
Utrecht University

Bachelor Thesis
7.5 ects

Hilbert’s 10th Problem

Author:

Richard Dirven
5686091

Supervisor:

Dr. Jaap van Oosten

A thesis submitted in fulfilment of the requirements

for the degree of Bachelor of Science

in the

Department of Mathematics
Faculty of Science

June 17, 2021

https://www.uu.nl/en
https://webspace.science.uu.nl/~ooste110/index.html
https://www.uu.nl/en/organisation/department-of-mathematics
https://www.uu.nl/en/organisation/faculty-of-science

i

“Mathematics knows no races or geographic boundaries; for mathematics, the cultural world

is one country.”

David Hilbert

ii

Contents

I Computability Theory 1

1 Register Machines & Computability 2
1.1 Register Machines . 2

1.1.1 An overview . 2
1.1.2 Formalization . 3
1.1.3 Closure Properties . 5

1.2 Computable Functions . 6
1.2.1 Introduction . 6
1.2.2 Closure Properties . 6

2 Primitive Recursive Functions 9
2.1 Introduction . 9
2.2 Important primitive recursive functions 11

2.2.1 Primitive recursiveness of the equality relation 11
2.2.2 Powerful building blocks . 12

2.3 Partial Recursive Functions . 15

3 Tuple Coding 17
3.1 The Cantor pairing function . 17
3.2 Tuple pairing function . 18
3.3 Functions on sequences . 19

4 Computability, Decidability & Enumerability 21
4.1 Equality of computability and recursiveness 21
4.2 Decidability & Enumerability . 23

II Diophantine Set Theory 25

5 Diophantine Equations 26
5.1 Introduction . 26
5.2 Diophantine sets . 27
5.3 Diophantine relations . 28
5.4 Exponential Diophantine sets . 29

6 Exponential Diophantineness of recursively enumerable sets 32
6.1 More exponential Diophantine relations 32
6.2 Bounded quantification . 35

7 Undecidability of Hilbert’s 10th 38
7.1 Properties of recurrence relations . 38

7.1.1 The characteristic polynomial of Λ(n) 39
7.1.2 Divisibility & congruence properties 40

7.2 The sequence α is Diophantine . 42

iii

7.3 Exponentiation is Diophantine . 44

III Appendices 46

A Computability proofs 47
A.1 Outputting input is computable . 47
A.2 Composition of computable functions 48
A.3 Primitive recursion is computable . 48
A.4 Minimalization is computable . 50

B Pairing function proofs 51
B.1 Bĳectivity of the Cantor pairing function 51
B.2 Computability of the Cantor pairing and projection 52

C Proofs of multiple combinatorial identities 54
C.1 Factorial identity proof . 54

D Index 56

E Acknowledgements 57

F Bibliography 58

iv

List of Figures

1.1 Simple graphical representation of a register machine 2

2.1 Dependency graph of different primitive recursive functions 13
2.2 Relation between different types of (recursive) functions 16

3.1 Visualization of the Cantor pairing function 17

5.1 Relation of different proofs . 30

v

List of Mathematical Notation

N+ The positive natural numbers
dom(f) The domain of a function f
f |A Restrict the domain of function f to A
(A proper subset
\ Set minus
min The minimalization function
max The maximization function
A The complement of a set A
bxc The floor function, with codomain Z
Id The identity function, sending every element of its set to itself
gcd The greatest common divisor of two integers
÷ Integer division, see [23]
In The n× n identity matrix
Λi,j The ith row and jth column of a matrix Λ

vi

Dedicated to all people who forgave my mistakes, kept believing in me

and pushed me to be better. To all people who believe in cooperation

instead of competition.

1

Part I

Computability Theory

2

1. Register Machines & Computability
To get an understanding of when a function is computable and when it is not, it is
important to rigorously define the notion of computability. It is often ‘explained’ that
a function is computable if there exists an algorithm for it. However, for a math-
ematician, that is not very satisfying, as this just defines computability in terms of
somethingundefined. Intuitively thismight all be clear, but if one aims to understand
the boundaries of what is and what is not computable, one needs clear definitions.
In this chapter a register machine and the notion of a program will be rigorously
defined, to enable the definition of a computable function. The theory of this chapter
is based on the theory in [19].

1.1 Register Machines

One formalism to describe computability is that of a register machine. Note that
there are other ways to define computability, for instance with λ-calculus [5] or with
the original Turing machine [2, Ch. 3], but these definitions have been shown to be
equivalent.

1.1.1 An overview

Before defining a computation, an understanding of a register machine is necessary.
A registermachine consists, as the name suggests, out of a fixednumbern of registers,
which can be considered as boxes containing a natural number each. This can be
compared to memory on a typical von Neumann machine [18]. Each register Ri

contains a value ri ∈ N. Thus, in contrast to a normal computer where memory
overflows can occur, these registers can contain arbitrary large values. A visual
interpretation of the registers is depicted in figure 1.1. A computer without means to
manipulate its memory is nothing more than a storage device. The same holds true
for the register machine, which also needs means to manipulate its memory. This
is done using a program P , which is a finite ordered list of commands, where each
command has one of two shapes:

1. r+i ⇒ n, which means: add 1 to ri and move to command n;

2. r−i ⇒ n,m, which means: if ri > 0, subtract 1 from ri and move to command
n. If ri = 0, meaning 1 cannot be subtracted, move to commandm.

The numbers n andmwill be referred to as instruction pointers, for obvious reasons.
A program will halt when an instruction pointer points to m = |P | + 1, where |P |

1

R1

3

R2

3

R3

7

R4

. . .

. . .

ri

Ri

. . .

. . .

rn

Rn

Figure 1.1: Simple graphical representation of a register machine

Chapter 1. Register Machines & Computability 3

denotes the number of instructions in program P . This will be also referred to as the
stop-instruction. To be a valid program it must be that all instruction pointers point
to valuesm such thatm ≤ |P |+ 1. In contrast to a classical von Neumann machine,
where a program needs to be stored in memory (and thus self modifying code can
exist), the program of a register machine exists separate from the registers.

Example 1.1 Some basic operations can now be programmatically described.

i) Emptying a register:

E(i) :=

1 r−i ⇒ 1, 2

ii) Moving data from Ri to Rj :

M(i, j) :=

1 r−i ⇒ 2, 3

2 r+j ⇒ 1

iii) Moving data from Ri to Rj and Rk:

M(i, j, k) :=

1 r−i ⇒ 2, 4

2 r+j ⇒ 3

3 r+k ⇒ 1

iv) Copying data from Ri to Rj :

C(i, j) :=

1 r−i ⇒ 2, 4

2 r+j ⇒ 3

3 r+k ⇒ 1

4 r−k ⇒ 5, 6

5 r+i ⇒ 4

v) Infinitely add one to a register:

1 r+i ⇒ 1

Note that the program listed in v) never halts, therefore it must not be that a program
terminates.

1.1.2 Formalization

With the previous section in mind, the soon to be introduced rigor becomes much
more understandable.

Definition 1.1 Let P be a program for the register machine and a1, . . . , ak ∈ N. A

computation of the register machine with program P and input a1, . . . , ak is a list of l + 1-
tuples, under two conditions.

1) It must be that l + 1 ≥ k and the tuple (n1, r
1
1, . . . , r

1
l) = (1, a1, . . . , ak, 0, . . . , 0);

2) Whenever ni = m, the ith tuple is written as (m, ri1, . . . , r
i
l) and one of four must

occur:

i) Program P does not have amth command, thus this ith tuple is the last tuple and
m = |P |+ 1, the stop-instruction;

ii) Themth command is r+j ⇒ u and j ≤ l. Then the next tuple is

(ni+1, r
i+1
1 , . . . , ri+1

l) = (u, ri+1
1 , . . . , rij−1, r

i
j + 1, rij+1, . . . , r

i
l);

iii) Themth command is r−j ⇒ u, v, j ≤ l and rij > 0, such that the next tuple is

(ni+1, r
i+1
1 , . . . , ri+1

l) = (u, ri+1
1 , . . . , rij−1, r

i
j − 1, rij+1, . . . , r

i
l);

Chapter 1. Register Machines & Computability 4

iv) Themth command is r−j ⇒ u, v, j ≤ l and rij = 0, such that the next tuple is

(ni+1, r
i+1
1 , . . . , ri+1

l) = (v, ri+1
1 , . . . , ril).

This definition is rather long and technical but can be summarized as follows. An
element (ni, r

i
1, . . . , r

i
l) from the list of l + 1-tuples in the computation resembles

the ith step of the computation. Moreover, the nith command of program P will
be executed next and the values in the registers R1, . . . , Rn are currently ri1, . . . , ril .
More will be clarified in the example below.

Example 1.2 The programM(i, j) listed in ii) of the example before will be run on a machine

that has two registers R1 and R2. Let r2 = 2, so thatM(2, 1) is run. Then the computation

associated with this is shown below.

Tuple Next instruction

(1, 0, 2) r−2 ⇒ 2, 3
(2, 0, 1) r+1 ⇒ 1
(1, 1, 1) r−2 ⇒ 2, 3
(2, 1, 0) r+1 ⇒ 1
(1, 2, 0) r−2 ⇒ 2, 3

stop

As r2 = 0 and there is no command 3 the computation is done.

As stated before, a program does not necessarily terminate and when it does not, it
is hard to reason about results or output of the program.

Definition 1.2 Let C = (ni, r
i
1, . . . , r

i
l)
K
i=1 be a finite computation; a list consisting out of

K elements. The last element of C is then (nK , r
K
1 , . . . , r

K
l) and the output of computation

C is defined as rK1 .

Example 1.3 The output of the computation in example 1.2 is 2.

One might have started to wonder why the number of registers is not really defined.
As it turns out, once there are enough of them, adding extra registers does not
influence the output of the program. This is formalised in the following remark.

Remark 1.1 If (ni, r
i
1, . . . , r

i
l)i≥1 is a computation with program P , then so is the computa-

tion with l′ ≥ l-tuples (ni, r
i
1, . . . , r

i
l , 0, . . . , 0)i≥1. Thus, once length is fixed, computations

are unique implying that register machines are deterministic. Consequently, the list with
one l-tuple (1, a1, . . . , ak, 0, . . . , 0) is the unique computation with the empty program ∅ and
input a1, . . . , ak.

To finish this subsection, some notation is introduced. A program P , running on
input ~a = (a1, . . . , ak), outputting~b = (b1, . . . , bm), is denoted as follows

(a1, . . . , ak)

(b1, . . . , bm)

P or

~a

~b

P .

This is called a program diagram.

Chapter 1. Register Machines & Computability 5

1.1.3 Closure Properties

It would be desirable to have ways to combine programs to create new programs.
One might have noticed from example 1.1 that the first three instructions of C(i, j)
are almost the same as in programM(i, j, k) and the two after that are very similar
to those inM(i, j). This combination of programs can be defined generally.

Definition 1.3 Let P and Q be programs where P has k elements. Its composition PQ is

defined as follows. First construct Q′ from Q by add k to all command numbers. The list by

listing all elements of P in order and then Q′ is the composition PQ.

Given this definition it is now possible to write C(i, j) by applying composition on
programsM(i, j, k) andM(k, j).

Example 1.4 To calculateM(i, j, k)M(k, j), modifyM(k, j) toM(k, j)′ such that it will

look like

4 r−k ⇒ 5, 6

5 r+i ⇒ 4.

All of the arguments are offset by three because M(i, j, k) has three instructions Indeed,

C(i, j) = M(i, j, k)M(k, j), retrieved by listingM(i, j, k) and thenM(k, j)′.

Having established a notion of composition on programs, some facts about the alge-
bra of programs under composition can be proven. First of all, see that programs,
upon fixing register count l, are closed under composition. But that is not the only
pleasant algebraic property of program composition.

Lemma 1.2 Program composition is associative.

Proof. Let n1, n2 and n3 be arbitrary instruction pointers from programs P,Q and R
respectively. As composition onlymodifies the instruction pointers, it suffices to look
atwhere theygetmapped towhen composingP withQRorPQwithR. Composition
PQ modifies n2 to |P | + n2 and (PQ)R then modifies n3 to (|P | + |Q|) + n3. The
program composition QR modifies n3 to |Q| + n3 and pre-composing P with QR
further modifies n3 to |P | + (|Q| + n3) and it modifies n2 to |P | + n2. Observe that
n1 stays the same, n2 always gets send to |P |+ n2 and by associativity of addition n3
always gets send to |P |+ |Q|+ n3.

It would be desirable if program composition also has a neutral element. Luckily,
neutral elements are often easy to find.

Lemma 1.3 Let P be a program and ∅ be the empty program. Then ∅P = P = P∅.

Proof. As ∅ is an empty, zero-length program, all instruction pointers and counters
of P remain unchanged, thus P ′ = P . Listing all the elements of ∅ first does nothing,
thus ∅P = P . When calculating P∅, all instruction pointers of ∅ get changed.
However, there are no instruction pointers in the empty program. Hence P∅ = P ,
proving the desired result.

Program composition has a neutral element and is associative, meaning they form a
monoid.

Chapter 1. Register Machines & Computability 6

1.2 Computable Functions

1.2.1 Introduction

Having established a concise definition of what a computation is, the next goal is to
establish a notion of computable functions. Let f : A → N, where A ⊂ Nk and k is
some positive integer. Then f is a k-ary partial function. When dom(f) = Nk, f is a
total function. For k = 1, 2, 3 one can speak of unary, binary and ternary functions
respectively.

Definition 1.4 Let f be a k-ary function, then f is said to be (rm-)computable if there exists

a program P such that for all ~a ∈ Nk
one of two applies:

1) ~a ∈ dom(f): program P on input ~a terminates and the output of this computation is

f(~a);

2) ~a 6∈ dom(f): there is no finite computation with P on input ~a.

The definition will be seen in practice in the following example.

