decays exponentially fast in n.

Let

ps := sup{p ∈ [0, 1] | ∃S with |S| <∞, 0 ∈ S and φp(S) < 1},

then it remains to show that ps = 1. Assume that ps < 1, then we pick a p∗ such that
ps < p∗ < 1. This means for all relevant S and p ∈ (ps, p

∗] we have φp(S) ≥ 1. Now
let Bn be the increasing (in terms of the open/closed states of the vertices) event of
{0→ ∂Λ(n)} and let S = {x ∈ Λ(n) | x 6→ ∂Λ(n)}. Then by Russo’s formula it is

d

dp
Pνp(Bn) =

∑
v∈Λ(n)

Pνp(v is piv for Bn)

=
1

1− p
∑

v∈Λ(n)

Pνp(v is piv for Bn, v closed)

=
1

1− p
∑

v∈Λ(n)

∑
S30

Pνp(v is piv for Bn, v closed,S = S)

=
1

1− p
∑
S30

∑
v∈∆S

Pνp(0→ v in So, (v +Nv) ∩ Sc 6= ∅, v closed,S = S).

Now note that the events {0 → v in So} and {(v + Nv) ∩ Sc 6= ∅, v closed,S = S} are
independent, since the first event only depends on vertices in S \ ∆S while the latter
only depends on vertices in Sc ∪ ∆S. Furthermore, {S = S} is positively correlated
with v being closed and independent of {(v + Nv) ∩ Sc 6= ∅} conditioned on the fact
that v is closed. So,

Pνp((v +Nv) ∩ Sc 6= ∅, v closed,S = S) ≥ Pνp((v +Nv) ∩ Sc 6= ∅)Pνp(S = S)(1− p)
≥ C∆(1− p)Pνp(S = S),

where we used that Pνp((v +Nv) ∩ Sc 6= ∅) > C∆ with C∆ > 0 for all v ∈ ∆S.

We will later integrate the inequality from ps to p∗, which means we can use that
φp(S) ≥ 1 for those p. Applying the above remarks we get

d

dp
Pνp(Bn) ≥ C∆

∑
S30

∑
v∈∆S

Pνp(0→ v in So)Pνp(S = S)

= C∆

∑
S30

φp(S)Pνp(S = S)

≥ C∆(1− Pνp(Bn)).
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This implies that

d

dp
− ln(1− Pνp(Bn)) ≥ C∆,

which we integrate from ps to p∗ to get

1

1− Pp∗(Bn)
≥ 1− Pps(Bn)

1− Pp∗(Bn)
≥ eC∆(p∗−ps),

or equivalently

Pp∗(Bn) ≥ eC∆(p∗−ps) − 1

eC∆(p∗−ps)
> 0.

Letting n go to infinity we get that θ(νp∗) > 0, which contradicts the assumption that
θ(ν) = 0. Therefore, we get that indeed ps = 1, completing the proof.
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3 Introduction to Frozen
Percolation

Aldous first introduced frozen bond percolation on the infinite binary tree in [2]. His
paper was partly motivated by studying a process of polymerisation of molecular units,
where one is interested in the transition of finite polymers into infinite polymers. This
can be interpreted as part of the chemical sol-gel process.

Heuristically speaking, in his model open clusters stopped growing (or froze) once
the cluster became infinite in size. He showed that this stochastic process is well defined
for the binary tree and stated the adaptations needed to extend this to the infinite d-
regular (d ≥ 3) tree. It is however not clear at all that such a process also exists on the
square lattice L2 or on the site percolation analogue on the triangular lattice. In fact,
Benjamini and Schramm showed that such a process can not exist for those lattices
(see also [8, Section 3]). Therefore, the processes shown below will only be defined for
some finite parameter n that limits the growth of clusters beyond size n. We are mostly
interested in the asymptotic properties of the models as we let n tend to infinity.

3.1 General Framework of Frozen Percolation

We now proceed to explain the general set up of frozen percolation for bond percolation
on some graph G = (V,E). Each edge e ∈ E is assigned a random time τe, where the
collection of (τe)e∈E are i.i.d. uniformly distributed over the interval [0, 1]. We now let
time t evolve from 0 to 1. At time t = 0 all edges are closed, while at time τe we open
the edge e = (u, v) unless some condition on the open cluster of u or v is met. If the
condition is met, say for v, then we say the cluster of v is frozen. When dealing with
the site percolation variation, we instead generate (τv)v∈V values and set some freezing
condition on v or on the neighbours of v.

The different variations of frozen percolation arise from choosing a suitable condition
for the edge e or vertex v not opening. Note that via the coupling argument in section
2.2, it is easy to see that if we choose no condition on the freezing process, then at
time τ this model would be indistinguishable from ordinary Bernoulli percolation with
parameter τ .

Diameter Frozen Percolation

First introduced on the square lattice L2 = (Z2,E2) by [6], diameter frozen percolation
with parameter N sets a restriction on the diameter of any cluster growing much larger
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than N . More formally, the diameter of a set W ⊂ Z2 is given by sup{||v−w|| : v, w ∈
W} and the freezing condition on edge e = (u, v) is that one of the endpoints u or v
is contained in an open cluster of diameter larger or equal to N . As mentioned in the
introduction to this chapter, we are mostly interested in very large N and the limits (or
limit inferior) of values as N tends to infinity.

The first result regarding this percolation process, already stated in the paper [6]
that introduced it, showed that we can find a uniform lower bound of the probability of
the cluster containing the origin having a diameter of order N , but not larger than N .

Theorem (Theorem 1.1 in [6]). Let CN (0) denote the open cluster of the origin at time 1
for the N -parameter diameter frozen model on the square lattice. For all 0 < a < b < 1,

lim inf
N→∞

P(CN (0) has diameter ∈ (aN,Bn)) > 0.

Later, in section 3.3, we will use a similar proof technique to show some result, so it
may be helpful for the reader to have a brief look at the mentioned paper. The above
theorem has as an immediate corollary that the probability of the origin freezing does
not go to one, however, we still wish to know if the probability goes to zero as N →∞.

In [24] Kiss showed that the probability of 0 being frozen is not only uniformly
bounded away from one, but indeed goes to zero as N grows large.

Theorem (Theorem 1.1 [24]). As N → ∞ the probability that in the N-parameter
diameter frozen percolation process the open cluster of the origin freezes goes to 0.

The paper [24] was originally written for the site percolation variation on the trian-
gular lattice, however, with adaptations of the proof it is also possible to extend this to
the bond percolation version (also see Remark 3.7 of [24]).

Volume Frozen Percolation

For the volume frozen percolation, the freezing condition is on the number of vertices
(and not the diameter as above) contained in open clusters. Any vertex v becomes open
at time τv unless there exists a neighbour w of v such that |C(w)| ≥ N , where C(w) is
the open cluster of w at time τv and N is the parameter of the model.

In [7] the authors conjectured that similarly as in the diameter frozen percolation,
the probability of 0 freezing goes to zero as N →∞. Building upon techniques of this
paper, the authors of [5] show that in fact the origin is a.s. not contained in a frozen
cluster as N grows large.

Theorem (Theorem 1.1 in [5]). For the volume-frozen percolation process on T with
parameter N ≥ 1,

P(T)
N (0 is frozen at time 1)

N→∞−−−−→ 0.

In both of these papers, the authors also discuss interesting results that display that
these types of models usually do not behave in a monotone way. Roughly speaking,
when considering the process on a finite box of size m(N) instead of T, the behaviour of
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(a) Box with dimensions 51×51, where the origin
does not freeze.

(b) Box with dimensions 501 × 501, where the
origin freezes.

Figure 3.1: Figure 3.1a and 3.1b are simulations of frozen bound-
ary percolation on boxes at time t = 1. Red coloured sites are those
contained in the open cluster of the origin. Black sites are other open
vertices, while closed sites are not drawn. Note that the underlying box
is somewhat different than in this thesis (it was easier to simulate it this

way).

the origin freezing dramatically depends on the choice of function m. For m(N) close to
“exceptional scales“ mk(N) there is a uniform positive lower bound on the probability
of the origin freezing. On the other hand, for m(N) “far away” from these scales, the
probability of the origin freezing goes to 0.

