
UTRECHT UNIVERSITY

MASTER’S THESIS

API-m-FAMM: A Focus Area Maturity
Model for API Management

Author:
Max MATHIJSSEN
4274873

Supervisors:
Dr. Slinger JANSEN

Dr. Gerard WAGENAAR
Michiel OVEREEM

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Business Informatics
Department of Information and Computing Sciences

April 26, 2021

m.mathijssen@students.uu.nl
m.mathijssen@students.uu.nl
slinger.jansen@uu.nl
slinger.jansen@uu.nl
slinger.jansen@uu.nl

i

“Before you become too entranced with gorgeous gadgets and mesmerizing video displays,
let me remind you that information is not knowledge, knowledge is not wisdom, and wisdom
is not foresight. Each grows out of the other, and we need them all. ”

Arthur C. Clarke

ii

UTRECHT UNIVERSITY

Abstract

API-m-FAMM: A Focus Area Maturity Model for API Management

by Max MATHIJSSEN

4274873

Organizations are increasingly connecting using Application Programming Inter-
faces (APIs) to share data, services, functionality, and even complete business pro-
cesses. However, the creation and management of APIs, is non-trivial. Aspects such
as traffic management, community engagement, documentation, and version man-
agement are often rushed afterthoughts. In this research, we present and evaluate a
Focus Area Maturity Model for API Management (API-m-FAMM), which addresses
the domains of Lifecycle Management, Security, Performance, Observability, Com-
munity, and Commercial. The API-m-FAMM is a model that organizations may use
to assess and evaluate their maturity in API management and to set out a course
for systematic improvement and evolution. The model is grounded in literature and
practice, and was developed and evaluated through a Systematic Literature Review,
11 expert interviews, and 6 case studies. These evaluations are reported on, and
show that the API-m-FAMM is an efficient tool for aiding organizations in gaining
a better understanding of their current implementation of API management prac-
tices, and provides them with guidance towards higher levels of maturity. Addi-
tionally, this study’s unique case study design shows that FAMMs can be success-
fully deployed in practice with minimal involvement of researchers. The Focus Area
Maturity Model for API Management is maintained on www.maturitymodels.org,
allowing practitioners to benefit from its useful insights.

www.maturitymodels.org

iii

Acknowledgements
This thesis is the conclusion of my academic education. Even though it was not al-
ways easy, in part due to the COVID-19 pandemic and having to write my work
largely from home, many people were involved that made this journey much easier.

I would like to thank everyone that has provided me with their feedback, knowl-
edge, and help along the way. Firstly, my gratitude goes out to my academic su-
pervisors Slinger Jansen and Gerard Wagenaar, whose help, time and feedback have
been critical in improving and guiding my research. Secondly, a big thank you to
my daily supervisor at AFAS, Michiel Overeem. This work would not have been
possible without all the invaluable brain storm sessions and discussions we have
had this past year, as well as his many proof-reads and excellent feedback. Next,
I would like to thank Thymen Simons, Jeroen van Stokken, Machiel de Graaf, and
Christian Lankman at AFAS for their participation in the case study, their interest in
my work, and providing excellent ideas. Also, thank you to all the experts that have
been involved in my research, this would not have been possible without your help
and the countless hours of discussions we have had. Lastly, a special thanks to my
mom, dad, brother, and friends. I could not have done this without your continuous
love, support and understanding!

iv

Contents

Abstract ii

Acknowledgements iii

1 Introduction 1
1.1 Problem Statement . 2
1.2 Research Objective . 3
1.3 Background . 3
1.4 Research Questions . 4
1.5 Thesis Outline . 5

2 Research Approach 6
2.1 Design Science Research . 6

2.1.1 Research Methods . 7
2.2 Research Design . 8

2.2.1 Problem Statement . 8
2.2.2 Knowledge Analysis . 9
2.2.3 Solution Design . 10
2.2.4 Solution Evaluation . 10

Evaluation Strategy . 11
Expert Interviews . 11
Case Study Implementation . 14

3 Literature Review 16
3.1 Application Programming Interfaces (APIs) 16
3.2 API Types . 16

3.2.1 Web (Service) APIs & Protocols 17
Representational State Transfer (REST) 17
Simple Object Access Protocol (SOAP) 17

3.2.2 API Ownership Types . 18
3.3 API Economy . 19

3.3.1 API Value Chain . 20
3.4 API Management . 21

3.4.1 Developer Services . 22
3.4.2 Analytics Services . 22
3.4.3 API Gateway Services . 23

3.5 API Management Capabilities . 23
3.5.1 API Lifecycle Management . 24

API Version Management . 26
3.5.2 Developer Enablement for APIs 26

Developer Onboarding . 27
Documentation . 27
Developer Support . 28

v

3.5.3 Secure, Reliable and Flexible Communications 28
Security . 28
Traffic Management . 29
Interface Translation . 30

3.5.4 API Auditing, Logging and Analytics 30
Activity Logging . 31
Health Monitoring . 31

3.6 Actors & Roles in API Management . 31
3.7 API Governance . 34
3.8 Background . 35

3.8.1 API Management Maturity Assessment Frameworks 35
Accenture - API Management Suite API Maturity Model 36
Endjin - API Maturity Matrix . 37

3.8.2 API Gateway & Management Platform Comparisons 37
WSO2 - API Management Platform Technical Evaluation Frame-

work . 37
Gamez - API Gateway Feature Comparison 39
Broadcom - API Management Playbook 39

3.8.3 API Management Advisory Reports 40
Accenture - APIs: The Digital Glue 40

3.8.4 Non-Publicly Available Evaluation Frameworks & Case Studies 41
Gartner - Guidance Framework for Evaluating API Manage-

ment Solutions . 42
Devoteam - API management at Liberty Global Inc 42

3.8.5 Comparison Matrix . 43

4 Framework Design Tracing 46
4.1 Design Science Artifact Selection . 46

4.1.1 Maturity Models . 47
4.1.2 Focus Area Maturity Models (FAMM) 48

Focus Area Maturity Model for API Management 49
4.2 Constructing the API-m-FAMM . 50

4.2.1 Scope . 50
4.2.2 Design . 52
4.2.3 Populate . 52

API-m-FAMM v0.1 . 53
API-m-FAMM v0.2 . 54
API-m-FAMM v0.3 . 55
API-m-FAMM v0.4 . 56
API-m-FAMM v1.0 . 57

5 Evaluating the API-m-FAMM 59
5.1 Test . 59

5.1.1 First Evaluation Cycle . 60
Interview Results (API-m-FAMM v1.1) 61
Changes and Decisions Made (API-m-FAMM v1.2) 63
Evaluation Criteria Results . 69
Maturity Level Assignment (API-m-FAMM v2.0) 71

5.1.2 Second Evaluation Cycle . 74

vi

6 Case Study 76
6.1 Deploy . 77

6.1.1 Embedded Single-Case Study Company 77
AFAS Profit . 77
AFAS Focus . 77

6.1.2 Multiple Single-Case Study Companies 78
ConsultComp . 78
EAMComp . 78
Exact . 78
Uber . 79

6.1.3 Case Study Protocol . 79
6.2 Results . 81

6.2.1 Embedded Single-Case Study Company Results 81
AFAS Profit . 82
AFAS Focus . 84

6.2.2 Multiple Single-Case Study Companies Results 86
ConsultComp . 86
Exact Online . 87
Uber . 89

6.2.3 Misinterpreted Case Study Company Results 90
EAMComp . 91

6.3 Discussion of Results . 92
6.4 Changes Made as Result of Case Study Findings (API-m-FAMM v3.0) 97

7 Discussion 100
7.1 Findings and Implications . 100
7.2 Scientific Contribution . 102
7.3 Validity . 105

7.3.1 Construct Validity . 105
7.3.2 Internal Validity . 106
7.3.3 External Validity . 106
7.3.4 Reliability . 107

7.4 Limitations . 108
7.5 Opportunities & Future Work . 108

8 Conclusion 111

A Process Deliverable Diagram 123

B Interview Protocol 125
B.1 Interview Protocol Checklist . 125
B.2 Preliminary Survey . 126
B.3 Interview Information Sheet . 129
B.4 Interview Informed Consent Form . 130
B.5 Interview Protocol Mapping Matrix . 131
B.6 Interview Protocol . 133

C Experts & Interviews Summaries 135
C.1 API Evangelist . 135
C.2 CEO A . 135
C.3 CEO B . 136
C.4 Engineer . 136

vii

C.5 IT Consultant . 136
C.6 Product Manager . 137
C.7 Lead Engineer A . 137
C.8 Lead Engineer B . 137
C.9 Lead Engineer C . 137

D Descriptions of Focus Areas, Capabilities & Practices 139
D.1 Focus Areas & Capabilities . 139
D.2 Practices . 144

E Case Study 162
E.1 Data Collection Spreadsheet . 163
E.2 Evaluation Survey . 164

1

Chapter 1

Introduction

In recent years, there has been an increasing demand among organizations to have
access to enterprise data through a multitude of digital devices and channels. In
order to meet these expectations, enterprises need to open and provide access to
their assets in an agile, flexible, secure and scalable manner (De, 2017). These as-
sets include matters such as raw and cleansed data, images, videos, documents, or
functionality that performs complex calculations or data processing based on inputs
(L. Weir, 2019). Access to these assets may be provided by utilizing Application Pro-
gramming Interfaces (APIs). An API is a software-to-software interface that defines
a contract for applications to communicate with one another over a network, with-
out the need for any user interaction (De, 2017). By adhering to this contract, assets
may be exposed to third-parties in a limited fashion, without sharing the code base.

As shown by an analysis conducted by ProgrammableWeb (Santos, 2019), which
is the largest directory of APIs, the usage and offering of APIs has evolved from a
curiosity to a trend since the year of 2005. This observation is further supported
by a survey conducted by Coleman Parkes Research (2017), which shows that 88%
of global enterprises have some form of an API program. Furthermore, this sur-
vey has found that respondents experience a wide variety of benefits from their API
programs, including an average increase in speed-to-market of around 18% (Med-
jaoui, Wilde, Mitra, & Amundsen, 2018). These statistics signal the emergence of the
API Economy, in which organizations are offering access and the ability to recom-
bine their digital services and products for novel value creation (Basole, 2019). As a
result, by making their APIs accessible to external or partner consumers, these orga-
nizations are able to reach new markets, enable their business strategy and drive the
creation of new innovative solutions (Bui, 2018).

However, after an API has been created, it needs to be managed so that devel-
opers may easily integrate it into their applications. API management is a disci-
pline that has evolved to deliver the processes and tools required to discover, design,
publish, implement, use, operate and maintain APIs (L. Weir, 2019). API manage-
ment is accomplished by performing activities such as providing helpful documen-
tation, controlling access to the API, as well as monitoring and analysing its usage.
Oftentimes, these activities are supported through an integrated API Management
platform, which, among other things, helps an organization publish APIs to inter-
nal, partner, and external developers to unlock the unique potential of their assets
(De, 2017). Organizations may choose from a plethora of commercially available
API management platforms, the most prominent of which, according to Forrester
Research (2020)’s latest evaluation of API management solutions, include Software
AG, IBM API Connect, Google’s Apigee, Oracle’s WSO2 and Axway’s AMPLIFY
API Management.

Chapter 1. Introduction 2

1.1 Problem Statement

As highlighted in the previous section of this work, it is evident that for an increas-
ing amount of organizations, the utilization of APIs as part of a successful API pro-
gram is becoming increasingly important. In fact, it has been found that enterprises
with advanced API management processes experience up to 47% better business
results than those with basic API management (Coleman Parkes Research, 2017).
In an effort to guide organizations in successfully managing these programs, some
commercial frameworks and tools exist with which organizations may evaluate and
assess their API management approach and capabilities. However, often due to their
commercial and industry focused nature, these frameworks are not publicly avail-
able, transparent or grounded in academic literature. Despite growing interest in the
topic of API Management among the research community, more research is needed
in order to fill knowledge gaps and identify best practices regarding the subject from
an academic perspective. This is highlighted by the observation that currently, rela-
tively little in-depth literature on API Management exists (Mathijssen, Overeem, &
Jansen, 2020a). Additionally, a uniform, comprehensive and widely accepted defini-
tion of the topic is lacking within the research community, as well as in the software
industry. Furthermore, frameworks or overviews that are grounded in literature and
capture all the processes, capabilities and features API Management is comprised are
lacking.

Despite many large scale organizations having an API program in place, a sig-
nificant portion of these are limited in terms of their approach, strategy, features and
capabilities. For instance, a survey conducted by Coleman Parkes Research (2017),
as mentioned in the previous section, has found that only 51% of respondents were
regarded to have an advanced API management approach in place. Furthermore,
37% have what are considered to be basic API management procedures in place,
10% employ only limited capabilities, and the remaining 2% of respondents have
no API management capabilities in place at all. However, the respondents of this
survey are classified as senior business, and these organization’s degree of maturity
with regards to API management was assessed using an evaluation framework that
only takes a limited amount of capabilities into account. Because of this, it could
be argued that a similar survey conducted among smaller organizations, using an
evaluation framework that takes a wider range of API management capabilities into
account, would yield results that indicate an even lower adoption of API manage-
ment approaches.

While there are many organizations that successfully manage their API pro-
grams, a small amount of these organizations are willing to share their experience
and expertise publicly. There are several possible reasons for this reluctance. Firstly,
organizations that are performing well in terms of their API management programs
might simply not have the time, resources or personnel to share their experience
and expertise with third parties (Medjaoui et al., 2018). Secondly, organizations that
are apprehensive with regards to the amount of knowledge they share on their API
management expertise might consider their know-how to be a competitive advan-
tage, and will as such not feel urged to make their findings public. Finally, even in
the event where organizations share their experience at public conferences, articles
or blog posts, the information shared is usually company-specific and difficult to
translate to a wider range of organizations’ API programs (Medjaoui et al., 2018).

Chapter 1. Introduction 3

1.2 Research Objective

As outlined in the problem statement above, several problems and knowledge gaps
exist in relation to the topic of API management. Currently, organizations that ex-
pose their API(s) to third-party developers have no tools or frameworks with which
they may evaluate and improve upon their business processes regarding the topic
of API management, that are publicly available and are grounded in both literature
and industry, at their disposal. Hence, using the practices, capabilities and features
that constitute the topic of API management as encountered in literature as input,
the main objective of this work is to:

• Construct, evaluate and validate a framework or tool with which organizations
may evaluate, improve upon and assess the degree of maturity their business
processes regarding the topic of API management have.

In summarizing this work’s objectives, the problem context, artefact, require-
ments and desired impact of this work is distilled into a goal statement, by using the
design problem template as presented by Wieringa (2014).

Goal Statement: This work’s goal is to improve the transparency and
availability of API management assessment frameworks and tools by
constructing, evaluating and validating a publicly available, industry
and academically grounded framework or tool that can be used by or-
ganizations that expose their API(s) to third-party developers to assess
and evaluate their degree of maturity with regards to API management
in order to improve upon their API management-related business pro-
cesses.

1.3 Background

Serving as a starting point for this thesis, a Systematic Literature Review (SLR) was
conducted (Mathijssen et al., 2020a). This SLR was based on the methodology devel-
oped by Okoli (2015), as well as guidelines composed by Kitchenham and Charters
(2007). First, a comprehensive overview of literature related to API management
was collected. This was accomplished by entering a series of relevant keywords in
a list of scientific libraries, resulting in the extraction of an initial collection of 5152
books, research papers, theses and white papers. After having applied a set of in-
clusion and exclusion criteria, as well as removing duplicates, this collection was
narrowed down to 43 papers. Next, an overview of all the varying definitions for
API Management as encountered in these papers was composed, consisting of 24
unique definitions. Then, as a result of a key-term frequency analysis using these
definitions as input, a new and comprehensive definition of the topic was proposed.

Next, the features API Management consists of were identified and extracted
in the form of practices and capabilities, which are components of the Focus Area
Maturity model, as first introduced by van Steenbergen, Bos, Brinkkemper, van
De Weerd, and Bekkers (2010). Maturity models are a proven tool used in the cre-
ation of collections of knowledge of practices and processes concerning a particular
domain (Becker, Knackstedt, & Pöppelbuß, 2009; Jansen, 2020). One specific type of
maturity model is the Focus Area Maturity model (FAMM) (van Steenbergen et al.,

Chapter 1. Introduction 4

2010; van Steenbergen, Bos, Brinkkemper, van de Weerd, & Bekkers, 2013), which is
used to establish the maturity levels of an organization in a specific functional do-
main. This functional domain is described by the set of focus areas that constitute
it (Jansen, 2020). Each focus area is composed out of a set of capabilities. These ca-
pabilities are positioned against each other in a maturity matrix. In the scope of this
research, capabilities were defined as the ability to achieve a certain goal related to API
Management, through the execution of two or more interrelated practices. As a result of
scanning and coding the body of included literature, 39 capabilities were identified
and extracted. Furthermore, the practices that capabilities are composed of were
defined as any practice that has the express goal to improve, encourage and manage the
usage of APIs. Among the 32 papers that were found to contain at least one practice
or capability, 114 practices were identified and extracted. Based on the positioning
of the capabilities and practices in the maturity matrix, a number of maturity levels
may then be distinguished (Jansen, 2020). These maturity levels may then be used
to guide an organization in the incremental development of the functional domain.

1.4 Research Questions

Based on the problem statement and research objectives, the following main research
question (MRQ) and 5 sub-research questions are formulated, ensuring this research
succeeds in achieving its aims, goals and objectives.

MRQ: How can organizations that expose their APIs to third parties evaluate their API
management practices?

As mentioned earlier, organizations that employ API management activities have
no tools or frameworks with which they may evaluate and improve upon their busi-
ness processes regarding the topic of API management, that are publicly available,
transparent, and grounded in both literature and industry, at their disposal.

SQ1: What type of tool or framework is best suited for organizations wanting to assess
their API management related business processes?

As part of the process of answering this work’s main research question, an
artefact type that may be adapted to a framework or tool which aligns with its
intended use, as well as being easy to use and understand for its users, should
be decided upon.

SQ2: What elements should the API management assessment tool or framework be
comprised of?

In order to create an API management assessment framework or tool that ad-
equately fulfills it’s intended purpose, a complete collection of all the (best)
practices, capabilities, features and processes API management is comprised
of must be identified.

SQ3: What are suitable criteria, benchmarks, and methods for evaluating the API
management assessment tool or framework?

In order to improve the effectiveness and value of the framework or tool, a
set of criteria, measures and benchmarks needs to be composed and adhered
to. Doing so will enable comparison with existing frameworks, tools and arte-
facts, resulting in an optimal API management assessment framework or tool.

Chapter 1. Introduction 5

Furthermore, a suitable evaluation method needs to be employed in order to
evaluate whether the contents of the tool or framework are complete.

SQ4: What is a suitable method for validating the API management assessment tool
or framework in practice?

In order to satisfy the requirement regarding the tool or framework being
grounded in industry, the artefact must be applied, tested and validated in
practice.

1.5 Thesis Outline

This thesis is structured as follows. This first chapter comprises the overall scope
of this project, a problem statement and the main objectives, relevant background
with regards to this study, as well as the research questions that guide this work.
Chapter 2 elaborates upon the research design and approach this study adheres to,
and includes a description of the various research methods used. Chapter 3 de-
scribes all relevant literature in the scope of this research, as well as summarizing
and evaluating all existing frameworks, tools, models, reports and case studies that
are related to the scope and goal of this study. In Chapter 4, the process of designing
the API management assessment framework is traced and described. Next, Chapter
5 describes the results of the expert interviews that were conducted to evaluate the
framework through two evaluation cycles. Chapter 6 details the case studies that
were conducted to evaluate the framework in practice. In Chapter 7, the design and
creation process of the framework is reflected upon, as well as listing the scientific
contributions of this work, threats to validity, limitations, and opportunities and fu-
ture work. Finally, in Chapter 8 the concluding reflections on this study’s research
questions are summarized.

6

Chapter 2

Research Approach

This chapter describes the research approach which is to be adhered to over the
course of this thesis. First, the reasoning for choosing to follow the Design Science
Research (DSR) methodology is elaborated upon. This is followed by a description
of the research design that guides this thesis. Next, the three main research methods
this thesis consists of are described: (1) a literature study to identify, collect and com-
pile all relevant knowledge in relation to the object of study, as well as populating
the first version of the API management assessment tool or framework; (2) expert in-
terviews to evaluate the first preliminary version of the API management assessment
tool or framework; and (3) case studies to validate and test the final version of the
tool or framework in practice. A visualization of the research approach, including
the research methods it comprises, may be seen in the form of a Process Deliverable
Diagram (PDD). This PDD can be found in Appendix A, and consists of two inte-
grated diagrams. The first of which, located on the left side of the PDD, depicts the
research process as based on an UML activity diagram. The PDD’s right side shows
the deliverables that were produced as a result of executing the various processes
this research consists of, and are based on the UML class diagram (van de Weerd &
Brinkkemper, 2009).

2.1 Design Science Research

In their work, Hevner, March, Park, and Ram (2004) present the two main paradigms
that characterize much of the research performed in the Information Systems disci-
pline:

Behavioural science: Seeks to develop and verify theories that explain or
predict human or organizational behavior.

Design-science: Seeks to extend the boundaries of human and organiza-
tional capabilities by creating new and innovative artifacts.

Considering that the goal of this thesis is to create a new artifact that enables
organizations to assess, evaluate and improve upon their API management related
business processes, this work is categorized under the design-science paradigm. In
order to create the aforementioned artefact, the Design Science Research methodol-
ogy (DSR), as introduced by Hevner et al. (2004), has been adopted. This methodol-
ogy involves the creation and evaluation of IT artifacts intended to solve identified
organizational problems, which aligns with the intended goal of this thesis. In their
work, Hevner et al. (2004) introduce the Information System research framework as
part of the DSR methodology. Figure 2.1 depicts the application of this framework to

Chapter 2. Research Approach 7

the context and scope of this thesis. This framework is composed of three elements,
resulting in a conceptual representation of the research at hand. These elements com-
prise the environment, knowledge base and IS research. The environment defines
the problem space in which relevant phenomena with regards to the research are
located, and is composed of people, organizations and technology. Together, these
define the business need or problem, as perceived by the researcher (Hevner et al.,
2004). By framing research activities to adequately address business needs, research
relevance is ensured. The knowledge base provides the researcher with the raw
materials, such as literature, from and through which IS research is accomplished.
This knowledge base is composed of foundations and methodologies, resulting in
applicable knowledge. Using business needs and applicable knowledge as input, IS
research is then able to be carried out. When adhering to the design science method-
ology, conducting IS research consists of building and evaluating artifacts that are
designed to meet the identified business needs.

FIGURE 2.1: Information Systems research framework (Hevner et al.,
2004), as applied to this research.

2.1.1 Research Methods

As part of the process of designing, evaluating and validating the artefact this study
seeks to construct, answers to the research questions posed in Section 1.4 are formu-
lated. The research methods used to do so are depicted in Table 2.1 below. First, a
literature review is conducted to determine which type of framework or tool is best
suited towards fulfilling this study’s goal. Next, the results of the previously con-
ducted Systematic Literature Review (SLR), which was summarized in Section 1.3,
are used as input to initially populate the contents of the first version of the frame-
work. Then, expert interviews are conducted in order to evaluate its completeness,
operational feasibility, ease of use, usefulness and effectiveness. Lastly, the version of the
framework which was produced as a result of the previous methods, is validated in
a practical setting through an embedded, single-case study and multiple case stud-
ies. As a result, the framework or tool’s operational feasibility, ease of use, usefulness

Chapter 2. Research Approach 8

and effectiveness will be evaluated in practice. These criteria are described in further
detail in Table 2.3.

TABLE 2.1: Research methods used to answer the SQs.

Method SQ1 SQ2 SQ3 SQ4

Literature Review ! !

Systematic Literature Review !

Expert Interviews ! !

Case Studies !

2.2 Research Design

In order to construct the research design that guides this thesis, the Information
Systems research framework by Hevner et al. (2004) has been combined with Polya
(2004)’s problem-solving cycle. The resulting research cycle is depicted in Figure 2.2
below, and comprises the following key phases:

Problem statement: This first phase of the research cycle aims to ade-
quately describe, identify, scope and frame the problem at hand. As a
result of doing so, a problem statement is produced.

Knowledge analysis: The key objective of this phase is to identify, collect
and compile all relevant knowledge in relation to the object of study.
These activities yield an overview comprising all relevant subjects.

Solution design: This phase is targeted towards designing one or more
candidate solutions, using knowledge extracted from the knowledge base
as input. Next, the most appropriate and suitable candidate solution is
selected with regards to the identified problem.

Case study implementation: In this phase, the previously selected candi-
date solution is applied in practice, as part of case studies.

Solution Evaluation: As part of this final phase, the implemented solution
is evaluated by verifying whether the problem has been solved as a re-
sult of the implementation.

2.2.1 Problem Statement

This phase aims to adequately describe, identify, scope and frame the problem at
hand. This is accomplished by performing an exploratory literature research, using
the body of literature that was composed as a result of the Systematic Literature Re-
view (Mathijssen et al., 2020a) as a starting point. This initial exploratory literature
study ensured clear scoping of the domain. Furthermore, blog posts, consultancy re-
ports and surveys were identified to highlight the identified problem. Additionally,
initial potential candidate solutions were identified. Combined, these activities have
resulted in the composition of the Problem Statement (Section 1.1) of this work.

Chapter 2. Research Approach 9

FIGURE 2.2: The research cycle, consisting of four phases, as com-
bined from Hevner et al. (2004) and Polya (2004).

2.2.2 Knowledge Analysis

The key objective of this phase is to identify, collect and compile all relevant knowl-
edge in relation to the object of study. In order to do so, the body of literature pro-
duced as a result of the Systematic Literature Review (as summarized in Section 1.3)
was used as the starting set, on which the snowballing method was subsequently
applied. Wohlin (2014) defines snowballing as follows:

Snowballing: Refers to using the reference list of a paper or the citations
to the paper to identify additional papers.

Wohlin (2014) notes that snowballing is particularly useful for extending a sys-
tematic literature study, considering that new studies almost certainly must cite at
least one paper among the previously relevant studies or the systematic study al-
ready conducted in the domain. By iterative repetition of the snowballing method
on the body of literature, all relevant concepts in the scope of this research were
identified and composed. The main areas of interest in the scope of this research are
as follows:

• Application Programming Interfaces (APIs)

• API Types

• API Economy

• API Management

• API Management Capabilities

• Actors & Roles in API Management

• API Governance

Additionally, all of the existing frameworks, tools, models, reports and case stud-
ies that that are related to the scope and goal of this study are summarized and eval-
uated.

Chapter 2. Research Approach 10

2.2.3 Solution Design

As part of this phase, the design of candidate solutions based on the information
gathered during the previous knowledge analysis phase is described. First, related
work and literature on API management assessment tools and frameworks, which
are described in Chapter 3, is used as input to inspire the candidate solution. By
comparing and analyzing several of these related tools and frameworks, as well as
suitable design science artefacts, it is decided upon which type of framework or
tool forms the most suitable basis for solving the problem outlined in the problem
statement. This process is described in Chapter 4. In doing so, SQ1 will be answered.
After having done so, the tool or framework is constructed by using results of the
previously conducted SLR (as described in Section 1.3) as input to initially populate
it. This process forms a basis towards partially answering SQ2, and will be described
in Chapter 4.

2.2.4 Solution Evaluation

The goal of this phase is to evaluate and validate the first preliminary version of the
API management assessment tool or framework which was designed as a result of
the previous phase. In order to successfully communicate the results of this eval-
uation process, Shrestha, Cater-Steel, and Toleman (2014)’s linear logic model will
be used. This model provides a consistent reporting structure to communicate De-
sign Science Research evaluation by presenting a unified view of (1) inputs in terms
of the artefact to evaluate; (2) discussion of participation and activities to clearly
explain the evaluation process; and (3) outcomes from the evaluation in terms of im-
mediate findings, their discussion and long-term impacts. In applying this reporting
structure to this research, the model has been modified as depicted in Figure 2.3.

FIGURE 2.3: Shrestha et al. (2014)’s evaluation reporting model, as
applied to this research.

In order to evaluate and validate the first version of the API management assess-
ment tool or framework, two main methods will be utilized; expert interviews and
a case study. These methods were selected due to the fact that the main objective
of this research is to develop a tool or framework that is grounded and verified in
both literature as well as the software industry. Using insights and feedback gained
from these approaches, the first version of the tool or framework will be iteratively

Chapter 2. Research Approach 11

improved upon by making incremental adjustments to it when needed, producing
new versions throughout the process (Hevner & Chatterjee, 2010). Changes to the
current version will be applied in the event where there is deemed to be a sufficient
amount of evidence to warrant completing a new increment.

Evaluation Strategy

Utilizing expert interviews and a case study as methods for evaluation were se-
lected due to the fact that the main objective of this research is to develop a tool
or framework that is grounded and verified in both literature as well as the soft-
ware industry. In order to verify the appropriateness of these approaches in relation
to the scope and goal of this research, the DSR evaluation strategy selection frame-
work and DSR evaluation method selection framework by Venable, Pries-Heje, and
Baskerville (2012) were investigated. Next, the strategic evaluation framework by
Venable et al. (2012) was applied to this research, as can be seen in Table 2.2.

TABLE 2.2: Strategic evaluation framework (Venable et al., 2012), as
applied to this research.

Research Phase Evaluation
Type

Evaluation
Method

Evaluation Crite-
ria

Evaluation Method-
ologies

Solution design Ex-post,
artificial

Alignment with
DSR and SLR
guidelines

Completeness DSR methodology (Hevner et
al., 2004) and guidelines for
conducting SLR’s (Kitchen-
ham & Charters, 2007; Okoli,
2015)

Solution evalua-
tion

Ex-post,
artificial

Expert inter-
views

Completeness, op-
erational feasibil-
ity, ease of use,
usefulness, effec-
tiveness

Qualitative research & evalu-
ation methods (Patton, 2014)
and Taxonomy of Evalua-
tion Methods (Prat, Comyn-
Wattiau, & Akoka, 2015)

Solution evalua-
tion

Ex-post,
artificial

Case studies Operational feasi-
bility, ease of use,
usefulness, effec-
tiveness

Case study research: Design
and methods (Yin et al., 2003)
and Taxonomy of Evaluation
Methods (Prat et al., 2015)

In order to be able to interpret the results from the aforementioned evaluation
methods, a set of evaluation criteria is utilized. This set consists of a collection of
criteria which are presented by Prat et al. (2015) and were subsequently modified to
match the scope and goal of this research, as can be seen in Table 2.3. By using these
criteria, the artefact is able to be evaluated in terms of its completeness, ease of use,
effectiveness, operational feasibility, and usefulness.

Expert Interviews

As a first step towards evaluating and improving upon the first version of the API
management assessment tool or framework, expert interviews will be conducted.
Interviews provide researchers with rich and detailed qualitative data (Rubin & Ru-
bin, 2011) and are an effective way to evaluate artifact designs at an early stage
(Wieringa, 2014). In the context of this research, expert interviews will be utilized
as an instrument to answer research questions SQ2 and SQ3, by gather feedback and
satisfying the completeness criterion as described in Table 2.3. In doing so, it will
be ensured that the API management assessment tool or framework comprises all
relevant (best) practices, capabilities and features the topic consists of. This will be
accomplished by presenting experts with the first version of the tool or framework,

Chapter 2. Research Approach 12

TABLE 2.3: Evaluation criteria and their corresponding definitions, as
well as the evaluation tools used.

Criteria Definition as presented by Prat et al.
(2015)

Modified definition in scope of this
research

Evaluation
Tool

Completeness The degree to which the structure of the
artifact contains all necessary elements
and relationships between elements.

To what degree does the API man-
agement assessment framework or tool
contain all the (best) practices, capabil-
ities and features API Management is
comprised of?

Open-
ended
questions

Ease of Use The degree to which the use of the arte-
fact by individuals is free of effort.

To what degree is it free of effort for
an organization to self-assess and eval-
uate their degree of maturity with re-
gards to API management, using the
API management assessment tool or
framework?

5-point
Likert
scale

Effectiveness The degree to which the artifact
achieves its goal in a real situation.

To what degree does the API man-
agement assessment tool or framework
succeed in aiding organizations to im-
prove upon their API management-
related business processes?

5-point
Likert
scale

Operational
Feasibility

Evaluates the degree to which manage-
ment, employees, and other stakehold-
ers, will support the proposed artifact,
operate it, and integrate it into their
daily practice.

To what degree are experts expecting
organizations to utilize the API man-
agement assessment tool or framework
in practice?

5-point
Likert
scale

Usefulness The degree to which the artifact posi-
tively impacts the task performance of
individuals.

To what degree does the API man-
agement assessment tool or frame-
work provide organizations with valu-
able and useful insights regarding their
API management-related business pro-
cesses?

5-point
Likert
scale

which was initially populated with results of the previously conducted SLR. By us-
ing open-ended and 5-point Likert scale questions, the structure and contents of this
first version of the API management assessment tool or framework will then be eval-
uated.

In order to ensure the reliability and effectiveness of the interviews, the inter-
view protocol refinement (IPR) framework by Castillo-Montoya (2016) is utilized.
This framework comprises a four-phase process to develop and fine-tune interview
protocols. IPR’s four phases include ensuring interview questions align with this
study’s research questions, composing an interview protocol in order to create an
inquiry-based conversation, having the protocol reviewed by others, and piloting
it. By doing so, the reliability of the interview protocol is enhanced, increasing the
quality of the obtained data as a result, and increased congruency with the aims of
this study (Jones, Torres, & Arminio, 2014).

Phase 1 focuses on the alignment between interview questions and research
questions. This alignment will increase the utility of interview questions in the re-
search process, while ensuring their necessity for the study. By mapping interview
questions onto research questions, any existing gaps regarding missing questions are
identified as well as unnecessary questions being removed. This mapping process is
accomplished through the usage of a matrix, which can reviewed in Appendix B.

Phase 2 entails seeking to strike a balance between inquiry and conversation, re-
sulting in an inquiry-based conversation by asking questions for specific information
related to the aims of this study (Castillo-Montoya, 2016; Patton, 2014). This is ac-
complished by constructing the interview protocol so that: (1) interviews questions

Chapter 2. Research Approach 13

are formulated in a clear and easily understandable manner when compared to the
research questions; (2) the conversation is structured in a natural way, by including
introductory and transition questions as well as logically ordering questions; (3) a
variety of questions that cover all relevant topics and aspects is included; (4) a script
is adhered to, which included possible follow-up and prompt questions.