Example 1.5 Define f : N → N as follows: f(a) = 0, thus f is the zero function. Let P
be the program listed in i), for register R1. Clearly P computes f , as P always outputs zero,

independent of its input and therefore f is rm-computable.

The second part of the definition plays an interesting role, shown by the example
below.

Example 1.6 Let f be an arbitrary rm-computable function and P the program to compute

it. Moreover, let A (dom(f). The restriction f |A need not be rm-computable, because for

any a ∈ dom(f) \A the program P still terminates (and has f(a) as its output).

By composing programs one can create new programs. One of such programs is the
following.

Lemma 1.4 Let f be a k-ary function which is computable with program P . Then there

exists a program P̃ such that for all ~a ∈ dom(f), we have that

(a1, . . . , ak)

(f(~a), a1, . . . , ak)

P̃ .

For a proof see appendix A.1.

1.2.2 Closure Properties

Not only programs are closed under composition, but also computable functions.

Definition 1.5 Suppose g1, g2, . . . , gl : Nk → N and h : Nl → N are computable functions.

A function f : Nk → N is said to be defined from composition of g1, . . . , gl and h if

1) the domain of f is

{~a ∈ Nk | ~a ∈
k⋂

i=1

dom(gi) and (g1(~a), . . . , gl(~a)) ∈ dom(h)};

Chapter 1. Register Machines & Computability 7

2) if ~a ∈ dom(f) it holds that f(~a) = h(g1(~a), . . . , gl(~a)).

Lemma 1.5 The set of computable functions is closed under composition.

For a proof, see appendix A.2. There are evenmore closure properties of computable
functions, the most important of which is using recursion. In chapter 2 this will be
further explored.

Definition 1.6 Let g, h and f be k-ary, k+2-ary and k+1-ary partial functions respectively.
Define

F0 = {(0, x0, . . . , xk) | (x1, . . . , xk) ∈ dom(g)}
Fy+1 = {(y + 1, x0, . . . , xk) | (y, x1, . . . , xk) ∈ Fy

and (y, f(y, x1, . . . , xk), x1, . . . , xk) ∈ dom(h)}

The k + 1-ary function f is said to be defined from the primitive recursion of g and h when

1) The domain of f is ∪∞i=0Fi;

2) f(0, x1, . . . , xk) = g(x1, . . . , xk);

3) f(y + 1, x1, . . . , xk) = h(y, f(y, x1, . . . , xk), x1, . . . , xk).

This definition is not very intuitive at glance. This can be seen as a for-loop, where
one starts at f(0,~a) and uses the result of computation f(y,~a) to compute the result
of f(y + 1,~a). In a for loop one is also able to use i, the looping parameter, which
translates to h being able to use the parameter y provided.

Example 1.7 It is possible to define exponentiation by primitive recursion. Then first define

g : N→ N h : N3 → N
x 7→ 1 (x, y, z) 7→ y · z.

Now let f be defined by the primitive recursion of g and h. The, for example,

f(2, x) = h(1, f(1, x), x) = x·f(1, x) = x·h(0, f(0, x), x) = x·(x·g(x)) = x·(x·1) = x2.

It can be shown with induction that f is the exponentiation function xy.

One might wonder whether f is computable given that it is defined from primitive
recursion of computable functions g and h. It turns out that is true, which is proven
in the following lemma.

Lemma 1.6 The set of computable functions is closed under primitive recursion.

A proof is again listed in the appendix A.3. There is one last operation under which
computable functions are closed. This operation is lesser known outside of the
“computability scene”.

Definition 1.7 Let f and g be k-ary respectively k + 1-ary functions. Define f such that

~x ∈ dom(f) if there is a y such that g(y, ~x) = 0. Moreover for all 0 ≤ j ≤ y the k+ 1-tuples
(j, ~x) are contained in dom(g). In that case

f(~x) = min{y | g(y, ~x) = 0}.

The function f is said to be defined from minimalization from g.

Chapter 1. Register Machines & Computability 8

Lemma 1.7 The set of computable functions is closed under minimalization.

A proof is shown in appendix A.4. Take note that the second part of definition 1.4
is important for minimalization, because a rm computing f(~a), is allowed to search
forever for a minimal value, iterating over all the naturals. The program will never
halt if there is not an i for which g(i,~a) = 0. But that just emphasizes that ~a 6∈
dom(f).

9

2. Primitive Recursive Functions

2.1 Introduction

So far, the reader has been introduced with computations and using those computable

functions have been defined; a layer which builds on the definition of programs. An-
other layer will now be added, building upon the definition of computable functions.
This is done analogously to [19], as this chapter is based on those lecture notes. To
do so, some extra notation needs to be introduced to avoid ambiguity. One might
have been in the situation, during calculus class for instance, that there are so many
symbols in an equation, that it is not immediately clear which symbols stand for
parameters and which stand for variables. For instance, look at the linear1 function

ax+ by.

This could mean multiple things:

1) A function of (x, y), N2 → N, where a and b are parameters;

2) However, just as valid, it could be a function of (a, b), N2 → N, where x and y
are the parameters;

3) But it could also be a function of (y, x);

4) Or evenmore unconvential, a function of (a, x, y): N3 → N, without parameters;

In fact all permutations of 0, 1, 2, 3 and 4 variables constitute to a reasonable def-
inition of a function. One might start to wonder how one even has been able to
do mathematics while so much ambiguity exists! In computability theory this is
extra annoying, as functions and defining functions are what this theory is all about.
Therefore, the lambda notation is being used. It is best shown in practice, thus the
four examples above will be shown.

1) λxy.ax+ by;

2) λab.ax+ by;

3) λyx.ax+ by;

4) λabxy.ax+ by.

To insert values for the variables, say x = 3 and y = 5, write (λxy.ax+ by)(3, 5). The
difference between the first and third notation becomes evident here.

Definition 2.1 The class of primitive recursive functions consists out of functionsNk → N,
where k can be any non-negative integer. This class is generated by:

1) the 1-ary zero function Zero = λx.0;

2) the 1-ary successor function S = λx.x+ 1;

3) the k-ary projection functions Πk
i = λx1 . . . xk.xi;

4) all compositions of two primitive recursive functions;

1Linearwhenwe consider, as is often convention, a and b to be constants and x and y to be variables.

Chapter 2. Primitive Recursive Functions 10

5) all primitive recursions on two primitive recursive functions.

The first three functions are referred to as basic primitive recursive functions

Earlier on primitive recursion of two functions has been explained and used in an
example, so the construction of new primitive recursive functions should be clear.
Do note that this definition does not contain minimalization. A small example is
shown to further explain the definition of primitive recursive functions.
Example 2.1 The constant function fk = λx.k, where k ∈ N is primitive recursive. This

can be shown by induction. First note that fk is the zero-function which is primitive recursive

by definition. For the induction step, assume that fk(x) is primitive recursive. See that

fk+1(x) = k + 1 = S(k) = S(fk(x)). Because S is primitive recursive and fk is by our

assumption, fk+1 is too by applying composition.

Primitive recursive functions have two very attractive properties.
Lemma 2.1 All primitive recursive functions are total.

Proof. First see that items 1) to 3) are trivially total. Now assume that f is defined
from composition of total functions g1, . . . , gl : Nk → N and h : Nl → N. Each gi
is total and therefore dom(gi) = Nk. Additionally h is total, hence for arbitrary ~a
(g1(~a), . . . , gl(~a)) ∈ dom(h). Ergo, f , by the definition of its domain, is total.
If f is defined from the primitive recursion of total functions g : Nk → N and
h : Nk+2 → N, let ~a ∈ Nk be arbitrary, so that f(0,~a) = g(~a). As g is total, this is
defined, thus (0,~a) ∈ dom(f). Let the induction hypothesis be that (y,~a) ∈ dom(f).
Then f(y + 1,~a) = h(y, f(y,~a),~a). By the IH f(y,~a) exists and by totality of h,
(y, f(y,~a),~a) ∈ dom(h). Therefore (y + 1,~a) ∈ dom f . This holds for arbitrary ~a,
proving the lemma.

If a function f is obtained from minimalization of g, then f is not necessarily total.
This explains whyminimalization is not included in the definition of primitive recur-
sive functions. By including minimalization the class of partial recursive functions
is obtained, which is what section 2.3 is all about.
Lemma 2.2 All primitive recursive functions are computable.

Proof. For each item listed in definition 2.1 a program or proof is given.
1) The function E(1), from item i) computes the zero-function;

2) The program

1 r+1 ⇒ 2

computes S;

3) The following program computes the projection Πi
k:

x1 . . . xk

0x1 . . . xk

xi x1 . . . xk

C(k,1)

4) This was proven in lemma 1.5;

5) This was proven in lemma 1.6.

Chapter 2. Primitive Recursive Functions 11

2.2 Important primitive recursive functions

Basic primitive recursive functions act as building blocks, from which lots of new
functions can be build. Primitive recursive functions can also be used to induce
relations on sets.
Definition 2.2 Let A be a subset of Nk

for some k, then A is a k-ary relation. Define the

function

χA : Nk → N

~x 7→

{
1 if ~x ∈ A
0 else

.

Then χA is called the characteristic function. A relation is called primitive recursive if the

characteristic function is.

Observe that the characteristic function is necessarily total.

2.2.1 Primitive recursiveness of the equality relation

First it is shown that equality is a primitive recursive relation. Most of the proofs
are based on versions on [3]. This subsection can be skipped, but take note of the
functions being defined in the lemmas. The set associated with the equality relation
is

E = {(a, a) | a ∈ N}.

The primitive recursiveness of E is shown incrementally, demonstrating the power
of basic primitive recursive functions as building blocks. All functions are, naturally,
N→ N, unless stated otherwise.
Lemma 2.3 Let Add(x, y) = λxy.x+ y, then Add(x, y) is primitive recursive.

Proof. See that Add(0, y) = 0 + y = y = Π1
1(y), which is a basic primitive re-

cursive function. Furthermore Add(x + 1, y) = x + 1 + y = Add(x, y) + 1 =
S(Π3

2(x,Add(x, y), y)), which is primitive recursive because it is a composition of
two basic primitive recursive functions. Conclude that Add is a primitive recursion
of two primitive recursive functions and therefore it also primitive recursive.

Lemma 2.4 Let Prd(x) be the predecessor function, that is:

Prd(x) =

{
0 if x = 0

x− 1 if x > 0
.

Then Prd is primitive recursive.

Proof. The function Prd can be defined by primitive recursion of the 0-ary function
Π1

1(0) and the projection function Π2
1(x, y). Consequently the function looks like:

Prd(x) =

{
0 if x = Π1

1(0)

Π2
1(x− 1,Prd(x− 1)) else

.

Lemma 2.5 Define the cut-off subtraction function
.− as

x .− y =

{
x− y if x ≥ y
0 if x < y

.

Chapter 2. Primitive Recursive Functions 12

Then the cut-off subtraction function is primitive recursive.

Proof. It holds that x .− 0 = x = Π1
1(x) is prmitive recursive and that x .− (y + 1) =

(x .− y)− 1 = Prd(x .− y) = Π3
2(y,Prd(x .− y), x) is primitive recursive. Thus x .− y can

be defined by primitive recursion of Π1
1 and λxyz.Prd(y).

Lemma 2.6 The absolute difference function |x− y|, defined as

|x− y| =

{
x− y if x ≥ y
y − x else

,

is primitive recursive.

Proof. Realize that |x− y| = (x .− y) + (y .− x). Therefore we can write that |x− y| =
Add(x .− y, y .−x), which is primitive recursive by composition of primitive recursive
functions.

Theorem 2.7 The characteristic function of equality, noted as χeq, is primitive recursive.

Proof. Note that x = y iff |x− y| = 0. Moreover, it holds that x .− (x .− 1) is zero when
x is zero and one otherwise. Therefore

χeq(x, y) = 1 .− |x− y|.

Two examples are worked out for extra clarity of this somewhat complex looking
function. In the next section some extra notation is introduced, making it somewhat
easier to express χeq intuitively.

Example 2.2 Let x = 2 and y = 5, the computation is as follows.

χeq(2, 3) = 1 .− |2− 5|
= 1 .− 3

= 0

Example 2.3 Let both x, y = 5, the computation is as follows.

χeq(5, 5) = 1 .− |5− 5|
= 1 .− 0

= 1

As a bonus, it is shown in figure 2.1 how all these functions depend on each other.

2.2.2 Powerful building blocks

In the previous subsection a lot of primitive recursive functions were necessary, just
to show the primitive recursiveness of the equality relation. In contrast, this section
is dedicated to providing general patterns, to construct whole classes of primitive re-
cursive functions all at once. First a connection between primitive recursive relations
and their complements is stated.

Lemma 2.8 Let A denote a primitive recursive relation, then so is A.

Proof. Because A is a primitive recursive relation, it has an associated characteristic
function χA. Define χA as λx.1 .− χA(x). If x 6∈ A, then χA(x) = 0, thus χA(x) = 1.
In the same manner, if x ∈ A, χA(x) = 1 giving that χA(x) = 0.

Chapter 2. Primitive Recursive Functions 13

basic
p.r.

functions

Prd Add

λxy.x .− y

λx.|x|

χeq

Figure 2.1: Dependency graph of different primitive recursive func-
tions

This immediately begs for some notational convenience.

Definition 2.3 Let f : N→ {0, 1} ⊂ N. Then its complement is defined as

f(x) = 1 .− f(x).

This definition enables one to write χA instead of χA for any characteristic func-
tion. From now on, the proofs regarding the primitive recursiveness of a function
will be more brief: any function will be written in terms of other primitive recur-
sive functions. It should be straightforward to see whenever primitive recursion or
composition is applied.
Another important function is the sign function sgn, tailored for the natural numbers.
It is defined as

sgn(x) =

{
0 if x = 0

1 else
.

See that sgn = χN+ and as its co-domain is {0, 1}, it has a complement sgn.