3.2 Boundary Frozen Percolation

To define our new boundary frozen percolation model, we proceed similarly as in the
previous sections. However, instead of considering bond percolation on the whole of the
square lattice, we will instead consider the site percolation variation on a subgraph of
the triangular lattice. Namely, recall the definition of the box Λ(n) = [−n, n]× [−n, n]
as in section 2.1. We now fix some n ≥ 1 and consider the subgraph Tn = (Vn, En)
of T = (V,E) generated by vertices in V ∩ Λ(n). For each v ∈ Vn we independently
generate time values τv according to the uniform [0, 1] distribution. It turns out that a
slight modification of the edge set simplifies many observations. Specifically, we remove
all edges from En that are of the form (u, v) with u, v ∈ ∂Λ(n) and with abuse of
notation this new edge set will still be denoted by En.

Comparing to the framework mentioned at the start of this chapter, we now proceed
to define our freezing condition for a vertex v. When referring to an open frozen (resp.
non-frozen) τ -path π we require that each vertex v on π is open before time τ and the
open cluster of π contains (resp. does not contain) a vertex in ∂Λ(n). As usual, we now
let time progress from 0 to 1. We open v at time τv unless there exists a neighbour of v
that is connected to a vertex w ∈ ∂Λ(n) using an open frozen τv-path. The probability
measure for this process will be denoted by PFn . Since this is a finite state system, the
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existence of such a process with corresponding probability space (Ωn,Fn,PFn ) is clear
for any n ∈ N.

If for some v the open cluster C(v) at time t contains a vertex in ∂Λ(n), then we say
that v is “frozen” at time t. We are particularly interested in the asymptotic behaviour
of the probability of 0 being frozen at time t = 1 when we let n go to infinity.

Conjecture 3.1. There exists a C > 0 such that for all n ≥ 1,

PFn (0 is not frozen at time t = 1) > C.

We are unable to prove the above conjecture. However, Proposition 3.5 and Theorem
4.11 in section 4.3 provide evidence that this is likely the case.

One difficulty in proving Conjecture 3.1 stems from the fact that in general there
exists no “nice” form of monotonicity in frozen percolation. More open vertices do not
necessarily increase connectivity properties: the more open vertices we have, the more
likely it is for any open clusters to freeze, which in turn may hinder the growth process
of the open cluster of the origin.

A weaker result is that the probability of 0 freezing does not decay exponentially
fast, nor does it go to 1 exponentially fast. This will be shown in the next section.

3.3 Polynomial Lower Bounds

To prove a polynomial lower bound on the probability of the event that 0 freezes we
first need to show a general result about site percolation on the triangular lattice with
p = 1/2.

Lemma 3.2. Let an = [0, n]×{0} and bn = {n}× [0, βn] for some β > 0. Furthermore,
let Tn be the right sided triangle with short sides an and bn. Then there exists an
ε = ε(β) > 0 and C1 = C1(β) > 0 such that for all n ∈ N we have

P1/2(0↔ bn in Tn) ≥ C1n
−ε.

Proof. This is a standard application of RSW together with FKG (see also figure 3.2
for a visualisation of the construction). We will only show the proof for β = 1 and point
out where adaptations need to be done for the general case. Consider the following
sequences of rectangles:

Hi = [2i, 2i + 2i+1]× [0, 2i],

Vi = [2i+1, 2i + 2i+1]× [0, 2i+1],

where we let i ∈ {0, 1, . . . , dlog ne}. In the case for β 6= 1 the ratio of height to width
of the Hi and Vi need to be changed accordingly. We claim that if the following events
occur

i) 0 is connected to H0 and all vertices in H0 are open,

ii) ∃ an open horizontal crossing in each Hi,
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0

Vi

Hi

Vi+1

an

bn

Tn

Figure 3.2: In each Vi we have a vertical crossing, while in each Hi we
have a horizontal crossing. These glue together to an open path from 0

to bn.

iii) ∃ an open vertical crossing in each Vi,

then there is a path from 0 to bn using only vertices in Tn. Indeed, the open paths in
Vi intersect those in Hi and the open paths in Hi intersect those in Vi+1. Furthermore,
the crossing of Hdlogne intersects bn and by i) we have that 0 is connected to H0. Hence,
0 is also connected to bn.

The condition that 0 is connected to H0 and all vertices in H0 are open, only depend
on finitely many vertices and hence there is a trivial positive lower bound (for the β = 1
case this would be c0 = 2−7). For the crossing events, RSW gives us some constant
C that uniformly lower bounds each of the probabilities of the events occurring (this
also holds for the general case β 6= 1 with a possibly different constant). Hence, using
the FKG inequality we get a lower bound of the form c0C

2dlogne. Rearranging this
expression gives the result.

Corollary 3.3. Let β1, β2 > 0, bn = {n} × [−β1n, β2n] and let Tn(β1, β2) be the trian-
gle spanned by {(0, 0), (n,−β1n), (n, β2n)}. Then the probability that there is an open
path from 0 to bn in Tn(β1, β2) has a polynomially lower bound as in Lemma 3.2. By
symmetry arguments the same holds for any π/2 rotation of bn and Tn(β1, β2), as well
as for dual crossings in the matching graph.

Proof. By Lemma 3.2 the claim already holds for the triangle spanned by {(0, 0), (n, 0),
(n, β2n)} which is a subset of Tn(β1, β2).

Using the above corollary, we now proceed to prove a polynomial lower bound for the
probability of the origin freezing as well as of the probability of the origin not freezing.
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vvaa

bb cc

dd

(0,−n)

Figure 3.3: Consider the local configuration of the lattice around the
point b = (0,−n). We require that the red vertices a, b, c and d have a

τ value of at least 1/2 and the green vertex v has τv < 1/2.

We define an 1/2-open path (resp. 1/2-closed dual path) to be a path on which every
vertex w has a τw value smaller than 1/2 (resp. has a τ value larger than 1/2).

Lemma 3.4. There exist positive constants C2, C3, C4 and C5 such that we have

PFn (0 freezes at t = 1) ≥ C2n
−C3 , (3.1)

and

PFn (0 does not freeze at t = 1) ≥ C4n
−C5 (3.2)

for all n ∈ N.

Proof of (3.1). Let n ∈ N be given. Consider the notation of figure 3.3 and assume
that the events

i) τa, τb, τc, τd > 1/2

ii) ∃ 1/2-closed dual path from a to {−n} × [−n + 1, 0] in the triangle spanned by
{a, (−n,−n+ 1), (−n, 0)},

iii) ∃ 1/2-closed dual path from d to {n} × [−n + 1, 0] in the triangle spanned by
{d, (n,−n+ 1), (n, 0)},

iv) ∃ 1/2-closed vertical dual path in [−n,−n/2] × [−n, n], 1/2-closed vertical dual
path in [n/2, n]× [−n, n] and 1/2-closed horizontal dual path in [−n, n]× [n/2, n],

v) ∃ 1/2-open path from v to [−n/2, n/2] × {−n/8} in the triangle spanned by
{v, (−n/2,−n/8), (n/2,−n/8)},

vi) ∃ 1/2-open path from 0 to [−n/2, n/2] × {−n/4} in the triangle spanned by
{0, (−n/2,−n/4), (n/2,−n/4)} and

vii) ∃ 1/2-open horizontal path in the box [−n/2, n/2]× [−n/8,−n/4]

occur. These events are shown in figure 3.4.
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Λ(n)

0

Figure 3.4: Assume all events as in the proof of Lemma 3.4 occur,
where the small rectangle at the bottom depicts figure 3.3. Then there
is a 1/2-open path from 0 to v that is separated from ∂Λ(n) by a 1/2-
closed dual circuit. It is now guaranteed that at time τb the origin

freezes.
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We claim that this implies that 0 freezes. Namely, by construction, all the defined
1/2-open paths are surrounded by a closed dual circuit separating them from ∂Λ(n).
Therefore, no paths inside this dual circuit will freeze before time t = 1/2. This means
that at time t = 1/2 there will be an open path from 0 to v. At time τb the vertex b
will either open and connect 0 to ∂Λ(n) or v was already frozen before time τb. In both
cases, there is a path from 0 to ∂Λ(n), meaning 0 freezes before time t = 1.

