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Abstract

The Carrollian limit can be obtained by starting from a relativistic system and collapsing the lightcone.
This can be contrasted with the Galilean limit, which can be seen as opening up the lightcone. The
Galilean limit results in a system with Galilean symmetry. Similarly, the Carrollian limit results in a

system with Carrollian symmetry. In this thesis we clarify how to arrive at Carrollian systems. In order to
do this we contrast two different approaches. The first approach consists of an explicit coordinate

transformation. This is akin to closing up the light cone in a relativistic system. This leads to interesting
interpretations such as the Carrollian particles becoming static or tachyonic. By using the first approach

we arrive at a set of particles that could potentially describe physics in a hyper-relativistic regime, such as
near the event horizon of a black hole. Another approach involves an embedding into Bargmann space. By
embedding a Carrollian structure into a manifold exhibiting Bargmann symmetry we find a more general

class of Carrollian systems, not all of which are given by a taking the limit on a relativistic system.
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Throughout this document, we use (-,+,+,+) as our sign convention. Furthermore, we need to distinguish
between Galilean, Lorentzian and Carrollian quantities. Where confusion may arise, we will use the subscripts
G,L and C respectively. We also remind the reader that for any four-vector vµ denotes that said vector
transforms contravariantly, while vµ denotes a covariant transformation law. Some parts of the thesis are a
review of other papers, this will be indicated by a citation at the beginning of these parts.
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Chapter 1

Introduction

There has been interest in systems with a novel kind of symmetry called a Carroll symmetry [1, 2, 3]. In
this thesis we will focus on systems with such a symmetry. After providing some context regarding Carroll
symmetry we start our inquiry in chapter 2 by showing how systems with Carrollian symmetry may arise
by taking a limit on a relativistic system. This results in a few different particles.
In Chapter 3 we delve deeper into the mathematics underlying Carroll symmetry. Here we will encounter
a way of arriving at Carrollian systems that involves an embedding of Carrollian spacetime into Bargmann
spacetime [6].
In Chapter 4 we compare the two methods to obtain a new perspective on the particles we have found in
Chapter 2.

1.1 Boost symmetries

In general, a boost symmetry is a symmetry where time and space can transform into each other. It can
usually be thought of as a coordinate transformation that describes a change in the velocity of the observer.
A boost symmetry is often demanded from a system. One demands that the system of equations describing
the system stays the same under the relevant boost. One might want to consider different boost symmetries
depending on the system one wants to describe. The reader is most likely already familiar with the following
boosts:

~x′ = γ(~x− ~βct) t′ = γ(t−
~β · ~x
c

), (Lorentz boost)

~x′ = (~x− ~vt) t′ = t. (Galilei boost)

Where ~β = ~v
c and γ = (1− β2)−

1
2 .

Lorentz boosts are a symmetry of relativistic theories. The full symmetry group of such a theory is the
Poincaré group. The Poincaré group ISO(1, 3) is of pivotal importance in any relativistic theory. It consists
of those coordinate transformations that leave the Minkowski metric invariant. The group consists of three
parts: rotations, Lorentz boosts and translations. Rotation and translation invariance exist in a multitude
of theories.
The Galilean boost can be obtained from the Lorentz boosts by taking the limit c → ∞ on the Lorentz
boosts. This can be interpreted as the assumption that all relevant velocities will be small compared to the
speed of light. The limit will result in a classical theory. In this limit only the boost has changed, and this
has had a drastic impact on the behaviour of the system. The Lorentz boost is involved in the description
of most features distinct to a relativistic theory, such as time dilation and length contraction. Changing
the underlying boost symmetry to the Galilean case has therefore completely changed the behaviour of the
system.
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Such a change of the symmetries by taking a limit can also be viewed as a limit on the Lie algebra describing
the relevant symmetry group. The process of changing one Lie algebra to another by taking a limit is called
an Inönü-Wigner contraction. We can explicitly show the procedure in the above case. [2] We start by
considering the Poincaré algebra.

[Mµν ,Mρσ] =− i~(ηµρMνσ + ηνσMµρ − ηµσMνρ − ηνρMµσ),

[Mµν , Pρ] =− i~(ηµρPν − ηνρPµ),

[Pµ, Pν ] =0. (Poincaré algebra)

Here Mµν is the generator of both boosts and rotations. The Pµ are the generators of the respective
translations. We split this into two subalgebras, consisting of the generators of ISO(1) and ISO(3)
respectively. The first algebra contains only P0. The second algebra contains both rotations and translations
of the spacelike components. The generators that mix these two algebras are exactly the boosts.

We can rescale one of these algebras with respect to the other one with a dimensionless parameter ω.
Specifically, we rescale the Euclidean part Pa as P̃a = Pa

ω and taking ω → ∞. To keep the two groups in

contact with each other we must also scale boosts between the two subalgebras: Ma0 = B̃a0 = Ba0
ω . Here

we denote the zero-components of M by B. This rescaling is called the Galilei contraction. The rescaling
changes the Lie algebra. As a result, the boosts now commute among each other. More importantly, there
is a difference between the spatial and timelike translation operators. The time translation operators do
not commute with the generator of the boost symmetry: [B0i, P0] = i~Pi while the spacelike translation
operators commute: [B0i, Pj ] = 0. The spatial translation operators cannot change to timelike translation
operators under a boost while the time translation operator can affect space after a boost. It is indeed a
main feature of Galilei boosts that time does not change under such a boost.
In taking the contraction we have switched from Lorentzian to Galilean symmetry.

1.2 Carroll symmetry

The Galilei contraction has been extensively studied. [2, 4]. It is one of the main examples of a group
contraction, as it the classical limit of a relativistic theory. There is, however, nothing stopping us from
taking the opposite contraction This was originally done by Levy-Leblond in [5].
Rescaling the Lorentzian part P0 as P̃0 = P0

ω and taking ω → ∞. We also scale boosts between the two

subalgebras B̃a0 = Ba0
ω . This is the Carroll contraction, and its result is, by definition, the Carroll Lie

algebra. A Carrollian system then is a system whose symmetry is described by the Carroll Lie algebra.

We remark that the behaviour of the boost starts to depend on what space they act on. Given a boost
in the Carroll limit [Ba0, P0] = 0, while [Ba0, Pb] = iδabP̃0. Thus, a boost can turn a spatial translation into
a timelike one, but not the other way around. Since the Carroll group will be of special interest to us, we
write its Lie algebra explicitly.

[Mab, B0c] =i~(δacB0b − δbcB0a),

[B0b, B0c] =0,

[Pa, B0b] =i~δabP0,

[P0, P0] = [P0, Pa] = 0,

[P0,Mab] =0. (Carroll algebra)
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The commutators of the spatial generators do not change.

The Carroll limit can be regarded as the opposite of the Galilean limit, and is therefore often regarded
as a limit of c→ 0.

An alternative definition has been put forward in [6]. One can view this limit as a limit in coordinate
space. [6] We define a Carrollian time

s = C ∗ x0 = Cct (1.1)

and take the limit of C →∞. The Carrollian boost can only be obtain from the Lorentz boost by defining
a velocity C and defining the new boost parameter as

~b = ~β ∗ C. (1.2)

A similar change of boost parameter happens in the Galilean limit. Here the boost parameter changes from
β = v

c → v. The definition of ~b is distinct from a coordinate transformation on the velocities, which would

yield ∂x
∂x0 = C ∂x

∂s .
In changing these coordinates we do indeed take the Carroll limit on the level of the operators. This can
be seen from P 0 ∝ ∂

∂x0 = 1
C
∂
∂s . C takes the role of ω in the Inönu-Wigner contraction. The corresponding

boost is given by

~x′ = ~x s′ = s−~b · ~x. (Carroll boost)

where s is the Carrollian timelike coordinate.
We can therefore view the limit as a rescaling of the timelike coordinate. This means taking the Carroll

limit can be seen as the process a collapsing the lightcone: x0

xi → 0. This tells us something interesting
about Carroll particles: Any particle that was moving at velocity u ≤ c before the Carroll limit has stopped
moving after the Carroll limit.

1.2.1 Possible applications

While the Inönü-Wigner contraction of the Lorentz algebra to the Galilei algebra has clear physical relevance,
the contraction to the Carroll algebra might at first seem of only mathematical interest. As is often the case
in physics, the mathematical procedure of taking the Carroll contraction might open up some avenues of
research.

Firstly, the Carroll group might be useful to describe effects near the event horizon of a black hole.
Consider, for example, a Schwarzschild black hole. For radially moving light we have a speed of light
c(r) = dr

dt = c(1 − rH
r ) where r is the Schwarzschild radius. So taking the Carroll limit would send c → 0

near the Schwarzschild radius.
Furthermore, there may be applications to cosmology. The FRW metric tells us that the universe expands.
This means objects at a large distance have can have a physical velocity larger that the speed of light. In this
case, the Carroll limit could be interpreted as a limit where the velocity of particles is large with respect to
the speed of light. As another application within cosmology one may consider a gas made of Carroll particle
with energy density ε and pressure P has ε + P = 0 [7]. Cosmologists are searching for particles with this
property, because they are a possible explanation for early universe inflation.
Lastly, the Carroll group is relevant in the context of asymptotic symmetry groups. One may consider a
spacetime and try to find a symmetry group far away from the origin, where the spacetime is assumed to be
approximately flat. These symmetry groups seem to be related to the Carroll group. The BMS group, the
asymptotic symmetry group that one finds in lightlike infinity can be related to the Carroll group. A better
understanding of Carroll symmetry could contribute to an understanding of several asymptotic symmetry
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groups. This could be useful for developing flat space holography.

1.2.2 Systems with a Carroll symmetry

For the reasons given above, efforts have been made to understand systems with Carroll symmetry.
Recent efforts [1, 2] have shown that free Carroll particles have quite trivial dynamics, they cannot move.
Indeed, taking the speed of light to zero while retaining the condition that particles move slower than the
speed of light will yield non-moving particles. There is, however, a possibility that tachyons will appear as
moving particles in Carroll invariant systems.
Another approach is inspired by the Newton-Cartan formalism. Efforts have been made to formulate a
version of general relativity utilizing Galilei instead of Lorentz symmetry [8, 9]. The biggest hurdle here is
that the metric splits into two distinct objects, a spatial and a timelike metric objects that can capture the
relevant symmetries. This occurs because in the limit, the metric becomes degenerate, limc→∞ c2dt2 →∞.
This inspires the idea of developing a similar formalism for a Carrollian limit of general relativity. Similar
methods could be used to describe Carrollian particles as a limit relativistic ones. Recent efforts have been
made to find such a Carroll invariant description of gravity [3].

In this thesis we will specifically be interested in the way we can describe Carroll-invariant systems. In
order to do this we will propose a way to take the Carroll limit and contrast this with a method which is
similar in spirit to Newton-Cartan formalism. We will be interested in two kinds of particles. The first kind
consists of particles that arise as the limit of a relativistic point particle. The second kind is the Carroll
invariant version of electromagnetism considered in [6]. For both kinds of particles there are two different
Carrollian limits. This is an interesting result that might seem counter-intuitive at first.
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Chapter 2

The Carroll limit and its
corresponding particles

2.1 Research on Carrollian symmetries

We provide a quick overview of the current status of the research and how our work will fit into the research.
Let us start with the context in which Carroll symmetry was originally discovered. That is, the context of
an Inönu-Wigner contraction. The Inönü-Wigner contraction is a mathematical operation on a Lie algebra.
At the time, it was mainly of interest to physicists because it provided a way to move from the Poincaré to
the Galilean algebra. Hence providing a way to ”take the Galilean limit” on the level of the Lie algebra.
In this context the observation was made that when one made slightly different choices while taking the
Inönü-Wigner contraction, one obtains a new algebra, the Carroll algebra. With this comes of course an
associated symmetry called Carroll symmetry [5].

The above observation was made in 1965. It took until 2014 until there was a resurgence in interest in
the symmetry. The reason is the following: The Inönü-Wigner contraction introduces a parameter which is
usually seen as dimensionless. In the Galilean contraction this dimensionless parameter aligns with c. Hence
the Inönü-Wigner contraction in this case aligns with the limit c → ∞. In the Carrollian case, there are
two distinct ways of interpreting the parameter ω in the Inönü-Wigner contraction. We may either read
ω = 1

c and send c → 0 or read ω as a parameter C, independent from c, and send C → ∞. These two
ways of interpreting the parameter have the same result on the Lie algebra, but a different result in terms
of equations describing the Carrollian particles. The observation that we need not relate ω to C was first
made in [6]. It provided a new viewpoint from which to view systems with a Carrollian symmetry.

A different route that was taken is by utilizing a direct implementation of the symmetry. We need not
start from a relativistic situation to obtain a system with Carrollian symmetry. Instead, one may demand
Carrollian symmetry from the start and set up a set of equations that satisfy the symmetry. This is, for
example, done in [3]. This approach sidesteps the issue of finding a physical interpretation for ω altogether.