Phase 3 is concerned with receiving feedback on the developed interview pro-
tocol. The purpose of obtaining feedback on the interview protocol is to enhance
its reliability and trustworthiness as a research instrument (Castillo-Montoya, 2016).
Through this feedback, information is obtained regarding the degree to which partic-
ipants understand the interview questions and whether their understanding is close
to what the researcher intends or expects (Patton, 2014). For this research, feedback
will be obtained through having research team members examining the first version
of the interview protocol for structure, length, writing style, and comprehension. In
order to aid with this, research team members are provided with an activity checklist
for close reading of an interview protocol, as developed by Castillo-Montoya (2016).
This checklist may be reviewed in Appendix B.

Phase 4 is aimed towards finalizing the interview protocol, by piloting the re-
fined interview protocol with people who mirror the characteristics of the sample to
be interviewed for the actual study (Maxwell, 2012). However, as Castillo-Montoya
(2016) remarks, researchers may not have the time to engage in a piloting phase,
making phase 3 become even more crucial towards refining the interview protocol.
Considering that this is the case for this research, an iterative refinement method is
opted for instead, in addition to utilizing the refinement checklist as part of the pre-
vious phase. After each interview, lessons learnt will be incorporated and used as
input to further improve upon and refine the interview protocol. The current inter-
view protocol may be reviewed in Appendix B.

Expert Selection Criteria
As mentioned earlier in this work and as was made evident by the results of the
previously conducted SLR, available literature on the topic of API management is
relatively scarce. Because of this, experts on this topic need to be consulted in order
to verify that the contents of the API management assessment framework or tool are
complete and correct. In order to do so, it has to be ensured that the selected experts
are experienced and knowledgeable regarding the subject. This is achieved through
the usage of the purposive sampling technique, which refers to the deliberate choice
of a participant due to the qualities the participant possesses (Etikan, Musa, & Alka-
ssim, 2016). For this research, a sub-method of purposive sampling is used; expert
sampling. Expert sampling involves the calling for experts in a particular field to be
the subjects of the purposive sampling (Etikan et al., 2016). This sampling method
is useful when the research is suffering from a lack of observational evidence and is
effective when investigating new areas of research (Etikan et al., 2016).

In order for the expert interviews to produce useful results, participants should
be experienced and knowledgeable with regards to the topic of API management. As
such, participants should adhere to the following requirements: (1) potential partic-
ipants must indicate to be knowledgeable on a minimum of 75% of the first version
of the tool or framework’s topics; (2) potential participants must have a minimum
of 3 years of experience with either consuming, developing, integrating, providing,

Chapter 2. Research Approach 14

versioning, monitoring or managing APIs; (3) potential participants must be work-
ing at an organization as an architect, developer, engineer or product owner as part
of a team working with APIs, or as a CTO, IT consultant or any comparable role.
In order to establish whether the potential participant satisfies the first requirement,
a short preliminary survey will be sent out, requesting the potential participant to
indicate the degree of knowledge they possess with regards to the topic. This survey
may be reviewed in Appendix B. This will be accomplished by providing them with
a short list of all the main elements that are contained in the first version of the API
management assessment tool or framework, accompanied by a description. After
having read these descriptions, potential participants will then be asked to denote
their knowledge on the individual subjects through the use of 5-point Likert scale
questions. In order to verify the second and third requirement, potential participants
will be asked to fill out their experience and current role within their organization.
A large portion of potential participants was identified and contacted through the
usage of the case company’s, which will be described in detail as part of the next
subsection of this chapter, partner network. Additional potential participants were
identified and contacted through the usage of the first project supervisor’s LinkedIn
profile network. Furthermore, potential participants on both the API provider and
consumer side will be contacted. By doing so, it is ensured that knowledge stem-
ming from both perspectives of API management is incorporated in the API man-
agement assessment framework.

On initial contact through e-mail with the purpose of gauging interest, potential
participants were provided with detailed information describing the first version
of the API management assessment framework (Mathijssen, Overeem, & Jansen,
2020b). In case the potential participant showed interest in participating, he or she
was asked to fill out the aforementioned short survey. Then, if the potential par-
ticipant passed all imposed requirements for participation, participants were asked
to read an information sheet and sign an informed consent form. These forms can
be found in Appendix B and were created using a template by TU Delft (2018) and
guidelines by Utrecht University (2020).

Case Study Implementation

As mentioned earlier, a case study will be conducted in order to evaluate and vali-
date the operational feasibility, ease of use, usefulness and effectiveness of the API man-
agement assessment framework or tool, answering SQ4 in a result. Venable et al.
(2012) state that the utilization of case studies as part of the DSR methodology sup-
ports the goal of evaluating the effectiveness of an artefact’s design. Furthermore,
Runeson and Höst (2009) argue that the case study approach is a suitable research
methodology for conducting software engineering research, considering that it stud-
ies contemporary phenomena in a practical context. The structure of this case study
is supported by guidelines for conducting case studies by Runeson and Höst (2009)
and is based on five key phases, as formulated by Yin et al. (2003).

Phase 1 concerns the design of the case study. According to Yin et al. (2003),
the case studies to be conducted as part of this research is classified as an embedded,
single-case study, as well as multiple case studies. This classification is based on the fact
that while this case study will take place at a single case company, multiple units
of analysis will be involved. Furthermore, the framework or tool is evaluated with

Chapter 2. Research Approach 15

multiple other case companies. The selected case companies are described in Chap-
ter 6.1.1 and Chapter 6.1.2.

Phase 2 addresses the preparation for data collection. This involves the creation
of a case study protocol. This protocol, which may be found in Chapter 6.1.3, serves
as a guide when conducting the data collection, and prevents failing to collect data
that was planned to be collected (Runeson & Höst, 2009). Furthermore, it improves
the reliability of the case study research, and ensures the researcher remains focused
on the subject of the case study (Yin et al., 2003). The case study protocol will be
reviewed and validated by relevant stakeholders within the case company, which
among other things, will ensure that the risk of missing relevant data sources is low-
ered (Runeson & Höst, 2009).

Phase 3 involves the actual data collection process. During this phase of the case
study, data is collected and combined from different sources. Doing so is in compli-
ance with guidelines formulated by Runeson and Höst (2009), who states that it is
paramount to use several data sources in a case study in order to limit the effects of
one interpretation of a single data source. As part of his work, Yin et al. (2003) dis-
cerns several data source types. For this case study, interviews with relevant stake-
holders will be conducted. This instrument is used in order to gain insight into the
manner in which API management activities and processes are implemented in the
case company. Additionally, stakeholders will be asked to evaluate the framework
or tool with regards to the evaluation criteria listed in Table 2.2.

Phase 4 concerns the analysis of the data collected as part of the previous phase.
In order to do so, data originating from different sources will be combined and an-
alyzed. Based of the results of this analysis, the framework or tool will be adapted
and improved upon.

Phase 5 involves reporting on the findings from the case study. This will be done
by distilling findings from the previously performed analysis into an advisory case
study report. Furthermore, all findings are reported on in Chapter 6.2.

16

Chapter 3

Literature Review

In this chapter, all related and relevant literature in the scope of this research is de-
scribed. First, the core topic of this work, APIs, is described, followed by the various
types that may be discerned among APIs. Next, the API economy is elaborated
upon, followed by a general overview of API management. Then, the topic of API
management is dissected by discussing the various capabilities the discipline com-
prises. Next, the various actors, roles and positions that exist in the domain of API
management are presented, after which the API governance approach is presented.
Lastly, existing frameworks, tools, models, reports and case studies that are related
to the scope and goal of this study are summarized and evaluated.

3.1 Application Programming Interfaces (APIs)

An Application Programming Interfaces (API) is a software-to-software interface
that defines a contract for applications to communicate with one another over a net-
work, without the need for any user interaction (De, 2017). By adhering to this con-
tract, APIs expose services or data which are provided by a software application in
the form of a set of predefined resources. These resources may consist of methods,
cleansed data, images, videos, documents, or functionality that performs complex
calculations or data processing based on inputs (Stylos (2009); L. Weir (2019). By
using these resources, other applications are able to access the data or services with-
out having to implement the underlying objects and procedures. APIs are a central
element in many modern software architectures, considering the fact that they pro-
vide high-level abstractions that facilitate programming tasks, support the design of
distributed and modular software applications and the re-usage of code (Robillard,
2009). As Myers and Stylos (2016) point out, all modern software makes heavy use
of APIs. Nowadays, instead of programming desired functionalities from scratch,
the fundamental task of software developers often is to stitch together functionality
that existing APIs provide (Stylos, 2009).

3.2 API Types

Generally speaking, APIs may be classified into two categories. The first of these
main categories encompasses the protocol that is used in enabling client-server com-
munication. Two of such protocols exist, both of which serve different purposes and
offer varying benefits. These protocols, called REST and SOAP, are elaborated upon
in further detail below. The second main category APIs may be categorized into,
concerns the intended users and those that have ownership of the API. These own-
ership types are subdivided into public, internal, and partner APIs.

Chapter 3. Literature Review 17

3.2.1 Web (Service) APIs & Protocols

Web services aim to simplify processes by defining a standardized mechanism to
describe, locate, and communicate with online applications (Curbera et al., 2002).
One type of APIs, called web service APIs, utilize these web services to offer a sys-
tematic and extensible approach towards integrating services into (existing) applica-
tions (Espinha, Zaidman, & Gross, 2014). In relation to web services, web APIs may
best be regarded to be the face of a web service, directly listening and responding
to client requests (Masse, 2011). In the past, web service APIs had become synony-
mous to SOAP protocol-based web service APIs. In recent years however, the em-
phasis has been moving towards usage of REST protocol-based communication (De,
2017). With the advent of REST and due to its popularity, RESTful web services and
web APIs are nowadays usually commonly referred to simply as APIs (De, 2017).
However, SOAP and REST are protocols that both have different appliances and
advantages in terms of performance. In order to fully illustrate this, the REST and
SOAP protocols are explained in further detail below.

Representational State Transfer (REST)

REST is a very popular web API protocol which defines a set of constraints aimed
towards improving the performance, availability and scalability of web-based dis-
tributed systems (Fielding, 2000). REST is based on the traditional client-server
paradigm, which holds that requests issued by clients are executed by a server
(Salvadori & Siqueira, 2015). REST defines a uniform interface for system compo-
nents based on a set of four constraints: resource identification, handling resources
through representations, self-described messages and Hypermedia as the Engine of
Application State (HATEOAS).
The resources the first two constraints are concerned with are abstractions of infor-
mation, which are handled by applications adhering to the REST architecture, and
must be identifiable as well as accessible through a generic interface. However, re-
sources are not directly accessed. Alternatively, they are viewed through a represen-
tation, which is a snapshot of the state of a resource at a given point in time (Wilde
& Pautasso, 2011).
In order for services to adhere to the third constraint, behavior must be stateless.
This entails that the server does not log information regarding issues requests by
clients, which is key in improving the scalability of a system. In order to achieve
stateless behavior, self-described messages must be utilized. These messages are re-
quests that contain all the information required for being processed by the server.
The body of these messages can be structured in the XML or JSON format. The lat-
ter is often preferred for mobile and web apps using RESTful services, considering
that it is a lightweight format, increasing performance as a result (De, 2017). The last
constraint, called HATEOAS constraint, holds that client interaction must be guided
through the usage of hypermedia control. These are controls which provide mech-
anisms for querying, storing and handling information on resources (Salvadori &
Siqueira, 2015).

Simple Object Access Protocol (SOAP)

SOAP (Simple Object Access Protocol) is an established web API protocol that is
often preferred for service interactions within an organizations. Other systems in-
teract with the web service in a manner prescribed by its description using SOAP
messages (De, 2017). These messages are transported using protocols such as HTTP,

Chapter 3. Literature Review 18

SMTP or FTP. At its core, the SOAP message structure consists of an SOAP enve-
lope, which contains the SOAP headers and the SOAP body, which in turn contains
the actual information to be sent (De, 2017). SOAP is based on the standard XML
format, which is designed specifically to transport and store structured data. It in-
corporates security and authorization into its protocol and can be used to enforce a
formal contract between the client and server (Patni, 2017). However, SOAP-based
web services are considered to be relatively heavyweight, because additional pro-
cessing of extra SOAP elements in the payload is required (De, 2017). Because of
this, it should not be utilized when bandwidth capacity is limited (Patni, 2017).

3.2.2 API Ownership Types

Generally speaking, APIs may be classified into three categories when examining
their nature in terms of accessibility and ownership. These categories are visualised
in Figure 3.1 below, and described in further detail thereafter.

FIGURE 3.1: API ownership types, as related to their degree of acces-
sibility, visibility and amount.

• Public APIs: The interface of a public API is designed with the purpose of being
accessible by a wide developer community (De, 2017). Public APIs can be ac-
cessed by internal app developers within an organization and other users with
minimal restrictions, which may require registration, or may be completely
open (Castellani and Dorairajan (2020); Jacobson, Woods, and Brail (2011). By
being open to a wider audience of app developers, public APIs are able to as-
sist an organization in adding value to its core business through innovation.
Additionally, public APIs also lead to an increase in the usage of company as-
sets, and add business value without direct investment in app development
(De, 2017). When compared to the two subsequent API ownership types be-
low, the offering of public APIs is considered to be the smallest.

Chapter 3. Literature Review 19

• Internal APIs: In contrast to open APIs, internal APIs are designed to be hid-
den from external users and are intended for internal app integration or for
mobile and web app development with the goal of internal consumption (De,
2017). The use and reuse of internal APIs can enhance an organization’s pro-
ductivity, efficiency, and agility (Mulesoft, 2020). Additionally, the internal use
of a company’s private APIs for business transformation can often derive more
business benefits when compared to public APIs (De, 2017). Furthermore, in-
ternal APIs are considered to form the ’large underwater mass of the iceberg’,
due to their abundance and popularity in terms of their usage when compared
to visibly exposed public APIs.

• Partner APIs: Partner APIs are mostly intended for business-to-business inte-
gration with partners of the organization and are usually consumed by part-
ners while adhering to contractual agreements (De, 2017). Similarly to internal
APIs, they are intended for private use, and are not exposed to the general
public. Furthermore, partner APIs share open API’s purpose of enabling com-
munication beyond the boundaries of an organization.

In addition to mapping these ownership types to their degree of visibility and
accessibility, observations may be made regarding their popularity across the soft-
ware industry. To this end, a survey conducted by Postman has found that 52.8%
of respondents state that the majority of APIs they work with are internal (Postman,
2019). Furthermore, 28.4% of respondents utilize APIs that were exclusively shared
among integration partners, and only 18.8% of respondents work with public APIs.

3.3 API Economy

In recognizing that APIs that are part of an ecosystem are more valuable than when
they exist in isolation, organizations have started to share their internal ICT business
assets in the form of APIs, both across internal organizational units as well as to ex-
ternal third parties (Bonardi, Brioschi, Fuggetta, Verga, & Zuccalà, 2016; Vukovic et
al., 2016). Doing so results in unlocking additional business value through the cre-
ation of new asset classes, in addition to being able to react and restructure quicker
compared to when APIs are exclusively used internally, as well as being able to
outsource capabilities via APIs (Bonardi et al. (2016); Medjaoui et al. (2018). Nowa-
days, the trend described above is widely referred to as the API Economy. The API
Economy may best be described as the commercial exchange of business functions,
capabilities, or competencies as services using web APIs (Holley et al., 2014). In the
API economy, organizations are offering access and the ability to recombine their
digital services and products for novel value creation.

Over the past decade, the API economy has grown exponentially, with most lead-
ing organizations offering some form of APIs for accessing their services and prod-
ucts (Basole, 2019). For organizations to succeed in the API economy, a shift away
from traditional approaches to delivering services needs to be made, towards to a
product-centric approach whereby the main goal is to make an API product success-
ful and profitable (L. A. Weir, Bell, Carrasco, & Viveros, 2015). According to Holley
et al. (2014), participating in the API economy yields the following benefits for orga-
nizations:

• Growing the customer base by attracting customers to products and services
through API ecosystems.

Chapter 3. Literature Review 20

• Driving innovation by capitalizing on the composition of different APIs, in-
cluding internal, partner or public APIs.

• Improving the time-to-value and time-to-market for new products.

• Improving integration with web APIs.

3.3.1 API Value Chain

As mentioned earlier, in the API economy, organizations are offering access and
the ability to recombine their digital services and products for novel value creation.
Value is created as part of the API Value Chain, which is depicted in Figure 3.2 below.
The actors involved in the API value chain are summarized in Table 3.1 below.

FIGURE 3.2: The API Value Chain, consisting of 3 actors and 3 assets.

First, the API provider identifies business assets, including their corresponding
value, and decides to make it available for others to use (De, 2017). These business
assets can take the form of any data or business functionality and can range from
product catalogs, to customer information, to payment services or Twitter posts (De,
2017; Jacobson et al., 2011). Ultimately, the value and usefulness of these business
assets determine the success of the API. After having identified assets, an API is cre-
ated so that they may be exposed. The API provider is responsible for designing the
API so that the intended audience may easily use it. Oftentimes, the owner of the
exposed business assets is the API provider, in which case all benefits are reaped by
the asset owner (Jacobson et al., 2011). After the API has been designed and exposed,
the API consumer may then assess and incorporate the API’s functionalities into an
application. These applications may take the shape of mobile apps or web apps, and
should be distributed and made available to the end user in order to add value to
the organization (De, 2017).

TABLE 3.1: Basic actors as part of the API value chain.

Actor Description

API Provider The API provider is the entity that supplies business assets and services
through an API, by designing and exposing it for API consumers to use
(De, 2017; Jacobson et al., 2011); Farrell (2009).

API Consumer Often referred to as the API developer, an API consumer is an entity that
calls the API to use the business assets and services it provides (Farrell,
2009). Typically, the API consumer utilizes the API to develop mobile
apps, software applications, websites or web apps by integrating func-
tionalities that are offered by the API into them (Crowe, 2018).

End User End users are the users of the final product, which take the shape of an
mobile app, software application, website or web app. End users may
use this app on their mobile devices, smartphones, tablets, desktops and
so forth (De, 2017).

Chapter 3. Literature Review 21

3.4 API Management

In order to fully profit from the API economy, after an API has been designed, cre-
ated and exposed, organizations need to properly manage their API program so
that consumers may easily integrate it into their applications. In its essence, this
is accomplished by performing activities such as providing helpful documentation,
controlling and monitoring access to the API, as well as monitoring and analysing
its usage. However, API management is a broad and diverse topic that is interpreted
and defined in varying ways among the research community, as was found as part of
the previously conducted SLR (Mathijssen et al., 2020a). A basic definition is given
by Coste and Miclea (2019), defining the topic as follows: "API management is the
practice an organization implements to manage the APIs they expose. This is done inter-
nally or externally so it makes sure that the APIs are consumable, secure, and available to
consumers in conditions agreed upon in the terms of use of APIs". This definition high-
lights the core activities of API management, which is for an API provider to expose
APIs for internal and external parties to consume, in a secure and agreed upon man-
ner.

Another basic definition of API Management is given by Vijayakumar (2018),
stating that: "API Management is a solution encompassing the collections of tools used to
design and manage APIs, referring to both the standards and the tools used to implement
API architecture". One of the main tools that are mentioned as part of this definition
are API management platforms. De (2017) defines API management platforms as
follows: "An API management platform helps an organization publish APIs to internal,
partner, and external developers to unlock the unique potential of their assets. It provides the
core capabilities to ensure a successful API program through developer engagement, business
insights, analytics, security, and protection". Among the 24 unique definitions found of
API management, which were identified as part of the previously conducted SLR
(Mathijssen et al., 2020a), management platforms are mentioned 6 times. Combined
with the observation that the above definition by De (2017) is adopted by three other
authors, it appears that many authors of literature related to API management con-
sider API management platforms to be an integral component of the topic. As such,
this component was incorporated into the definition of API management that was
formulated as a result of the aforementioned SLR. This definition is as follows: "API
Management is an activity that enables organizations to design, publish and deploy their
APIs for (external) developers to consume. API Management encompasses capabilities such
as controlling API lifecycles, access and authentication to APIs, monitoring, throttling and
analyzing API usage, as well as providing security and documentation. As was mentioned
in Section 1.3, this definition was composed as a result of a key-term frequency anal-
ysis using all definitions that were encountered across literature on the topic as in-
put.

There are several commercial API management platforms available on the mar-
ket, which are considered to be highly regarded enterprise tools (L. Weir, 2019). Or-
ganizations may choose from a plethora of commercially available API management
platforms, the most prominent of which, according to Forrester Research (2020)’s lat-
est evaluation of API management solutions, include Software AG, IBM API Con-
nect, Google’s Apigee, Oracle’s WSO2 and Axway’s AMPLIFY API Management.
By utilizing such an API management platform, organizations are able to increase
business outreach across digital channels, drive partner adoption, monetize digital
assets, and provide analytics to optimize investments in digital transformation (De,

Chapter 3. Literature Review 22

2017). Typically, most API management platforms offer services of three major types,
as is depicted in Figure 3.3 below. These service types are elaborated upon in further
detail in the following subsections.

FIGURE 3.3: Common API management platform service types, as
adapted from De (2017).

3.4.1 Developer Services

The main component that enables developer services as part of an API management
platform is the Developer Portal. A developer portal is a customized web site that
allows an API provider to provide services to the developer community, acting as
a doorway to the organization’s API program (De, 2017). Essentially, the developer
portal is a content-management system that hosts all the supplementary resources
for an API, which among other things, typically includes documentation function-
alities and features, interfaces, usage guides and terms of use (Jacobson et al., 2011).
Additionally, potential API consumers may explore and discover any APIs that have
been published by API providers (Indrasiri & Siriwardena, 2018). Other core fea-
tures of the developer portal include enabling new consumers of an API to sign up
and register their applications to use the API, as well as fostering community en-
gagement. This is achieved by offering developers a platform through which they
may both communicate with one another as well as with the API provider. Com-
munication may take place statically through documentation, or dynamically in the
form of forums and blogs. Using such a platform, developers may share their expe-
riences with API usage, raise support tickets, advice and best practices. In doing so,
a truly dynamic community may be developed in order to enhance the user experi-
ence of the provider’s APIs.

3.4.2 Analytics Services

Analytics services are a critical factor from both the technical as well as business per-
spective. These services provide the API provider with important information and
business insights so that future decisions may be made. Information collected by an-
alytics services includes monitoring of traffic from individual apps, operational met-
rics, API and app performance, and developer engagement metrics (De, 2017). Addi-
tionally, these capabilities provide the ability to troubleshoot problems and identify

Chapter 3. Literature Review 23

bottlenecks (Indrasiri & Siriwardena, 2018). Furthermore, some API management
platforms are able to visualize reports and metrics through reporting dashboards
(Vijayakumar, 2018).

3.4.3 API Gateway Services

The main component that forms the heart of any API management platform is called
the API Gateway. An API gateway is a server-based tool that is designed to reduce
the cost of deploying APIs within a network, and enables secure, flexible, and reli-
able communication between the back-end services and digital apps (De, 2017; Med-
jaoui et al., 2018). Gateways are typically designed to be highly scalable, reliable,
and secure, considering that improving the security of an API implementation is
often the primary motivation for introducing a gateway into a system architecture
(Medjaoui et al., 2018). Its main functionality is to help expose, secure, and manage
back-end data and services as APIs, as well as to provide a framework to create a
facade in front of the back-end services by intercepting all the requests that API con-
sumers send (De, 2017; Indrasiri & Siriwardena, 2018). This facade intercepts and
handles incoming API requests to enforce security, policies, validate data, verify the
identity of the consumer, limit the number of allowed calls based on rules, trans-
form messages, throttle traffic, and finally route it to the back-end service (De, 2017;
Vijayakumar, 2018; L. Weir, 2019). Optionally, gateway services may be extended
in order to carry out tasks such as orchestrating requests between multiple back-
end services or composing multiple business functionalities (De, 2017; Indrasiri &
Siriwardena, 2018).

3.5 API Management Capabilities

The topic of API management is broad in its scope and is a discipline that, often
supported by an API management platform, comprises a variety of features and
capabilities. However, an analysis conducted by Gámez Díaz, Fernández Montes,
and Ruiz Cortés (2015) shows that API management platforms often differ in terms
of the features they provide. This may include differences in possible security fea-
tures, traffic management or pricing plans. However, there does not seem to be
a clear consensus among authors on API management as to what the most com-
mon features offered by API management platforms are. As part of this literature
review, four main books that discuss the topic of API management and the activi-
ties, capabilities and features it comprises, were identified. The first of these, which
was written by Jacobson et al. (2011), is aimed towards providing business execu-
tives with a roadmap for them to incorporate APIs into their business. In doing
so, strategies, business models, and API design, community engagement and se-
curity considerations are discussed. Similarly, the work by Medjaoui et al. (2018)
aims to support businesses that are starting off their API program. This is done by
providing an API management framework that, among other things, describes ten
’pillars’, each describing different aspects of the topic, as well as the various roles
and responsibilities that are involved in guiding an API throughout its existence. A
third book that focuses on providing businesses with advice for implementing an
API strategy is that of L. Weir (2019). In this work, the community aspect of API
management, ecosystems, organizational structures and architectural patterns are
emphasized. Two other publications, those of Patni (2017) and Vijayakumar (2018),

Chapter 3. Literature Review 24

approach the topic of API management from a more practical and technical perspec-
tive. This is accomplished by emphasizing and elaborating upon the actual design
process of APIs, providing code samples, and describing the implementation and
usage of API management platforms in practice. The last main book on API man-
agement that was identified, is that of De (2017). Compared to the work of authors
mentioned earlier, this work is the broadest in scope and most complete in terms of
capturing the topics API management consists of. Additionally, definitions of con-
cepts related to API management that were formulated by this author are cited most
often across all academic publications.

In addition to being the most cited, comprehensive and detailed work on the
topic of API management, De (2017) presents a clear categorization of the capabili-
ties API management consists of. As such, this categorization was used as a foun-
dation to structure and subsequently describe the most common API management
capabilities. When applicable, these were complemented and extended by using
the work of the other books mentioned above as input. De (2017) proposes that the
most common API management capabilities may be categorized into four groups,
as shown in Figure 3.4 below. These capability categories are discussed in further
detail in the subsequent subsections.

FIGURE 3.4: Four common API Management capabilities and the fea-
tures they comprise, as adapted from De (2017).

3.5.1 API Lifecycle Management

Generally speaking, an API undergoes several stages over the course of its lifetime.
In order to control and guide the API through these stages, API lifecycle manage-
ment provides API providers with the capability to manage their API throughout its
lifecycle and control how an API is developed and released to consumers (De, 2017).
As mentioned earlier, the API lifecycle consists of several stages. Unfortunately,
there does not seem to be a clear consensus among authors on work regarding API
(lifecycle) management as to what stages the API lifecycle consists of. However, the
core stages of the API lifecycle that are mentioned by most authors are visualized in
Figure 3.5 below and involve the following:

Chapter 3. Literature Review 25

FIGURE 3.5: The core API Lifecycle, consisting of four stages.

• Design & Create: In this phase, the API team designs the interface for the API
and possibly creates an API proxy to interact with the back-end services (De,
2017). Similarly to the API gateway, an API proxy acts as a facade to securely
expose the back-end services to its consumers. Additionally, design decisions
regarding aspects such as the authentication and authorization protocols that
will be used should be addressed. After having done so, the actual creation
and implementation of the API takes place. This involves the developers pro-
ducing code and testing the API.

• Publish: Once an API has been designed and created, it must be published to an
environment before it may be discovered and consumed by third parties (De,
2017). Ensuring APIs are discoverable is a fundamental aspect of API man-
agement. Additionally, relevant consumer-oriented documentation should be
published alongside the API, ensuring that developers can reuse it, ultimately
reducing development and operations costs (L. Weir, 2019). Typically, publi-
cation takes place within the developer portal so that consumers may easily
access it.

• Maintain: After having been published, the API enters the maintenance stage,
where it is likely to spend the largest portion of its lifecycle. Considering an
API must continuously evolve by taking evolving consumer needs and ex-
pectations into account, it must undertake a series of iterations and changes
(L. Weir, 2019). These may include actions such as bug fixes and modernization
improvements, which constitute into an activity called version management
(Medjaoui et al., 2018). Given its importance, API versioning are discussed in
further detail in the following subsection.

• Deprecate & Retire: The lifecycle of an API ends with the retirement stage, which
involves deprecating the API in a manner that aims to minimizes impact on ex-
isting consumers (L. Weir, 2019). There may be a plethora of reasons to retire or
deprecate an API, which may include a lack of partner or third-party developer
innovation, security concerns, decreasing demand or changes to operational

Chapter 3. Literature Review 26

costs (Medjaoui et al., 2018; Patni, 2017). Retiring an API entails a different
activity for each organization, as multiple strategies are possible. These may
include removing all active API instances from production servers, or simply
marking the API as deprecated and halting support as well as any future up-
dates (Medjaoui et al., 2018).

As mentioned earlier, there does not seem to be a clear consensus among authors
on work regarding API (lifecycle) management as to what stages the API lifecycle
consists of. For example, in addition to the core stages described above, Medjaoui et
al. (2018) suggests that an API enters the realize stage between the create and publish
stages. They argue that during this stage, the API must meet its strategic objec-
tives, which may include objectives such as reaching a certain amount of registered
developers. L. Weir (2019) puts more emphasis on the design and create stage, by
proposing and discerning three additional stages: mock, try and configure.

API Version Management

As mentioned earlier, an API continuously evolves during the maintenance stage.
However, because API linkages are prone to breaking, problems generally occur
when APIs start to evolve over time (Xavier, Brito, Hora, & Valente, 2017). API
changes may be classified into breaking changes and non-breaking changes (Dig & John-
son, 2006). Breaking changes are those that break backward compatibility due to
either removal or modification of API elements, resulting in consumers potentially
facing compilation errors after updating. Non-breaking changes are changes that
preserve compatibility, typically only involving addition of new functionalities. Be-
cause of this, migration between API versions which only include non-breaking
changes does not cause negative effects to consuming applications (Xavier et al.,
2017). Hence, API providers typically aim to only make non-breaking changes to
their API, by designing their API for extensibility from the very start, so that there
is loose coupling between versions (Medjaoui et al., 2018). In the event of breaking
changes however, unless there is a high return-on-investment, developers will of-
ten not voluntarily migrate to a newer version (Espinha, Zaidman, & Gross, 2015).
However, when integrating with a web API, developers can often not afford to do
so since the API provider sets the pace for migrating to newer versions (sometimes
eventually removing older ones altogether), forcing consuming developers to mi-
grate. If this is the case, it should be ensured that migrating to a newer version of the
API may be done smoothly, which is why managing multiple versions of an API to
support existing consumers is an important capability the API provider should offer.
Another helpful tool in ensuring consumers are able to adapt to changes made to the
API, is adequately notifying consumers of any planned changes to the API. In order
to do so, the API provider should have a mechanism in place with which consumers
may be notified of any API updates or possible downtime (De, 2017). This may be
done, for example, through email, social media, release notifications or notifications
within the developer portal.

3.5.2 Developer Enablement for APIs

An API program is much more likely to be successful when the developer commu-
nity is actively involved. Hence, managing communities of internal, partner, and ex-
ternal developers is a fundamental aspect of API management, ensuring that steady
engagement with developers is maintained (Vijayakumar, 2018; L. Weir, 2019). Of-
tentimes, developers like to know the views of other developers in the community

Chapter 3. Literature Review 27

and may want to collaborate and share their API usage learnings and experiences
with one another (De, 2017). Communication channels such as the developer portal,
blogs and forums form a major part of collaboration and community management
(Indrasiri & Siriwardena, 2018). Through blog posts and community forums, de-
velopers may share their experiences with API usage as well as best practices and
advice. Additionally, these channels may also be utilized by developers to report
any issues with an API or its usage to the API provider’s support team.

Developer Onboarding

In order to start consuming an API, developers typically must first register with
the API provider to get access credentials (De, 2017). This process, which is often
referred to as developer onboarding, involves a self-registration process which may
often be done within the developer portal (L. Weir, 2019). After having registered,
developers may then view and select available APIs through the usage of a mech-
anism commonly referred to as API discovery (Patni, 2017). This involves browsing
through a discoverable catalog of APIs, which is published and maintained by the
API provider. This API catalog is often also referred to as an API registry or direc-
tory, and should be able to be searched based on various metadata and tags (De,
2017; Vijayakumar, 2018; L. Weir, 2019). After having selected an API, developers
may register their apps to use it. Doing so typically prompts an API key being gen-
erated. The API key is often also referred to as an app key or client ID and is used
to identify the app an API is registered to (De, 2017). Overall, the utilization of
mechanisms such as API discovery and the API catalog ensures that the developer
onboarding process is made as easy as possible, improving the developer experience
as a result.

Documentation

Another way with which API providers may foster and assist their developer com-
munity, is through providing API documentation. Comprehensive and rich docu-
mentation is considered to be empirical for the success of an API (L. Weir, 2019).
By reviewing an API’s documentation, consumers are able to review information
regarding the API, such as the used standards, version, URI syntax, constraints,
available resources, error codes and FAQs (Medjaoui et al., 2018; Vijayakumar, 2018;
L. Weir, 2019). Additionally, documentation pages may also include start-up doc-
umentation to help developers quickly get started in using the API, as well as tu-
torials and sample code (De, 2017). Furthermore, documentation often includes a
Service-Level Agreement (SLA). This agreement defines the API’s non-functional re-
quirements, which may include matters such as the expected throughput, response
time, and maintenance or downtime information. Considering that keeping API
documentation synchronized with the implementation of the API itself is often a
difficult task, documentation standards and frameworks such as RAML, Swagger
and API Blueprint are often used. Many of these frameworks provide API providers
with tools to automatically generate documentation from the API’s interface (De,
2017). API providers typically provide documentation for their API on platforms
such as the developer portal or the API catalog (Medjaoui et al., 2018). Overall, qual-
ity and user-friendly API documentation is key to its successful adoption, which is
achieved by supplying consumers with vast amounts of information, bridging com-
munication gaps as a result.

Chapter 3. Literature Review 28

Developer Support

In addition to providing developer support through the usage of community forums
and documentation, support can be provided by allowing developers to test API
behavior before actually deploying it. This may be accomplished in a number of
ways. First, developers may be provided with an embedded test console within the
developer portal. This console allows developers to freely play around with an API
and test out behavior in an interactive manner without having to write any code
(De, 2017; Patni, 2017). Another similar tool developers may be provided with is
called an API sandbox. This tool allows developers to make calls against a simulated
version of an API without any consequences, in a separate and virtual production
environment (Medjaoui et al., 2018). Additionally, sample code may be provided,
demonstrating the use of APIs and acting as a quick start guide (De, 2017).