It remains to show that the probability of these events occurring is bounded below
by a value decaying only polynomially fast. First note that the events i)-iv) and v)-vii)
depend on different vertices and hence are independent of each other. Event i) has
a trivial lower bound of 2−4, while by application of FKG together with RSW and
Corollary 3.3 we have a lower bound of the form C1n

−ε for the events ii) - iv). Using
the same argument also gives a similar lower bound for the probability of the events
v)-vii) occurring. Combining all these facts gives us the desired lower bound.

The proof for the second inequality follows with similar arguments. Namely, in
practically the same way we can show that there exists a frozen circuit around the
origin before τ0, blocking the origin from reaching the boundary and thus it does not
freeze.

First Proof Attempt for Conjecture 3.1

We end this section with a proposition that gives intuitive hints towards Conjecture 3.1
being true.

Proposition 3.5. There exists a C > 0 such that

lim sup
n→∞

PFn (0 is not frozen at time t = 1) > C, (3.3)

or for every fixed time t̃ < 1 it is

lim
n→∞

PFn (0 is not frozen at time t = t̃ ) = 1. (3.4)

Proof. Consider the following two contradictory assumptions:

Assumption 1: There exists a t̃ < 1 such that

lim sup
n→∞

PFn (∃ a frozen circuit in A(
√
n/2, n/2) before time t = t̃) > C(t̃),

for some C(t̃) > 0.

Assumption 2: For every fixed t̃ ∈ (1/2, 1) it is

lim
n→∞

PFn (∃ no frozen circuit in A(
√
n/2, n/2) before time t = t̃) = 1.

We will show that (3.3) will follow from assumption 1 and similarly (3.4) will follow
from assumption 2. Since clearly either assumption 1 or 2 must hold, the result follows.

So, assume that assumption 1 is true for some t̃. Consider the event that there
exists a frozen circuit C in A(

√
n/2, n/2) at time t̃ and that furthermore it is τ0 > t̃.
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Then the open cluster of 0 must be disjoint from the open cluster containing C, since
all vertices adjacent to the open cluster of C are closed at τ0 and remain so afterwards.
In particular, the origin can not reach the boundary and hence can not be frozen. This
gives

lim sup
n→∞

PFn (0 does not freeze)

≥ lim sup
n→∞

PFn (∃ a frozen circuit in A(
√
n/2, n/2) before time t = t̃, τ0 > t̃)

≥ C(t̃)(1− t̃) > 0,

where the last inequality uses independence between the events. We therefore have
found a sufficient bound for (3.3).

Now assume that with probability going to 1, no frozen circuit exists before any
fixed time t̃ < 1. We now let OF1 (k) be the event that there

i) ∃ 1/2-open path in A(k, 2k) and

ii) ∃ 1/2-closed dual path in A(3k, 4k).

Using similar arguments as in Lemma 3.4, it is easy to see that OF1 (k) implies that
there exists an open circuit in A(k, 2k) (the closed dual prevents the open circuit from
freezing). Furthermore, the required paths for OF1 (k) to occur rely on disjoint vertices
and the probability of both can be (using RSW) bounded uniformly from below. For
n ∈ N let In = {i ≥ 0 : 5i+1√n/2 < n/2} and consider the event

OF2 (n) =
⋃
i∈In

OF1 (5i
√
n/2). (3.5)

In other words OF2 (n) implies that for some annulus contained in A(
√
n/2, n/2) we see

an open non-frozen circuit before time t = 1/2. Now assume that OF2 (n) occurs and
that furthermore 0 is in fact frozen at time t = t̃, then the open cluster of 0 must
intersect any such circuit, contradicting the assumption that there is no frozen circuit
with the requirements as in assumption 2.

Note that |In| is of size roughly log n and each of the events in the union of (3.5)
depend on disjoint vertices and have uniform lower bounds. This means that as n tends
to infinity, the probability of OF2 (n) tends to 1. Concluding, for B the event as in
assumption 2, we have

PFn (0 does not freeze before t̃) ≥ PFn (B ∩ OF2 (n)) ≥ PFn (B) + PFn (OF2 (n))− 1,

the value of which goes to 1 as we let n go to infinity.

Intuitively one might think the above proposition (and the proof thereof) would
lead to a proof of Conjecture 3.1, however, many small complications arise that we
were unable to deal with properly. For instance, one may be tempted to take the limit
as t̃ goes to one in (3.4), but this does not follow without further knowledge of the
probability function (compare for example with the limit of n → ∞ of the function
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1−xn on [0, 1]). The remainder of this thesis is dedicated to showing that assumption 1
is true for any t̃ ∈ (1/2, 1) in a somewhat weaker model introduced in the next chapter.
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4 Trigger Points and Model with
Holes

We introduce yet another new model that provides further evidence towards Conjecture
3.1. Instead of freezing clusters that reach any point on the boundary of Λ(n), we
only allow some of the boundary points to “trigger" the freezing procedure. Namely,
independently for each v ∈ ∂Λ(n) we set v as a “trigger point” with probability n−ε for
some fixed ε > 0. More formally, we take i.i.d. random variables (Tv)v∈∂Λ ∈ {0, 1} and
say that a boundary point v is a trigger point if Tv = 1, where the event {Tv = 1} has
probability equal to n−ε. Similarly to boundary frozen percolation, we now say that
vertex u opens at time τu, unless there exists an open frozen τu-path from a neighbour
of u to a trigger point. We denote this version of frozen percolation as the (n, ε) model
and write P(n,ε) for its probability measure.

Model with Holes

To be able to deal with the freezing effects on the boundary, we couple the (n, ε) frozen
percolation model with a model with independent holes (also called impurities). This
is an approach also used in [9] to study forest fires and we will now proceed to define a
variation of it that is applicable to our current model. The corresponding probability
measure will be denoted by PH(n,ε) and we refer to figure 4.1 for a visualisation of the
model.

Firstly, consider site percolation on the half-plane triangular lattice TH and the
coupling process with (τv)v values as in section 2.2. If the origin opens at time τ0 ≤
1/2, then there exists a box B0 with radius R such that the open cluster, as well
as vertices adjacent to the boundary of the open cluster, are contained in B0. So,
R = sup{||w|| + 1 : 0 ↔ w at time τ0}. The distribution of R is then given by
marginalising over τ0 ∈ [0, 1/2], i.e.

PH(n,ε)(R = k) =

∫ 1/2

0
P(R = k | τ0 = t) dt.

In the model with holes, for each v ∈ ∂Λ(n) we generate i.i.d. random variables Rv ∈ N
such that Rv is distributed as the radius R above. Furthermore, we take i.i.d. (and
independent of all Rv) λv ∈ {0, 1} such that P(λv = 1) = n−ε/2. Finally, we denote by
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0

Figure 4.1: In the model with holes we see some holes Hv (indicated as
grey boxes) centred at boundary points. Outside these holes we preform
ordinary site percolation at p = pc. The open green crossing in ordinary

percolation would not exist in this model.

Hv the hole centred at v, where

Hv =

{
∅, if λv = 0,

Λ(v,Rv), if λv = 1.

The model can now be described as follows: all vertices contained in a hole are set closed,
while other vertices are opened with probability 1/2 independently of each other. It is
important to keep in mind that using the coupling in section 2.2, one can also interpret
this as opening a vertex v at time τv ≤ 1/2, unless it is contained in some hole.

The above process leads to configuration ω′ ∈ {0, 1}Λ(n) of closed/open states. Sim-
ilarly for the (n, ε) model at time t, if we take ω ∈ Ωn we can consider the closed/open
states of the vertices at time t leading to a configuration ωt ∈ {0, 1}Λ(n). For a subset
A of the power set P({0, 1}Λ(n)), we let

{A holds at t} := {ω ∈ Ωn : ωt ∈ A}.

Since the above event is completely determined by the random variables needed for the
(n, ε) model, it is measurable with respect to the corresponding sigma-algebra. The
following crucial lemma allows us to later give bounds of these configurations in the
(n, ε) model.

Lemma 4.1. The (n, ε) model stochastically dominates the model with holes in the sense
that for any increasing event in terms of closed/open states A ⊂ P({0, 1}Λ(n)),

P(n,ε)(A holds at t = 1/2) ≥ PH(n,ε)(A).



Chapter 4. Trigger Points and Model with Holes 32

Proof. We proceed to provide a rough outline of a coupling method between the models.
For more details, we refer to sections 6.2 and 6.4 in [9].