In our own research we will mainly focus on the approach of taking C →∞ on a relativistic system and in
what ways it corresponds to the research that has been done by implementing Carrollian symmetry without
making reference to any relativistic system.
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2.2 Carroll particles

We can find the particles in the Carroll limit by considering the irreducible representations of the Carroll
algebra [7, 9]. This means we are looking for subspaces of the Hilbert space that are mapped to themselves
under the given transformations. We can distinguish between two cases, a case with zero and a case with
nonzero ”energy”. 1

In the zero energy case, the spacial momenta and the boosts commute and therefore there exists a common
set of eigenvectors. This means each particle is determined by the eigenvalues of P a and Ba, denoted by
p and b. If we have such an eigenvalue, the corresponding eigenvector must have been invariant under the
relevant operator. Applying a rotation to a vector gives another vector with the same length, so to be
invariant under rotations we require the norm of these eigenstate 3-vectors to be conserved. Therefore, each
zero energy eigenstate can be uniquely determined by |p| and |b|.
In the nonzero energy case, the Commutator of p and b looks exactly like the regular commutation relation
from quantum mechanics. It is known by the Stone-von Neumann theorem that there exists exactly one
representation [7].

2.3 Taking the limit

To extract some relevant dynamics from these particles, we must find out what systems with these symmetries
look like. provide some generic arguments that apply to Carroll invariant systems. When we start from a
Lorentz invariant system, we can find a Carroll invariant system by taking the Carroll limit on the system.
In order to do this, we follow a procedure introduced in [6]. We define a Carrollian time s such that s = cCt.
Here c is the speed of light and C is another parameter with the dimension of velocity. Taking the Carroll
limit consists of two distinct steps.
Firstly, we have changed our basis from x0 = ct to s and must rewrite all equations in terms of s.
Secondly, we take the limit C →∞.
We also need to redefine some quantities for the Carrollian case. As an explicit example of another rescaled
quantity we consider the boost parameter. In relativity it is given by β = u

c , while in the Galilean limit it
is given by u. Similarly, in the Carroll limit we define b = C ∗ β. The relevant boost then becomes

~x′ = ~x s′ = s−~b · ~x. (2.1)

It is important to keep track of the dimensions in taking this limit. The dimensions are given by [b] = LT−1,
C = LT−1 and s = L2T−1. The choice of dimensions might seem odd at first, but it will aid us in establishing
a duality between the Galilean and Carrollian case. For now we may observe that

• We can do this. All the above objects are defined by us, so we can assign any dimension we want as
long as it is consistent.

• The changes in dimension also occur when changing from a relativistic to a non-relativistic system.
We may compare the relativistic β = v

c to the non-relativistic v. Or the relativistic time coordinate
x0 = ct to the non-relativistic t. In both of these cases, similar objects have different dimensions in
the different theories.

All of this does mean that we need to be careful with our interpretation. Our interpretation will need to
align with the dimensions of the objects at hand.

1By ”energy” we mean: quantity generated by time translations, this will later turn out to not be an actual energy.
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The method laid out above is to be contrasted with the ”naive” limit c → 0. The idea of this limit stems
from the Galilean case. If a limit c→∞ moves us into a non-relativistic regime, then we might expect the
limit c→ 0 to take us to ultra-relativistic equations. The difference between these two definitions is subtle.
Every time a factor c refers to a timelike object in a relativistic setting we get the same result: ct = s

C . So
taking c → 0 on the left hand side and C → ∞ on the right hand side gives us the same answer. However,
not all factors of c refer to a timelike object. Consider, for example, the rest energy E = mc2. If c → 0 we
arrive at E = 0 while for C →∞ no change occurs. We may also look at the different notions of velocity that
correspond to the different theories. Under c→ 0, ∂tx stays conserved while ∂x0x = 1

c∂tx diverges. This can
be compared to C →∞, where both ∂tx and ∂x0x are conserved. While ∂sx = 1

C ∂x0x goes to zero in the limit.

We may also add that taking the Carrollian limit is akin to collapsing the lightcone in a spacetime diagram.
In contrast to the Galilean limit opening up the lightcone. Of course, this also motivates our choice for a
definition. We want to pick the definition that most closely aligns with our intuition. We know from special
relativity that restmass stays the same in an ultra-relativistic regime. Also, the closing up of the lightcone
and the result ”Carroll particles cannot move” us = 0 align closely.

2.3.1 Boosts

It may be instructive to take the limits on the boosts themselves first. This will allow us to see how a
four-vector should be transforming in the Carrollian case.

The matrices describing a Carroll transformation can be obtained by taking the limit on the Lorentz
transformations, written down in the coordinates (s, ~x). We may first observe that
γ = 1√

1−β2
= 1√

1−( bc )2
→ 1.

γ


1 −β1C −β2C −β3C
β1

C 1 0 0
β2

C 0 1 0
β3

C 0 0 1

→


1 −b1 −b2 −b3
0 1 0 0
0 0 1 0
0 0 0 1

 .
Which shows us that the redefinition b = Cβ was necessary for the resulting boosts to become Carrollian.
The Carrollian boost is now given by

Λµνx
ν =


1 −b1 −b2 −b3
0 1 0 0
0 0 1 0
0 0 0 1



s
x1

x2

x3

 =


s− b · x
x1

x2

x3

 .
As usual, the transformation of the lower indices is given by the inverse transpose:

Λµ−1Tν xν =


1 0 0 0
b1 1 0 0
b2 0 1 0
b3 0 0 1



s
x1

x2

x3

 =


s

x1 + b1
x2 + b2
x3 + b3

 .
We may now make an important observation while for Lorentzian matrices, and in the coordinates x0, xi,
the inverse transpose of a Lorentzian matrices is itself a Lorentz transformation. For Carrollian matrices,
this is no longer the case. The inverse transpose of the Carrollian boost matrix is a completely distinct
transformation. As such, upper and lower indices represent a completely different situation.
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2.3.2 Limits of four-vectors

We have seen that the limit of a Lorentz boost will always be a Carrollian or inverse transpose Carrollian
transformation. As such, the limit of a relativistic four-vectors will always transform as a Carrollian four-
vector. Suppose Λµνx

ν = xµ′. Then in the limit ΛµνCx
ν
C = xµ′C . A similar calculation goes for xµ.

2.3.3 Momentum

We will also be interested in the limit of the momentum, since we can extract the different particles from
taking the limit. We will distinguish between the limit of the relativistic momentum pL and the Carroll
momentum, denoted by pc or simply p. There exists a difference between them, since the Carroll momentum
is written in terms of s instead of ct.

The relativistic momentum four-vector in the relativistic coordinates, with x0 = ct, is given by

pµ =


E
c
p1
p2
p3

 = ηµνpν . The coordinate transformation x0 → s = Cx0 changes this to pµ =


EC
c
p1
p2
p3

 and

pµ =


− E
cC
p1
p2
p3

. Since C has a dimension of ms−1 the zeroth component of pµ and pµ have different dimensions

and therefore have different physical meaning. p0 is an energy while p0 carries the dimension of mass. This
remains true when taking the limit. We must make sure our momentum four-vectors transform correctly. In
order to find out the Carroll limit of the momentum and energy transformations without making reference
to the four-vectors.

~p‖′ = γ(~p‖ − βE
c

)→ ~p′‖ = ~p‖

~p′⊥ = ~p⊥

E′ ∗ C
c

= γ(
C

c
E − C~β · ~p)→ C ∗ E −~b · ~p

E′ ∗ 1

cC
=

1

cC
γ(E − c~β · ~p)→ 0

Where we note that γ = γβ = 1√
1−β2

= 1√
1− b2

C2

→ 1. In the above transformation laws, we see that

the 3-momentum does not change. This corresponds to both pµ, where the spatial components are always
unaffected. And pµ, where the timelike component is zero and therefore Carroll boosts have no effect. The
distinction between pµ and pµ is more important for the energy E. Its transformation law is captured by
pµ, pµ does not know about energy. We will later see how these transformations work in practice.

2.3.4 Velocity

The role of velocity in the Carrollian limit requires some further analysis. We have dx
ds = 1

cC
dx
dt → 0, so the

Carroll velocity becomes zero in the limit. However, us does not have a dimension of ms−1 but of an inverse
velocity sm−1.
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We propose the following interpretation: The Carroll velocity cannot be interpreted as the actual velocity
of the particle. The Carroll velocity will replace the actual velocity in the relevant equations after the limit
is taken, but the actual velocity ∂tx of the particle will remain unchanged. 2

We should also pay attention to the behaviour of the velocity under a Carroll boost. Under such a boost we
have dx

ds →
dx

d(s−b·x) = us
1−b∗us . We observe that there are two distinct cases. One where the velocity equals

zero and one where the velocity is non-zero. Of course, all particles that are found by taking a limit on a
relativistic have zero Carroll velocity.
The case where ∂sx 6= 0 has a glaring issue: the velocity may become infinite under a Carroll transformation.
We interpret this as meaning the notion of velocity is not relevant to the description of these kinds of particles.
We could however still find an interpretation for them as tachyons. For these particles, the notion of causality
has broken down. The boost to infinite velocity may correspond to a tachyon whose worldline is purely in
the spacelike direction.

The possibility of particles with non-zero Carroll velocity becomes relevant in the following context: we

have ∂xi

∂x0 = C ∂xi

∂s . This can be interpreted in two different ways:

• We may keep ∂xi

∂x0 conserved, this is what one would do when describing relativistic particles in an
ultra-relativistic limit. It necessarily follows that ∂sx→ 0 in the Carroll limit.

• Alternatively one can assume the Carroll velocity ∂x
∂s to be conserved, there is no corresponding

relativistic velocity, these particles have no relativistic analogue and only exist in the Carroll limit.

We may also observe that the transformation of the velocity cannot possibly be captured by a matrix. This
is also the case relativistically. ∂x

∂t does not transform as a four-vector while ∂x
∂τ does.

The definition of the Carroll velocity has an interesting consequence for the boost parameter. We will
need to make an explicit distinction between γβ , the gamma factor containing the boost parameter, and γu,
the gamma factor containing the velocity. We have seen previously that γβ → 1 in the limit. This is to be
contrasted with γu = 1√

1−u2
c2

= 1√
1−C2u2

s

. This stays conserved when C ∗us is conserved, which corresponds

to us → 0 in the limit, and goes to zero when us 6= 0.

2.4 Examples of Carroll particles

We can now try to find some explicit examples of particles with this symmetry. We can do this by taking a
Carroll limit on some particles we are familiar with.

Let us start with a massive relativistic particle.

2.4.1 Massive particles

We must acknowledge that our notion of momentum in the Carroll limit has fundamentally changed compared
to the momentum in special relativity. When we define the Carroll momentum as that what is generated by
the momentum operator, we arrive at pµ = ( EcC , p

1, p2, p3). We can figure out what these momenta look like
by taking the limit of the relevant expressions.

We know that u
c = dxi

dx0 = C dxi

ds = Cus is conserved in the Carroll limit. This implies the following

2This would mean we can describe particles with a velocity close to the speed of light with this limit.
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limits:

E =
mc2√
1− u2

c2

=
mc2√

1− C2u2s

pi = m
cCus√

1− C2u2s

p0 =
EC

c
=

mcC√
1− C2u2s

→∞

p0 =
E

Cc
→ 0.

Notice that all relativistic expressions have remained conserved in the Carroll limit. This is because they do
not contain factors of C. We are, strictly speaking, not interested in these objects. The time-like components
go to zero and infinity respectively. This is because of the coordinate transformation and does not give us
any additional information about the energy.

We may also take a slightly different approach if we want the time-like components to be conserved. Let
us look at this more explicitly. Taking limits on pCµ = C ∗ pµ and pCµ = 1

C p
µ instead, we find

piC = m
cC2us√
1− C2u2s

→∞

p0 =
E

c
→ E

c

p0 =
E

c
→ E

c

piC = m
cus√

1− C2u2s
→ 0.

This does in fact transform appropriately under a Carroll transformation pν′ = Λνµp
µ = pν =

[
E
0

]
.

The transformation of pµ requires some additional analysis. We have piC = CpiL, so the Carrollian

momentum goes to infinity in the limit. The transformation law tells us, however, pi,C → pi,C−~b∗ Ec . This is
indeed the transformation law of the momentum as given by the Carroll limit on the Lorentz transformations.
For the component parallel to the boost we have Cp′|| → Cp|| − C~βEc = Cp|| + bi

E
c .

Massive particles should not be moving. This corresponds the best to the limit of pi,C .We therefore suspect
the latter set of four-vectors holds the most relevance to massive particles.

Taylor series cannot be applied

We wish wish to take a Taylor series around the limit, and an as such have a way to describe highly relativistic
particles. This would require that the Carroll velocity is small compared to C. We do not need to send C
to infinity for this It is a large but finite number. In this way, we may try to expand us around zero. This
should describe ultra-relativistic massive particles.

We should point out a critical distinction between using a Taylor series in the Galilean limit versus using a
Taylor series in the Carrollian limit. In the Galilean limit we have ∂x

∂x0 = 1
c
∂x
∂t . So in the limit the relativistic

velocity u
c goes to zero. The velocity we are interested in, u, is completely unchanged by the limit. In the

Carrollian case the situation is reversed. While u
c is perfectly conserved in the limit, the velocity we are

interested in, us = ∂sx, goes to zero in the limit. This makes it difficult to Taylor around zero Carroll
velocity in a decent way.
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Notice that a fixed value for C translates to a fixed value for us. this is in explicit contradiction to the
Galilean case. We may try to fill in the Taylor series in for said value of us alone. A first order expansion of
the momentum given in 2.2 will give

pi(us) = pi(0) + us ∗ p′i(0) = 0 + us ∗ (
cC√

1− C2u2s
)
∣∣∣
us=0

= uscC. (2.2)

This might be a way to describe massive particles in the Carroll limit.
The first order expansion might be relevant, but Carroll boost invariance has been sacrificed to achieve this.
The zeroth order expansion still has Carroll boost invariance when taken in this way. Here we take large
but finite C and us = 0. The relevant expressions become

E =
mc2√
1− u2

c2

→ mc2

pi = m
cCus√

1− C2u2s
→ 0

p0 =
EC

c
→ Ccm

p0 =
E

Cc
→ cm

C
.