Lemma 2.9 The function sgn(x) is primitive recursive.

Proof. The sign function can be written as λx.x .− (x .− 1).

In the proof of theorem 2.7 this was already being used. Using definition 2.3 χeq can
be written as:

χeq(x, y) = sgn(|x− y|).

A lot of functions defined in section 2.2.1 have been defined using cases. This can be
generalized with the case function, which is defined as

C(x, y, z) =

{
x if z = 0

y else
.

As one might guess, this function is primitive recursive. To show this, however, a
closer look at multiplication is needed.

Lemma 2.10 The function λxy.x · y is primitive recursive.

Chapter 2. Primitive Recursive Functions 14

Proof. See that x · 0 = 0 = Zero(x). In addition to that, x · (y + 1) = x · y + y =
Π3

2(x,Add(x · y, y), y).

Lemma 2.11 The function C is primitive recursive.

Proof. Write C(x, y, z) as λxyz.χeq(z, 0) · x+ χeq(z, 0) · y.

Mathematicians love operations on sequences, it is therefore desirable to show that
some sequence manipulations are primitive recursive. Three such series manipula-
tions are shown to be primitive recursive. The most common one, summation:

Lemma 2.12 Let f be a k + 1-ary primitive recursive function. Then

λ~xz.
∑
y<z

f(y, ~x)

is primitive recursive.

Proof. Note that (λ~xz.
∑

y<z f(y, x))(~x, 0) = 0 = Zero(Π1
1(~x)) for arbitrary ~x ∈ Nk,

per the empty sum property. Also it holds that

(λ~xz.
∑
y<z

f(y, ~x))(~x, z + 1) = (λ~xz.
∑
y<z

f(y, ~x))(~x, z) + f(~x, z).

A similar proof for multiplicative series is shown.

Lemma 2.13 Let f be a k + 1-ary primitive recursive function. Then

λ~xz.
∏
y<z

f(y, ~x)

is primitive recursive.

Proof. First study the function when z = 0 and see that (λ~xz.
∏

y<z f(y, ~x))(~x, 0) = 1
as a property of the empty product. Moreover,

(λ~xz.
∏
y<z

f(y, ~x))(~x, z + 1) = f(~x, z)(λ~xz.
∏
y<z

f(y, ~x))(~x, z).

The last series manipulation needs to be properly defined before any properties of it
can be demonstrated.

Definition 2.4 Let χ be a k + 1-ary characteristic function and fix c ∈ N, ~x ∈ Nk
. Then

the function denoted with and defined as

µy < c.χ(~x, y) =

{
c if {y | χ(~x, y) = 1} = ∅
min{y | χ(~x, y) = 1} else

is called bounded minimalization.

This minimization operator is used like the λ-function regarding notation and is also
referred to as the bounded µ operator. The bounded µ operator is not as ‘famous’
and used outside the realms of computability theory as the summation and product
operators.

Chapter 2. Primitive Recursive Functions 15

Lemma 2.14 Let χ be a k + 1-ary primitive recursive characteristic function. Then

λ~xz.(µy < z.χ(~x, y))

is primitive recursive.

Proof. Analogous to the two preceding lemmas: λ~xz.(µy < z.χ(~x, y))(~x, 0) = 0, for
all ~x ∈ Nk. Furthermore it holds that

λ~xz.(µy < z.χ(~x, y))(~x, z + 1) = λ~xz.(µy < z.χ(~x, y))(~x, z) +
∏

y<z+1

χ(~x, y).

The second term adds one when there has not been any y < z + 1 such that χ = 1
and zero otherwise.

This covers the theory about primitive recursive functions. There is a lot more theory
regarding those. For proofs about which functions are primitive recursive, see [3]. A
good book which includes this topic is [2], which is also a good general introduction
to computability theory.

2.3 Partial Recursive Functions

Up to this point, the reader has only been introduced to total functions. Despite them
being well behaved, they do not cover enough ground to make a theory about com-
putability. Illustrated by the proof of lemma 1.7, computations need not halt during
minimalization. In contrast, computations of total k-ary functions f will always halt,
because any k-tuple is contained in dom(f). Hence the following definitions.

Definition 2.5 The class of partial recursive functions is generated by:

1) all primitive recursive functions;

2) minimalization of a partial recursive function (recall definition 1.7);

3) the composition λ~x.f(g(~x)), where f is a unary primitive recursive function and g is
a k-ary partial recursive function.

Partial recursive functions may also be referred to as µ-recursive functions. The
definition begs the questionwhether there are partial recursive relations. The answer
is yes and no.

Definition 2.6 A relation A ⊂ Nk
is called recursive if its characteristic function χA is

partial recursive.

A partial recursive function is called total recursive or just recursive if it is total. To
answer the question; in some sense there are partial recursive relations, but note that
χA is total bydefinition. IfχA is not total thenA is a recursively enumerable set , which
will be explored further in section 4.2. Consequently all partial recursive relations are
total recursive relations and as such, it is just as easy to call them recursive relations.
Different kind of functions have now been mentioned, so to clarify, in figure 2.2 their
relation is shown. A simple example of a partial recursive function is given.

Example 2.4 Let χA be the characteristic function for the relationA = {(x, y) | x+y = 1}.
Moreover define f(x) = µy.[x + y = 1]. Then f is partial recursive, because it is a

composition of minimalization and the primitive recursive function of equality. The domain

of f is {0, 1}.

Chapter 2. Primitive Recursive Functions 16

primitive recursive

total computable partial recursive

partial computable

functions

Figure 2.2: Relation between different types of (recursive) functions

To conclude this chapter, a special kind of equality is introduced. This is done,
because from this section on some functions can be very similar but defined on
another domain.

Definition 2.7 Let f and g be functions, the Kleene equality f(x) ' g(x) means that

whenever one of f(x), g(x) is defined so is the other and equality between them holds.

Again, an example can be very enlightening.

Example 2.5 Consider f(x) = x, g(x) = x2

x and h(x) = x3

x2 , then f(x) 6' g(x), because
g(0) is undefined, but f(0) is not. However g(x) ' h(x) because both are undefined in x = 0
and agree whenever they are defined.

17

3. Tuple Coding
An important tool in computability theory is the encoding of tuples and programs
as a natural number. The theory in this chapter is based on the theory from [19]. For
instance, it is impossible to output an ~a ∈ Nk, where k > 1, but with encoding it is!
In [10, pp. 729–731] the bĳection between N2 and N is proven.

Definition 3.1 Let f : N2 → N such that f is computable and bĳective. Then f is said to be

a pairing function.

One such pairing function will be introduced and explored in the next section.

3.1 The Cantor pairing function

Although multiple such pairing functions exist, in this thesis all coding is done with
one such function.

Definition 3.2 Define

π : N× N→ N

(x, y) 7→ (x+ y)(x+ y + 1)

2
+ y.

Then this function is called the Cantor pairing function.1

The Cantor pairing function has the useful property that bothx, y ≤ π(x, y). In fact,
the Cantor pairing function iterates tuples in a neatly fashion, as shown in figure 3.1.
The most important property of it will now be proven.

Lemma 3.1 The Cantor pairing function is bĳective.

Its proof, accompaniedwith an example is listed in appendix B.1. This proof however,
calculates x and y for a given z using the floor function of a square root. Therefore,
to reverse the bĳection, another definition is more suitable.

(0, 3)

(0, 2) (1, 2)

(1, 0) (1, 1) (2, 1)

(0, 0) (1, 0) (2, 0) (3, 0)

Figure 3.1: Visualization of the Cantor pairing function

1Sometimes it is just referred to as the pairing function, but others do exist, see [20] and [21] for
some examples.

Chapter 3. Tuple Coding 18

Definition 3.3 Let z be an arbitrary natural number and let

π1(z) = µx ≤ z.[∃y ≤ z.π(x, y) = z]

π2(z) = µy ≤ z.[∃x ≤ z.π(x, y) = z]

then π1(z) = x and π2(z) = y are the Cantor projections.

One might wonder whether this definition works. Hence the following lemma is
stated.

Lemma 3.2 For arbitrary z ∈ N it holds that π(π1(z), π2(z)) = z.

Proof. Let x = π1(z) and y = π2(z). Then there exists a y′ such that π(x, y′) = z,
likewise there exists a x′ such that π(x′, y) = z. But π is bĳective so x = x′ and y = y′.
Consequently, π(x, y) = z.

Now it becomes possible to show that the Cantor pairing function is truly a pairing
function.

Lemma 3.3 The Cantor pairing function and its projections are computable.

Its proof is listed in appendix B.2. The Cantor pairing function is somewhat sur-
prisingly the only 2nd degree polynomial pairing function, up to permutation of
the variables. The proof can be found in [11]. Interestingly, in the same paper the
following conjecture is made.

Conjecture 1 The Cantor pairing function is the only pairing function in polynomial form.

Later in this thesis more open conjectures will be shown, which provide the reader
with ideas for further research.

3.2 Tuple pairing function

Using this pairing function, it is also possible to bĳect triples, quadruples or k-tuples
instead of tuples to the naturals. This is done as follows:

Definition3.4 Letk ∈ N+
, then thekth pairing functionπk : Nk → N is defined recursively

by letting

π1 = Id

πk+1(x1, . . . , xk, xk+1) = π(πk(x1, . . . , xk), xk+1).

The kth projection function πki : N→ N, satisfying

πk(πk1 (y), . . . , πkk(y)) = y,

for arbitrary y ∈ N, is defined recursively by

π11 = Id

πk+1
i (y) =

{
πmi (π1(y)) if i < k + 1

π2(y) if i = k + 1
.

Note that the second pairing function is just referred to as the pairing function and
similarly that the second projection function is the projection function.

Chapter 3. Tuple Coding 19

Lemma 3.4 Each πk is bĳective.

Proof. Clearly for k = 1, 2 this is true. Pick any k and assume that the lemmaholds for
k. See that πk+1(x1, . . . , xk+1) = π(πk(x1, . . . , xk), xk+1). By the IH πk is a bĳection
betweenNk andN, define x = πk(x1, . . . , xk), then π(x, xk+1) is a bĳection. Ergo πk+1

is a bĳection.

Via an analogous way it is straightforward to prove that each πk is computable. For
each k a bĳection between Nk and N has been established. Recall that a countable
union of countable sets is itself is countable, therefore ∪∞k=0Nk is also countable. It
begs the questionwhether is possible to build a computable bĳection from∪∞k=0Nk →
N. There is such a bĳection and this is desirable, because it can be used in a range of
proofs.

Definition 3.5 Let (x1, . . . , xk) ∈ Nk
and write () for the empty tuple in N0

. The

code of a sequence is defined and written as

〈 〉 = 0

〈x0, . . . , xk−1〉 = π(k − 1, πk(x0, . . . , xk−1)) + 1 if k > 0.

By similar reasoning as before, the code of a sequence is bĳective and computable.
Note however, that the indices start from zero. This is done for convenience and
analogously to the convention that the naturals start at 0. Being able to assign a
unique natural number to any element of ∪∞k=0Nk is quite astonishing. An example
is shown below.

Example 3.1 By the bĳective property every 0-vector gets assigned a unique value. Therefore,

it holds that

1. By definition 〈 〉 = 0;

2. Continuing on, see that 〈0〉 = π(0, π1(0)) + 1 = 1. Here it becomes clear why the +1

was added;

3. Next, it holds that 〈0, 0〉 = π(1, π2(0, 0)) + 1 = 2. A pattern seems to emerge;

4. Lastly, 〈0, 0, 0〉 = π(2, π3(0, 0, 0))+1 = 4, meaning that not all zeroes are enumerated

after each other.

3.3 Functions on sequences

In this section some fundamental manipulations on sequences are introduced. They
demonstrate flexibility of encoding. For instance the length of an encoded sequence
can be recovered.

Definition 3.6 The length of a sequence, encoded as x, can be retrieved by the function `(x)
and is defined as follows:

`(x) =

{
0 if x = 0

π1(x− 1) + 1 if x > 0
.

Lemma 3.5 Given an encoded sequence x = 〈x0, . . . , xk−1〉, it holds that `(〈x〉) = k.

Chapter 3. Tuple Coding 20

Proof. Simply apply the definitions of the sequence encoding and the `-function, to
get that

`(x) = `(〈x0, . . . , xk−1〉)
= `(π(k − 1, πk(x0, . . . , xk) + 1))

= π1(π(k − 1, πk(x0, . . . , xk))) + 1

= k.

With this function it becomes possible to recover individual elements of the encoded
sequence.

Definition 3.7 The element recovering function (x)i, recovering the ith element of a se-

quence encoded as x, is defined as

(x)i =

{
π
`(x)
i+1 (π2(x− 1)) if 0 ≤ i < `(x)

0 else

.

It should be fairly straightforward to see why the element recovering function works.

Lemma 3.6 Given an encoded sequence x = 〈x0, . . . , xi, . . . , xk−1〉, it holds that (x)i = xi.

Proof. First notice that `(x) = k. Then apply the definitions to retrieve that

(x)i = (〈x0, . . . , xi, . . . , xk−1〉)i
= (π(k − 1, πk(x0, . . . , xi . . . , xk) + 1))i

= πki+1(π2(π(k − 1, πk(x0, . . . , xi, . . . , xk))))

= πki+1(π
k(x0, . . . , xi, . . . , xk))

= xi.

The functions not only work as intended, they are also both primitive recursive. The
encoding acts as a bĳection and hence x = 〈(x)0, . . . , (x)`(x)−1〉. Another useful tool
to have, is to replace elements of an encoded tuple.