3.5.3 Secure, Reliable and Flexible Communications

As described in Chapter 3.4, the main component that forms the heart of any API
management platform is called the API Gateway. Its main functions, which are de-
picted in Figure 3.6 below, constitute into enabling secure, flexible, and reliable com-
munication between the back-end services and apps (De, 2017). The various, most
common capabilities and features that are typically offered by API gateways are de-
scribed in further detail below.

FIGURE 3.6: Common capabilities, as well as the features they consist
of, as provided by the API Gateway.

Security

Considering that APIs provide access to valuable and protected data and assets, it
is paramount for APIs to be well-secured so that underlying assets are protected
from unauthenticated and unauthorized access (De, 2017). One method which may
be used to secure an API is the usage of an authentication method. Authentication
is the process of uniquely determining and validating the identity of a client (De,
2017). One method to authenticate clients is the usage of API keys, which are simple
identifiers of a caller (Vijayakumar, 2018). The API key is often also referred to as
an app key or client ID and are commonly issued via self-service capabilities in the
API developer portal for registered consuming applications (L. Weir, 2019). Another
simple authentication method is called HTTP authentication, where credentials are
provided by the caller in the HTTP header and validated against a Lightweight Di-
rectory Access Protocol (LDAP) server. Other more complex authentication methods

Chapter 3. Literature Review 29

exist, which are based on issuing client certificates or tokens as opposed to a user-
name and password (L. Weir, 2019).

A second method that may be used to secure an API is the usage of authorization
policies. Authorization refers to having the ability to verify whether a caller has ad-
equate rights to access a given resources, preceding authentication (L. Weir, 2019).
One of the most commonly used authorization protocols is the OAuth 2.0 proto-
col. OAuth 2.0 is a standard for delegating authorization for accessing resources via
HTTP (Patni, 2017). In order to do so, an access token which represents access rights
for a subset of data for a short period of time, is handed over to the application mak-
ing a call. When this access token expires, the calling application may automatically
refresh it by presenting a refresh token, which may be exchanged to get a new ac-
cess token with a renewed validity period (De, 2017). Authorization protocols are
often used in combination with encryption to ensure that the communication chan-
nel through which they are sent is secured. Encryption can be performed by using
the SSL or TLS protocols.

Another important security aspect is ensuring protection against threats and at-
tacks, considering that APIs open valuable data and assets outside the firewalls of
an organization (De, 2017). This vulnerability may result in hackers trying to at-
tack back-end systems by overloading them with high amounts of traffic through
Denial-of-Service (DoS) attacks. Such attacks could be protected against by, for ex-
ample, implementing a firewall in front of the API gateway as a first line of defence,
detecting and protecting against malicious threats (L. Weir, 2019). Another tech-
nique which may be used to protect from DoS attacks is the spike arrest mechanism,
which identifies an unexpected rise in API traffic and drops traffic exceeding the
pre-imposed limit. For public APIs, the likelihood of bad actors attempting attacks
using malicious content is high, but they can also occur to private and partner APIs
(De, 2017). Content-based attacks may take the form of malformed XML or JSON,
malicious scripts or SQL being sent as part of the message payload. Hence, mal-
formed request formats or malicious content within the payload should be able to
be detected, identified and protected against.

Traffic Management

Considering APIs are highly available services, they risk being flooded with large
loads of traffic and may crash or deliver poor performance as a result. Hence, they
must be safeguarded from excessive incoming traffic (Jacobson et al., 2011). This
practice is commonly referred to as traffic management. There are both business and
technical reasons for controlling the amount of traffic that an API handles. Business-
level traffic management is concerned with offering a different business value to
different classes of customers, since each customer class may be willing to pay dif-
ferently for access to the API (De, 2017). A common method through which this may
be achieved is the implementation of consumption quota. Consumption quota de-
fine the number of API calls that an app is allowed to make to the back-end over a
given time interval, which is typically expressed in the number of API calls that can
be accepted over the course of an hour, day, week or month (De, 2017; Jacobson et
al., 2011). Calls exceeding the quota limit may be throttled or halted, with the limit
depending on what customer class the caller is assigned to. These customer classes
may depend on the type of subscription (e.g. free or paid) or the type of business re-
lationship the caller has in relation to the API provider. Depending on these classes,

Chapter 3. Literature Review 30

the API provider may decide to prioritize traffic by processing calls made by cus-
tomers of a higher class. In the event where the consumption quota is exceeded,
the usage throttling mechanism may be utilized instead of fully halting calls made.
When triggered, this technique results in slowing down API calls and can help to
improve the overall performance and reduce impacts during peak hours (De, 2017).

As mentioned earlier, there also exist technical motives for managing traffic. This
traffic management perspective is called operational traffic management, which fo-
cuses on maximizing API uptime, performance and efficiently routing traffic. One
method with which this may be achieved is through the usage of caching. Caching
is a mechanism used to optimize performance by responding to requests with static
responses that are stored in-memory (De, 2017). When apps make requests on the
same URI, the cached response can be used to respond instead of forwarding those
requests to the back-end server, thus improving reponsiveness and performance (De,
2017; Vijayakumar, 2018). Another method with which incoming traffic may be man-
aged, is the usage of load balancing. Load balancing helps to distribute API traffic
to the back-end services, by routing it to the appropriate resource that is hosting the
service. Other additional traffic routing capabilities may be required, such as service
dispatching. This allows for selecting and mediating the correct back-end service
based on the specific resource the call is targeting (De, 2017; L. Weir, 2019). In some
cases, the API gateway may need to coordinate multiple calls to other services in
order to deliver a pre-defined process (L. Weir, 2019). Doing so helps in improving
the overall performance of the client by reducing latency introduced due to multiple
API calls (De, 2017).

Interface Translation

When creating an API with the goal of exposing data and services, API providers
need to ensure that the API interface is intuitive for developers to use. However,
the interface for the API is likely to differ from that of the back-end services that it
exposes (De, 2017). Because of this, the API gateway should be able to transform
the API’s interface to a form that the back-end can understand. In terms of formats,
the back-end might expect message payloads in SOAP or XML, which cannot be
easily consumer by the API consumer. Hence, these payloads should be converted
from one format to another, for example, from XML/SOAP to JSON (L. Weir, 2019).
Additionally, most back-end systems host services also provide a SOAP interface for
consumers, even though SOAP is not a protocol that is suitable for APIs to build
apps with (De, 2017). Hence, protocol transformation from SOAP to a more popular
protocol such as REST should be supported.

3.5.4 API Auditing, Logging and Analytics

Organizations need to have insight into their API program to justify and make the
right investments by understanding how their API is used, know who is using it,
and what value is being generated from it (De, 2017). When exposing an API as an
API provider, it is possible to collect a wide variety of operational and business data
through the API gateway. This data may be analyzed to guide future decisions and
answer a variety of questions. These include matters such as determining whether
interest in the API is increasing among the developer community, how many apps
utilize the API’s services and how well the API is performing in terms of response

Chapter 3. Literature Review 31

time and throughout (De, 2017). In order to formulate answers to these consider-
ations, analytics and monitoring should be performed, which are critical activities
from both the technical and business perspectives (Indrasiri & Siriwardena, 2018).
Various types of analytics and monitoring capabilities exist, which each have differ-
ent uses and are described below.

Activity Logging

Activity logging provides API providers with basic logging of access, consumption,
performance, and any exceptions in relation to their API (De, 2017). In order to do
so, information should be captured on the identity and location of callers by log-
ging client IP addresses, as well as the date and time when a request was received
and the response was sent (De, 2017). Additionally, performance metrics should be
captured and logged. These metrics may include error rates, types of errors, sys-
tem performance, latencies in request handling, and timeouts (Jacobson et al., 2011).
These metrics should be utilized to create a proper and holistic understanding of
how APIs are being used, by whom, when, and from where (L. Weir, 2019). Fur-
thermore, these metrics can be used to define alerts and notifications to ensure that
SLA agreements, such as availability, throughput, and response times, are not be-
ing breached (Jacobson et al., 2011; L. Weir, 2019). Additionally, metrics such as the
number of unique users, the number of registered developers, and the number of
apps built using the APIs, may be used to generate business value reports. These
reports gauge the monetary value associated with the API program and the revenue
generated from it (De, 2017). While some APIs may be directly monetized, many use
an indirect model for monetization instead.

Health Monitoring

Health monitoring, or service monitoring, is performed to ensure that the gateway
is up and running, as well as gaining real-time and historical-based insights about
individual services, their interactions with other services, and their overall perfor-
mance (Gadge & Kotwani, n.d.; L. Weir, 2019). This type of monitoring assists in
tracing API traffic and is typically carried out during day-to-day operations and
when debugging, identifying bottlenecks or troubleshooting services (Indrasiri &
Siriwardena, 2018; L. Weir, 2019). Additionally, statistics that track the latency for
back-end calls can be collected. These metrics may then be used as input to provide
reports on errors raised during the processing of incoming API traffic, or ones that
are received from the back-end (De, 2017).

3.6 Actors & Roles in API Management

Now that the API management discipline and the various activities and capabilities
it comprises have been elaborated upon, the various actors, roles and positions that
exist in the domain of API management are presented. Across literature on the topic,
four authors mention API teams, roles or actors as part of their work. The first of
which, Jacobson et al. (2011), mention 7 different roles, alongside a set of desired
qualifications and the tasks whom they are responsible for. Alternatively, L. Weir
(2019) mentions 11 roles, which are divided among two teams: API product teams
and platform teams. According to the author, roles that are assigned to the former
team are responsible for the individual APIs, and are therefore also responsible for
executing all of the activities involved in the API life cycle. Roles assigned to the

Chapter 3. Literature Review 32

latter team are responsible for the underlying platform on top of which the APIs
run. A third author, De (2017), discusses various roles, teams and committees in
relation to the API governance approach, which is discussed in further detail in the
next subsection of this chapter. In De’s work, 12 distinct roles are mentioned, which
range from business oriented roles, to technical roles, and roles related to develop-
ment methodologies such as SCRUM and DevOps. Additionally, the ’governance
committee’, as well as 5 different teams are mentioned. However, it is not made
clear what roles individual roles are assigned to these teams. The last of these four
authors that mention roles or actors involved in API management is Medjaoui et al.
(2018). In his work, this author 11 distinct roles, which are categorized into two dif-
ferent categories: business roles and technical roles.

In comparison to the work of other authors, it was observed that the roles men-
tioned as part of the work of Medjaoui et al. (2018) most accurately matches the
roles mentioned across literature. Additionally, the proposed categorization serves
as a suitable foundation to discuss and summarize the individual roles and actors
that were identified. As such, this structure was adhered to and complemented and
supplemented with descriptions and roles that match the aforementioned catego-
rization. The resulting roles are listed in Table 3.2 and Table 3.3 below, and are di-
vided among two categories. The first roles category are called business roles. The
individuals who take on these roles are primarily focused on the business side of the
APIs (Medjaoui et al., 2018). Oftentimes, they are charged with the responsibility
of speaking in the customer’s voice, and aligning the API with clear strategic goals.
The second set of roles consist of technical roles. These roles are focused on the tech-
nical details of implementing the API’s design, testing, deploying, and maintaining
it in a healthy, usable state throughout its active life (Medjaoui et al., 2018). Ordi-
narily, these roles are responsible for representing the voice of the IT department,
including advocating for secure and scalable implementations that can be properly
maintained over time.

TABLE 3.2: API Business Roles.

Role Description

API Product Owner/Manager The product owner or manager is the main point of contact for the API.
They are responsible for ensuring that the API has clear Objectives and
Key Results (OKRs) and Key Performance Indicators (KPIs), monitoring
the API and successfully guiding it through the full API lifecycle. Ad-
ditionally, this role is responsible for defining and describing what work
needs to be carried out on the API by other teams and to ensure the ex-
pected developer experience (design, onboarding and ongoing relation-
ships) meet the needs of the API consumers (De, 2017; Jacobson et al.,
2011; Medjaoui et al., 2018; L. Weir, 2019).

API Designer The API designer is responsible for all aspects of the design. This in-
cludes making sure the physical interface is functional, usable, and offers
a positive experience for developers. The designer also needs to make
sure the API helps the team to achieve the identified business OKRs. Of-
tentimes, the designer is the first line of contact for API consumers and
may be responsible for taking on the “voice of the consumer” when help-
ing the team make decisions about the look and feel of the API. Finally,
the designer may be called upon to make sure the overall design matches
established organization-wide style guidelines (Medjaoui et al., 2018).

API Technical Writer The API technical writer is responsible for writing the API documenta-
tion for all stakeholders connected with the API product. This includes
not just the API consumers, but also the internal team members as well
as other stakeholders from the business community. As a result, techni-
cal writers often work closely with the API designer and product owner
to make sure the documentation is accurate, up to date, and in keeping
with the organization’s design and style guidelines (Medjaoui et al., 2018;
L. Weir, 2019).

Continued on next page

Chapter 3. Literature Review 33

Table 3.2 - continued
Role Descriptions
API Evangelist The API evangelist is responsible for promoting and supporting the API

practice and culture within the organization, ensuring that all internal
developers using the API understand it and can accomplish their goals
with it. Evangelists are also responsible for listening to API consumers
and passing their feedback on to the rest of the product team. Evangelists
may also be responsible for creating samples, demos, training materials,
and other support activities in order to maximize the developer experi-
ence (Jacobson et al., 2011; Medjaoui et al., 2018; L. Weir, 2019).

Developer Relations The developer relations role, sometimes called the developer advocate or
DevRel role, is usually focused on external use of the API. Like the API
evangelists, DevRel staff are responsible for creating samples, demos,
training materials and listening to API consumers and helping turn their
feedback into fixes or features for the API team. However, unlike internal
evangelists, DevRels are also often tasked with “selling” the API product
to a wider audience, and as such may participate in customer onsites,
presales activities, and ongoing product support for key customers. Ad-
ditional duties may include speaking at public events, writing blog posts
or articles on how to use the product, as well as other brand-awareness
activities in order to help the team reach their stated business goals (Med-
jaoui et al., 2018; L. Weir, 2019).

Business Analyst The business analyst is a functional expert in the business domain that
the API relates to. Although, the product owner should be the domain
expert, in practice, they may require additional support. Architects, de-
velopers, and technical writers may need additional functional support,
and this role can therefore offload some of these activities from the prod-
uct owner so that they can focus on other value-adding activities. Fur-
thermore, the business analyst gathers the business requirements for API
enablement and identifies the services to be exposed as APIs (De, 2017;
L. Weir, 2019).

TABLE 3.3: API Technical Roles.

Role Description

Lead API Engineer The lead API engineer is the key point of contact for all the work re-
lated to the development, testing, monitoring, and deployment of the
API product. The API lead engineer is responsible for the technical de-
tails regarding building, deploying, and maintaining the API. The lead
engineer is the one with the responsibility to coordinate the other techni-
cal members of the team (De, 2017; Medjaoui et al., 2018).

API Architect The API architect is responsible for the technical architectural design de-
tails for the API itself, as well as ensuring that the API can easily interact
with required system resources, including APIs from other teams. It is
the responsibility of the API architect to advocate for the overall soft-
ware and system architecture of the entire organization. This includes
supporting security considerations, stability and reliability metrics, pro-
tocol and format selections, and other nonfunctional elements that have
been established for the organization’s software systems (De, 2017; Med-
jaoui et al., 2018; L. Weir, 2019).

Front-end Developer The frontend API developer (FE) is responsible for ensuring that the API
offers a quality consumer experience. This entails helping to implement
the company’s API catalog, developer portal, and any other activities
related to the frontend or consumer end of the API. Similarly to the de-
signer role on the business side, the FE advocates for API consumers, but
from a technical point of view (De, 2017; Medjaoui et al., 2018; L. Weir,
2019).

Back-end Developer The back-end developer (BE) is responsible for the details of implement-
ing the actual interface of the API, connecting it to any other services it
needs to complete its work, and faithfully executing on the vision of the
PM and API designer’s description of API’s functionality and technical
implementation. It is the responsibility of the BE to ensure that the API is
reliable, stable, and consistent once it is placed into production (De, 2017;
Medjaoui et al., 2018; L. Weir, 2019).

Test/QA Engineer The API test/QA (quality assurance) engineer is responsible for every-
thing related to validating the API design and testing its functionality,
safety, and stability. Typically, the test/QA role is charged with writing
(or helping the FE/BE write) the actual tests and making sure they run ef-
fectively and efficiently. Oftentimes, these tests go beyond simple bench
tests and behavior testing and includes ensuring that there are tests in
place for interoperability, scalability, security, and capacity (De, 2017; Ja-
cobson et al., 2011; Medjaoui et al., 2018).

Continued on next page

Chapter 3. Literature Review 34

Table 3.3 - continued
Role Descriptions
DevOps Engineer The DevOps role is responsible for every aspect of the building and de-

ployment of the API. This includes monitoring the API’s performance to
make sure it is in line with the stated technical KPIs and is properly con-
tributing to the business-level OKRs. Typically, this entails work on the
delivery pipeline tooling, managing the versioning schedule and sup-
porting any rollbacks of broken versions, if needed. The DevOps role is
also responsible for maintaining a dashboard showing real-time moni-
toring data as well as aiding in the review, diagnosis, and repair of any
problems identified while the API is in production (De, 2017; Medjaoui
et al., 2018).

3.7 API Governance

Now that the topic of API management has been described, including the most
common activities and capabilities it consists of, as well as the roles and actors in-
volved, the API governance approach may be introduced. API governance provides
a policy-driven approach that helps to enforce standards and checkpoints through-
out the API lifecycle, which has been elaborated upon in Section 3.5.1. The policies
driving governance are highly influenced by business objectives and goals, and may
broadly be categorized into design-time governance and runtime governance poli-
cies (Gadge & Kotwani, n.d.). Design-time governance policies includes matters
such as defining standards for API definitions, ensuring conformance to RESTful
API design guidelines, as well as guidelines and standards for interface documen-
tation, development and testing (De, 2017; Gadge & Kotwani, n.d.). Runtime gov-
ernance is mainly concerned with tracking the life cycle of an API through policies
related to routing, throttling, load balancing, rate limiting, as well as guidelines and
policies on monitoring, deployment and versioning strategies (De, 2017; Gadge &
Kotwani, n.d.). Generally speaking, standards and principles defined as part of API
governance provide API quality assurance, such as security, availability, scalability,
and reliability (De, 2017). Several phases can be discerned in relation to API gov-
ernance, encompassing activities, starting with the API proposal all the way to its
adoption, through requirements gathering, build and deploy, and operations during
general availability. A comprehensive framework describing the various phases the
API governance approach consists of is presented by De (2017), consisting of the fol-
lowing:

1. API proposal: During this first phase of API governance, a request for designing
a new API or requests towards changing an existing API are proposed by the
organization. There may be several reasons for doing so, including new busi-
ness agreements, changes in existing business agreements, or a new change
request being submitted to the API governance body.

2. Technical requirements gathering: Once the API proposal has been submitted, the
technical requirements are gathered so that the exact specifications for the API
may be created. In order to do so, API architects and business analysts work
together to compose API definitions. First however, several decisions must
be made, such as which API specification standard will be used and which
versioning approach will be adhered to.

3. Build and validate: After the API specification has been composed and all re-
quirements have been gathered, the development process commences. During
this phase, test scripts are created and APIs are validated for compliance with

Chapter 3. Literature Review 35

the composed API specification. Additionally, several design-related decisions
have to be made, such as what best practices and tools will be used during de-
velopment, and which testing approach should be utilized.

4. General availability: Once the API has been implemented and deployed, it needs
to be published to a platform such as the developer portal so that it may be
consumed. First however, commercial questions have to be answered, such as
which monetization model should be used. Additionally, considering that the
APIs may expose sensitive data to consumers, the terms and conditions for the
use of the APIs and the associated data as part of the SLA should be composed
by a legal team. This also includes defining the necessary steps that should be
taken in case of any SLA violations. After having been approved, the API may
be deployed and released for general availability. Once deployed, monitoring
has to be implemented in order to track performance and usage metrics.

5. Adoption: During this last phase of API governance, the API is adopted among
consumers whom start integrating it into their applications. In order to facil-
itate this, easy but secure signup and onboarding should be ensured for con-
sumers and their apps. Furthermore, monitoring should be utilized in order
to gain insights on the manner in which the API is used by consumers. Lastly,
strategies detailing the course of action that should be taken when new ver-
sions of the API are introduced should be formulated, so that consumers and
their applications are not negatively impacted.

3.8 Background

In this section, all of the existing frameworks, tools, models, reports and case stud-
ies that the authors of this work were able to identify and that are related to the
scope and goal of this study are summarized and evaluated. These artefacts are
classified into four categories, based on their characteristics and use cases. The first
of these categories consists of API management maturity assessment frameworks,
which bear the closest resemblance to the artefact this study seeks to design. The
second category comprises artefacts that are aimed towards evaluating and compar-
ing API management platforms or gateways with one another. Next, an advisory
report is presented, which is targeted towards assisting organizations with imple-
menting API management processes. The last category consists of artefacts that are
not publicly available, and are oftentimes produced on a commercial basis. Lastly,
this section concludes with a summarizing comparison matrix in which all discussed
artefacts are compared to one another, as well as to the artefact this study intends to
compose.

3.8.1 API Management Maturity Assessment Frameworks

In this section, two API management maturity assessment frameworks are discussed.
The goal of these maturity frameworks is to assist API providers with assessing the
degree of maturity corresponding to their API management-related business pro-
cesses. These processes are divided into several categories and maturity levels, so
that API providers may determine their degree of maturity depending on whether
they have implemented them.

Chapter 3. Literature Review 36

Accenture - API Management Suite API Maturity Model

Based on their experience with implementing API programs, Accenture Technology
Labs has developed an API Maturity Model (Tung, 2014). This model consists of 5
maturity levels, and is aimed towards helping organizations identify the maturity
stages their API is located in. The Accenture API Management Suite API Maturity
Model, authored by Tung (2014), was originally published in 2013, after which it was
improved and re-published in 2014. The latter Maturity Model is discussed in this
subsection, and may be utilized to explore the capabilities an organization requires
in order to unlock each stage to enable greater efficiency, agility, and scale. The
model comprises five stages, or maturity levels: 0. Ad-hoc; 1. Organize; 2. Tactical;
3. Critical; 4. Industrial. These maturity levels are mapped onto five distinct dimen-
sions, which detail which processes an organization should implement in their jour-
ney from API enablement to industrialization. In short, these dimensions comprise
the following:

1. Strategy and Governance: the API strategy determines the business objectives,
which includes ensuring developers operate in an efficient fashion. By sup-
porting strategy, governance is applied, resulting in a consistent approach for
defining, developing, publishing, supporting and deprecating APIs in a man-
ner that is well-structured and reliable for both API producers and consumers.

2. Architecture: at its core, the architecture supports the terms of service for the
API, whether a program guarantees any SLAs, bundles all users in a single
category, or offers distinct SLAs that may vary across apps, users, geographies,
and requests. This is accomplished through the implementation of capabilities
such as effective traffic and access management, as well as monitoring and
monetization.

3. Development Process: the development processes of an API focuses on combin-
ing and transforming existing back-end services to make them manageable for
the consuming developers, and requires its own standardized processes and
tools for development, testing, deployment, and promotion. In order for an
organization to increase its maturity in this dimension, it is suggested to auto-
mate and standardize processes regarding testing and security.

4. Developer Community : Tung (2014) argues that developers are key actors to-
wards realizing an API’s success, as well as increased efficiency, and promoting
innovation and direct monetization. Hence, organizations should foster their
developer community through collaboration and community management.

5. Optimization: Analytics play a critical role in ensuring the success of APIs, by
providing necessary insights which range from assessing value, to identifying
how to best improve performance. In order to achieve industrialized API an-
alytics, organizations must go beyond traditional trend reporting, and instead
focus on assessing real-time and predictive analytics.

Even though this maturity model fails to address certain core API management-
related processes and capabilities such as versioning, threat protection and lifecycle
management, it seems to be relatively complete in its entirety. However, its incom-
pleteness might be caused due to the fact that this model is relatively out-dated, and
has since been deprecated, judging from the observation that it is no longer available
on Accenture’s official website. Additionally, in part due to its industrial founda-
tion and commercial nature, it is unclear as to how the contents of this model have

Chapter 3. Literature Review 37

been populated. Despite this however, it provides organizations with useful and
platform-independent advice on how to increase their degree of maturity regarding
API management.

Endjin - API Maturity Matrix

Another framework that bears resemblance to the API management maturity as-
sessment tool or framework this study seeks to compose, is Endjin’s API Maturity
Matrix (Endjin, 2017). This maturity matrix is a tool which was developed to aid
business decision makers in assessing their organization’s ability to evolve towards
an API driven business model. Doing so is accomplished by assessing the organi-
zation’s degree of maturity (low, medium or high) in relation to a set of categories.
This assessment is performed by having the organization fill out their perceived de-
gree of maturity related to each category, based on which practical suggestions for
improvement are then provided.

While this maturity matrix comprises a selection of categories that are relevant
in the scope of API management such as governance, documentation and support,
it mainly focuses on strategies and commercial aspects. As a result, many API
management-related aspects such as traffic management and community manage-
ment are missing from the matrix, especially when, for instance, compared to the
earlier described maturity model by Accenture. However, it does provide organiza-
tions with clear suggestions for maturity improvement, but these suggestions rely
on the organization first making a self-assessment, which may be difficult for them
to do.

3.8.2 API Gateway & Management Platform Comparisons

This second category comprises artefacts that are aimed towards evaluating and
comparing API management platforms or gateways with one another. First, a frame-
work that consists of a whitepaper presenting various API management platform
requirements, paired with an evaluation matrix which details a set of evaluation
criteria that may be used to evaluate management platform vendors, is discussed.
Next, an academic paper which aims to compare API management features offered
by various API gateway providers with one another is discussed. Lastly, a whitepa-
per describing, among other things, essential API management platform capabilities
is dissected.

WSO2 - API Management Platform Technical Evaluation Framework

In 2015, WSO2 has published a whitepaper that describes digital business goals, out-
lines API oriented IT initiatives, and presents API management platform require-
ment categories (WSO2, 2015). Alongside this whitepaper, an evaluation matrix
spreadsheet is presented that details a set of evaluation criteria, which may be used
to evaluate API management platform vendors (Haddad, 2015). In illustrating the
discipline of API management, two types of APIs are discerned: naked and man-
aged APIs. A naked API is considered to be not monitored, managed, secured,
documented or accessible through a self-service subscription portal. On the other
hand, a managed API is thought to be actively advertised and subscribe-able, avail-
able alongside a published SLA, secured, authenticated, authorized, protected, as
well as being monitored and monetized using analytics. WSO2 (2015) goes on to

Chapter 3. Literature Review 38

argue that to move from naked to managed APIs, the API façade pattern should be
implemented, which enables teams to layer network-addressable endpoints, moni-
tor usage, enforce usage limits, manage traffic, and authorize consumers. According
to WSO2, an API management infrastructure should guide teams towards best prac-
tices with regards to six main focus areas, which are summarized in short below.

1. API design and implementation: APIs differ from back-end services by design,
and expose a RESTful and resource oriented facade that enforces security and
service policies. WSO2 (2015) states that the main activity categories API de-
sign and implementation is composed of include; (1) API design; (2) API façade
development; (3) Service level definition; (4) API Mediation; (4) API documentation;
(5) API testing.

2. API Security: According to WSO2 (2015), security is of paramount importance.
Oftentimes, API management platform security capabilities are shared with
gateways, firewalls, identity management, and access control components. WSO2
states that the main activity categories that should be offered by API manage-
ment platforms are; (1) Access control, authentication, and key management; (2)
Entitlement assertions; (3) Attack prevention; (4) Confidentiality, integrity, and pri-
vacy; (5) Identity management; (6) User management.

3. Publication and community engagement: WSO2 (2015) argues that by incorporat-
ing a collaboration space that encourages community participation and com-
munity management, API management platforms actively engage internal and
external developers. This is accomplished by utilizing this collaboration space
to establish a feedback channel between API consumers and providers. Ac-
cording to WSO2, API management platforms should increase API adoption
by; (1) Streamlining API publication and following DevOps best practices; (2) Engag-
ing API consumers and lowering API adoption barriers; (3) Actively managing API
developer communities; (4) Fostering a thriving, business-oriented API economy; (4)
Identity management; (5) Streamlining API DevOps publication tasks by integrating
API lifecycle activities with run-time infrastructure.

4. Monitoring and run-time management: According to WSO2, API management
platforms should incorporate monitoring and management capabilities, im-
plement operational best practices, and enforce Quality of Service (QoS) poli-
cies. An advanced API management platform should support; (1) Configura-
tion management; (2) Release management; (3) Patch management; (4) Service level
management.

5. API lifecycle, policy, and community governance: Considering the fact that API
governance is heavily influenced by IT business goals and objectives, leading
API management platforms often provide analytics that support the assess-
ment of IT business value (WSO2, 2015). To this end, an API management
platform should provide for the following governance related capabilities; (1)
Meta-data management; (2) Service level management; (3) Version management; (4)
Lifecycle management; (5) Usage management; (6) Portfolio management.

6. API analytics: According to WSO2, adoption and usage metrics should be uti-
lized to invest future development resources, plan API infrastructure scales,
and rationalize the API portfolio. Furthermore, using an API analytics dash-
board can aid teams in ascertaining development experience, validating secu-
rity and service level compliance and quantifying API brand value.

Chapter 3. Literature Review 39

As part of the evaluation matrix mentioned earlier, the six main focus areas de-
scribed above and the respective activity categories they comprise, are further sub-
divided into hundreds of individual processes and questions. As such, as an API
management assessment artefact, this matrix is considered to be very complete with
regards to its contents. However, from examining the matrix, it is unclear as to
whether organizations are supposed to answer these questions and subsequently
assign themselves scores based on their answers, or whether they are assisted by
WSO2 in this process. Furthermore, while a "weighted score" column is included in
the matrix, it is unclear what these weights are based on, or what formula is used
to calculate the weighted scores. Regardless, by answering these questions, organi-
zations may decide which API management platform is best suited to cater to their
needs. However, due to the fact that this whitepaper and matrix were written by
WSO2, which is a commercial API management platform provider, organizations
are steered towards selecting their platform. Additionally, regarding transparency,
it is unclear as to how the contents and structure of the matrix have been composed.

Gamez - API Gateway Feature Comparison

As part of their work, which seeks to analyze the API Gateway paradigm and pro-
pose a SLA-Driven solution in an API Gateway design, Gámez Díaz et al. (2015) have
compared API management features offered by various API gateway providers.
This collection of providers consists of 13 Gateways including: 3Scale, Akana API
Gateway, API Umbrella, Apiaxle, Apigee Edge, Axway API Gateway, Azure API Man-
agement, CA API Gateway, Mashape, Mashery API Gateway, Monarch API Manager, Re-
pose and WSO2 API Management. The aforementioned gateways were compared as
based on a set of features, including; (1) Security: comprising basic authentication,
advanced authentication and attacks protection; (2) Pricing plans support: consisting
of free tier, requests limit and enterprise plans; (3) Lifecycle Control: composed of API
versions and orchestration; (4) Other features: comprising open source, load balanc-
ing, cache, response conversion and documentation.

Confusingly, in their work, Gámez Díaz et al. (2015) use the terms ’API gateway’
and ’platform’ interchangeably. As a result, it is unclear whether the intention of
the authors was to analyze features offered by the API gateway component, which
is one of the main architectural components offered by the listed API management
platform providers, or features provided by the platforms as a whole. Aside from
the observation that the set of features the aforementioned API gateways are com-
pared on is very limited when compared to work on API management by authors
such as De (2017), discussion of the results presented in the matrix shown above
is scarce. However, Gámez Díaz et al. (2015) state that almost all studied API gate-
way services offer the same core functionality, which is requesting authorization and
quota establishment so that various billing plans may be created.

Broadcom - API Management Playbook

In order to promote their API management platform, called Layer7, Broadcom has
employed CA Technologies to compose an ’API Management Playbook’ (CA Tech-
nologies, 2019). This playbook is targeted towards helping its readers comprehend
the various reasons for API’s importance in business, the API lifecycle and its re-
lation to API management, the essential capabilities of an API management solu-
tion, and the features offered by the Layer7 platform. After having highlighted a

Chapter 3. Literature Review 40

set reasons for API’s importance, as well as the types of members an API manage-
ment team should be composed of, the API lifecycle is explained. According to CA
Technologies (2019), the API lifecycle comprises six stages: define, design, create, de-
ploy, promote and initiate. The API lifecycle is defined as "an approach that governs
the creation, deployment, promotion and optimization of APIs on the provisioning side, as
well as their acquisition and usage by API consumers". Next, an evaluation method is
presented which considers API management capabilities based on a collection of 13
use cases, or ’plays’. These use cases are broadly classified as having the goal of:
API integration and creation, security, mobile and internet of things (IoT) develop-
ment acceleration, and unlocking the value of data. Subsequently, these use case
categories are then mapped onto eight main categories of API management capabil-
ities. According to CA Technologies (2019), API management capabilities may best
be categorized into categories that comprise topics such as API design, runtime, pro-
tection, access control, ownership, development, intelligence and discovery. These
categories are then further sub-divided into a variety of capabilities.

While the presented collection of capabilities seems to be quite comprehensive,
capabilities such as version management, auditing and logging seem to be missing.
However, this playbook is effective in consulting organizations as to what API man-
agement solution is suitable in relation to their target use cases, which is the main
purpose of this document. Nevertheless, the presented definition and structure of
the API lifecycle, as well as the API management capability overview may be gener-
alized in a broader context. It is clear however, that even though this work presents
an useful overview of API management capabilities, this overview directly matches
the features offered by the Layer7 solution. As such, it may be concluded that the
main purpose of this work is to convince and attract potential customers to Broad-
com’s platform. Furthermore, due to the commercial nature of this document, it can
not be considered transparent in the sense that the source of the presented informa-
tion is not known.

3.8.3 API Management Advisory Reports

This artefact category comprises a consultancy report, which is aimed towards ad-
vising banks on how to implement API management practices.

Accenture - APIs: The Digital Glue

In addition to the maturity model described in Section 3.8.1, Accenture has pub-
lished a consultancy report in 2019, advising banks on how to implement API man-
agement (Lees, Mallick, Paar, Fontenay, & Pimakova, 2019). Even though this report
is specifically focused on the banking sector, and as a whole may thus be difficult
to generalize and applied to other sectors, it contains several frameworks, figures
and models that are related to this study. As such, relevant and interesting find-
ings from this report are presented below. Lees et al. (2019) argue that effective API
management for banks rests on four pillars: approach, technology, governance and
ecosystem management. These pillars are summarized in short below.