The transformation laws align most closely with those four-vectors where the time-like part is conserved.
This is in fact the momentum most closely associated with massive particles.

The fact remains that holding C and us ∗ C constant allows for exactly one value of us. This is contrary to
how a Taylor series usually works. Normally a Taylor series around us would apply to small values of us.
We do not trust the process hold any physical relevance. This might also be a manifestation of the fact that
massive particles cannot move at the speed of light.
Either C is finite or C goes to infinity. Any finite C is just a coordinate transformation away from special
relativity. Therefore it is better described without making reference to the Carroll limit. Any infinite C will
mean a fully collapsed lightcone. In the latter case, a small but nonzero us for massive particles would mean
movement after the lightcone has collapsed.

2.4.2 Tachyons?

Taking some liberty in terms of interpretation, we may take the limit on the momentum assuming us is
non-zero. This is to be contrasted with us = 0, which we would get from taking the limit on relativistic
velocities.

E =
mc2√
1− u2

c2

→ −mc2 ∗ i ∗ 1

usC
→ 0

pi = m
cCus√

1− C2u2s
→ −icmηi

p0 =
EC

c
→ −imc ∗ 1

us

p0 =
E

Cc
→ 0.
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Where ηi =
uis
|us| is a unit vector. The four-vectors pµ =

[
−imc
|us| −

~b · ~p
pi

]
and pµ =

[
0
pi

]
transform appropriately

under a coordinate transformation. Specifically 1
|us| →

1−b·us
us

= −imc
|us| − b · p.

As a check we can again fill in the energy: E =
√
m2c4 + p2c2 =

√
m2c4 −m2c4 = 0. Therefore, the mass

shell conditions continues to hold. Given that for these particles we have taken us 6= 0, and the result turns
out to be imaginary, these particles look remarkably like tachyons. Because of this, we can find real values
in the limit by assuming the mass has been imaginary. This is a feature commonly seen in field theories of
tachyons, where the mass squared is negative. We redefine mc = −im. Since m was imaginary mc will be a
real and positive number. With this redefinition our results become

E =
mc2√
1− u2

c2

→ mcc
2 ∗ 1

uC
→ 0

pi = m
cCus√

1− C2u2s
→ cmcη

i

p0 =
EC

c
→ mc ∗

1

us

p0 =
E

Cc
→ 0.

These do transform correctly under a Carroll transformation. Furthermore, in the massive case some terms
scaled with a factor of C and therefore became infinite in the limit. For these ”tachyonic” particles, this is
not the case.

2.4.3 Active and passive transformations

It is worth pointing out that the above two particles can be thought of in terms of active and passive
transformations respectively. An active transformation is a transformation where we describe the system as
seen be a different observer. Therefore the physical content of the system changes. A prominent example
would be a boost. Under such a transformation, quantities in the system are allowed to change, f(x)→ f(x′).
We have in general f(x) 6= f(x′).
For a passive transformation we change our description of the system, but the physical objects remain the
same. We require f(x) = f ′(x′). The function f ′ will be such that this is true. An example of a passive
transformation would be a switch from Cartesian to spherical coordinates.

We may arrive at the massive particles by an active transformation. That is, we switch observers and
see what our particles look like to the new observer. Let us look at the velocity for this. The new observer
does not measure time. They measure Carroll time. The movement of a particle with respect to Carroll
time is ∂u

∂s = limC→∞
1
C
∂u
∂ct = 0. So the particles have stopped moving. Applying this to the momentum we

have mu√
1−u2

c2

→ m ∂x
∂s√

1−
∂x
∂s

2

c2

= 0. 3

We may arrive at the tachyonic particle by a passive transformation. For such a transformation the observer
does not change, the coordinate system does. As such, this is the observer that sees the lightcone collapse.
This process can only be survived by Tachyonic particles. The speed of light went to zero, so there is no
”valid” speed for these particles to have. We do not change the system, we only change its description:
ux0 = Cus.

3Notice that, while mathematically correct, this procedure is not entirely physical. Since the dimensions of t and s are not
the same. We need to ignore dimensional analysis for a bit.
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2.4.4 Photons

We may also explicitly consider the photon. We have

p0 =
~C
λ
→∞

p0 =
~
λC
→ 0

pi → pi.

This is the same result as the one that looked like a tachyon. There is a key difference though. The
momentum does not contain any velocity.
We may observe the following: Only particles without a rest-frame have a non-zero spacial momentum in
the Carroll limit.

In Conclusion, the Carroll limit contains two distinct classes of particles. Particles with and without a
restframe. Particles with a restframe only appear after we take the limit such that the time-like, instead
of the spacial part, of the four-vectors is conserved. That is, we have redefined pµC = pµ

C and pµC = Cpµ.
Their mass remains conserved, but their spacial momentum disappears in the limit. For particles without
restframe no additional algebraic manipulation is necessary to take the limit. The spacial momentum of
these particles remains intact while their temporal part disappears completely.
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Chapter 3

A mathematical perspective

Now that we have seen how to take the limit and what kind of results we might expect, we may start to
develop the mathematical tools necessary to describe the kind of particles that are emerging in the Carroll
limit. This will shed some light on the different particles found in last chapter.

3.1 The metric complex

We have seen above that the Carroll limit does not neatly fit into a four-vector formalism. In order to
describe the system, we need to adjust the familiar formalism. This is done in a way largely inspired by the
Newton-Cartan formalism [8, 9].
We define two different objects in the Carroll limit, a spatial metric hµν and a temporal tetrad τµ. Together
they will act similar to a metric. These two objects together are called the metric complex. This idea is
taken directly from the Newton-Cartan formalism. In this formalism Newtonian gravity is reformulated in
terms of four-vectors.

We define

hµν = lim
C→∞

ηµν = lim
C→∞


− 1
C2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



τµτν = lim
C→∞

− 1

C2
ηµν = lim

C→∞
= −


−1 0 0 0
0 1

C2 0 0
0 0 1

C2 0
0 0 0 1

C2

 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
Explicitly, we have τµ = (1, 0, 0, 0) and hµν = diag(0, 1, 1, 1). We can also define inverse objects τµ and

hµν such that

τµτµ = 1 hµνhνρ = δµρ − τµτρ hµντµ = hµντ
µ = 0. (3.1)

From the definition follows τµ = (1, 0, 0, 0). The first equation implies τ0 = 1. From the second equation
we get h0i = −τi, hij = δij . The third equation now gives us h00 = δijτiτj . This still leaves us with a
degree of freedom: τi is not yet defined. This is reflective of the freedom to choose a coordinate system.
Under a Carroll transformation τµ changes as τ ′µ = (1, τi−bi). This should not change the underlying physics.

This gives us a new perspective on the particles we have encountered in Chapter 2. With the metric
complex we may lower indices by using pµ = hµνp

ν , but we may not raise them. The reason for this can be
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seen in the following: pµ = gµνpν . Switching to Carrollian time we have pµ = −C2τµτνpν + hµνpν . This
would mean sending pµ to infinity.
Alternately, we may consider dividing by a factor of C before taking the Carroll limit. We may now raise
indices with τ , but we cannot lower indices anymore. In this case, pµ

C = −Cτµτνpν . Notice that in the
temporal part of the momenta, the factors of C that occur from the coordinate transformation cancels against
the prefactor of C.

We have therefore ended up with two distinct cases,

pµ = hµνp
ν (Case 1)

pµ = −τµτνpν . (Case 2)

We have seen in chapter 2 that Carroll particles tend to have either p0 = 0 or pi = 0. The massive particles
form the previous chapter fall in case 2, as can be seen from pi being 0. Meanwhile, the photon and tachyonic
particle fall in case 1, since p0 = 0 for those particles.

3.1.1 An example - the massive Galilean case

It may be instructive to consider the similar approach in Newton-Cartan formalism. For an extensive
overview of the Newton-Cartan formalism we refer to [8].The definitions for the metric complex are the same
as above, but with the upper and lower indices reversed. To be explicit, we have

τµτν = lim
c→∞

−1

c2
gµν (3.2)

hµν = lim
c→∞

gµν . (3.3)

We can define ”inverses” by the same equations as we had in the Carrollian case.

τµτµ = 1 hµνhνρ = δµρ − τµτρ hµντµ = hµντ
µ = 0 (3.4)

The inverse objects are not uniquely defined. There is a gauge freedom in the inverse temporal part τ i. We
are free to choose them and doing so fixes hµν . The first equation implies τ0 = 1. From the second equation
we get h0i = −τi, hij = δij . The third equation now gives us h00 = δijτ

iτ j .
Let us consider the behaviour of the momenta in this limit. Our boost parameter will be ~v. The momentum
of a massive particle is be given by pµ = limc→∞ ( Ec2 , p

1, p2, p3) = m(1, ~u). Where we have switched from
the usual coordinates x0 = c ∗ t to t. It transforms as

pµ
′

=


1 0 0 0
v1 1 0 0
v2 0 1 0
v3 0 0 1

 pµ =


m
p1

p2

p3

 =


m

p1 +mv1
p2 +mv2
p3 +mv3

 .
This corresponds to the usual transformation of the Galilean momentum m~u→ m(~u+ ~v).

The covariant momentum as a direct limit

However, the covariant momentum pµ transforms differently under this coordinate transformation we arrive
at pµ = limc→∞ (−Eg, p1, p2, p3) = (−Eg,m~u), where Eg denotes the Galilean energy, given by 1

2mu
2.

Only pµ transforms appropriately under Galilean transformation. The pµ adds a term to p0. Explicitly, the
Galilean energy Eg transforms as 1

2mu
2 → 1

2m(u+v)2− 1
2mv

2 = 1
2mu

′2− 1
2mv

2 according to the formalism.
As can be seen from

p′µ =


1 v1 v2 v3
0 1 0 0
0 0 1 0
0 0 0 1

 pµ =


Eg +muv

p1
p2
p3

 =


1
2m(u+ v)2 − v2

p1
p2
p3

 .
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This is in clear contradiction with the expected transformation 1
2mu

2 → 1
2mu

′2. Hence, the covariant Carroll
momentum cannot be taken as a direct limit of the relativistic momentum.

A note on raising and lowering indices

In this formalism, we have lost an important property, we cannot arbitrarily raise and lower indices. We

have no metric to use for that. We could define pµ = hµνp
ν − τµτνpν instead. hµνp

ν equals m ∗
[
τ2 − τ iui
~u− ~τ

]
.

It transforms as

m

[
τ2 − τ iui
~u− ~τ

]
→ m

[
(τ + b)2 − (τ i + bi)(ui + bi)

~u− ~τ +~b

]
= m

[
(τ)2 − τ i(ui − bi)

~(u− b)− ~τ

]
.

This transforms as an inverse Galilei transformation, at least when τ i = 0. Meanwhile, τµτνp
ν does not

transform because τi = 0. Their sum equals m ∗
[
τ2 − τ iui + 1

~u− ~τ .

]
This is clearly distinct from pν as defined

above.

A possible solution

We have seen that the limit of the covariant momentum does not transform correctly and that we cannot
easily raise or lower indices as we might expect to.

To remedy this, we may define p̃µ := τµτνp
ν . It transforms, by definition, correctly under a Galilean

transformation. It is explicitly given by p̃µ = (m, 0, 0, 0). While we can now lower indices we cannot raise
them yet. We just have a pair momenta for which the formula limc→∞(gµνp

µ = pν)→ p̃µ := τµτνp
ν . 1 We

may point out that as long as pµ always appears in contraction with a corresponding temporal or spacial
metric the offending term disappears, so there is no explicit need for defining p̃µ.

• τµpµ is invariant because τi is zero and p0 does not transform.

• τµpµ is invariant, but the individual components transform. The explicit contraction becomes m( 1
2u

2−
v · u+ v · u) = 1

2mu
2.

• hµνpµpν is invariant because both hµν and the spatial components of pν do not transform.

• hµνpµpν does not transform. The timelike components of hµν change as to compensate for the spatial
components of pµ, which change as m ∗ u → m ∗ (u − v). As they would in the Lagrangian of a
non-relativistic particle.

To illustrate the use of the formalism, we may take the Galilean limit in Newton-Cartan formalism.∫
dτc ∗

√
−gµνpµpν =

∫
dτc ∗

√
c2τµτνpµpν − hµνpµpν (3.5)

=

∫
dτc ∗

√
c2τµτνpµpν − hµνpµpν =

∫
dτc ∗

√
c2τµτνpµpν(1− hµνpµpν

c2τµτνpµpν
) (3.6)

≈
∫
dτc ∗

√
c2τµτνpµpν(1− hµνp

µpν

2c2τµτνpµpν
) =

∫
dtmc2(1− hµνp

µpν

2c2m2
). (3.7)

Where we applied a Taylor series to the first order in the last line. Now compare this to the regular
Galilean Lagrangian. Since m is clearly invariant under Galilei transformations, we may abandon the first

1One may wonder what happens when we allow for raising indices, instead of lowering them. Since p0 = mc2 +
Lower order terms this can be done by p̃µ =

pµ
c2

. Raising indices with hµν p̃µ = pν will yield zero.
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term. It does not affect the equations of motion. Alternatively, we may add a constant gauge field Aµ to
our Lagrangian [8] and add the term mAµẋ

µ to our Lagrangian. Setting A0 = c2 and Ai = 0 will make the
mass term disappear.