Definition 3.8 Let x be an encoded tuple, then the replacement function Put(x, a, i) puts
an a at the ith place such that

Put(x, a, i) =

{
〈(x)0, . . . , (x)i−1, a, (x)i, . . . , x`(x)−1〉 if 0 ≤ i ≤ `(x)− 1

x else

It should be clear from the definition that this function is primitive recursive.
For convenience a double replacement function is defined as Put(x, a, i, b, j) =
λxaibj.Put(Put(x, a, i), b, j), which is also primitive recursive by composition. This
concludes the chapter about encodings, the introduced tools will be used in the next
chapter to prove two theorems which have broad implications throughout mathe-
matics in general and Hilbert’s 10th specifically.

21

4. Computability, Decidability &
Enumerability
This chapterwill finishpart I. Themost important results of elementary computability
theory are stated here. Again, it is based on [19].

4.1 Equality of computability and recursiveness

The power of encodings is shown in this section. Here it is shown incrementally
that the class of partial computable functions is exactly the class of partial recursive
functions, thereby peeling of one layer of figure 2.2. Realise that an instruction of a
program is just definedby twoor three integers andhence a codingof a rm-instruction
can be done as follows

r+i ⇒ n gets code 〈i, n〉
r−i ⇒ n,m gets code 〈i, n,m〉.

A rm-program is a list of rm-structions (p1, . . . , pk), thus if for each pj its encoding
is p̂j then the code of the rm-program is defined as 〈p̂1, . . . , p̂k〉. All those encoded
programs form a primitive recursive set Prog, so that

e ∈ Prog⇔ ∀i < `(e).
[
((e)i)0 ≥ 1 ∧ [`((e)i) = 2 ∨ `((e)i) = 3]

]
.

Which translates to “all commands must edit registers Ri where i > 1 and all in-
structions must either have two (r+i) or three (r−i) elements.” The encoding of a
whole computation can be defined similarly. A computation is a finite list of l-tuples
(ri1, . . . , r

i
l)
K
i=1, thus its encoding is given by

〈〈r11, . . . , r1l 〉, . . . , 〈rK1 , . . . , rKl 〉〉.

This allows one to define the following predicate.

Definition 4.1 The Kleene predicate T (m, e, x, y) holds if and only if e is the code of a

program P , where y is the code of the computation with P and input πm1 (x), . . . , πmm(x).

The following lemma is powerful, but its proof is not very elegant.

Lemma 4.1 The Kleene predicate is a primitive recursive relation.

Proof. The predicate T (m, e, x, y) is a conjunction of the following statements:

I Code emust be a program: Prog(e);

I A computation is never empty: `(y) > 0;

I Every tuple in the computation has the same size: ∀i < `(y).[`((y)i) = `((y)0)];

I The tuples in the computation must be able to contain all the input variables:
`((y)0) ≥ m+ 1;

Chapter 4. Computability, Decidability & Enumerability 22

I The first tuple listed has an instruction pointer pointing to one on the first place
andm elements which are the input of the computation:

((y)0)0 = 1 ∧ ∀i ≤ m.[i ≥ 1⇒ ((y)0)i = πmi (x)];

I The elements after the instruction pointer and the m input elements are zero:
∀i < `((y)0).[i > m⇒ ((y)0)i = 0];

I Whenever a instruction pointer points to the stop-instruction, this is the last
step of the computation: ∀i < `(y).[((y)i)0 = `(e) + 1⇔ i = `(y)− 1];

I If the at the jth step the instruction is of the form r+i ⇒ n and the registers
contain (k, rj1, . . . , r

j
l), then at the next step the registers look like

(n, rj+1
1 , . . . , rj+1

i−1 , r
j
i + 1, rj+1

i+1 , . . . , r
j
l).

This converts to:

∀k < e, l < e,∀i < `(y)− 1.
[
(e)((y)i)0 = 〈k, l〉 ⇒
(y)i+1 = Put((y)i, l, 0, ((y)i)k + 1, k)

]
;

I If the at the jth step the instruction is of the form r−i ⇒ n,m and the registers
contain (k, rj1, . . . , r

j
l), then at the next step the registers look like

(n, rj+1
1 , . . . , rj+1

i−1 , r
j
i − 1, rj+1

i+1 , . . . , r
j
l),

if rji > 0, otherwise the registers will look like (m, rj+1
1 , . . . rjl). This translates

to: ∀k, l,m < e,∀i < `(y)− 1 it holds that

∀k < e, l < e,m < e, ∀i < `(y)− 1.
[
(e)((y)i)0 = 〈k, l,m〉 ⇒

[((y)i)k = 0 ∧ (y)i+1 = Put((y)i,m, 0)] ∨
[((y)i)k = 0 ∧ (y)i+1 = Put((y)i, l, 0, ((y)i)k − 1, k)].

Realise that eachpredicate is boundedandall their definitions areprimitive recursive,
because quantifiers, the logical relationships and the used functions are. Most of
those have been proven in the previous sections and chapters, for further proofs
see [3].

One extra function is needed.

Definition 4.2 The output function U is defined such that whenever T (m, e, x, y), U(y) is
the output of the computation.

This means that, when y = (ri1, . . . , r
i
l)
K
i=1 and T (m, e, x, y) holds, the output function

U(y) = rK1 . Which is already a proof of its primitive recursiveness. Luckily this
proof is a tiny bit shorter than that of lemma 4.1. This provides enough tooling to
prove the following theorem.

Theorem 4.2 A partial function is computable if and only if it is partial recursive.

Proof. Suppose that f is a k-ary partial computable function, so that there exists a
program P which computes f . Encode this program and call it e. Then it must be
that

f(x1, . . . , xk) ' U(µy.T (k, e, πk(x1, . . . , xk), y)).

Chapter 4. Computability, Decidability & Enumerability 23

But that means that every computable f is obtained by minimalization over the
primitive recursive relation T (composed with primitive recursive function πk). This
shows that it is a partial recursive function! Recall that it was already established, via
lemma 2.2 and lemma 1.7, that every partial recursive function is computable.

Corollary 4.3 Define a function Φ(m, e, x) ' U(µy.T (m, e, x, y)). For any k-ary partial

recursive function f there exists a number e (an encoded program) such that for all k-tuple
(x1, . . . , xk) it holds that

f(x1, . . . , xk) ' Φ(k, e, πk(x1, . . . , xk)).

In other words, there exists a universal function Φ.

Proof. Any partial recursive function is computable, thus there exists a program P
to compute it, which can be encoded to e. This can then be applied to the function
mentioned in theorem 4.2.

For a partial function f , if it is written as f = λx1 . . . xm.Φ(m, e, πm(x1, . . . , xm)),
then e is called an index and it is written that f = ϕe. The notation e · (x1, . . . , xm) is
introduced to mean ϕe(x1, . . . , xm).

4.2 Decidability & Enumerability

It has been shown that subsets (and thus relations) ofNk and functions are intimately
related. One example can be the set

{x | ∃z such that z2 = x},

which essentially describes the problem of finding perfect squares. In general a
problem for a given set A is deciding whether an element is contained in A.

Definition 4.3 Let A ⊂ N, then A is called recursively enumerable if there is a partial

recursive function ψ such that A = dom(ψ).

This definition is equivalent to stating that A is recursively enumerable when there
exists a partial recursive function ψ such that

ψ(x) =

{
1 if x ∈ A
undefined else

.

It is easy to verify that any recursive set is also recursively enumerable, by removing
0 from its domain. The relation between recursively enumerable and recursive is
further clarified in the following lemma.

Lemma 4.4 Let R ⊂ Nk
, then R is recursive if and only if R and R are recursively

enumerable.

Proof. If R is recursive, so is its complement and therefore are both recursively
enumerable. In the other direction, write R = {~x | ∃y.ψR(~x, y)} and R = {~x |
∃y.ψR(~x, y)} for some recursive ψR and ψR, which is possible, because both are
assumed to be recursively enumerable. A k-ary function f can now be defined as
f(~x) ' µy.(ψR(~x, y) ∨ ψR(~x, y)). See that dom(f) = R ∪R = Nk is total.

Chapter 4. Computability, Decidability & Enumerability 24

If sets are recursive, then the set is called solvable or decidable. Now consider the
halting set

{(f, x) | ∃k, z such that T (k, f, x, z)},

which describes the problem of finding of all pairs (f, x) such that f · x is de-
fined. Realise that this set is recursively enumerable. This is also referred to as the
Halting problem, a quite famous problem. If the reader is familiar with the problem,
the following theorem should not be a surprise.

Theorem 4.5 The Halting problem is undecidable.

Proof. Assume that the Halting problem is decidable. Then there is a characteristic
function χ such that

χ(f, x) =

{
0 if f · x is defined
1 else

.

Define χ′ as λx.χ(x, x) and let g be any function such that dom(g) = N \ {0}. An
example of such a function is g(x) ' µy.xy > 1. Now let f be the index of the
function λx.g(χ′(x)). Then f · f is defined iff χ′(f) = 0. However, χ′(f) = 0 iff
g(χ′(f)) is undefined. But g(χ′(f)) is equal to f · f , which leads to a contradiction.
This proves that our assumption was false.

Corollary 4.6 Not every recursively enumerable set is computable.

Proof. Recall that theHalting set is recursively enumerable. However its complement
is not, as it is impossible to compute whether an element is not in the set.

25

Part II

Diophantine Set Theory

26

5. Diophantine Equations
This chapter is very loosely based on [16].

5.1 Introduction

The foundations in computability theory have been laid out. Recall the original
problem this thesis set out to solve:

“Given a Diophantine equation with any number of unknown quantities

and with rational integral numerical coefficients: To devise a process ac-

cording to which it can be determined by a finite number of operations

whether the equation is solvable in rational integers.”

— David Hilbert (1900, [13]1)

Thus it is about time to exactly define Diophantine equations and dive into their
properties.

Definition 5.1 Let f ∈ Z[x1, . . . , xm], then a Diophantine equation is an equation of the

form

f(x1, . . . , xm) = 0.

The function f is then a Diophantine function.

Sometimes f in the above definition is referred to as a Diophantine polynomial. The
equation above can also be referred to as a Diophantine equation in integers, so that
the ring Z can be replaced for any commutative semiring. For example, it is also
possible to consider Diophantine equations in naturals, where, in the definition, Z
has been replaced by N. For any Diophantine equation in integers an important
question is to find values for x1, . . . , xm such that the equation holds. The following
remark is made to broaden the ways of writing out Diophantine equations.

Remark 5.1 Let f, g ∈ Z[x1, . . . , xm], then

f(x1, . . . , xm) = g(x1, . . . , xm)

can be transformed into a Diophantine equation.

Its proof should be trivial, assuming the reader is familiar with subtraction. Note
that Diophantine functions are computable. Some famous examples of Diophantine
equations are given.

Example 5.1 (Linear Diophantine Equation) Fix a, b, then

ax+ by = 1

describes the linear Diophantine equation.

1Although the article is from 1902, the list was originally published in German in 1900.

Chapter 5. Diophantine Equations 27

Example 5.2 (Pell’s Equation) Fix integer a, then

(x+ 2)2 − ay2 = 1

describes the Pell’s equation.2

Example 5.3 (Sums of three cubes) Fix an integer a, the equation

x3 + y3 + z3 = a

describes the sums of three cubes.3

In the previous part the most used number system was N. One might be inclined to
ask whether the requirement of f being an integer polynomial, in the definition of
Diophantine equations, is necessary or that the naturals would suffice. They indeed
suffice, which is shown in the following lemma.

Lemma 5.2 Solving a Diophantine equation in integers is equivalent to solving a Diophan-

tine equation in naturals.

Proof. First assume that for any Diophantine in naturals it can be decided whether
solutions exist. Let

f(x1, . . . , xm) = 0

be an arbitrary Diophantine equation in integers. Any integer n can be written as
a difference of two naturals, this naturally holds when n ≥ 0 and when n < 0, one
such way is to write n = 0 − |n|. Therefore, write each xi as the difference of two
naturals numbers, thus xi = yi − zi, where yi, zi ∈ N. Then

f(y1 − z1, . . . , xm − zm) = 0

is a Diophantine equation in naturals and thus can be solved. Its solutions can be
translated into solutions for the original equation.
Now assume that for anyDiophantine in integers it can be decidedwhether solutions
exist. Let

f(x1, . . . , xm) = 0

be an arbitrary Diophantine equation in naturals. Recall the Langrange’s four square
theorem [15, pp. 280–284], i.e. any natural number can be expressed as the sum of
four squares. Now write xi = a2i + b2i + c2i + d2i , where each ai, bi, ci, di ∈ Z. Then the
solutions for

f(a21 + b21 + c21 + d21, . . . , a
2
m + b2m + c2m + d2m)

can be translated to solutions for the original equation. Showing all that needs to be
shown.

From now on, when speaking about Diophantine equations it is meant in the naturals

unless explicitly stated otherwise.

5.2 Diophantine sets

Away to categorize Diophantine equations is to subdivide them into those that have
solutions and those which have not.

2This Pell’s equation has been slightly modified for educational purposes.
3This is not a very creative name, but that is how it is often referred to (see [4, 9, 17]).

Chapter 5. Diophantine Equations 28

Definition 5.2 Let f(a1, . . . , ak, x1, . . . , xm) = 0 be a Diophantine equation with parame-

ters ~a = a1, . . . , ak and variables ~x = x1, . . . , xm. The Diophantine setD associated with f
is defined as

D = {~a ∈ Nk | ∃~x ∈ Nm
such that f(~a, ~x) = 0}.

If~a is contained inD then f(~a, ~x) is called satisfiable under the parameters of~a. The equation
f(~a, ~x) is called the Diophantine representation of D.

The power of Diophantine sets lies in the relations such sets can describe, which will
be further explored in section 5.3. The Diophantine sets of examples 5.1 to 5.3 can
also be described as relations as follows.

Example 5.4 The Diophantine set of the linear Diophantine equation is

{(a, b) | a and b are coprime}.

The Diophantine set of the Pell’s equation is

{a | a is not a perfect square}.

Observe that example 5.3 is not mentioned in this example. This is because its
Diophantine set is unknown, stated by the following two conjectures.

