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Abstract

Pieces of duct tape are retrieved from many crime scenes. They are a great source for forensic
traces. The evidential value of these traces depend on the position of the piece of duct tape
with respect to the roll and potential other pieces of duct tape. This can be determined based
on findings that two pieces of duct tape used to be connected to each other. Forensic experts
at the NFI proposed a new, additional method of examining this, which uses loopbreaking
patterns. We construct a likelihood ratio-system which evaluates the likelihood ratios of these
loopbreaking patterns. This LR-system consists of dynamic Bayesian networks, which assumes
that the loopbreaking patterns comply to the Markov property. A small data set was available
for the training and testing of this system. The validation of this system is evaluated in terms
of accuracy, discriminating power and calibration. The results of the validation seem promising.
For future work we recommend to validate the system on data which represent real forensic
cases.
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1. Introduction

Duct tape is found at many crime scenes. It is used to tie people up, make explosives and to
package drugs. Duct tape is adhesive and is therefore a great source for forensic findings, such
as hairs, other human biological traces, fingerprints and fibers. As a consequence, duct tape
can play an important role in solving a criminal case. By comparing ends of duct tape one can
investigate if two pieces of duct tape used to be directly connected to each other. This can be
useful to link multiple crime scenes to each other, or to link a roll of duct tape to a crime scene.
The forensic traces found on a piece of duct tape can be very valuable, but they are less valuable
when they are found at the end of a piece that was on the outer end of the roll. The trace could
have gotten there when a person was using the duct tape for another purpose, before the crime
was committed. It is therefore not only important to determine whether a piece of duct tape
belonged to a certain roll, but also its location on this roll.

1.1. Thesis overview

R. Visser and K. Herlaar, the forensic experts on duct tape at the Netherlands Forensic Institute
(NFI), have come up with a new, additional method to evaluate the evidential strength of
combinations of two torn pieces of duct tape, which is based on loopbreaking patterns. These
are the patterns that arise when the vertical yarns (warp yarns) in duct tape break during the
tearing process. These warp yarns loop into themselves, therefore the ends of the warp yarns on
both ends of the tear can be either an open loop, a closed loop or complex. Also the horizontal
position of these yarns with respect to the vertical yarns is taken into consideration. A. van
Someren (NFI) performed an experiment, where she obtained the loopbreaking patterns of 136
pieces of torn duct tape, which she evaluated in her bachelor thesis [25]. The loopbreaking
patterns and the available data will be discussed in depth in chapter 2.
In forensic science it is common to use the likelihood ratio (LR) to describe the strength of a

piece of evidence. The aim of this research is to determine the LR of the loopbreaking patterns
of two pieces of duct tape. Let E1 and E2 be the loopbreaking patterns of two pieces of duct
tape. The hypotheses that we will consider for this evidence are

Hp: the two pieces of duct tape used to be directly connected;

Hd: the two pieces of duct tape have never been directly connected.

The likelihood ratio of E1 and E2 with respect to Hp relative to Hd can then be expressed as

LR =
P(E1, E2|Hp, I)

P(E1|Hd, I)P(E2|Hd, I)
, (1.1)

where I represents relevant background information.
In this thesis we will present an LR-system which evaluates the LR-values of the loopbreaking

patterns of pieces of duct tape. This system is based on three dynamic Bayesian networks, which
each evaluate one of the three probabilities in Equation 1.1. The main assumption for these
dynamic Bayesian networks is that the loopbreaking patterns comply to the first order Markov
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property. We use the available data and expert knowledge to establish the conditional probability
distributions, needed for the dynamic Bayesian networks. We will perform logistic regression on
the data and use the maximum likelihood estimation to obtain estimates for these probabilities.
These mathematical concepts will be discussed in chapter 3. The dynamic Bayesian networks all
consist of three building blocks: the loops, the horizontal positions and the observation errors.
We will disregard cross-dependencies between the nodes, to keep the parameter space restricted.
Otherwise the data set would be too small to provide reliable estimates for the parameters. We
will use the software HUGIN EXPERT [9] to implement them. The construction of the dynamic
Bayesian networks will be described in chapter 4.
The performance of this LR-system will be evaluated by dividing the available data into a

training set and a test set. Additionally, extra data is simulated and the data in the test set
is altered. The performance will be expressed terms of loss in accuracy, loss in discriminating
power and loss in calibration, which is measured using empirical cross-entropy plots (ECE-plots)
and log-likelihood-ratio costs (Cllr). In chapter 5 these methods and their results are discussed.

1.2. Literature

The process of forensic comparison of ends of duct tape pieces consists of two steps. The first step
is studying and comparing the physical and chemical characteristics of the pieces of duct tape.
Smith [24] describes the structure of duct tape and the forensic analysis of these characteristics is
described. Mehltretter and Bradley [14] studied the quality of discrimination of different brands
of duct tape based on these characteristics. LaPorte and Weimer [10] examined the variability
of physical characteristics within rolls of duct tape. Mehltretter et al. [15] also compared the
variability of characteristics within rolls and between rolls from the same jumbo roll in. Even
though these studies consider duct tapes purchased in North America, they provide insight in
the method of comparing characteristics. Furthermore, the forensic experts at the NFI agree
that they are able to differentiate between the three main types of duct tape on the Dutch
market based on these characteristics.
When it is not possible to exclude the pieces of duct tape based on the first step, because the

observed characteristics are similar, the second step will be performed. In this step the physical
fits of the ends of the pieces of duct tape are compared. In 2006 Bradley et al. [3] studied the
validity and error rates of duct tape end matching. They found that 92% of the hand torn pieces
were matched correctly, while the rest of the pieces were reported as inconclusive. A couple of
years later, in 2011, Tulleners and Braun [26] carried out one of the first studies in which they
provided a quantitative assessment of the quality of a physical fit for duct tape pieces. They
assigned a match percentage to tape edges by measuring the match area lengths and dividing it
by the total width of the tape. This same method was used in the study by McCabe et al. in
2013 [12], where they further evaluated the accuracy and error rate of duct tape end matching.
Brooks et al. wrote a review article on physical fits of all types of materials [4].
Last year, Prusinowski et al. [20] proposed a new method to quantify the quality of an end

match for duct tape. They used the scrim yarns to divide the duct tape ends into clearly
definable scrim bins and they provided a similarity score for two duct tape ends based on the
matching fraction of these scrim bins. With this method it should be easier to assess the end
matching for stretched out tapes, since the bins are still clearly defined. The results of this
study were promising, an accuracy of 84.9 to 99% and no false positives. However, on the high-
quality tape they reported a false negative rate of 21.4%. This is also one of the first studies
that uses the likelihood ratio framework for evaluating the value of evidence of a duct tape end
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match, using score based likelihood ratios. This is a very important addition, since European
forensic practitioners are currently required to use the likelihood ratio framework when writing
an evaluative report, as stated in the guideline from the European Network of Forensic Science
Institutes (ENFSI) [31].
Ristenpart et al. [22] developed an algorithm for digital images to calculate the distance

between two duct tape ends, expressed in the sum of square residuals. This was a completely
different way of solving this problem, the analysis was done automatically. Unfortunately, the
error rates of this method were much higher than for human evaluation.
Furthermore, Wieten et al. created a Bayesian network to assist forensic examiners in the

interpretation of evidence found on duct tape at the activity level, where one is interested in
how a trace got onto the tape [30].
As of now, there is no published literature evaluating the loopbreaking patterns in torn pieces

of duct tape.
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2. Forensic research on duct tape

2.1. Structure

Based on [14, 24, 25] the structure of duct tape can be described as follows. Duct tape consists
of three basic layers: a polymeric backing, an adhesive, and in between them is reinforcement
fabric, called the scrim. The scrim can be either loose weaves or knits with weft insertion. In
this thesis we will only consider scrims with weft insertion. This type of scrim consists of warp
yarns and weft yarns (also called fill yarns). Warp yarns are the yarns that are laid in the length
direction of the tape, and the weft yarns are laid in the width of the tape. The warp yarns are
thus very long compared to the weft yarns. Usually a roll duct tape is 5 cm wide, containing
about 36 warp yarns over the whole length. The warp yarns loop into themselves many times
(see Figure 2.1a). At these points the weft yarns are inserted into the loop of the warp yarn (see
Figure 2.1b). In Figure 2.1c we see part of the whole pattern of a scrim with weft insertion.
During the examination of a piece of duct tape, a forensic expert can distinguish the side

closest to the roll from the side that was furthest from the roll, based on the direction of the
loops of the warp yarns. We will denote these as the X-side and the Y-side respectively, see
figure 2.2.

(a) Illustration of part of a warp
yarn looping into itself.

(b) Illustration of place of inser-
tion of a weft yarn (blue)
into warp yarn at the looping
point.

(c) Part of the scrim under a microscope,
with six warp yarns (horizontal) and
two weft yarns (vertical) [14].

Figure 2.1.: Scrim with weft insertion pattern.

2.2. Comparing two pieces

In forensic science it is a common question: "Do these two pieces belong together?", for any
type of material. In the case of duct tape, this question can be divided into three separate types
of questions:

(i) Common source:
“Do the two pieces of tape come from the same roll?”
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X-sideY-side Y-side Y-sideX-side

Figure 2.2.: Schematic view of roll of duct tape and two pieces with X-side and Y-side denoted.

(ii) Specific source:
“Does this piece/do these two pieces come from this roll?”

(iii) Trace location:
“Was this side of this piece of duct tape directly connected to that side of that piece of
duct tape?”

The first question can be of interest when two pieces of duct tape are found at different places
and there is no roll available. If the two pieces of tape came from the same roll, then it is likely
that this roll was in both places. The second type of question can be of concern when one wants
to find a link between the location or owner of a roll and the pieces of tape found at a crime
scene. The third question is usually the most interesting. In the case that there is a sample
of DNA or fibre found on one of the pieces of duct tape, the location of this sample is then
quite important. If the sample location is at the end of the roll, then the defendant can argue
that they used the roll and left the sample, but someone else used the roll later to commit the
crime. If the sample is closer to the start of the roll, then it is less likely that the sample was
left there before the crime was committed. For example, assume that there is a piece of tape,
A, with a trace at the end that is farthest from the roll, and there is another piece of tape, B. If
we know that piece A was connected to piece B, such that piece B is the furthest from the roll
(see Figure 2.3a), then the distance between the trace location and the end of the roll is larger,
than when piece B was connected to the other side of A (see Figure 2.3b). The interpretation
of traces found on tape is further discussed in [30].

A B

(a)

B A

(b)

Figure 2.3.: Two pieces of duct tape, piece A with a trace location indicated (blue), and their
respective locations with respect to the roll for two possible placements.
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Example: Court case
An example of a court case where the forensic analysis of duct tape played an important role
is a case in Limburg, The Netherlands, in 2015 [27]. Four pieces of duct tape were retrieved
from the crime scene, at both ends of one piece DNA evidence was found. This DNA was used
to identify the suspect. The defence argued that these DNA traces were not related to the
crime and that they must have gotten there indirectly. Forensic experts at the NFI researched
the four pieces of duct tape and came to the following conclusion

“To my firm belief, the 4 pieces of tape with SIN AAEY6500NL, AAEY6501NL
and AAEY6502NL originally formed one whole piece in the order as depicted in
figure 1.” a.

See Figure 2.4. Furthermore, about the position of the roll the report states

“The findings with respect to the direction of the tape (orientation of the loops),
similarities with duct tape from manufacturer Supertape and the knowledge of the
duct tape production process, are much more probable when the missing roll was
on side C of the assembled unit of tape, than when the missing roll was on side F
of the entire composition of tape.” b.

Based on these statements and the length of the entire composition of tape, the court decides
that the two DNA traces must be related to the crime. Mainly based on these forensic findings
the suspect is found guilty.

Figure 2.4.: Schematic representation of the formation of the 4 pieces of duct tape, based
on research results. The positions of the biological traces #01 and #02 are
indicated with arrows. The location of the missing roll is indicated to be on the
left side of the formation. Retrieved from [27].

This court case illustrates the importance of finding how pieces of duct tape used to be
connected to each other. Suppose it was mistakenly found that the order of the four pieces
was not as depicted in Figure 2.4, but instead, say the first piece (AAEY6501) was located
at the other end of the formation, such that ends C and F used to be connected instead of
ends D and G. In that situation, it would have been more likely that the DNA trace was not
related to the crime, than it was in the original situation. It is thus of great importance that
the comparison of the ends of duct tape pieces is done very carefully.
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aTranslated from the original statement “Naar mijn stellige overtuiging hebben de 4 stukken tape met SIN
AAEY6500NL, AAEY6501NL en AAEY6502NL oorspronkelijk één geheel gevormd in de volgorde zoals
schematisch weergegeven in figuur 1.” [27].

bTranslated from the original dutch statement “De bevindingen m.b.t. de richting van de tape (ligging van de
lussen), overeenkomsten met duct tape van fabrikant Supertape en de kennis van de duct tape productie, zijn
veel waarschijnlijker wanneer de ontbrekende rol tape aan de zijde C heeft gezeten van het samengestelde
geheel tape, dan wanneer de ontbrekende rol tape aan zijde F heeft gezeten van het samengestelde geheel
tape.” [27]

To answer all these types of questions, forensic researchers will examine and compare several
characteristics of the found pieces of duct tape. They will first study if the pieces are of the same
type of duct tape. One of the identifying characteristics is the type of scrim. There are currently
three main types of duct tape with weft yarn insertion scrim, believed to be produced by three
main brands. They have distinct physical characteristics, such as color and structure of the
polymeric backing. Second, if it is believed that the two pieces are of the same type, the forensic
examiners can study other physical and chemical characteristics of the different layers over the
whole of the two pieces. Characteristics that can be of interest are the chemical compound of
the adhesive and the regularity of the scrim. If these characteristics do not correspond in the
two pieces of duct tape, then the answer to any of the three questions above will be “no”. Third,
one can examine if there is a direct physical fit between the pieces of duct tape. A direct physical
fit is defined as two pieces that exhibit a sufficient number of individual characteristics that fit
together based on the fractured edges [4]. This is especially of interest when considering the
third question. To evaluate this, the structure of the polymeric backing at the edges and the
alignment of the scrim can be analyzed. Additionally, in the case of duct tape with weft-insertion
scrim, one can study the endings of the warp yarns of the scrim. If the two pieces of duct tape
used to form one whole piece, then the warp yarns must all have been broken a certain way, this
creates a loopbreaking pattern. In the next section we will describe this in further detail.
In this thesis we are interested in the evidential value of these loopbreaking patterns. However,

the loopbreaking patterns are only studied if the two pieces could not have been excluded
based on the other characteristics, since the examination of the loopbreaking patterns is time
consuming. Therefore, in this thesis we will assume that the two pieces under consideration have
the same physical and chemical characteristics, and we focus on the comparison of loopbreaking
patterns.

2.3. Loopbreaking patterns

When duct tape is being torn along the weft yarns each warp yarn usually breaks at the point
where it is looped into itself and the weft yarn is inserted, as this is supposed to be its weakest
point, see e.g. Figure 2.7. At this point there are two loops intertwined (see Figure 2.1). Hence,
at least one of these loops breaks and in some cases both of them break, see Figure 2.5. As a
result at each yarn height a loop can be open (broken) or closed (whole). Moreover, in some
cases the warp yarn does not break at the point where it loops into itself, which causes a complex
break. In [25], three types of complex breaks are distinguished: (’7’) a double break of one loop,
such that part of the top of that loop still remains at the other loop; (’9’) a prolonged loop
end, some fibers have been released during the tearing process; (’3’) a pulled out loop. They
are also depicted in Figure 2.6. We will, however not discriminate between the different types
of complex breaks, and therefore we will not discuss these types any further. It is important to
remark though, that it often happens that forensic examiners misinterpret a complex break for
a basic break at first sight. For simplicity, we will still indicate the end of a warp yarn as a loop,
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(a) Closed-Open (b) Open-Closed (c) Open-Open

Figure 2.5.: Possible basic loopbreaks of the warp yarn. [25]

(a) Code ’7’ (b) Code ’9’ (c) Code ’3’

Figure 2.6.: Different types of complex loopbreaks. [25]

even though it is not always a loop at the end.
Further, it is possible that there are missing warp yarns in the scrims. This can occur in

production, e.g. a warp yarn is cut off at the top or bottom, or during the tearing, e.g. a warp
yarn is pulled out. In some cases such a missing yarn is observable, because it left an imprint
in the adhesive, or the cut off yarn is present somewhere along the length of the piece of tape.
Furthermore, when two pieces are being compared the forensic examiners will study the vertical
alignment of the scrims. If the scrims do not align at all, the patterns are not considered.
However, if they do align, but there is a difference in the number of warp yarns this will be
investigated. The spacing between the yarns in the scrim is usually very regular, so there must
be space for missing yarns. When a missing warp yarn is observed, this is incorporated in the
loopbreaking pattern.
In this way, we say that each loop can be in one of four states; open, closed, complex or

missing. We will denote the state of each loop at height n as

Xn =


−1, if loop n is missing,
0, if loop n is whole (or closed),
1, if loop n is broken (or open),
2, if loop n is complex.