The kinetic term
hµνp

µpν

2m is Galilei invariant while m2v2

2m is not obviously Galilei invariant. Let us rewrite

the Newton-Cartan kinetic term,
hµνp

µpν

2m = m
2 = m( 1

2u
2− τ iui + τ2

2 ). This is indeed Galilei boost invariant.
The regular Lagrangian just consists of the case τ i = 0. We furthermore note that adding these terms does
not change the equations of motion, since the are a total derivative and a constant respectively.

There is a link between the extra terms that appear in the above Lagrangian 3.5 and the Bargmann group,
the centrally extended Galilei group [10]. We may see the second term of the above Lagrangian from a
different point of view. The usual Lagrangian for a relativistic point particle L = 1

2mu
2 transforms as a

total derivative

δL =
d

dt

(
mxiλjδij

)
(3.8)

under a boost. This is associated with a Noether charge and associated symmetry. This hints at the existence
of a central extension of the Galilei algebra called the Bargmann algebra. Specifically, using the complete
Noether charge under such a boost, the poison bracket of QG with QP is given by the mass. This indicates
the existence of a central extension. The situation will be discussed in more detail when we discuss the
relevant Lie algebras in section 3.3.
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3.2 The manifold perspective

[6] Next, we may spend some time by investigating the manifold structure underlying both the Carrollian
and the Galilean case given above. This will provide more insight into the metric complexes given above.
Furthermore, it will show that there exists a duality between the Galilean and Carrollian symmetries. In
relation to this, we may show that the Carrollian and Galilean picture fit into a larger framework. This
section is largely an overview of some of the work done in [6].

3.2.1 Newton-Cartan manifolds

A Newton-Cartan manifold is a quadruple (N,hµν , τµ,∇) where

• N is a d+1 dimensional manifold.

• τµ : TM → R is a nowhere vanishing 1-form. That is, it provides an element of the cotangent space at
each point p.
τ is nowhere vanishing, meaning there must be a vector v in the tangent space such that τµv

µ 6= 0.

• hµν is a twice symmetric contravariant positive tensor field. hµν looks like an inverse metric but can
be degenerate, its kernel is generated by τµ. That is, the set of all cotangent vectors with zero length
is given by {τµ,p|p ∈ N} .

• ∇ is an affine connection. Let Γ(TN) be the space of vector fields on N . An affine connection is then
given by a bilinear map ∇ : Γ(TN) × Γ(TN) → Γ(TN) : (X,Y ) → ∇XY . Such that for any smooth
function f : N → R and vector fields X,Y we have ∇fXY = f∇XY and ∇X(fY ) = df(X)Y +f∇XY .
As an additional requirement, we demand both hµν and τµ are parallel transported. This means
∇Xτµ = 0 and ∇Xhµν = 0 for all vector fields X.

We would like to make two additional remarks about the affine Connection. Firstly, the connection can be
used to define a covariant derivative by fixing the vector field X. This gives us a linear map ∇ : Y → Z, Y 7→
∇XY that satisfies the Leibniz rule. Thus, as the notation suggests, ∇XY denotes a covariant derivative.
Secondly, contrary to general relativity, there is no unique connection that is both metric compatible and
torsion free. On a Newton-Cartan spacetime, there exist multiple viable connections. [8]

As an example, we provide the flat Newton-Cartan structure.

N4 = R× R3, hµν = δAB
∂

∂xA
⊗ ∂

∂xB
, τµ = 1 ∗ dt, Γkij = 0. (3.9)

The manifold definition is a more general case of the flat structure we have seen before.

Group structure

The Galilei group is the group of automorphisms of the Newton-Cartan manifold. That is, the group of
all diffeomorphisms that preserve the ”inverse metric” hµν , the vector field τµ and the connection ∇. The
Galilei group is given explicitly by

gN :

(
x
t

)
7→
(
Rx + bt + c

t+ e

)
(3.10)

Here R ∈ O(3) is a rotation,b ∈ R3 a boost parameter, c ∈ R3 and e ∈ R represent translations.
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3.2.2 Carroll manifolds

A Carroll manifold is a quadruple (C, hµν , τ
µ,∇) where

• C is a 3+1 dimensional manifold.

• τµ is a vector field. That is, a map that assigns to each point p on the manifold a vector in its respective
tangent space TpC = R3+1. Denoting the tangent bundle by TC := {(p, y)|p ∈ C, y ∈ TpC}, we have
τµ : C → TC. Which should be a right inverse of the projection map π : TC → C, {(p, x)→ p}.
τµ is nowhere vanishing, meaning τµ(p) 6= 0 for all p.
Furthermore, τµ is complete. This means its associated flow curves, defined by γ′(t) = τµ(γ(t)) are well
defined for all t. Less abstract, a particle moving along τµ will neither stop nor suddenly disappear.

• hµν is a twice symmetric covariant positive tensor field. hµν looks like a metric but can be degenerate.
Its kernel is generated by the vector field τµ. That is, the set of all tangent vectors with zero length is
given by {τµ(p)|p ∈ C}.

• ∇ is an affine connection. Let Γ(TC) be the space of vector fields on C. An affine connection is then
given by a bilinear map ∇ : Γ(TC) × Γ(TC) → Γ(TC) : (X,Y ) → ∇XY . Such that for any smooth
function f : C → R and vector fields X,Y we have ∇fXY = f∇XY and ∇X(fY ) = df(X)Y + f∇XY .
As an additional requirement, we demand both hµν and τµ are parallel transported. This means
∇Xτµ = 0 and ∇Xhµν = 0 for all vector fields X.

Once again, the connection directly implies the existence of a covariant derivative. Furthermore, contrary
to general relativity, there is no unique connection that is both metric compatible and torsion free. On a
Carrollian manifold, this is no longer true.

This can be seen by considering the following shift to the Christoffel symbols:

Γ′ρµν = Γρµν + hµντ
ρ. (3.11)

This trick is similar to a trick used in [8]. The expression is symmetric, such that the shifted Christoffel
symbol still has no torsion. Furthermore, the shifted Christoffel symbol must still satisfy ∇hµν = 0 and
∇τµ = 0.

The first preservation of the first condition requires hµντ
ρhαρ = 0, which follows directly from τρhρα = 0.

Similarly, preservation of the second condition requires hµλτ
ρ)τµ = 0, which follows directly from hµλτ

µ = 0.
The condition ∇ρ(τµ) = 0 implies τµ = ∂µ(f(x)). This can be deduced from Stokes theorem. Which implies
a conservative field and therefore a potential f(x).
As an example, we provide the flat Carroll structure:

C4 = R× R3, hµν = δABdx
A ⊗ dxB , τµ =

∂

∂s
, Γkij = 0. (3.12)

Once again, this is the same Carroll structure we have previously seen.

Group structure

The Carroll group is the group of automorphisms of the Carroll manifold. That is, the group of all
diffeomorphisms that preserve both the ”metric” hµν , the vector field τµ and the connection ∇. We will
denote the Carroll group by Carr(C, hµν , ξ,∇). Note, the Isometry group of the degenerate ”metric” hµν is
infinite dimensional , since we can add arbitrary functions to s.

s→ s+ f(x)

xi → xi

24



is an isometry for all functions f .
This is distinct from the automorphism group on flat Carroll space 3.12. Such an automorphism requires the
entire Carroll structure to be valid after the transformation. This is a stronger requirement. hµν stays the
same. However, demanding parallel transport of τµ′ requires these f i to be constant. Preservation of the
parallel transport yields the additional requirement f = constant, since we require ∇i(x0 + f(x)) = ∇i(x0).
The full Carroll group is therefore given by action of the Carroll group:

aC :

[
x
s

]
=

[
Rx + c

s−BTRx + f

]
(3.13)

Here R ∈ O(3) is a rotation and B ∈ R3 a boost parameter. c ∈ R3 and f ∈ R represent translations [11].

Let us pause a moment to point out the distinction between an isometry and a coordinate transformation.
The Isometry asks about the transformations that preserve the distance between points. The covariant
derivative does not change under such an isometry. This is in explicit contrast with the coordinate transformation
portrayed by the Carroll group. Under such a coordinate transformation the covariant derivative changes
covariantly, as it should under a coordinate transformation.

3.2.3 Some hints of the duality

[6] We can spot immediate similarities between the Newton-Cartan and the Carrollian manifolds. Let us
first observe that the homogeneous part 2 of the Galilei and Carroll group can be expressed as

ΛG =

(
1 0
b R

)
(3.14)

and

ΛC =

(
1 −bTR
0 1

)
(3.15)

respectively. Where the matrices are acting on

[
s
x

]
. This leads to the group isomorphism

ΛC =
(
ΛTG
)−1

. (3.16)

A further hint of the duality can be seen by looking at the corresponding coordinate transformations.

• In the Galilean case we have x0 = ct→ t and then taking c→∞.

• In the Carrollian case we have x0 = ct→ s = Cct and taking C →∞.

To specify the full duality we need to look at the underlying manifold structure.

3.2.4 Bargmann space

[6] We can understand both Newton-Cartan and Carroll manifolds as part of a larger framework. In order to
do this, we need to introduce a five-dimensional manifold called Bargmann space. Its flat structure is given
by

B = Rd × R× R, G =

d∑
A,B=1

δABdx
A ⊗ dxB + dt⊗ ds+ ds⊗ dt, ξ =

∂

∂s
. (3.17)

Both s and t are null coordinates, meaning the length of ∂s and ∂t are both zero.

2That is, ignoring translations.
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Group structure

We are interested in the set of diffeomorphisms that preserve both the metric structure and the vector field
ξ. The associated group can be faithfully represented by matrices of the form

a =


R b 0 c
0 1 0 e

−bTR − 1
2b2 1 f

0 0 0 1

 ∈ Barg(d+ 1, 1). (3.18)

Here R ∈ O(3), b, c ∈ R3 and e, f ∈ R. The matrices act on the vector space


x
t
s
1

.

While Bargmann space itself is 5-dimensional, the above representation of the Bargmann group acts on a
6-dimensional vector space. This allows for translations to be incorporated into the group structure.

The Bargmann group naturally occurs in the context of Galilean physics, it is a central extension of the
Galilei group. It is relevant in the context of massive particles. We will talk about this in more detail in
3.3.2.

3.2.5 The duality

[6] The relation between the previous 3 spaces is given by the following observations.

• We have a group homomorphism π : Barg(4, 1) 7→ Gal(4),

π(R,b, c, e, f) = (R,b, c, e). (3.19)

It consists of ignoring the basis vector s.

• We have an injective group homomorphism ι : Carr(d + 1) ↪→ Barg(d + 1, 1) . It is explicitly given
by ι(A,b, c, f) = (A,b, c, 0, f).
The Carroll group is the Commutator subgroup of the Bargmann group. That is, the group given by
elements of the form aba−1b−1. This can be shown easily once we have looked at the underlying Lie
algebras.

Furthermore, we may find relations between these manifolds by utilizing two mathematical constructions.
Given a map φ: M → N . We can relate elements of the tangent and cotangent spaces of the respective
manifold to each other via the constructions of a pullback and a pushforward respectively.

• Given a function f : N → R we may define the pullback of f by φ as φ∗f = f ◦ φ : M → R.

• The pushforward is used to relate a tangent vectors of M to those on N . φ∗ : TxM → Tφ(x)N . Recall
that a tangent vector can be thought of as a map that sends a function to its derivative in R. We may
then define the pushforward of a tangent vector V as φ∗V (f) = V (φ∗f).

• The pullback is used to relate an element of the cotangent space of N to that of M . Let us assume
φ is surjective. Given dy ∈ T ∗yN : TyN → R we may define φ∗dy : TxM → R. With φ(x) = y by
φ ∗ (V )→ dφ(x)(φ∗V ).

This gives us the required tools to talk about the relations between object on our spaces.
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Let us first consider the relationship between Bargmann and Newton-Cartan space. The General Bargmann
manifold is given by (B,G, ξ) as given in subsection 3.2.4.

Let us now define another manifold N as the quotient of B over ξ. This means, practically speaking,
that we have declared all points on the integral curves generated by ξ to be the same point. This provides
a map φ : B → N .
The length of ξ is zero, so ξ is an infinitesimal isometry under G. Let G−1 be the inverse of G. We therefore
have LξG

−1 = 0. Therefore, if φ(x) = φ(y), the pushforwards of their respective tangent vectors should be
the same. The pushforward of G−1 under φ is then given by hµν as given in section 3.2.1.
We may define a one-form υ on B using the related objects ξ and G. We define υ(w) = G(∂s, w) = dt. As
the notation suggests, it is indeed the pullback of the regular timelike one-form d(θ) under φ. Lastly, it has
been shown in [12] that the connection on B naturally defines a connection on N that parallel transports
both τµ and hµν . As such, we can indeed define a Newton-Cartan manifold from a Bargmann manifold.