Conjecture 2 The Diophantine set over the integers of the sums of three cubes equation is

{a | a 6≡ ±4 (mod 9)}.

This would seem fairly trivial, but realize that the smallest solution for a = 42 is

42 = (−80 538 738 812 075 974)3 + 80 435 758 145 817 5153 + 12 602 123 297 335 6313,

which was only found after a huge search using distributed computing [1].

Conjecture 3 The set of integerswhich can bewritten as a sum of three cubes is incomputable.

If conjecture 2 holds, this is not true and if conjecture 3 holds, the first does not have
a proof. This little detour illustrates how hard even simple Diophantine equations
can be. To connect with the previous part, the following lemma is stated.

Lemma 5.3 All Diophantine sets are recursively enumerable.

Proof. Let f(~a, x1, . . . , xm) be a Diophantine function and D be its Diophantine set,
where ~a denotes the parameters and x1, . . . , xm denote the variables. Define the
characteristic function

ψ(~a) ' µx.[f(~a, (x)1, . . . , (x)m) = 0].

Then dom(ψ) is the set of values ~a for which a solution exists, which is exactly the
Diophantine set D.

The rest of this thesis is aimed at proving that the converse is also true: all recursively
enumerable sets are Diophantine.

5.3 Diophantine relations

In example 5.4 it was shown that Diophantine sets can describe relations between
natural numbers. This is precisely defined in the definition below.

Chapter 5. Diophantine Equations 29

Definition 5.3 Let S ⊂ Nk
, then S is said to be a Diophantine relation when S is an

exponential Diophantine set.

A relation in itself is not really powerful. Therefore two operations are shown under
which Diophantine relations are closed.

Lemma 5.4 The union and intersection of Diophantine sets are also Diophantine.

Proof. Let f(~x) = 0 and g(~x) = 0 be Diophantine equations. Their union is then

(f(~x)g(~x) = 0,

because fg = 0 is satisfiable when eiter f(~x) = 0 or g(~x) = 0. By similar reasoning
the intersection is

f(~x)2 + g(~x)2 = 0,

which is only satisfiable when both f(~x) = 0 and g(~x) = 0.

Consequently, it is now possible to define Diophantine relations which are defined
from multiple Diophantine properties. A few of those properties are now listed. To
do so, the existential quantifier ∃ is used, which coincides with the definition of a
Diophantine set. The items are listed from simple to complex, such that the simpler
ones can be used to defined the more complex ones.

I a ≤ b can be represented by ∃x.[a+ x = b];

I a < b can be represented by ∃x.[a+ x+ 1 = b];

I Inequality a 6= b holds iff ∃x.[(a− b)2 = x+ 1];

I Divisibility a | b is represented by ∃x.[ax = b and x ≤ b];

I Integer division c = a ÷ b is represented by bc ≤ a < (b + 1)c. This integer
division is also described with c = bab c;

I c is the remainder of integer division a ÷ b, noted with c = a % b and this is
described with the Diophantine relation c < b and b | (a− c);

I Modular equality, a ≡ b (mod c) is Diophantine because it can be written as
a% c = b% c.

Equipped with these basic relations, it becomes possible to prove the two most
important theorems of this thesis.

5.4 Exponential Diophantine sets

To show that all recursively enumerable sets are Diophantine, the concept of expo-
nential Diophantine equations is introduced. By multiple theorems and lemmas it
is then shown that the classes of Diophantine sets, Exponential Diophantine sets
and recursively enumerable sets all coincide. A visual guide, also showing which
lemma proves which property is shown in figure 5.1. A definition of exponential
Diophantine equations is long overdue.

Definition 5.4 Let f(x1, . . . , xm), g(x1, . . . , xm) be exponential Diophantine functions:

functions built from x1, . . . , xn, natural numbers and addition, multiplication and expo-

nentiation. Then an exponential Diophantine equation is an equation which be written as

f(x1, . . . , xm) = g(x1, . . . , xm).

Chapter 5. Diophantine Equations 30

Diophantine

Recursively
Enumerable

Exponential
Diophantine

lemma 5.3 remark 5.5

corollary 6.14

7.13
lemma 5.6

7.12

Figure 5.1: Relation of different proofs

Observe that subtraction is not allowed, in contrast to regular Diophantine equations.
Furthermore, take note that exponential Diophantine functions are also computable,
because exponentiation is computable (by primitive recursion of multiplication).

Example 5.5 All classes of allowed possibilities are shown in

3x + 5yz = 8zx
y

+ 3y.

In a similar fashion to definition 5.2 exponential Diophantine sets can be defined.

Definition 5.5 Let f(~a, ~x) = g(~a, ~x) be an exponential Diophantine equation with param-

eters ~a and variables ~x. The exponential Diophantine set D associated with this equation is

defined as the set of all ~a such that the exponential Diophantine equation is satisfiable.

With the power of exponential Diophantine sets, some observations are made.

Remark 5.5 Every Diophantine set is exponential Diophantine.

This should not come as a surprise, as exponential Diophantine equations are just a
generalization of Diophantine ones.

Lemma 5.6 Every exponential Diophantine set recursively enumerable.

Proof. Let f(~a, ~x) = g(~a, ~x) denote an exponential Diophantine equation in m vari-
ables and let D be its Diophantine set. Define the function

ψ(~a) ' µx.[f(~a, (x)1, . . . , (x)m) = g(~a, (x)1, . . . , (x)m],

which is computable. See that dom(ψ) is the set of ~a for which the exponential
Diophantine equation has a solution, making it equal to D.

The converse of both statements ismuch harder to prove and each deserves their own
chapter. To prove those, some theory about how certain mathematical statements
can be Diophantine is necessary. Thus the following remark is made.

Lemma 5.7 The union and intersections of exponential Diophantine equations are also

exponential Diophantine.

Proof. Let fL(~x) = fR(~x) and gL(~x) = gR(~x) be exponential Diophantine equations.
Their union is then

(fL(~x)− fR(~x))(gL(~x)− gR(~x)) = 0.

It is exponential Diophantine because it can be rewritten to

fL(~x)gL(~x) + fR(~x)gR(~x) = fL(~x)gR(~x) + fR(~x)gL(~x).

By similar reasoning the intersection is

(fL(~x)− fR(~x))2 + (gL(~x)− gR(~x))2 = 0.

Chapter 5. Diophantine Equations 31

This is also exponential Diophantine because it can be rewritten to

f2L(~x) + f2R(~x) + g2L(~x) + g2R(~x) = 2fL(~x)gR(~x) + 2gL(~x)fR(~x).

32

6. Exponential Diophantineness of
recursively enumerable sets
With the tools to describe relations between (exponential) Diophantine equations,
it is possible to show that every recursively enumerable set is also exponential Dio-
phantine. This proofwas due to Julia Robinson, Hilary Putnam andMartin Davis [8],
although this chapter is also based on the more modern works [7, 16]. In this thesis it
is shown that Martin Davis’s normal form is exponential Diophantine, the following
theorem then does the rest.

Theorem 6.1 For any recursively enumerable set A, there exists a Diophantine function f
such that

~a ∈ A⇔ ∃z∀y ≤ z∃x1, . . . , xk.[f(~a, x1, . . . , xm, y, z) = 0].

According to Robinson, Putnam and Davis this theorem is a very basic fact. Observe
that if one were to get rid of the only universal quantifier, then one would prove
that any Diophantine set is recursively enumerable. The proof of this theorem is
in [6], which improves on the result of Kurt Gördel [12], who demonstrated that any
recursively enumerable set can be represented by a Diophantine function f and an
arbitrary number of universal quantifiers. In the next section a couple of functions
is shown to be exponential Diophantine, so that in the second section it is shown
that universal bound quantifiers are exponential Diophantine. This whole chapter,
combined with its accompanying appendices, is somewhat of a ‘tour de force’, thus
be prepared!

6.1 More exponential Diophantine relations

This section is all about the following theorem.

Theorem 6.2 The functions

f(n, k) =

(
n
k

)
,

g(n) = n! and

h(a, b, y) =

y∏
k=1

(a+ bk)

are Diophantine.

This is proven using a multitude of lemmas, all of which are number theoretical facts
tweaked for proving theorem 6.10. First the binomial coefficient function is shown
to be a exponential Diophantine relation.

Lemma 6.3 Let 0 < k ≤ n and u > 2n be natural numbers, then⌊
(u+ 1)n

uk

⌋
=

n∑
i=k

(
n
i

)
ui−k.

Chapter 6. Exponential Diophantineness of recursively enumerable sets 33

Proof. By Newton’s binomial theorem, we can rewrite

(u+ 1)n

uk
=

n∑
i=0

(
n
i

)
ui−k.

Split the sum in an integer part I and a small part S, so that

n∑
i=0

(
n
i

)
ui−k = I + S =

n∑
i=k

(
n
i

)
ui−k +

k−1∑
i=0

(
n
i

)
ui−k.

Observe that indeed I ∈ N. It is now only necessary to show that S < 1, such that⌊
(u+1)n

uk

⌋
= I . This is shown by the inequalities:

S < u−1
k−1∑
i=0

(
n
i

)

< u−1
n∑

i=0

(
n
i

)
= u−12n

< 1.

So the lemma holds.

Corollary 6.4 Let 0 < k ≤ n and u > 2n be natural numbers, then⌊
(u+ 1)n

uk

⌋
=

(
n
k

)
(mod u).

Proof. This is an immediate consequence of lemma 6.3, as⌊
(u+ 1)n

uk

⌋
=

n∑
i=k

(
n
i

)
ui−k ≡

(
n
k

)
(mod u).

With this machinery in place the binomial coefficient function can now be tackled.

Lemma 6.5 The function f(n, k) =

(
n
k

)
is Diophantine.

Proof. Let u be any natural number such that u > 2n, so that the inequality(
n
k

)
≤

n∑
i=0

(
n
i

)
= 2n < u

holds. Then, per corollary 6.4, the binomial coefficient
(
n
k

)
is the lowest positive

representation of
⌊
(u+1)n

uk

⌋
modulo u. This means that when x =

(
n
k

)
, it can be

represented by the following exponential Diophantine set:

∃u, v, w.[v = 2n ∧ u > v ∧ w =

⌊
(u+ 1)n

uk

⌋
∧ z ≡ w (mod u) ∧ z < u].

Chapter 6. Exponential Diophantineness of recursively enumerable sets 34

To finish the proof, an argument is necessary to show that
⌊
(u+1)n

uk

⌋
is Diophantine.

If a positive integer w =
⌊
(u+1)n

uk

⌋
, then

∃x, y, t.[t = u+ 1 ∧ x = tn ∧ y = uk ∧ w = x÷ y].

As all listed properties are exponential Diophantine, the lemma holds.

To show that
(
n
k

)
was Diophantine, an identity was proven from which it could be

derived that it is exponential Diophantine. This will be done analogously for the
factorial function.

Lemma 6.6 Let r be such that r > (2x)x+1
, then

x! =

⌊
rx
/(

r
x

)⌋
.

The proof of this lemma is listed in appendix C.1. This identity allows us to show
that the factorial operator is exponential Diophantine.

Lemma 6.7 The function g(n) = n! is exponential Diophantine.

Proof. The numberm = n! can be represented by the exponential Diophantine set

∃r, s, t, u, v.[s = 2x+ 1 ∧ t = x+ 1 ∧ r = st ∧ u = rn ∧ v =

(
r
n

)
∧m = u÷ v].

In a similar fashion an identity is first shown.

Lemma 6.8 Let bq ≡ a (mod M) hold, where all are natural numbers. Then

y∏
k=1

(a+ bk) ≡ byy!

(
q + y
y

)
(mod M).

Proof. Simply expand the
(
q + y
y

)
term and simplify.

byy!

(
q + y
y

)
= by(q + y)(q + y − 1) . . . (q + 1)

= (bq + y)(bq + b(y − 1)) . . . (bq + b)

≡ (a+ y)(a+ b(y − 1)) . . . (a+ b) (mod M)

≡
y∏

k=1

(a+ bk) (mod M).

Using this property, we can show that the product is exponential Diophantine.

Lemma 6.9 The function h(a, b, y) =
∏y

k=1(a+ bk) is exponential Diophantine.

Proof. First let M = b(a + by)y + 1 so that gcd(M, b) = 1 and M >
∏y

k=1(a + bk).
Observe that there is a solution for the congruence bq ≡ a (mod M). Now

∏y
k=1(a+

bk) is the lowest positive representation modulo M of byy!

(
q + y
y

)
. Which means

Chapter 6. Exponential Diophantineness of recursively enumerable sets 35

z =
∏y

k=1 can be represented by the existential quantification:

∃M,p, q, r, s, t, u, v, w, x.[r = a+ by ∧ s = ry ∧M = bs+ 1 ∧
bq %M = a ∧ u = by ∧ v = y! ∧ z < M ∧

w = q + y ∧ x =

(
w
y

)
∧ z %M = uvx].

This concludes the, somewhat intense, legwork which is necessary to show that
bounded quantification is exponential Diophantine.

6.2 Bounded quantification

So far all our coding of relations has been done using the conjunction, disjunction
and the existential quantification. There are however more quantifications, this
thesis is concerned with the bounded versions of both the existential and universal
quantifications. A proper definition will now be given.

Definition 6.1 Let ∃ and ∀ be existential en universal quantifications. Let P (x) denote a

property of x, then the bounded quantifications are to be interpreted as follows:

∃y ≤ x.P (y)⇔ ∃y.[y ≤ x ∧ P (y)]

is a bounded existential quantification and

∀y ≤ x.P (y)⇔ ∀y.[y > x ∨ P (y)]

is a bounded universal quantification.

The goal is to prove the following theorem.