The order of these loops is defined by the tearing direction. We consider two tearing directions
as defined in section A.1. If the tearing direction is unknown, use tearing direction T .
Next to the state of the loops we can also observe the horizontal position. In some cases the

forces on the tape are such that the breaking point of the next warp yarn is not aligned with
the breaking point of the previous warp yarn, but it is at the next point where the warp yarn
loops into itself (on the left or right). Then we see a horizontal jump at the edge. In this way
one can observe the horizontal position of the end of each of the warp yarns. Notice that the
breaking points are usually at the point of the weft yarn insertion. Hence, we can express the
horizontal position in terms of the weft yarns. In the case of a complex break, the end of a yarn
is not exactly at the point where the warp yarn loops into itself. We will denote the horizontal
position of these warp yarns at the position of the first loop that is still whole. This has two
reasons. First of all, we want to keep the horizontal position a discrete number. Second of all,
this is how the observations, of the main data we used, were documented in [25]. In the case
that the warp yarn is missing, the state of the corresponding horizontal position is omitted.
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Figure 2.7.: Photo of the yarns of part of the edges of two pieces of torn duct tape under a
microscope. The horizontal yarns are warp yarns and the vertical yarns are the weft
yarns. [25]

We can record these positions with respect to the position of the first loop. Let us say the
horizontal position of the loop at height n is denoted by ξn, then we declare ξ0 = 0 and in
general for n > 0

ξn =


−l, if the position of the nth loop is l weft yarns to the left of the first loop;
0, if the position of the nth loop is at the same weft yarn as the first loop;
+l, if the position of the nth loop is l weft yarns to the right of the first loop.

(2.1)

In the case that Xn is missing then the entry of ξn is omitted. If X0 is missing, then we set the
first present loop to be the reference point for the horizontal position and set its position to 0.

Example: Recording horizontal positions in loopbreaking patterns
In figure 2.8 we see a simplified illustration of an example of the edges of two pieces of torn
duct tape, which have multiple horizontal jumps. The horizontal positions of the consecutive
warp yarns on the X-side are in this case: (ξn)8n=0 = (0, 0,−1,−1,−2,−1,−1,−1,−1).
Notice that the horizontal positions on the Y-side are the same in this case.
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0-2 -1-3-3 1-1 0-2

Y-side X-side

0
1
2
3
4
5
6
7
8

Figure 2.8.: Simplified illustration of example of tearing pattern of two pieces of duct tape
with jumps in the horizontal positions. The 9 horizontal green lines represent
the warp yarns and the vertical blue lines represent the weft yarns. The green
numbers on the left denote the warp yarn height and the numbers on top denote
the different horizontal positions based on the weft yarns.

Definition 2.1 (Loopbreaking pattern). Let us consider one side of a torn piece of duct
tape with m warp yarns and tearing direction d. Let the pattern order be defined by the tearing
direction, such that the yarn at height 0 is the first yarn in the tearing direction. Let Xn

denote the state of the loop at height n, such that Xn ∈ {open, closed, complex, missing}, for
all n ∈ {0, 1, 2, . . .m − 1}. Further, let for i := min{i ≤ m : Xi 6= missing} ξi = 0 and for
n ∈ {i, i+ 1, . . .m− 1} let ξn denote the horizontal position of the loop at height n in terms of
weft yarns with respect to the position of the loop at height i, such that ξn ∈ Z, except when Xn

is missing. The loopbreaking pattern of this side of the piece of duct tape is then given by the
sequence (Xn, ξn)m−1n=0 .

We can compare the loop breaking pattern of the X-side of one piece of duct tape with that of
the Y-side of another piece of duct tape. If the two sides used to be directly connected, we would
expect that in many cases across from any closed loop there is an open loop and the horizontal
positions on both sides are the same. Thus, if there are two closed loops at the same height, or if
the horizontal positions of the two sides are not the same at a certain height, in theory, we could
conclude that it is not possible that these two sides used to be directly connected. However, we
need to take the positions of the complex breaks and the possibility of observation errors into
account. This will be further discussed in chapter 4.

2.4. Available data

The data that is used in this thesis is kindly provided by A. van Someren from NFI, received
via personal communication. The experiment in which this data was obtained is described by
van Someren in [25]. This data includes the loop breaking patterns of both sides of 136 pieces
of torn duct tape (i.e., 272 patterns), of which there are 127 known matching pairs. These were
torn by 3 selected persons and include 3 selected brands of tape, see table 2.1. Notice that, if a
person tore k pieces of tape from a roll, then there are k patterns for the X-side and k patterns
for the Y-side. Further, the Y-side of the first piece does not have a complementary X-side (it
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Tape
Tesa Pattex Supertape Total

Person
A 19 19 12 50
B 12 12 12 36
C 19 19 12 50
Total 50 50 36 136

Table 2.1.: Overview of available data. The numbers represent the pieces of duct tape per group.

AT3 AT2 AT1

AT1YAT3X AT2XAT3Y

Complementary pair

AT1XAT2Y

Complementary pair

Figure 2.9.: Schematic example of encoding of the edges of the first three pieces of tape of brand
Tesa, torn by person A.

does exist, but the loopbreaking pattern is not established), this holds as well for the X-side of
the last piece of tape. Therefore, for this person with this tape, there are k − 1 complementary
pairs, each consisting of k − 1 X-sides and k − 1 Y-sides, see figure 2.9.
All the persons had a consistent tearing direction, for all the pieces. Persons A and B used

the same tearing direction, T , and person C used tearing direction B. Additional information
about the selection of the persons and some of their characteristics, such as their dominant hand
and tearing method, is available in [25]. More pieces of torn duct tape acquired in this research
are stored at the NFI (in total from 5 different persons), but their loop breaking patterns have
not been determined yet. This is because the process of examining the loops is time consuming.
The available data for each end of duct tape consists of a complete loopbreaking pattern. As

mentioned, in the data the three different complex breaks are distinguished. Moreover, when
a cut off warp yarn at the bottom or top was observed, or when a pulled out warp yarn was
observed it was recorded .
This data gives us some basic information about the loop tearing patterns. It gives us some

insight in the way we could model the loopbreaking patterns and which factors might be relevant.
At first sight, there is no apparent pattern in the loop breaking patterns. We do notice however
that it does not occur often that the loops on both sides are broken. Furthermore, in some cases
there is a long sequence of only closed or only open loops. The forensic experts at the NFI have
a theory which could give an explanation for this situation. They assume this happens when the
person gets hold of the weft yarn at the beginning of the tearing process, which tears all loops
on one side open and on the other side they remain closed. At some point this weft yarn might
break, from that moment on the loops break as they would normally do. It is assumed that this
happens more often when the person places their fingers very close to each other and/or uses
their nails. If we want to use this in our models, we would need more information and thus more
data.
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Furthermore, from the data and conversations with the forensic experts we found that there
are many factors that could affect the loop breaking patterns, but it is still not clear which
factors have the most effect. Some examples of such factors are: dominant hand, hand holding
the roll, direction of tearing, placement of fingers, type of duct tape and homogeneity of scrim.
Notice that most of these factors are unknown in a criminal case. In most cases it is not certain
which person tore the tape and even if we would know that, we do not know how they tore the
tape. Therefore, it is probably redundant to evaluate the effect of these separate factors. Rather
we would like to obtain a data set which contains data that is from an experiment with a is
sufficiently large sample size, such that it is a good representation of the whole population.
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3. Mathematical methods

Before we can build a model to determine the evidential value of loopbreaking patterns in duct
tape, we need to discuss some basic mathematical concepts.

3.1. Likelihood ratio

In a criminal case many different types of evidence can be found. It is essential to evaluate this
evidence correctly. Eventually we want to know how this affects our belief that the suspect is
guilty of committing the crime. For this we always consider two hypotheses: the prosecutor’s
hypothesis Hp, which is associated with the suspect being guilty and the alternative defense
hypothesis Hd, which is associated with the suspect being innocent. We can express our prior
belief in favour of Hp with respect to Hd in odds form as:

P(Hp)

P(Hd)
,

the prior odds. Our posterior belief in favour of Hp with respect to Hd, given the evidence E,
can be expressed in odds form as

P(Hp|E)

P(Hd|E)
,

the posterior odds. These probabilities are always evaluated given certain background informa-
tion I. For readability, we will omit the notation of this background information, for now. Using
Bayes’ theorem we can convert prior odds into posterior odds, as described in [1].

Theorem 3.1.1 (Bayes’ theorem, odds form).

P(Hp|E)

P(Hd|E)
=

P(E|Hp)

P(E|Hd)
× P(Hp)

P(Hd)

posterior odds = likelihood ratio × prior odds
(3.1)

The factor with which we multiply the prior odds to obtain the posterior odds is called the
likelihood ratio. This is a measure of the evidential value of the evidence E.

Definition 3.1 (Likelihood ratio (LR)). Let E denote the evidence, Hp the prosecutor’s
hypothesis and Hd the defense hypothesis. The likelihood ratio (LR) of the evidence E with
respect to Hp relative to Hd is defined as

LRHp,Hd
(E) :=

P(E|Hp)

P(E|Hd)
.

When no ambiguity is expected the notation can be shortened to LR(E) or even LR.
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In forensic science it has become common practice to use the likelihood ratio to express
the evidential strength of the evidence. The European Network of Forensic Science Institutes
(ENFSI) even requires forensic practitioners to report the evidential value in terms of a likelihood
ratio, when submitting an evaluative report [31]. One is usually interested in the posterior odds
for a case, but these depend on the prior odds. The prior odds are usually outside the domain of
expert knowledge. Therefore it is common to only report the likelihood ratio for evidence rather
than the posterior odds. This should give enough information for a judge or jury to update the
personal prior odds of the hypotheses to the posterior odds.

3.1.1. Combining evidence

One can combine different types of evidence to generate a combined LR. Consider two types of
evidence E1 and E2. The odds form of Bayes’ theorem with E = E1∩E2 has the following form

P(Hp|E1, E2)

P(Hd|E1, E2)
=

P(E1, E2|Hp)

P(E1, E2|Hd)
× P(Hp)

P(Hd)
.

Hence, the combined LR of the two pieces of evidence is

LR(E1, E2) =
P(E1, E2|Hp)

P(E1, E2|Hd)
.

When the two types of evidence are conditionally independent given either one of the hypotheses,
then this can be done fairly straightforward

LR(E1, E2) =
P(E1, E2|Hp)

P(E1, E2|Hd)

=
P(E1|Hp)P(E2|Hp)

P(E1|Hd)P(E2|Hd)

= LR(E1)LR(E2).

However, when the two types of evidence E1, E2 are not conditionally independent, the LR of
the combined evidence cannot be expressed in terms of the LR(E1) and LR(E2). We have

LR(E1, E2) =
P(E1, E2|Hp)

P(E1, E2|Hd)

= LR(E1|E2)LR(E2),

where we write
LR(E1|E2) =

P(E1|E2, Hp)P(E2|Hp)

P(E1|E2, H2)P(E2|Hd)
.

3.2. Markov Chain

A Markov Chain (MC) is a stochastic process, where the state of the process at a certain time n
is only dependent on the state of the process at one time-step earlier. For example, if we assume
that the weather is a Markov Chain, then the probability that it will rain today only depends
on the weather of yesterday. Let us give a more formal definition based on [23, 7].
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X0 X1 X2 X3
...

Figure 3.1.: Graph representing a Markov chain, each node represents the state of the process
at a certain time.

Definition 3.2 (Discrete time Markov chain). Let (Xn)n∈N0 be a stochastic process and let
M be a finite set of states, such that P(Xn ∈ M) = 1 for all n ∈ N0. The stochastic process
(Xn)n∈N0 is called a Markov Chain (MC) if the Markov property holds, i.e., for all n ≥ 1 it
holds that

P(Xn|Xn−1, Xn−2, . . . , X0) = P(Xn|Xn−1). (3.2)

An MC is called homogeneous if P(Xn = i|Xn−1 = j) does not depend on n. In this case we
denote the transition probability by Pij := P(Xn = j|Xn−1 = i) for any i, j ∈ M , such that∑

j∈M Pij = 1 for all i ∈ M . With P = (Pij)i,j∈M we denote the corresponding transition
matrix. The initial probabilities are denoted by πi := P(X0 = i) for all i ∈M .

One can determine the probability of observing a certain sequence (i0, i1, . . . , iN ) using

P(X0 = i0, X1 = i1, . . . , XN = iN ) =P(X0 = i0)P(X1 = i1|X0 = i0)P(X2 = i2|X1 = i1) · · ·
P(XN = iN |XN−1 = iN−1)

=πi0Pi0i1Pi1i2 · · ·PiN−1iN .

Graphical representation An MC can be represented as a directed graph, as depicted in figure
3.1. Here each node describes the random variable at a certain time step. Each node can be in
any of the possible states. The arrows represent the dependencies of the variables. In the case
of a first-order MC, the (first-order) Markov property holds, so there are only arrows from Xn

to Xn+1 for each n ≥ 1. In the case of a second-order MC there would be additional arrows
from Xn and Xn+1 to Xn+2 for each n ≥ 1.

3.3. Bayesian Network

A Bayesian Network (BN) is a graphical probabilistic model. In such a model we can describe
uncertainties both quantitatively and qualitatively. First, we will note some basic notions from
graph theory. A BN consists of nodes and directed edges. We denote the set of all nodes that
have a directed edge towards a certain node X, i.e., the parents of X, by pa{X}. Similarly,
the set of all nodes to which there is directed edge from X, the children of X, is denoted by
ch{X}. Further, when there is a directed path from a node X to a node Y , then X is called
an ancestor of Y and on the other hand Y is a descendant of X. We denote by desc{X} and
anc{X} the sets of all ancestors and descendants of a node X respectively. We will now give a
formal definition.

Definition 3.3 (Bayesian Network). Let G = (X, E) be a directed acyclic graph (DAG).
The X = (X1, X2, . . . , XN ) denote N random variables or nodes, which all have a finite set
of mutually exclusive states. Further, E is a set of ordered pairs of nodes (Xi, Xj), which
represent directed edges, characterizing the conditional dependencies between these variables. Let
P(Xi|pa{Xi}) be the conditional probability distributions, also called the conditional probability
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A B

Figure 3.2.: Graph representing a BN with two nodes A and B, where the state of node B is
dependent on the state of node A.

tables (CPTs), that determines the probability distributions of each variable, Xi, conditionally
on all of its parents. We call

(
G, (P(Xi|pa{Xi}))Ni=1

)
a Bayesian Network (BN) if the following

property holds. For any random variable X and any set of random variables Y , which does not
contain any descendants of X,it holds that

P (X|pa{X}, (Y )) = P(X|pa{X}). (3.3)

This is also known as the Markov Property for Bayesian Networks.

One of the most important properties of a BN, which follows from the Markov property
mentioned above, is that the joint probabilities are fully defined by the conditional probability
tables, as

P(X1, X2, . . . , XN ) =

N∏
i=1

P(Xi|pa{Xi}).

Hence, a BN consists of three ingredients

• a finite collection of random variables (nodes) and their corresponding finite state spaces;

• a set of directed edges between two nodes, which, together with the nodes, form a DAG;

• for each node Xi with parents pa{Xi} a CPT, given by P(Xi|pa{Xi}).

In Figure 3.2 we see an example of the graph of a BN with two nodes A and B. The arrow
denotes that the state of B depends on the state of A. In Table 3.1 and Table 3.2 we see the
corresponding CPTs for the nodes A and B, in the case that both nodes have two states.

A a ¬a
P(A = a) P(A = ¬a)

Table 3.1.: CPT for a node A with no parents. Where A has only two states.

A a ¬a
B
b P(B = b|A = a) P(B = b|A = ¬a)
¬b P(B = ¬b|A = a) P(B = ¬b|A = ¬a)

Table 3.2.: CPT for a node B with one parent, A. Both A and B have only two states.

3.3.1. Dynamic Bayesian Network

A dynamic Bayesian network is a Bayesian network extended with time slices. Each random
variable X in the BN can now change over time, so its state at time n can be denoted by Xn.
In this way a dynamic Bayesian network (DBN) can represent a discrete-time stochastic process
[19].
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XT Xn

Figure 3.3.: Graph representing a DBN with one node, where the hatched node XT represents
the state of the random variable X at time n− 1 and the plain node Xn represents
the state of the random variable X at time n.

Definition 3.4 (Dynamic Bayesian Network). A DBN is a pair (B0, Bn|n−1), where B0

represents a BN which describes the initial probabilities for the random variables X0 and Bn|n−1
represents a two-slice temporal Bayesian network which is a DAG that contains nodes of ran-
dom variables in the current time (second slice) and nodes that represent the states of these
random variables one time step back (first slice), together with the conditional probabilities tables
P(Xn|pa{Xn}) for all nodes in the second slice of the network.