Denote by νv,1/2 the distribution of the open cluster of v ∈ ∂Λ(n) at time t = 1/2 (in
[9] this is done for any t, but it suffices here to consider the special case t = 1/2) in the
(n, ε) model. The first claim is that the distribution of Rv dominates the radius of the
open cluster (and its boundary) of v induced by the distribution of νv,1/2. This follows
from the obvious coupling of generating (τw)w∈TH values for the hole distribution and
taking the τw values for w ∈ Λ(n) for the boundary frozen percolation model1. Now at
time τv the open cluster of v without any freezing procedure is clearly a superset of the
open cluster of v with freezing effects and therefore the radius R must be at least the
size of the radius of the open frozen cluster of v and its boundary.

We now proceed as follows: we independently generate (τv)v∈Λ(n) and (Tw)w∈∂Λ(n)

values. We set

λw =

{
1, if τw < 1/2 and Tw = 1,

0, otherwise.

It is clear that the random variables (λw)w∈∂Λ(n) are independent of each other and
the values of the corresponding probabilities (if we marginalise over the other random
variables) are equal to those as in the definition.

If λw = 1 we set a hole centred at w using the coupling method as in the start of
the proof, which shows that the radius of this hole is at least the size of the radius of
C(w). Unfortunately, there needs to be a bit more caution here, otherwise the holes do
not have the correct marginal distribution. Namely, the way the radii of the holes are
generated does not lead to independence between the holes. With more care, this can
be treated properly (compare to the construction of P(i) in the proof of Lemma 6.2 of
[9]), but for the sake of simplicity, we will skip this.

Finally, we show that if v ∈ Λ(n) is closed at time t = 1/2 in the (n, ε) model, then
using the above coupling we must have that v is also closed in the model with holes (or
equivalently if v is open in the model with holes, then v must also be open in the (n, ε)
model). The statement is trivial for v with τv > 1/2, so assume that τv ≤ 1/2. If v is
closed, then there must exist a frozen cluster C(w) with trigger point w and τw < 1/2
such that a neighbour of v is in C(w). However, this also means that Rw ≥ ||v−w||, i.e.
v is contained in the hole centred at w and thus is closed in the model with holes.

Our first result is giving a power-law upper bound on the distribution of the radii
Rv.

Lemma 4.2. For any ε′ > 0 there exists a C1 = C1(ε′) > 0 such that for all k ∈ N,

PH(n,ε)(Rv ≥ k) ≤ C1k
−13/12+ε′ .

Proof. Recall the notion of characteristic length from section 2.4. Denote by tv ∈ [0, 1/2)
the time at which the site v opens and for δ > 0 we define a sequence pδ(k) such that

1To be precise, we do not consider the “standard” half-plane lattice TH but rather the half-plane
lattice rotated and translated such that v acts as the origin and the side of ∂Λ(n) on which v lies
represents the real line.
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L(pδ(k)) � k1−δ. Note that if v opens at tv, then the probability of {Rv ≥ k} is equal
to the probability that in ordinary half-plane percolation with p = tv we have an open
path from 0 to the boundary of Λ(k). Hence, it is

PH(n,ε)(Rv ≥ k) =

∫ 1/2

0
PH(n,ε)(Rv ≥ k | tv = p) dp =

∫ 1/2

0
Pp(0

H←→ ∂Λ(k)) dp

=

∫ pδ(k)

0
Pp(0

H←→ ∂Λ(k)) dp+

∫ 1/2

pδ(k)
Pp(0

H←→ ∂Λ(k)) dp

For p ∈ [0, pδ(k)] we have L(p)� k, so by section 2.3 we have that the first integral
above decays exponentially fast as k gets large (and hence faster than any power of k).
For the second integral it is∫ 1/2

pδ(k)
Pp(0

H←→ ∂Λ(k)) dp ≤
∫ 1/2

pδ(k)
P1/2(0

H←→ ∂Λ(k)) dp (4.1)

= (
1

2
− pδ(k))P1/2(0

H←→ ∂Λ(k)). (4.2)

Now using Theorem 2.13 we have that

k1−δ � L(pδ(k)) ≈ (
1

2
− pδ(k))−4/3

and

P1/2(0
H←→ ∂Λ(k)) ≈ k−1/3.

Therefore, for any δ > 0 equation (4.2) is of the form (w.r.t. ≈) k−3/4(1−δ)k−1/3. For
any fixed ε′ > 0, choosing δ small enough gives the desired result.

Note that in the case δ = 0, for p ∈ [pδ(k), 1/2] it is Pp(0
H←→ ∂Λ(k)) � P1/2(0

H←→
∂Λ(k)) (see item 2 of Theorem 2.13). So, (4.1) can be replaced by an asymptotic
equality leading to a lower bound of the form C(ε′)k−13/12−ε′ for any ε′ > 0 and some
C(ε′) > 0.

For notational convenience we from now on fix ε′ = 13/12−25/24, in other words we
take ε′ such that P (Rv ≥ k) has an exponent of −25/24 with corresponding constant C1.
As the reader can check, this value is chosen somewhat arbitrarily and the calculations
remain the same for other suitable ε′.

One important consequence of Lemma 4.2 and the stochastic domination of Lemma
4.1 is that there exists a box of order n around the origin such that with probability
going to 1 nothing inside said box freezes before time t = 1/2. We formalise this in the
following lemma.

Lemma 4.3. When letting n go to infinity we have that

P(n,ε)(no vertex in Λ(n− n47/48) freezes before time t = 1/2)→ 1.
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Proof. This lemma is easily proven by considering the coupling with the model with
holes and by noting that for a vertex in Λ(n−n47/48) to freeze there needs to be a hole
of size larger than n47/48 in the model with holes. This can be bounded by

PH(n,ε)(
⋃

v∈∂Λ(n)

Rv ≥ n47/48) ≤
∑

v∈∂Λ(n)

PH(n,ε)(Rv ≥ n
47/48)

≤ cn · C1(n47/48)−25/24 → 0.

Denote by Bn the event that no vertex Λ(n−n47/48) freezes before time t = 1/2 and
let An be a sequence of events of which we want to prove a uniform lower bound. By
Lemma 4.3 we only need to show the lower bound for the case where Bn holds. Namely,
we have

P(n,ε)(An) ≥ P(n,ε)(An ∩Bn) = P(n,ε)(An | Bn)P(n,ε)(Bn) ≥ P(n,ε)(An | Bn)− δ(n),

for some function δ(n) with δ(n)→ 0.

Note that both for Lemma 4.2 and Lemma 4.3 we did not need the assumption that
trigger points appear with probability n−ε. In particular, these results still hold true
with the original model in mind where all boundary points are trigger points.

To make the notation easier to read, for the remainder of the following sections we
will work with the (n, ε) model and model with holes on the box

Λ(n) := Λ(n) + (0, n) = [−n, n]× [0, 2n]

instead. Furthermore, for simplicity’s sake we now only consider holes centred at vertices
in

Vhole := V ∩ [−n, n]× {0}, (4.3)

i.e. the bottom side of Λ(n). In the applications of the upcoming lemmas we will use
the proof of Lemma 4.3 to justify that the other holes are small enough to not influence
the occurrence of our events. With slight abuse of notation for v = (v1, 0) and j ∈ R,
we write v + j for the point (v1 + j, 0).

We now introduce some new notation that is also used in [9].

Definition 4.4. We let

H(A(2k, 2m)) := {∃v ∈ Vhole : Hv ∩ ∂Λ(2k) 6= ∅, Hv ∩ ∂Λ(2m) 6= ∅}

and

H(A(2k, 2m)) := {∃v ∈ Vhole : Hv ∩ ∂Λ(2k) 6= ∅, Hv ∩ ∂Λ(2m) 6= ∅,
Hv ∩ ∂Λ(2k−1) = ∅, Hv ∩ ∂Λ(2m+1) = ∅}.



Chapter 4. Trigger Points and Model with Holes 35

If there exist k,m with k < m such that the hole Hv centred at v satisfies

Hv ∩ ∂Λ(2k) 6= ∅ and Hv ∩ ∂Λ(2m) 6= ∅,

then we say the hole Hv is “big”. In other words, the hole Hv implies that the event
H(A(2k, 2m)) holds true.