We are most interested in the Carrollian structure hidden in the Bargmann manifold. Let us consider
again the one-form υ on B, explicitly given by υ = dt. Let us define ker(υ) = {w ∈ TB : υ(w) = 0}. Notice
that since G(ξ, ξ) = 0, ξ belongs to this set. The set consists of all vectors that do not point in the timelike
∂t direction. The procedure also defines a manifold in a natural way. By ignoring the time coordinate t.
ker(υ) defines a vector field on these submanifolds in a natural way, since they do no not point in the timelike
direction. For a given time, say t = 0. We may define an embedding

ι : C ↪→ B. (3.20)

We may endow C with a metric structure by virtue of a pullback gC = ι∗G. Since G(ξ, ξ) = 0, gC must be
degenerate.

Furthermore, since C has no t coordinate, vectors in ker(υ) translate directly onto C. This means that
for any X,Y ∈ ker(υ) we have ∇CXY = ∇XY |C . We clearly have ∇ξ = 0 and ∇Cg = ∇G = 0.
We have therefore defined C with the structure of a Carrollian manifold.

The full duality can now be seen in the following picture:
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Figure 3.1: The duality between Carrollian and Newton-Cartan manifolds.

3.3 Lie algebra perspective

Given that we are trying to switch between different symmetry groups, it may be useful to consider the Lie
algebras associated with the above manifolds.

3.3.1 The Carroll and Galilei algebra as an Inönü-Wigner contraction

[2] We may obtain the Carroll and Galilei algebra by virtually the same procedure. We start by considering
the Poincaré algebra:

[Mµν ,Mρσ] =− i~(ηµρMνσ + ηνσMµρ − ηµσMνρ − ηνρMµσ)

[Mµν , Pρ] =− i~(ηµρPν − ηνρPµ)

[Pµ, Pν ] =0. (Poincaré algebra)

Here Mµν contains the Lorentz algebra, and therefore contains both rotations and Lorentz boosts. P is
the generator of translations in the appropriate directions. From this algebra, we may obtain a different
algebra by rescaling a subset of the group elements in a consistent way. Such a procedure carries the name
Inönü-Wigner contraction.
We split this into two subgroups, ISO(1, k − 1) and ISO(D − k + 1). The first one is of Lorentzian type 3.
The second one is Euclidean space. ISO(1, k− 1) will be denoted by α and ISO(D− k+ 1) will be denoted
by a. We will focus on the case D = 3, k = 1. This constitutes Minkowski spacetime. The Lorentzian
subgroup will have a total dimension of 1 and will therefore be just the timelike coordinate.

We may consider two types of contractions. Where we rescale the momenta in the Lorentzian resp. Euclidean
parts.

3This means it contains the temporal part.
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• Rescaling the Lorentzian part Pα as P̃α = Pα
ω and taking ω →∞. To keep the algebras in contact with

each other, we must scale boosts between the two regions Maα = B̃aα = Baα
ω . Where we switched to

B because they are now only boosts. This is the Carroll contraction. And the resulting Lie algebra
would be the Carroll algebra.

• Rescaling the Euclidean part Pa as P̃a = Pa
ω and taking ω →∞. To keep the algebras in contact with

each other, we must also scale boosts between the two regions Maα = B̃aα = Baα
ω . Where we switched

to B because they are now only boosts. This is the Galilei contraction and the resulting Lie algebra
would be the Galilean algebra.

There is a clear duality Pα ↔ Pa in the algebras in general.
We remark that the behaviour of the boost starts to depend on the subgroup they act on. Given a Carrollian
boost Baβ , we have [Baβ , Pα] = 0, while [Baβ , Pa] = iηabP̃α. Since the Carroll group will be of special interest
to us, we write its Lie algebra explicitly.

[Jab, B0c] = i~(δacB0b − δbcB0a) (Carroll algebra)

[B0b, B0c] = 0

[Pa, B0b] = i~δab(P0))

[P0, P0] = [P0, Pa] = 0

[P0, Jab] = 0.

Here we have split the Lorentzian Mαβ into two parts: the rotational part Jab and the Carroll boosts B0a.
The commutators of the spatial generators do not change.

There is a clear parallel between the the above rescaling and the coordinate transformation of p0. From
the rescaling of the momenta we can immediately extract some extra information from this. When we start
from a Lorentz invariant system we have, we can find the momenta by applying the generators to the system.
Then we may switch to the Carrollian generators and take the limit.

P̂0Cφ = ∂sφ =
1

C
P̂0L (3.21)

This is similar to the rescaling of the generator of Carroll time translations.

P0 →
P0

ω
.

We may therefore identify ω from the Inönü-Wigner contraction with C from the coordinate transformation
x0 → Cx0. Thus, the two definitions of the Carroll limit align.

3.3.2 The Bargmann algebra

[10] The Galilean algebra is not the relevant Lie algebra for describing non-relativistic particles. This might
seem counter-intuitive at first. Let us describe how this situation arises.
We start from a the regular Lagrangian of a free non-relativistic particle L = p2

2m . Contrary to the Lorentzian
case, this Lagrangian is not invariant under the relevant symmetry. Under a Galilean boost the Lagrangian
changes with a total derivative,

L ′ =
m(u+ v)2

2
=

p2

2m
+muv + v2 =

p2

2m
+mv∂tx+ v2. (3.22)

The two additional terms are a total derivative an a constant respectively. The constant is of no consequence
and we shall therefore ignore it. However, the total derivative hints at a central extension of the symmetry
group. This Central extension of the Galilei algebra is called the Bargmann algebra. This algebra can be
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obtained by the following procedure [10].

To arrive at a Lagrangian that is truly invariant under the relevant transformation laws we may add
an additional coordinate s to our system. We may now define a modified Lagrangian L̃ = L − ṡ.
Simultaneously, we centrally extend the Galilean algebra G to G̃. That is, we add an element M to the
algebra that commutes with all other elements in the algebra.
Let us assume that L transforms with a total derivative of the function F , L ′ = L + ∂tF . Denoting
elements of the Galilean algebra by X, we have for the corresponding Lie derivatives LXkF = fk + ck. Here
fk is a function of the coordinates and ck is a constant. We redefine

X̃k = Xk + (fk + ck)∂s. (3.23)

With this, we have allowed our vector fields to have a component in the newly added direction s.
We may now obtain the new Lie algebra. The commutators are now given by[

X̄j , X̄k

]
= [Xj , Xk] +

(
LXjfk − LXkfj

) ∂
∂s
. (3.24)

To obtain the Lie algebra we must obtain the right hand side in terms of X̃. We first need a preliminary
result. We start from LXkL = ḟk. It immediately follows that

L[Xj ,Xk]L = LXj ḟk − Lxk ḟj . (3.25)

Introducing the structure constants of the Galilei algebra as [Xj , Xk] = C`jkX` and integrating yields

Cljk (fl + cl) =
(
LXjfk − LXkfj

)
+ ajk. (3.26)

Here the ajk are integration constants.
Using this result, we can rewrite the commutation relations as[

X̄j , X̄k

]
= CljkX̄l − ajk

∂

∂s
. (3.27)

We have added to the commutators an additional term that commutes with all operators. The additional
term does indeed commute, since all X̄l are independent of s and the ajk are constants. This is therefore
indeed a central extension in the usual sense.

We may now show that L̃ is indeed invariant under a Galilean boost. The new generator of Galilean boosts
has changed via equation 3.23. Applying the generator of such a boost to L̃ will give us ḟk−∂t(fk+ck) = 0.

X̄kL̃ = (Xk + (fk + ck)∂s)(L − ṡ) = ∂t(XkF )− ∂t(fk + ck) = ∂t(fk + ck − fk − ck) = 0. (3.28)

Where we have used that L is independent of s, as is Xk. So the modified Lagrangian is indeed Galilei-
invariant.
The added generator ∂s has an associated symmetry and Noether current. Varying to s requires a partial
integration. Conservation of the boundary term yields (∂t(m∗~x) ·m∗~x−s)|t2t1 = 0. s is independent of time,

and momentum is still conserved by virtue of the equations of motion. So this reduces to ∂t(m)∗~x ·~x|t2t1 = 0.
A solution is given by the mass being constant in time. Therefore, the Noether current associated with the
central charge symmetry is given by the mass. We mention the Bargmann algebra in full:

[Jij , Jkl] = 4δ[i[kJl]j], [Jij , Pk] = −2δk[iPj]

[Jij , Bk] = −2δk[iBj], [Bi, H] = −Pi
[Bi, Pj ] = −δijM. (Bargmann algebra)

For M = 0, this is exactly the Galilei algebra.
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3.3.3 The Carroll algebra, again

With this added knowledge, we may consider some details on the Carroll algebra.

Firstly, we may verify explicitly that the Carroll algebra is indeed the commutator group of the Bargmann
algebra. H is not a part of the commutators. That is, H cannot be written as the commutator of two
operators. We are left with the spatial generators J , the spatial momenta P and the boosts B. Identifying
M with P0 in the Carroll algebra, we can see that these two are indeed the same. The identification of the
mass M with the zero component of the momentum P0 means that we may be able to interpret P0C as a
mass. This aligns with the direct limit of P0L, Ec →

E
cC . Which indeed has a dimension of mass. This means

particles could attain a mass in the Carroll limit. This mass could be distinct mass from the regular mass.
As an example we recall that a photon has momentum ~λ in a relativistic system, thus, we can associate a
quantity with a dimension of mass to the photon: ~λc. This would be conserved in the Carrollian limit and
therefore serve as the ”mass” of a photon.

Secondly, we may be interested in how the Carroll group behaves relating to central extensions. The Carroll
group does not need to be centrally extended. The reason for the difference is the following: In the Galilean
case p0G = limc→∞

E
c2 = m. This implies piG changes under a Galilean transformation. This is contrary to the

Carrollian transformation p0C = limC→∞
E
cC = 0. So the pi stay the same under a Carroll transformation,

pi = p′i. as such, no central extension is needed.
Even if we start out from p̃µ = pµ ∗C. The loose pi will transform, as seen in subsection 2.4.1, but to obtain
a scalar we must contract them with τµ. So the spatial part will never appear in the Lagrangian. See also
subsection 4.2.1.

We may also point out that P0 = ∂s commutes with the entire Carroll algebra. This suggests that P0

is itself a central extension of the algebra.

Given the above, we may make the following claim.

”Carroll velocity” is a misnomer. P0 = ∂s is the symmetry associated with mass, it does not relate to any
kind of velocity.

We may see this in the following cases.

• P̂0 is associated with the central extension of the Bargmann group, which is associated with mass.

• In taking the Inönü-Wigner contraction, we may consider the eigenvalues after the coordinate transformation.
After the coordinate transformation P̂0φ = E

cCφ. The eigenvalues of P̂0 therefore have a dimension of
mass.

• P0 Commutes with all elements of the Carroll algebra.

3.3.4 A quantum mechanical approach

The appearance of the above central extension has an interesting consequence if we take a quantum-
mechanical point of view. We quote the following equation from quantum mechanics.

d

dt
AH =

1

i~
[AH , H] +

(
∂AS
∂t

)
H

(Heisenberg equation)

Here A is any operator and H is the Hamiltonian. All operators A can be written in terms the operators in
the Lie algebra. Let us switch to the Carrollian case:

d

ds
AH =

1

i~
[AH , P0] +

(
∂AS
∂s

)
H

(3.29)
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Here the subscripts H and S denote the Heisenberg and Schrödinger picture respectively. Now, the Lie
algebra tells us that [A,P0] = 0. This means that d

dsAH =
(
∂AS
∂s

)
H

. As such, the expectation value of the
operators is only time dependent if the operator itself is time dependent as well. The change in Carroll
time is not tracked by the commutator with the Hamiltonian, but the commutator with the mass operator.
This is why Carrollian particles do not move. From this, we can verify two already established properties of
Carroll particles.

• Carroll particles cannot move. By filling in the position operator we obtain ∂sx̂ = 0.

• Their momentum cannot change ∂sp̂i = 0.

Notice that the Latter one does not stop the momenta from being non-zero.
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Chapter 4

Carrollian systems

4.1 photons

With the added knowledge that we have obtained above, we may study Carrollian particles more rigorously.
We may start by studying Carrollian electromagnetism. This will provide a case study for Carroll symmetric
systems. This will allow us to explore the different methods in more detail. We follow the approach of [6].

4.1.1 Carrollian photons, by using rescaling and symmetry

We start by following [6] very closely. One can obtain a Carroll invariant version of Electromagnetism by
applying the right rescalings and symmetries.
We may start from the Maxwell equations:

∇×E +
∂B

∂t
= 0, ∇ ·B = 0

−c2∇×B +
∂E

∂t
= 0, ∇ ·E = 0

(4.1)

In order to take the Carollian limit we can define

Ẽ = E, B̃ = (cC)B (4.2)

1. The Maxwell equations can then be rewritten as
∇× Ẽ +

∂B̃

∂s
= 0, ∇ · B̃ = 0

−∇× B̃ + C2 ∂Ẽ

∂s
= 0, ∇ · Ẽ = 0

(4.3)

The wave equation now gains the form[
∆− C2

(
∂

∂s

)2
](

Ẽ

B̃

)
= 0. (4.4)

Where ∆ = ∂i∂
i. This allows for an interpretation of C−1 as the propagation velocity of lightwaves with

respect to s. 2 We may observe that C has a dimension of velocity [C] = [s]/L = LT−1. The two time
coordinates are still related by s = cCt.