Remark that the nodes in the first time slice of Bn|n−1 are not provided with any prob-
abilities. Moreover parents of nodes Xi,n are allowed to be either in the same time slice
or in the time slice prior to it. This directly implies that the first-order Markov property
holds for the DBN. The Markov property for Bayesian networks also holds here, such that
P(Xn|Xn−1) =

∏N
i=1 P(Xi,n|pa{Xi,n}), where Xn represents the whole set of random variables

in the network at time n and Xi,n is random variable i at time n [19].
Note that it is also possible to create a DBN with more time slices to make it comply to

a higher order Markov property, but we will not consider these. The simplest DBN with one
random variable, is thus a Markov Chain, which can be represented as in Figure 3.1. It can
also be graphically represented as a DBN as in Figure 3.3. Here we can see both Bn|n−1 and
B0. The node XT represents both X0 and Xn−1. If node Xn is not yet evaluated, at time 0,
then XT represents X0 and its distribution is described by the CPT associated with it in B0.
Otherwise the node XT will copy the distribution from Xn in the former time slice. The arrow
represents the dependency of Xn on Xn−1. The distribution of Xn is thus conditional on Xn−1
and it is described by the CPT in Bn|n−1. This is the representation that we will use for the
model. Notice that this representation must always be accompanied by the associated CPTs of
the DBN.
This gives us the opportunity to use the appealing properties of a Bayesian network to repre-

sent a stochastic process for which the first-order Markov property holds.

3.4. Logistic Regression

The parameters we need to estimate for the current model are all (conditional) probabilities.
Therefore we are interested in values of the form P(Y = j|x), where Y represents the output
value and x the input values. This can be estimated using logistic regression.
Logistic regression is used when one is interested in the effect of certain covariates on the

outcome of an experiment. In the case of duct tape we could think of: "What is the effect of
the nth loop being open on the state of the n + 1th loop?". Usually, in logistic regression, one
is interested in a dichotomous outcome variable Y ∈ {0, 1}. However, in our case the number of
states of the different nodes are at least three. Therefore we will consider multinomial logistic
regression as described in chapter 8 of [8].
Suppose we have a data set consisting of points (yi,xi), where xi is a vector representing the

values of the input variables and yi ∈ {0, 1, 2, . . . ,K} is the corresponding value of the output
variable. In our case the input variables are categorical, therefore we will transform them, using
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dummy variables, this is explained in Appendix B. Now we can fit a logistic function on these
datapoints. We have for each j ∈ {0, 1, 2, . . . , n}

πj(x) := P(Y = j|x) =
egj(x)∑n
k=0 e

gk(x)
, (3.4)

here g0(x) = 0 and for 0 < k ≤ n the logit functions are represented by

gk(x) = x>βk. (3.5)

Hence to estimate πj we need to estimate the parameter vectors βk. It is common practice to
use maximum likelihood estimation for this. We can show that for any l and j

πj(x = l, β̂MLE) =
Njl

N·l
, (3.6)

where x = l denotes that the input variable has category l, Njl denotes the total number of
observations where x = l and Y = j, and N·l :=

∑n
j=0Njl. Thus, in this way we see that

the conditional probabilities found using the MLE, are simply given by the fraction of the
observations where the output is j and the input has category l of all of the observations with
input category l. The proof of this fact is given in Appendix B.
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4. Model construction

In this chapter we will describe the formalization and the construction of the model that we will
use to determine the likelihood ratio of loopbreaking patterns of duct tape pieces.

4.1. Formulation of likelihood ratio

In this thesis we are interested in the likelihood ratio of two pieces of torn duct tape to have
been directly attached to one another, relative to not have been directly attached to one another,
based on the loop breaking patterns of these pieces. In this section we will formalize this.

When considering two pieces of duct tape, one can be interested in one of two propositions.

• Specific comparison: the X-side of piece 1 used to be attached to the Y-side of piece 2;

• General comparison: the two pieces of duct tape used to be attached to one another.

(Recall that the X-side and Y-side of the tapes are defined as described in Figure 2.2 and that
two X-sides or two Y-sides cannot have been attached to one another.) In the first point we
only consider one side of both pieces of tape, in the second point we consider both sides. In
section 2.2 we discussed the different cases where these propositions could be applied.

Let us first consider the specific comparison proposition. We will define the two pieces as evidence
as:

EX : the loop breaking pattern of the X-side of a torn piece of duct tape, piece 1, that
starts at the first present loop, with direction d;

EY : the loop breaking pattern of the Y-side of another torn piece of duct tape, piece 2,
that starts at the first present loop, with direction d.

The direction d represents the direction that was used for the order of the pattern. This should
correspond to the tearing direction if it is known. Any missing yarns at the top of the loopbreak-
ing patterns are dismissed and the whole pattern is shifted such that X0 and Y0 now represent
the state of the first present loop at the X-side and the Y-side respectively.
The hypotheses we will consider in this case are

Hp : The X- and Y-side under consideration used to be directly attached to one another
as one piece of duct tape, before being torn.

Hd : The X- and Y-side under consideration have never been directly attached to one
another. Either they used to be directly connected on the opposite sides of both pieces, or
they came from the same roll and there was one or more pieces of tape in between them,
or they came from different rolls of duct tape.
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Furthermore, we will consider the background information I, this defines the context in which
we consider the evidence. We assume that the pieces of duct tape have been examined by the
experts in advance and therefore only consider the loop breaking pattern when the pieces of
duct tape exhibit the same physical and chemical structure. Hence properties of the two pieces
of duct tape that are included in the background information are: type of scrim (must be weft
insertion), width of pieces, color of polymeric backing, sides that are torn (at least the sides under
consideration), vertical alignment of the scrims, tearing directions of sides under consideration,
number of observed missing yarns at the top of sides under consideration. In general if one of
these properties do not correspond between the two pieces of duct tape under consideration,
then one does not need to consider the loopbreaking patterns. An example for the background
information is

I : The 2 pieces of duct tape are both 5 cm wide, have a weft insertion scrim, a grey
polymeric backing of the same structure, are torn on the sides under consideration and the
scrims are vertically aligned. The tearing direction of both patterns is T . The X-side has
one missing yarn at the top. The positions of any observed missing warp yarns on each
side.

Now that these events are properly defined, we can formulate the LR for this first case

LRHp,Hd
(EX , EY ) :=

P(EX , EY |Hp, I)

P(EX , EY |Hd, I)
.

Assuming that the two patterns are independent given Hd and I, we can rewrite this as

LRHp,Hd
(EX , EY ) =

P(EX , EY |Hp, I)

P(EX |Hd, I)P(EY |Hd, I)
. (4.1)

In Appendix C the case when the tearing directions are unknown is discussed. Omitting the
notation of the background information, the LR yields in that case

LR(EX , EY |DX ,DY ∈ {T,B})

= 2 ·
P(EX,T , EY,T |Hp) + P(EX,B, EY,B|Hp)

P(EX,T , EY,T |Hd) + P(EX,T , EY,B|Hd) + P(EX,B, EY,T |Hd) + P(EX,B, EY,B|Hd)
, (4.2)

where DX ,DY denote the random variables representing the tearing directions for the X-side
and the Y-side respectively, T,B are the possible tearing directions, and for i ∈ {X,Y } and
d ∈ {T,B} Ei,d represents the loopbreaking pattern Ei with tearing direction d.
For the general comparison proposition the likelihood ratio can be expressed in terms of the

likelihood ratio for the specific comparison. This is described in Appendix D.

For the evaluation of loopbreaking patterns that contain missing warp yarns, we need to pro-
vide a separate method for evaluating tapes that have missing warp yarns at the start of their
loopbreaking patterns. These pose a problem, since we set the horizontal position of the first
yarn at zero, which is our reference point for both sides. In Appendix E we discuss our solution
thoroughly. In short, the idea is that we split up the patterns in the parts that are overlapping
and the parts that are not overlapping. Each of these parts is shifted, such that they all start
at height zero again. We assume that the probabilities of these shifted parts is equal to the
unshifted parts. This is based on the assumption that the missing yarns do not provide any
information. We evaluate the probabilities of all these shifted parts separately and assume that
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the transition probabilities between the parts are negligible. In this way we can set the reference
positions at the start of the patterns and we keep the most informative part of the patterns,
namely the overlapping part, intact.
In Appendix E we also discuss how to deal with loopbreaking patterns of two sides where the

vertical alignment is uncertain. This is the case for our data under Hd. This can also be relevant
when only partial patterns are retrieved from the crime scene, or pieces are partially damaged.

4.2. Structure of dynamical Bayesian network

To estimate the value of the LR for loopbreaking patterns, we will create three models. Each
of the models will estimate one of the probabilities in the likelihood ratio Equation 4.1. So we
will have two models that model the behaviour of the loopbreaking patterns independent of one
another, in order to estimate P(EX |Hd) and P(EY |Hd) respectively. We call these models the
one-side models and they will always have the same representation, but the associated proba-
bilities may differ. Next to that we will construct a two-side model to estimate P(EX , EY |Hp),
this will model the behaviour of the two loopbreaking patterns, assuming that they used to be
directly attached.
For the models we will assume, for simplicity, that the two loopbreaking patterns under

consideration are of the form EX = (Xn)m−1n=0 and EY = (Yn)m−1n=0 , where m is the total number
of warp yarns in both sides. For the cases where this number is not the same in both sides, we
apply the methods as described in Appendix E.
The main assumption for our model is that the loopbreaking patterns of duct tape comply

to the first-order Markov property. In the sense that the state of a loop is only dependent on
the state of the loop prior to it and of the loop opposite to it. We will describe this as a DBN
and use the structure of the DBN to describe the dependencies between the nodes. We will
not consider a model with dependencies between all the nodes, since there is not enough data
available to estimate the corresponding probabilities. We used HUGIN EXPERT [9] to construct
and evaluate these models.
The models that we construct consist of three main building blocks: the loops, the horizontal

positions and the observation errors. In the following subsections we will describe the build-up
of the models, each time adding one of the building blocks to both the one-side models and
the two-side model. We will only give the corresponding CPTs of the final models, these are
discussed in section 4.3. There, one can also find Table 4.1 in which we present an overview of
the nodes from the final models with their corresponding mathematical notation, their parents,
their states and the construction of their conditional probability tables.

4.2.1. Loops

First, we only consider the state of the loops of the loopbreaking patterns. Thus the evidence
that we consider is EX = (Xn)m−1n=0 and EY = (Yn)m−1n=0 in general.

One-side models We model the behaviour of the loops as Markov Chains. So we assume for
the random variables Xn and Yn that they comply to the Markov property, i.e.,

P(Xn+1|Xn, Xn−1, . . . , X0) = P(Xn+1|Xn), (4.3)
P(Yn+1|Yn, Yn−1, . . . , Y0) = P(Yn+1|Yn), (4.4)

for all 0 ≤ n ≤ m− 2. Recall from section 2.3 that each loop can be in one of four states; open,
closed, complex or missing. However, when a yarn is missing, its actual state could have been
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Figure 4.1.: Graph of DBN for the one-side model for loops only. The hatched yellow node
represents the state of the loop at height n− 1 and the plain yellow node represents
its state at height n.

any of the three other states. Therefore, we will dismiss the state missing and we let for all
0 ≤ n ≤ m− 1

Xn =


0, if loop n is whole (or closed),
1, if loop n is broken (or open),
2, if loop n is complex.

If Xn was observed as missing, none of the states should be initiated. The states of Yn are
defined analogous. Hence, the corresponding state space for both MCs is M1 = {0, 1, 2}.
We can express this as a dynamic Bayesian network as described in section 3.2, see Figure 4.1.

In this DBN both nodes have the state space M1. The CPT of the first node T_loop is given by
the initial probabilities from the MCs and the CPT of the second node is given by the transition
matrices of the MCs.

Two-side model For the two-side model we have as evidence the states of the loops from the
paired loopbreaking patterns, i.e., (EX , EY ) = (Xn, Yn)m−1n=0 . Recall that we are aiming to esti-
mate P(EX , EY |Hp) here, thus we presume that the X-side and the Y-side under consideration
used to be directly connected. Again, we will model this as an DBN, using the assumption of
the Markov property for the combined loop states, thus

P(Xn, Yn|Xn−1, Yn−1, Xn−2, Yn−2, . . . , X0, Y0) = P(Xn, Yn|Xn−1, Yn−1). (4.5)

The corresponding state space for this DBN is given by M2 = {(x, y) : x, y ∈M1} or

M2 :=


(0, 0), (1, 0), (2, 0),
(0, 1), (1, 1), (2, 1),
(0, 2), (1, 2), (2, 2)


where 0, 1 and 2 still denote the states closed, open and complex respectively. It is possible to
go from each of these states to any of the other states. To describe the DBN, let us first consider
a BN, which describes the behaviour of the loops on both sides at a given height. We can create
different nodes for the X-side and the Y-side in one model, each of these nodes have state space
M1. Notice that we can write

P(EX , EY |Hp) = P(EX |EY , Hp)P(EY |Hp) = P(EY |EX , Hp)P(EX |Hp).

Let us consider the middle option. This can be modeled as a directed edge from the node for the
Y-side towards the node for the X-side. Let us insert the information for the loop on the Y-side
being in a certain state, this gives us P(Yn = yn|Hp). If we then include the information for
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Figure 4.2.: Graph of DBN for the two-side model for loops only.

the loop on the X-side to be in a certain state, we get P(Xn = xn|Yn = yn, Hp)P(Yn = yn|Hp).
Now, we can include the dependency on the state of the former loop, by converting this BN into
a DBN. This is done by setting this BN as the second slice of the DBN and adding, so-called,
temporal clones of both nodes to the first slice of the DBN. We assume that the state of both
loops is dependent on the state of its former loop on the same side. However, we assume that
the cross-dependence, their dependence on the state of the former loop on the opposite side, is
negligible. In other words,

P(Xn, Yn|Xn−1, Yn−1, Hp) = P(Xn|Yn, Xn−1, Yn−1, Hp)P(Yn|Xn−1, Yn−1, Hp) (4.6)
≈ P(Xn|Yn, Xn−1, Hp)P(Yn|Yn−1, Hp) (4.7)

The DBN corresponding to this analogy is displayed in Figure 4.2.

4.2.2. Horizontal positions

We want to accompany the former models with the horizontal position of each loop. For this
we consider the entire loopbreaking pattern as the evidence. Hence, we have EX = (Xn)m−1n=0 :=
(Xn, ξn)m−1n=0 whereXn still represents the state of the loop of the nth warp yarn and ξn represents
the horizontal position of the nth warp yarn, as described in section 2.3. Similarly, we have
EY = (Yn)m−1n=0 := (Yn, γn)m−1n=0 . By definition, ξ0 = γ0 = 0 and, for 1 ≤ n ≤ m− 1,

ξn =


−l, if the position of the nth loop is l weft yarns to the left of the first loop;
0, if the position of the nth loop is at the same weft yarn as the first loop;
+l, if the position of the nth loop is l weft yarns to the right of the first loop.

(4.8)

The states of γn are defined analogous. We can also express the horizontal position in terms of
the former horizontal position and the horizontal jump. A horizontal jump at height n is the
difference between the horizontal positions of the loop at height n− 1 and the loop at height n,
we denote this by µn and νn for the X-side and the Y-side respectively. In other words, for all
1 ≤ n ≤ m− 1 we have

µn := ξn − ξn−1, (4.9)
νn := γn − γn−1. (4.10)
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Notice that ξn, γn ∈ Z. However, for the practical implementation we will restrict the state
space of the horizontal positions to {−4+,−3,−2, . . . ,+2,+3,+4+}, where −4+ represents all
horizontal positions that are −4 or lower, and +4+ represents all horizontal positions that are
+4 or higher. We denote the random variables for the horizontal positions restricted to this
state space by ξ̄n and γ̄n. Furthermore, in the model, we will only consider the direction of
the horizontal jumps. Thus for the horizontal jump we consider the state space of signµn and
sign νn, which is {−1, 0,+1}. The random variables that represent the jumps restricted to this
state space, so the directions of the jumps, are denoted by µ̄n and ν̄n. These two simplifications
are based on the data. In the available data it never occurs that the horizontal position differs
four or more from the initial horizontal position. Further, in the data it only rarely happens
that the jumps are larger than 1, and only when either one of those loops itself was missing or
when one of the opposite loops was missing.

One-side models For the one-side models, we already have the model for only loops, see
Figure 4.1. Now, the evidence is accompanied with the horizontal position. By the assumed
Markov property we have

P(Xn, ξn|Xn−1, ξn−1, Xn−2, ξn−2, . . . , X0, ξ0, Hd) = P(Xn, ξn|Xn−1, ξn−1, Hd). (4.11)

Furthermore, let (xi, ai)
m−1
i=0 be any realization of the states of the loops and the horizontal

positions of the X-side, then for any 1 ≤ n ≤ m− 1 it holds that

P(Xn = xn, ξn = an|Xn−1 = xn−1, ξn−1 = an−1, Hd)

= P(ξn = an|Xn = xn, Xn−1 = xn−1, ξn−1 = an−1, Hd)

· P(Xn = xn|Xn−1 = xn−1, ξn−1 = an−1, Hd)

= P(µn = an − an−1|Xn = xn, Xn−1 = xn−1, ξn−1 = an−1, Hd)

· P(Xn = xn|Xn−1 = xn−1, ξn−1 = an−1, Hd).