Theorem 6.10 Let f be am+ 1 variable Diophantine function, then the sets

E =
{

(a1, . . . , an) | ∃k ≤ y.
[
∃z1, . . . , zm.[f(a1, . . . , an, k, z1, . . . , zm) = 0]

]}
and

A =
{

(a1, . . . , an) | ∀k ≤ y.
[
∃z1, . . . , zm.[f(a1, . . . , an, , z1, . . . , zm) = 0]

]}
are exponential Diophantine.

This implies that the Davis normal form, theorem 6.1, is exponential Diophantine.
The following lemma already proves half of the theorem and can be considered as
low hanging fruit.

Lemma 6.11 Bounded existential quantification is exponential Diophantine.

Proof. This follows immediately from definition 6.1, because conjunction and ≤ are
Diophantine.

Universal bounded quantification is much harder to prove to be exponential Dio-
phantine. It requires some setup. This is done by the following lemmas.

Lemma 6.12 The expression

P (~a, y) = ∀k ≤ y.
[
∃z1, . . . , zm.[f(~a, k, z1, . . . , zm) = 0]

]

Chapter 6. Exponential Diophantineness of recursively enumerable sets 36

holds if and only if

Q(~a, y,B) = ∀k ≤ y.
[
∃z1 ≤ B, . . . , zm ≤ B.[f(~a, k, z1, . . . , zm) = 0]

]
,

for some B, where f is am+ 1 variable Diophantine function.

Proof. Observe thatQ(~a, y,B) immediately impliesP (~a, y). Now assume thatP (~a, y)
holds, then define z1, . . . , zm to be those values making P (~a, y) true. Let

B = max {z1, . . . , zm}

and see that this B suffices for Q(~a, y,B) to hold.

Similar to the previous section, a number theoretical identity is proven.

Lemma 6.13 Let f and g be Diophantine functions withm+ 3 and 2 variables respectively.

Moreover let g be such that g(x, y) ≥ y, and

∀k ≤ y, z1 ≤ y, . . . , zm ≤ y.
[
|f(~a, x, y, k, z1, . . . , zm)| ≤ g(x, y)

]
.

Then

∀k ≤ y.
[
∃z1 ≤ y, . . . , zm ≤ y. [f(~a, x, y, k, z1, . . . , zm) = 0]

]
holds if and only if

∃c, t, b1, . . . , bm.
[
t = g(x, y)! ∧ 1 + ct =

∏
k≤y

1 + kt ∧ 1 + ct | f(~a, x, y, c, b1, . . . , bm) ∧

∀i ≤ m.[1 + ct |
∏
j≤y

bi − j]
]
.

Note that the last statement is a finite conjunction of statements.

This identity establishes a bĳection betweenQ(~a, y) and an expressionwhichdoes not
contain any universal bounded quantifiers but instead consists out of a conjunction
of properties which were shown to be exponential Diophantine. A proof of it is
shown in [8, Lemma 3, pp. 433–435]. Now the theorem can be proven.

Proof of theorem 6.10. First construct a Diophantine function g such that both required
properties of lemma 6.13 hold. Let f be a Diophantine polynomial inm+3 variables.
Assume WLG its degree is n > 0, then it can be written as

f(z1, . . . , zm+3) =
∑

i1+···+im+3≤n
ai1,...,im+3z

i1
1 . . . z

im+3

m+3 .

Define c as
c =

∑
i1+···+im+3≤n

|ai1,...,im+3 |,

Chapter 6. Exponential Diophantineness of recursively enumerable sets 37

so that one can let g(x, y) = cxnyn. Observe that g(x, y) ≤ y. Let x be arbitrary, fix y
to be some natural number, consider f(x, y, a1, . . . , am+1) where each ai ≤ y, then

|f(~a, x, y, z1, . . . , zm+1)| =
∣∣∣∣ ∑
i1+···+im+3≤n

ai1,...,im+3x
i1yi2zi31 . . . z

im+3

m+1

∣∣∣∣
≤

∑
i1+···+im+3≤n

|ai1,...,im+3 |xi1yi2z
i3
1 . . . z

im+3

m+1

≤
∑

i1+···+im+3≤n
|ai1,...,im+3 |xi1yi2+i3+···+m+3

≤
∑

i1+···+im+3≤n
|ai1,...,im+3 |xnyn

≤ cxnyn.

Having found such a g, the second step is to rewrite the universal bounded quantifi-
cation. Recall from lemma 6.12 that

∀k ≤ y.
[
∃z1, . . . , zm.[f(~a, k, z1, . . . , zm) = 0]

]
can be considered as bounded on each variable so that lemma 6.13 can be invoked.
Thus the universal bounded quantification from theorem 6.10 holds iff the properties
from lemma 6.13 hold. It was already shown that factorial, the bounded product and
the divisibility relation | are exponential Diophantine. To see that also the relation
1 + ct |

∏
j≤y bi − j is exponential Diophantine, observe that it holds exactly when

ai ≤ y or ∃u.

ai > y and (1 + ct)u =
∏
j≤y

(ai − y − 1 + j)

 .
The immediate consequence is the second most important result of this thesis.

Corollary 6.14 Every recursively enumerable set is exponential Diophantine.

Proof. Combine theorem 6.1 with theorem 6.10.

Which is exactly the result this chapter set out to prove.

38

7. Undecidability of Hilbert’s 10th

This chapter’s sole goal is proving that exponentiation is Diophantine, that is,

a = bc ⇔ ∃x1, . . . , xm.[f(a, b, c, x1, . . . , xm) = 0],

for some Diophantine polynomial f . Luckily, by now, some tooling has already been
established. Sadly, this is not enough. Before the proof ofMatiyasevich can bewholly
understood, some extra understanding about recurrence relations needs to be set up.
Recurrence relations are namely a way to describe exponential growth. If recurrence
relations can be fully described in Diophantine relations, it is consequently itself
Diophantine. All theory of this chapter is based on [16].

7.1 Properties of recurrence relations

The second-order recurrence relations this thesis is concerned with shall be denoted
with αb(n) where b ≥ 2, ab(0) = 0, αb(1) = 1 and for all n ≥ 2

αb(n) = bαb(n− 1)− αb(n− 2).

Observe that

1) The sequence αb(n) is monotonically increasing thus for all n it holds that
n ≤ αb(n);

2) When b = 2 the sequence αb(n) grows linearly;

3) Whenever b > 2 the sequence grows exponentially, to be more precise:

(b− 1)n ≤ αb(n+ 1) ≤ bn (7.1)

From now on whenever α(n) is written it is meant to represent αb(n). Subscripts
will only be written whenever not writing it causes ambiguity. Assuming that
α(−1) = −1, it becomes possible to get the values of α(n) via a first-order matrix
recurrence relation. This can be done by writing

Λ(n) =

(
α(n+ 1) −α(n)
α(n) −α(n− 1)

)
,

so that
Λ(n+ 1) = Λ(n)Γ where Γ =

(
b −1
1 0

)
.

Chapter 7. Undecidability of Hilbert’s 10
th 39

This holds because Λ(0) = I2 and using the definitions of α(n) the matrix Λ(n)Γ can
be written as

Λ(n)Γ =

(
α(n+ 1) −α(n)
α(n) −α(n− 1)

)(
b −1
1 0

)
=

(
bα(n+ 1)− α(n) −α(n+ 1)
bα(n)− α(n− 1) −α(n)

)
=

(
α(n+ 2) −α(n+ 1)
α(n+ 1) −α(n)

)
= Λ(n+ 1).

This has the immediate consequence that Λ(n) = Γn. Another useful identity is
obtained by writing

α(n)Γ− α(n− 1)I2 =

(
bα(n) −α(n)
α(n) 0

)
−
(
α(n− 1) 0

0 α(n− 1)

)
=

(
bα(n)− α(n− 1) −α(n)

α(n) −α(n− 1)

)
So that

Λ(n) = α(n)Γ− α(n− 1)I2 (7.2)

7.1.1 The characteristic polynomial of Λ(n)

As det(Γ) = 1, all higher powers of Γ will also have determinant equal to one. Thus
for the characteristic polynomial it holds that

α2(n)− α(n+ 1)α(n− 1) =

α2(n)− (bα(n)− α(n− 1))α(n− 1) =

α2(n) + α2(n− 1)− bα(n)α(n− 1) = 1.

Considering this equation modulo α(n), one retrieves that

α2(n+ 1) ≡ 1 (mod α(n)),

meaning that consecutive values of α are coprime. Realize that this holds for all n
and thus, by substituting n for n+ 1, also that

α2(n+ 1) + α2(n)− bα(n+ 1)α(n) = 1.

The converse also holds.

Lemma 7.1 The Diophantine equation

x2 − bxy + y2 = 1

holds exactly when

x = α(m+ 1), y = α(m) or x = α(m), y = α(m+ 1),

for some non-negativem.

Chapter 7. Undecidability of Hilbert’s 10
th 40

Proof. WLG, assume that y < x. This will be proven by induction, where the base
case is y = 0, for which the Diophantine equation holds if x = 0, which holds exactly
when m = 0. Let y > 0 be such that the Diophantine equation holds, then, by our
assumption that y < x,

by − x =
y2 − 1

x
≥ 0.

Also realize that
y2 − 1

x
<
y2

x
< y.

Define the variables x̂ = y and ŷ = by − x, so that

x̂2 − bx̂ŷ + ŷ2 = y2 − by(by − x) + (by − x)2

= x2 − bxy + y2

= 1.

I.e. x̂ and ŷ also give a solution to the Diophantine equation. See that ŷ < y = x̂,
thus the IH can be applied, meaning that

x̂ = α(m̂+ 1) and ŷ = α(m̂).

Which proves the lemma because, lettingm = m̂+ 1, it follows that

x = bx̂− ŷ = α(m+ 1) and y = x̂ = α(m).

7.1.2 Divisibility & congruence properties

To further describe a recurrence relation in Diophantine properties, some divisibility
properties need to be established. This is useful because divisibility is a Diophantine
property.

Lemma 7.2 For any positive k it holds that

α(k) | α(m) iff k | m.

Proof. A useful identity is established before the bi-directional implication is proven.
Realize that m ≥ k and thus m can be written as m = qk + r, where 0 ≤ r < k.
Recall additionally that α(k) and α(m) are elements of the matrices Λ(k) and Λ(m)
respectively. Use these facts to rewrite Λ(m) in the following steps:

Λ(m) = Γm

= Γqk+r

= Γr
(

Γk
)q

= Λ(r)Λq(k)

=

(
α(r + 1) −α(r)
α(r) −α(r − 1)

)(
α(k + 1) −α(k)
α(k) −α(k − 1)

)q

≡
(
α(r + 1) −α(r)
α(r) −α(r − 1)

)(
α(k + 1) 0

0 −α(k − 1)

)q

(mod α(k)).

Which means that

[Λ(m)]2,1 = α(m) ≡ α(r)αq(k + 1) (mod α(k)), (7.3)

Chapter 7. Undecidability of Hilbert’s 10
th 41

the identity necessary for the rest of this lemma. Now the ⇒ part is proven, thus
α(k) | α(m) holds. By equation 7.3 it then follows that α(k) | α(r)αq(k + 1). Earlier
it was shown that consecutive values of α are coprime, hence α(k) | α(r). From the
monotonicity of α and our assumption it follows that α(r) < α(k). This can holy
hold if r = 0 which means that k | m. For the⇐ part it is assumed that k | m, and
thus r = 0 and consequently α(r) = 0, making α(m) ≡ 0 (mod α(k)), proving the
lemma.

A second lemma about division is as follows.

Lemma 7.3 For any positive k it holds that

α2(k) | α(m) iff kα(k) | m.

Proof. By lemma 7.2 it is necessary thatm = qk for some q. Using that fact it becomes
possible to rewrite A(m), by the following steps:

Λ(m) = Γqk

= Λq(k)

= (α(k)Γ− α(k − 1)I2)
q

=

q∑
i=0

(−1)q−i
(
q
i

)
αi(k)αq−i(k − 1)Γi

≡ (−1)qαq(k − 1)I2 + (−1)q−1qα(k)αq−1(k − 1)Γ (mod α2(k))

Observe that equation 7.2 and the binomial theorem are used. Consequently it also
holds that

[Λ(m)]2,1 = α(m) = (−1)q−1qα(k)αq−1(k − 1)

Now, for⇐ it is assumed that kα(k) | m, whichmeans thatα(k) | q. This immediately
implies that α(m) ≡ 0 (mod α2(k)), proving half of the bi-implication. For ⇒ the
above equation implies that α(k) | qαq−1(k − 1). As consecutive values of α are
coprime it must be that α(k) | q and thus kα(k) | kq = m, proving the second
part.

Also some congruence properties are necessary, filling our backpack with useful
proof tools.

Lemma 7.4 Whenever b1 ≡ b2 (mod q) it holds that αb1 ≡ αb2 (mod q).

Proof. This follows immediately by applying induction on the definition of αb.

Remark 7.5 Because b ≡ 2 (mod b− 2) and α2 is linear, it thus holds that

αb(n) ≡ α2(n) = n (mod b− 2).

One last property will suffice to show the Diophantiness of α.

Lemma 7.6 If n = 2lm± j, then

α(n) ≡ ±α(j) (mod v),

where v = α(m+ 1)− α(m− 1).

The ± signs need not to coincide.

Chapter 7. Undecidability of Hilbert’s 10
th 42

Proof. The matrix notation is used again to obtain a certain identity. See that

Λ(n) = Γn

= Γ2lm±j

=
[
(Γm)2

]l
Γ±j

=
(
Λ2(m)

)l
Λ±1(j).

Now for Λ(m) it holds that

Λ(m) =

(
α(m+ 1) −α(m)
α(m) −α(m− 1)

)
≡ −

(
−α(m− 1) α(m)
−α(m) α(m+ 1)

)
(mod v). (7.4)

The most right hand matrix is the inverse of Λ(m):(
α(m+ 1) −α(m)
α(m) −α(m− 1)

)(
−α(m− 1) α(m)
−α(m) α(m+ 1)

)
=

(
α2(m)− α(m+ 1)α(m− 1) 0

0 α2(m)− α(m+ 1)α(m− 1)

)
=I2.