The second event introduced above states that there exists a big hole but this hole
does not become “too large". Namely, there exists a hole such that the annulus A(2k, 2m)
is crossed by said hole, but any larger annulus of the form A(2k

′
, 2m

′
) that contains

A(2k, 2m) is not crossed by this hole. For technical reasons we also need a slightly
larger event defined by

H(A(2k, 2m)) :=

{∃v ∈ Vhole : Hv ∩ ∂Λ(2k) 6= ∅, Hv ∩ ∂Λ(2m) 6= ∅, Hv 6⊇ Λ(2k), Hv ∩ ∂Λ(2m+1) = ∅},

i.e. the hole may intersect ∂Λ(2k), but it is not allowed to cover the whole of Λ(2k). If
this event occurs, it is still possible for an occupied arm to leave Λ(2k). Furthermore, if
we writeH∗(A(2k, 2m)) orH∗(A(2k, 2m)) we drop the assumption ofHv∩∂Λ(2m+1) = ∅.
We refer to figure 4.2 for a visualisation of some of the above mentioned events.

v
−2m+1 −2m −2k−2k−1 0 2m+12m2k2k−1

(a) H(A(2k, 2m)): the hole may not cross any
more annuli.

v
−2m+1 −2m −2k−2k−1 0 2m+12m2k2k−1

(b) H(A(2k, 2m)): the hole may cross more annuli
but not cover the whole of Λ(2k).

Figure 4.2: Figure 4.2a depicts a situation where the hole centred at
v ensures that the event H(A(2k, 2m)) holds true. Similarly for figure
4.2b, the hole Hv guarantees that H(A(2k, 2m)) is true. For the latter

event it is still possible for an open arm to leave Λ(2k).

Lemma 4.2 allows us to give some preliminary results for the values of the proba-
bilities of the above defined events.

Lemma 4.5. There exists a C2 > 0 such that for all n we have

PH(n,ε)(∃ big hole) ≤ C2n
−ε.

Proof. Namely, by invoking Lemma 4.2 we have

PH(n,ε)(∃ big hole) ≤ PH(n,ε)(
⋃

w∈Vhole

Hw 6= ∅, Rw ≥ ||w||/4) ≤ C1cn
−ε
∞∑
k=0

k−25/24,
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whereby the sum clearly converges to some finite constant.

Moreover, we can give a statement of the dependence on the events and a bound on
the probabilities in terms of k and m.

Lemma 4.6. Let k,m, k′,m′ be given such that k < m, k′ < m′, k < k′ and m < m′,
then

i) the events H(A(2k, 2m)) and H(A(2k
′
, 2m

′
)) are independent,

ii) the events H(A(2k, 2m)) and H(A(2k
′
, 2m

′
)) are independent,

iii) the events H(A(2k, 2m)) and H∗(A(2k
′
, 2m

′
)) are independent,

iv) and there exists a C3 > 0 such that the following inequalities hold

PH(n,ε)(H(A(2k, 2m))) ≤ PH(n,ε)(H(A(2k, 2m)))

≤ PH(n,ε)(H∗(A(2k, 2m))) ≤ C3n
−ε 2k

2m
.

Proof. To prove item i) we will list the vertices at which holes can be centred such that
H(A(2k, 2m)) occurs. W.l.o.g. we only consider vertices with a non-negative real part,
i.e. only vertices on the “right side” of the origin. The other case follows by symmetry.
Vertices v at which the hole may be centred at and the corresponding radii of the holes
Rv must satisfy

||v|| −Rv > 2k−1, and ||v|| −Rv ≤ 2k,

||v||+Rv ≥ 2m, ||v||+Rv < 2m+1.

Therefore, it necessarily is ||v|| ∈ (2m−1 + 2k−2, 2m + 2k−1). For k < k′ and m < m′ we
have

2m
′−1 + 2k

′−2 ≥ 2m + 2k−1,

and hence the interval of vertices which can influence the occurence of these events are
disjoint. For item ii) note that we must replace ||v||−Rv > 2k−1 with ||v||−Rv > −2k,
however, it is easy to check that the corresponding intervals for ||v|| still do not overlap.
Moreover, for item iii) the inequality ||v|| + Rv < 2m+1 no longer holds true, but it is
again clear that this does not change the fact that the corresponding intervals for ||v||
do not overlap. We see that compared to H, the double bar event allows for more holes
close to the origin, while the star event allows for more holes further away from it.

It clearly suffices to only show the last inequality of iv) and w.l.o.g. we again only
consider holes with centres that have non-negative real part (considering all possible
holes adds a factor of 2 to the final calculation). If we want the event H∗(A(2k, 2m)) to
occur, the following inequalities must necessarily hold:

||v|| −Rv > −2k, ||v||+Rv ≥ 2m, 2k ≥ ||v|| −Rv.
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Hence,

||v|| ≥ 2m−1 − 2k−1 and ||v|| − 2k ≤ Rv < ||v||+ 2k.

This gives

PH(n,ε)(H∗(A(2k, 2m))) ≤
∞∑

||v||=2m−1−2k−1

PH(n,ε)(Hv 6= ∅, Rv ∈ [||v|| − 2k, ||v||+ 2k)).

Next we group together vertices that are exactly of distance j · 2k+1, j ≥ 0 away from
each other. This allows us to write

PH(n,ε)(H∗(A(2k, 2m)))

≤ 1

2
n−ε

2m−1−2k−1+2k+1∑
||v||=2m−1−2k−1

∞∑
j=0

PH(n,ε)(Rv+j·2k+1 ∈ [||v+j ·2k+1||−2k, ||v+j ·2k+1||+2k)).

(4.4)

Furthermore, since the distribution of the radii of the holes are identically distributed
we get

∞∑
j=0

PH(n,ε)(Rv+j·2k+1 ∈ [||v + j · 2k+1|| − 2k, ||v + j · 2k+1||+ 2k))

=

∞∑
j=0

PH(n,ε)(Rv ∈ [||v||+ j · 2k+1 − 2k, ||v||+ j · 2k+1 + 2k))

≤ PH(n,ε)(Rv ≥ ||v|| − 2k) ≤ PH(n,ε)(Rv ≥ 2m−2) ≤ C1c(2
m)−25/24,

where it was used that ||v||+ (j+ 1) · 2k+1− 2k ≥ ||v||+ j · 2k+1 + 2k. In the second last
inequality we indirectly assumed that 2m−2 ≤ 2m−1− 2k−1− 2k. If this is not the case,
so (m − k) ≤ 3, we can just chose a larger C3 (for instance by multiplying it by 8) in
the upcoming inequality. Now noting that the first sum in (4.4) contains 2k+1 terms,
we get a bound of the form

PH(n,ε)(H∗(A(2k, 2m))) ≤ C1cn
−ε2k(2m)−25/24 ≤ C3n

−ε 2k

2m
,

which completes the proof.

4.1 Three-Arm Stability in the Model with Holes

The goal of this section is to show how a 3-arm stability result can be used in the model
with holes. But before we proceed to the statement of the lemma, we need to introduce
some new notation.
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Definition 4.7. Recall the definition of Vhole from (4.3), we now define

WH
3 (A(2i, 2j)) := {∃U ⊆ Vhole : AH3 (A(2i, 2j)) occurs with holes centred at U}.

So, if WH
3 (A(2i, 2j)) occurs we see a 3-arm event with some sub-collection of the

holes. See figure 4.3 for an example of this event occurring. In particular, the proba-
bility of three arms occurring with all holes is obviously bounded by the probability of
WH

3 (A(2i, 2j)). Using Theorem 2.13 we clearly have

PH(n,ε)(W
H
3 (A(2i, 2j))) ≥ C

(
2i

2j

)2

,

for some universal constant C. Ideally, we would like to also give an upper bound of
this form with an exponent of 2, but it is in fact enough to show a weaker result of
3-arm stability for Proposition 4.9 and Theorem 4.11.

uw
−2j −2i 0 2j2i

Figure 4.3: If we ignore the hole centred at w but take the hole centred
at u into account, then a 3-arm event in A(2i, 2j) occurs. In other words,
the set U = {u} ⊂ Vhole satisfies the requirements of the definition of

WH
3 (A(2i, 2j)).

Lemma 4.8. There exists a Ĉ = Ĉ(ε) > 0 such that

PH(n,ε)(W
H
3 (A(2i, 2j))) ≤ Ĉ

(
2i

2j

)5/4

, (4.5)

holds for all n and all 1 ≤ i ≤ j ≤ log n.