Here we will assume that horizontal jump is dependent on the state of the corresponding loop
and former loop, but that we can neglect the dependency that the loop state has on the previous
horizontal position. Furthermore, we assume that the distribution of the horizontal jump is not
affected by the former horizontal position. Under these assumptions it holds that

P(Xn, ξn = an−1 + bn|Xn−1, ξn−1 = an−1, Hd) = P(µn = bn|Xn, Xn−1, Hd)P(Xn|Xn−1, Hd).
(4.12)

In this way it would suffice to only consider the former loop, current loop and the horizontal
jump in our model. However, we do want to keep track of the current position, this will be
needed for the two-side model. Hence, we will include the former position and the current
position in the model, where the current position will be determined by the horizontal jump
and the former position, using ξn = ξn−1 + µn. However, we do not consider ξn and µn, but the
random variables with the restricted state spaces ξ̄n and µ̄n, so there is still some uncertainty
in the state of the current horizontal position given the states of these nodes.
This same analogy holds for the loopbreaking patterns of the Y-side, where (Yn, γn) denote

the loop state and the horizontal position of the loop at height n.
The DBN corresponding to this reasoning is depicted in Figure 4.3.
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Figure 4.3.: Graph of DBN for the one-side model with loops and horizontal positions.

Two-side model For the two-side model we will apply the same reasoning as for the one-
side model. Additionally, we will again assume no cross-dependencies. Further, since we are
under Hp, we assume that the horizontal position of the X-side is completely determined by the
horizontal position on the Y-side, such that ξ̄n = γ̄n. The DBN corresponding to this reasoning
is shown in Figure 4.4.

4.2.3. Observation errors

We want to complete our models by taking the observation errors into account. This can be
accomplished by using the method of a hidden Markov chain, however in our opinion it is im-
portant to be able to clearly view and easily change the distribution of the observation errors.
Therefore, we will replace each node in the models described before, with three new nodes: the
real node (blue), representing the real state of the node; the observation node (yellow), repre-
senting the observed state of that node; and an observational error node (green), representing
the observation error that might have occurred in the observation. This will be done with all
nodes with exception of the jump node and the node representing the former horizontal posi-
tion. These nodes are not affected by observation errors directly. The jump is not something we
observe, but is determined by the former and current horizontal position. The first horizontal
position is determined to be zero and from then on it will be determined by the former and
current horizontal position.
The observed state of the nodes is determined by their real state and the observation error.

The state spaces of the observation nodes is equal to the state spaces of their corresponding
real nodes. The observation errors on the horizontal positions, εHn,n, have an associated state
space of {−2,−1, 0,+1,+2}. These states correspond directly to the number of warp yarns with
which the position was misjudged. Thus we assume implicitly that the observation errors that
occur are never larger than two horizontal positions (i.e., two weft yarns). For the observation
errors on the loops, εL,n, the assigned state space is {yes, no}. These states just denote if there
was an observation error or not. In this way we have that

P(X(o)
n |X(r)

n , εL,n = no) =

{
1, if X(o)

n = X
(r)
n

0, otherwise.
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Figure 4.4.: Graph of DBN for two-side model with loops and horizontal positions.

and

P(X(o)
n |X(r)

n , εL,n = yes) =

{
0, if X(o)

n = X
(r)
n

P(X
(o)
n |X(r)

n , εL,n = yes), otherwise.

Notice that an observation error at the first horizontal position, εH0,0, should be dealt with
extra carefully. The horizontal position of the first loop is used as a reference point. If an error
occurs here, the horizontal positions of all the following loops are incorrect. This needs to be
taken into consideration, therefore we have two nodes associated to this: T_hor_first_errX
and hor_first_errX, which represent the states of εH0,0 and εH0,n respectively. The first has
a CPT assigned to it which reflects the probability distribution for these errors, and the second
one takes over this distribution. So that for all the following nodes this distributions remains
the same and can be taken into consideration for the observed horizontal position. So that
ξ
(o)
n = ξ

(r)
n + εHn,n − εH0,n, where ξ(o)n and ξ

(r)
n represent the observed and real state of the

horizontal position at height n, εHn,n represents the observation error for the horizontal position
at height n and εH0,n represents the observation error for the horizontal position at height 0.
However, we still need to be careful for the edge cases, since we only record ξ̄

(r)
n , which is

restricted to the determined state space {−4, . . .+ 4}. So when ξ̄(r)n = ±4 then the value of ξ̄(o)n
is not fully deterministic. It is dependent on the distribution for P(ξn|ξ̄n).

One-side model For the horizontal positions we assume that the observation error is dependent
of the loop state on both sides. As we know, the horizontal positions of complex breaks are not
always complementary, so we take this into account with the observation errors. Notice that
this is not exactly an observation error, but we can model it as if it is one, since the horizontal
position is not clear in those cases. Therefore, in the model for one-side we will also include
the real nodes of the loops of the opposite side. We do not enter any observations into these
nodes, but their distributions are defined by the loops on the current side. We can use these
distributions to get a better estimation of the observation error for the horizontal position. The
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Figure 4.5.: Graph of DBN for one-side model with loops, horizontal positions and observation
errors. The blue nodes represent the unobserved (hidden) “real” states, the yellow
nodes represent the observed states and the green nodes represent the observation
errors.

corresponding graph of the DBN for the one-side model for the X-side is depicted in Figure 4.5.
The basis of this graph is given by the structure of the blue (real) nodes, which is retrieved from
the DBN of the one-side model with loops and horizontal positions, see Figure 4.3, except that
the nodes representing the real states of the loops of the opposite side are added.
This DBN is the final model that we will use to evaluate the probabilities under Hd.

Two-side model For the two-side model there are no additional changes other than described
above. The graph of the corresponding DBN is shown in Figure 4.6. The basis of this graph is
again given by the structure of the blue (real) nodes, which is retrieved from the DBN of the
two-side model with loops and horizontal positions, see Figure 4.4.
This DBN is the final model that we will use to evaluate the probabilities under Hp.
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Figure 4.6.: Graph of DBN for two-side model with loops, horizontal positions and observation
errors. The blue nodes represent the unobserved (hidden) “real” states, the yellow
nodes represent the observed states and the green nodes represent the observation
errors.
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4.3. Conditional probability tables

We have to assign a conditional probability table (CPT) to each node in the models we con-
structed before. We will do this for the final models. In Table 4.1 we give an overview of the
different nodes and their associated CPTs. In Appendix F one can find the values of these CPTs.
Recall that there are some nodes that have (mostly) deterministic CPTs, we call these model

induced CPTs. Other CPTs are based on the data. We will use a subset of the available data
set as training data for these CPTs, this will be further discussed in chapter 5. The probabilities
for these CPTs, πij = P(Y = j|x = i), are estimated using the MLE estimate of the logistic
regression, i.e. by their fractions, as described in section 3.4. Notice, that for this we assume that
the categories for x are independent. However, since our data set is small in some cases there
were no observations for certain combinations of events. Except for the cases which represent
two closed loops opposite of each other, we have no indication that these probabilities should
be set to zero. Hence, for these cases we expect that their probabilities are small, but not zero.
To overcome this, we smoothed the estimates for these events, as suggested in [2, 17]. We used
a Dirichlet prior distribution with equal-valued parameters, such that their estimated posterior
probabilities are given by

π̂ij =
Njl + 1

N·l +K + 1
,

whereK+1 represents the number of categories that the output Y has. This is called a (Laplace)
smoothed estimate, a maximum a posteriori (MAP) estimate or a Bayes’ estimate [2, 17].
For the estimation of the CPTs for the nodes T_loopX_r and T_loopY_r, we will not restrict

to the observations of the first yarns, but instead, we use the observations of all yarns in the
patterns. Due to the shifting of patterns with missing yarns at the top, these nodes do not
necessarily only represent the state of the first yarns, as discussed in section E.2.
Unfortunately at this point we do not have any data about the observation errors. Therefore,

we cannot make an estimation about the values in the CPTs for the error nodes and the obser-
vation nodes, based on the data. For now we will set these values based on the expert knowledge
of the forensic examiners. Note that for the observation nodes it holds that given that there
was no error, then the observation will be equal to the real value. For the loop states we will
assume that the probability of observing a closed loop while it was actually open and vice versa
is very small. So given that the real loop state is open or closed and there was an observation
error, then it is much more likely to observe a complex loop than to observe a closed or open
loop respectively.
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Node Parents State space Probabilities

T_loop_r (X(r)
0 , Y

(r)
0 ) Closed; Complex;

Open
Estimate from data.

loop_r (X(r)
n , Y

(r)
n ) T_loop_r Closed; Complex;

Open
Estimate from data.

jump (µ̄n, ν̄n) T_loop_r, loop_r −1, 0,+1 Estimate from data.

T_horiz_r (ξ̄(r)0 , γ̄
(r)
0 ) −4,−3, . . . , 3, 4 Deterministic, such that P(ξ̄

(r)
0 = 0) = 1.

horiz_r (ξ̄(r)n , γ̄
(r)
n )

(not for X-side in two
side model)

T_horiz_r, jump −4,−3, . . . , 3, 4 In principle deterministic ξ
(r)
n := ξ

(r)
n−1 + δn,

but due to limited state spaces we need esti-
mates for P(ξn|ξ̄n) and P(δn|δ̄n).

horizX_r (ξ̄
(r)
n ) (only

for X-side in two side
model)

horizY_r −4,−3, . . . , 3, 4 Deterministic, such that ξn := γn.

T_loop_r’ (Y
(r)
0 , X

(r)
0 ) T_loop_r Closed; Complex;

Open
Estimate from data.

loop_r’ (Y
(r)
n , X

(r)
n ) T_loop_r’,

loop_r
Closed; Complex;
Open

Estimate from data.

T_hor_first_err
(εH0,0)

T_loop_r,
T_loop_r’

−2,−1, 0, 1, 2 Calculated guess based on expert knowledge.
Identical to probabilities for hor_error.

hor_first_err (εH0,n) T_hor_first_err −2,−1, 0, 1, 2 Deterministic εH0,n := εH0,n−1 = εH0,0.

hor_error (εH,n) loop_r, loop_r’ −2,−1, 0, 1, 2 Calculated guess based on expert knowl-
edge. Identical to probabilities for
T_hor_first_err.

horiz_o (ξ̄
(o)
n , γ̄

(o)
n ) horiz_r,

hor_error,
hor_first_err

−4,−3, . . . , 3, 4 In principle deterministic ξ̄(o)n := ξ̄
(r)
n −εH0,n+

εH,n, but again due to limited state spaces we
need estimates for P(ξn|ξ̄n).

T_loop_error(εL,n) T_loop_r yes; no Calculated guess based on expert knowledge.
Identical to probabilities for loop_error.

loop_error (εL,n) loop_r yes; no Calculated guess based on expert knowledge.
Identical to probabilities for T_loop_error.

T_loop_o (X
(o)
0 , Y

(o)
0 ) T_loop_r,

T_loop_error
Closed; Complex;
Open

In the case that εL,n = no, then deterministic,
such that X(o)

0 := X
(r)
0 . For the cases where

εL,n = yes, we make a calculated guess based
on expert knowledge. Identical to probabilities
for loop_o.

loop_o (X
(o)
n , Y

(o)
n ) loop_r,

loop_error
Closed; Complex;
Open

In the case that εL,n = no, then deterministic,
such that X(o)

n := X
(r)
n . For the cases where

εL,n = yes, we make a calculated guess based
on expert knowledge. Identical to probabilities
for T_loop_o.

Table 4.1.: Overview of all the nodes in the models. With <node> we denote the node of the
side under consideration (for the two side model this is the Y-side), with <node>’
we denote the node of the opposite side (for the two side model this is always the
X-side). After the name of the node in the DBNs, the associated notation of the
node in mathematical representations is given in brackets, with first the notation for
the X side and second for the Y side, if relevant.

35



5. Validation

The model proposed in chapter 4 provides LR-values for the loopbreaking patterns of two pieces
of duct tape, but are these LR-values valid? The model must be valid, in order to be applicable
in forensic cases. In this section we will evaluate the performance of that model. First we discuss
the methods that are used for this purpose. Second we will discuss the results of these validation
methods for our proposed model. However, this is merely performed as a proof-of-concept, since
the available data set is small and might not be a good representation of the entire population.

5.1. Validation methods

There is not yet an established standard protocol to validate likelihood ratio systems. With
that in mind, Meuwly et al. [16] wrote a guideline for the validation of methods that calculate
LRs. They consider both feature-based and score-based methods. Our model could be seen as a
feature-based method, we form an LR directly from the features (i.e., the loopbreaking patterns),
without first converting them to scores. They state that the validation process should consist of
theoretical validation and empirical validation. The theoretical framework of our model has been
discussed intensively, so we will focus here on the empirical validation. They explain that we first
need to define the performance characteristics, the performance metrics and the performance
criteria. Performance characteristics are characteristics of the method that should be evaluated,
which are measured by corresponding performance metrics. The performance criteria are criteria
for which outcomes of the performance metrics the method is deemed valid. The latter should
be based on the current baseline method.
Meeuwly et al. state that the validation process should contain two stages: the method

development stage and the validation stage. For the fist stage, a designated database is required,
which should be split into a training database and a test database. These databases should
be non-overlapping, independent and representative, and they should contain the ground truth
labels of the data. The ground truth of a datapoint is the proposition that is true for that
datapoint, i.e., Hp or Hd. The model parameters are obtained using the training database. The
test database is used to evaluate the performance of the LR-system on this unseen data. The
LR-values of the datapoints in the test data are calculated using the trained model and the
performance metrics for this set of LRs are evaluated. If the criteria are not yet met, the model
should be adjusted to increase its performance. If the criteria are met, then one can continue
to the validation stage. Here another database, the validation database, should be used. This
database should contain data that is representative for realistic casework. For the method to
be used in casework, it should, of course, also perform well on this database and meet the
performance criteria.
In our case, unfortunately we do not have data about the current baseline method, which is

the evaluation by the forensic experts. Therefore, we will not define the performance criteria.
Furthermore, we do not have access to a separate database which could be used as a validation
database. Instead we will split our database into a training database and a test database, which
are non-overlapping, but not independent and we will give a proof-of-concept for the evaluation of
the proposed LR-system, this will be discussed in section 5.2. In future work these results could
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be compared to the current baseline method and the method could be applied to a validation
database.

5.1.1. Performance characteristics

Validity or performance of a system is almost always associated with the accuracy of the system
[18, 21, 32]. Even the first sentence of the Wikipedia page on validation (in statistics) reads:
“Validity is the extent to which a concept, conclusion or measurement is well-founded and likely
corresponds accurately to the real world.” [28]. In general, we say a system is valid when its
outcomes correspond to the actual values. The accuracy of a system is defined to be the closeness
of a given magnitude to its true value [32]. However, as mentioned by Leegwater et al. [11],
the application of this definition to the likelihood ratio framework is not straightforward. There
are no true LR-values available, so it is not possible to compare the LR-values produced by
the model with the true LR-values. Moreover, the notion of a true LR-value is still subject of
discussion. We will apply the notion of accuracy as proposed by Meuwly et al. [16], as the
extent the LR-value supports the ground truth.
The accuracy of a set of LRs can be decomposed into two components: the discriminating

power and the calibration. The discriminating power is defined as the degree to which the LR-
values are discriminating based on their corresponding ground truths [16]. This can be visualised
as the relative overlap of the histogram for the LR-values given Hp and the histogram for the
LR-values givenHd. The degree of calibration of a set of LRs is defined as the extent to which the
LRs are exactly as ensured by the data [16]. In other words, the likelihood ratio of an LR-value
should be equal to that value ("the LR of the LR is the LR"). This is a theoretical property of the
likelihood ratio, as proven in [13], and therefore it is a desirable property of the set of LRs. This
definition is based on the notion of calibration of probability assessments. As explained in [21],
suppose there are N probability assessments made for some random variable Zi for 1 ≤ i ≤ N ,
which can take one of two values each time zp or zd. This set of probability assessments is then
called well-calibrated, if the fraction of probability assessments P(Zi = zp|K) = q ± δ that are
correct is q, for some small δ > 0.