1. Approach: According to Lees et al. (2019), a business-driven approach is the
cornerstone of effective API management. In order to illustrate this, an API
adoption approach is presented, which comprises 4 phases; (1) Discover; (2)
Build; (3) Run and Evolve; (4) Socialize and Publish.

Chapter 3. Literature Review 41

2. Technology: Lees et al. (2019) argue that appropriate technology decisions are
essential to any effective API transformation program. A set of technological
factors may be discerned, including; (1) API Management Platforms: these plat-
forms are considered to be critical components of an API management struc-
ture, comprising a variety of features such as analytics, versioning and traffic
management; (2) API Catalog Management: Discoverability is considered to be
a key factor in allowing API reuse. This may be supported by a structured API
catalog, which makes APIs discoverable; (3) Monitoring: in order to perform
effective API management, Lees et al. (2019) state that a variety of monitoring
capabilities are required in order to track elements such as usage statistics, and
to identify whom is consuming APIs.

3. Governance: Lees et al. (2019) argue that strong governance and efficient pro-
cesses aid towards creating a framework for effective API architecture deliv-
ery. To this end, a multi-tiered governance structure is proposed, consisting
of three key teams; (1) Central Teams: teams that acts as a central design and
quality authority for all APIs that are developed across the organization; (2)
Business Unit Design Teams: teams that employ the guidelines and frameworks
that were established by the central team, and submit their designs to central
design authority, before commencing delivery. (3) Delivery Teams: small ded-
icated delivery teams, whom are supported by the business units and, based
on common frameworks and standards defined by the central teams, are able
to deliver the final API.

4. Ecosystem management: According to Lees et al. (2019), banks can no longer
solely rely upon their internal resources and capabilities, but instead should
collaborate and build networks. In order to do so, the following aspects should
be implemented: (1) Developer Portal: oftentimes, the developer portal is the
first line of communication for developers whom are interesting in using an
organization’s API; (2) Facilitate Engagement: among other things, facilitation
of user or designer-led events such as hackathons and sandboxing of dummy
APIs to test viability, may be utilized to increase innovation and provide ac-
cess to new revenue streams; (3) Monetization: in order to create new revenue
streams, organizations should work on developing appropriate monetization
models, such as "freemium" access, tiered pricing and revenue sharing.

As mentioned earlier, this report is specifically focused on the banking sector,
and as a whole may thus be difficult to generalize and apply to other sectors. How-
ever, the presented API management platform capability overview may be utilized
by organizations seeking to implement API management processes, or may aid them
in identifying API management platform capabilities that cater towards their needs.
Furthermore, considering the aforementioned pillars are described in great detail
and provide clear-cut guidelines for organizations to follow, this advisory report
may be beneficial to organizations wishing to implement API management. How-
ever, when compared to the earlier described maturity models and frameworks, it
may be difficult for organizations to self-assess their degree of maturity concerning
API management.

3.8.4 Non-Publicly Available Evaluation Frameworks & Case Studies

In addition to the models, frameworks and reports described earlier throughout this
chapter, a collection of frameworks, checklists and case studies exist that are not

Chapter 3. Literature Review 42

publicly available. Oftentimes, these are produced on a commercial basis, requiring
them to be purchased or require potential readers to sign up with the vendor, after
which they are vetted based on a set of characteristics. Two of such frameworks and
case studies were identified, which are described below.

Gartner - Guidance Framework for Evaluating API Management Solutions

The Guidance Framework for Evaluating API Management Solutions was published
by Gartner in 2019 (Gartner, 2019). Similarly to those published by WSO2 and CA
Technologies, this framework is aimed towards assisting technical professionals in
selecting an appropriate API management platform. Unfortunately, considering the
fact that this framework is exclusively commercially available, the authors of this
study were not able to review it in its entirety. However, the general outline and
structure of the framework is visible by reviewing the table of contents (Gartner,
2019). First, the framework uses the organization’s intended API management plat-
form use case and intended users as input. Next, commercially available API man-
agement platforms are evaluated on their offered capabilities and features concern-
ing deployment and operations, secure, reliable and flexible Communications, de-
veloper enablement, API lifecycle management, and monitoring. These feature and
capability categories are further sub-divided into a set of individual capabilities. In
addition, readers of the framework are provided with a series of risks and pitfalls
that should be avoided.

Interestingly, some of the capability category titles directly correspond to the
wording used by De (2017) for the API management platform capability categories
listed in Figure 3.4. For instance, part 2 of Gartner’s framework, which is titled
Evaluate Features for Secure, Reliable and Flexible Communications matches De’s Secure,
Reliable and Flexible Communications capability category. The same observation holds
true when comparing De’s Developer Enablement for APIs capability category with
Gartner’s Evaluate Capabilities That Enable Developers, which is a paraphrased variant
of De’s naming. Furthermore, a large portion of the individual capabilities Gartner’s
capability categories are composed of directly correspond to those of De (2017). For
instance, Gartner’s Evaluate Features for Observability and Monitoring category consists
of the activity logging, user auditing, business value reporting, contract manage-
ment and advanced analytics capabilities. This set of capabilities directly matches
the ordering and the capabilities De’s API Auditing, Logging and Analytics category
consists of, excluding the service level monitoring capability. Judging from these ob-
servations, it may be concluded that this framework published by Gartner (2019) is
grounded in literature, using De (2017)’s work on API management as a foundation.

Devoteam - API management at Liberty Global Inc

On their website, a Dutch company called Devoteam summarizes a case study in
which the implementation of an API management platform at a large organization,
"Liberty Global", is described (Devoteam, 2016). As part of this case study, the case
organization is described to initially have an API gateway implemented. An API
gateway is argued to be an incomplete solution when compared to an API manage-
ment platform. Furthermore, the organization required API management capabil-
ities such as developer and partner onboarding, lifecycle management, documen-
tation and testing, and analytics, which Devoteam (2016) does not consider to be a

Chapter 3. Literature Review 43

part of an API gateway.

In order to recommend an appropriate API management platform to the case
company as based on their needs, an "integration cookbook" was created, docu-
menting the principles and guidelines for the usage of the API management plat-
form and the different integration patterns. Unfortunately, similarly to the earlier
described framework by Gartner, this cookbook is not publicly accessible. However,
Devoteam (2016) mentions that it comprises policies that range from security poli-
cies, such as OAuth 2.0, OpenID Connect, basic authentication and IP whitelisting, to
operational policies and monitoring and auditing policies. Judging from this infor-
mation, it seems as though this cookbook primarily focuses on strategy, governance,
and API management vendor evaluation and comparison. Due to its commercial
nature however, it is unknown as to how this cookbook was created, whether it is
able to be used to assess an organization’s degree of maturity in regarding API man-
agement, or how complete it is.

3.8.5 Comparison Matrix

In this section, a comparison matrix is presented in which all related work described
throughout this chapter is compared to one another as well as the proposed artefact
this study seeks to produce. The characteristics and criteria used in comparing these
artefacts are largely based on the goal statement that guides this study, which was
presented in Section 1.2, as well as the evaluation criteria presented in Table 3.4.
These characteristics and comparison criteria are defined as follows:

• Type: the type of artefact that is described. This may include (focus area) ma-
turity models, (evaluation) matrices or frameworks with which API manage-
ment platforms are evaluated or compared, whitepapers, advisory reports, or
case studies.

• Missing contents: the degree to which the API management artefacts contain all
the (best) practices, capabilities and features API Management is comprised
of. The assessment of this criterion is performed by using the activities and
capabilities described in Chapter 3 as a benchmark.

• Evaluation method: the evaluation method utilized by the artefact. This may in-
clude maturity degrees as part of a maturity model, (weighted) scoring meth-
ods, or comparison of the capabilities offered by API management platforms
or gateways.

• Availability: the availability of the artefact. The artefact may either be publicly
available online, or commercially available by requiring it to be purchased or
by requiring potential readers to sign up with the vendor, after which they are
vetted based on a set of characteristics.

• Grounded in: the nature in which the contents of the artefact are grounded. This
may include a foundation in academic literature, or industry-based knowledge
and experience.

• Published in: the year in which the artefact has been published.

• Transparent: the degree of apparent transparency concerning the construction
and design of the artefact, from the perspective of the reader or consumer of

Chapter 3. Literature Review 44

the artefact. Aside from the degree to which the contents of the artefact are de-
scribed and elaborated upon, an artefact is considered to be transparent when
the standards, guidelines and design methodologies that were used in design-
ing and constructing the artefact are described.

• Platform-independent: the degree to which the artefact is independent of any
API management platform or gateway providers. An artefact is considered to
be so, when presented overviews, models and figures as part of the artefact
are able to be generalized across all possible API management platforms or
gateways.

TABLE 3.4: Comparison of all related work and study’s artefact,
based on a set of characteristics and evaluation criteria.

Framework Type Missing content Evaluation
Method

Availability Grounded
in

Published
in

Transparent Platform-
independent

Accenture API
Management
Suite

Maturity
Model

Versioning, threat
protection, autho-
rization

Maturity de-
grees

Public Industry 2014 No Yes

Endjin Maturity
Matrix

Maturity
Matrix

Lifecycle manage-
ment, dev. on-
boarding, traffic
management, in-
terface translation,
monitoring

Maturity de-
grees

Public Industry 2017 No Yes

WSO2 Platform
Evaluation

Whitepaper
& Eval-
uation
matrix

Dev. support Weighted
scores

Public Industry 2015 No Yes 1

Gámez Gateway
Comparison

Comparison
Matrix

Dev. onboarding &
support, authoriza-
tion, traffic manage-
ment, monitoring

Capability
comparison

Public Literature 2015 Yes Yes

Broadcom Play-
book

Whitepaper Version manage-
ment, interface
translation, logging

Capability
comparison

Public Industry 2019 No Yes1

Accenture Advi-
sory Report

Whitepaper Dev. support, inter-
face translation, log-
ging

Capability
comparison

Public Industry 2019 No Yes

Gartner Guid-
ance Framework

Evaluation
frame-
work

Unknown 2 Capability
comparison

Commercial Industry &
Literature

2019 No Yes

Devoteam Case
Study

Case
Study &
Cookbook

Unknown 2 Capability
comparison

Commercial Industry 2016 No Yes

Proposed
Framework
or Tool

TBD 3 None TBD 3 Public Industry &
Literature

2021 Yes Yes

1 Published by commercial API management platform provider.
2 Full contents unknown due to non-publicly available nature.
3 To be determined and described in Chapter 4.

Conforming with this study’s goal statement, the proposed API management
maturity assessment framework seeks to incorporate all positive qualities from the
related work discussed throughout this chapter. Furthermore, it aims to fulfill all
the criteria imposed above. In order to determine which artefact type is best suited
towards fulfilling this study’s goal, available design science artefacts will be com-
pared to one another. This process will be described in the next chapter of this thesis.
Furthermore, it will be ensured that the contents of the tool or framework are sat-
urated and complete, which is accomplished by the initial population of the frame-
work through an extensive systematic literature review, as well as expert evaluation
and validation through a case study. Doing so also ensures that the framework is

Chapter 3. Literature Review 45

grounded in both literature and industry, as opposed to the artefacts discussed in
this chapter. Furthermore, one of the most substantial value additions of the pro-
posed framework as opposed to other artefacts is the degree of transparency with re-
gards to its design and construction. With the exception of the work by Gámez Díaz
et al. (2015), all discussed artefacts lack in transparency. This is mostly caused due to
the fact that these artefacts were produced by companies that wish to safeguard the
standards, guidelines and design methods that were used, so that they may maintain
their competitive advantage. On the contrary, considering the fact that the artefact
this study seeks to construct is supported by an extensive thesis describing every
facet of its design, construction, evaluation and validation, full transparency is guar-
anteed for all its readers and users. Furthermore, this study’s framework will be
composed in such a way that it is API management platform-independent, publicly
available and technology-agnostic, ensuring that the largest possible target audience
may be reached. Lastly, it is ensured that the proposed framework or tool is recent,
considering this work has been written in 2021. This is of added value due to the
fact that the API management discipline is relatively new and rapidly evolving, and
a significant portion of the related artefacts under evaluation have not been pub-
lished within the past few years.

46

Chapter 4

Framework Design Tracing

In this chapter, the process of designing the API management assessment framework
is traced and described. First, an appropriate and suitable design science artifact that
aligns with this study’s goal statement is selected. Then, the construction of the first
version of the framework is elaborated upon.

4.1 Design Science Artifact Selection

In their work, Hevner and Chatterjee (2010) state that an artifact is a man-made ob-
ject, created to solve a specific problem, as opposed to naturally occurring objects.
Such an artifact must improve upon existing solutions to a problem, or otherwise
provide a first solution to the identified problem. IT artifacts, which are the end
product of any design science research project, are broadly categorized by Hevner
and Chatterjee (2010), and March and Smith (1995) into four categories, as can be
seen in Table 4.1 below.

TABLE 4.1: Design science artifact categories, as presented by Hevner
and Chatterjee (2010), and March and Smith (1995).

Category Description

Constructs Constructs or concepts form the vocabulary of a domain, and constitute a concep-
tualization that is used in describing problems within the domain and subsequently
specifying solutions to these problems (March & Smith, 1995). Constructs form the
specialized language and shared knowledge of a discipline or sub-discipline, and may
differ in terms of their degree of formalization.

Models Models are composed of sets of propositions or statements expressing relationships
among constructs (March & Smith, 1995). By capturing these constructs and the rela-
tionships among them, a model may capture the structure of reality in order to form
an abstraction or representation of it.

Methods A method is a set of steps, in the form of an algorithm or guideline, which is used
to perform a task (March & Smith, 1995). Methods are based on a set of underlying
constructs, and a representation of the solution space, in the form of a model.

Instantiations An instantiation is the realization of an artifact in its related environment (March
& Smith, 1995). Instantiations operationalize constructs, models, and methods, and
demonstrate their feasibility and effectiveness.

As mentioned before, the discipline of API management consists of a wide vari-
ety of processes, activities, and capabilities, which need to be distilled into a tool or
framework. In order to do so, it should consist of constructs so that the vocabulary
of the domain of API management may be properly represented and conceptual-
ized. In order to accommodate this, the usage of an artifact of the model or method
type is appropriate. This hypothesis is based on the fact that methods are; (1) sys-
tematic: delivering rules on how to act, and instructions on how to solve problems;
(2) goal-oriented: stipulating standards on how to proceed or act, to achieve a defined

Chapter 4. Framework Design Tracing 47

goal; and (3) repeatable: inter-subjectively practicable (Braun, Wortmann, Hafner, &
Winter, 2005; Mettler, 2011).

Models generally represent a formal description of aspects of the physical or
social reality, for the purpose of understanding and communicating (Mylopoulos,
1992). According to Mettler (2011), based on the notion of the representation used,
models may either be; (1) descriptive: giving an unprejudiced reproduction of some
aspects of reality; (2) explanatory: delivering a depiction of causal connections to
better understand reality; or (3) predictive: recommending an efficient solution state
of a future reality. In short, models describe the state of reality through relationships
among constructs, while methods focus on the specification of activities.

4.1.1 Maturity Models

There exist artifacts that, according to Mettler (2011), possess characteristics of both
of the two artifact types described above. These artifacts are called maturity models,
which show similarities to methods in the sense that they describe procedures which
may be adhered to in order to reach a higher level of maturity. Moreover, maturity
models are also regarded to match characteristics of the model artifact category, con-
sidering that they describe typical behaviour exhibited by a person or organisation
at a number of predefined levels of maturity for each of several factors of the area
under study.

Maturity models have been developed for organizations to use as an evaluative
and comparative basis for improvement, in order to derive an informed approach for
increasing the capability of a specific area within an organization (De Bruin, Rose-
mann, Freeze, & Kaulkarni, 2005). Moreover, maturity models have been designed
to assess the maturity of a specific domain based on a set of criteria, and are a proven
tool in the creation of collections of knowledge of practices and processes about
a particular domain (Becker et al., 2009). In this context, maturity refers to being
well equipped to fulfill a purpose, for example having a higher level of sophistica-
tion, capability, or availability of specific characteristics (Mettler, Rohner, & Winter,
2010). Maturity models consist of a sequence of maturity levels for a class of objects,
which typically include organizations or processes (Becker et al., 2009). The afore-
mentioned sequence represents an anticipated, desired, or typical evolution path of
these objects as discrete stages. Maturity models aim to guide an organization along
this path, starting from an initial state to maturity (Pöppelbuß & Röglinger, 2011).
This initial state of maturity may be characterized by the organization having little
capabilities with regards to the domain under investigation. On the contrary, orga-
nizations whose capabilities are of the highest maturity are located at the highest
stage. In order for an organization to progress along the evolution path, criteria and
characteristics relating to capabilities or process performance are included, which
need to be fulfilled to reach a particular maturity level (Becker et al., 2009). To ap-
praise an organization’s maturity, maturity models are commonly applied to assess
the as-is-situation regarding the given criteria, so that improvement measures may
be derived and prioritized (Iversen, Nielsen, & Norbjerg, 1999).

As De Bruin et al. (2005) and van Steenbergen et al. (2013) argue, the most well-
known maturity model within the field of Information Systems, is the Capability
Maturity Model (CMM) from the Software Engineering Institute (Paulk, Curtis, Chris-
sis, & Weber, 1993). Studies have shown that since its inception, the CMM has in-
spired the development of hundreds of subsequent maturity models (De Bruin et
al., 2005). These maturity models are aimed at a wide variety of domains and topics,
including for example, project management (Crawford et al., 2007), corporate data

Chapter 4. Framework Design Tracing 48

quality management (Hüner, Ofner, & Otto, 2009), service integration (Arsanjani &
Holley, 2006), and offshore sourcing (Carmel & Agarwal, 2006). Another example,
which has been discussed in Section 3.8, is the API management maturity model
(Tung, 2014).

4.1.2 Focus Area Maturity Models (FAMM)

A specific type of maturity model is the Focus Area Maturity model (FAMM) (van
Steenbergen et al., 2010, 2013), which is used to establish the maturity levels of an
organization in a specific functional domain. This functional domain is described by
the set of focus areas that constitute it (Jansen, 2020). Each focus area is composed
out of a set of capabilities. van Steenbergen et al. (2013) define capabilities as the abil-
ity to achieve a certain goal, making use of the available resources. These capabilities are
juxtaposed relative to one another in a maturity matrix, based on which a number
of maturity levels may be discerned (van Steenbergen et al., 2013). In order to es-
tablish an organization’s degree of maturity with regards to the functional domain,
the organization is asked to answer assessment questions linked to the capabilities
the maturity matrix consists of. Based on the results of this maturity assessment,
the organization is then guided towards incremental development of the domain,
through a set of improvement actions with regards to the (missing) capabilities (van
Steenbergen et al., 2013).

In his work, Jansen (2020) describes the development of a focus area maturity
model for the functional domain of software ecosystem governance. In doing so,
a fourth component in addition to focus areas, capabilities and maturity levels is
proposed: practices. This component may best be interpreted as the smallest build-
ing block the focus area maturity model consists of, which in the scope of software
ecosystem governance, Jansen (2020) defines as any practice that has the express goal to
change the position of the platform in the software ecosystem. Practices may depend on
one another, requiring the dependent practice to be implemented before the other
practice may be implemented. As a result of adding practices as an additional com-
ponent, an adapted meta-model for the focus area maturity model, as originally
introduced by van Steenbergen et al. (2013), is presented by Jansen (2020). This
meta-model is depicted in Figure 4.1 below.

Chapter 4. Framework Design Tracing 49

FIGURE 4.1: The adapted meta-model for focus area maturity models,
as presented by Jansen (2020).

Focus Area Maturity Model for API Management

As van Steenbergen et al. (2013) argue, when the goal of a study is to develop a func-
tional domain step by step, the utilization of the focus area maturity model is more
appropriate than ’traditional’ maturity models, because it allows for a more fine-
grained approach. This is caused due to the fact that most maturity models adopt
the five maturity level structure defined by the CMM. The FAMM on the other hand,
allows for an arbitrary amount of maturity levels to be distinguished. This charac-
teristic is the first reason for deciding upon utilizing the FAMM as a foundation
towards designing the API management assessment framework. As is evident from
the literature review presented in Chapter 3 and Figure 3.4, the field of API manage-
ment is very broad and extensive in terms of the (amount of) main- and sub-topics it
comprises. Because of this, it is likely that these topics will comprise of a large collec-
tion of processes and activities, exceeding the standard five maturity level structure
and thus calling for a non-fixed amount of maturity levels. This statement is further
supported by the observation that in Accenture’s maturity model (as described in
Section 3.8), multiple capabilities are assigned to maturity levels.

Furthermore, FAMMs allow for dependencies between capabilities to be defined
(van Steenbergen et al., 2013). There are many dependencies across API manage-
ment; for example, many capabilities regarding lifecycle management depend on
monitoring capabilities. Moreover, results from the previously conducted SLR (Math-
ijssen et al., 2020a) have shown that the field of API management consists of a
plethora of smaller, individual activities and processes that are well-suited to be cap-
tured in the form of practices and capabilities, as defined by Jansen (2020). Due to
this abundance of small, individual processes it is reasonable to assume that depen-
dencies among them will occur, in addition to those existing between capabilities.
As was mentioned in the previous subsection, Jansen (2020)’s adapted meta-model
also allows for dependencies between practices to be defined, making it well-suited

Chapter 4. Framework Design Tracing 50

to be utilized in structuring the functional domain of API management.
Moreover, the four capability categories shown in Figure 3.4 appear to be appro-

priate initial candidates to act as focus areas. As van Steenbergen et al. (2013) state,
with regards to theoretical foundation, the fact that the focus area maturity model
for a functional domain is assembled from its constituting focus areas, allows for
better theoretical grounding. This characteristic satisfies this work’s objective of en-
suring that the API management assessment framework is grounded in theory and
academics. Furthermore, the focus area maturity model is an appropriate artifact
in closing the gap between theory and practice, and thus is of value to practition-
ers. This statement is supported by the FAMM’s ability to represent information in
a managerial way (e.g. providing an overview of the domain, quick to scan, easy
to use), and is able to serve as a guideline or roadmap for practitioners to prioritize,
and incrementally develop and improve capabilities in a functional domain (Spruit
& Röling, 2014; van Steenbergen et al., 2013).

In conclusion, the decision is made to use Jansen (2020)’s adapted version of the
meta-model for FAMMs, as originally introduced by van Steenbergen et al. (2013),
to structure and design the API management assessment framework. This decision
is made due to the need for flexibility in the amount of maturity levels that may be
defined, as a consequence of the large amount of main- and sub-topics API man-
agement consists of. Additionally, Jansen (2020)’s meta-model allows for granular,
individual processes and activities to be captured in the form of practices, between
which dependencies may be defined. Lastly, FAMM’s ability to provide practitioner
with an overview of a domain, being easy to use and quick to scan, as well as allow-
ing practitioners to incrementally develop and improve capabilities, allows for the
existing gap between theory and practice in API management to be closed.

4.2 Constructing the API-m-FAMM

Now that the usage of the focus area maturity model as an artifact to capture the
functional domain of API management has been motivated, the API management
Focus Area Maturity Model is introduced: the API-m-FAMM. Following the exam-
ple of work conducted by Jansen (2020), a method for creating maturity models,
which was introduced by De Bruin et al. (2005), is utilized in constructing the API-
m-FAMM. As part of this method, six distinct development phases are discerned,
as shown in Figure 4.2. The application of these phases to the API-m-FAMM is de-
scribed in further detail in the following subsections and chapters.

4.2.1 Scope

The API-m-FAMM is targeted at the functional domain of API management. The
SLR summarized in Section 1.3 as well as the literature and related work review de-
scribed in Chapter 3 have shown that the API management domain is broad in terms
of the capabilities, activities, and processes it encompasses. As an initial delimita-
tion of the functional domain, the capability categories presented by De Bruin et al.
(2005) in Figure 3.4 is adhered to. Considering that a prerequisite for performing
API management as an activity, is for an organization to already have designed and
created an API (as per the API lifecycle, depicted in Figure 3.5), the actual design and
creation process of APIs itself is excluded from the API-m-FAMM. Furthermore, the

Chapter 4. Framework Design Tracing 51

FIGURE 4.2: Development phases (adapted from De Bruin et al.
(2005) for the API-m-FAMM, including input used for each phase,

as well as the chapters in which they are described.

design and creation process of APIs overlaps with the topic of software engineer-
ing and would lead to a dilution of the scope of the API-m-FAMM. For example,
this would result in the inclusion of practices related to development methodolo-
gies, such as Agile. However, the publish, maintain, and deprecate and retire stages
of the API lifecycle are included in the scope of the API-m-FAMM. This decision is
further verified during the expert interviews described in Chapter 5.1.1.

Secondly, the API-m-FAMM aims to support organizations that expose their API(s)
to third-party developers in their API management activities. As a result, manage-
ment of internal APIs (as per Figure 3.1) is excluded from the scope of the API-
m-FAMM, in contrast to management of partner and public APIs. This is a con-
sequence of the observation that capabilities such as developer enablement, secu-
rity and analytics are of lesser importance with regards to managing internal APIs,
considering that these APIs are exclusively used for internal app integration and
development. However, the API-m-FAMM may still prove to be useful for such
organizations wishing to incrementally improve upon capabilities such as lifecycle
management, as well as increasing internal performance of their API(s). In terms of
organization characteristics, we hypothesize that the API-m-FAMM will be of most
value to organizations that are newly entering the API economy and wish to set up a
successful API program, for example by exposing assets to third parties or by mak-
ing a previously internal API publicly available and accessible. The API-m-FAMM
aims to provide such organizations with a roadmap which they may use as a path
for incremental improvements with regards to their API management capabilities.
However, the API-m-FAMMM also seeks to assist mature organizations by provid-
ing them with more complex capabilities they might not yet have implemented.

Lastly, the API-m-FAMM seeks to provide practitioners with incremental capa-
bility improvements that are tool, technology, and platform-independent. For ex-
ample, there are many tools which organizations may utilize to implement moni-
toring, communication, and support capabilities. In the same vein, capabilities re-
garding traffic management or security, such as authentication, authorization and
threat protection, may be relatively straightforward to implement through the use
of commercially available gateway or management platform solutions. However,
some organizations may opt to develop these solutions in-house, or may not wish to
use such solutions for a variety of reasons. To ensure that the API-m-FAMM may be
generalized to both these types of organizations, comparisons between specific tools
or management platform solutions are excluded from the scope of the model.

Chapter 4. Framework Design Tracing 52

4.2.2 Design

The second phase in constructing the API-m-FAMM is concerned with the needs of
the intended audience and determining how these needs will be met. De Bruin et al.
(2005) states that the needs of the intended audience are reflected in why they seek to
apply the model, how the model can be applied to varying organizational structures,
who needs to be involved in applying the model, and what can be achieved through
application of the model.

• The ’why’ for the API-m-FAMM is that its main goal is to assist organizations
that (plan to) expose their APIs to third-party developers to assess and evalu-
ate their degree of maturity with regards to their API management capabilities.

• The ’how’ is that organizations can utilize the API-m-FAMM to assess their as-is
situation with regards to their API management capabilities, and then subse-
quently incrementally improve upon these capabilities by implementing prac-
tices that are of a higher maturity.

• The ’who’ involved in applying the API-m-FAMM may vary across organiza-
tions, depending on characteristics such as their size in terms of employees
involved in the API program, number of exposed APIs, and the degree of in-
coming traffic. For example, for a small organization that exposes one, mildly
popular API, it is likely that a small number of employees are familiar with
the API program and the activities involved in managing it. These employees
may then utilize the API-m-FAMM to assess the as-is situation, and then use
the model as a road map to incrementally implement capabilities and prac-
tices to reach a higher level of maturity. In contrast, a large organization that
exposes multiple, popular APIs that generate large loads of traffic, is likely to
employ multiple development teams, product owners and designers whom
are involved with the API program. In this case, it is unlikely that a solitary
employee or a small group of employees will be able to assess the current as-
is situation of the API program. Instead, information for this assessment will
have to be extracted through meetings with employees from varying teams
and backgrounds whom are involved in the various aspects of API manage-
ment, such as community engagement, implementing security measures, mon-
itoring capabilities, and lifecycle management. Alternatively, consultants with
a thorough understanding of API management and the API-m-FAMM may be
able to apply the model by conducting interviews with all relevant stakehold-
ers involved in the organization’s API program.

• The ’what’ that can be achieved through the application of the API-m-FAMM is
an insight into the current maturity of an organization with regards to its API
management capabilities, as well as a path to incremental implementation and
improvement of more mature, specific practices.

4.2.3 Populate

Now that the scope and design of the API-m-FAMM is described, the content of the
model must be decided upon. In this phase, it is necessary to identify what needs
to be measured in the maturity assessment and how this can be measured (De Bruin
et al., 2005). The goal is to attain the domain components, sub-components and pro-
cesses the functional domain of API management consists of, which must be cap-
tured in the form of focus areas, capabilities, and practices. This process and the

Chapter 4. Framework Design Tracing 53

resulting evolution of the API-m-FAMM as a whole and the focus areas and capa-
bilities it is composed of is depicted in Figure 4.3. The version numbers used in this
figure and the following subsections are used to describe the steps that were taken
in developing the API-m-FAMM. Please note that these version numbers are not
intended to imply that these versions are functional in any way, and that they are
exclusively used to illustrate the evolution path of the API-m-FAMM. Furthermore,
because of their abundance, only the most fundamental changes that carried over to
the first version of the API-m-FAMM are discussed in the following subsections.

FIGURE 4.3: Evolution path of the API-m-FAMM towards its first ver-
sion. The blue rectangles represent focus areas, while the grey squares

represent the amount of capabilities they comprise.

API-m-FAMM v0.1

As a first step towards populating the API-m-FAMM, a top-down approach is taken,
which entails adopting the structure shown in Figure 3.4. This involves converting
the lifecycle management, developer enablement, secure communications, and API
auditing, logging & analytics capability categories as presented by De (2017), as well

Chapter 4. Framework Design Tracing 54

as the respective features they comprise, into four focus areas and a set of capabili-
ties. Individual activities identified in De’s work are then converted into practices,
which are then categorized and assigned to the aforementioned capabilities.

API-m-FAMM v0.2

This initial population and structure of the API-m-FAMM was then discussed ex-
tensively in a meeting with the author and two supervisors of this study. This ses-
sion lead to the removal of a set of duplicate or redundant practices and capabili-
ties, as well as to the conversion of some capabilities to practices, and vice-versa.
Additionally, this categorization session resulted in many practices being moved to
other capabilities, as well as some capabilities being relocated to other focus areas
than those they were originally components of. This categorization process was con-
ducted using Google Drawings as a tool. All focus areas, capabilities, and practices are
represented as differently colored building blocks, accompanied by descriptions as
encountered in academic literature. These were then discussed, and dragged-and-
dropped to form the desired structure. Considering that the researchers were not
able to meet in person due to the COVID-19 pandemic, this approach is taken as an
alternative to the Card Sorting technique. Card sorting is a technique where individ-
uals arrange cards representing key concepts to structure and discern relationships
between concepts (Nielsen, 1995).

Now that the structure and foundation of the API-m-FAMM has been decided
upon, the contents of the model are further populated with practices and capabil-
ities. Following De Bruin et al. (2005)’s suggestion that this may best be achieved
through an extensive literature review, this was accomplished by conducting a Sys-
tematic Literature Review (SLR), which is summarized in Section 1.3 and is de-
scribed in detail in a separate article (Mathijssen et al., 2020a). This SLR resulted
in the collection of 43 papers related to API management. Among this body of lit-
erature, 32 papers were found to contain features, activities or processes related to
API Management. These were extracted in the form of focus areas, capabilities, and
practices, as defined as part of the meta-model in Figure 4.1. In the scope of API
management, practices were defined as any practice that has the express goal to im-
prove, encourage and manage the usage of APIs. Moreover, capabilities were defined as
the ability to achieve a certain goal related to API Management, through the execution of
two or more interrelated practices. The aforementioned extraction process yielded 114
practices and 39 capabilities. These practices and capabilities were used to further
populate the API-m-FAMM. This was accomplished through a second categoriza-
tion session. Similarly to the previous session, this resulted in the re-location of
some practices and capabilities. Moreover, capabilities were added to accommodate
newly added practices, such as encryption.

The re-location of practices and capabilities was primarily driven by the deci-
sion to split the security & communication focus area up into two separate focus areas:
security and communication. This decision was made because security was found
to be an substantial and integral topic of API management in itself. Moreover, it
was decided that the communication focus area, which was later renamed to per-
formance, comprises capabilities such as service routing that are unrelated to security.
Furthermore, the decision was made to split the auditing & analytics focus area up
into technical management, which was later renamed to monitoring, and business-
side, which was later renamed to commercial. This was done due to the difference in

Chapter 4. Framework Design Tracing 55

nature between capabilities such as monetization and analytics, which were originally
grouped together. This difference was further compounded by the decision to split
the traffic management capability into two separate capabilities, with one capturing
the business-level aspect of this capability and the other encompassing operational
aspects. The former capability was then moved to the new commercial focus area
along with the monetization capability, while the latter was moved to the perfor-
mance focus area.

API-m-FAMM v0.3

After the second categorization session, it was ultimately decided that more infor-
mation was needed to determine whether practices and capabilities were suited to be
included in the model with regards to their scope and relevance. In order to resolve
this, the collection of practices and capabilities is verified by using information gath-
ered from grey literature, which includes white papers, online blog posts, websites,
commercial API management platform documentation and third-party tooling. Do-
ing so resulted in the following changes made with regards to the contents of the
API-m-FAMM:

• Removal of several practices that were found to be irrelevant, redundant, or
too granular. For example, filtering spam calls, which was originally uncovered
as part of the SLR, was found to be redundant as this practice is already cov-
ered by practices such as DoS protection and rate limiting. Consequently, such
practices were removed.

• Addition of several practices that were newly identified. For example, predictive
analytics was found to be a practice that is offered by multiple commercial API
management platform providers. Similarly, including change logs was found to
be a practice that is recommended by practitioners as a best practice when up-
dating APIs. Consequently, such practices were added to the API-m-FAMM.

• Merging of several practices that were found to be irrelevant, redundant, or
too granular. For example, practices that were originally uncovered through
the SLR, such as email-based support, phone-based support, and form-based sup-
port were found to be redundant, as no significant difference with regards to
their maturity may be discerned among these practices. Consequently, these
practices were merged into one practice: establish communication channel.