See that the property of the characteristic polynomial was used. By this result and
equation 7.4, it can be shown that

Λ2(m) ≡ −I2 (mod b),

and thus
Λ(n) ≡ ±Λ±1(j).

The ± sign before Λ is determined by whether l is odd or not, therefore any combi-
nation of plusses and minuses in the exponent and before Λ is possible. As a last
step, see that

[Λ(n)]2,1 = α(n) ≡ ±α(j) (mod v).

This concludes all the lemmas necessary to define exponentiation as a Diophantine
relation.

7.2 The sequence α is Diophantine

The sequence α has an exponential nature, therefore it is shown it is Diophantine,
such that it can be used to show that exponentiation is Diophantine. Three numbers
a, b and c are fixed such that

b > 3 and a = αb(c). (7.5)

It is now claimed that these properties holds iff ∃r, s, t, u, v, w, x, y such that all of the
following conditions are true:

i) 3 < b;

ii) u2 − but+ t2 = 1;

iii) s2 − bsr + r2 = 1;

Chapter 7. Undecidability of Hilbert’s 10
th 43

iv) r < s;

v) u2 | s;

vi) v = bs− 2r;

vii) w ≡ b (mod v);

viii) w ≡ 2 (mod u);

ix) w > 2;

x) x2 − wxy + y2 = 1;

xi) u > 2a;

xii) v > 2a;

xiii) a ≡ x (mod v);

xiv) u > 2c;

xv) c ≡ x (mod u).

This is done by a sufficiency and a necessity lemma.

Lemma 7.7 The conjunction of enumerated statements above contains sufficient statements

to describe the sequence α.

Proof. It was shown in lemma 7.1 that item i) and item ii) imply that u = αb(k), for
some natural k. Similarly s = αb(m) and r = αb(m − 1), for some positive m, by
items i), iii) and iv). Apply this reasoning again using items ix) and x) to conclude
that x = αw(n), for some n. Write for some j ≤ m that n = 2lm ± j. Invoke
lemma 7.3 in conjunction with item v) on the equalities of u and s to show that u | m.
From item vi) and the definition of αb(m) it follows that v = αb(m+ 1)− αb(m− 1).
Items vii) and xiii), the properties of x, lemma 7.4 and lemma 7.6 show that

a ≡ x ≡ αb(w) ≡ αb(n) ≡ ±αb(j) (mod v).

From the properties of b, j, v, the definition of the sequence αb(n) and the fact that αb

is monotonous increasing, the statement

2αb(j) ≤ 2αb(m) ≤ (b− 2)αb(m) < bαb(m)− 2αb(m− 1) = v

holds. But by item xi) and the fact that a ≡ ±αb(j) (mod v) it must be that a = αb(j).
Now it only needs to be shown that j equals c. First a property on c is derived by
combining items ix) and xv) with remark 7.5 to retrieve that

c ≡ x ≡ αw(n) ≡ n (mod u).

The consequence of the monotonicity of αb can be combined with item xi) so that

2j ≤ 2αb(j) = 2a < u,

which implies that, given item xiv),

c = j.

Chapter 7. Undecidability of Hilbert’s 10
th 44

The necessity is equally necessary1.

Lemma 7.8 The conjunction of enumerated statements above contains necessary statements

to describe the sequence α.

Meaning that if equation 7.5 holds for a, b and c then there exists numbers s, r, u, t, v, w
such that they satisfy all the properties listed. A proof is omitted here, but can be
found in [16].

Theorem 7.9 The recurrence relation α is Diophantine.

Proof. Observe that by lemma 7.7 and lemma 7.8 the conjunction of statements is
necessary and sufficient. Furthermore, each of them is Diophantine, because the
modularity relation, <-relation and the divisibility relation are Diophantine.

7.3 Exponentiation is Diophantine

This thesis is reaching its apotheosis, which is indeed suggested by the title. A little
more setup is still needed, but the exponentiation is already looking at us from the
statement of the lemma.

Lemma 7.10 Let λ be an eigenvalue of the matrix Γ such that λ ≡ q (mod m), then

qα(r)− α(r − 1) ≡ qr (mod m).

Proof. See that the eigenvalue of Γ satisfies the characteristic equation λ2−bλ−1 = 0.
Thus, modulom, it holds that q2 − bq + 1 ≡ 0, which means that

q2 ≡ bq − 1 (mod m).

It is claimed that
(
q
1

)
is the eigenvector, modulom, of Γ. This is shown by

Γ

(
q
1

)
=

(
bq − 1
q

)
≡
(
q2

q

)
≡ q

(
q
1

)
(mod m).

Which means that

Λ(r)

(
q
1

)
= Γr

(
q
1

)
≡ qr

(
q
1

)
.

The lower row results in the oh so desired exponentiation. Thus most importantly

qαb(r)− αb(r − 1) ≡ qr (mod m).

See that when qr < m the relation p = qr can be written into the properties

p < m and qαb(r)− αb(r − 1) ≡ p (mod m).

Theorem 7.11 Exponentiation is Diophantine.

1Pun intended

Chapter 7. Undecidability of Hilbert’s 10
th 45

Proof. Assume one wants to encode p = qr as a Diophantine relation. Define b =
αq+4(r+ 1) + q2 + 2. Moreover let λ be an eigenvalue of Γ and definem = bq− q2−1.
Then q2 − bq + 1 ≡ 0 (mod m), meaning that q acts as an eigenvalue modulo m,
thus λ ≡ q (mod m). Now invoke lemma 7.10 so that qα(r) − α(r − 1) ≡ qr. Use
equation 7.1, assuming that q > 0, to show that qr < m:

m = bq − q2 − 1

= (αq+4(r + 1) + q2 + 2)q − q2 − 1

≥ q(q + 3)r + q3 + 2q − q2 − 1

≥ q(q + 3)r

> qr.

Assuming that 00 = 12 p = qr holds exactly when the following Diophantine prop-
erties hold:

(q = 0 ∧ r = 0 ∧ p = 1) ∨
(q = r ∧ r > 0 ∧ p = 0) ∨

∃b,m.
[
b = αq+4(r + 1) + q2 + 2 ∧m = bq − q2 − 1 ∧
p < m ∧ p ≡ qαb(r)− (bαb(r)− αb(r + 1))

]
.

The theorem has the following implication.

Corollary 7.12 Any exponential Diophantine set is Diophantine.

And the more important one.

Corollary 7.13 All recursive enumerable sets are Diophantine.

Which had the consequence that Hilbert’s 10th Problem did not have a solution.

Theorem 7.14 There is no general algorithm which can determine the solutions for an

arbitrary Diophantine equation.

Proof. Assume there exists a general algorithm. Then it can also determine whether
there is a solution and thus it can compute Diophantine sets. As any recursively
enumerable set is Diophantine, any recursively enumerable set is in bĳection with
a Diophantine set. By corollary 4.6 some recursively enumerable sets are incom-
putable. A contradiction! There must be Diophantine sets which are incomputable.
Ergo, there cannot be a general algorithm determining the solutions for arbitrary
Diophantine equations.

2a valid assumption when working over N.

46

Part III

Appendices

47

A. Computability proofs

A.1 Outputting input is computable

Before starting the proof, the following convention is being used. Whenever a step in
a computation is described by something like a~b~c d, it is meant that there is a tuple
(a, b1, . . . , bn, c1, . . . , cm, d) in that computation step.

Proof. As f is computable, it has an associated programQ, moreover, let ~a ∈ dom(f).
Assume Q uses all the registers up to Rl and that the computation of f(a) with Q
takes K steps, where the last tuple is (nK , f(~a), rK2 , . . . , r

K
l). Using the programs

from example 1.1, the following program has the required output:

~a

~a~0 a1

...

~a~0~a

f(~a) rK2 . . . rKl ~a

f(~a) 0 rK3 . . . rKl ~a

...

f(~a)~0~a

f(~a) a1~0 a2 . . . ak

...

f(~a)~a

C(1,l+1)

C(i,l+i)

C(k,l+k)

P

E(2)

E(i)

E(l)

C(l+1,2)

C(l+i,i+1)

C(l+n,n+1)

.

Appendix A. Computability proofs 48

From now on, when reasoning about programs, the arrows which indicate simple
combinations of the operations copying, emptying, adding and subtracting will not
be labelled. Additionally, P̃ will denote the modification of program P , as described
in lemma 1.4.

A.2 Composition of computable functions

Proof. Assume that f is a k-ary function made from composing the g1, . . . , gl, all
k-ary computable functions and h, a l-ary partial function. Furthermore let Pi be the
program computing gi, Q the program computing h and ~a ∈ dom(f). Now build a
program as shown below.

~a

g1(~a)~a

~a~0 g1(~a)

g2(~a)~a~0 g1(~a)

...

gl(~a)~a~0 g1(~a) . . . gl−1(~a)

g1(~a) . . . gl(~a)

h(g1(~a), . . . , gl(~a))

P̃1

P̃2

P̃i

P̃l

Q

Ergo, f is computable.

A.3 Primitive recursion is computable

Proof. Assume f to be defined from primitive recursion of computable functions g,
k-ary, and h, k+ 2-ary. Some notation is introduced first. Realise that the instruction

1 r−i ⇒ n,m

can be translated semantically into the simple conditional
if ri > 0 :

move to instruction n
else:

move to instruction m,

Appendix A. Computability proofs 49

which will be depicted in a program diagram as follows

R1 = 0?
Yes No .

To complete the proof, assume that g is computable with program P and h is com-
putable with program Q.

y~a

~a~0 y 0

g(~a) a~0 y 0

y g(~a)~a~0 0

y − i f(i,~a)~a~0 i

R1 = 0?
Yes No

f(i,~a) y~a
stop y − i− 1 f(i,~a)~a~0 i

i f(i,~a)~a~0 y − i− 1

h(i, f(i,~a),~a) i f(i,~a)~a~0 y − i− 1

= f(i+ 1,~a) i f(i,~a)~a~0 y − i− 1

y − i− 1 f(i+ 1,~a)~a~0 i+ 1

P̃

i=0

Q̃

See that, in the definition of primitive recursion, f(y,~a) is defined backwards (by
defining it using lower values than y. However, the calculation of f(y,~a) is done
forwards. One needs the previously computed value, to calculate the next one.

Appendix A. Computability proofs 50

A.4 Minimalization is computable

Proof. Let P be the program computing the k + 1-ary function g, then the following
program computes f :

~a 0~0

0~a~0

g(0,~a) 0~a

g(i,~a) i~a

R1 = 0?
Yes No

i g(i,~a)~a i+ 1~a~0

g(i+ 1,~a) i+ 1~a

i=0

P̃

51

B. Pairing function proofs

B.1 Bĳectivity of the Cantor pairing function

Proof. For injectivity, a proof similar like [22] is given. Assume that π(x, y) = π(z, w).
The first thing to prove is that x + y = z + w. Assume WLG x + y < z + w and
substitute a = x+y and b = z+w−a. See that both a and b are still natural numbers
and that b > 0. Consequently the equality translates to:

a(a+ 1)

2
+ y =

(b+ a)(b+ a+ 1)

2
+ w.

Rewrite the equation,

y − w =
(b+ a)(b+ a+ 1)

2
− a(a+ 1)

2

=
b2 + 2ab+ b

2

= ab+
b(b+ 1)

2
≥ a+ 1,

so that y > w+ a ≥ a. This leads to nonsense, because when a gets substituted back,
the conclusion is that y > a > x + y ≥ y. Therefore the assumption was false and
x+ y = z + w. Filling in a = x+ y results then in

a(a+ 1)

2
+ y =

a(a+ 1)

2
+ w,

meaning that y = w and consequently that x = z.
For surjectivity a construction is given, which is the author’s interpretation from [14].
Assume there exists a z = π(x, y) and define the following values:

a = x+ y

b =
a(a+ 1)

2
,

so that z = b+y. The next goal is to write a in terms of b, instead of otherwise. Using
the quadratic formula on a(a+1)

2 − b = 0, one gets that

a =

√
8b+ 1− 1

2
.

Considered as a functionR→ R, this is strictly increasingwhen b ∈ [0,∞). Therefore,
when considering inequalities in terms of b, they still hold when rewritten in terms
of a, which is precisely the next step. See that b ≥ z = b+ y < b+ (a+ 1), fromwhich

Appendix B. Pairing function proofs 52

the RHS can be rewritten to

b+ (a+ 1) =
a(a+ 1)

2
+ a+ 1

=
a2 + 3a+ 2

2

=
(a+ 1)2 + (a+ 1)

2
,

which should seem familiar. Now this inequality means that, when rewriting a in
terms of b,

a ≤
√

8z + 1− 1

2
< a+ 1.

Consequently it must be that

a =

⌊√
8z + 1− 1

2

⌋
.

In conclusion, given any z ∈ N, it is possible to give x, y ∈ N such that π(x, y) = z,
namely:

a =

⌊√
8z + 1− 1

2

⌋
b =

a2 + a

2
y = z − b
x = a− y.

The desired result that the Cantor pairing function is a pairing function, is obtained.

One small example will be given to show the inner workings of those functions.

Example B.1 Let z = 6, then a = b
√
48+1−1

2 c = b
√
49−1
2 c = b62c = b3c = 3 and

b = 32+3
2 = 6. Thus y = 0 and x = 3, which can be seen in figure 3.1, where (3, 0) is the

sixth tuple being listed. But it can also be calculated by π(3, 0) = 3(3+1)
2 = 6.

B.2 Computability of the Cantor pairing and projection

Proof. The Cantor pairing function contains a division by two in its formulation. It
has already been noted that the numerator is always even. Therefore division by two
will never yield a remainder. Integer division (see [23]) will therefore suffice and can
be defined as follows:

a÷ b =

{
0 if a = 0 or b = 0

1 + ((a .− b)÷ b) else
.