5.1.2. Performance metrics

There are several metrics which can be used to quantify and compare the performance charac-
teristics defined above. The metrics that we will use are based on strictly proper scoring rules
(SPSR). A scoring rule is a function, S(P, x), which value describes a loss (or cost) assigned to
a probability distribution given to a certain unknown variable, P , depending on the true value
of this variable, x [6]. A scoring rule is called striclty proper if for the best possible probability
distribution Q and for all P 6= Q then S(P,Q) > S(Q,Q) and S(P,Q) = S(Q,Q) if and only if
P = Q, where S(P,Q) denotes the expected values of S(P, ·) under Q, as described in [6].
First, we consider a measure for the loss of accuracy: the empirical cross-entropy (ECE). As

described in [32] the ECE is a logarithmic strictly proper scoring rule. It is defined as

ECE := −P(Hp|I)

Np

∑
i:Hp true

log2 (P(Hp|Ei, I))− P(Hd|I)

Nd

∑
j:Hd true

log2 (P(Hd|Ej , I)),

where Ei represents the evidence of the ith observation in the test set, and Np and Nd denote
the total number of observations where Hp or respectively Hd are true. We can rewrite this in
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terms of LRs and prior odds in favour of Hp (O(Hp|I) :=
P(Hp|I)
P(Hd|I)) as

ECE =
P(Hp|I)

Np

∑
i:Hp true

log2

(
1 +

1

LRi ·O(Hp|I)

)

+
P(Hd|I)

Nd

∑
j:Hd true

log2 (1 + LRj ·O(Hp|I)). (5.1)

We can evaluate the ECE on a range of prior odds. The ECE is a strictly proper scoring rule,
hence it measures the loss in accuracy of the LR-system, by penalizing LR-values that do not
support the corresponding ground truth and the magnitude of this penalty increases with the
level of support for the other hypothesis.
Now to find a measure for the discriminating power and the calibration, recall that accuracy

can be split into discriminating power and calibration. So we want to find which part of the
loss in accuracy is due to losses in discriminating power and which part is due to losses in
calibration. As proposed in [5] this can be determined by applying the pool adjacent violators
(PAV) algorithm to the LRs in the test set. This is an algorithm that performs isotonic regression
by identifying the step-wise constant, isotonic (i.e., non-decreasing) function that best fits the
data based on a mean-squared error criterion [33]. The basics of applying the PAV algorithm to
an LR-system is described by Brümmer and du Preez in [5] as follows: (1) Sort the LR-values in
ascending order; (2) Replace each LR-value with a posterior probability based on their ground
truth, one if the ground truth is Hp and zero if the ground truth is Hd; (3) Apply the PAV
algorithm, which iteratively pools adjacent values that violate the monotonicity constraint of
the isotonic function and replace all values in that region by the mean over that region; (4)
Apply Bayes’ rule to obtain the (log) LRs from the posteriors, where the prior odds are the
proportion of Hp ground truths in the set; (5) Revoke the sorting done at step 1 to recover the
(log) LR-values corresponding to the original LR-values. We call the set of LRs obtained with
this method PAV LRs. These PAV LRs are optimally calibrated, i.e., they do not have any loss
in calibration. Hence, all of the loss in accuracy is due to loss in discriminating power. Thus
a measure for the discriminating power is the ECE of the PAV LRs, also denoted by ECEmin.
Subsequently a measure for the calibration is the difference between the ECE and ECEmin.
To represent all of these metrics, one can make an ECE plot, which consists of three curves:
one representing the ECE-values of the original LRs, one representing the ECE-values of the
PAV LRs and one representing neutral reference values for a range of prior odds. The neutral
reference values are generated by always giving an LR of 1, which does not support any of the
two propositions. This reference curve can be seen as a floor of performance.
Another performance metric, which has been increasing in popularity is the log-likelihood-

ratio cost (Cllr) [18]. It was introduced by Brümmer and du Preez [5]. Cllr is also a logarithmic
strictly scoring rule, and it also measures the loss in accuracy, it is defined as

Cllr =
1

2

 1

Np

∑
i:Hp true

log2

(
1 +

1

LRi

)
+

1

Nd

∑
j:Hd true

log2 (1 + LRj)

 . (5.2)

As opposed to the ECE, the Cllr does not depend on prior odds. It can be interpreted as the
averaged cost of a decision over all the prior probabilities and costs involved [16]. Despite their
difference in interpretation, the Cllr can be expressed in terms of the ECE. Namely Cllr equals
ECE where O(Hp|I) = 1. Notice that for a neutral set of LRs, i.e., all LR-values are equal to
one, the Cllr is equal to one. A Cllr smaller than one, gives thus an indication of the degree to
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which the system performs better than the neutral set. In a similar fashion as for the ECE, we
can decompose the Cllr, such that Cllr = Cllrmin + Cllrcal, where Cllrmin represents the loss
in discriminating power and Cllrcal represents the loss in calibration. Note that again Cllrmin

equals ECEmin where O(Hp|I) = 1.

5.1.3. Data sets

To evaluate the performance of the system we used the available data, which we already discussed
in section 2.4. Recall that person C applied a different tearing direction than persons A and B.
This implies that in practice the patterns of person C could have never been attached to the
patterns of person A and B, since the first loops of these patterns are on opposite sides of the
tape, see Appendix A. However, since the data set is small, we do actually combine the patterns
of person C with those of person A and B, in such a way that we assume that the patterns of
person C were actually observed in the reversed direction. In other words, the first loops remain
the ones that were first torn, but we pretend that they were observed at the top instead of the
bottom of the tape.
We split the available data, Dall, into a test set, Dtest, and training set, Dtrain. The 127 known

matching pairs in Dall are split randomly over Dtest (33%) and Dtrain (67%). The other 18
patterns, which do not have a complementary pattern in the data set, were added to Dtest, since
they cannot be used for the training of the two-side model. So the test set consists of 51 patterns
for both the X-side and the Y-side. Thus in total there are 512 = 2601 combinations of an X-side
and an Y-side (or data points) possible in the Dtest. The number of combinations for which Hp

is true is 42. For the other 2559 possible combinations, Hd is true. For these combinations of
patterns, the vertical alignments are unknown. To overcome this, we assume that the patterns
can only vertically align if the number of observed warp yarns (including the observed missing
yarns) differ at most one. In the case that the number of observed warp yarns are equal, we
assume that either no missing yarns remained unobserved or there were unobserved missing
yarns on both sides, but those were at the same vertical positions on both sides. So in this case
only one possible vertical alignment is considered. In the case that the number of observed warp
yarns differ exactly by one, we assume that there exists one additional (unobserved) missing warp
yarn at the top or bottom of the pattern of the side with the least amount of observed warp
yarns. Besides that we assume again that either no other missing yarns remained unobserved or
there were other unobserved missing yarns, but those were unobserved on both sides and at the
same vertical position. Thus in this case two possible vertical alignments are considered, this is
evaluated as described in Appendix E. For consistency these assumptions regarding the vertical
alignments are also applied to the combinations of patterns in Dtest for which Hp is true, even
though the vertical alignment of these combinations were described in the data.
This procedure causes some combinations under Hd in Dtest to be dismissed due to their

difference in observed number of warp yarns. The number of combinations of patterns in Dtest
for which Hd is true, reduced to 2520. The combinations of patterns for which Hp is true do
not differ more than one in observed length, thus the number of these combinations remains the
same.
The training set consists of the remaining 85 X-sides and their respective complementary Y-

sides. These were used to estimate the values of the CPTs for the nodes T_loop_r, loop_r and
jump in the final models. Here we did use the known vertical alignment of the known matching
pairs for the estimation of the CPTs in the two-side model. Notice that splitting the data in
this manner, makes the two data sets not independent from one another, in the sense that in
both sets there is data for every person-tape combination.
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(a) Model with training data Dtrain. (b) Model with training data Dall.

Figure 5.1.: Histograms of the log10(LR)-values where the test data is Dtest. At the top are the
density histograms and at the bottom the respective count histograms zoomed in.

5.2. Validation results

5.2.1. Test and training data

In Figure 5.1a we see the histograms of the resulting LRs when we use Dtrain as the training
set and Dtest as the test data set. Initially (Figure 5.1a top) it seems that the system is fully
discriminating and that all the LRs under Hp are larger than 1 and all the LRs under Hd are
smaller than 1. When we zoom in (Figure 5.1a bottom) we see that the system is indeed fully
discriminating on this test set and that all the LRs underHp are actually larger than 1. However,
we also observe that there are two data points under Hd which have an LR larger than 1, i.e.,
misleading evidence. Since this data is entirely discriminating, all the loss in accuracy is caused
by loss in calibration.
There exists a process, which improves the level of calibration, which is also called calibration.

To avoid confusion, we will refer to this process only as the calibration process. This is a process
of performing transformations on the set of LR-values, such that the loss in calibration decreases,
which has been considered mainly for score-based LR-systems in speaker recognition, see e.g.,
[29]. Since this set of LRs is fully discriminated, this calibration process would just shift the
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LRs, such that all of the LRs under Hd would become smaller than one, while keeping the set of
LRs under Hp larger than one. However, we will not perform this method, since this could create
overfitting on the test set. Moreover, we would lose the appealing property that the LR-system
is explainable.
Furthermore, it is important to remark that the smallest LR that we find in this test set is

approximately 10−80, this is extremely small, however still within machine precision.
We also evaluated the LRs of the test set on the system where we used the whole data set

Dall as training data, the corresponding CPTs are given in section F.2.1. This is usually not
advisable, but it is interesting to compare the results with the model trained on only Dtrain. The
corresponding histograms are shown in Figure 5.1b. We see that there are no significant changes
in the resulting distributions. This could imply that more data does not necessarily improve the
performance of the model. Additionally, for these two models (with Dtrain as training data and
Dall as training data) we evaluated the results for the training set Dall. The resulting LRs are
depicted in Figure 5.2. Here we observe again that the distributions do not significantly change
when the amount of data in the training set is increased. We also notice that now the system
is not fully discriminating, there are still no data points under Hp which have LRs smaller than
1, but there are quite some data points under Hd that are larger than 1. In Figure 5.3 the
corresponding ECE-plots are depicted. Notice that the line for the PAV LRs is always zero
when the system is fully discriminating on the test data. It is interesting to observe that the
system with training data Dtrain gives very similar performance as the system that was trained
on Dall. Furthermore, as expected the discriminating power of the two systems is reduced when
evaluating all the patterns in Dall, but this is still limited.
For all the following validation analysis we will only use Dtrain as the training data set.

5.2.2. Simulated test data

To evaluate the performance of the LR-system on a larger dataset, we simulated test data of
loopbreaking patterns with 36 loops.
First of all, we simulated 1000 complementary pairs of loopbreaking patterns, which were

based on the behaviour of the patterns in Dtest. These patterns contain some randomness. For
each pair of patterns, one side was set as the basic side and the states of the loops were set
independently from each other with a probability distribution based on the patterns in Dtest,
the state of the horizontal position of the first loop was set to zero and at each height there
was a probability, based on the patterns in Dtest, that a jump to the left or right occurred. The
pattern opposite of the basic side was set to be complementary to the states of the basic side,
however some randomness, based on the Dtest, was involved, such that open loops were possible
to sit opposite of one another and complex loops could occur everywhere, also inconsistency in
the horizontal positions were possible. In this way the simulated patterns do not depend on the
training data. Moreover, the Markov property is not assumed for these patterns.
We combined each pattern from this set of simulated patterns with its opposite (Hp is true)

and 50 other patterns from the set (Hd is true). Let us denote this set of combinations of
simulated patterns by Stest. In Figure 5.4 the LRs obtained from this set are shown in a
histogram. Notice that, compared to the distribution of the LRs obtained from Dtest, the mean
of the log10(LR)-values under Hd is shifted further to the left and the tail is even longer. For
this set, the LR-system is able to completely discriminate between the combinations of patterns
for which Hp is true, and the combinations for which Hd is true. Moreover, all of the LRs for
combinations under Hp are larger than one, and all of the LRs for combinations under Hd are
smaller than one. The performance of the system on this set of patterns is thus even better than
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(a) Model with training data Dtrain. (b) Model with training data Dall.

Figure 5.2.: Histograms of the log10(LR)-values where the test data is Dall. At the top are the
density histograms and at the bottom the respective count histograms zoomed in.

(a) Test data is Dtest. (b) Test data is Dall.

Figure 5.3.: ECE-plots for the system trained on Dall and for the system trained on Dtrain, with
testing data Dtest and Dall.
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Figure 5.4.: Histograms of the log10(LR)-values for the patterns from Stest. On the left is the
density histogram and on the right is the count histogram zoomed in.

Figure 5.5.: ECE-plots of the LRs obtained from Dtest (LRs Dtest) and for the LRs obtained
from Stest(LRs simulated).

for the set Dtest. This can also be observed in Figure 5.5 and Table 5.1. A possible explanation
for this high performance, is that the simulated patterns might contain less randomness than
the original patterns. Additionally, it might be the case that the simulated patterns contain
horizontal positions which are further from zero, and therefore are more differentiated under
Hd.
Second of all, we simulated plain patterns, patterns which have little variety in the states of

the loops and horizontal positions. The forensic experts noted that they observe these type of
patterns sometimes and they are uncertain how to evaluate their evidential strength, since they
do not seem to give much information. However these types of patterns did not occur in the
data set. Therefore, we simulated them. We generated four perfect plain patterns for each side.
These perfect plain patterns have no jumps and all the loops are in the same state, such that for
each side two of the four perfect plain patterns consist of loops that are all closed (perfect-open)
and the other two have loops that are all open (perfect-closed). Additionally, we generated 16
semi-plain patterns for both sides. The loops of these patterns are mostly all open or all closed,
but each loop has a small probability to be complex. The horizontal positions of these patterns
were established by setting the first to zero and at each height there was a probability to jump

43



Patterns from Dtest Patterns from Stest

Cllr 0.003065 0.000105
Cllrmin 0 0
Cllrcal 0.003065 0.000105

Table 5.1.: Cllr values for the patterns from Dtest and Stest, rounded down.

Figure 5.6.: Histograms for the log10(LR)-values obtained from the comparison of one perfect
plain pattern for the X-side with different types of simulated patterns for the Y-side.
Left: the pattern for the X-side contains only open loops; right: the pattern for the
X-side contains only closed loops.

to the right or left. For each of these patterns we also generated a possible opposite side. So that
in total there were 16 semi plain patterns for each side. The loops of the patterns of the opposite
side were mostly complementary to the loops of the original sides. The horizontal positions as
well. However, we applied some randomness to these states.
We combined one perfect-open pattern and one perfect-closed pattern for the X-side with all

the simulated patterns for the Y-side, i.e., the 1000 patterns which had randomness based on
Dtest(random), the eight semi-plain patterns which had mostly open loops (semi-open), the eight
semi-plain patterns which had mostly closed loops (semi-closed), the two perfect-open patterns
and the two perfect-closed patterns. The resulting LR-values are depicted in Figure 5.6. Notice
that the system was able to discriminate the random patterns from the perfect patterns. It
also gave the highest LR-value for the complementary perfect pattern, which is what we would
expect. Further, we observe that the system even discriminates quite well between the perfect
patterns and their complementary semi-perfect patterns, only two of the semi-closed patterns on
the Y-side got an LR-value of larger than 1 when combined with a perfect-open pattern on the
X-side, and for the comparison with the perfect-closed pattern on the X-side only one semi-open
pattern of the Y-side received an LR-value larger than one.

5.2.3. Altered patterns

To analyse the performance of the LR-system trained with Dtrain, even more, we made two types
of alterations on the patterns in Dtest. First, we consider the performance of the LR-system on
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the patterns with reversed tearing directions. Second, we study the performance on shorter
patterns (with the original tearing direction).

Reversed tearing direction For all the pieces of duct tape that are in Dall, it is known in which
direction the person tore. The top of each loopbreaking pattern is set to the starting point of
the tear. In real court cases however, the tearing direction is usually unknown. The forensic
experts from the NFI suspect they can observe an indication of the tearing direction on the tape
in most cases, but they have never been able to confirm this hypothesis, since the ground truth
was unknown. Thus we will analyse the performance of our system on the set Dtest,rev, which
consists of all the patterns from Dtest, but reversed, i.e., the first yarn becomes the yarn at the
bottom of the tear and the last yarn becomes the yarn at the top of the tear. In Figure 5.7b the
histograms corresponding to the LR-values for the Dtest and Dtest,rev are shown. The system
yields very similar distributions for the reversed patterns. It seems as if the system is not fully
discriminating on Dtest,rev, but this is in fact not true, the highest LR-value under Hd is still
smaller than the lowest LR-value under Hp. The results of the performance metrics are given
in the ECE-plot in Figure 5.8 and the corresponding Cllr-values are given in Table 5.2. We
see that the performance of the system on the reversed patterns is almost the same as for the
original patterns. For prior odds lower than ∼ 10−

1
2 the system even performs a little bit better

on the reversed patterns. While, based on the Cllrs, the loss in accuracy is a little higher for the
LRs obtained from the reversed patterns. The observation that the performance of the system
is very similar on both sets of LRs could be an indication that either the transition probabilities
are similar for both directions, or the model does not highly rely on the transition probabilities,
but more so on the theoretical framework that it is built on.