• Splitting of practices that were found to be compounded by practices that were
thought to warrant separate, individual practices. For example, the black or
whitelist IP addresses was split up into the blacklist IP addresses and whitelist IP
addresses practices because these were found to be relevant practices on their
own. Additionally, Consequently, these practices were merged into one prac-
tice: establish communication channel.

• Relocation of practices to different capabilities than those they were originally
assigned to. For example, the Oauth2.0 authorization practice was moved from
the authentication capability to the newly introduced authorization capability as
Oauth is considered to be an authorization protocol.

• Renaming of several practices, as well as updating descriptions and formula-
tion of practice descriptions that were previously missing or incomplete. For

Chapter 4. Framework Design Tracing 56

example, the provide code samples practice was renamed to provide FAQ with code
samples because it was found that these two practices often go hand in hand.
Additionally, this practice’s description was updated.

• Identification of dependencies among practices, either among practices within
the same capabilities or among practices across different capabilities or focus
areas. Some dependencies were found to be relatively straightforward, such as
the multiple API versioning strategy practice depending on the implementation
of the maintain multiple APIs practice. However, dependencies between prac-
tices belonging to different capabilities such as quota management depending
on rate limiting or rate throttling were also identified.

• Arrangement of practices based on their interrelated maturity with regards to
the other practices in the capability they are assigned to. At this point in
time, this was performed on a mostly subjective and empirical basis, and thus
should be regarded as a first attempt to discern practices with regards to their
relative maturity.

• Formulation of implementation conditions corresponding to each practice, which
are aimed at providing practitioners with an overview of the necessary condi-
tions that must be met before a practice may be marked as implemented.

• Attachment of the role of practitioners (as presented in Tables 3.2 and 3.3) typ-
ically involved in implementing each individual practice. However, it should
be noted that these roles are merely meant to act as indicators, as naming con-
ventions across organizations may differ and are often domain specific.

API-m-FAMM v0.4

After having validated the practices and capabilities contained in the API-m-FAMM
through grey literature, a discussion session was conducted among the researcher
and supervisors as a means to validate the contents of the model. This session re-
sulted in some practices being rearranged with regards to their level of maturity,
as well as some being removed or merged. The amount of practices and capabilities
that were added, removed, merged, split, relocated or renamed as a result of the grey
literature validation process and the aforementioned discussion session are shown
in Table 4.2 below. However, it should be noted that some practices that were added
as a result of the grey literature verification process were later removed as a result
of the discussion session. As such, numbers corresponding to the added and removed
operations presented in Table 4.2 are slightly inflated.

TABLE 4.2: Number of practices and capabilities added, removed,
merged, split, relocated or renamed as a result of the grey literature

validation process and the discussion session.

Component Added Removed Merged Split Relocated Renamed

Practice 17 27 39 4 12 93
Capability 1 1 1 0 1 2

Chapter 4. Framework Design Tracing 57

API-m-FAMM v1.0

The population process outlined throughout this subsection resulted in the first ver-
sion of the API-m-FAMM. In this stage of the design process, the model is grounded
in academic literature, and is verified and supplemented by using information gath-
ered from grey literature, such as white papers, online blog posts, websites, commer-
cial API management platform documentation and third-party tooling. As a result
of these activities, the initial body of 114 practices and 39 capabilities that was ex-
tracted as a result of the SLR is refined and narrowed down to 87 practices and 23
capabilities, which are divided among six focus areas. Due to their size, these focus
areas, capabilities, and practices are not described in detail at this point in this work.
Instead, the contents of this first version of the API-m-FAMM are elaborated upon
in a separate document (Mathijssen et al., 2020b). However, the general structure of
the API-m-FAMM is presented in Figure 4.4. As shown, each individual practice is
assigned to a maturity level within its respective capability. Additionally, it should
be noted that practices can not depend on practices as part of another capability that
have a higher maturity level. For example, practice 1.4.4 is dependant on the imple-
mentation of practice 1.2.3, resulting in a higher maturity level being assigned to the
former of these practices.

Figure 4.4 also shows that at this stage, 17 practices were added in addition to
those extracted through the SLR. These practices were identified in the grey liter-
ature. Such practices were encountered multiple times across sources, and were
deemed to be relevant for inclusion. However, it should be noted that the number of
practices that were added may appear to be high when examining Figure 4.4, con-
sidering that the practices that were removed are not shown. Furthermore, 14 new
practices were introduced as a result of merging 39 former practices, as shown in
Table 4.2 and Figure 4.4. Additionally, 7 new capabilities were introduced as a result
of the categorization and discussion sessions, in addition to those identified through
the SLR. This was done to accommodate the addition and relocation of practices.
Moreover, descriptions that are based on information gathered from grey literature
were formulated for 18 practices for which adequate descriptions were not able to be
identified in academic literature. Lastly, 6 practices are accompanied by descriptions
that were formulated by the researchers themselves, as based on empirical knowl-
edge. Even though suitable descriptions could not be identified for these practices in
academic literature or through grey literature, they were included in this version of
the API-m-FAMM because they were thought to be relevant for practitioners. This
suspicion is tested through expert interviews (Chapter 5 and case studies (Chapter
6, which are part of the next phase in constructing the API-m-FAMM.

Chapter 4. Framework Design Tracing 58

FIGURE 4.4: The first version of the API-m-FAMM and the focus
areas, capabilities, and practices it consists of. Additionally, it is
shown which capabilities and practices were newly introduced be-
tween API-m-FAMM v0.2 and v1.0, as well as for which practices de-
scriptions were formulated based on grey literature. Please consult
the legend on the top left-hand side of the figure for more informa-

tion regarding the differently shaped and/or colored components.

59

Chapter 5

Evaluating the API-m-FAMM

Now that the API-m-FAMM has been populated, it is ready to be evaluated. In or-
der to do so, De Bruin et al. (2005) state that it is important to test both the construct
of the model, as well as the model instruments for validity, reliability and general-
isability. Construct validity is represented by face and content validity, the former
of which is measured by assessing to what degree translation of the constructs have
been achieved. De Bruin et al. (2005) argue that this may best be accomplished dur-
ing population of the model, through tools such as focus groups and interviews. In
the case of the API-m-FAMM, this is done in the form of categorization and discus-
sion sessions in which all researchers were involved, as well as additional bi-weekly
meetings with one of this work’s supervisors to ensure inter-rater agreement. Ac-
cording to De Bruin et al. (2005), face validity may be achieved through the selection
of complementary population methods. This is accomplished through the means
of grey literature, as is described in the previous subsection and shown in Figure
4.3. Content validity is measured by assessing the completeness of the domain rep-
resentation. De Bruin et al. (2005) suggest that the extent of the literature review
conducted and breadth of the domain covered provide a solid measure with regards
to content validity. For the API-m-FAMM, an extensive systematic literature review
and grey literature is used to ensure content validity.

5.1 Test

In order to further evaluate the API-m-FAMM’s construct and content validity, two
evaluation cycles are conducted, as is depicted in Figure 5.1. This evaluation is done
through expert interviews, with experts being selected based on the criteria outlined
in Chapter 2.2.4. The first evaluation cycle, which is described in Chapter 5.1.1, con-
sists of 11 semi-structured interviews that are conducted with 9 different experts,
with the main goal of collecting suggestions for addition, removal, or relocation of
practices and capabilities. Furthermore, the first version of the API-m-FAMM is
evaluated in terms of its completeness, operational feasibility, ease of use, usefulness, and
effectiveness during this first cycle. The second evaluation cycle, which is described in
Chapter 5.1.2, consists of 3 unstructured interviews with experts that are deemed to
have the broadest knowledge base with regards to API management. These experts
are selected from the sample size of 9 experts that were involved in the first evalu-
ation cycle. This second evaluation cycle is conducted in order to evaluate whether
the way in which suggestions for changes that were made by experts during the first
cycle were interpreted correctly.

Chapter 5. Evaluating the API-m-FAMM 60

FIGURE 5.1: Overview of the expert selection process, as well as the
cycles that are conducted in evaluating the API-m-FAMM. Addition-
ally, it is shown which versions of the API-m-FAMM is used as input
for interviews, as well as the versions that are produced as a result.

5.1.1 First Evaluation Cycle

In order to further evaluate the API-m-FAMM’s construct and content validity, a
series of expert interviews are conducted. As is described in Chapter 2.2.4, these
interviews are aimed at evaluating the first version of the API-m-FAMM based on
a set of evaluation criteria, the first of which being completeness. During interviews,
this criterion is measured by a set of open questions. These questions are displayed
in the ’content evaluation phase’ section of the interview protocol, which may be
reviewed in Appendix B. In addition to being measured to a more thorough extent
as part of the case study described in Chapter 6, the operational feasibility, ease of use,
usefulness, and effectiveness criteria are also evaluated during interviews. These crite-
ria are measured with a set of likert scale questions, which are listed in the ’closing
phase’ section of the aforementioned interview protocol. Answers given in response
to these questions are discussed in Chapter 5.1.1 and shown in Table 5.3.

As can be seen in Table 5.1, interviews are conducted with 9 experts. Summaries
of these interviews as well as the experts they were conducted with may be found
in Appendix C. These experts are selected as based on the selection criteria outlined
in Chapter 2.2.4. Based on an interviewee’s knowledge regarding the six focus ar-
eas the API-m-FAMM consists of, which is measured through the survey shown in
Appendix B, one or two focus areas are selected for evaluation. Focus areas are
evaluated through 11 interviews, which result in each focus area being evaluated
three times. During these interviews, which are semi-structured in nature, the API-
m-FAMM in its entirety is first presented to the expert. Next, the focus area that is
selected for evaluation and each capability it comprises is described. Then, all prac-
tices these capabilities consist of are elaborated upon. For each capability, experts

Chapter 5. Evaluating the API-m-FAMM 61

are asked whether they are familiar with it and whether they believe it is assigned
to the correct focus area. Similarly, experts are asked whether they are familiar with
each practice, and whether they believe it is assigned to the correct capability. Addi-
tionally, they are asked whether they can identify any dependencies with regards to
the implementation of other practices. After having answered these questions for a
capability and the practices it comprises, experts are asked to rank practices in terms
of their perceived maturity and complexity for each capability. This ranking exercise
is performed in Google Drawing by using the same card sorting technique that was
used to initially structure the API-m-FAMM, as explained in Section 4.2.3. In order
to illustrate this ranking exercise, the maturity levels of practices belonging to the
Logging capability as perceived by three experts is shown in Figure 5.2.

FIGURE 5.2: Assigned maturity levels corresponding to the practices
belonging to the logging capability, as perceived by three experts,
placed along an ordinal scale ranging from least mature to most ma-

ture.

In the event where an expert suggested the addition of a new practice, this prac-
tice was added. The expert was then asked to rank this new practice in terms of its
perceived maturity alongside the already existing practices. For example, it can be
seen in Figure 5.2 that the Application Logging practice was suggested to be added by
Engineer during the third interview that was focused on evaluating the Monitoring
focus area. Furthermore, the newly suggested practice was discussed in subsequent
interviews that were focused on the same focus area the practice was suggested to
be assigned to. Similarly, upon suggesting the removal of a practice, this practice
was then excluded from the ranking exercise and the suggestion for removal was
discussed in subsequent interviews.

Interview Results (API-m-FAMM v1.1)

As was mentioned earlier, 11 expert interviews were conducted. During these inter-
views, many additions and changes in terms of the API-m-FAMM’s structure and
contents were suggested by experts, whom were encouraged to elaborate on their
motivation regarding these suggestions. As a result of transcribing and processing
the recordings of all interviews, numerous suggestions that were made by experts
to either add, remove, merge, split, relocate, or rename several focus areas, capa-
bilities, and practices, are compiled. The amount in which these suggestions for
changes occurred are shown in Table 5.2 below, as grouped by the type of suggested

Chapter 5. Evaluating the API-m-FAMM 62

TABLE 5.1: Interviewees and the current role they fulfill within their
organization, as well as the years of experience they have with either
consuming, developing, integrating, providing,versioning, monitor-
ing or managing APIs. Additionally, it is shown which focus areas
were discussed with interviewees, as well as the duration of the in-

terviews.

Interviewee Experience Hours Community Security Lifecycle Monitoring Performance Commercial

API Evangelist 10+ 1 ! !
CEOA 10+ 1.5 !
CEOB 10+ 5.5 ! ! !
Engineer 10+ 1 ! !
IT Consultant 10+ 3.5 ! ! ! !
Product Manager 6 3 !
Lead EngineerA 10+ 1 ! !
Lead EngineerB 10+ 1 ! !
Lead EngineerC 5 1.5 !

Total N/A 19 3 3 3 3 3 3

change as well as the type of component they apply to. Additionally, these changes
are visually represented in their entirety in Figure 5.3, along with the number of ex-
perts that suggested for a specific change to be made. However, it should be noted
that this is an intermediary version of the API-m-FAMM that is made with the sole
purpose of representing all suggested changes in a visual manner, so that it may be
used as input for future discussion sessions. These sessions are described in the next
subsection, and are aimed at interpreting and processing the suggestions. Further-
more, API-m-FAMM v1.1 comprises all focus areas, capabilities, and practices that
are contained in API-m-FAMM v1.0. These components are marked with either an
uninterrupted border that is colored black, orange, or red, or a dashed border that is
colored blue or purple. Additionally, API-m-FAMM v1.1 also incorporates all sug-
gestions that were made for the addition for new practices, capabilities, and focus
areas. These are marked with an uninterrupted green border.

Evidently, the number of practices that were suggested to be added is high. How-
ever, it should be noted that while a large part of these practices were explicitly men-
tioned by experts, some were also indirectly extracted from transcripts as a result
of comments the expert had made. Additionally, no suggestions are rejected at this
point, hence all suggestions that were made by experts are taken into account and in-
corporated into Table 5.2 and Figure 5.3. The process of extracting suggestions from
the interview transcripts was purposely done in an inclusive manner. This decision
is made to ensure that all the different viewpoints and opinions voiced by experts
are considered as part of future discussions. Furthermore, the researchers are of the
opinion that the high amount of suggestions for addition of practices highlights the
added value and importance of conducting expert interviews in the scope of this
research. Considering that the version of the API-m-FAMM that was used as input
for the interviews is exclusively based on findings from academic literature and grey
literature, the fact that a large amount of practices was uncovered through expert in-
terviews aids in adequately supplementing the model with industry-based knowl-
edge. This is necessary to ensure that this research’s objective is achieved, which is
to construct an API management maturity assessment framework that is grounded
in both literature and industry. Furthermore, the quality of the API-m-FAMM is not
negatively affected by including all suggestions made by experts at this point in the
development process. All suggestions are extensively analyzed and discussed (as is
described in the next subsection) by the researchers, as well as being evaluated dur-
ing the second evaluation cycle and case studies, before being included in the final

Chapter 5. Evaluating the API-m-FAMM 63

version of the model.

TABLE 5.2: Number of practices, capabilities, and focus areas that
were suggested to be added, removed, merged, split, relocated or re-

named by experts during interviews.

Component Added Removed Merged Split Relocated Renamed

Practice 50 5 3 3 9 3
Capability 7 0 0 2 2 2
Focus Area 1 0 0 0 0 3

Changes and Decisions Made (API-m-FAMM v1.2)

After having compiled all suggestions made by experts, six extensive discussion ses-
sions are held among all researchers to analyze, discuss, and interpret them. Dur-
ing each session, one focus area is selected to be discussed. All suggested changes
to either the focus area itself, or the capabilities or practices it consists of are then
analyzed and interpreted through the help of the transcribed arguments that were
provided by experts during the interviews. As a result, numerous modifications
are made to the API-m-FAMM, which are visualized in its entirety in Figure 5.4.
Additionally, some fundamental decisions are made with regards to the scope and
contents of the API-m-FAMM.

• Firstly, it was decided that all practices that are contained in the model should
be implementable without the usage of an API management platform. This de-
cision was made due to several reasons. First of all, it was found that among
the organizations that the experts that were consulted are employed at, only
a small portion actively utilizes a third party platform to manage their API(s).
When asked, experts belonging to the category that have not incorporated an
API management platform into their organizations cited arguments such as
wanting to avoid vendor lock-in, high costs, or simply not having a need for
many of the functionalities provided by such management platforms. Often-
times, the latter argument was tied to the organization currently exclusively
using internal APIs, thus removing the need for using a management platform
to manage and expose any partner or public APIs altogether. Considering that
it may reasonably be hypothesized that these arguments may likely also apply
to other organizations wishing to consult the API-m-FAMM to evaluate and
improve upon their API management related practices, any practices or capa-
bilities that were found to be directly tied to the usage of an API management
platform were removed from the model. For example, this was the case for the
Visual Data Mapping practice, which is exclusively provided by the Axway API
management platform 1, as well as the practices corresponding to the newly
suggested Error Handling capability, which are implementable through the use
of the Apigee platform 2.

An additional reason for excluding such capabilities and practices is that they
are likely to evolve throughout the coming years, which would in turn require
the API-m-FAMM to be updated as well. In order to prevent this, the API-m-
FAMM and the practices it comprises should be platform-independent. Lastly,

1https://www.axway.com/en/products/api-management
2https://cloud.google.com/apigee/api-management?hl=nl

Chapter 5. Evaluating the API-m-FAMM 64

the purpose of the API-m-FAMM is not to guide practitioners in selecting an
appropriate commercial API management platform for their organization. In-
stead, the API-m-FAMM aims to guide organizations in assessing and evalu-
ating their current maturity in terms of those processes that are considered to
be best-practices and are at the core of API management, so that they may then
develop a strategy towards implementing practices that are currently not im-
plemented and desirable in further maturing the organization in terms of API
management.

• Secondly, many practices were deemed to be too granular, specific, or irrel-
evant to be included. Consequently, such practices were either removed, or
merged into a practice that is composed of these smaller practices. An exam-
ple of practices that were found to be too granular include newly suggested
practices such as Event Participation, Event Hosting, and Organize Hackathons.
Additionally, since determining a difference among these practices in terms of
their maturity was found to be unfeasible, they were instead merged into the
Organize Events practice and included in its description.

• Thirdly, some practices that describe a specific protocol were renamed to be
more ambiguous and generic. For example, the former OAuth 2.0 Authorization
practice was renamed to Standardized Authorization Protocol, with a referral to
the OAuth 2.0 protocol being included in its description instead. This was
done to ensure that the API-m-FAMM remains functional and applicable in
the future, since it is likely that new protocols will be developed and adopted
among the industry in the future. These concerns also applied to suggested
practices corresponding to individual authentication methods such as client
certificate and SAML authentication, which were ultimately merged into the
Implement Authentication Protocol practice and included in its description. An
additional reason for doing so in the case of these authentication methods is
that they each have their individual strengths and weaknesses, with one not
always necessarily being ’better’ or more mature than the other. Furthermore,
some methods may be more appropriate for some use cases than others.

• Furthermore, some capabilities and its corresponding practices that were also
thought to apply to most organizations in general, and that are not necessar-
ily involved with API management, were excluded from the model. An ex-
ample of this is the Financial Management capability that was suggested to be
added. Considering that practices such as Automated Billing, Third-Party Pay-
ment Provider Integration, and Revenue Sharing are best practices that apply to
commercially oriented organizations in general, they were removed. This de-
cision was made to ensure that the contents of the API-m-FAMM is exclusively
composed of practices that are directly tied to API management.

• During interviews focused on the Lifecycle focus area, experts were asked to
elaborate on the manner in which their organization has implemented Gover-
nance (as is described in Chapter 3.7). Based on the answers given however,
it became clear that capturing processes related to governance in the form of
practices is not feasible. This may largely be attributed to the observation that
such processes seem to be inherent to specific characteristics of the organiza-
tion, such as its culture, size, usage of a third party API management platform,
as well as the amount of APIs that are used or exposed by the organization.

Chapter 5. Evaluating the API-m-FAMM 65

Some practices were suggested for addition by IT Consultant, such as Define
Naming Conventions, Define Best Practices, and Define Integration Patterns. How-
ever, after having discussed these with experts in subsequent interviews, it was
decided that these practices are too abstract and inconcrete in comparison with
other practices, considering that they may be interpreted in different ways by
practitioners due to the varying organizational characteristics mentioned ear-
lier. Hence, the Governance capability that was originally part of the Lifecycle
focus area was removed, along with the Design-time Governance and Run-time
Governance practices it was composed of.

• A valuable suggestion that was made by experts is the addition of monitor-
ing in terms of the amount of resources that calls to the API consume, such
as CPU, disk, memory, and network usage. Considering that this monitoring
perspective was previously missing alongside performance and health moni-
toring, as well as it being suggested by multiple experts independently from
one another, the Resource Monitoring practice was newly added. Similarly, this
resource perspective was also found to be missing among the Traffic Manage-
ment capability, alongside the Request Limiting and Request Throttling practices.
Hence, the Data Volume Limiting practice was newly added.

• Another fundamental change that was made to the API-m-FAMM is the re-
naming of the former Monitoring focus area to Observability. This rename was
independently suggested by two experts, whom argued that observability bet-
ter describes the focus area, considering that the Analytics capability was split
into two capabilities: Monitoring and Analytics. This decision was made be-
cause experts were of the opinion that monitoring is concerned with gather-
ing (real-time) metrics related to the API’s health, performance, and resource
usage, while analytics is concerned with aggregating these metrics so that in-
sights may be formed and subsequent action may be taken based off of these.
As a result, the monitoring capability was added, as well as practices related
either to monitoring or analytics being moved to the capabilities they are asso-
ciated with.

• Moreover, some practices that were originally posed from a passive perspec-
tive, were changed with the intention of being conducted in an active manner.
For example, the Include Changelogs practice was renamed to Distribute Changel-
ogs, and its description was changed so that its focus is changed from passive
inclusion of changelogs in the reference documentation, to active distribution
of changelogs to consumers of the API. Similarly, the Provide API Status Page
was renamed to Broadcast API Status, as well as its description being changed
to signify the operational status of the API being broadcasted to consumers
in an active manner, as opposed to providing an API status page in a passive
fashion. These changes were made due to the fact that when phrased in a pas-
sive manner, these practices were deemed to be too irrelevant to be included
in the API-m-FAMM, considering that the level of maturity required to im-
plement these practices is too low when compared to other practices. When
phrased from an active perspective however, these practices can be considered
to be best practices that an organization should strive to implement.

• Finally, a major fundamental change was made with regards to the Lifecycle
Control capability. While practices belonging to this capability, such as API
Endpoint Creation, API Publication, and Import Pre-existing API, are considered

Chapter 5. Evaluating the API-m-FAMM 66

to be an integral aspect of API management in both literature as well as the
industry, the decision was made to exclude these practices from the API-m-
FAMM. This choice was made due to the fact that being able to design, create,
publish, and deploy an API is a precondition for implementing all other prac-
tices the model consists of. Moreover, during interviews it became clear that
it was difficult for experts to rank these practices in terms of their maturity,
considering that they are often performed in chronological order.

Chapter 5. Evaluating the API-m-FAMM 67

FIGURE 5.3: API-m-FAMM v1.1, which includes all suggested
changes that were made by experts during interviews. Please consult
the legend on the left-hand side of the figure for more information
regarding the manner in which the colored outlines should be inter-
preted. Practices and capabilities that were not directly categorized
by the expert during interviews are placed in the ’undecided’ box on

the top-left hand side.

Chapter 5. Evaluating the API-m-FAMM 68

FIGURE 5.4: API-m-FAMM v1.2, including all suggested changes that
were made by experts during interviews, as well as the manner in
which they were subsequently interpreted and applied by the re-
searchers. Please consult the legend on the top left-hand side of the
figure for more information regarding the manner in which the col-

ored outlines and fills should be interpreted.

Chapter 5. Evaluating the API-m-FAMM 69

Evaluation Criteria Results

In addition to its contents and completeness, the first version of the API-m-FAMM
is also evaluated with regards to its operational feasibility, ease of use, usefulness, and
effectiveness, as is shown in Table 2.3. These criteria are measured by asking experts
to rank the API-m-FAMM on a likert-scale ranging from 1 to 5 in response to the
following questions, which are posed at the end of the interview:

• Operational Feasibility: How likely do you think it would be that an organiza-
tion would actually use the API-m-FAMM in practice to evaluate and improve
upon their API management related processes?

• Ease of Use: How easy do you think it would be to understand the API-m-
FAMM’s content and use it to self-assess and evaluate your organization’s ma-
turity in API management?

• Usefulness: How useful do you think the API-m-FAMM would be in provid-
ing you and your organization with valuable and interesting insights in your
organization’s API management related processes?

• Effectiveness: How effective do you think the API-m-FAMM would be in
helping you and your organization improve on their API management related
processes?

The way in which the API-m-FAMM was ranked by each expert in response to
these questions is summarized in Table 5.3 below. However, these results should be
prefaced by a few initial remarks. Firstly, it should be noted that during the inter-
views, an intermediate and unfinished version of the API-m-FAMM was presented
to experts. One of the implications of this is that maturity levels were absent from
this version of the model. Because of this, experts often found it difficult to envi-
sion what the final version would look like, as well as to properly judge its ultimate
capabilities and potential for helping an organization in improving their API man-
agement maturity. Additionally, due to time constraints, only one or two of the six
focus areas the model consists of were selected for discussion, which, in some in-
stances, impaired experts’ ability to grasp the API-m-FAMM’s scope as a whole on
a conceptual level. Furthermore, the descriptions given for the focus areas, capabil-
ities, and practices during the interview were summarized and shortened. Lastly,
the experts had not familiarized themselves with the contents of the API-m-FAMM
prior to the interview taking place.

TABLE 5.3: The rankings given by all experts in response to the ques-
tions corresponding to the four evaluation criteria, as well as their

averages.

Interviewee Operational Feasibility Ease of Use Usefulness Effectiveness

API Evangelist 3 2 4 3
CEOA 4 3 4 4
CEOB 3 2 3 4
Engineer 4 4 4 5
IT Consultant 2 2 3 4
Product Manager 4 4 3 3
Lead EngineerA 4 3 5 4
Lead EngineerB 3 2 4 3
Lead EngineerC 4 3 5 4

Average 3.4 2.8 3.9 3.8

Chapter 5. Evaluating the API-m-FAMM 70

In addition to the remarks mentioned above, experts cited other reasons that help
in explaining the relatively low scores that were given for the operational feasibility
and ease of use criteria in particular. For example, the following quote is extracted
from the interview that was conducted with IT Consultant, whom ranked the API-
m-FAMM’s operational feasibility and ease of use with a 2:

"I think there are some pretty complex terms being used in this model. I think
the ease in which organizations are able to self-assess their processes depends
on how well all factors are described and whether people understand. I give
workshops and trainings which include explanations, but still people often have
trouble understanding the terminology used."

Possibly, this point of criticism could be partially alleviated by ensuring that
practitioners wishing to employ the API-m-FAMM have fully read through all de-
scriptions of practices and capabilities, which are more elaborate than those shown
during interviews. This argument is further supported by the following quotes by
CEOA and Lead EngineerB:

"It took me a while to understand the contents of the model, but eventually I
did."

"I find it hard to judge the model’s ease of use because we are skimming through
at a rapid pace. Also, I think it might be hard for organizations to assess them-
selves, because a lot of explanation is needed for them to understand what is
meant with each process. However, I can imagine a good consultant can work
with this very well. The included practices are not incomprehensible, but people
who are not familiar with the subject will probably need some time to fully read
through everything and such."

A possible way in which these concerns could be resolved is, as Lead EngineerB
also mentions in the quote shown above, to employ a consultant whom is well-
versed in the domain of API management and is fully familiar with the API-m-
FAMM and its contents. However, we hypothesize that the self-assessment will be
made significantly easier if multiple practitioners within the organization, whom
each possess knowledge on the six focus areas the API-m-FAMM consists of, partic-
ipate in the assessment.

With regards to the API-m-FAMM’s perceived usefulness and effectiveness, the
majority of experts ranked the model relatively high. In particular, some experts
were of the opinion that the API-m-FAMM could be helpful for smaller organiza-
tions and organizations that are (thinking of) starting to expose an API. For example,
Engineer and Lead EngineerA argued:

"I think the model is very useful. At my organization, we are so large with so
much traffic that we have figured out and implemented most of these practices,
but I think there are many organizations that have no idea what a good API is.
For example with regards to rate limiting, I think you would be amazed to see
that many APIs would go down if they receive too much traffic, purely because
it not has been implemented."

"I think it is useful, because I think there are a lot of teams that are struggling
with these things. This model can help them with checking whether they have
forgotten anything. Especially when you are about to expose an API publicly I
think it is ideal to have such a model."

Chapter 5. Evaluating the API-m-FAMM 71

However, IT Consultant is of the opinion that the true value of the API-m-FAMM
lies in its potential to be used for offering advice on any practices that the organiza-
tion under evaluation has yet to implement:

"I think it depends on the advice that follows from the evaluation. If you do a
maturity study and assess the current maturity of the organization, it would be
nice if it can also be explained what processes are missing, what benefits may
be achieved if those processes are implemented, and how implementation may be
achieved. However, I do think this is a very helpful first step towards achieving
this. I would be very interested in using this checklist for my own work.

Maturity Level Assignment (API-m-FAMM v2.0)

Now that the API-m-FAMM has been evaluated and all suggested changes have
been analyzed and interpreted, practices are able to be assigned to individual matu-
rity levels. This is done by using the results of the maturity ranking exercises that
were described in Section 5.1 as input. First however, all dependencies between
practices are identified, which are depicted in Figure 5.5. In this context, a depen-
dency entails that one or more practices that the practice in question is dependant
on are required to be implemented before the practice may be implemented. These
dependencies may either occur; (1) between practices within the same capability; (2)
between practices that are assigned to different capabilities within the same focus
area, or (3) between practices that are assigned to different capabilities and focus ar-
eas. In total 34 dependencies are identified, which was done by analyzing academic
literature stemming from the SLR, grey literature, and input received through expert
interviews and the discussion sessions that were conducted among the researchers.
The number of dependencies that are identified are shown for each focus area in
Table 5.4, as well as for each of the three dependency types mentioned.

TABLE 5.4

Focus Area Within Capability Within Focus Area Between Focus Areas Total

Community 3 0 0 3
Security 2 0 0 2
Lifecycle Management 3 1 2 6
Observability 0 6 0 6
Performance 4 0 2 6
Commercial 2 1 8 11

Total 14 8 12 34

As an example of a dependency between practices within the same capability,
implementation of the Implement Load Balancing practice is required before the Imple-
ment Scaling practice may be implemented. An example of a dependency between
practices that are assigned to different capabilities within the same focus area is the
dependency between Enable Predictive Analytics and Performance Monitoring. The for-
mer practice belongs to the Analytics capability, while the latter practice belongs to
the Monitoring capability, but both capabilities are contained within the Observabil-
ity focus area. An example of a dependency between practices that are assigned to
different capabilities and focus areas may be observed in the case of the dependency
between the Adopt Metering-based Monetization Model and Resource Monitoring prac-
tices. The former practice is assigned to the Monetization Strategies capability within
the Commercial focus area, while the latter practice is assigned to the Monitoring ca-
pability within the Performance focus area.

Chapter 5. Evaluating the API-m-FAMM 72

FIGURE 5.5: The API-m-FAMM after all changes had been applied,
showing all dependencies that were identified between practices. In
order to improve legibility, practices are not ranked in terms of their

maturity in this figure.

Chapter 5. Evaluating the API-m-FAMM 73

After having identified all dependencies between practices, all 34 practices that
have one or more dependencies are juxtaposed in a matrix. This is done by adhering
to the constraint that practices can not depend on practices that have a higher matu-
rity level. As a result, the foundation of the API-m-FAMM is formed, with practices
ranging from maturity levels 1 to 10. Using this structure as a base, all other prac-
tices are subsequently assigned to individual maturity levels within their respective
capabilities. These assignments are performed by using the results of the maturity
ranking exercises that were performed by experts as one of the main sources of in-
put, as is described in Section 5.1.

By again using the Logging capability as an example, the interpretation of such
a maturity ranking exercise is visualized in Figure 5.6. In this figure, it can be seen
that the Activity Logging, Access Logging, and User Auditing practices were ranked
by 3 experts in terms of their perceived maturity. An additional practice, Applica-
tion Logging, was suggested for addition by Engineer. However, this practice was
removed because the decision was made to exclude applications in terms of abstrac-
tion from the API-m-FAMM, which is why it is outlined in red. Additionally, the
decision was made to include and move the Error Logging practice to the Logging
capability. Hence, this practice is outlined in green, and is included in this ranking
exercise by incorporating this practice in the figure, along with the capability it was
originally categorized with by the expert. Furthermore, the Error Reporting practice
was moved to the Analytics capability (as can be seen in Figure 5.4, which is why it
is outlined in purple and excluded from this maturity ranking exercise. Lastly, the
remaining 3 practices that were suggested to be added are excluded, along with the
Error Handling capability as a whole, which is denoted by the red outlines.

Furthermore, arrows are included that range from the lowest a practice has been
ranked in terms of its perceived maturity, to its highest. Dotted lines are attached
to each practice, which are then connected to these arrows with a small circle in
order to highlight and compare the maturity assignments of each expert with one
another. Subsequently, dashed lines are used to indicate a rough estimate of the
average of these assignments, which are then mapped on the maturity levels. How-
ever, it should be noted that Figure 5.6 was made for illustratory purposes, in order
to provide the reader with a conceptual idea of the manner in which the maturity
assignments were performed. In practice, the maturity assignment of practices was
done in a pragmatic manner, through discussion sessions among the researchers
during which the expert’s varying maturity rankings and their accompanying mo-
tivation and arguments were discussed and interpreted. Based on the outcome of
these discussions, decisions were then made to assign practices to individual matu-
rity levels, while taking the experts’ opinions and maturity rankings into account.

Next, all practices are renamed to fit an uniform syntactical structure, which
starts with a verb, followed by one or more nouns. For example, User Auditing is re-
named to Audit Users, and Resource Monitoring is renamed to Monitor Resource Usage.
Furthermore, descriptions of the practices that are included in the API-m-FAMM
after all changes had been applied are updated. When possible, this is done using
information and input that was provided by experts during interviews. Ultimately,
these activities produced a second, updated version of the API-m-FAMM, which is
shown in Figure 5.7 and consists of 6 focus areas, 20 capabilities, and 81 practices.
These are described in Appendix D as well as in a separate source document (Math-
ijssen, Overeem, & Jansen, 2021a).

Chapter 5. Evaluating the API-m-FAMM 74

FIGURE 5.6: Conceptual overview representing a rough approxima-
tion of the way in which the expert’s maturity rankings were inter-
preted and used as a starting point for performing the maturity level

assignments.