1The rescaling is done in [6]. Indeed, in doing such a rescaling we arrive at the appropriate result. However, the magnetic
field B̃ has a dimension of [B] = Tm2s−2 instead of Tesla. Furthermore, such a rescaling is not needed in the other approaches
provided.

2This formulation is can deceptive, C−1 does not have a dimension of velocity. While we may use it to refer to the underlying
mathematical structure, we must be careful about the physical interpretation.
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Electric-like contraction

Taking the Carroll limit on 4.3 gives us the electric type Carroll contraction:
∇× Ẽe +

∂B̃e

∂s
= 0, ∇ · B̃e = 0

∂Ẽe
∂s

= 0, ∇ · Ẽe = 0

(4.5)

Where Ẽe = Ẽ and B̃e = B̃.
It is invariant under the a Carroll boost, as given by{

Ẽe(x, s)→ Ẽ′e(x, s) = Ẽe(x, s− b · x)

B̃e(x, s)→ B̃′e(x, t) = B̃e(x, s− b · x) + b× Ẽe(x, s− b · x)

Let us take a moment to see where this comes from. The transformation corresponds to the transformation
of Aµ. Aµ transforms under a Carroll transformation as the inverse transpose of the Carroll transformation.
Contrary to the Lorentzian case, this is not in itself a Carroll transformation. Explicitly:

A′µ =

[
−φ
~A−~bφ

]
. (4.6)

By definition −∂iφ − ∂sAi = Ei and ∇× ~A = ~B. Applying these definitions we indeed have Ẽe → Ẽ′e and

B̃e → B̃′e = B̃e +∇×~bφ = B̃e +~b× Ẽe.
The first of these equations is derived from

Ẽ′e = −∂iφ(~x, s−~b · ~x)− ∂s(Ai + biφ) = −∂iφ(s, x) + bi∂sφ− bi∂sφ− ∂sA = −∂iφ(s, x)− ∂sA = Ẽe.
Switching to the new coordinate system will indeed give the required transformation.

We furthermore mention that the Carrollian Maxwell equations 4.5 are given by the limit on the action:

S =

∫
1

2

(
E2 − c2B2

)
dtd3x = (cC)−1

∫
1

2

(
Ẽ2 − 1

C2
B̃2

)
dsd3x. (4.7)

Where B̃ = ∇× Ã, Ẽ = −∇φ̃− ∂Ã/∂s here Ã = CcA. Dropping the prefactor and taking the limit C →∞
gives us

Se =

∫
1

2
Ẽ2
edsd

3x. (4.8)

magnetic type contraction

It is indeed true that 
∇× B̃m −

∂Ẽm
∂s

= 0, ∇ · Ẽm = 0

∂B̃m

∂s
= 0, ∇ · B̃m = 0

(4.9)

is invariant under the transformations{
Ẽm(x, s)→ Ẽ′m(x, s) = Ẽm(x, s− b · x)− b× B̃m(x, s− b · x)

B̃m(x, s)→ B̃′m(x, t) = B̃m(x, s− b · x)
3 This is immediately clear by virtue of a symmetry between the E and B field. As an extra check, we may

3The paper [6] proposes Ẽm(x, s)→ Ẽ′m(x, s) = Ẽm(x, s− b · x)− b× Ẽm(x, s− b · x).
This is a typo. Indeed ∇ · Ẽ′m(x, s) = ∇ · Ẽm(x, s)− b · ∂sẼm(x, s) 6= ∇ · Ẽm(x, s).
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verify the invariance explicitly. Let us start with the most involved calculation.

∇× B̃m(x, s− b · x)− ∂Ẽm(x, s− b · x)−×B̃(x, s− b · x)

∂s− b · x
=

∇× B̃m(x, s)− b× ∂s−b·xB̃m(x, s− b · x)− ∂Ẽm(x, s− b · x)− b× B̃(x, s− b · x)

∂s− b · x
=

∇× B̃m(x, s)− ∂Ẽm(x, s)

∂s
.

We furthermore have

∂B̃m(x, s− b · x)

∂s
=
∂B̃m(x, s)

∂s
,

∇ · Ẽm(x, s− b · x)−∇ · b× B̃m(x, s− b · x) =

∇ · Ẽm(x, s)− b · ∂s−b·xẼm(x, s− b · x)−∇ · b× B̃(x, s− b · x) =

∇ · Ẽm(x, s) + b · (∇× B̃m(x, s− b · x))−∇ · (b× B̃(x, s− b · x)) = ∇ · Ẽm(x, s)

,Where we have used Ampére’s law,

and

∇ · B̃m(x, s− b · x) = ∇ · B̃m(x, s)− b · ∂s−b·xB̃m(x, s) = ∇ · B̃m(x, s)

because ∂sB̃m(x, s) = 0.

The magnetic type electromagnetism correspond to the transformation law of Aµ. It is given by

Aµ′ =

[
φ−~b · ~A

~A

]
. (4.10)

Indeed,

Ei = (−∂iφ− ∂sAi)→ C(∂i(−φ−~ḃ~A)− ∂s′Ai) = (Ei)− (∂ib
jAj − bj∂jAi).

While

(b×B)i = εijkbjBk = εijkεklpbj∂
lAp = (δilδjp − δipδjl)bj∂lAp = ∂ib

jAj − bj∂jAi.

This implies

Ei → Ei − (b×B)i. (4.11)

So the transformation law does indeed stem from the transformation of Aµ and xµ.
We may notice that the magnetic type contraction does not, yet, stem from a limit on the Lagrangian.

4.1.2 Carrollian photons, by using the four-vector potential

We may want a way to take the Carrollian limit without ad-hoc rescalings of other objects, as is done for the
B field above. As is shown above, the distinct limits are associated with Aµ and Aµ respectively. Applying
a coordinate transformation on Aµ and Aµ respectively, and then taking the limit gives us the results first
found in [6].
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Relativistically we have

1

4

∫
dx3dt

√
−gFµνFµν . (4.12)

The above Lagrangian is completely invariant under coordinate transformations. FµνF
µν should always be

invariant under coordinate transformations. The Carroll limit will still give a different result since we will
take the limit on four-vectors instead of the resulting equations.
We may compare this to the formulation in [6]. While FµνF

µν = E2 + 1
c2B

2 in both cases, there is a
difference. We have added

√
−g to the Lagrangian. This might seem redundant, given that we are working

within special relativity. For finite values this is indeed true. But for in the limit a distinction exists, and
given a choice, we will consider the general relativistic version. The Lagrangian seems therefore completely
invariant. This can be explained by the fact that we ought to take the Carroll limit on four-vectors, not
equations.

It may therefore be better to consider the system in terms of Aµ and Aµ. We have Fµν = ∂µAν − ∂νAµ.
Under a coordinate transformation we have A0 → Cφ and A0 → − 1

Cφ.

Aµ

We may now, from Aµ define the electric and magnetic fields. Relativistically, we have Ei = −∂iφ−C∂sAi.
And Bc = ∇× A. We may multiply φ by C while making the coordinate transformation x0 → Cx0. This
results in the following redefinition of the electric field:

Eic
C

= −∂iφ− ∂sAi. (4.13)

We have here decided to look at E
C instead of C because it is conserved in the limit. This can also be

explained by raising and lowering indices: A
C

µ
= τµτν(CAν). Thus, for the zero component of Aµ we need

to look at Aµ

C instead of Aµ.

The Lagrangian then becomes

1

4

∫
dx3dt

√
−gFµνFµν =

1

4cC

∫
dx3ds(E2 +

1

c2
B2) = (4.14)

1

4cC

∫
dx3dsC2(

E

C
)2 +

B2

c2
. (4.15)

For large C, the electric part is of leading order. Indeed, taking the purely electrical part of the Lagrangian
and varying to both A and φ gives us the relevant equations of motion. Variation with respect to A gives us

1

4cC

∫
dx3dsδA(∂iφ+ ∂sA)2 =

1

2cC

∫
dx3dsδA(∂sA) ∗ (∂iφ+ ∂sA) =

1

2C

∫
dx3dsδA(A)∂s(E).

So ∂sE = 0. While variation to φ gives us almost immediately ∇ ·E = 0. The other two Maxwell equations
follow directly from the definitions of the E and B field. As can be seen by

∇ · ~B = ∇ · ∇× ~A (4.16)

∇× Ei = −∇× (∂iφ+ ∂sAi) = −∂s ~B. (4.17)
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Notice that obtaining the correct equations of motion requires us to allow for non-zero values of ∂sA. Indeed
the equations of motion urge us to consider that ∂sB is non-zero.
Of course, ∂sA = 0 is a special case of this, so the equations of motion still apply.

Aµ, ∂sA = 0

We may also be interested in a version of electromagnetism based on the covariant vector Aµ. In this case we

have φ→ φ
C . The electric field then changes as E → E

C = −1
C ∂iφ− ∂sA. This goes to zero in the Carrollian

limit if and only if ∂sA = 0.
The Lagrangian would then be

1

4cC

∫
dx3ds(E)2 − 1

c2
(B)2 → −1

4cC

∫
dx3ds

1

c2
(B)2 =

−1

4cC

∫
dx3ds

1

c2
(∇×A)2.

Variation with respect to A would result in ∇×B = 0. This of course implies ∂sE −∇×B = 0, given that
E = 0. Notice that there is no φ that is relevant to the equations of motion. ∇ ·B = 0 follows directly from
the equations of motion. ∇ · E = 0 comes about as a limit of the relativistic case. Lastly ∂sB = 0 comes
directly from ∂sA = 0. This gives us the magnetic like contraction 4.1.1. But this is only possible because
most of the terms are zero.

Aµ, ∂sA 6= 0

We may obtain a more interesting system if we let go of the idea that E should transform as the zero-
component of a four vector. In this case we may assume ∂sA 6= 0. This would result in

1

4cC

∫
dx3ds(∂sA)2 − 1

c2
(∇×A)2.

Varying to A would now result in ∂sE −∇×B = 0 directly. ∂sB = 0 is no longer implied in this case, but
∂sB = −∇× E is now immediate. We can cast the equation of motion in a different light,
0 = ∇× (∂sE − ∇× B) = ∂s∇× E − ∇(∇ · B) + ∆B = −∂s(∂sB) + ∂i∂

iB. That is, B satisfies a wave
equation. This is therefore a magnetic-like contraction.

Gauge symmetry

In classical electromagnetism, there exists a gauge symmetry. The equations of motion remain unchanged
under Aµ → Aµ + ∂µ(f). In the relativistic case, this is equivalent to Aµ → Aµ + ∂µ(f). Here f is a twice
continuously differentiable function that can depend on space and time. Under a Coordinate transformation
the gauge condition transforms covariantly or contravariantly, as is appropriate to the index placement. In
the limit, the gauge condition becomes +∂µ(f), but now in terms of Carrollian coordinates {s, ~x}. It remains
to be shown that the Carrollian Maxwell equations satisfy this gauge symmetry. In order to show this, it is
enough to show that the E and B field already are gauge-invariant on their own.

E′i = −∂iφ′ − ∂s(A′i) = −∂i(φ− ∂sf)− ∂s(Ai + ∂if) = −∂iφ− ∂s(Ai) = Ei (4.18)

andB′i = ∇× (A′)i = ∇× (A+∇f)i = (∇×A)i = Bi (4.19)

Notice that when seen as the limit of a relativistic system we have ∂f
∂s = 0, so the gauge has become smaller.
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4.1.3 Maxwell equations in terms of covariant and contravariant equations

There is a reason why the two types of limits coincide with covariant and contravariant transformations.
The Maxwell equations themselves can be written in terms of co- and contravariant objects. Our discussion
of the result of this an overview of some of the work done in [6].
Let start by pointing out two more concepts relevant to the underlying differential geometry.

• The wedge product ∧. It is taken between two vectors u and v. The result will be a bi-vector u ∧ v.
The wedge product is antisymmetric, so u ∧ v = −v ∧ u.

• The exterior derivative d. It is a kind of derivative and as such it sends k-forms to k+1-forms. It
satisfies 3 main properties. For functions we require that df is the differential of f . We furthermore
have d(df) = 0 and d(α ∧ β) = dα ∧ β + (−1)p(α ∧ dβ) where in the last equation α is a p-form.

Using these concepts we may start rewriting the Maxwell equations with a higher level of mathematical
abstraction. We start with the Lorentzian case. Let us first define the covariant object

F =
1

2
Fµνdx

µ ∧ dxν . (4.20)

Notice that F = 1
2 (∂µAν −∂νAµ)dxµ∧dxν = ∂µAνdx

µ∧dxν = dA. Here A is given by Aµdx
µ because both

Fµν and dxµ ∧ dxν are antisymmetric.
This means necessarily that dF = d(dA) = 0. This is an equation expressed in terms of the covariant object
Fµν . Furthermore, written in terms of the E and B fields, the equation reduces to ∇× E + ∂tB = 0 and

∇·B = 0. This can be seen by explicit calculation, dF = d(Fµνdx
µ ∧ dxν) =

∂Fµν
∂xα dx

µ ∧ dxν ∧ dxα. If any of
α, µ, ν are the same, the result will be zero by antisymmetry of the wedge product. Hence, only components
that can potentially be non-zero are the cases where all indices are distinct. We therefore restrict to the case
where all indices are distinct. If one of the indices is zero we arrive at Faraday’s law. If none of the indices
are zero we have Gauss’s law for the magnetic field. Thus, we have written two of the Maxwell equations in
terms of the covariant object F .