Shorter patterns In order to evaluate the performance of our model on shorter patterns, we
adjusted the loopbreaking patterns in Dtest, such that each pattern was cut off at height 15.
In this way each pattern consisted of the loop states of about 16 yarns (or in some cases 17, if
the other pattern starts with a missing yarn), instead of about 36 yarns. We denote this set of
shortened patterns by Dtest,short. The possible vertical alignments of these patterns remained
the same. The resulting log10(LR)-values are presented in Figure 5.7c. It is clear that the
distribution of the log10(LRs) both under Hp and under Hd is more compact and closer to
zero. This can be expected, since the patterns in Dtest,short contain less information, thus their
evidential value should be smaller. Further, when looking closer we see that the system does
not fully discriminate anymore on the short patterns. In Figure 5.9 the corresponding ECE-
plots are depicted. Additionally, the Cllr-values are given in Table 5.2. We find that the loss
in discriminating power for the shorter patterns is almost of the same size as the total loss in
accuracy for the normal patterns in Dtest. Moreover, the total loss in accuracy is quite large in
comparison, which is mostly due to the loss in calibration (the difference between ECE of the
LRs and the ECE of the PAV LRs). This loss in accuracy can be explained by the number of
LR-values under Hd that are larger than 1. This is much higher in the set of LRs obtained from
Dtest,short, compared to the set of LRs obtained from Dtest. However, the system still performs
much better than the neutral reference.

5.2.4. Observation error probabilities

For our model we have based the probabilities for observation errors on expert knowledge, since
we had no data about it. To evaluate the performance of the model for different levels of these
probabilities, we evaluated the model for three different levels of these probabilities.
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(a) Patterns from Dtest (b) Patterns from Dtest,rev (c) Patterns from Dtest,short

Figure 5.7.: Histograms of the log10(LR) values for patterns from Dtest and Dtest,rev. At the
top are the density histograms and at the bottom the respective count histograms
zoomed in.

Figure 5.8.: ECE-plots for LRs obtained from Dtest (LRs normal) and for LRs obtained from
Dtest,rev (LRs reversed).
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(a) Test data is Dtest. (b) Test data is Dtest,short.

Figure 5.9.: ECE-plots for LRs obtained from Dtest and for LRs obtained from Dtest,short.

LRs Dtest LRs Dtest,rev LRs Dtest,short

Cllr 0.003065 0.003073 0.024243
Cllrmin 0 0 0.002961
Cllrcal 0.003065 0.003073 0.021282

Table 5.2.: Cllr-values for the sets of LR-values obtained from the patterns in Dtest Dtest,rev and
Dtest,short respectively. The values are rounded down.

• Medium P(err) The original model with observation error probabilities as selected based
on expert knowledge.

• High P(err) The model where the probability of an observation error is higher than in the
original model.

• Low P(err) The model where the probability of an observation error is lower than in the
original model.

The respective CPTs for these different levels of observation errors for the models are given in
section F.2.2.
With these different levels of observation probabilities in the models, we obtain three different

LR-systems. To analyse the effect of the difference in observation error probabilities on the
performance, we calculate the LR-values for the patterns from Dtest with each of the three
systems. These LRs are depicted in the histograms in Figure 5.10. Notice that the LR-values
under Hd become smaller for smaller values of the error probabilities. This could be expected,
if two observed patterns do not match, then their evidential value is closer to one if there is
more uncertainty about these observations. The distribution of the LR-values under Hp does
not seem to change much. We would expect that if the error probabilities are set to be too
high, then also the evidential value of two patterns under Hp would become smaller, since the
probability that the observation of two loops being complementary is actually an error is so
high. Further, if the error probabilities were set too low, then we would expect that some of
the LR-values under Hp, would be closer to one or even less than one, because any observation
errors made would have such a small probability of occurring. Therefore, it seems that the error
probabilities picked are not too extreme to make the system perform significantly worse under
Hp. Furthermore, we see that the three systems seem to discriminate fully between Hp and
Hd. Although this cannot be said with certainty for the high and medium error probabilities
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High P(err) Medium P(err) Low P(err)

Cllr 0.004573 0.003065 0.002146
Cllrmin 0 0 0
Cllrcal 0.004573 0.003065 0.002146

Table 5.3.: Cllr-values for the LRs obtained from Dtest, for the three different levels of observation
error probabilities.

based on the histograms shown in Figure 5.10a and Figure 5.10b. However, for the medium
error probabilities we have already seen that it is fully discriminating on the set Dtest. After
further investigation on the LR-values from the LR-system with the high error probabilities,
we find that the highest LR given Hd is ∼ 103.91, while the lowest LR given Hp is ∼ 104.84.
We also see that in all cases, even though the systems are fully discriminating, there are some
LR-values under Hd which are larger than 1, i.e. misleading evidence. This implies that there
is some loss in accuracy in all of these systems. In Figure 5.11 the corresponding Tippett plots
are shown, which display the cumulative distributions of the LRs. Here we can make the same
observations, except that the misleading evidence is such a small fraction of the test data under
Hd, that it is not visible. The ECE-plots for the three LR-systems are presented in Figure 5.12.
First we observe that in all cases the PAV LRs is 0 for all values of log10(prior odds). This is
the consequence of the fact that all the systems are fully discriminating. We see that the system
LRs are in all cases a bit shifted to the left.We also note that this shift becomes smaller when
the error probabilities become smaller and subsequently the distance between the PAV LRs and
the system LRs becomes smaller. This implies that the loss in accuracy is smaller for lower error
probabilities. This is also visible in Table 5.3, which denotes the respective Cllr-values for the
three systems.
So we find that the system performs better for our test data if the error probabilities are

lower. This could imply that these error probabilities should actually be set to these lower
probabilities or even more lower. However, these values might differ greatly between different
forensic examiners. Therefore, it is advised to perform experiments to better determine these
error probabilities.
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(a) High error probabilities (b) Medium error probabilities (c) Low error probabilities

Figure 5.10.: Histograms of the log10(LR)-values obtained from Dtest, for different levels of ob-
servation error probabilities. At the top are the density histograms and at the
bottom the respective count histograms zoomed in.

Figure 5.11.: Tippett plots for the LRs obtained from Dtest, for high, medium and low observa-
tion error probabilities. The solid lines represent the LR-values under Hd and the
dotted lines represent the LR-values under Hp.

49



Figure 5.12.: ECE-plots for the LRs obtained from Dtest, for the three different levels of obser-
vation error probabilities.
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6. Discussion

In this thesis we proposed an LR-system to evaluate the evidential value of the new, additional
method for duct tape comparisons, using loopbreaking patterns. The LR-system consists of three
dynamical Bayesian networks, which provide estimates for the probabilities under Hp and under
Hd for the X-side and the Y-side separately. These can be combined to obtain the LR. These
probability estimates are based on a combination of theoretical properties, expert knowledge
and data.
Based on the performance evaluation of the trained LR-system on the unseen test data as

discussed in section 5.2, we find that the LR-system is very accurate and produces very strong
evidence. The performance of the system is even better for the simulated data set Stest. The
LR-system also seems robust under variations in the observation error probabilities and reversed
tearing directions. However, for future work it would be even more interesting to also evaluate
the performance of the LR-system on loopbreaking patterns with unknown tearing directions,
by evaluating their LRs using Equation 4.2, since in most practical cases the tearing direction is
unknown. The performance of the LR-system on shortened patterns is significantly reduced, but
it seems still useful. It would be interesting to evaluate what the minimal length of a pattern
should be to still be applicable for this system.
However, we need to be careful drawing conclusions based on the presented validation results,

since we randomly split the data from the available dataset into the training and test set, these
sets were not independent from one another. Moreover, we were not able to reach a validation
decision due to the lack of a validation data set and validation criteria. The experimental
conditions also were the same for all persons and are not representative for real forensic cases.
This means that the system was probably overfit on these persons and conditions. However, the
overfitting might be limited, since only part of the system is based on the data, and the theoretical
framework seems to have a large impact on the system, but this needs to be evaluated further.
Moreover, the evaluation of the validity of LR-systems based on the described performance
characteristics (accuracy, discriminating power and calibration) is criticized by Meester and
Slooten in [13]. They remark that these characteristics do not necessarily characterize a valid
method. A valid method would produce ’true’ LR-values. In some cases it is known that the
’true’ LR actually supports the opposite of the ground truth and this should not make the
method less valid. However, we could see these characteristics as the characteristics of a useful
method, which might be what we are actually aiming for.
Additionally, the main assumption of our LR-system, that the loopbreaking patterns comply

to the Markov property, has not been verified. This could be done by evaluating the results of a
system that assumes the second order Markov property (i.e., that each loop state depends only
on the loop states of the former two loops) and a system that assumes independence between all
the loop states within a loopbreaking pattern, and compare their performance with the current
system. However, a system based on the second order Markov property, becomes even larger and
so does its parameter space. It does not seem feasible to make such a system with the current
dataset. There are many simplifications in the models, e.g., dismissing cross-dependencies and
neglecting the information of missing yarns. We deem these simplifications necessary, because
of the small amount of data available. It is also unlikely that there will be massive amounts of
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data available in the near future, since analyzing the loopbreaking patterns is a time-consuming
process. Including more dependencies would lead to a substantial increase in the number of
parameters. For example, in the two-side model for loops only, if we would include the cross-
dependency for the current loop on the X-side on the former loop on the Y-side, then the number
of parameters for the node representing the current loop on the X-side increases from 2 ·3 ·3 = 18
to 2 · 3 · 3 · 3 = 72.
Our most important recommendation for future work is that the proposed LR-system should

be validated with data that is representative for real forensic cases. Such a validation data set
could be obtained, either by evaluating the system on old forensic cases, where the ground truth
seems obvious or by performing additional experiments where the conditions are close to real
forensic cases. The benefits of executing the former option, is that the LRs given by the forensic
experts can be compared with the LRs given by this system, and the conditions are exactly as
in a forensic case. Also the time investment is limited, since no additional loopbreaking patterns
have to be established. The benefits of the latter is that the ground truths are certain and
that the amount of data is theoretically limitless, as opposed to the data from old cases. For
both options it is possible to add simulated data based on the retrieved loopbreaking patterns.
However, the retrieved patterns should then still be a good representation for most forensic
cases. Notice that the loopbreaking patterns in the current dataset were all obtained by tearing
the duct tape. In forensic cases it is also possible that the tape is pulled. It is not clear what
the effect of this is on the loopbreaking patterns, but if the model is to be used for those cases
as well, these types of loopbreaking patterns should be included in the validation set. If this
makes the model invalid, then even more data could be obtained to train the model also on
these types of patterns. Further, before applying this model, it is important to remark that
the observation error probabilities were obtained for specific forensic examiners. These values
can vary highly between forensic examiners, therefore these should be adjusted before using this
system in practice.
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Appendix A.

Tearing directions

A.1. Notation of tearing directions

For this research we are interested in the order in which the yarns have been broken. For these
tearing directions of the patterns for the X-side and the Y-side, DX and DY , we consider two
possibilities:

• T the tearing started at the top and ended at the bottom;

• B the tearing started at the bottom and ended at the top.

Here the top and bottom can be defined arbitrarily, but we will define them as the top and
bottom of the tape placed such that the X-side is on the left and the Y-side on the right, and
the polymeric backing is to the front, see Figure A.1. Let us denote with EX,T and EX,B the
pattern EX such that the tearing direction is T and B respectively. For EY we denote this
similarly by EY,T and EY,B.

adhesive layer

polymeric backing

X-side Y-side

Bottom

Top

Figure A.1.: Schematic figure presenting the location of top and bottom on a piece of duct tape.
The X-side is on the left, the Y-side on the right, the adhesive layer at the back
and the polymeric backing is at the front.
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Appendix B.

Maximum likelihood estimator for logistic
regression

Let (yi, x̃i) denote the values of the categorical output and corresponding categorical input
variables for 1 ≤ i ≤ N , such that yi ∈ {0, 1, 2, . . .K} and x̃i ∈ {0, 1, 2, . . . ,M} are independent
categories. Let us apply the method of multinomial logistic regression. As explained in [8], the
input variables need to have some numerical interpretation, otherwise dummy variables should be
used to denote the input variables as a vector. In this case we can denote the different categories
using M − 1 dummy variables, xm for 1 ≤ m ≤ M , such that the category l ∈ {0, 1, 2, . . .M}
is represented as xm = 0 for all m 6= l and xl = 1. Additionally, we set x0,i = 1 for all i, this
allows for the intercept. Accordingly, for any category l, we can denote the input variable x̃i = l
as a vector xi = l := (1, e1, e2, . . . , eM )> such that el = 1 and em = 0 for all m 6= l.
Then we define the logistic function as

πj(x) := P(Y = j|x) =
egj(x)∑K
k=0 e

gk(x)
,

with g0(x) := 0 and for all 1 ≤ k ≤ K

gk(x) := x>βk

denote the logits for some unknown parameters βk.

Proposition. Let (yi, x̃i) denote the values of the categorical output and corresponding cate-
gorical input variables for 1 ≤ i ≤ N , such that yi ∈ {0, 1, 2, . . .K} and x̃i ∈ {0, 1, 2, . . . ,M}
are independent categories. Let us denote with Njl the number of datapoints (yi, x̃i) such that
yi = j and x̃i = l, for any j ∈ {0, 1, . . .K} and l ∈ {0, 1, . . .M}. Let N·l :=

∑K
j=0Njl for any

l ∈ {0, 1, 2, . . .M} and Nj· :=
∑M

l=0Njl for any j ∈ {0, 1, 2, . . .K}.
Then it holds for all m ∈ {0, 1, . . . ,M} and all j ∈ {0, 1, . . . ,K} that

πj(x = m, β̂MLE) =
Njm

N·m
, (B.1)

where β̂MLE denotes the maximum likelihood estimator of the parameters β.

Proof. First we introduce some notation for the categorical output variable, as suggested in [8].
Let for any 0 ≤ i ≤ N and any category j ∈ {0, 1, 2, . . . ,K} yi = j, we set yji = 1 and yki = 0

for all k 6= j. In this way we get that
∑K

k=0 yki = 1 for all i.
The maximum likelihood estimates (MLE) of the βk are found at the maximum of the log-

likehood function. Following [8], we get that the likelihood function is given by

`(β) =
N∏
i=1

K∏
j=0

πj(xi)
yji ,
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and taking the logarithm, provides us with the log-likelihood function

L(β) =
N∑
i=1

− log

(
K∑
j=0

egj(xi)

)
+

K∑
j=1

yjigj(xi),

using that
∑K

j=0 yji = 1 for all i. The β̂MLE can be found by taking the derivatives of the
log-likelihood function with respect to βjm for all 1 ≤ j ≤ K and 0 ≤ m ≤M and setting these
to zero. We find that

∂L(β)

∂βjm
=

N∑
i=1

xmi · (yji − πj(xi)). (B.2)

We need to solve ∂L(β̂MLE)
∂βjm

= 0 for all j,m. We will address the cases that m = 0 and m 6= 0

separately.
First, let m ∈ {1, 2, . . . ,M} and j ∈ {0, 1, . . . ,K}. Note that xmi = 0 for all i such that

xi 6= m, while xmi = 1 for all i such that xi = m. Applying this to Equation B.2, we find

∂L(β)

∂βjm
=

∑
i:xi=m

1 · (yji − πj(xi)).

We can group the data based on their output value, this yields

∂L(β)

∂βjm
=

K∑
k=0

Nkm · (ykj − πj(x = m)),

where ykj represents the jth element of the vector representing y = k, i.e., ykj = 1 if k = j and
otherwise ykj = 0. Thus it follows that

∂L(β)

∂βjm
= Njm · (1− πj(x = m))− πj(x = m) ·

∑
k 6=j

Nkm.

Setting this to zero and further rewriting yields

Njm − πj(x = m) ·Njm − πj(m) ·
∑
k 6=j

Nkm = 0

πj(x = m) ·
K∑
k=0

Nkm = Njm

πj(x = m) =
Njm∑K
k=0Nkm

=
Njm

N·m

So, in the case that m 6= 0 Equation B.1 holds.
Now, suppose m = 0 and j ∈ {0, 1, . . . ,K}. By definition it holds that x0i = 1 for all i. Thus

Equation B.2 comes down to
∂L(β)

∂βjm
=

N∑
i=1

yji − πj(xi)).
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Similarly as above, we can group on the different combinations of categories for the input and
output, we get

∂L(β)

∂βjm
=

M∑
l=0

Njl · (1− πj(x = l))−
∑
k 6=j

M∑
l=0

Nkl · πj(x = l)

=
M∑
l=0

Njl −
K∑
k=0

M∑
l=0

Nkl · πj(x = l).

Setting this to zero, changing the order of summation and using that πj(x = l) =
Njl

N·l
holds for

all l > 0, gives

Nj· −
M∑
l=0

K∑
k=0

Nkl · πj(x = l) = 0

M∑
l=0

N·l · πj(x = l) = Nj·

N·0 · πj(x = 0) +
M∑
l=1

N·l ·
Njl

N·l
= Nj·

N·0 · πj(x = 0) +Nj· −Nj0 = Nj·

πj(x = 0) =
Nj0

N·0
.