5.1.2 Second Evaluation Cycle

After having updated the API-m-FAMM to incorporate all findings from the previ-
ously conducted interviews, a second evaluation cycle is conducted. This is done as
a means for evaluating and verifying whether experts agree with the fundamental
decisions that were made (as discussed in Section 5.1.1), as well as gathering feed-
back on the way suggestions made by experts were interpreted and the maturity
levels that practices have been assigned to. This second evaluation cycle consists
of unstructured interviews with three experts originating from the same sample of
experts that were interviewed during the first evaluation cycle: Product Manager,
IT Consultant, and Lead EngineerA. During these interviews, the changes made as
a result of the previous evaluation cycle, as well as the newly introduced maturity
assignments are presented and discussed.

Since all experts agreed with the fundamental decisions that were made, no ma-
jor further adjustments are made to the API-m-FAMM as a result of this evaluation
cycle. In general, the three experts responded positively to the model, and expressed
interest in using it in practice to evaluate their organization’s API management re-
lated processes and assess their API management maturity. For example, Product

Chapter 5. Evaluating the API-m-FAMM 75

FIGURE 5.7: API-m-FAMM v2.0, which includes the assignment of all
practices to their respective maturity levels, which range from level 1

to level 10.

Manager concluded the interview with the following remark:

"I think this - the API-m-FAMM - is a very thorough analysis. You have made
a very nice overview that can help organizations with deciding what and when
they have to do when wanting to start with an API. If they want to bring some-
thing to the market quickly, this helps them realize they must first have imple-
mented the processes on the lower levels, and have to start small. Actually, for
many organizations that already have an API or want to start building one, this
is the roadmap they should follow for a good API strategy."

76

Chapter 6

Case Study

As is described in Section 2.2.4, a case study design is employed in order to answer
SRQ4. This case study is evaluative in nature and is aimed at determining to what
degree the API-m-FAMM succeeds in aiding an organization in evaluating and im-
proving upon their API management related business processes in practice. This
case study consists of two parts: an embedded, single-case study and a multiple
case study. These classification types adhere to those presented by Yin et al. (2003).
The embedded single-case study is visualized in Figure 6.1, while the multiple case
study is depicted in Figure 6.2.

FIGURE 6.1:
Schematic overview
of the embedded
single-case study

design.

FIGURE 6.2:
Schematic overview
of the multiple case

study design.

For the embedded single-case study, the API-m-FAMM is applied to two soft-
ware products that are developed by AFAS software. These products are described
in further detail in Section 6.1.1. The multiple case study is conducted at four case
companies, which are described in Section 6.1.2. Data resulting from the application
of the API-m-FAMM is collected through an Excel spreadsheet. Finally, participants
evaluated the API-m-FAMM on the same criteria that were employed as part of the
first evaluation cycle. These processes are part of the case study protocol that is used
in conducting the case studies, which is described in Section 6.1.3. The results that
are extracted from the deployment of the API-m-FAMM as part of these case studies
are reported on in Chapter 6.2. Next, the results of the case study as a whole are
reflected upon, discussed, and compared to one another in Chapter 6.3. Finally, in

Chapter 6. Case Study 77

Chapter 6.4, changes that are made as a result of the case study findings are elabo-
rated on and the resulting final version of the API-m-FAMM is presented.

6.1 Deploy

The aforementioned embedded, single-case study is conducted at AFAS Software,
which is described in the following subsection. Within this case company, the API-
m-FAMM was deployed and evaluated with two development teams that are work-
ing on two separate software products. The multiple case study is conducted with
multiple organizations. The largest part of these organizations are selected by con-
tacting the experts that were previously interviewed as part of the first evaluation
cycle. Furthermore, other organizations are selected through the utilization of the
academic contact network of the supervisors of this work. Both parts of the case
study are described in further detail below, by first introducing the case company
and the two development teams and software products the API-m-FAMM is eval-
uated with. Next, the various organizations that are involved in the multiple case
study are described.

6.1.1 Embedded Single-Case Study Company

AFAS is a Dutch vendor of ERP software based in Leusden, the Netherlands. Ad-
ditionally, AFAS has offices in Belgium and Curaçao. The privately held company
currently employs over 500 people and annually generates €191 million of revenue.

AFAS Profit

AFAS’ main software product is Profit, which is an ERP package consisting of differ-
ent modules such as Fiscal, Financial, HRM, Logistics, Payroll, and CRM. Currently,
this product has over 2 million users across over 11.000 small, medium and large or-
ganizations. The latest version currently on the market is called Profit 17, which was
released in 2020 and includes both a windows application as well as a web based
version. The ERP system is offered as Software-as-a-Service (SaaS), called AFAS On-
line, or can be hosted by the client on premise.

AFAS Profit provides customers with two APIs: a REST API and a SOAP API.
Both of these APIs offer the same functionalities, and customers may decide on using
either of these depending on their preferences. Functionalities are offered through
two endpoint types, which AFAS calls Connectors: Get connectors and Update con-
nectors. The former type of endpoints enable external applications to retrieve data
from the AFAS database, while the latter is used to enable external applications to
add, change, or remove data from the database. Combined, these endpoints are
called about 500 million times a month. Furthermore, standard connections with
external software products and applications that utilize these connectors and that
AFAS is partnered with are offered through AFAS’ partner portal.

AFAS Focus

Currently, AFAS is developing a new version of its ERP software, which is called
Focus. This product is being developed from scratch in terms of the technology
and codebase used, and is cloud-based as well as generated by using the ontologi-
cal model of an enterprise as input. Furthermore, it will form the main foundation
for generating an entire software suite on a cloud infrastructure platform of choice,

Chapter 6. Case Study 78

considering that Focus is entirely platform- and database-independent. Addition-
ally, Focus is envisioned to enable rapid model-driven application development and
will drastically increase customization flexibility for AFAS’ partners and customers.
Considering that since the time development first commenced some modules such
as Financial have been developed, AFAS is currently in the process of transferring
customers from the current Profit product to Focus.

Conceptually, Focus offers the same two endpoints as Profit: Get Connectors
and Update Connectors. However, these are only available as REST APIs, which
support both the XML and JSON data formats. The endpoints are described using
the OpenAPI specification and make use of the OAuth application token flow for
authentication. The current size and state of Focus encompasses about twenty avail-
able endpoints, which are directed at a few specific integrations. In the future this
number will increase as Focus continues to grow and branch out to more partners.

6.1.2 Multiple Single-Case Study Companies

In this section, the organizations that have participated in the multiple single-case
study are briefly described. This is done by summarizing key characteristics such as
the types of services provided, as well as the amounts of customers that are served
and the amount of employees that work for the organizations. However, please note
that the names of some of these organizations are anonymized. Explicit consent to
include the name of the organization was obtained of those that are not.

ConsultComp

ConsultComp is a multinational professional services network, is one of the Big Four
accounting organisations, and is among the largest professional services networks
in the world by revenue and number of professionals. ConsultComp provides audit,
consulting, financial advisory, risk advisory, tax, and legal services with over 300.000
professionals globally. Aside from these services, the organization also develops
software products for customers, which are developed in-house in their office in the
Netherlands. The team involved in developing these products utilizes internal APIs,
third-party service integrations to access data from service providers, and also is in
the process of starting to expose (partner) APIs to customers.

EAMComp

EAMComp is an organization that is based in the Netherlands and that provides
customers with an Enterprise Asset Management (EAM) platform. This platform is
cloud-based and comprises features such as maintenance, safety, medical asset, infra
Asset, IT Service, and facility management, enabling customers to manage their or-
ganization’s physical assets. Currently, over 100.000 customers utilize EAMComp’s
platform. The platform provides customers with a REST API, with which they are
able to retrieve data from EAMComp’s database and integrate with partner solu-
tions.

Exact

Exact is a multinational organization that provides ERP software and was founded
in the Netherlands. Apart from their headquarters in the Dutch city Delft, Exact
also has offices in 20 other countries, and currently employs over 1850 people and

Chapter 6. Case Study 79

annually generates €209 million of revenue. Exact provides customers with vari-
ous products, such as an integrated ERP package, and a package that incorporates
modules that are targeted towards CRM, HRM, and workflow management.

Exact’s main software product that is offered in the Netherlands and Belgium is
called Exact Online, which is a package consisting of modules such as accountancy,
CRM, and project management. This SaaS product currently has over 500.000 users
and is fully internet-based. Exact Online provides customers with two main API
types: a REST API and a XML API. These APIs comprise a range of endpoints which
combined are called about 700 million times a month.

Uber

Uber is a large-scale multinational technology organization that was founded in the
United States. It provides multiple services, such as ride-hailing, food delivery (Uber
Eats), and package delivery. Uber is estimated to have over 93 million monthly ac-
tive users worldwide. In 2012, Uber established its international headquarters in
Amsterdam, the Netherlands. Here, among others, development teams are responsi-
ble for optimizing the performance and scalability of the public API that is provided
by the organization, as well as developing new functionalities.

6.1.3 Case Study Protocol

As mentioned earlier, the main objective of the case study is to determine to what
degree the API-m-FAMM succeeds in aiding an organization in evaluating and im-
proving upon their API management related business processes in practice. In order
to do so, data regarding the organization’s API management processes needs to be
collected. This is done by providing the selected organizations with a visual copy of
the API-m-FAMM (as depicted in Figure 5.7), as well as a copy of the source docu-
ment (Mathijssen et al., 2021a) describing the focus areas, capabilities, and practices
the model consists of in detail. However, considering that the API-m-FAMM was
previously presented to selected participants as part of the first and/or second eval-
uation cycle (with the exception of EAMComp), they were already informed with
regards to the focus of this research as well as the purpose and structure of the API-
m-FAMM.

After having familiarized themselves with the contents of the API-m-FAMM,
participants are asked to use the model to first determine what focus areas and
respective capabilities are relevant within their organization. Next, by first start-
ing at maturity level 1 and then moving on towards maturity level 10, participants
are asked to assign each practice to one of five possible implementation categories.
These categories are inspired by the practice implementation categories that are used
as part of case studies conducted by Jansen (2020) in evaluating his Focus Area Ma-
turity Model for software ecosystem governance. In this work, four categories are
introduced: implementable, implementable and planned, not applicable, and not imple-
mentable.

For this research’s case study, one additional category is added: implemented.
This category is introduced to enable data collection regarding the as-is situation
of practice implementation in the participating case companies. Having insight into
the current status of implementation is paramount towards ensuring that the API-m-
FAMM succeeds in achieving its goal, which is to assess the organization’s current
level of maturity. Additionally, the implementable category that is used in Jansen

Chapter 6. Case Study 80

(2020)’s work is renamed to implementable but not planned. This is done to highlight
and clarify the difference between this category and the implementable and planned
category. The resulting five practice implementation categories that the practitioners
are able to choose from are defined as follows:

• Implemented: the practice has currently been implemented in the organiza-
tion.

• Implementable but not planned: the practice has not been implemented, but
in theory is implementable. However, the practice is not currently planned for
implementation in the foreseeable future.

• Implementable and planned: the practice has not been implemented, but has
been planned for implementation in the foreseeable future.

• Not implementable: the practice has not been implemented, and is not able to
be implemented within the organization.

• Not applicable: the practice has not been implemented, and is not applica-
ble; for example, the practice may not be of added value or desirable for the
organization to implement.

Collection of this data is enabled through the use of an Excel spreadsheet, as
shown in Appendix E, which participants are provided with and asked to return by
email once it had been filled out.

Lastly, participants are asked to fill out a short survey, which is presented in
Appendix E and consists of two parts. First, participants are asked to specify to
which organization or software product the answers they have provided through
the spreadsheet apply. Additionally, they are asked whether they are comfortable
with the publication of the name of their organization in this work, and whether
they would like to take part in a follow-up interview to discuss their answers given
in the previously filled in spreadsheet.

The second part of the survey consists of a series of questions that are similar
to those that were asked as part of the expert interviews during the first evaluation
cycle. The purpose of these questions is for the participants of the case study to
evaluate the API-m-FAMM with regards to its operational feasibility, ease of use, use-
fulness, and effectiveness. However, while the questions that were asked at the end of
the expert interviews during the first evaluation cycle were formulated in the future
tense, the questions posed as part of this evaluation survey were formulated in the
past tense. These questions, which are presented below, are aimed at determining
the degree to which the the API-m-FAMM has succeeded in aiding the participat-
ing organization in evaluating and improving upon their API management related
business processes in practice.

• Operational Feasibility: Are you expecting that you or your organization will
use the API-m-FAMM in practice again to evaluate and improve on your API
management related processes, so that you can track your progress?

• Ease of Use: How easy did you find it to use the API-m-FAMM to self-assess
and evaluate your organization’s maturity in API management?

• Usefulness: How useful do you think the API-m-FAMM was in providing you
and your organization with valuable and interesting insights in your organi-
zation’s API management related processes?

Chapter 6. Case Study 81

• Effectiveness: How effective do you think the API-m-FAMM is in helping you
and your organization improve on their API management related processes?

6.2 Results

In this chapter, the results of the maturity assessment of API management practices
at the various case companies using the API-m-FAMM are discussed. For each case
company, a visual representation of the implementation status that was assigned to
each practice by the practitioner is shown. However, it should first be noted that as
a result of analyzing the results of the case studies, changes were made to some of
the five practice implementation categories that were introduced in the previous sec-
tion. Specifically, the not implementable and not applicable categories were merged into
the not applicable category. Additionally, the implementable but not planned and imple-
mentable and planned categories were merged into a implementation category named
implementable. Practices that practitioners had originally marked as not implementable
in the data collection spreadsheet were changed to not applicable by the researchers,
and practices marked as implementable and planned or implementable but not planned
were changed to implementable. These changes were made after all data had been
collected, and are elaborated upon in further detail in Chapter 6.4. Furthermore, all
changes that were made to the practice implementation categories are summarized
and visualized in Figure 6.3. Moreover, considering that the descriptions of the new
practice implementation categories were updated to reflect these changes and are
used in discussing the results of the case studies throughout the remainder of this
chapter and Chapter 6.3, the new descriptions are shown below.

• Implemented: the practice has currently been implemented in the organiza-
tion.

• Implementable: the practice has not been implemented, but in theory is im-
plementable. Depending on the organization’s needs and plans, the practice
will either be implemented in the short-term, long-term, or not at all.

• Not applicable: the practice has not been implemented, and is not applicable
as it will most likely never be implemented. This may be caused by a num-
ber of reasons. For example, the practice may not be of added value, or not
desirable for the organization to implement because it does not align with the
organization’s goals, vision, or needs.

The remainder of this chapter is structured as follows. First, results from the em-
bedded single-case study regarding AFAS’ Profit and Focus products are presented.
Next, results from the multiple single-case study companies are discussed, with re-
sults of a case company of which its practitioner misinterpreted the case study pro-
tocol being discussed separately.

6.2.1 Embedded Single-Case Study Company Results

As part of the single-case study, AFAS’ two software products Profit and Focus, as
described in the previous section, are assessed on their maturity with regards to API
management. As a first step, the scope and goal of the API-m-FAMM as well as
the steps involved in the case study protocol were presented to the involved practi-
tioners. After these steps had been executed and the filled-in spreadsheet had been

Chapter 6. Case Study 82

FIGURE 6.3: The manner in which the 4 practice implementation cate-
gories that were originally introduced by Jansen (2020) were adapted
to fit this work’s case study. The categories were first extended to 5
categories, which were used during the initial case study data collec-
tion, and subsequently merged into 3 categories as a result of the dis-
cussions that were conducted during the embedded single-case study.

returned to the researchers, a semi-structured followup interview between the re-
searchers and the practitioners was conducted to gather feedback and to inquire
about any perceived inconsistencies that were encountered among the provided an-
swers. The results of the assessments are elaborated on for both of the two individual
products in the following subsections.

AFAS Profit

For AFAS’ Profit product, the API-m-FAMM was applied by two practitioners: the
manager of the Test & Quality team, and the manager of the ICT department. The
statuses corresponding to the implementation of each practice as extracted from the
spreadsheet provided by practitioners are visualized in Figure 6.4.

With regards to the Lifecycle Management focus area, several practices were marked
as not applicable. In particular, this is the case for the Implement Multiple API Version-
ing Strategy practice. When asked, the practitioners noted that this strategy has not
yet been necessary in versioning the APIs. This is due to the fact that the version
of the connectors are directly tied to the version of the database on the back-end.
However, events in the past have occurred where functional modifications or ad-
ditions had been made to the update connectors, resulting in consumers having to
change their implementation. In these events, these consumers had to be notified.
Furthermore, in order to notify consumers of updates, Profit publishes release notes
describing general updates made to the product as well as specific updates made to
the connectors. Additionally, such changes are communicated proactively to part-
ners through mailing. As a next step, AFAS is considering using RSS, an ECS feed, or
warning headers to inform consumers ahead of time when maintenance or updates
will take place.

Chapter 6. Case Study 83

FIGURE 6.4: The API-m-FAMM as applied to the current as-is imple-
mentation of practices corresponding to AFAS’ Profit product. Please
consult the legend on the top left-hand side of the figure for more in-
formation regarding the manner in which various colors correspond-

ing to practices should be interpreted.

In order to authenticate consumers of the APIs, tokens are used. Users of a Profit
environment are required to request the owner of the environment for a token after
which usage of functionalities may commence. In the past, there has been discus-
sion regarding the implementation of the OAuth protocol, but the decision has been
made to not invest resources in doing so, considering that the current implemen-
tation is fully functional. In terms of threat detection and protection, Profit is very
mature considering that it has implemented all practices within this capability. For
example, security reviews take place on Profit’s internal architecture. Additionally,
a third party security company is consulted to perform penetration tests on partner
applications. In recent years, such tests have been made to be a standard element of
the partner onboarding process.

In the scope of Profit’s Performance, the product is quite mature with regards to
Resource management considering that most practices have been implemented, with
the exception of predictive scaling. Currently, scaling is done in a reactive manner.
The practitioners noted that spikes in traffic and amounts of incoming calls are often

Chapter 6. Case Study 84

tied to small amounts of consumers that are sending faulty requests. In terms of
Traffic Management, the majority of practices have currently not been implemented.
However, this is largely due to deliberate decisions that have been made based on
the organization’s vision of customer relationships and absence of some functional
capabilities that are required to implement these practices. For example, on one
hand, consumers do not have the ability to detect which records have changed in
the AFAS database, which consequentially means that they are not able to retrieve
these specific records. On the other hand, methods with which this could be enabled
such as webhooks, which are callbacks that can be sent to consumers when an event is
triggered such as records being updated (Biehl, 2017), are not implemented. Because
of the absence of such methods, consumers are forced to retrieve large volumes of
data in some cases, hence Profit has chosen not to implement practices such as rate
limiting.

With regards to the Community surrounding Profit, the majority of practices have
been implemented. Concerning the Developer Onboarding, consumers are provided
with an interactive console with which they can test API behavior and function-
alities. Instead of using standards such as OpenAPI, Documentation is provided
through a separate portal, including code samples and a FAQ section, as well as
a Youtube channel which includes video tutorials. Additionally, consumers have
the ability to import connectors in bundles through a set of definitions.

In terms of the Commercial focus area, a few practices have been implemented for
the Profit product. Consumers are to adhere to a SLA, which contains agreements
on fair use, time-out policies, and uptime guarantees. However, no custom SLA’s
are negotiated with individual consumers. Furthermore, no strategy for monetizing
the APIs is employed considering that this is already done indirectly through the
product’s licensing.

AFAS Focus

For AFAS’ new product that is currently in development, the API-m-FAMM was
applied by one practitioner: the manager of product development. The statuses cor-
responding to the implementation of each practice as extracted from the spreadsheet
provided by practitioners are visualized in Figure 6.5.

With regards to the Lifecycle Management focus area, a substantial amount of prac-
tices have been implemented. Due to the stage the development of the product is
currently in, breaking changes have yet to occur. Hence, an evolutionary versioning
strategy is used. However, should this prove to be necessary in the future, measures
are already in place to utilize the maintain multiple API versioning strategy, which is
why it is marked as implemented. Currently, consumers are manually informed of
any updates of the API since the user base is relatively small as of yet.

In order to improve the Security of the product, the OAuth 2.0 protocol has been
implemented to authorize consumers. Furthermore, access and refresh tokens are
used. With regards to Threat Detection & Protection, most practices have already been
implemented. Remaining practices such as DoS protection will be implemented in
the future as the product scales up. Such practices are currently not yet needed, but
preparations have been made on a technical level to implement these when needed.

The product’s Performance is ensured through effective Resource Management. In
order to do so, Focus has implemented failover policies as well as manual scaling.
Currently, many Traffic Management practices have not yet been implemented. This
is a deliberate choice, due to the fact that these are currently not yet needed. The

Chapter 6. Case Study 85

FIGURE 6.5: The API-m-FAMM as applied to the current as-is imple-
mentation of practices corresponding to AFAS’ Focus product. Please
consult the legend on the top left-hand side of the figure for more in-
formation regarding the manner in which various colors correspond-

ing to practices should be interpreted.

amount of incoming calls and traffic is relatively low, but preparations have already
been made to automate and optimize traffic management in the future when traffic
is expected to increase.

Similarly, most practices that are part of the Community focus area are not yet
relevant for the product. One of the exceptions is the Developer Onboarding however,
considering that more new consumers are being involved with the product in recent
times. Onboarding is achieved through a separate portal which includes a test con-
sole, documentation, and the ability to generate SDKs. Doing so is possible because
Focus utilizes the OpenAPI specification for the documentation.

Just as is the case for the community surrounding the product, the Commercial
focus area is largely irrelevant for Focus at this point in time. This is made evident by
the absence of implemented practices corresponding to this focus area. However, the
practitioner has mentioned that the product is likely to implement similar practices
to those that are currently implemented for Profit with regards to the Commercial
focus area.

Chapter 6. Case Study 86

6.2.2 Multiple Single-Case Study Companies Results

In this section, the results of the companies that participated in the multiple case
study are discussed.

ConsultComp

In assessing the current maturity of ConsultComp, the API-m-FAMM was applied by
Lead EngineerA, whom was also involved in both evaluation cycles. This was done
using the provided spreadsheet. The statuses corresponding to the implementation
of each practice contained in the API-m-FAMM are visualized in Figure 6.6.

FIGURE 6.6: The API-m-FAMM as applied to the current as-is imple-
mentation of practices corresponding to ConsultComp. Please consult
the legend on the top left-hand side of the figure for more informa-
tion regarding the manner in which various colors corresponding to

practices should be interpreted.

In the scope of the Lifecycle Management focus area, the internal API is versioned
using the evolutionary versioning strategy. Furthermore, the API is fully decoupled

Chapter 6. Case Study 87

from the applications that use it. Considering that the organization’s API is exclu-
sively used internally, practices corresponding to Update Notification are not imple-
mented. This is due to the fact that when the API is versioned, no mechanisms are
needed for notifying external consumers of the update.

Noticeably, a large part of the practices corresponding to the Security focus area
have been implemented. In order to authenticate internal consumers of the API,
an authentication protocol along with the SSO method is used. In terms of Autho-
rization, ConsultComp is able to perform access control. Furthermore, all practices
belonging to Threat Detection & Protection and Encryption have been implemented to
further secure the product.

In terms of Performance, scaling and load balancing methods are in place. Traffic
Management is implemented through practices such as Time-out Policies and Request
Caching. Practices such as rate limiting, throttling and quota management have not
been implemented. However, these are marked as implementable rather than not ap-
plicable, considering that the organization is in the process of transitioning towards
exposing partner APIs to customers. Hence, the aforementioned practices may need
to be implemented in the future.

Regarding real-time Monitoring and Logging of errors, activity and access, ConsultComp
is mature, considering that all practices corresponding to these capabilities have
been implemented. Most practices in the Analytics capability have not been imple-
mented, but this is sensible considering that practices such as broadcast API status are
only relevant for the case of public or partner APIs.

As is evident when observing 6.6, virtually all practices belonging to the Commu-
nity and Commercial focus areas have been marked as not applicable or implementable.
Similarly to capabilities such as Update Notification and parts of the Traffic Manage-
ment and Analytics, this is logical considering that in the current case of an internal
API, there simply is no community surrounding it to manage as of yet.

Exact Online

For the case of Exact, the API-m-FAMM was utilized by Product Manager, whom
was also involved in both evaluation cycles, to assess the current as-is implemen-
tation of practices corresponding to the Exact Online product. This was done using
the provided spreadsheet. The statuses corresponding to the implementation of each
practice contained in the API-m-FAMM are visualized in Figure 6.7.

Interestingly, all practices belonging to the Lifecycle Management focus area have
been marked as Implemented. During interviews that were conducted as part of
the previous evaluation cycles, Product Manager indicated that currently, an evolu-
tionary versioning strategy is utilized to version Exact Online’s APIs. Furthermore,
Product Manager mentioned that Exact has laid the groundwork for using the mul-
tiple versioning strategy to update their REST API to a second version. Hence, both
strategies are marked as implemented, as well as the deprecation protocol and back-
wards compatibility checking practices. The product is also mature with regards to
update notification, with the exception of announcing an API versioning schedule.
However, Product Manager mentioned that implementation of this practice is being
worked on, in order to improve developer engagement on Exact’s developer portal
so that developers are kept up to date with regards to APIs being deprecated.

Similarly, most practices in the Security focus area have been marked as imple-
mented. Sensibly, basic authentication was marked as not applicable considering that
authentication is already implemented in the form of OpenID Connect, which is an

Chapter 6. Case Study 88

FIGURE 6.7: The API-m-FAMM as applied to the current as-is im-
plementation of practices corresponding to Exact’s Online product.
Please consult the legend on the top left-hand side of the figure for
more information regarding the manner in which various colors cor-

responding to practices should be interpreted.

alternative to basic authentication methods. Furthermore, all authorization practices
have been implemented, including OAuth 2.0. This is also the case for threat protec-
tion practices, including conducting security reviews: Product Manager mentioned
that over the course of the past few years, Exact has conducted security audits at
2000 organizations. Furthermore, Exact’s Zero Trust Network Architecture is imple-
mented through a third party platform.

In terms of Observability, all practices have currently been implemented for Exact
Online. The only exception to this is predictive analytics which, similarly to pre-
dictive scaling, is a practice that the company is interested in implementing in the
future.

Furthermore, Exact is very mature with regards to the Community focus area. For
example, customers are provided with a sandbox environment, and the company
employs a dedicated developer support team as well as a dedicated API evangelist.
In fact, one of the experts that was interviewed during the first evaluation cycle,
API Evangelist, has worked for Exact as an API evangelist for Exact in the past.

Chapter 6. Case Study 89

Furthermore, Exact provides customers with a developer portal which includes sev-
eral resources regarding documentation, as well as SDK support for their REST API.
Bundling APIs is the only practice that has not been implemented as of yet, but Exact
has expressed interest in doing so and considers this practice to be implementable.

Lastly, some practices belonging to the Commercial focus area have been imple-
mented. Consumers of Exact Online are provided with an extensive SLA, which
contains elements such as uptime guarantees, fair use policies, and agreements on
rate and data limiting. Furthermore, while access to the product as a whole is mon-
etized through monthly licensing fees, no monetization model that specifically and
exclusively applies to the APIs is used.

Uber

The API-m-FAMM was used by Engineer, whom was involved in the first evaluation
cycle, to evaluate the current as-is implementation of practices corresponding to the
Uber. This was done using the provided spreadsheet. The statuses corresponding to
the implementation of each practice contained in the API-m-FAMM are visualized
in Figure 6.8.

In terms of the Lifecycle Management focus area, nearly all practices have been
implemented. The organization is able to version their APIs using the evolutionary
strategy, as well as the multiple API versioning strategy. To this end, Uber also has a
deprecation protocol and backwards compatibility checking methods in place. Fur-
thermore, mechanisms to provide consumers with information regarding updates to
the API are in place. Additionally, the organization has expressed interest in imple-
menting the announce versioning schedule practice.

Regarding the Security focus area, all practices have been implemented, signify-
ing that Uber is very mature in this aspect. For example, the Single Sign-on authen-
tication method has been implemented, as well as OAuth authorization scopes and a
zero trust network access security architecture.

Similarly, most practices have been implemented for the Performance focus area.
Considering that Uber is a large-scale multinational organization, this is to be ex-
pected. Regarding Resource Management, the organization has implemented advanced
scaling methods, considering that automatic scaling takes place when certain re-
source thresholds are exceeded. However, Engineer mentioned that there is still
room for improvement and preparations are being made to do so, considering that
predictive scaling is marked as implementable. The organization wishes to implement
this practice in order to better distribute incoming traffic in different continents and
countries by recognizing load patterns ahead of time and scale based on these. Fur-
thermore, Uber has runbooks in place that detail what course of action should be
taken when the scaling strategy fails. Additionally, considering that the organiza-
tion has various data centers that are located in different continents and countries,
there are failover policies in place which allow the organization to mitigate outages.

Furthermore, Uber is mature with regards to Observability, considering the large
amount of practices that have been implemented for this focus area. The organiza-
tion is able to perform all forms of Monitoring and Logging. Furthermore, the organi-
zation wishes to implemented predictively analytics, considering that this practice is
a requirement for implementing predictive scaling.

On the topic of the Community surrounding Uber, most practices have been im-
plemented, with a few exceptions. For example, implement interactive API console has

Chapter 6. Case Study 90

FIGURE 6.8: The API-m-FAMM as applied to the current as-is im-
plementation of practices corresponding to Uber. Please consult the
legend on the top left-hand side of the figure for more information
regarding the manner in which various colors corresponding to prac-

tices should be interpreted.

not been marked as implemented. However, an API sandbox environment has been
implemented as an alternative for this.

Lastly, Uber is quite mature with regards to the Commercial focus area. Specifi-
cally, this is the case for the Service-Level Agreements capability, considering that the
organization is able to proactively monitor their SLA as well as provide consumers
with customized SLAs if necessary.

6.2.3 Misinterpreted Case Study Company Results

In this subsection, the results of the case study at EAMComp are discussed. How-
ever, considering that the case study protocol was misinterpreted by the practitioner,
these results are discussed separately from the other results of the multiple case stud-
ies.

Chapter 6. Case Study 91

EAMComp

In order to assess the maturity of EAMComp, the API-m-FAMM was applied by a
practitioner who has not been previously involved in any evaluation cycles. This
was done using the provided spreadsheet. The statuses corresponding to the imple-
mentation of each practice contained in the API-m-FAMM are visualized in Figure
6.9.

FIGURE 6.9: The API-m-FAMM as applied to the current as-is imple-
mentation of practices corresponding to EAMComp. Please consult
the legend on the top left-hand side of the figure for more informa-
tion regarding the manner in which various colors corresponding to

practices should be interpreted.

As may be easily observed when examining Figure 6.9, the answers provided
through the spreadsheet differ from the results obtained from other case studies. In-
terestingly, only one practice per capability is marked using the various implemen-
tation categories. Because of this, the researchers hypothesize that the practitioner
misinterpreted one of the instructions as part of the case study protocol that case
study participants were provided with. While participants were asked to denote the
implementation status for each practice, it seems as though the practitioner has de-
noted the implementation status for each practice of the highest maturity within a

Chapter 6. Case Study 92

capability and that he is knowledgeable on. The researchers suspect that this was
caused due to the fact that the practitioner did not participate in previous evalu-
ation cycles, or because the case study protocol was not phrased clearly enough.
Unfortunately, since the practitioner did not respond to the researcher’s request for
a follow-up discussion of the provided results, this suspicious has not been able to
be confirmed.

As a consequence of the limited answers that were provided and uncertainty as
to how the case study protocol was interpreted, the researchers are not able to ac-
curately assess EAMComp’s API management maturity. Regardless, it was decided
to include this case in this work in order to highlight the varying ways the API-m-
FAMM may be utilized by practitioners.

6.3 Discussion of Results

Now that the results of the individual results of the case companies have been dis-
cussed, the overall findings of the case study are analyzed in this section. First, the
various organizations and products that were evaluated are benchmarked in Table
6.1, based on which observations are made. Next, the results of the evaluative sur-
vey, as shown in Table 6.2, that was filled in by practitioners as part of the case study
protocol are discussed.

All results that were extracted from the spreadsheets that the participating practi-
tioners have filled out and subsequently returned to the researchers have been sum-
marized in Table 6.1. However, results provided by EAMComp have been excluded
from this table, as there was no data provided regarding the majority of practices.
Table 6.1 shows the amount of practices that are implemented for each capability.
Consequently, this means that the other implementation categories (implementable
and not applicable) are not taken into account in this overview. Furthermore, before
discussing these results, it should be noted that the percentages representing the
average amount of practices that are implemented in each focus area should be in-
terpreted in an indicative manner, as some practices may encompass a much larger
amount of work than others. Moreover, some case companies vary heavily in terms
of their vision, size, usage of APIs, and goals. For example: Uber, AFAS Profit and
Exact may be roughly classified as large and mature organizations that have been
exposing public or partner APIs for a long period of time, which is reflected by the
observation that these organizations have implemented the majority of practices for
most focus areas. ConsultComp is also a large organization in size, but the product
that was evaluated has only been utilizing internal APIs for a short period of time.
Hence, some focus areas are largely irrelevant within the scope of this product. Sim-
ilarly, the AFAS Focus product has been utilizing partner APIs for a relatively short
period of time and is currently in the process of expanding the services it provides
as well as the assets it exposes. Due to the current scale of the product and the stage
of development it is in, some practices are currently not yet necessary to be imple-
mented.

These differences are reflected by these organizations’ maturity in API manage-
ment across the various focus areas, as will be discussed in the following paragraphs.
First however, we make several observations that were made as a result of examin-
ing and comparing the visual representations of the spreadsheets that were filled out
by practitioners, as shown in the previous section.

Chapter 6. Case Study 93

TABLE 6.1: The results of the deployment of the API-m-FAMM at
the case companies. For each capability, the amount of implemented
practices is shown. The percentages indicate the share of practices
that have been implemented out of the total amount of practices that
are assigned to the focus area. All percentages are colored, with those
approaching 100% being colored green, and those approaching 0%
being colored orange. Please note that these percentages should be
interpreted in an indicative manner, as the practices are not weighted,
and some practices are more extensive than others. Furthermore, re-

sults provided by EAMComp have been omitted from this table.