The other two Maxwell equations can be written in terms of a contravariant object F#. We define

F# =
1

2
Fαβ# ∂α ∧ ∂β (4.21)

with Fαβ# = gαµgβνFµν . (4.22)

Here g is the usual metric, we are still in the Lorentzian case. The other two Maxwell equations can now
be written as the requirement that the contravariant divergence of F# is zero. Indeed ∇αFα0# = ∇ · E and

∇αFαi# = ∇×B − ∂tE. The Maxwell equations can therefore be rewritten into a more compact form

dF = 0 (4.23)

DivgF
# = 0. (4.24)

Indeed, one of these has a covariant and one of these has a contravariant tensor to work with. Notice
furthermore that, while dF = 0 follows directly form the definitions, the divergence could in principle be
non-zero. A non-zero divergence would correspond to a source term being added to the system.

4.1.4 Carrollian photons, by starting from preserved co- and contravariant
objects

[6] The above equations work perfectly well for the Lorentzian case. However, in the Carrollian case the
metric is degenerate. This makes the construction of the required objects more difficult. Information will
be lost when constructing the required objects. We will be operating in the Carroll spacetime (C, g, ξ,∇) as
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described in subsection 3.2.2.
There is a similarity between the approach given here and a previous observation. In section 3.1 we have
seen that in the Carrollian case, we can either raise or lower indices, but not both. We can switch case by
declaring either the spacial or temporal part of the momentum to be conserved. In Chapter 2 we have found
two limits on the momentum that satisfy Carroll invariance. The two distinct limits occur by dividing and
multiplying by factors of C before taking the limit. All of this fits into a larger picture. The problem of
raising and lowering indices is similar to the rescalings of the appropriate momenta. We may

• Demand a co- or contravariant object remains conserved.

• Then find the other object by demanding that indices can be raised or lowered respectively by using
the metric complex.

By raising and lowering indices we have lost the same information we would have if we had taken the Carroll
limit. The information we lost is exactly the information we loose if we divide by C and as a result of either
a redefinition or a coordinate transformation and then take the limit.

The methods are however not completely similar, the conserved objects correspond to those four-vectors
where a component would be sent to infinity. Let us demonstrate this for the electromagnetic case.

We will use latin indices a, b, c for the Carrollian case, this will reserve the greek indices for objects existing
in Bargmann space.

Contravariant Carroll Electromagnetism

[6] We start by assuming the existence of the contravariant object Fm = 1
2F

ab∂a ∧ ∂b. We may de fine a
corresponding covariant object by raising indices:

F [ =
1

2
(F [m)abdx

adxb, (4.25)

where (F [m)ab = hachbdF
cd
m . (4.26)

Since h is degenerate, we have lost information by ”lowering” the indices. More explicitly, we may start with

Fm = EA∂A ∧ ∂s +
1

2
εABCBC∂A ∧ ∂B . (4.27)

After lowering indices we arrive at

F [m =
1

2
εABCB

CdxA ∧ dxB . (4.28)

We can now demand equations similar to those of the Lorentzian case,

dF [m = 0 (4.29)

DivgFm = 0. (4.30)

This aligns with the magnetic type Carroll electromagnetism seen in subsection 4.1.1.

Covariant Carroll Electromagnetism

[6] To find a covariant version of Carrollian electromagnetism we start from the covariant 2-form expression

Fe =
1

2
Fabdx

a ∧ dxb. (4.31)

39



To find a contravariant object, we will make use of ξ = ∂s = τ l∂l. This is the only contravariant object at
hand. We consider the one-form E[ = −Fe(ξ). Converting this to a vector can only be done by virtue of
the hab. Indeed we have E# = habE[a = −hab 12Falτ

l. We may then finally define the required object:

F#
e = E# ∧ ξ. (4.32)

Locally, it is given by

F#
e =

1

2

(
F#
e

)ab
∂a ∧ ∂b where

(
F#
e

)ab
= 2 gk[aϕ ξb]Fk`ξ

` = 2hk[aτ b]Fklτ
l. (4.33)

Where g is now the Carrollian ”metric” defined in 3.2.2. The Maxwell equations, when applied to the above
two objects yield the electric type electromagnetism from 4.1.1. This can be seen from recalculating the
divergence terms ∇aF#ab = ∇ · E if b = 0 and ∂sE = 0 if b 6= 0.

4.1.5 From Bargmann space

[6] The last method of arriving at Carroll invariant systems that we consider here is a direct consequence of
the fact that we may obtain a Carrollian structure from Bargmann space, as we have seen in 3.2.5. We will
show this explicitly. We follow [6].

Let us start from a Maxwell theory on a Bargmann manifold,

dF = 0 (4.34)

DivGF
# = 0. (4.35)

Here F is a 2-form on a Bargmann manifold. The Carroll manifold is given by the embedding ι : C ↪→ B
given by t = constant. In general, we may obtain the twice-contravariant tensor by a pullback with ι. While
the bi-vector needs to be defined by adding additional restrictions.

Magnetic-like case

[6] Let us start with the bi-vector Fµν in Bargmann space. We may restrict it to the sub-manifold C
by imposing Fm = Fµν |C with F (G(ξ)) = FµνGνατ

α = 0. Notice that since Gνατ
α is a vector in the

timelike direction, the second condition requires that our vectors have no component in the timelike direction.
Defining Div(Fm) = Div(F )|C gives us half of the required equations.

The other half must be obtained from Fµν = GµαGνβF
αβ . Now, the restriction of G to the sub-manifold C

is exactly the Carrollian metric hµν . Thus, restricting all objects to C will result in Fνµ|C = hµαhνβF
αβ .

And, since dF = 0, its pullback is still closed This means dF = 0, even on the Carrollian manifold.

Electric-like case

[6] Let us start by defining the pullback Fe = ι∗(F ) 4. Since dF = 0, we must have dFe = 0 as well.
For the bi-vector F# we need to do an extra bit of work. On Bargmann space, it is defined by F#µν =
GµαGνβFαβ . Our first step will be to consider the restriction of Fαβ to C. As an additional requirement we
have, again, FµνGνατ

α∂t = 0. These are well-defined bi-vectors on the sub-manifold C. The restriction to
C can now be written as Fµνe = hµαhνβFαβ |C . Notice that, in this case, we have not completely gotten rid
of any s-dependence because hµν contains a degeneracy. Next, we want to arrive at a coordinate expression
for Fµν . We may observe Fµντµ = 0. This, combined with antisymmetry, means that Fµν can be written
in terms of

F# = E# ∧ ξ. (4.36)

4This is well defined, since ι is surjective if seen as a function to the submanifold t = constant.
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Where we have already inserted a yet to be determined vector E#. We have encountered this object before
in 4.1.4, E# = hµνFνατ

α. This can be seen directly by comparison to hµαhνβFαβ . We may now obtain the
last equation by setting Div(F#

e ) = Div(F#)|C .

4.2 Carrollian particles

In section 3.1 we have seen the formalism that we will be using to describe our Carroll particles, and in
section 3.1.1 we saw how such a formalism could be implemented in the Galilean case. We will now show
how this is done in the case of Carrollian particles, which are the particles we are actually interested in. We
will encounter a structure similar to what we have found for electromagnetism.

4.2.1 Particles, as a limit on a relativistic system

We can again take the Carrollian limit of a relativistic particle. We will use ∂τ
∂s = ∂τ

∂t
∂t
∂s = 1

cCγ . Furthermore,

the relativistic limit will focus on the temporal part of the momentum. Therefore, we will consider pµC = pµ

C
and pCµ = Cpµ. We may immediately take the limit:∫

dτc ∗
√
−gµνpµpν (4.37)

=

∫
ds

1

Cγ

√
C2τµτνpµpν − hµνpµpν →

1

C

∫
dsτµpCµ =

1

cC

∫
dsc

1

γ
Cmcγ.

Since only the time-like part is left, this results in

=
1

cC

∫
c

γ
p̃0ds =

1

cC

∫
dsmc2. (4.38)

If we want to focus on the spacial part, we have a minus sign under the square root. This can only make
sense if we are considering tachyons. We must assume the Carroll velocity to be nonzero, in accordance with
2.4.2. This changes the Limit of the gamma factor. γ = 1√

1−(Cus)2
→ 1

iCus
. As a direct consequence we

now have ∂τ
∂s = ∂τ

∂t
∂t
∂s = 1

cCγ →
i|us|
c .

∫
dτc ∗

√
−gµνpµpν =

∫
dsi|us|

√
−hµνpµpν +

1

C2
τµτνpµpν (4.39)

→
∫
ds|us|

√
hµνpµpν =

∫
ds|us|mc (4.40)

Where we have used that p2 = (mc)2 for the tachyons. Within the context of tachyons we have again mc2

in our Lagrangian.
Let us first clarify why we are fine with the prefactors before the actions. Under a coordinate transformation
the Jacobian changes, the Jacobian has a dimension. In this case a dimension of inverse velocity. We can
either choose to leave the prefactor outside the Lagrangian or change the dimensions of the Lagrangian. In
the case of massive particles. We elect the former. This means that while the Lagrangian now has a non-zero
limit, the action does not. In the tachyonic case, we leave everything inside the Lagrangian. This is possible
because there is no factor C involved.

We have two distinct particles. One normal particle and a particle that looks like the previously
encountered Tachyon. The Tachyon is associated with the contravariant momentum and transforms as
such. The massive particle can only be obtained by considering that pµC =

pµL
C and then taking the limit

of Cp0C = pL. This is similar to how we arrived at the Carroll momentum Cpµ in section 2.4.1. The fact
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that we need a different momentum four-vector in the different limits makes sense. Equations tend to only
have one limit. Without a redefinition of the momentum we would only have one limit.
We also note that in a sense, the ”information” about the relativistic particle is split into two. The tachyon
only cares about the spacial components of the momentum, while the massive particle only requires the
temporal part.

The equations of motion follow almost immediately. For the massive particle we have only the temporal
part of the momentum, there is no position dependence. The Hamiltonian is also zero.
The tachyonic particle seems to have some dynamics. There is a dependence on velocity. The momentum is

non-zero: ∂L
∂q̇ = mc3 ∂|us|∂uis

= mc3 ui

|us| . In accordance with what we know from the tachyons. The equations

of motion yield an interesting result:

∂sp
i =

u̇s
i|us| − ui ∗ (

usj u̇s
j

|us| )

|us|2
. (4.41)

When contracted with usi the result becomes

usi∂sp
i =

usiu̇
i|us| − (usj u̇s

j |us|)
|us|2

= 0. (4.42)

The inner product between the velocity and the derivative of the momentum is zero. The direction of
momentum and velocity are still the same. Thus, while momentum can change its direction, it cannot
change its magnitude. This is in accordance with p2 = (mc)2. Even if we add a potential, as long as the
potential is not explicitly dependent on the velocity. This remains true. 5

If we want our Lagrangian to be Carroll invariant, we need for the Lagrangian L to have L′(s, x, ẋ) =
L(s − b · x, ẋ) = L(s, x, ẋ). The simplest way to achieve this is by having the Lagrangian not be explicitly
dependent on Carroll time, and having the Carroll velocity be zero.
This is the case for the non-tachyonic particle. The tachyonic particle will still have a Noether current
possibly associated with a mass.

4.2.2 Particles, by starting from preserved co- and contravariant objects

The equations of motion of a free relativistic particle are given by ∂pµ

∂τ = 0. Even in this case, we may

distinguish between the covariant and contravariant equations of motion, ∂pµ

∂τ = 0 and
∂pµ
∂τ = 0. In the

Carroll limit these two take on an entirely separate meaning. This is similar to what happened to the
Lagrangian. We proceed by the method laid out in 4.1.3. To be explicit: We take the limit on the relativistic
equation of motion. This includes the relativistic 4-momentum. This takes two steps.

• The coordinate transformation on the four-vector pµ, affecting the timelike coordinate.

• The Limit C →∞.

The contravariant equation of motion
∂pµL
∂τ = 0 corresponds to

∂pµL
∂τ

=
1

γ

∂pµL
∂Cct

(4.43)

This is trivially zero for all spacial components. The only equation of motion comes from the timelike

component. We will therefore use the four-vector pµC =
pµL
C . A coordinate transformation gives the zero

5This behaviour reminds us of photons. They cannot change the size of their momentum in a potential.
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component an extra factor of C,such that it is conserved in the limit.

1

γ

∂pµL
∂Cct

=
1

γ

∂pµC
∂s

(4.44)

Notice that only the temporal component of the four-vector has remained. Thus, this should describe the
massive particle. Indeed, since γ is independent of s in the massive case, we have

∂m

∂s
= 0 (4.45)

This corresponds to the massive particle case. As is the case with the Maxwell equations, we could have found
the relevant equations of motion by assuming pµ is conserved and then ”raising indices” via pµC := τµτνpCν .
Indeed, a similar term appears in the relevant Lagrangian.

As an additional verification we may do two additional calculations.
Firstly: the Hamiltonian is now ∂L

∂ẋi
ẋi − L = −L. Therefore, everything commutes with the Hamiltonian.

And since L = mc2, H is associated with a mass.
Secondly, the velocity. For pµC we do indeed have ~pL

C = m
C γ ∗ u = musc√

1−C2u2
s

→ 0. This is in accordance with

PµC = τµτνpνC . Since τ i should always be zero.