Note that by choosing a bigger constant than Ĉ in (4.5) we can in fact extend the
lemma in order to apply it to events of the form WH

3 (A(m1,m2))), where m1,m2 are
not necessarily powers of 2. We will use this version in the applications of the result.

We delay the proof of the above lemma to section 4.2 so that we can first showcase
how we will apply this result to crossing probabilities in the model with holes. The
main application of Lemma 4.8 is the following proposition.
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v
−n/4 −n/8 0 n/8 n/4

B′n Bn

Figure 4.4: If Cn holds there must be some hole Hv that admits a
3-arm event. Note that this hole may be slightly outside B′n, but only of
a distance less than n47/48, which means the arms stay of length order

n.

Proposition 4.9. Let Bn be the box Bn = [−n/4, n/4] × [1, n]. There exists a C4 =
C4(ε) > 0 such that

PH(n,ε)(∃ a vertical open crossing in Bn) ≥ C4

for all n ∈ N.

Proof. Let B′n be the box B′n = [−n/8, n/8]× [1, n] and let Cn be the event that there
exists a vertical open crossing in B′n in the ordinary percolation model but not in the
box Bn in the model with holes. We claim that PH(n,ε)(Cn) ≤ γ(n) with γ(n) → 0 as n
tends to infinity. This would imply that

PH(n,ε)(∃ a vertical open crossing in Bn)

≥ PH(n,ε)(∃ ver. o. crossing in Bn,∃ ver. o. crossing in B′n without holes)

= P1/2(∃ ver. o. crossing in B′n)− PH(n,ε)(Cn) ≥ C − γ(n),

for some universal C > 0 (coming from RSW theory). The result would then hold for
large enough n and for smaller n we can decrease the constant C4.

We proceed to prove the above claim, so assume that Cn holds and therefore there
is some open vertical crossing π of B′n. We follow the path π starting from R × {n}
until π intersects a hole centred at some v. The path π provides an open arm from ∂Hv

to R× {n}. Since furthermore we do not see a crossing in Bn in the model with holes,
the hole Hv must also supply two closed arms that separate π from R× {1} ∩Bn. We
denote this 3-arm event for v by Piv(v) and demonstrate one such possibility in figure
4.4.

By the proof of Lemma 4.3 we will assume that all holes are of size smaller than
n47/48. In particular, for large n the vertex v (as well as ∂Hv) can not be more than
distance n/32 away from B′n. Therefore, the 3-arms described above must all be of a
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length of least n/16. The exact choice of fractions here does not matter as long as the
length of the arms is of order n.

With the help of Lemma 4.8 we now bound the probability of a vertex v satisfying
Piv(v). We have

PH(n,ε)(Piv(v)) ≤
n47/48∑
r=1

PH(n,ε)(Hv 6= ∅, Rv = r)PH(n,ε)(W
H
3 (A(r, n/16)))

≤ c1n
−ε

47/48 logn∑
r=1

PH(n,ε)(Rv ≥ 2r)PH(n,ε)(W
H
3 (A(2r+1, n/16)))

≤ C1Ĉc2n
−ε

47/48 logn∑
r=1

(2r)−25/24

(
2r

n

)5/4

(4.6)

≤ C1Ĉc2n
−5/4

47/48 logn∑
r=1

(25/24)r

≤ C1ĈC5n
−5/4 · (25/24)47/48 logn

= C1ĈC5n
−5/4+235/1152 = C6n

−1205/1152 = o(n−1),

where (4.6) used Lemma 4.2 and Lemma 4.8. Note that the constants C5 and C6 are
independent of the choice of n. Finally, this gives

PH(n,ε)(Cn) = PH(n,ε)(
⋃

||v||≤n/8+n/32

Piv(v)) ≤
∑

||v||≤5n/32

Piv(v) ≤ C6n · n−1205/1152 → 0.

4.2 Proof of Lemma 4.8

We now proceed to show the proof of Lemma 4.8 using similar techniques as in section
4.2 of [9]. Since this section is quite technical, the reader may be advised to skip this
section during the first examination of this thesis.

Proof of Lemma 4.8. We use induction over j and (j − i), where in the induction step
we split the expression into different terms that we analyse separately. First, we take
Ĉ so large that that the right hand side of (4.5) is larger than 1 for all pairs i, j with
j − i ≤ 7. At the end of the proof we will increase the value of Ĉ to complete the
induction step. Now let 1 ≤ i ≤ j ≤ log n be given and consider the following induction
hypothesis:

Induction Hypothesis: The inequality (4.5) holds for all pairs (i′, j′) with j′ < j or j′ = j
and i′ > i.

We will show that for a suitable choice of Ĉ (independent of i and j) the inequality
(4.5) also holds for the pair (i, j).
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Denote by D = AH3 (A(2i+3, 2j−3))c, i.e. the complement of the event of seeing 3-
arms in ordinary percolation. Then we obviously get

PH(n,ε)(W
H
3 (A(2i, 2j))) ≤ P1/2(Dc) + PH(n,ε)(W

H
3 (A(2i, 2j)) ∩ D). (4.7)

By item 4 of Theorem 2.13 the term P1/2(Dc) already has a bound of the form

P1/2(Dc) ≤ C7

(
2i

2j

)2

≤ C7

(
2i

2j

)5/4

, (4.8)

where C7 is a universal constant. We will now focus on the second term in (4.7) and
further split it into sub-terms.

Let M = M(ε) ∈ N be chosen such that εM > 5/4. Now consider the following
three events:

E1 := {there are no big holes in A(2i, 2j)},
E2 := {there are between 1 and M big holes in A(2i, 2j)},
E3 := {there are more than M big holes in A(2i, 2j)}.

Then it is

PH(n,ε)(W
H
3 (A(2i, 2j)) ∩ D) ≤ PH(n,ε)(W

H
3 (A(2i, 2j)) ∩ D ∩ E1)

+ PH(n,ε)(W
H
3 (A(2i, 2j)) ∩ E2) + PH(n,ε)(E3)

=: (Term 1) + (Term 2) + (Term 3) (4.9)

We now treat each of these terms separately and show that they all can be bounded
above by an expression of the form c(2i/2j)5/4 for any c > 0 given that n is large enough.

Term 1: Assuming that all the events in term 1 hold, there must be at least one
open path π crossing A(2i+3, 2j−3) and the open cluster of any such path must intersect
R× {0} in ordinary percolation. If this were not the case, then two closed arms would
separate the open crossing from R × {0} and therefore A(2i+3, 2j−3) would admit a
3-arm event in ordinary percolation.

However, in the model with holes the 3-arm event occurs, and hence the open cluster
of π must intersect a hole Hv (which exact hole to choose does not matter) centred at a
vertex v with v ∈ [−2k+1,−2k]×{0}∪ [2k, 2k+1]×{0} for some i+ 3 ≤ k ≤ j− 4. This
means we must see the following three local 3-arm events: WH

3 (Λ(v,Rv),Λ(v, 2k−1))),
WH

3 (A(2i, 2k−2)), WH
3 (A(2k+3, 2j)). See also figure 4.5. The event E1 ensures that the

holes in each of the above 3-arm events are not large enough to influence the other arm
events, meaning there is independence between these events. Summing over all possible
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v
−2j −2k+2−2k+1 −2k−2k−1 0−2i 2j2k+22k+12k2k−12i

Λ(v, 2k−1)

Figure 4.5: For term 1 we observe that the cluster of the open arm in
A(2i, 2j) must intersect some hole Hv. Three (independent) local 3-arm
events, for which we can apply the induction hypothesis to, must then

occur.

such v and the corresponding radii distribution gives us

PH(n,ε)(W
H
3 (A(2i, 2j)) ∩ D ∩ E1)

≤
∑

v∈Vhole∩A(2i+3,2j−3)

2k−1∑
r=0

PH(n,ε)(Hv 6= ∅, Rv = r)PH(n,ε)(W
H
3 (Λ(v, r),Λ(v, 2k−1)))

· PH(n,ε)(W
H
3 (A(2i, 2k−2)))PH(n,ε)(W

H
3 (A(2k+3, 2j)))

≤
j−4∑
k=i+3

2k+1
2k−1∑
r=0

PH(n,ε)(H0 6= ∅, R0 = r)PH(n,ε)(W
H
3 (Λ(r),Λ(2k−1)))