Focus Area AFAS Focus AFAS Profit ConsultComp Exact Online Uber Avg Stdev
1 Lifecycle Management 58% 50% 42% 92% 83% 65%

1.1 Version Management 2 2 1 4 4 2.6 1.20

1.2 Decoupling API & Appli-
cation

4 2 4 4 3 3.4 0.80

1.3 Update Notification 1 2 0 3 3 1.8 1.17

2 Security 53% 73% 80% 87% 100% 79%

2.1 Authentication 1 1 2 2 3 1.8 0.75
2.2 Authorization 2 2 2 4 4 2.6 0.98
2.3 Threat Detection & Protec-

tion
3 6 6 6 6 5.4 1.20

2.4 Encryption 2 2 2 1 2 1.8 0.40

3 Performance 36% 45% 55% 64% 82% 56%

3.1 Resource Management 3 3 3 2 3 2.8 0.40

3.2 Traffic Management 1 2 3 5 6 3.4 1.86

4 Observability 75% 67% 67% 92% 83% 77%

4.1 Monitoring 2 3 3 3 3 2.8 0.40

4.2 Logging 4 3 4 4 4 3.8 0.40

4.3 Analytics 3 2 1 4 3 2.6 1.02

5 Community 28% 78% 6% 94% 78% 57%

5.1 Developer Onboarding 2 1 0 4 3 2.0 1.41

5.2 Support 2 3 1 3 3 2.4 0.80

5.3 Documentation 1 2 0 3 2 1.6 1.02
5.4 Community Engagement 0 5 0 5 3 2.6 2.24

5.5 Portfolio Management 0 3 0 2 3 1.6 1.36

6 Commercial 0% 42% 0% 33% 50% 25%

6.1 Service-Level Agreements 0 2 0 2 4 1.6 1.50

6.2 Monetization Strategy 0 0 0 0 0 0.0 0.0

6.3 Account Management 0 3 0 2 2 1.4 1.20

Chapter 6. Case Study 94

Firstly, it was observed that some practices are mutually exclusive. This phe-
nomenon may be observed in the Authentication capability, where in some cases
the Implement Basic Authentication has been marked as not applicable when the Im-
plement Authentication Protocol had been marked as implemented. This is indeed a
logical result, considering that only one method of authentication is necessary. This
means that when an organization has implemented an authentication protocol such
as OpenID Connect, the implementation of HTTP basic authentication is no longer
applicable. Hence, a choice has to be made between these two practices, result-
ing in the practice of lower maturity having to be marked as not applicable or imple-
mentable when the practice of higher maturity is marked as implemented. Similarly,
such choices are also observed between the Implement Interactive API Console and
Provide Sandbox Environment Support practices. Likewise, it is likely that this phe-
nomena would have also been observed for the practices in the Monetization Strategy
(if their implementation had been observed as part of this case study), as only one
monetization strategy is needed to monetize an organization’s APIs.

Secondly, it may be observed that the mature organizations (Uber, Exact and
AFAS Profit) as a whole have implemented the majority of practices across most fo-
cus areas. This is particularly the case for Lifecycle Management, Security, Performance,
Observability and Community. However, the AFAS Profit product forms an exception
to this observation, considering the relatively high amount of practices that are not
applicable and implementable. The researchers attribute this to the product being fully
developed. The reason for this is that the practitioners noted that practices that have
been marked as such have been discussed internally in the past, and were concluded
to not be desirable to be implemented due to them not aligning with the prevalent
vision and goal of the product. Additionally, as is discussed in the previous section,
some practices are not able to be implemented due to technical limitations, or are
decided not be implemented due to time-priority trade-offs.

Thirdly, we observe that within the earlier mentioned focus areas, some practices
on the higher end in terms of maturity are often not implemented across the board,
such as Announce Versioning Roadmap, Implement Predictive Scaling, and Prioritize Traf-
fic. We interpret this as supportive evidence for having assigned these practices to
high maturity levels. Furthermore, during the discussions that were had as part of
the evaluation cycles and the single embedded single-case study, several organiza-
tions expressed interest in implementing these practices in the future. It should be
noted however, that the time-span in which organizations plan on implementing
such practices may vary greatly.

Fourthly, it may be observed that some focus areas and capabilities seem to be
less important for AFAS Focus and ConsultComp, judging from the amount of prac-
tices that have been marked as implementable and not applicable. In particular, this is
the case for the Update Notification and Traffic Management capabilities, and the Com-
munity and Commercial focus areas. However, this observed lack of implementation
of practices for these products may be attributed to different factors.

In the case of AFAS Focus, this is caused by the fact the product is currently still
in development. As a result, for example, the product has not had to version its APIs
in major ways as of yet and thus has not needed to notify consumers of this, in addi-
tion to the community surrounding the product being it its infancy. However, some
practices are implemented to be able to onboard developers, as well as to provide

Chapter 6. Case Study 95

support. Furthermore, due to the low amount of current consumers, there is no need
to impose rate or data limits.

For the case of ConsultComp, the lack of implementation of practices in the afore-
mentioned capabilities and focus areas may be attributed to the fact that the orga-
nization exclusively utilizes internal APIs. Since a community is non-existant, there
are no developers to onboard, which is why these practices have been marked as not
applicable and the rest of the practices in this focus area are implementable. The re-
searchers suspect that similar implementation patterns may be observed in other or-
ganizations and products that are in the process of developing and expanding their
product and its services, as well as those that exclusively use APIs internally. These
differences in implementation patterns between the mature organizations and the
ones that are developing or utilizing internal APIs is also made evident when exam-
ining the standard deviations of the capabilities and focus areas that were mentioned
in the previous paragraph, as can be seen in Table 6.1.

Lastly, a common trend that may be observed across all organizations is that the
Commercial focus area is underdeveloped. Particularly, this is the case for the Mone-
tization Strategy capability, considering that no organization has marked any of these
practices as implemented. However, the practitioners at Exact and EAMComp have
expressed interest in implementing a monetization strategy in the future. Specifi-
cally, the practitioner at Exact mentioned that he expects that monetization for APIs
will become increasingly more common in the future, and that he suspects that large-
scale organizations that expose high-traffic public APIs already monetize their APIs.
However, no concrete evidence of this has been found as part of this case study and
its participants.

In addition to the observations listed above, some limitations were uncovered
through the discussions that were conducted as part of the embedded single case
study. Especially with regards to the Commercial focus area, it is likely that the prac-
titioner applying the API-m-FAMM is not knowledgeable on the long-term vision
and strategy of the organization. While the practitioner may often be able to as-
sess whether a practice is implementable on a technical level, he or she is not able
to assess whether the practice will actually be implemented in the future. In such
cases, it was found that the practitioner is likely to mark a practice as implementable,
rather than not applicable. Furthermore, in some cases practitioners expressed that
they were unsure as to the way some practices should be interpreted, which often
resulted in such practices being interpreted in a different way than was intended
by the researchers. For example, some practitioners had initially marked one of the
monetization strategy practices as implemented because they thought these practices
applied to the monetization of the product as a whole, instead of the APIs them-
selves. This was also the case in assessing whether the organization’s SLA should be
considered as informal as opposed to formal or strict, as is mentioned in the Publish
Informal SLA and Provide SLA practices, as well as manual versus automatic and pre-
dictive scaling as part of the Implement Scaling and Implement Predictive Scaling prac-
tices. Moreover, in some cases the dependencies that are present between practices
were not taken into consideration when checking the implementation of practices.
Because of these observations, we conclude that in order for researchers to obtain
accurate results of an organization’s current situation with regards to API manage-
ment practices, a follow-up discussion should be conducted with practitioners to
weed out such inconsistencies and differences in interpretation.

Chapter 6. Case Study 96

In spite of these limitations however, we have found that, generally speaking,
the practitioners experienced the usage of the API-m-FAMM in a positive manner.
As can be seen in Table 6.2, the ease of use, usefulness, and effectiveness, were all ranked
with an average score of 4 or higher. The researchers interpret this as evidence for
the usefulness and effectiveness of the API-m-FAMM in achieving its goal of aiding
organizations in assessing their current maturity in API management and guiding
them towards achieving higher levels of maturity. However, the average score at-
tributed to the API-m-FAMM’s operational feasibility is notably lower when com-
pared to the other criteria. In particular, the scores given by practitioners corre-
sponding to the AFAS Focus and Profit products are among the lowest. This may be
explained by the fact that the AFAS Profit product is almost fully matured and de-
veloped, which reduces the incentive among its practitioners to repeatedly consult
the API-m-FAMM for guidance. This is further compounded due to the practitioners
already being aware of most practices that have not yet been implemented, as well
as having previously discussed them internally in the past. For the case of AFAS
Focus, this may be explained by the observation that a large portion of focus areas
and capabilities are irrelevant for the product given its current development stage,
which in turn reduces the effectiveness of the API-m-FAMM in this case.

TABLE 6.2: The rankings given by the case companies’ practitioners
in response to the questions corresponding to the four evaluation cri-

teria, as defined in Section 6.1.3, as well as their averages.

Interviewee Operational Feasibility Ease of Use Usefulness Effectiveness

AFAS Profit1 2 4 4 3.5
AFAS Focus 2 3 4 3
ConsultComp 4 4 3 4
Exact Online 4 5 5 4
Uber 3 4 4 5
EAMComp 4 4 4 5

Average 3.2 4.0 4.0 4.1

1 Scores for this product were provided by two practitioners. As such, the average of these
scores is shown.

Interestingly, the API-m-FAMM was ranked fairly high by ConsultComp’s prac-
titioner, regardless of the fact that, similarly to the AFAS Focus product, some focus
areas and capabilities do not apply to the product given its utilization of internal
APIs. However, ConsultComp’s intent of developing partner APIs in the future may
provide an explanation for the practitioner’s appreciation of the API-m-FAMM. Fur-
thermore, it is interesting to note that even though the case study protocol was misin-
terpreted by EAMComp’s practitioner, the API-m-FAMM was nevertheless ranked
positively. Because of this, it seems that even though the misinterpretation of the
case study protocol was inconvenient for the researchers in terms of data extraction
and assessing the organization’s level of maturity, this did not negatively impact the
API-m-FAMM in achieving its intended goal. Regarding the average score given to
the operational feasibility criterion, the researchers suspect that this is on the low end
due to a lack of incentive for practitioners to re-use the API-m-FAMM after the initial
assessment.

Chapter 6. Case Study 97

6.4 Changes Made as Result of Case Study Findings (API-m-
FAMM v3.0)

As a result of findings from the case studies that are described in this chapter, several
changes were made to the API-m-FAMM. The decisions to make these changes are
based on the discussions that were held as part of the embedded single-case study
as well as general observations that were made as a result of analyzing the results of
all case studies.

First, the decision is made to merge two of the implementation categories of prac-
tices that are described in Section 6.1.3: not implementable and not applicable. These
categories were merged into the not applicable category. During the discussion ses-
sions, it became clear that these two categories were used interchangeably, and their
difference caused confusion among practitioners. After inquiring as to what caused
this confusion, the practitioners noted that given an investment of sufficient time
and resources, every practice is implementable in theory. However, the practices
that were initially marked as not implementable were actually deemed to be undesir-
able to implement due to the fact that they do not fit the organization’s scope, needs,
vision, or goals, rather than technically not being implementable.

For example, in the case of AFAS Profit, the multiple API versioning strategy was
initially marked as not implementable. However, the practitioners noted that this
strategy has yet to become necessary in versioning the APIs due to the fact that the
version of the connectors are directly tied to the version of the database on the back-
end. As such, it was determined that for AFAS Profit, this practice is not applicable
rather than not implementable. Because this seemed to be the case for all practices
that were initially denoted by the not implementable category, it was rendered obso-
lete, which is also further supported by the limited observation of practices being
marked as such. The description of the not applicable category was then extended to
the following: "the practice has not been implemented, and is not applicable as it will most
likely never be implemented. This may be caused by a number of reasons. For example, the
practice may not be of added value, or not desirable for the organization to implement because
it does not align with the organization’s goals, vision, or needs.".

Secondly, a similar decision was made to merge the implementable but not planned
and implementable and planned categories into an implementation category named
implementable. This was done due to a number of reasons. Firstly, during the
discussion sessions, it became clear that the description corresponding to the im-
plementable and planned was widely interpretable for practitioners. Specifically, the
phrasing: "planned for implementation in the foreseeable future" caused confusion,
considering that the time frame this might apply to was not explicitly specified. For
example, the practitioner that was interviewed during the case study with AFAS Fo-
cus had initially marked the predictive analytics practice as implementable and planned.
However, when discussing this, it was mentioned that this was done solely based on
a past expression of interest towards implementing this practice during an internal
discussion session. Moreover, the practice had not yet been placed on any formal
development roadmap. In addition to this example, multiple cases were encoun-
tered where the practitioners of other case companies mentioned being unsure as to
when a practice that they had initially marked as implementable and planned would
precisely be implemented, regardless of the fact that it had already been placed on
a development roadmap. Considering that long-term roadmaps are often dynamic

Chapter 6. Case Study 98

and priorities tend to change over time, in addition to the complexity involved with
implementing some practices (especially those of higher maturity), it is generally
difficult for practitioners to accurately estimate when practices will be implemented.

As such, it was decided that the confusion and ambiguity caused by the imple-
mentable and planned category may best be avoided by excluding any aspects of time
estimation and prioritization from the API-m-FAMM. While the API-m-FAMM may
assist practitioners in internal discussions aimed at prioritizing and planning the
implementation of practices, its principal goal is to assess the current degree of ma-
turity of an organization’s current state in API management. Hence, for the purpose
of this research and the data collection for this case study, processes such as plan-
ning and placing practices on development roadmaps are excluded by merging the
implementable but not planned and implementable and planned categories into the imple-
mentable category. This implementation category is described as: the practice has not
been implemented, but in theory is implementable. Depending on the organization’s needs
and plans, the practice will either be implemented in the short-term, long-term, or not at all.

Furthermore, some additional changes are made to practices as a result of the
discussion sessions with practitioners. One practice was removed altogether, and
the descriptions of six practices were modified. Specifically, the following changes
were made to the following practices:

• Perform Request Rate Limiting: this practice was extended to also comprise
error limiting. In the case of AFAS Profit, this is implemented by placing con-
sumers on a temporary denylist when they perform an excessive amount of
faulty calls within a predefined time span.

• Prevent Sensitive Data Exposure: this practice was removed. During discus-
sions, this practice caused confusion due to the observation that this practice is
already captured by the Implement Transport Layer Encryption and Decouple In-
ternal & External Data Model practices. Additionally, after further investigation
this practice was deemed to be out of scope, considering that the scope of this
practice involves app data storage in general, as opposed to API management.

• Implement Predictive Scaling: the description of this practice was modified.
Originally, the description mentioned that this practice may be implemented
’manually or automatically’, which caused confusion due to the fact that these
methods are already capture in the Implement Scaling practice. Because pre-
dictive scaling is envisioned by practitioners and the researchers to be done
automatically, the manual element was removed from the description.

• Monitor Resource Usage: the description of this practice was expanded. Dur-
ing discussions, it became clear that monitoring resources does not always
specifically involve metrics such as CPU and disk usage. Instead, rough ap-
proximations may be used to determine resource usage instead, which is why
the description was expanded to clarify this.

In addition to these changes, a small number of changes were made as a result
of practitioners identifying errors such as typos. These were corrected, after which
the document describing the API-m-FAMM’s source data was updated accordingly
(Mathijssen, Overeem, & Jansen, 2021b). Furthermore, the visual variant of the API-
m-FAMM was updated to incorporate the removal of the prevent sensitive data ex-
posure practice. This final version of the model, API-m-FAMM v3.0, can be seen in
Figure 6.10.

Chapter 6. Case Study 99

FIGURE 6.10: API-m-FAMM v3.0. This is the final version of the API-
m-FAMM, which incorporates the changes that are applied as a result

of the conducted case studies.

100

Chapter 7

Discussion

Considering the results from the experts interviews and case studies have been dis-
cussed in previous chapters, this chapter is aimed at first reflecting on the design and
creation process of the API-m-FAMM. Next, scientific contributions made as part of
this study are presented. Then, all threats to the validity of this research are identi-
fied, along with the actions that were taken to mitigate them. Finally, limitations as
well as opportunities and possibilities for future work are discussed.

7.1 Findings and Implications

While the final version of the API-m-FAMM is structured in an effective and under-
standable manner, in order to arrive at this point many extensive discussions were
held among the researchers in the early stages of scoping, structuring, and popu-
lating the model. The difficulty of decisions that had to be made were often tied to
the fact that, as a research subject, the topic of API management is often relatively
broad, commercialized, and abstract. When first investigating the topic, the variety
of sub-topics that were encountered and that are tied to API management was often
quite overwhelming. A challenge that resulted from this that the researchers were
faced with throughout this study lied in determining the correct level of abstraction.
For example, topics such as microservices were encountered, which is an architec-
tural style for web applications consisting of small web services that often use APIs
to communicate between themselves. It could be argued that such a topic, as well
as corresponding sub-topics such as server- and client service discovery, should be
included in the API-m-FAMM considering that APIs play a role in it.

Similarly, such scoping dilemmas were encountered with deciding whether ar-
chitectural components such as gateways should be included in the model. How-
ever, considering that capabilities such as traffic and resource management may be
achieved without using a gateway or alternatives such as proxies, and these ap-
proaches each have (dis)advantages without necessarily being more mature than
the other, they were excluded from the model’s scope. Another challenge was en-
countered in deciding whether the design and creation of APIs should be included
in the model, considering that it is the first of the stages the API lifecycle (as shown
in Figure 3.5) consists of. Inclusion of this stage would entail that various design
methodologies such as the API first approach (Rivero, Heil, Grigera, Gaedke, &
Rossi, 2013), which advocates for designing the API’s contract first before writing
any code, should either be included or excluded. Inclusion would result in such
practices becoming too abstract in comparison to those assigned to other capabilities
and focus areas, while exclusion would result in practices being incomplete. Hence,
the decision was made to exclude all design-related practices from the scope. The
main solution that was used to solve these scoping dilemmas was to identify what
(sub)topics belong to the core of API management. This was determined through

Chapter 7. Discussion 101

expert interviews, based on which the scope of the model was adjusted throughout
the process.

These scoping adjustments are made evident by analyzing the distribution of
the amounts of practices and capabilities throughout the API-m-FAMM’s evolution.
As can be seen in Table 7.1, the number of practices and capabilities that were in-
cluded in the model declined throughout the iterations. The decline that is observed
between the collection of practices and capabilities that were extracted through the
SLR and the first version was mostly caused due to the fact that, in hindsight, a large
part of these were classified incorrectly due to a lack of knowledge of the topic in this
stage of the research. For example, many processes that ended up being classified as
practices in the final version of the model were initially marked as capabilities, and
many processes that initially were marked as practices were later deemed too granu-
lar and were ultimately merged into more substantial practices. This was done based
on an increasing body of knowledge that gradually grew over the course of this re-
search, by using information gathered from (grey) literature, expert interviews, and
discussion sessions. This decline may also be attributed to scoping decisions that
were described throughout this work, as well as those outlined in the previous para-
graph.

TABLE 7.1: Number of practices, capabilities, and focus areas that
were extracted by the SLR, and subsequently comprised by the three

major versions of the API-m-FAMM: v1.0, v2.0, and v3.0.

Component SLR API-m-FAMM v1.0 API-m-FAMM v2.0 API-m-FAMM v3.0

Practice 114 87 81 80
Capability 39 23 20 20
Focus Area 0 6 6 6

Another point of discussion is that of the heterogeneous distribution among
practices that that may be observed across all maturity levels of the API-m-FAMM.
As can be seen in Figure 5.7, the left-hand side of the model is more densely pop-
ulated than the right-hand side in terms of practices that are assigned to maturity
levels 1 to 7, apart from the Threat Detection & Protection, Monetization Strategy and
Account Management capabilities. While it may be considered to be desirable to com-
press the maturity levels as much as possible in order to make the model more com-
pact, the observed distribution of practices is a result of the way the API-m-FAMM is
structured due to the dependencies that are present among practices, as is discussed
in Section 5.1.1. As a result of juxtaposing practices that have dependencies tied to
them, it was concluded that a minimum of 10 maturity levels are needed to struc-
ture the API-m-FAMM. As such, the model may not be artificially compressed any
further.

Lastly, as a point of discussion, it is important to note that while the API-m-
FAMM provides organizations with a structured overview of the topic, API manage-
ment is often not a straightforward and linear practice to implement. Additionally,
as is shown by the case studies that were conducted, even though some practices
may be regarded as being more mature, they may not always necessarily be the best
fit for an organization. This may often be attributed to a variety of reasons, but
can include difficulties with regards to the organization’s underlying technical ar-
chitecture or infrastructure, low priority in comparison to other projects or customer

Chapter 7. Discussion 102

wishes, or return on investment being too low in relation to the time and resources
required to develop and implement the practice.

Furthermore, as some experts mentioned during interviews, the process leading
up to the point where APIs are ready to be managed (i.e. design and creation) is
often just as, if not more, complex. For example, convincing management and stake-
holders of the need for building an API can be a challenge in itself, considering that
doing so often requires a substantial investment. Especially since afterwards, re-
sources have to be invested in training employees and evangelizing the API within
the organization through internal processes and communication.

7.2 Scientific Contribution

Aside from the main practical contributions the API-m-FAMM offers organizations
in maturing their API management practices, this work also provides various scien-
tific contributions. These contributions are listed below, and summarized at the end
of this section.

• Firstly, this work offers researchers a previously undefined framework that
captures the topics and processes API management consists of. During the
first stages of this research, mainly as part of the SLR, it soon became clear
that relatively little academic literature exists on the topic that goes in-depth
with regards to describing the fundamentals of API management. Addition-
ally, little consistency and agreement was observed among researchers as to
what elements of API management are considered to be at the core of the
topic. Furthermore, most (grey) literature is connected, through one way or
another, to commercial API management platform providers such as Google’s
Apigee and Oracle’s WSO2. By decoupling API management processes and
topics from such commercial platforms, the API-m-FAMM offers the academic
community, as far as the researchers are aware, the first de-commercialized
overview of the topic that was developed by using insights from both litera-
ture as well as the industry. Due to the fact that this framework is platform
independent and constructed in a fully transparent manner, it offers a starting
point and stepping stone for future research in the topic of API management.

• Secondly, this work provides researchers that seek to develop a focus area
maturity model for a different functional domain with a detailed framework
on how to do so. Publications on the development of FAMMs such as that
of Jansen (2020) and Spruit and Röling (2014) offer a high-level overview of
this process, which adhere to the FAMM meta-model presented by van Steen-
bergen et al. (2013) and De Bruin et al. (2005)’s methodology for developing
maturity models. The steps that this methodology consists of were also fol-
lowed in this work: conducting a SLR, population, evaluation through expert
interviews, and deployment as part of case studies. However, the intermedi-
ate incremental versions that were developed throughout the process are not
discussed in these publications, as is the case in this work (Chapter 4 & 5).
While this was likely a deliberate choice that was made due to constraints in
the size and length of academic publications, the fact that the entire develop-
ment and design process of the API-m-FAMM is visible to the readers of this
work contributes to adding to the knowledge base of maturity model develop-
ment. These insights also contribute towards alleviating concerns mentioned

Chapter 7. Discussion 103

by Jansen (2020), whom states that: "Interestingly enough, while there is a rapid in-
crease of publications of new maturity models, there is little literature that particularly
discusses the development of maturity models". Furthermore, work conducted by
Proença and Borbinha (2016) on the state of the art of maturity models has
found that one of the main limitations to maturity models is that there is a
general "Lack of information regarding the maturity model development method".

• Thirdly, we have incorporated novel approaches in developing the API-m-
FAMM. This includes the introduction of classification of the different types
of changes that were made to practices and capabilities as a result of grey lit-
erature verification (Section 4.2.3): remove, add, merge, split, relocate, and rename.
These categories were also utilized to classify the different types of suggestions
that were made during expert interviews (Section 5.1.1).

Furthermore, fundamental decisions that were made towards adjusting the
scope and contents of the FAMM following the expert interviews (Section 5.1.1)
are elaborated upon, as well as efforts to increase traceability and transparency
through the inclusion of detailed figures that show all suggested changes made
by experts (Figure 5.3) and the way they were subsequently interpreted (Figure
5.4).

Moreover, a card sorting technique was used and described, which uses digital
tools to rank and assign practices to maturity levels (Section 5.1.1). Addition-
ally, the way these exercises were interpreted and the manner in which prac-
tices were ultimately assigned to maturity levels (Section 5.1.1) is elaborated
upon.

Another novel approach includes the utilization of criteria used for DSR arte-
fact evaluation introduced by Prat et al. (2015) to evaluate the API-m-FAMM’s
usefulness, completeness, ease of use, effectiveness, and operational feasibility.
Doing so has shown that using these criteria is an adequate strategy for evalu-
ating FAMMs during expert interviews or through surveys. In this work, the
criteria were used to gather feedback and foster discussion with experts as well
as among the researchers themselves, in order to subsequently guide further
improvements to the API-m-FAMM. While in this case the criteria evaluation
was conducted during the first evaluation cycle and as part of the case studies,
the criteria could also be used to evaluate a prototype version of a FAMM to
gauge interest among practitioners, or as part of the second evaluation cycle.

• Fourthly, this work has shown that De Bruin et al. (2005)’s methodology for
maturity model development may be incorporated with DSR, by using it to
construct a design science artefact during the solution design phase. Further-
more, this study demonstrates which techniques and tools may be utilized
during the test phase of De Bruin et al. (2005)’s methodology. This includes
some of the approaches listed above, such as usage of Prat et al. (2015)’s evalu-
ation criteria, conducting multiple evaluation cycles through expert interviews
to evaluate the maturity model, as well as the usage of Nielsen (1995)’s card
sorting technique to perform maturity level assignments. As such, this work
provides researchers that utilize De Bruin et al. (2005)’s methodology and are
involved with maturity model development with suggestions for the usage of
novel approaches so that they may incorporate them in the testing phase of
their maturity models.

Chapter 7. Discussion 104

• Fifthly, this work has used a set of categories as part of the case study to col-
lect and determine the status of implementation for each practice contained in
the API-m-FAMM. These categories were inspired by the practice implementa-
tion categories that are used as part of case studies conducted by Jansen (2020)
in evaluating his Focus Area Maturity Model for software ecosystem gover-
nance. Initially, the researchers extended the four categories used by Jansen
(2020) with a fifth category: implemented. This category was introduced to en-
able data collection regarding the as-is situation of practice implementation
in the participating case companies. Having insight into the current status of
implementation is paramount towards ensuring that the API-m-FAMM suc-
ceeds in achieving its goal, which is to assess the organization’s current level
of maturity.

Additionally, in order to highlight the difference between practices that are
planned for implementation and those that are not, Jansen (2020)’s implementable
category was initially renamed to implementable but not planned so that it may
be used as an alternative to the implementable and planned category. However, as
is described in Chapter 6.4, during the discussions that were conducted as part
of the embedded single-case study it was found that practitioners were unsure
as to when a practice may be deemed to be planned for implementation. In
order to avoid confusion and ambiguity, these two categories were ultimately
merged into the implementable category. Furthermore, the decision was made
to merge the not implementable category with the not applicable category, as it
became evident from the discussion sessions that these two categories were
used interchangeably. All changes that were made to the practice implemen-
tation categories are summarized and visualized in Figure 6.3. We consider
these changes to be an improvement of the categories that were originally in-
troduced by Jansen (2020), as we have found that the not implementable and
implementable and planned cause ambiguity and confusion among practition-
ers with regards to aspects such as prioritization and planning of practices, in
addition to causing confusion as to what constitutes a practice not being imple-
mentable. Researchers involved in research on maturity models and FAMMs
may re-use these improved practice implementation categories to collect and
present case study data.

• Lastly, the API-m-FAMM was successfully deployed in practice with minimal
involvement of the researchers. As is described in Chapter 6, practitioners
were provided with the API-m-FAMM, along with a set of instructions and a
spreadsheet that was used to denote which practices had been implemented
in the case company. To the best of the researchers knowledge, this study is
the first among work that has previously been done with regards to the design
of FAMMs where practitioners are enabled to self-assess their organization’s
maturity in a functional domain such as API management. In comparison,
Jansen (2020)’s SEG- M2 and Spruit and Röling (2014)’s ISFAM were deployed
in practice by gathering input through in-person collaboration between the
practitioners and the researchers themselves, as well as desk studies. More-
over, as is discussed in Section 6.3 and shown in Table 6.2, the majority of
practitioners’ experience with using the API-m-FAMM was positive, consider-
ing that its ease of use, usefulness, and effectiveness was ranked with a score of 4
out of 5 on average.

In short, the scientific contributions of this work include a previously undefined

Chapter 7. Discussion 105

framework of the topic of API management, that is platform and technology inde-
pendent, de-commercialized, grounded in both literature and practice, as well as
constructed in a fully transparent manner. These traits make this framework well-
suited for acting as a stepping stone for future research into the topic of API man-
agement. Furthermore, considering that all steps involved in the process of devel-
oping the API-m-FAMM have been extensively described throughout this work, re-
searchers interested in developing maturity models and FAMMs are also provided
with a framework to do so. This includes a classification of the different types of
changes that may be made to practices and capabilities, scoping decisions that may
be encountered throughout the process, and the usage of the card sorting technique
to perform maturity level assignments. Additionally, an improvement of the practice
implementation categories originally introduced by Jansen (2020) is proposed. Fur-
thermore, it was shown that the evaluation criteria introduced by Prat et al. (2015)
may be used to evaluate FAMMs and can be incorporated into De Bruin et al. (2005)’s
methodology for maturity model development, and that FAMMs may be deployed
with minimal involvement of the researchers.

7.3 Validity

Like all empirical research, this work is vulnerable to threats to validity. Hence, it
is of critical importance to analyze and mitigate these threats. Generally speaking,
threats to validity may be categorized into four categories: construct validity, internal
validity, external validity, and reliability (Ampatzoglou, Bibi, Avgeriou, Verbeek, &
Chatzigeorgiou, 2019; Runeson & Höst, 2009). In the sections below, several threats
to these categories of validity are identified and described, along with the actions
that were taken to mitigate them.

7.3.1 Construct Validity

Construct validity refers to the degree to which this study actually measures what
is is intended to. In the context of this study, this entails assessing an organization’s
current degree of maturity with regards to API management. This type of validity
was mitigated through a number of actions. Firstly, the SLR that was conducted
as a means of initially populating the first versions of the API-m-FAMM adhered
to several constraints. This includes a search string that was constructed through
snowballing in an iterative manner and was peer reviewed by all researchers. Fur-
thermore, multiple databases were searched and strict inclusion and exclusion crite-
ria were adhered to as to mitigate study inclusion and exclusion bias.

Publication bias was further mitigated as a result of the inclusion of grey liter-
ature. Additionally, multiple discussion sessions were held among researchers at
various stages of the population process in order to mitigate data extraction bias
and researcher bias (Ampatzoglou et al., 2019). Moreover, construct validity is miti-
gated through this work’s adherance to DSR guidelines and De Bruin et al. (2005)’s
methodology for developing maturity models, as well as providing full transparency
in terms of traceability and the design choices that were made throughout the de-
velopment process. Lastly, robustness of the initial classification that was used by
De (2017) was ensured by evaluating this decision through multiple expert inter-
views. However, while this classification was initially used due to the fact that the
SLR found that De (2017)’s work was cited the most often across literature, it should

Chapter 7. Discussion 106

be noted that the main objects of discussion in this work are API management plat-
forms. While these have been excluded from the scope of the API-m-FAMM, as
motivated in Section 5.1.1, more case studies should be conducted at organizations
both using or not using API management platforms to investigate whether this deci-
sion has negatively impacted construct validity. However, this decision was ran by
experts during the second evaluation cycle, during which no criticism or concerns
were raised.

7.3.2 Internal Validity

Internal validity is concerned with the extent to which there is evidence that the
artefact makes a difference in terms of cause and effect in the context of this study.
This type of validity is difficult to mitigate in the case of the API-m-FAMM, mainly
due to the relatively short duration (8 months) of this study. In order to investigate
whether the model is able to achieve its intended goal, which is to assist organi-
zations in assessing and evaluating their degree of maturity in API management
in order to improve upon their API management related processes, the researchers
suspect that multiple desk studies that last substantial periods of time should be
conducted. Similarly, this approach was taken by Jansen (2020) in order to evaluate
a FAMM in practice. By combining these desk studies with multiple follow-up inter-
views, it may be properly investigated whether the usage of the API-m-FAMM by
practitioners actually resulted in the implementation of practices that were not pre-
viously implemented within the organization, thus fulfilling the artefacts intended
goal.

However, verifying the implementation of practices contained in the API-m-
FAMM through desk studies is largely infeasible since practices are often placed on
long-term road maps that are susceptible to change, reducing the chance of actually
observing the implementation of such practices during the desk study. Instead, the
effects of the API-m-FAMM were investigated through evaluation with the criteria
listed in Table 2.3 during the experts interviews and case studies. Considering the
difference and increase in terms of the scores that were assigned to these criteria by
practitioners when comparing the first and second version of the API-m-FAMM, in
addition to the positive results and feedback received as a result of the case stud-
ies, we believe that the model is able to achieve its intended goal. In addition to
this long-term goal, short-term benefits may also be attained by using the API-m-
FAMM due to practitioners being able to immediately identify practices that are not
currently implemented.

7.3.3 External Validity

External validity revolves around the degree to which the results of this study may
be generalized and applied to other contexts and situations. The API-m-FAMM is
mainly targeted towards organizations that expose one or multiple public or part-
ner APIs. However, two experts that are employed at organizations that currently
exclusively utilize a set of internal APIs were involved in the first evaluation cycle.
Considering that these experts expressed that focus areas such as Security, Observ-
ability, Performance and, to a lesser extent, some capabilities belonging to the Lifecycle
focus area, are relevant and applicable to them, we suspect that the API-m-FAMM is
also useful to such organizations.

Organizations of varying sizes and backgrounds were involved in the evaluation
cycles and case studies. While some experts that are employed at large organizations

Chapter 7. Discussion 107

noted that most practices have already been implemented at their organization, they
also commented that some practices that are assigned to high maturity levels have
not yet been implemented. Furthermore, experts working for small organizations in-
dicated that the API-m-FAMM can be a useful tool for them to use as a road map or
checklist to use in discussions with management and stakeholders so that future im-
plementation of practices that are currently not implemented may be discussed and
planned. Additionally, due to the decision to exclude practices that are solely tied to
the usage of API management platforms, the API-m-FAMM is generalizable to both
organizations that do not use such platforms, and those that do not. However, while
this was not the case with organizations involved in the evaluation cycles and case
studies, more case studies should be conducted with organizations that heavily uti-
lize API management platforms to fully determine whether this exclusion in terms
of scoping has negatively impacted the usability of the API-m-FAMM for such such
organizations.