Starting from the covariant equations of motion we may calculate the limit directly.
∂pµ
∂τ =

∂pµ
∂s

∂s
∂τ =

∂pµ
∂s cCγ →

c
i|us|

∂pCµ
∂s . Since the momentum is also imaginary in this context, and the prefactor is nonzero,

this translates to ∂smc
ẋi
|ẋ| = 0. Notice that the timelike component of pµ has rescaled by a factor p0 → p0

C .

Therefore p0,C = 0 in the Carroll limit, without reference to any equations of motion. This result corresponds
to the tachyonic case. The result can be obtained directly from the corresponding Lagrangian without any
need for recalings. We may find the same equations of motion by assuming the contravariant momentum is
conserved. Similar to what is done in 4.1.3. In this case, it will suffice to just raise the indices by virtue of
hµνp

ν . This gives us the required equation of motion.

4.2.3 Mass shell

It is informative to look at the Carroll limit of the mass shell condition. Relativistically, the mass shell
condition applies to particles that satisfy the equation of motion. We will do the same in the Carroll limit.
The equations of motion are satisfied by te massive particles pµC := τµτνpCν and the tachyons pµ := hµνp

ν

respectively.
In the first case the mass shell condition must be written in terms of the metric, gµνp

µpν = m2c2. Taking
the limit we get

gµν(
pµL
C

)(
pνL
C

) =
m2c2

C2
(4.46)

hµνp
µ
Cp

ν
C = 0. (4.47)

The redefinition of the Carrollian momentum must be compensated by dividing by a factor 1
C2 on the right

hand side. In the second case, we start from gµνpµpν .
Taking the limit we get

C2 g
µν

C2
pµpν = 0 (4.48)

−τµτνpµpν = 0 (4.49)

Where we have divided out a factor of C2 to get to the limit. We see that for all particles, the limit of the
mass shell condition sets either temporal or spacial components to zero. These equations are indeed satisfied.
hµνp

µ = hµντ
µταpα = 0 and τνpν = τνhµνp

µ = 0 by definition.
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4.3 Comparing the methods

4.3.1 Comparison with Relativistic → Carroll

We have seen two distinct methods for finding Carroll invariant systems.

• Applying a coordinate transformation x0 → Cx0 = s and taking the limit C → ∞ on pµ or pµ
respectively.

• Not applying any coordinate transformation, but instead adopting a Carroll framework from Bargmann
space. This automatically imposes hµνp

µ := pν and τµτνpµ := pν .

We may wonder why we are interested in the more abstract approach to find a Carrollian structure, taking
the limit C → ∞ on a relativistic system should also yield a Carrollian system. And indeed it does, as we
have shown with multiple examples. There is however a critical flaw in this approach. The metric g naturally
translates to hµν by virtue of a projection to the spacial coordinates. i : hij = gij , h0µ = hµ0 = 0. More
importantly, this corresponds to the limit limC→∞ gµν = hµν .
This cannot be done for the corresponding timelike vector τµ∂µ = ∂s. We may of course define τµτν =
1
C2 g

µν , but the extra factor of 1
C2 points at the underlying problem. The contravariant objects do not

naturally translate into one another. One can be obtained from the other by a limit, but they cannot exist
simultaneously. As such we cannot translate timelike vectors on a relativistic manifold to timelike vectors
on a Carrollian manifold. We can therefore obtain only the covariant version of the Carroll limit by taking
the limit in this way. We have solved this problem by redefining the four-vectors in the case where we are
interested in the timelike part. We have pµ

C and pµ ∗ C as four-vectors instead.
The more abstract approach of explicitly defining pµ = τµτνpµ or pµ = hµνp

ν respectively does not have
this problem.

We have seen explicitly that the two above approaches give the same result in at least two cases. Let
us show that this holds in general.

Focusing on the spacial part first we have pµ =


p0
p1
p2
p3

→

p0
C
p1
p2
p3

→


0
p1
p2
p3

 = hµνp
ν .

Regardless of the value of p0. Here the first arrow indicates a coordinate transformation to s and the
second arrow indicates the limit C → ∞. Therefore it does not matter that we should apply a coordinate
transformation to p0, the information is lost.

Similarly, for the timelike part, we have pµC =
pµL
C = 1

C


p0

p1

p2

p3

 → 1
C


Cp0

p1
p2
p3

 →

p0

0
0
0

 = τµτνpCν = pLν ∗ C.

Here the first arrow indicates a coordinate transformation to s and the second arrow indicates the limit
C → ∞. Notice that, since τ i = 0 the spacial components do not matter for the last equality. And for the
timelike part of pC , not rescaling or rescaling with pC = pLν ∗C and applying the coordinate transformation
yield the same result.

The difference between the two methods only comes up in the information that is lost when raising or
lowering indices. If we can always write our equations in a way that does not require those parts by raising
and lowering indices before taking the limit. Therefore, the results will be the same in both approaches.
However, we cannot always do this. In the electromagnetic cases, both the co- and contravariant objects
are necessary. There is therefore a distinction between the two cases which we will investigate in the next
section. Now knowing that there are two completely distinct ways of arriving at Carrollian systems, we have
the following picture of the duality.
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Figure 4.1: The duality between Carrollian and Newton-Cartan manifolds.

4.3.2 Co- and contravariant systems

Regardless of method, the two particles are described by either a covariant or a contravariant object.
As let us for example look at the photons. If we start from Aµ and start rescaling we obtain magnetic type
electromagnetism. The ”covariant electromagnetism” proposed in 4.1.4 conserves Aµ. The contravariant

object Aµ is then defined by Aµ := τµτνAν . This is equal to the A′µ by a rescaling of C. Aµ = A′µ = (Cφ, ~A)
C .

We find a similar situation for the particles. The situation is captured in the following table:

Equations of motion are invariant under Rescaled object Preserved object
Electric type Aµ Aµ Aµ
Magnetic type Aµ Aµ Aµ

massive particles pµ pµ pµ
tachyonic particles pµ pµ pµ

In both of these case one of the objects is assumed to be preserved. The other object can be obtained
by either raising/lowering indices or working from the coordinate transformations. There is however a key
distinction. From the electromagnetic case, we see that both the co- and contravariant four-vectors have a
clear physical meaning. We cannot write all maxwell equations as one or the other. We have, implicitly,
chosen to not rescale one of the four-vectors when calculating the Electric and Magnetic types. The difference
in methods matters now, and investigating it will shed some light on the tachyon-like behaviour we have
been seeing.

4.3.3 Tachyonic behaviour

As an important observation. Derivatives should in principle go to zero in the Carroll limit, ∂s = 1
C ∂x0 .

However, we consistently find that the required symmetries work for non-zero values of the time derivatives.
The cases where time derivatives are zero is just a special case of this more general class. It is the only one
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that is consistent with the limit as it is taken from relativistic objects.

equivalence in the methods, electric type

Let us first recall the two methods.

• Assume Fµν is conserved, then define Fµν = 2hk[µτν]Fklτ
l. Since Fµν can be written in terms of Aµ′,

this roughly translates to assuming A′µ is conserved and defining Aµ′ = τµτνA′ν .

• Demanding indices can be raised, and thereby redefining the vectors as AµC = Aµ

C and ACµ = CAµ.
Now we also have Aµ = τµτνAν . Then applying the coordinate transformation x0 → Cx0. Therefore
in essence transforming the spacial parts.

For these two methods to be equivalent. We must have Aµ′ = AµC , which is true, and A′µ = ACµ. The

spacial components of the latter equation are given by ~A′ = C ~AC . This has an important consequence. For
the electric type, we have allowed for ∂sA

′ 6= 0. This is not a manifestation of non-zero derivatives of real
quantities, but of ∂sA

′ = ∂s(C ~A) = ∂0 ~A. This is not a Carrollian quantity at all. It just looks like one if we
assume that Aµ is conserved.

equivalence in the methods, magnetic type

Let us first recall the two methods.

• Assume Fµν is conserved, then define Fµν = hµαhνβF
αβ . Translates to assuming Aµ′ is conserved

and defining Aµ′ = hµνA
ν′.

• Applying a coordinate transformation x0 → Cx0. This will affect the timelike parts of Aµ and Aµ. We
can now lower indices, but not raise them, Aν = hµνA

µ.

For these two methods to be equivalent. We must have Aµ′ = Aµ which is true, and Aµ′ = Aµ. The
temporal components of the latter equation are given by φ′ = Cφ. This has an important consequence. For
the magnetic type electromagnetism, we have allowed for ∂sφ

′ 6= 0. This is not a manifestation of non-zero
derivatives of real quantities, but of ∂sφ

′ = ∂s(Cφ) = ∂0φ. This is not a Carrollian quantity at all. It just
looks like one if we assume that φ is conserved.

Equivalence in the methods, massive particle

Let us first recall the two methods.

• Assume p′µ is conserved, then define p′ν = τµτνp′µ.

• Redefine pCµ = pLµC and pµC =
pµL
C such that pµL = C2τµτνpν implies pµC = τµτνpCν . Then applying

a coordinate transformation x0 → Cx0. Effectively changing the spacial parts.

For these two methods to be equivalent. We must have pµ′ = pµ, which is true, and pµ′ = pµ. The spacial
components of the latter equation are given by p′i = Cpi. This has an important consequence. For p′i to be
conserved we must have pi → 0 in the Carroll limit. This is consistent with the ad-hoc assumption us = 0
before taking the limit.
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Equivalence in the methods, tachyonic particle

Let us first recall the two methods.

• Assume p′µ is conserved, then define p′ν = hµνp
′µ.

• Applying a coordinate transformation x0 → Cx0. Therefore changing the temporal parts. Since the
spacial parts are still the same, we have pν = hµνp

µ.

For these two methods to be equivalent. We must have pµ′ = pµ, which is true, and pµ′ = pµ. The temporal
components of the latter equation are given by p0′ = Cp0. This has an important consequence. For p0′ to be
conserved we must have p0 → 0 in the Carroll limit. Now p0 = mcγ so the assumption us 6= 0 would yield
p0 → −imc

usC
→ 0. While us = 0 does not. Therefore further verifying that these are indeed tachyons.
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Chapter 5

Conclusion

We have set out to investigate what physical systems can arise in the Carrollian limit.

In this thesis we have adopted the viewpoint of [6]. That is, we apply a coordinate transformation
x0 → Cx0 = s and take the Limit C → ∞. This is contrary to the more common definition of c → 0.
From this viewpoint, we have taken the Carroll limit on multiple objects. We have seen how these objects
transform in the Carroll limit.
The paper also proposes a more abstract approach of arriving at Carrollian symmetries. The more mathematical
approach forces us to consider the symmetries from the perspective of manifolds. This has possible relevance
to a theory of Carrollian gravity that takes hint from General relativity. In studying this a duality between
the Carrollian and Gallilean systems becomes visible. Both can be seen as they are related to the overarching
Bargmann group. This prompts an alternate definition of the Carroll limit. Seeing the Carroll group as a
subgroup of the Bargmann group, we may define Carrollian particles by using pullbacks and pushforwards
of objects related to the Bargmann group. This duality and new way of finding the Carroll limit is also laid
out in [6].

Our own contribution has consisted of an explicit discussion on four-vector formalism. We have explained
how the a modified version of the regular four-vector formalism applies to Carrollian quantities. As a main
difference, we have seen that the metric splits into a spacial and a temporal parts, which should be treated
as seperate objects. As a result of this, two distinct sets Carrollian four-vectors arise. This explains the
existence of two distinct Carrollian particles seen in [6].
We have applied this approach to some different particles. Applying this to electromagnetism has resulted in
agreement with the before mentioned paper. While applying this to the massive relativistic particle has also
resulted in two different limits. Furthermore, we have compared the two different perspectives on Carrollian
symmetries. One that is obtained by taking a limit on a relativistic system and one that is obtained by
adopting the objects relevant to the Bargmann group. Requesting consistency between the two perspectives
gives us a better understanding of tachyons. While they cannot be obtained from a relativistic system
without making some additional assumptions. They belong to the more general class of Carroll invariant
systems.

In my perspective, the work regarding Carrollian systems is far from done. On a theoretical level the
duality between Carrollian and Galilean systems could lead to further development in both fields. Where
we remind the reader that Galilean physics is still an active field of study, especially in the context of
Newton-Cartan theory [8]. Furthermore, tachyons tend to pop up in a variety of calculations and a different
perspective could possibly be useful. We also have yet to find some real-life applications for these kinds of
symmetries. We mention a few possibilities.
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• Physical systems near the black hole horizon. For light moving radially toward a Schwarzschild black
hole we have c(r) = ∂r

∂t = c(1 − r
rH

). Near the black hole horizon, this goes to zero. A similar result
would be attained if we switch from t to s = cCt.

• In [7] it is argued that for a gas made of Carroll particles, we have ε + P = 0. This could yield a
candidate for the inflaton.

• Related to the last point, we might want to find a Carrollian version of general relativity. This is done
in [3]. The general idea is the following. General relativity can be restated as Poincaré gauge theory.
Here a Lorentz symmetry is explicitly implemented on the tangent space. Implementing Carrollian
symmetry instead yields a theory of Carrollian gravity. On these tangent spaces we may still view
the Carrollian symmetry as either given by the limit on a relativistic system or taken from Bargmann
space.

• Carrollian symmetry could be used in the context of fluids [13]. This could be connected to theories
of fluids near a black hole.

With this work we hope to have contributed to the general understanding of Carrollian systems, as well
as having provided a possibly new approach to working with the tachyons that show up in various theories.
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