Hence, Equation B.1 also holds for m = 0.
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Appendix C.

Likelihood ratio for unknown tearing
directions

Suppose both tearing directions are unknown. For the probability under Hp we know that the
tearing directions must be the same, so

P(EX , EY |Hp) =
∑

dx,dy∈D
P(EX , EY |DX = dx,DY = dy, Hp)P(DX = dx,DY = dy|Hp)

=
∑
d∈D

P(EX , EY |DX = d,DY = d,Hp)P(DX = d,DY = d|Hp).

Here D denotes the set of possible tearing directions, {T,B}. For the probability under Hd we
get

P(EX , EY |Hd)

=
∑

dx,dy∈D
P(EX , EY |DX = dx,DY = dy, Hd)P(DX = dx,DY = dy|Hd)

=
∑

dx,dy∈D
P(EX |DX = dx, Hd)P(DX = dx|Hd)P(EY |DY = dy, Hd)P(DY = dy|Hd).

Here we use again the assumption that the two patterns are independent given Hd and also that
their tearing directions are independent given Hd.
Generally we assume that there is no information at all about the tearing directions, hence

we assume that their distributions are uniform. However, this can be adjusted for special cases.
We have

P(EX , EY |Hp) =
1

2
P(EX , EY |DX = T,DY = T,Hp) +

1

2
P(EX , EY |DX = B,DY = B,Hp)

=
1

2

(
P(EX,T , EY,T |Hp) + P(EX,B, EY,B|Hp)

)
and

P(EX , EY |Hd) =
1

4

∑
dx,dy∈D

P(EX |DX = dx, Hd)P(EY |DY = dy, Hd)

=
1

4

(
P(EX,T |Hd)P(EY,T |Hd) + P(EX,T |Hd)P(EY,B|Hd)

+ P(EX,B|Hd)P(EY,T |Hd) + P(EX,B|Hd)P(EY,B|Hd)
)

Thus the LR in terms of the patterns with different directions, yields

LR(EX , EY |DX ∈ D,DY ∈ D)

= 2 ·
P(EX,T , EY,T |Hp) + P(EX,B, EY,B|Hp)

P(EX,T , EY,T |Hd) + P(EX,T , EY,B|Hd) + P(EX,B, EY,T |Hd) + P(EX,B, EY,B|Hd)
,

60



where P(EX,dx , EY,dy |Hd) = P(EX,dX |Hd)P(EY,dy |Hd).
This same methodology can be applied when the tearing direction of only one side is known.

In that case there is only one possible direction for the other side under Hp and two under Hd.
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Appendix D.

Likelihood ratio for general comparison

Now for the case of the second proposition: the two pieces of duct tape used to be attached
to one another. For this we will setup distinct definitions for the evidence, hypotheses and
background information.
We now consider the following two pieces of evidence:

E1 : the loop breaking patterns of the X- and Y-side of a torn piece of duct tape, piece 1;

E2 : the loop breaking pattern of the X- and Y-side of another torn piece of duct tape,
piece 2.

Furthermore, we will discriminate between the loop breaking patterns of the X- and Y-side of
the two pieces of duct tape by denoting them as E1X , E1Y , E2X and E2Y respectively.
The hypotheses we consider for this case are

H ′p : Duct tape pieces 1 and 2 were directly connected as one piece of duct tape, before
being torn.

H ′d : Duct tape pieces 1 and 2 have never been directly connected. Either they came from
the same roll and there was a piece of tape in between them, or they came from different
rolls of duct tape.

Both these hypotheses consists of two parts, there are two ways for two pieces of duct tape to
be connected or not. We define

H ′pXY : The X-side of piece 1 used to be directly connected to the Y-side of piece 2.

H ′pY X : The Y-side of piece 1 used to be directly connected to the X-side of piece 2.

We see that H ′p = H ′pXY ∪ H ′pY X . We assume that it is not possible for the pieces of tape to
form a connected loop, so we have H ′pXY ∩H ′pY X = ∅. Similar for H ′d, we define

H ′dXY : The X-side of piece 1 was never directly connected to the Y-side of piece 2. Either
they used to be directly connected on the opposite sides of both pieces, either they came
from the same roll and there was one or more pieces of tape in between them, or they
came from different rolls of duct tape.

H ′dY X : The Y-side of piece 1 was never directly connected to the X-side of piece 2. Either
they used to be directly connected on the opposite sides of both pieces, either they came
from the same roll and there was one or more pieces of tape in between them, or they
came from different rolls of duct tape.
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Notice that H ′dXY and H ′dY X are equal to the complements of H ′pXY and H ′pY X respectively.
Further, we have that H ′d = H ′dXY ∩H ′dY X .
For the background information we make the same assumptions as before. There is one

additional requirement, which is that both sides of the pieces of duct tape are torn, i.e.:

I ′ : The 2 pieces of duct tape have the same physical and chemical appearances. The 2
pieces are both 5 cm wide, have a weft insertion scrim, a grey polymeric backing of the
same structure, are torn on both sides and the warp yarns are vertically aligned. The
positions of any observed missing warp yarns on each side.

From this we see that the likelihood ratio is given as

LR′(E1, E2) := LRH′p,H′d(E1, E2|I ′) =
P(E1, E2|H ′p, I ′)
P(E1, E2|H ′d, I ′)

. (D.1)

With some work we can rewrite this LR into two separate terms. For this we notice that
due to symmetry it holds that P(H ′pXY |H ′p, I ′) = P(H ′pY X |H ′p, I ′) = 1

2 . Furthermore, we use
P(E1, E2|H ′p, I ′) = P(E1, E2|H ′pXY , I ′)P(H ′pXY |H ′p, I ′) + P(E1, E2|H ′pY X , I ′)P(H ′pY X |H ′p, I ′) and
we find

LR′(E1, E2|I ′) =
1

2

P(E1, E2|H ′pXY , I ′)
P(E1, E2|H ′d, I ′)

+
1

2

P(E1, E2|H ′pY X , I ′)
P(E1, E2|H ′d, I ′)

. (D.2)

Each of these terms can be further rewritten such that we only need to take one side of each
piece of duct tape into consideration, i.e.,

LR′(E1, E2|I ′) =
1

2

P(E1X , E2Y |H ′pXY , I ′)
P(E1X , E2Y |H ′dXY , I ′)

+
1

2

P(E1Y , E2X |H ′pY X , I ′)
P(E1Y , E2X |H ′dY X , I ′)

. (D.3)

Here we used that H ′pXY ⊂ H ′dY X and H ′pY X ⊂ H ′dXY and we assumed that (H ′pXY ⊥⊥
E1Y , E2X)|H ′dY X and similarly (H ′pY X ⊥⊥ E1X , E2Y )|H ′dXY . In (D.3) we recognize the LR
as we defined for specific comparison, twice. The first one only considers the X-side of piece 1
and the Y-side of piece 2. The second one only considers the Y-side of piece 1 and the X-side of
piece 2. Notice that

P(EiX , EjY |H ′pXY , I ′) = P(EiX , EjY |Hp, I),

P(EiX , EjY |H ′dXY , I ′) = P(EiX , EjY |Hd, I),

for (i, j) ∈ {(1, 2), (2, 1)}. Where Hp, Hd and I are as described above for specific comparison.
Hence we see that

LR′(E1, E2|I ′) =
1

2
LRHp,Hd

(E1X , E2Y |I) +
1

2
LRHp,Hd

(E2X , E1Y |I). (D.4)

Now that we have shown that we can express the LR for the general comparison in LRs for
specific comparison, we will focus on the calculation of the LR for specific comparison. In other
words we are interested in the value of

LRHp,Hd
(EX , EY ) =

P(EX , EY |Hp, I)

P(EX |Hd, I)P(EY |Hd, I)
. (D.5)

To find the probabilities of these LRs we will formulate a model. From now on when we are
talking about the LR we are referring to this last one.
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Appendix E.

Likelihood ratio for patterns with missing
yarns

E.1. Missing yarns at middle or bottom of pattern

Let us consider two loopbreaking patterns (Xn)mn=0 and (Yn)mn=0 of the same length (m + 1),
such that only the pattern for the X-side contains one missing yarn at height k, i.e., Xk = −1,
for some 1 ≤ k ≤ m. The LR for these two patterns is given by

LR(EX , EY ) =
P((Xn,Yn)mn=0|Hp)

P((Xn)mn=0|Hd)P((Yn)mn=0|Hd)
.

We assume that the first order Markov property applies to these patterns. The Y-side does not
contain any missing yarns, so the expression for P((Yn)mn=0|Hd) remains unchanged. To deal
with the missing yarn in the pattern for the X-side, we just sum over all the possible states of
this missing yarn. Hence we get for the probability given Hd

P((Xn)mn=0|Hd) = P((Xn)k−1n=0|Hd)
∑
i∈M

P((Xn)mn=k+1|Xk = i, Hd)P((Xk = i|Xk−1, Hd),

where M is the state space of Xn, which does not include the state missing. Notice that if the
missing yarn is at the bottom of the pattern, i.e., k = m, then we just get the probability for a
shorter pattern, since

P((Xn)mn=0|Hd) = P((Xn)m−1n=0 |Hd)
∑
i∈M

P((Xm = i|Xm−1, Hd)

= P((Xn)m−1n=0 |Hd) · 1.
(E.1)

The probability of the two patterns given Hp, for any 1 ≤ k ≤ m, is given by

P((Xn)mn=0, (Yn)mn=0|Hp) = P((Xn)k−1n=0, (Yn)k−1n=0|Hp)

·
∑
i∈M

P(Yk,Xk = i|Xk−1,Yk−1, Hp) · P((Xn)mn=k+1, (Yn)mn=k+1|Yk,Xk = i, Hp).

This gives us the expression for the LR. This method can be expanded to any number of missing
yarns in the two patterns, that are not at the top of the patterns.

E.2. Missing yarns at top of pattern

Any missing yarns at the top of the loopbreaking patterns will change the vertical alignment
of the two patterns. Furthermore, the horizontal position of each yarn is defined based on the
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horizontal position of the first yarn. Therefore, the missing yarns at the top of the pattern
should be evaluated with care.
Consider two loopbreaking patterns (Xn)n≥0 = (xn)mx

n=0 and (Yn)n≥0 = (yn)
my

n=0, recall
Xn = (Xn, ξn) and Yn = (Yn, γn), where x0 and y0 are the respective realizations of the states
of the first present warp yarn. Further, mx + 1 and my + 1 denote the lengths of the patterns
without the missing yarns at the top. Since these patterns do not include any missing yarns
at the top of the pattern, the Xn does not necessarily represent the warp yarn at height n.
When comparing two sides given Hp, we want to compare the states of the loops that used
to be connected to each other. Therefore, we want to incorporate the vertical alignment of
these patterns. In that case we will consider the shifted sequences, represented by the random
variables Xn and Yn. Let SX and SY denote the random variables representing the starting
height of the loopbreaking patterns of the X-side and Y-side respectively. Suppose SX = sx, i.e.,
there are sx missing yarns above the first present yarn, then we get (Xn)n≥sx = (xn−sx)mx+sx

n≥sx .
We assume that the possible values of SX and SY are known and contained in I. In general, a
certain combination of starting heights is only contained in I if the total number of warp yarns
(present and missing) on both sides are equal in that case. If that does not hold initially, it must
be possible to have additional unobserved missing yarns at the bottom of the shortest pattern.
This does not change the probability of finding this pattern given Hd, by Equation E.1.

One possible vertical alignment Let us first consider the case that the vertical alignment of
the two patterns is known and thus the number of missing yarns at the top is known, i.e., I
contains only one combination of SX and SY , say SX = sx and SY = sy. Let us evaluate the
probability given Hd. For the X-side we have

P(EX |SX = sx, Hd) = P ((Xn)n≥0 = (xn)mx
n=0|SX = sx, Hd)

= P
(
(Xn)n≥sx = (xn−sx)mx+sx

n=sx |SX = sx, Hd

)
.

In our model we will use the horizontal position of the first yarn as a reference point for the
following yarns. Therefore we always set its position to zero, even if this yarn is missing.
However, in that case its position is unknown, and then we do not know the respective horizontal
positions of the yarns that are present. It is thus not suitable to use a pattern starting with any
missing yarns. Therefore we neglect the information that is provided by the missing warp yarns
and we approximate the probability

P
(
(Xn)n≥sx = (xn−sx)mx+sx

n=sx |SX = sx, Hd

)
≈ P ((Xn)n≥0 = (xn)mx

n=0|SX = 0, Hd) . (E.2)

We will omit the notation of the end of the sequence and that of the starting height if it equals
zero. Thus we simply write

P(EX |SX = sx, Hd) ≈ P ((Xn)n≥0 = (xn)n≥0|Hd) . (E.3)

Note that for the Y-side the reasoning is analogous.
Let us consider P(EX , EY |Hp). Here we do need to take both vertical alignments into account.

Further, the total number of yarns (missing and present) of both patterns should be equal,
otherwise the patterns do not align, i.e., SX + mx = SY + my. Let us assume w.o.l.o.g. that
SX ≥ SY . First consider the simple case that SX = SY , we get

P(EX , EY |SX = SY = s,Hp)

= P ((Xn)n≥0 = (xn)n≥0, (Yn)n≥0 = (yn)n≥0|SX = SY = s,Hp)

= P ((Xn)n≥s = (xn−s)n≥s, (Yn)n≥s = (yn−s)n≥s|SX = SY = s,Hp)

≈ P ((Xn,Yn)n≥0 = (xn,yn)n≥0|SX = SY = 0, Hp) .
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This last approximation is based on the assumption that we can disregard the missing yarns
that are missing on both sides. Using this and Equation E.3 we can now give an expression for
the corresponding likelihood ratio

LRHp,Hd
(EX , EY |SX = SY = s) ≈ P ((Xn,Yn)n≥0 = (xn,yn)n≥0|Hp)

P ((Xn)n≥0 = (xn)n≥0|Hd) · P ((Yn)n≥0 = (yn)n≥0|Hd)
.

(E.4)
For the case where SX > SY , i.e., at the start of the pattern of the Y-side there are no yarns

on the X-side. We can split the patterns into two parts, the first part that has only observations
on the Y-side and the second part starting at the point that there are observations on both
sides. We can write

P(EX , EY |SX = sx, SY = sy < sx, Hp)

= P ((Xn)n≥0 = (xn)n≥0, (Yn)n≥0 = (yn)n≥0|SX = sx, SY = sy < sx, Hp)

= P
(
(Xn)n≥sx = (xn−sx)n≥sx , (Yn)n≥sy = (yn−sy)n≥sy |SX = sx, SY = sy < sx, Hp

)
= P

(
(Xn,Yn)n≥sx = (xn−sx ,yn−sy)n≥sx , (Yn)sx−1n=sy = (yn−sy)sx−1n=sy |SX = sx, SY = sy < sx, Hp

)
= P

(
(Xn,Yn)n≥sx = (xn−sx ,yn−sy)n≥sx |Ysx−1 = ysx−1, SX = sx, SY = sy < sx, Hp

)
· P
(

(Yn)sx−1n=sy = (yn−sy)sx−1n=sy |SY = sy < sx, Hp

)
.

For this last equality we apply the assumption of the Markov property for the patterns. Note
that only the states of the yarns at height sx depend on the state of the yarn at height sx − 1.
We assume that the effect of the yarn at height sx − 1 on the yarns at height sx is negligible.
This is based on the idea that the part(s) of the patterns that have present yarns on both sides
provides the most information. In this way we get

P(EX , EY |SX = sx, SY = sy < sx, Hp)

≈ P
(
(Xn,Yn)n≥sx = (xn−sx ,yn−sy)n≥sx |SX = sx, SY = sy < sx, Hp

)
· P
(

(Yn)sx−1n=sy = (yn−sy)sx−1n=sy |SY = sy < sx, Hp

)
Notice that for the X-side the horizontal positions are all respective to the horizontal position
ξsx = 0, however the horizontal positions of the Y-side are defined with respect to γsy . When
the two patterns have the same starting height, then these reference points align. However that
is not the case and we want to adjust for this. Let us define for any s ≥ 0

σs : (yn, γn) 7→ (yn, γn − γs)

for all n ≥ 0. This gives us a horizontally shifted pattern. We are only concerned about the
horizontal positions of the yarns respective to its former and following yarns, hence for any s ≥ 0
we state that

P ((Yn)n≥0 = (yn)n≥0) = P ((Yn)n≥0 = (σs(yn))n≥0) .