· PH(n,ε)(W
H
3 (A(2i, 2k−2)))PH(n,ε)(W

H
3 (A(2k+3, 2j)))

≤ Ĉ3C8n
−ε
(

2i

2j

)5/4 j−4∑
k=i+3

2k+1
k−1∑
r=0

PH(n,ε)(R0 ≥ 2r)

(
2r

2k

)5/4

, (4.10)

whereby we used that Hv and H0 are identically distributed and the induction hypoth-
esis in the last inequality. Next, note that

j−4∑
k=i+3

2k+1
k−1∑
r=0

PH(n,ε)(R0 ≥ 2r)

(
2r

2k

)−5/4

≤ C1

∞∑
k=0

(2k)−1/4
k−1∑
r=0

(2r)−25/24(2r)5/4

≤ C9

∞∑
k=0

2−k/425k/24 ≤ C10,
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where the constants C9, C10 are independent of the choice of i and j. Using this together
with (4.10) gives

PH(n,ε)(W
H
3 (A(2i, 2j)) ∩ D ∩ E1) ≤ C10Ĉ

3n−ε
(

2i

2j

)5/4

. (4.11)

Term 2: As in [9] we first list the sub-annuli that are crossed, and later on group
the big holes together. Assume that there are 1 ≤ b ≤ M big holes in A(2i, 2j). Then
there exists a 1 ≤ q ≤ b such that there are integers i ≤ k1 < k2 < . . . < kq < j and
i < m1 < m2 < . . . < mq ≤ j with kl < ml such that the following events hold:

• For all 1 ≤ l ≤ q the event H(A(2kl , 2ml)) holds, unless one of the following edge
cases occur:

– l = 1 and kl = i, then we replace H(A(2kl , 2ml)) by H(A(2kl , 2ml)),

– l = q and ml = j, then we replace H(A(2kl , 2ml)) by H∗(A(2kl , 2ml)),

– l = 1 = q, kl = i and ml = j, then we replace H(A(2kl , 2ml)) by
H∗(A(2kl , 2ml)),

• No other sub-annuli are crossed: for all 1 ≤ h ≤ j − 1 such that [h, h + 1] 6⊆⋃
1≤l≤q[kl,ml] the event H(A(2h, 2h+1)) does not occur.

We denote this event by E2(q, k1, . . . , kq,m1, . . .mq). If H(A(2kl , 2ml)) (or any of the
edge cases) occurs we say that the interval [kl,ml] is crossed by a hole.

Let successive crossed intervals [kl,ml], [kl+1,ml+1], . . . [kl,ml] be given such that
ml ≥ kl+1 (for l ≤ l ≤ l− 1), then we say these intervals “overlap” and use the notation
Jkl,mlK to label these intervals together. Assume the event E2(q, k1, . . . , kq,m1, . . .mq)
occurs, we now give a bound on the probability of the interval Jkl,mlK (with corre-
sponding overlapping intervals [kl,ml]) to be crossed by holes. By abuse of notation we
write the event H(A(2kl , 2ml)) regardless of the edge case the particular l may be in.
By Lemma 4.6 the events needed for Jkl,mlK to be crossed by holes are mutually (and
jointly) independent and can all be bounded by the same relevant term (regardless of
the edge case). This gives us

PH(n,ε)(the interval Jkl,mlK is crossed by holes)

= PH(n,ε)(
l⋂
l=l

H(A(2kl , 2ml))) =
l∏
l=l

PH(n,ε)(H(A(2kl , 2ml)))

≤ (C3n
−ε)l−l+1

l∏
l=l

2kl

2ml
≤ (C3n

−ε)l−l+1 2kl

2ml
,

where the last inequality used the assumption that ml ≥ kl+1.

Next, recall that the event WH
3 (A(2i, 2j)) also occurs. Then in addition to the

overlapping holes crossing Jkl,mlK we must still see an open 1-arm event from ∂Λ(2l)

to ∂Λ(2l) in the model with holes, which we denote by WH
o (A(2l, 2l)). If the 1-arm
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event occurs in the model with holes, we must obviously also see an open 1-arm event
AHo (A(2l, 2l)) in the underlying ordinary percolation model without the holes. There-
fore,

PH(n,ε)(W
H
o (A(2l, 2l)) ∩ the interval Jkl,mlK is crossed by holes)

≤ PH(n,ε)(A
H
o (A(2l, 2l)) without holes ∩ the interval Jkl,mlK is crossed by holes)

≤ c(δ)
(

2kl

2ml

)1/3−δ

C3n
−ε 2kl

2ml
≤ C11n

−ε
(

2kl

2ml

)5/4

, (4.12)

where we used the 1-arm exponent (item 3 with j = 1 from Theorem 2.13) for some
small enough δ > 0 and independence between holes and crossing without holes.

We now group the intervals into blocks of the form Jk̃l, m̃lK such that for any λ
with kλ ≤ m̃l and k̃l ≤ mλ we have that the interval [kλ,mλ] is already grouped
into Jk̃l, m̃lK. In other words, we group the intervals into maximal blocks of overlap-
ping holes. Let Jk̃, m̃K be the first of such overlapping intervals. We must now see
3-arm events WH

3 (A(2i, 2k̃−2)) and WH
3 (A(2m̃+2, 2j)), whereby for notational sake we

let WH
3 (A(2k, 2m)) = Ω if k ≥ m. See also figure 4.6 for a visualisation. Now noting

that all of these events depend on disjoint vertices and holes (all other holes are not big
enough) we get

PH(n,ε)(W
H
3 (A(2i, 2j)) ∩ E2(q, k1, . . . , kq,m1, . . .mq))

≤ PH(n,ε)(W
H
o (A(2k̃, 2m̃)) ∩ the interval Jk̃l, m̃lK is crossed by holes)

· PH(n,ε)(W
H
3 (A(2i, 2k̃−2)))PH(n,ε)(W

H
3 (A(2m̃+2, 2j))).

Using (4.12) and the induction assumption two times, the above term is bounded by

C11Ĉ
2n−ε

(
2i

2k̃−2

)5/4
(

2k̃

2m̃

)5/4(
2m̃+2

2j

)5/4

≤ C12Ĉ
2n−ε

(
2i

2j

)5/4

. (4.13)

We can now finally bound term 2 by summing over all possibilities of E2(q, k1, . . . , kq,
m1, . . .mq). We sum over the 1 ≤ b ≤M number of big holes to get

(Term 2) ≤
M∑
b=1

∑
ki,mi

PH(n,ε)(W
H
3 (A(2i, 2j)) ∩ E2(q, k1, . . . , kq,m1, . . .mq))

≤ n−εM(log n)2MC12Ĉ
2

(
2i

2j

)5/4

, (4.14)

where it was used that j − i ≤ log n and hence there are at most (log n)2M choices for
the ki’s and mi’s.
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v
−2j −2m̃+2 −2m̃ −2k̃−2k̃−2 0−2i 2j2m̃+22m̃2k̃2k̃−22i

Figure 4.6: The interval J2k̃, 2m̃K is crossed by big holes, and therefore
the annulus A(2k̃, 2m̃) automatically admits a closed arm. However, we
still observe an open arm in A(2k̃, 2m̃), a 3-arm event from ∂Λ(2i) to the
overlapping interval and a 3-arm event from the interval to ∂Λ(2j).

Term 3: By Lemma 4.5 we have

PH(n,ε)(∃ more than M big holes in A(2i, 2j)) ≤ PH(n,ε)(∃ big hole)M ≤ (C2n
−ε)M .

(4.15)

By our choice of M and the fact that 2j ≤ n we have PH(n,ε)(E3) ≤ CM2 n−δ3(2i/2j)5/4

for δ3 = εM − 5/4 > 0.

Completion of Induction Step

Taking the inequalities (4.7) and (4.9) into account and using the bounds on each term
respectively given by (4.8), (4.11), (4.14) and the line below (4.15) gives

PH(n,ε)(W
H
3 (A(2i, 2j)))

≤ C7

(
2i

2j

)5/4

+ C10Ĉ
3n−ε

(
2i

2j

)5/4

+ n−εM(log n)2MC12Ĉ
2

(
2i

2j

)5/4

+ CM2 n−δ3
(

2i

2j

)5/4

.