This is primitive recursive since it is a composition of theC function and the primitive
recursive functions Add and .−. WLG it is only necessary to prove that π1 is primitive
recursive (andhence computable). As it is the boundedminimalization, it is sufficient

Appendix B. Pairing function proofs 53

to show that λy.[∃y ≤ z.π(x, y) = z] is primitive recursive. This is done by

χ∃y = sgn

∑
y≤z

χeq(π(x, y), z)

 .

Realise that χ∃y is primitive recursive as it is the summation of a composition of
primitive recursive functions.

54

C. Proofs of multiple combinatorial
identities

C.1 Factorial identity proof

Proof. Let r be any natural number such that r > (2x)x+1. Recall that(
r
x

)
=

r!

x!(r − x)!
.

Use this to rewrite

rx
/(

r
x

)
=
rxx!(r − x)!

r!

=
rxx!

r(r − 1) . . . (r − x+ 1)

= x!

(
r

r

r

r − 1
. . .

r

r − x+ 1

)
=

x!((
1− 1

r

)
. . .
(
1− x−1

r

)) .
It now holds that

x! < rx
/(

r
x

)
<

x!(
1− x

r

)x .
By assumption it holds that r > (2x)x+1, thus also that r > 2x, which means that the
ratio x

r <
1
2 . Use this to see that

1

1− x
r

= 1 +
x

r
+
(x
r

)2
+ . . .

= 1 +
x

r

(
1 +

x

r
+
(x
r

)2
+ . . .

)
< 1 +

x

r

(
1 +

1

2
+

1

4
+ . . .

)
= 1 +

2x

r
.

Moreover it holds that, by using the Newton’s binomial theorem again,(
1

1− x
r

)x

=
x∑

j=0

(
x
j

)(
2x

r

)j

< 1 +
2x

r

x∑
j=1

(
x
j

)
< 1 +

2x

r
· 2x.

Appendix C. Proofs of multiple combinatorial identities 55

Using this in our first deduction, combined with our assumption about r and that
x! < xx, leads us to concluding that

rx
/(

r
x

)
< x! + x!

2x

r
· 2x

< x! +
2x · xx2x

r

< x! +
(2x)x+1

r
< x! + 1.

The desired result is obtained.

56

D. Index

absolute difference function, 12

basic primitive recursive functions, 10
bounded

µ operator, 14
minimalization, 14
quantification, 35

Cantor
pairing function, 17
projection, 18

case function, 13
characteristic function, 11
code of a sequence, 19
complement

of a function, 13
composition

of computable functions, 6
of programs, 5

computable function, 6
computation, 3
cut-off substraction function, 11

decidable, 24
Diophantine

equation, 26
function, 26
relation, 29
representation, 28
set, 28

element recovering function, 20
exponential Diophantine

equation, 29
function, 29
set, 30

Halting problem, 24

index of a partial recursive function,
23

instruction pointers, 2

k-ary
partial function, 6
relation, 11

Kleene equality, 16

Kleene predicate, 21
kth pairing function, 18
kth projection function, 18

lambda notation, 9
length of a sequence, 19

minimalization
bounded, 14
of a function, 7

µ-recursive function, 15

output, 4
output function, 22

pairing function, 17
partial recursive function, 15
predecessor function, 11
primitive recursion

of two functions, 7
primitive recursive

function, 9
relation, 11

program diagram, 4
projection function, 9

recursive
function, see also total recursive

function
relation, 15

recursively enumerable set, 15, 23
replacement function, 20
rm-computable function, see also

computable function

satisfiability, 28
sign function, 13
solvable, 24
stop-instruction, 3
successor function, 9

total
function, 6, 10
recursive function, 15

universal function, 23

zero function, 6, 9

57

E. Acknowledgements
This thesis has been mostly my own work. However, some people provided help
which bettered my thesis. Those people deserve a mention. First and foremost,
I thank Sunil Patel, for without him I would not have been able to write in such a
beautiful style. Although I have edited the template in some points. Moreover, I want
to thank Yichuan Shen which provided a very useful website to create commutative
diagrams. I used this tool to create any diagram containing arrows. Lastly I want to
thank the people who have read my thesis so that I was able to remove some critical
mistakes, those are Chaja van Ansenwoude en Jaap van Oosten. Jaap van Oosten
deserves a special mention, as he, being my supervisor, has let me mostly free in
what I did, so that I was able to explore all the subjects I found interesting.

58

F. Bibliography
[1] Andrew R. Booker and Andrew V. Sutherland. “On a question of Mordell”.

In: Proceedings of the National Academy of Sciences 118.11 (2021). doi: https:
//doi.org/10.1073/pnas.2022377118.

[2] George S. Boolos, John P. Burgess, and Richard C. Jeffrey. Computability and

Logic. Cambridge:CambridgeCambridgeUniv. Press, 2010. isbn: 978-0521701464.
[3] Category: Primitive recurisve functions. url: https : / / proofwiki . org / wiki /

Category:Primitive_Recursive_Functions.
[4] W. Conn and L.N. Vaserstein. “On sums of three integral cubes”. In: The

Rademacher Legacy to Mathematics. Ed. by George E. Andrews, David M. Bres-
soud, and L. Alayne Parson. Contemporary Mathematics. Providence: AMS,
1994. Chap. 21, pp. 285–294. isbn: 978-0-8218-7757-9. doi: http://dx.doi.org/
10.1090/conm/166.

[5] Zoltán Csörnyei and Gergely Dévai. “An Introduction to the Lambda Calcu-
lus”. In: Central European Functional Programming School: Second Summer School.
Ed. by Zoltán Horváth et al. Lecture Notes in Computer Science. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2008. Chap. 3, pp. 87–111. isbn: 978-3-540-
88058-5. doi: https://doi.org/10.1007/978-3-540-88059-2_3.

[6] Martin Davis. “Arithmetical Problems and Recursively Enumerable Predi-
cates”. In: The Journal of Symbolic Logic 18.1 (1953), pp. 33–41. doi: https :
//doi.org/10.2307/2266325.

[7] Martin Davis. “Hilbert’s Tenth Problem is Unsolvable”. In: The American Math-

ematical Monthly 80.3 (1973), pp. 233–269. doi: https://doi.org/10.2307/
2318447.

[8] Martin Davis, Hilary Putnam, and Julia Robinson. “The Decision Problem for
Exponential Diophantine Equations”. In: Annals of Mathematics 74.3 (1961),
pp. 425–436. doi: https://doi.org/10.1090/S0025-5718-08-02168-6.

[9] Andreas-Stephan Elsenhans and Jahnel Jörg. “New sums of three cubes”. In:
Mathematics of Computation 78.266 (2009), pp. 1227–1230. doi: https://doi.
org/10.1090/S0025-5718-08-02168-6.

[10] William Ewald andWilfried Sieg. “Lectures on the Infinite”. German. In:David

Hilbert’s Lectures on the Foundations of Arithmetic and Logic 1917-1933. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 655–785. isbn: 978-3-540-
69444-1. doi: https://doi.org/10.1007/978-3-540-69444-1_4.

[11] Rudolf. Fueter and G. Pólya. “Rationale Abzählung der Gitterpunkte”. Ger-
man. In: Vierteljahrsschrift der Naturforschenden 68.3/4 (1923), pp. 380–386. url:
https://www.ngzh.ch/archiv/1923_68/68_3-4/68_14.pdf.

[12] Kurt Gödel. “Über formal unentscheidbare Sätze der Principia Mathematica
und verwandter Systeme I”. German. In:Monatshefte für Mathematik und Physik

38.1 (1931), pp. 173–198. doi: https://doi.org/10.1007/BF01700692.
[13] DavidHilbert. “Mathematical Problems”. In: Bulletin of the AmericanMathemat-

ical Society 8.10 (1902), 437––479. doi: https://doi.org/10.1090/S0002-9904-
1902-00923-3.

https://doi.org/https://doi.org/10.1073/pnas.2022377118
https://doi.org/https://doi.org/10.1073/pnas.2022377118
https://proofwiki.org/wiki/Category:Primitive_Recursive_Functions
https://proofwiki.org/wiki/Category:Primitive_Recursive_Functions
https://doi.org/http://dx.doi.org/10.1090/conm/166
https://doi.org/http://dx.doi.org/10.1090/conm/166
https://doi.org/https://doi.org/10.1007/978-3-540-88059-2_3
https://doi.org/https://doi.org/10.2307/2266325
https://doi.org/https://doi.org/10.2307/2266325
https://doi.org/https://doi.org/10.2307/2318447
https://doi.org/https://doi.org/10.2307/2318447
https://doi.org/https://doi.org/10.1090/S0025-5718-08-02168-6
https://doi.org/https://doi.org/10.1090/S0025-5718-08-02168-6
https://doi.org/https://doi.org/10.1090/S0025-5718-08-02168-6
https://doi.org/https://doi.org/10.1007/978-3-540-69444-1_4
https://www.ngzh.ch/archiv/1923_68/68_3-4/68_14.pdf
https://doi.org/https://doi.org/10.1007/BF01700692
https://doi.org/https://doi.org/10.1090/S0002-9904-1902-00923-3
https://doi.org/https://doi.org/10.1090/S0002-9904-1902-00923-3

Appendix F. Bibliography 59

[14] Inverting the Cantor pairing function. url: https://en.wikipedia.org/wiki/
Pairing _ function # Inverting _ the _ Cantor _ pairing _ function (visited on
05/18/2021).

[15] K. Ireland and M. Rosen. A Classical Introduction to Modern Number Theory.
2nd ed. Graduate Texts in Mathematics. New-York: Springer-Verlag, 1990. isbn:
978-1-4757-2103-4. doi: https://doi.org/10.1007%2F978-1-4757-2103-4.

[16] Yuri Matiyasevich. On Hilbert’s Tenth Problem. 2000. url: https://mathtube.
org/lecture/notes/hilberts-tenth-problem (visited on 09/21/2020).

[17] L. J. Mordell. “On Sums of Three Cubes”. In: Journal of the London Mathematical

Society s1-17.3 (1942), pp. 139–144. doi: https://doi.org/10.1112/jlms/s1-
17.3.139.

[18] John von Neumann. “First Draft of a Report on the EDVAC”. In: IEEE Annals of

the History of Computing 15.4 (1945), pp. 37–75. url: https://doi.org/10.1109/
85.238389.

[19] Jaap van Oosten. Basic Computability Theory. https://webspace.science.uu.
nl/~ooste110/syllabi/compthmoeder.pdf. Written lecture notes. 1993.

[20] Steven Pigeon. Pairing Function. From MathWorld–A Wolfram Web Resource.
url: https://mathworld.wolfram.com/PairingFunction.html (visited on
05/29/2021).

[21] Arnold L. Rosenberg. “Efficient pairing functions –Andwhy you should care”.
In: International Journal of Foundations of Computer Science 14.1 (2002), pp. 3–17.
doi: https://doi.org/10.1142/S012905410300156X.

[22] Brian M. Scott. Inverting the Cantor pairing function. Dec. 14, 2011. url: https:
//math.stackexchange.com/a/91323/396012 (visited on 05/18/2021).

[23] EricW.Weisstein. IntegerDivision. FromMathWorld–AWolframWebResource.
url: https://mathworld.wolfram.com/IntegerDivision.html (visited on
05/22/2021).

https://en.wikipedia.org/wiki/Pairing_function#Inverting_the_Cantor_pairing_function
https://en.wikipedia.org/wiki/Pairing_function#Inverting_the_Cantor_pairing_function
https://doi.org/https://doi.org/10.1007%2F978-1-4757-2103-4
https://mathtube.org/lecture/notes/hilberts-tenth-problem
https://mathtube.org/lecture/notes/hilberts-tenth-problem
https://doi.org/https://doi.org/10.1112/jlms/s1-17.3.139
https://doi.org/https://doi.org/10.1112/jlms/s1-17.3.139
https://doi.org/10.1109/85.238389
https://doi.org/10.1109/85.238389
https://webspace.science.uu.nl/~ooste110/syllabi/compthmoeder.pdf
https://webspace.science.uu.nl/~ooste110/syllabi/compthmoeder.pdf
https://mathworld.wolfram.com/PairingFunction.html
https://doi.org/https://doi.org/10.1142/S012905410300156X
https://math.stackexchange.com/a/91323/396012
https://math.stackexchange.com/a/91323/396012
https://mathworld.wolfram.com/IntegerDivision.html

	I Computability Theory
	Register Machines & Computability
	Register Machines
	An overview
	Formalization
	Closure Properties

	Computable Functions
	Introduction
	Closure Properties

	Primitive Recursive Functions
	Introduction
	Important primitive recursive functions
	Primitive recursiveness of the equality relation
	Powerful building blocks

	Partial Recursive Functions

	Tuple Coding
	The Cantor pairing function
	Tuple pairing function
	Functions on sequences

	Computability, Decidability & Enumerability
	Equality of computability and recursiveness
	Decidability & Enumerability

	II Diophantine Set Theory
	Diophantine Equations
	Introduction
	Diophantine sets
	Diophantine relations
	Exponential Diophantine sets

	Exponential Diophantineness of recursively enumerable sets
	More exponential Diophantine relations
	Bounded quantification

	Undecidability of Hilbert's 10th
	Properties of recurrence relations
	The characteristic polynomial of Λ(n)
	Divisibility & congruence properties

	The sequence α is Diophantine
	Exponentiation is Diophantine

	III Appendices
	Computability proofs
	Outputting input is computable
	Composition of computable functions
	Primitive recursion is computable
	Minimalization is computable

	Pairing function proofs
	Bijectivity of the Cantor pairing function
	Computability of the Cantor pairing and projection

	Proofs of multiple combinatorial identities
	Factorial identity proof

	Index
	Acknowledgements
	Bibliography