For our model we assume that the horizontal position of the reference points are aligned. There-
fore, we want the reference points to be at the same height and set both to zero. So we are
interested in

P(EX , EY |SX = sx, SY = sy < sx, Hp)

≈ P
(
(Xn,Yn)n≥0 = (xn, σsx−sy(yn+sx−sy))n≥0|SX = 0, SY = 0, Hp

)
· P
(

(Yn)
sx−sy−1
n=0 = (yn)

sx−sy−1
n=0 |SY = 0, Hp

)
.
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We assume that the probability of finding (Yn)
sx−sy−1
n=0 = (yn)

sx−sy−1
n=0 given that it used to be

connected to the X-side is equal to the probability of finding it given that it used to be connected
to any other piece of duct tape, since we do not have any information about the yarns opposite
of these first yarns. Hence, we have

P
(

(Yn)
sx−sy−1
n=0 = (yn)

sx−sy−1
n=0 |Hp

)
= P

(
(Yn)

sx−sy−1
n=0 = (yn)

sx−sy−1
n=0 |Hd

)
.

For these parts we can thus either use the model for two sides (given Hp) or the model for the
single sides (given Hd). Now we are finally able to give a general expression for the LR

LRHp,Hd
(EX , EY |SX = sx, SY = sy < sx, ŝ = sx − sy)

≈
P
(

(Yn)n≥0 = (yn)ŝ−1n=0|Hd

)
· P ((Xn,Yn)n≥0 = (xn, σŝ(yn+ŝ))n≥0|Hp)

P ((Xn)n≥0 = (xn)n≥0|Hd) · P ((Yn)n≥0 = (yn)n≥0|Hd)
. (E.5)

Multiple possible vertical alignments In some cases the vertical alignment of the two pieces of
duct tape is not certain. For our data we will consider at most 2 possible alignments, i.e., either
the X-side has two possible starting heights or the Y-side has two possible starting heights. In
general we let the set of possible starting heights for the X-side and the Y-side respectively be
denoted by SX and SY . Recall that two patterns can only align if the total number of warp
yarns is equal. However when the starting height is changed on one side, the total number of
warp yarns on that side is changed as well. This causes the total number of warp yarns on the
two sides to be different. We overcome this difference by adding unobserved missing warp yarns
at the bottom of the pattern with the least amount of total warp yarns. If this is impossible for
some
Let us denote the set of possible combinations of the starting height by SXY := {(sx, sy) :

sx ∈ SX , sy ∈ SY }. Notice that

P(EX , EY |SX = sx1, SY = sy1, Hp) = P(EX , EY |SX = sx2, SY = sy2, Hp)

if sx1−sy1 = sx2−sy2. This also obviously holds under Hd, by Equation E.2. So we can consider
the set

S ′XY := {ϕ(sx, sy) : (sx, sy) ∈ SXY },

where
ϕ : (sx, sy) 7→ (sx −min{sx, sy}, sy −min{sx, sy}).

We denote the weight of any (s′x, s
′
y) ∈ S ′XY by ωSXY

(s′x, s
′
y), which is defined as

ωSXY
(s′x, s

′
y) :=

|{(sx, sy) ∈ SXY : ϕ(sx, sy) = (s′x, s
′
y)}|

|SXY |
.

For all (s′x, s
′
y) ∈ S ′XY it holds that either s′x = 0 or s′y = 0. Therefore, we can also look at the

disjoint sets
S∗X := {s′x : (s′x, 0) ∈ S ′XY },
S∗Y := {s′y : (0, s′Y ) ∈ S ′XY , s′y 6= 0}.

(E.6)
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Note that S∗X ∪ S∗Y = S ′XY . We see that

P(EX , EY |SXY , Hp) =
∑
sx∈S∗X

P (EX , EY |SX − SY = sx,SXY , Hp) · P (SX − SY = sx|SXY , Hp)

+
∑
sy∈S∗Y

P (EX , EY |SY − SX = sy,SXY , Hp) · P (SY − SX = sy|SXY , Hp)

=
∑
sx∈S∗X

P (EX , EY |SX = sx,SXY , Hp) · ωSXY
(sx, 0)

+
∑
sy∈S∗Y

P (EX , EY |SY = sy,SXY , Hp) · ωSXY
(0, sy).

Here we assume that there is no other information about the starting positions and therefore
we give each combination of starting positions the same probability. This can be adjusted for
different situations where there is prior belief about the possible vertical alignments.
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Appendix F.

Assignment of conditional probability tables

We will provide the conditional probailitiy tables for the final dynamic Bayesian networks as
described in section 4.2. We will refer to the two one-side models as dbnX and dbnY for the
X-side and Y-side respectively, and we will refer to the two-side model as dbnXY.

F.1. Standard conditional probability tables

Let us consider the CPTs for the standard LR-system, which is trained on the set Dtrain(see
chapter 5).

F.1.1. Model induced conditional probability tables

Here we present the CPTs that are induced by the structure of the model.
The CPTs for the horiz_o nodes are too large to present in a table format. They are defined

by

P(ξ̄(o)n = ao,n|ξ̄(r)n = ar,n, εX,H0,n = eH0,n, εX,H,n = eH,n) =

{
1, if ao,n = ar,n − eH0,n + eH,n;

0, otherwise.

Here ξ̄(o)n represents the node horizX_o, ξ̄(r)n represents the node horizX_r, εX,H0,n represents
the node hor_first_errXand εX,H,n represents the node hor_errorX. The CPT for horizY_o
is defined equivalently.

Table F.1.: CPT for T_horizX_r and T_horizY_r for all of the models.

T_horiz_r
-4 0
-3 0
-2 0
-1 0
0 1
1 0
2 0
3 0
4 0
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Table F.2.: CPT for hor_first_errX and hor_first_errY for all of the models.

T_hor_first_err -2 -1 0 1 2

hor_first_err
-2 1 0 0 0 0
-1 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 1 0
2 0 0 0 0 1

Table F.3.: CPT for horizX_r in dbnXY only.

horizY_r -4 -3 -2 -1 0 1 2 3 4

horizX_r
-4 1 0 0 0 0 0 0 0 0
-3 0 1 0 0 0 0 0 0 0
-2 0 0 1 0 0 0 0 0 0
-1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 1 0 0 0
2 0 0 0 0 0 0 1 0 0
3 0 0 0 0 0 0 0 1 0
4 0 0 0 0 0 0 0 0 1

Table F.4.: CPT for loop_o and T_loop_o for all models.

loop_error yes no

loop_r Closed Complex Open Closed Complex Open

loop_o
Closed 0.0 0.5 0.1 1 0 0
Complex 0.9 0.0 0.9 0 1 0
Open 0.1 0.5 0.0 0 0 1
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Table F.5.: CPT for horizX_r and horizY_r for all models.
T_horiz_r -4 -3 -2 -1 0 1 2 3 4

jump -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1

horiz_r
-4 1 1 0.09 1 0 0 0.1 0 0 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-3 0 0 0.819 0 1 0 0.9 0 0 0.09 0 0 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-2 0 0 0.082 0 0 0.9 0 1 0 0.9 0 0 0.09 0 0 0.01 0 0 0 0 0 0 0 0 0 0 0
-1 0 0 0.009 0 0 0.09 0 0 0.9 0 1 0 0.9 0 0 0.09 0 0 0.01 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.01 0 0 0.09 0 0 0.9 0 1 0 0.9 0 0 0.09 0 0 0.01 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0.01 0 0 0.09 0 0 0.9 0 1 0 0.9 0 0 0.09 0 0 0.009 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0.01 0 0 0.09 0 0 0.9 0 1 0 0.9 0 0 0.082 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.01 0 0 0.09 0 0 0.9 0 1 0 0.819 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.01 0 0 0.1 0 0 1 0.09 1 1



F.1.2. Conditional probability tables based on expert knowledge

The CPTs for the nodes with observation errors T_hor_first_err, hor_error, T_loop_error
and loop_error were based on expert knowledge. Their values are represented in the tables
below.

Table F.6.: CPT for loop_error and T_loop_error corresponding to the medium level of ob-
servation error probabilities, for all models.

loop_r Closed Complex Open

loop_error
yes 0.005 0.1 0.005
no 0.995 0.9 0.995

Table F.7.: CPT for hor_error and T_hor_first_err corresponding to medium error probabil-
ities for all models.

loop_r’ Closed Complex Open

loop_r Closed Complex Open Closed Complex Open Closed Complex Open

hor_error
-2 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025
-1 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475
0 99 1 99 99 3 99 99 1 99
1 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475
2 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025
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F.1.3. Conditional probability tables estimated from data

The CPTs for the nodes T_loop_r, loop_r and jump in all three models are fully based on the
training data. The probabilities are estimated as described in section 4.3. Here we represent
their values using Dtrain as the training data. The probabilities denoted in the tables below are
rounded to three decimal points.

CPTs for dbnXY and dbnY The CPTs given below are the CPTs used for both dbnXY and
dbnY, for the nodes jumpY, T_loopY_r, loopY_r, T_loopX_r and loopX_r.

Table F.8.: CPT for jumpY for dbnXY and dbnY. Training data is Dtrain.

T_loopY_r Closed Complex Open
loopY_r Closed Complex Open Closed Complex Open Closed Complex Open
jumpY
-1.0 0.017 0.429 0.015 0.077 0.032 0.100 0.057 0.786 0.022
0.0 0.968 0.543 0.956 0.615 0.871 0.200 0.933 0.143 0.961
1.0 0.014 0.029 0.029 0.308 0.097 0.700 0.010 0.071 0.017

Table F.9.: CPT for loopY_r for dbnXY and dbnY. Training data is Dtrain.

T_loopY_r Closed Complex Open

loopY_r
Closed 0.706 0.506 0.546
Complex 0.019 0.403 0.012
Open 0.276 0.091 0.442

Table F.12.: CPT for loopX_r for dbnXY and dbnY. Training data is Dtrain.

loopY_r Closed Complex Open

T_loopX_r Closed Complex Open Closed Complex Open Closed Complex Open

loopX_r
Closed 0 0 0 0.375 0.095 0.233 0.972 0.714 0.953
Complex 0.002 0.120 0.005 0.125 0.857 0.326 0.008 0.214 0.008
Open 0.998 0.880 0.995 0.500 0.048 0.442 0.020 0.071 0.039

Table F.10.: CPT for T_loopY_r for dbnXY and dbnY. Training data is Dtrain.

T_loopY_r

Closed 0.650
Complex 0.026
Open 0.324

73



Table F.11.: CPT for T_loopX_r for dbnXY and dbnY. Training data is Dtrain.

T_loopY_r Closed Complex Open

T_loopX_r
Closed 0 0.231 0.958
Complex 0.007 0.423 0.009
Open 0.993 0.346 0.032

CPTs for dbnX The CPTs given below are the CPTs used for both dbnX for the nodes jumpX,
T_loopX_r, loopX_r, T_loopY_r and loopY_r.

Table F.13.: CPT for jumpX for dbnX. Training data is Dtrain.

T_loopX_r Closed Complex Open

loopX_r Closed Complex Open Closed Complex Open Closed Complex Open

jumpX
-1.0 0.013 0.100 0.074 0.154 0.040 0.720 0.012 0.036 0.022
0.0 0.977 0.700 0.922 0.769 0.920 0.240 0.956 0.393 0.958
1.0 0.010 0.200 0.004 0.077 0.040 0.040 0.033 0.571 0.019

Table F.14.: CPT for T_loopX_r for dbnX. Training data is Dtrain.

T_loop_r

Closed 0.317
Complex 0.018
Open 0.665
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Table F.15.: CPT for loopX_r for dbnX. Training data is Dtrain.

T_loopX_r Closed Complex Open

loopX_r
Closed 0.426 0.185 0.269
Complex 0.008 0.407 0.013
Open 0.566 0.407 0.718

Table F.16.: CPT for T_loopY_r for dbnX. Training data is Dtrain.

T_loopX_r Closed Complex Open

T_loopY_r
Closed 0 0.236 0.971
Complex 0.019 0.600 0.014
Open 0.981 0.164 0.016

Table F.17.: CPT for loopY_r for dbnX. Training data is Dtrain.

loopX_r Closed Complex Open

T_loopY_r Closed Complex Open Closed Complex Open Closed Complex Open

loopY_r
Closed 0 0 0 0.357 0.053 0.111 0.981 0.741 0.966
Complex 0.018 0.300 0.013 0.536 0.895 0.222 0.008 0.241 0.008
Open 0.982 0.700 0.987 0.107 0.053 0.667 0.011 0.019 0.027
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F.2. Alternative conditional probability tables

F.2.1. Training set is Dall

To train the model on the set Dall, the CPTs based on the data are replaced by the following
tables.

Table F.18.: CPT for T_loopY_r for dbnXY and dbnY. Training data is Dall.

T_loopY_r

Closed 0.638
Complex 0.021
Open 0.342

Table F.19.: CPT for T_loopX_r for dbnXY and dbnY. Training data is Dall.

T_loopY_r Closed Complex Open

T_loopX_r
Closed 0.000 0.261 0.961
Complex 0.006 0.391 0.008
Open 0.994 0.348 0.031

Table F.20.: CPT for loopY_r for dbnXY and dbnY. Training data is Dall.

T_loopY_r Closed Complex Open

loopY_r
Closed 0.697 0.505 0.537
Complex 0.014 0.371 0.011
Open 0.288 0.124 0.452
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Table F.21.: CPT for loopX_r for dbnXY and dbnY. Training data is Dall.

loopY_r Closed Complex Open

T_loopX_r Closed Complex Open Closed Complex Open Closed Complex Open

loopX_r
Closed 0.000 0.000 0.000 0.409 0.091 0.260 0.973 0.800 0.957
Complex 0.001 0.100 0.006 0.136 0.864 0.300 0.008 0.133 0.005
Open 0.999 0.900 0.994 0.455 0.045 0.440 0.019 0.067 0.039

Table F.22.: CPT for jumpY for dbnXY and dbnY. Training data is Dall.

T_loopY_r Closed Complex Open

loopY_r Closed Complex Open Closed Complex Open Closed Complex Open

jumpY
-1.0 0.019 0.442 0.013 0.061 0.028 0.067 0.048 0.810 0.024
0.0 0.968 0.512 0.964 0.633 0.861 0.200 0.946 0.143 0.958
1.0 0.014 0.047 0.023 0.306 0.111 0.733 0.006 0.048 0.018

Table F.23.: CPT for T_loopX_r for dbnX. Training data is Dall.

T_loopX_r

Closed 0.329
Complex 0.015
Open 0.655

Table F.24.: CPT for T_loopY_r for dbnX. Training data is Dall.

T_loopX_r Closed Complex Open

T_loopY_r
Closed 0.000 0.262 0.973
Complex 0.016 0.554 0.011
Open 0.984 0.185 0.016

Table F.25.: CPT for loopX_r for dbnX. Training data is Dall.

T_loopX_r Closed Complex Open

loopX_r
Closed 0.436 0.197 0.279
Complex 0.009 0.324 0.011
Open 0.555 0.479 0.710
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Table F.26.: CPT for loopY_r for dbnX. Training data is Dall.

loopX_r Closed Complex Open

T_loopY_r Closed Complex Open Closed Complex Open Closed Complex Open

loopY_r
Closed 0.000 0.000 0.000 0.424 0.053 0.077 0.981 0.742 0.971
Complex 0.016 0.308 0.011 0.485 0.895 0.308 0.007 0.242 0.005
Open 0.984 0.692 0.989 0.091 0.053 0.615 0.012 0.016 0.024

Table F.27.: CPT for jumpX for dbnX. Training data is Dall.

T_loopX_r Closed Complex Open

loopX_r Closed Complex Open Closed Complex Open Closed Complex Open

jumpX
-1.0 0.014 0.071 0.065 0.235 0.038 0.676 0.011 0.029 0.023
0.0 0.974 0.714 0.931 0.706 0.923 0.297 0.958 0.353 0.959
1.0 0.012 0.214 0.004 0.059 0.038 0.027 0.032 0.618 0.018
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F.2.2. Different observation error probabilities

We consider low, medium and high observation error probabilities. The CPTs for loop_error
and hor_error corresponding to the medium level are given above. These tables can be replaced
by the following tables for low or high observation error probabilities.

Table F.28.: CPT for hor_error and T_hor_first_err corresponding to low error probabilities
for all models.

loop_r’ Closed Complex Open

loop_r Closed Complex Open Closed Complex Open Closed Complex Open

hor_error
-2 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
-1 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495
0 999 1 999 999 3 999 999 1 999
1 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495
2 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005

Table F.29.: CPT for loop_error and T_loop_error corresponding to low error probabilities
for all models.

loop_r Closed Complex Open

loop_error
yes 0.001 0.01 0.001
no 0.999 0.99 0.999

Table F.30.: CPT for hor_error and T_hor_first_err corresponding to high error probabilities
for all models.

loop_r’ Closed Complex Open

loop_r Closed Complex Open Closed Complex Open Closed Complex Open

hor_error
-2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
-1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0 9 1.5 9 5.667 4 5.667 9 1.500 9
1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
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Table F.31.: CPT for loop_error and T_loop_error corresponding to high error probabilities
for all models.

loop_r Closed Complex Open

loop_error
yes 0.05 0.2 0.05
no 0.95 0.8 0.95
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