=
(
C7 + C10Ĉ

3n−ε + n−εM(log n)2MC12Ĉ
2 + CM2 n−δ3

)( 2i

2j

)5/4

(4.16)

We now specify our choice of Ĉ further by choosing Ĉ so large such that C7 < Ĉ/2.
Furthermore, take n0 so large such that for all n ≥ n0 we have

C7 + C10Ĉ
3n−ε + n−εM(log n)2MC12Ĉ

2 + CM2 n−δ3 ≤ Ĉ.
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By (4.16) this completes the induction step for all n ≥ n0. For all smaller n we can
again increase (if needed) Ĉ such that Ĉ ≥ n

5/4
0 and hence the r.h.s. of (4.5) is larger

than 1 for all 1 ≤ i ≤ j ≤ log n0.

Remark 4.10. Many constants in the previous statements are chosen somewhat arbi-
trarily and the results still hold for different choices. For example, to prove Proposition
4.9 it is enough to show a version of Lemma 4.8 for any exponent between 1 and 4/3.
There is in fact hope that it is possible to prove Lemma 4.8 with any exponent smaller
than 2, which we recall is the exponent of the three-arm event in ordinary percolation.
Moreover, if we are also able to prove Lemma 4.8 for the original boundary frozen per-
colation model, then the proofs of Proposition 4.9 and Theorem 4.11 in the next section
follow analogously.

4.3 Lower Bound for the Origin in the (n, ε) Model not to
Freeze

The previous sections allow us to give a lower bound on the probability that the origin
does not freeze in the (n, ε) model. We now again consider the (n, ε) model with the
usual box Λ(n) = [−n, n]× [−n, n].

Theorem 4.11. There exists a C(ε) > 0 such that for all n ∈ N we have

P(n,ε)(0 is not frozen at time t = 1) ≥ C(ε)n−ε.

Proof. As in previous proofs we will only show the result for n large enough, which can
be justified by taking a smaller C(ε). Denote by Bn the box Bn = [−n/4, n/4]× [−n+
1,−n/8] and let E3(v) be the event that v is connected to [−n/4, n/4]× {−n/8} by an
open non-frozen 1/2-path using only vertices in Bn. Assume that the following three
events occur:

i) τ0 > 3/4;

ii) there exists a non-frozen 1/2-open circuit in A(n/4, n/2);

iii) there exists a v ∈ [−n/4, n/4] × {−n + 1} such that E3(v) occurs and the right
most neighbour N(v) in ∂Λ of v has TN(v) = 1 and τN(v) ∈ (1/2, 3/4).

Then there exists a τ < 3/4 such that after time τ there exists a frozen circuit
around 0. Since by that time 0 is not opened, we have that 0 can never be connected
to said circuit and therefore 0 does not reach a trigger point. It remains to show that
the probability of all these events happening is bounded by C(ε)n−ε.

Note that the last two events are completely determined by the (τv)v∈Λ(n/8)c and
(Tw)w∈∂Λ(n) values. In particular, changing the value of τ0 such that τ0 > 3/4 has no
influence on the occurrence of events ii) and iii).

Let E2 be the event in ii) and denote by E3(v,N(v)) the third event for some specific
v and right most neighbour N(v) of v. We further define ER3 (v) to be the sub-event of
E3(v) such that v is the right most vertex (in [−n/4, n/4]× {−n+ 1}) satisfying E3(v).
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We similarly let ER3 (v,N(v)) be the sub-event of E3(v,N(v)) where we replace E3(v)
with ER3 (v). We claim that

P(n,ε)(E2, ER3 (v,N(v))) ≥ P(n,ε)(E2, ER3 (v)) · P(n,ε)(TN(v) = 1, τN(v) ∈ (1/2, 3/4)).

(4.17)

Namely, assume that for given (τw)w∈Λ(n) and (Tw)w∈∂Λ(n) values the events E2 and
ER3 (v) occur, then it must either be TN(v) = 0 or TN(v) = 1 and τN(v) > 1/2 (otherwise
v would have been frozen). In the case of TN(v) = 0, if we change TN(v) to be equal to 1

and have a τN(v) value in (1/2, 3/4), then it is easy to see that both E2 and ER3 (v) must
still hold. From this we can follow (4.17).

Using that the events ER3 (v,N(v)) are disjoint (if there is a vertex v satisfying E3(v),
then there is a unique right most one) gives

P(n,ε)(0 is not frozen) ≥ P(n,ε)(τ0 > 3/4)P(n,ε)

( ⋃
v∈[−n/4,n/4]×{−n+1}

E2 ∩ ER3 (v,N(v))
)

=
1

4

∑
v∈[−n/4,n/4]×{−n+1}

P(n,ε)(E2, ER3 (v,N(v)))

≥ 1

16
n−ε · P(n,ε)

( ⋃
v∈[−n/4,n/4]×{−n+1}

E2 ∩ E3(v)
)
, (4.18)

where the last inequality used (4.17) and obvious bounds on probabilities of the random
variables TN(v) and τN(v).

Next, denote by E2 and E3(v) the analogues of the events ii) and E3(v) in the model
with holes, i.e. we replace non-frozen with “not in holes” in the respective events. By an
application of a version of the FKG inequality (see Remark 3.1. in [9]) we may conclude
positive correlation between the events E2 and E3(v). Additionally, by the proof of
Lemma 4.3 with probability going to 1 no holes intersect Λ(n/2). So by RSW,

PH(n,ε)
( ⋃
v∈[−n/4,n/4]×{−n+1}

E2 ∩ E3(v)
)

≥ C13(1− δ(n)) · PH(n,ε)
( ⋃
v∈[−n/4,n/4]×{−n+1}

E3(v)
)

for some universal C13 and a function δ(n) with δ(n) → 0. Note that the last event
in the above inequality is the same event (on a translated box) as in Proposition 4.9.
Therefore, the above can be bounded below by C4(ε)C13(1−δ(n)). Using the stochastic
domination of Lemma 4.1 and inserting this bound in (4.18) completes the proof.

Since Theorem 4.11 gives a lower bound for any ε > 0, one might be tempted to
let ε go to 0 to get a uniform lower bound for the original model. However, we have to
note the dependence of the constant on ε and hence it is possible that C(ε)n−ε goes to
0 as ε→ 0.



48

5 Discussion

In this thesis, we have provided various different tools that allow for an analysis of the
boundary frozen percolation process. There are two major approaches that could be
interesting to further analyse. Either one continues from Proposition 3.5 and shows
that (3.4) indeed also implies that at time 1 the origin does not freeze, or one continues
using the models with holes. More precisely, if one is able to show that Lemma 4.8
holds with ε = 0 for some exponent larger than one, then we can follow the proof of
Theorem 4.11 to give a proof of Conjecture 3.1.

All of the results in chapter 3 can be easily extended to other lattices and bond
percolation as well, as long as the lattices satisfy RSW-type bounds as in section 2.2.
For the calculations in chapter 4 one has to be more careful. First of all, even though
it is expected, no rigorous proof has been given on the critical exponents on other
lattices. Furthermore, the results heavily depend on the fact that the relations between
exponents satisfy conditions that allow for these calculations to be true. For instance,
to show a result like Lemma 4.2 with an exponent strictly larger than 1, it is necessary
that the sum of the one arm exponent and of the exponent of the characteristic length
scaling is larger than 1. It is not clear that this also holds for other lattices, and if this
is not the case, one can not follow the results as described in this thesis.

Further Questions

The first question that arises from chapter 4 is: can we apply results from the (n, ε)-
model to the original process (with necessary modifications of course)? In particular,
can Theorem 4.11 be helpful to prove that for boundary frozen percolation we also have
a similar uniform lower bound for any ε > 0?

Moreover, we have shown many points of evidence that hint at Conjecture 3.1 to be
true, however, it still remains open to give a rigorous proof for the conjecture. Assuming
the conjecture is true, the next natural question to ask would be: does the probability
of the origin not freezing go to 1, or equivalently, does the probability of the origin
freezing go to 0 as n → ∞. As the reader has seen, for both the diameter frozen and
volume frozen percolation models the above probability does indeed go to 0, so it is
reasonable to expect that this model also shares this property. One major difference to
keep in mind between these models is that our new model is only defined on a finite
subgraph of the whole lattice, while the other models use the whole plane process. It is
not impossible that this, similarly to the exceptional scales in volume frozen percolation,
leads to dramatically different behaviour from the other frozen percolation models.
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