7.3.4 Reliability

This aspect is concerned with the extent to which the data and analyses that were
conducted as part of these study are dependent on the specific researchers. Due to
adherence to DSR guidelines, the use of De Bruin et al. (2005)’s methodology, and
the SLR, some degree of researcher bias has been mitigated. Furthermore, the pro-
tocols that were used for experts interviews and case studies are included and were
reviewed through peer reviewing among all involved researchers. Additionally, all
design decisions and processes that resulted in the various increments of the API-
m-FAMM are extensively documented and described throughout this work, along
with separate source documents detailing each major version of the model.

Another threat to reliability is that, considering the maturity level assignments
described in Section 5.1.1 were partially done in a pragmatic and subjective matter,
they may result in a different outcome if replicated. This is due to the fact that the
experts that ranked practices as part of the maturity ranking exercises each have
varying backgrounds, experiences, and are employed at organizations with differ-
ent characteristics. However, this threat was mitigated by using the average of these
maturity assessments, as well as analyzing and cross-evaluating focus areas and ma-
turity assignments during the second evaluation cycle. Furthermore, the deploy-
ment of the API-m-FAMM as part of the case studies has not produced any criticism
among practitioners on the maturity levels that practices are assigned to.

A final potential threat to reliability lies in the fact that organizations that par-
ticipated in the case studies have used the API-m-FAMM to assess their degree of
maturity in API management for themselves. In the context of this study, this was
deemed an appropriate approach considering that most of the the participating or-
ganizations were also involved in one or both evaluation cycles and were thus fa-
miliar with the API-m-FAMM and its contents. As is discussed in Section 6.2.3, the
practitioner (whom did not participate in the evaluation cycles) of one case com-
pany misinterpreted the case protocol, resulting in the researchers being provided
with an incomplete data collection spreadsheet. However, judging from the scores
that were assigned to the evaluation criteria, as can be seen in Table 6.2, this misin-
terpretation has not negatively impacted the practitioners experience with using the
API-m-FAMM.

Chapter 7. Discussion 108

7.4 Limitations

Due to the fact that this study concerns a master thesis project, most limitations were
caused as a byproduct of time constraints. Firstly, the researchers suspect that full
saturation in terms of the amount of capabilities and practices that were uncovered
was not able to be reached due to the fact that each of the six focus areas were evalu-
ated three times during the expert interviews. Ideally, focus areas would have been
discussed repeatedly until full content saturation had been reached.

Additionally, due to time constraints and the prevalence of the COVID-19 pan-
demic, desk studies were not a possible method of evaluating the API-m-FAMM’s
effect in practice over a longer period of time. In comparison, Jansen (2020)’s SEG-
M2 FAMM was evaluated through six case studies that comprised 54 interviews and
38 days worth of desk studies in total. However, another example includes Spruit
and Röling (2014)’s ISFAM, which was constructed by interviewing 11 domain ex-
perts through 13 interviews, and subsequently evaluated through one case study.
This is an amount that is comparable to the 11 expert interviews and 6 case studies
that were conducted as part of this study.

7.5 Opportunities & Future Work

In part with regards to the limitations outlined above, there are some opportuni-
ties for future work and improvements that may be identified. Firstly, experts oc-
casionally suggested during interviews that they are of the opinion that a bigger
range of practitioners could be reached if the accessibility of the API-m-FAMM as
a tool would be improved. One way in which this could be achieved, is by de-
veloping a web-app through which practitioners may easily navigate, as well as
read focus area, capability, and practice descriptions, and then mark which prac-
tices are or are not implemented within their organization. In doing so, the Excel
spreadsheet and source document that were used as part of the case studies could
be combined into one easily usable tool. Currently, the API-m-FAMM is maintained
on maturitymodels.org. While this website offers a visual alternative to the source
document considering that descriptions are included, it does suffer from some limi-
tations. Most notably, the character length of descriptions is limited, and practition-
ers are unable to denote whether practices have been implemented. Enabling this
would allow practitioners to share the current as-is situation of their organization’s
API management maturity with management and stakeholders. The opportunity
for improved visualization of results extracted from FAMMs was also previously
identified by Spruit and Röling (2014). In this work, it is suggested that effective re-
sult visualization may be accomplished through spider charts, since most managers
are familiar with such a type of representation.

Secondly, as is mentioned in Section 5.1.1, this study was not able to capture the
topic of Governance in the form of capabilities and practices. While some experts pro-
vided some input on practices that could potentially be added, it was decided these
would not be of added value to practitioners. Nevertheless, governance is a term
and subject in the scope of API management that most experts were familiar with
during interviews when asked, in addition to it being relatively prevalent in litera-
ture (De, 2017; Jayathilaka, Krintz, & Wolski, 2015; Krintz et al., 2014; Lourenço Mar-
cos & Puccinelli de Oliveira, 2019). Because of this, the researchers suspect that
there is an opportunity for future research to perform research to uncover common

maturitymodels.org

Chapter 7. Discussion 109

threads and patterns in terms of the ways organizations govern their APIs in prac-
tice.

Thirdly, the researchers suspect that there is an opportunity to uncover new mon-
etization strategies and unique implementations of monetization models for APIs in
the industry that were not yet encountered as part of this study. Considering that
these were not observed in practice as part of the conducted case studies, it may be
hypothesized that enterprises that are larger than the case companies involved in
this study and that have been exposing and working with APIs for a long time, may
be utilizing strategies to monetize their APIs.

Furthermore, in the early stages of this research, a goal was set to identify em-
ployee roles within organizations that are most commonly involved with each indi-
vidual practice. As a first step towards this attempt, an overview of roles generally
involved in API management was extracted from work by De (2017), Medjaoui et
al. (2018), and L. Weir (2019), as shown in Tables 3.2 and 3.3. For future research,
it could be investigated and verified whether these roles are actually involved with
implementing the practices that are contained in the API-m-FAMM, and whether
the naming conventions of these roles match those that are used in practice.

Moreover, future work in this domain could seek to attempt the incorporation of
technical implementations and topics that were abstracted away from and excluded
from the scope of the API-m-FAMM. This includes the design and creation process
of APIs, some of which have been mentioned earlier in this work, such as API first
design (Rivero et al., 2013), webhooks (Biehl, 2017), and matters that are of particu-
lar concern to developers, which may include elements belonging to development
methodologies such as DevOps. The API-m-FAMM could be extended to incorpo-
rate these topics, or a separate model may be created.

Another opportunity lies in the potential to customize and adapt the API-m-
FAMM depending on certain organizational characteristics and goals. For exam-
ple, the case studies have shown that certain focus areas are irrelevant for organiza-
tions that exclusively utilize internal APIs. Such information could be preemptively
collected through a checklist or survey, based on which the contents of the API-
m-FAMM may be adapted. Other information that could be used to perform this
adaptation may include characteristics such as the size of the organization, whether
a third-party API management platform is used, or what type of product or services
the organization provides.

The aforementioned opportunity for customization and adaptation of FAMMs
can be linked to a general limitation of maturity models, that has been identified in
as part of previously conducted research. In his work, Proença and Borbinha (2016)
argues that "maturity assessments can be used to measure the current maturity level of
a certain aspect of an organization in a meaningful way, enabling stakeholders to clearly
identify strengths and improvement points, and accordingly prioritize what to do in order
to reach higher maturity levels". However, as a prerequisite to performing such as a
maturity assessment, evidence needs to be manually collected to substantiate the
maturity level calculation, which makes maturity assessment an an expensive and
burdensome activity for organizations. Hence, Proença and Borbinha (2016) argues,
future research should focus on developing methods and techniques to automate
maturity assessment. The researchers second this observation, as it has been ob-
served that, even though the maturity assessments that were done as part of the case
studies were performed with minimal intervention of the researcher, there are op-
portunities for automation, customization, and adaptation of maturity models and
FAMMs to reduce the amount of effort needed to perform maturity assessments and
provide tailor-made advice for maturity improvement. Moreover, the researchers

Chapter 7. Discussion 110

hypothesize that the aforementioned opportunities for automation, customization,
and adaptation could be key in creating incentives for practitioners to re-use matu-
rity models and FAMMs throughout a longer period of time. We consider maturity
model’s low degree of re-usability to be a point of concern due to our findings as
part of the case study, which has shown that practitioners are relatively unlikely to
revisit the API-m-FAMM to track their progress over a longer period of time.

Lastly, the researchers are of the opinion that useful insights could be gained by
conducting research into the differences in terms of advantages and disadvantages
that occur with regards to API management for organizations that actively utilize
third-party, commercial platforms to manage their APIs when compared to those
who do not. This suspicion is supported by the observation that currently, the largest
part of available (grey) literature on the topic of API management is either written
by authors that are either directly or indirectly affiliated to commercial management
platform providers. Examples of such authors include L. Weir (2019) (director at Or-
acle) and De (2017) (former Apigee consultant). This literature is, more often than
not, exclusively focused on the benefits that organization attain as a result of using
API management platforms. However, when asked, some experts that were inter-
viewed during the evaluation cycles noted that their organization does not use a
management platform and does not wish to do so. For future work, it should be
investigated whether significant differences exists in terms of API management ma-
turity between organizations that do use commercial platforms and those that do
not.

111

Chapter 8

Conclusion

Throughout this work, the design, population, evaluation, and deployment of a fo-
cus area maturity model targeted towards the topic of API management has been
described. The goal of this model as well as this work in general was to improve the
transparency and availability of API management assessment frameworks and tools
by constructing, evaluating and validating a publicly available, industry and aca-
demically grounded framework or tool that can be used by organizations that expose
their API(s) to third-party developers to assess and evaluate their degree of maturity
with regards to API management in order to improve upon their API management-
related business processes. In order to verify whether this goal has been achieved,
the research questions posed in Chapter 1.4 are reflected upon in the following para-
graphs.

MRQ: How can organizations that expose their APIs to third parties evaluate their API
management practices?

To answer this main research question, several sub research questions were posed.
The process of answering these individual questions is analyzed, by examining the
answers that were formulated throughout this study. After having done so, the main
research question is answered in the last paragraph of this chapter.

SQ1: What type of tool or framework is best suited for organizations wanting to assess
their API management related business processes?

In order to determine which type of tool or framework was best suited for achiev-
ing this study’s goal, a literature review was first conducted (Chapter 3) to investi-
gate the topic of API management. Additionally, this chapter incorporated a back-
ground section which was meant to identify all relevant and existing frameworks,
tools, and frameworks that seek to achieve similar goals to those of this study. This
process revealed that maturity models and matrices that incorporate maturity de-
grees, as well as capability comparison matrices, are an often used method for as-
sessing and evaluating organizations’ API management related business processes.
These findings prompted an investigation into the potential usability of maturity
models and capability frameworks, which ultimately resulted in the decision to use
a Focus Area Maturity Model (FAMM) to achieve this study’s goal. This decision is
motivated in Chapter 4. The underlying meta-model of FAMMs proved to be well-
suited to capture the various capabilities, activities, and processes API management
consists of.

SQ2: What elements should the API management assessment tool or framework be com-
prised of?

Chapter 8. Conclusion 112

As a result of the literature review, it became clear that API management as a
whole is a broad topic consisting of a large collection of sub-topics and processes.
These were extracted through an extensive SLR that incorporated all relevant lit-
erature related to the topic, resulting in a collection of focus areas, capabilities, and
practices. As is described in Chapter 4, after having decided on the scope and design
of the API-m-FAMM, these were then used to initially populate the model. Through
5 iterations, which were constructed as a result of various categorization and discus-
sion sessions, as well as verification using grey literature, a first version of the model
that is grounded in literature was developed. This version consisted of 6 focus ar-
eas, 23 capabilities, and 87 practices. The conceptual model representing these focus
areas and their corresponding capabilities is shown below in Figure 8.1.

FIGURE 8.1: Conceptual model corresponding to the API-m-FAMM,
representing the manner in which the topic of API management is
subdivided into 6 focus areas and the 23 capabilities that are assigned

to them.

SQ3: What are suitable criteria, benchmarks, and methods for evaluating the API man-
agement assessment tool or framework?

After having populated and developed the first version of the API-m-FAMM, the
model was evaluated. This evaluation was performed using five different evaluation
criteria that were adapted from work by Prat et al. (2015): completeness, ease of use,
effectiveness, operational feasibility, and usefulness. As a whole, the evaluation process
comprised two evaluation cycles that both utilized expert interviews as a method.
These evaluation cycles are described in Chapter 5. During the first of these cycles
11 interviews were conducted with 9 experts, which were mainly focused on eval-
uating the API-m-FAMM’s completeness by discussing all focus areas, capabilities,
and practices the first version consisted of. Additionally, all practices were ranked
in terms of their perceived maturity, and the model was evaluated on its operational
feasibility, ease of use, effectiveness, and usefulness. Many valuable insights were
distilled as a result of these interviews. After having analyzed these, the model was
modified accordingly through several iterations. This ultimately resulted in the sec-
ond version of the API-m-FAMM, which is grounded in both literature as well as
practice, and consists of 6 focus areas, 20 capabilities, and 81 practices. In order to
verify decisions made, this version was then evaluated through 3 expert interviews

Chapter 8. Conclusion 113

as part of the second evaluation cycle.

SQ4: What is a suitable method for validating the API management assessment tool or
framework in practice?

In order to validate the degree to which the API-m-FAMM succeeds in aiding or-
ganizations in evaluating and improving upon their API management related busi-
ness processes in practice, several case studies were conducted. The case study
design consisted of one embedded single-case study and multiple additional case
studies, which are described in Chapter 6. By adhering to a case study protocol,
the API-m-FAMM was successfully deployed with several case companies to assess
their current degree of maturity with regards to API management. Additionally, the
API-m-FAMM was evaluated through four criteria: operational feasibility, ease of use,
usefulness, and effectiveness. The scores assigned that were assigned by practitioners
to these criteria indicate that the API-m-FAMM is effective and succesful in achiev-
ing its intended goal, which is to aid organizations in assessing their level of matu-
rity in API management and guiding them towards an increased level of maturity.
In total, 6 software organizations and products in the Netherlands were included in
the case study. Results regarding their respective maturity in API management were
benchmarked, discussed, and analyzed, both individually as well as collectively.

As a whole, this research has shown that FAMMs are an appropriate type of ma-
turity model for representing a broad and extensive functional domain such as API
management, as well being well-suited for assessing organization’s as-is implemen-
tation of capabilities and practices. For this research in specific, the API-m-FAMM
was proven to be an adequate and efficient tool for aiding organizations in gaining
a better understanding of their current implementation of API management prac-
tices, and subsequently providing them with guidance towards a higher level of
maturity. This statement is supported by the results of the evaluation that was con-
ducted as part of the two evaluation cycles and case studies. It was shown that the
utilization of previously established evaluation criteria, that were originally intro-
duced by Prat et al. (2015) and are commonly used for DSR artefact evaluation, are
suitable for doing so. Furthermore, it has been shown that FAMMs may be suc-
cessfully deployed in practice with minimal involvement of the researchers, given
that the descriptions of practices, capabilities and focus areas are clearly described,
pragmatic, and supplemented with concrete examples, and the instructions for the
self-assessment are clearly explained. Additionally, this research helps build under-
standing among researchers interested in constructing FAMMs as to what concrete
steps should be taken, as well as what considerations and dilemmas may be encoun-
tered throughout the adherence to De Bruin et al. (2005) methodology for develop-
ing maturity models. Furthermore, this work provides scholars and practitioners
that are interested in API management with a novel and de-commercialized, as well
technology and platform independent overview of the topic that has been grounded
in both literature and evaluated in practice. Lastly, this study identifies a set of direc-
tions, suggestions, and opportunities for future research. These include suggestions
for future directions in API management related research, as well as opportunities
for improvement of maturity models.

114

References

Ampatzoglou, A., Bibi, S., Avgeriou, P., Verbeek, M., & Chatzigeorgiou, A. (2019).
Identifying, Categorizing and Mitigating Threats to Validity in Software Engi-
neering Secondary Studies. In Information and software technology (Vol. 106, pp.
201–230).

Arsanjani, A., & Holley, K. (2006). The Service Integration Maturity Model: Achiev-
ing Flexibility in the Transformation to SOA. In 2006 IEEE International Confer-
ence on Services Computing (SCC’06) (pp. 515–515).

Basole, R. C. (2019). On the Evolution of Service Ecosystems: A Study of the Emerg-
ing API Economy. In Handbook of Service Science (Vol. 2, pp. 479–495). Springer.

Becker, J., Knackstedt, R., & Pöppelbuß, J. (2009). Developing Maturity Models
for IT Management. In Business & Information Systems Engineering (Vol. 1, pp.
213–222). Springer.

Biehl, M. (2017). Webhooks: Events for RESTful APIs (Vol. 4). API-University Press.
Bonardi, M., Brioschi, M., Fuggetta, A., Verga, E. S., & Zuccalà, M. (2016). Fos-

tering Collaboration Through API Economy: the E015 Digital Ecosystem. In
Proceedings of the 3rd International Workshop on Software Engineering Research and
Industrial Practice (pp. 32–38).

Braun, C., Wortmann, F., Hafner, M., & Winter, R. (2005). Method Construction: A
Core Approach to Organizational Engineering. In Proceedings of the 2005 ACM
Symposium on Applied Computing (pp. 1295–1299).

Carmel, E., & Agarwal, R. (2006). The Maturation of Offshore Sourcing of Infor-
mation Technology Work. In Information Systems Outsourcing (pp. 631–650).
Springer.

Castillo-Montoya, M. (2016). Preparing for Interview Research: The Interview Pro-
tocol Refinement Framework. In Qualitative report (Vol. 21, p. 811-831).

Crawford, J. K., et al. (2007). Project Management Maturity Model. Taylor & Francis.
Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., & Weerawarana, S. (2002).

Unraveling the Web Services Web: An Introduction to SOAP, WSDL, and
UDDI. In IEEE Internet Computing (Vol. 6, pp. 86–93). IEEE.

De Bruin, T., Rosemann, M., Freeze, R., & Kaulkarni, U. (2005). Understanding
the Main Phases of Developing A Maturity Assessment Model. In Australasian
Conference on Information Systems (ACIS) (pp. 8–19).

Dig, D., & Johnson, R. (2006). How Do APIs Evolve? A Story of Refactoring. In
Journal of software Maintenance and Evolution: Research and Practice (Vol. 18, pp.
83–107). Wiley Online Library.

Espinha, T., Zaidman, A., & Gross, H.-G. (2014). Web API Growing Pains: Sto-
ries from Client Developers and Their Code. In 2014 Software Evolution Week-
IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering
(CSMR-WCRE) (pp. 84–93).

Espinha, T., Zaidman, A., & Gross, H.-G. (2015). Web API Growing Pains: Loosely
Coupled Yet Strongly Tied. In Journal of Systems and Software (Vol. 100, pp.
27–43). Elsevier.

REFERENCES 115

Etikan, I., Musa, S. A., & Alkassim, R. S. (2016). Comparison of Convenience Sam-
pling and Purposive Sampling. In American Journal of Theoretical and Applied
Statistics (Vol. 5, pp. 1–4). New York.

Farrell, S. (2009). API Keys to the Kingdom. In IEEE Internet Computing (Vol. 13, pp.
91–93). IEEE.

Fielding, R. T. (2000). REST: Architectural Styles and The Design of Network-based
Software Architectures. Doctoral dissertation, University of California.

Hevner, A., & Chatterjee, S. (2010). Design Science Research in Information Systems.
In Design research in information systems (pp. 9–22). Springer.

Hevner, A., March, S. T., Park, J., & Ram, S. (2004). Design Science in Information
Systems Research. In MIS Quarterly (pp. 75–105). JSTOR.

Holley, K., Antoun, S., Arsanjani, A., Brown, W., Cozzi, C., Costas, J., . . . others
(2014). The Power of the API Economy: Stimulate Innovation, Increase Pro-
ductivity, Develop New Channels, and Reach New Markets. In IBM Corporate
(Vol. 1, pp. 1–26).

Hüner, K. M., Ofner, M., & Otto, B. (2009). Towards A Maturity Model for Corpo-
rate Data Quality Management. In Proceedings of the 2009 ACM Symposium on
Applied Computing (pp. 231–238).

Iversen, J., Nielsen, P. A., & Norbjerg, J. (1999). Situated Assessment of Problems in
Software Development. In ACM SIGMIS Database: the Database for Advances in
Information Systems (Vol. 30, pp. 66–81). ACM New York, NY, USA.

Jansen, S. (2020). A Focus Area Maturity Model for Software Ecosystem Governance.
In Information and Software Technology (Vol. 118). Elsevier.

Jones, S., Torres, V., & Arminio, J. (2014). Issues in Analysis and Interpretation. In
Negotiating the Complexities of Qualitative Research in Higher Education: Funda-
mental Elements and Issues (pp. 157–173).

Kitchenham, B., & Charters, S. (2007). Guidelines for performing Systematic Litera-
ture Reviews in Software Engineering. In Keele University and Durham Univer-
sity Joint Report.

March, S. T., & Smith, G. F. (1995). Design and Natural Science Research on Infor-
mation Technology. In Decision Support Systems (Vol. 15, pp. 251–266). North-
Holland.

Masse, M. (2011). REST API Design Rulebook: Designing Consistent RESTful Web
Service Interfaces. O’Reilly Media, Inc.

Mathijssen, M., Overeem, M., & Jansen, S. (2020a). Identification of Practices and Ca-
pabilities in API Management: A Systematic Literature Review. arXiv preprint
arXiv:2006.10481.

Mathijssen, M., Overeem, M., & Jansen, S. (2020b). Source Data for the Focus Area
Maturity Model for API Management v2. arXiv preprint arXiv:2007.10611v2.

Mathijssen, M., Overeem, M., & Jansen, S. (2021a). Source Data for the Focus Area
Maturity Model for API Management v3. arXiv preprint arXiv:2007.10611v3.

Mathijssen, M., Overeem, M., & Jansen, S. (2021b). Source Data for the Focus Area
Maturity Model for API Management v6. arXiv preprint arXiv:2007.10611v6.

Maxwell, J. A. (2012). Qualitative Research Design: An Interactive Approach (Vol. 41).
Sage publications.

Mettler, T. (2011). Maturity Assessment Models: A Design Science Research Ap-
proach. In International Journal of Society Systems Science (Vol. 3, pp. 81–98).
Inderscience Publishers Ltd.

Mettler, T., Rohner, P., & Winter, R. (2010). Towards A Classification of Maturity
Models in Information Systems. In Management of the Interconnected World (pp.
333–340). Springer.

REFERENCES 116

Myers, B. A., & Stylos, J. (2016). Improving API Usability. In Communications of the
ACM (Vol. 59, pp. 62–69). ACM.

Mylopoulos, J. (1992). Conceptual Modelling and Telos. In Conceptual Modelling,
Databases, and CASE: An Integrated View of Information System Development (pp.
49–68). Citeseer.

Nielsen, J. (1995). Card Sorting to Discover the Users’ Model of the Information
Space. In Nielsen Norman Group.

Okoli, C. (2015). A Guide to Conducting a Standalone Systematic Literature Review.
In Communications of the Association for Information Systems (Vol. 37, p. 43).

Patton, M. Q. (2014). Qualitative Research & Evaluation Methods: Integrating Theory
and Practice. Sage publications.

Paulk, M. C., Curtis, B., Chrissis, M. B., & Weber, C. V. (1993). Capability Maturity
Model, Version 1.1. In IEEE Software (Vol. 10, pp. 18–27). IEEE.

Polya, G. (2004). How To Solve It: A New Aspect of Mathematical Method (Vol. 85).
Princeton University Press.

Pöppelbuß, J., & Röglinger, M. (2011). What Makes A Useful Maturity Model? A
Framework of General Design Principles for Maturity Models and its Demon-
stration in Business Process Management.

Prat, N., Comyn-Wattiau, I., & Akoka, J. (2015). A Taxonomy of Evaluation Methods
for Information Systems Artifacts. In Journal of Management Information Systems
(Vol. 32, pp. 229–267). Taylor & Francis.

Proença, D., & Borbinha, J. (2016). Maturity models for Information Systems: A State
of the Art. In Procedia Computer Science (Vol. 100, pp. 1042–1049). Elsevier.

Rivero, J. M., Heil, S., Grigera, J., Gaedke, M., & Rossi, G. (2013). MockAPI: An Agile
Approach Supporting API-first Web Application Development. In International
Conference on Web Engineering (pp. 7–21).

Robillard, M. P. (2009). What Makes APIs Hard to Learn? Answers from Developers.
In IEEE Software (Vol. 26, pp. 27–34). IEEE.

Rubin, H., & Rubin, I. (2011). Qualitative Interviewing: The Art of Hearing Data. Sage
publications.

Runeson, P., & Höst, M. (2009). Guidelines for Conducting and Reporting Case
Study Research in Software Engineering. In Empirical Software Engineering
(Vol. 14, p. 131). Springer.

Salvadori, I., & Siqueira, F. (2015). A Maturity Model for Semantic Restful Web APIs.
In 2015 IEEE International Conference on Web Services (pp. 703–710).

Shrestha, A., Cater-Steel, A., & Toleman, M. (2014). How To Communicate Evalua-
tion Work in Design Science Research? An Exemplar Case Study.

Spruit, M., & Röling, M. (2014). ISFAM: The Information Security Focus Area Matu-
rity Model.

Stylos, J. (2009). Making APIs More Usable With Improved API Designs, Documentation
and Tools (Unpublished doctoral dissertation). Carnegie Mellon University.

van de Weerd, I., & Brinkkemper, S. (2009). Meta-modeling for Situational Analysis
and Design Methods. In Handbook of Research on Modern Systems Analysis and
Design Technologies and Applications (pp. 35–54). IGI Global.

van Steenbergen, M., Bos, R., Brinkkemper, S., van De Weerd, I., & Bekkers, W.
(2010). The Design of Focus Area Maturity Models. In International Conference
on Design Science Research in Information Systems (pp. 317–332).

van Steenbergen, M., Bos, R., Brinkkemper, S., van de Weerd, I., & Bekkers, W. (2013).
Improving IS Functions Step by Step: the Use of Focus Area Maturity Models.
In Scandinavian J. Inf. Systems (Vol. 25, p. 2).

Venable, J., Pries-Heje, J., & Baskerville, R. (2012). A Comprehensive Framework

REFERENCES 117

for Evaluation in Design Science Research. In International Conference on Design
Science Research in Information Systems (pp. 423–438).

Vukovic, M., Laredo, J., Muthusamy, V., Slominski, A., Vaculin, R., Tan, W., . . . others
(2016). Riding and Thriving on the API Hype Cycle. In Communications of the
ACM (Vol. 59, pp. 35–37). ACM New York, NY, USA.

Wieringa, R. J. (2014). Design Science Methodology for Information Systems and Software
Engineering. Springer.

Wilde, E., & Pautasso, C. (2011). REST: From Research to Practice. Springer Science &
Business Media.

Wohlin, C. (2014). Guidelines for Snowballing in Systematic Literature Studies and
A Replication in Software Engineering. In Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering (pp. 1–10).

Xavier, L., Brito, A., Hora, A., & Valente, M. T. (2017). Historical and Impact Analysis
of API Breaking Changes: A Large-scale Study. In 2017 IEEE 24th International
Conference on Software Analysis, Evolution and Reengineering (SANER) (pp. 138–
147).

Yin, R. K., et al. (2003). Design and Methods. In Case Study Research (Vol. 3).

118

Grey Literature

Anji. (2018). Web API Versioning Techniques. Retrieved 2020-07-09, from http://
learninghubspot.com/index.php/2018/01/19/webapi-versioning/

Apigee. (2020). Managing API product bundles. Retrieved 2020-07-06, from https://
docs.apigee.com/api-platform/monetization/api-product-bundles

Auth0. (2021a). OAuth Scopes. Retrieved 2021-01-03, from https://auth0.com/
docs/sso

Auth0. (2021b). Single Sign-On. Retrieved 2021-01-03, from https://auth0.com/
docs/sso

Averdunk, I., & Moen, H. K. (2020). Implement Health Check APIs for Microservices. Re-
trieved 2020-07-10, from https://www.ibm.com/garage/method/practices/
manage/health-check-apis/

Barracuda. (2020). What Is Failover? Retrieved 2020-12-16, from https://www
.barracuda.com/glossary/failover

Bhojwani, R. (2018). Backward Compatibility Check for REST APIs. Retrieved 2020-
07-10, from https://dzone.com/articles/backward-compatibility-check
-for-rest-apis

Budzynski, M. (2016). How to Monetize APIs with Azure API Management. Re-
trieved 2020-07-10, from https://azure.microsoft.com/en-us/blog/how-to
-monetize-apis-with-azure-api-management/

CA Technologies. (2019). The API Management Playbook: Understanding Solutions for
API Management. Retrieved 2020-09-21, from https://docs.broadcom.com/
docs/the-api-management-playbook

Castellani, S., & Dorairajan, A. (2020). What Are the Different Types of APIs? Retrieved
2020-08-28, from https://apifriends.com/api-creation/different-types
-apis/

Coleman Parkes Research. (2017). APIs: Building A Connected Business in the App
Economy. Retrieved 2020-08-11, from https://docs.broadcom.com/doc/apis
-building-a-connected-business-in-the-app-economy

Crowe, C. (2018). What is An API Consumer? Retrieved 2020-
08-06, from https://community.apigee.com/questions/43660/what-is-an
-api-consumer.html

Devoteam. (2016). API Management at Liberty Global Inc. Retrieved 2020-09-
21, from https://nl.devoteam.com/en/our-case-studies/api-management
-liberty-global-inc

Dropbox. (2021). Data Transport Limit. Retrieved 2021-01-03, from https://www
.dropbox.com/developers/reference/data-transport-limit

Endjin. (2017). API Maturity Matrix. Retrieved 2020-09-21, from https://
endjin.com/blog/2017/07/kickstart-your-api-proposition-with-the
-api-maturity-matrix

Forrester Research. (2020). The Forrester Wave™: API Management Solutions, Q3
2020. Retrieved 2020-08-11, from https://wso2.com/resources/analyst
-reports/the-forrester-wave-api-management-solutions-q3-2020/

http://learninghubspot.com/index.php/2018/01/19/webapi-versioning/
http://learninghubspot.com/index.php/2018/01/19/webapi-versioning/
https://docs.apigee.com/api-platform/monetization/api-product-bundles
https://docs.apigee.com/api-platform/monetization/api-product-bundles
https://auth0.com/docs/sso
https://auth0.com/docs/sso
https://auth0.com/docs/sso
https://auth0.com/docs/sso
https://www.ibm.com/garage/method/practices/manage/health-check-apis/
https://www.ibm.com/garage/method/practices/manage/health-check-apis/
https://www.barracuda.com/glossary/failover
https://www.barracuda.com/glossary/failover
https://dzone.com/articles/backward-compatibility-check-for-rest-apis
https://dzone.com/articles/backward-compatibility-check-for-rest-apis
https://azure.microsoft.com/en-us/blog/how-to-monetize-apis-with-azure-api-management/
https://azure.microsoft.com/en-us/blog/how-to-monetize-apis-with-azure-api-management/
https://docs.broadcom.com/docs/the-api-management-playbook
https://docs.broadcom.com/docs/the-api-management-playbook
https://apifriends.com/api-creation/different-types-apis/
https://apifriends.com/api-creation/different-types-apis/
https://docs.broadcom.com/doc/apis-building-a-connected-business-in-the-app-economy
https://docs.broadcom.com/doc/apis-building-a-connected-business-in-the-app-economy
https://community.apigee.com/questions/43660/what-is-an-api-consumer.html
https://community.apigee.com/questions/43660/what-is-an-api-consumer.html
https://nl.devoteam.com/en/our-case-studies/api-management-liberty-global-inc
https://nl.devoteam.com/en/our-case-studies/api-management-liberty-global-inc
https://www.dropbox.com/developers/reference/data-transport-limit
https://www.dropbox.com/developers/reference/data-transport-limit
https://endjin.com/blog/2017/07/kickstart-your-api-proposition-with-the-api-maturity-matrix
https://endjin.com/blog/2017/07/kickstart-your-api-proposition-with-the-api-maturity-matrix
https://endjin.com/blog/2017/07/kickstart-your-api-proposition-with-the-api-maturity-matrix
https://wso2.com/resources/analyst-reports/the-forrester-wave-api-management-solutions-q3-2020/
https://wso2.com/resources/analyst-reports/the-forrester-wave-api-management-solutions-q3-2020/

GREY LITERATURE 119

Gartner. (2019). A Guidance Framework for Evaluating API Management Solutions. Re-
trieved 2020-09-21, from https://www.gartner.com/en/documents/3956412/
a-guidance-framework-for-evaluating-api-management-solut

GraphQL. (2020). GraphQL Best Practices. Retrieved 2020-07-09, from https://
graphql.org/learn/best-practices/

Guerrero, H., & Ramos, V. (2016). API Versioning Methods: A Brief Reference. Re-
trieved 2020-07-09, from https://developers.redhat.com/blog/2016/06/
13/api-versioning-methods-a-brief-reference/

Haddad, C. (2015). Comparison Evaluation Matrix. Retrieved 2020-09-18, from
https://wso2.com/whitepapers/comparison-evaluation-matrix/

Hosting Manual. (2020). SLA & Uptime Calculator. Retrieved 2020-07-13, from
https://www.hostingmanual.net/uptime-calculator/

Kubernetes. (2021). Tools for Monitoring Resources. Retrieved 2021-01-03,
from https://kubernetes.io/docs/tasks/debug-application-cluster/
resource-usage-monitoring/

Lees, C., Mallick, A., Paar, T., Fontenay, E., & Pimakova, K. (2019). APIs: The
Digital Glue - How Banks Can Thrive in an API Economy. Retrieved 2020-09-
16, from https://www.accenture.com/_acnmedia/PDF-100/Accenture-How
-Banks-Can-Thrive-API-Economy.pdf

Madhvani, A. (2018). API Versioning: An Overview. Retrieved 2020-07-09, from
https://icapps.com/blog/api-versioning-overview

Moiz, A. (2020). Service Level Agreement (SLA) Monitoring and Reporting. Retrieved
2020-07-10, from https://www.extnoc.com/blog/service-level-agreement
-monitoring-reporting/

Mueller, J. P. (2020). What Is an API Sandbox? Retrieved 2020-07-06, from https://
smartbear.com/learn/api-design/what-is-an-api-sandbox/

Mulesoft. (2020). Types of APIs and How to Determine Which to Build. Retrieved 2020-
08-28, from https://www.mulesoft.com/resources/api/types-of-apis

Onelogin. (2020). How Does Single Sign-on Work? Retrieved 2020-12-16, from
https://www.onelogin.com/learn/how-single-sign-on-works

OpenID. (2021). Welcome to OpenID Connect. Retrieved 2021-01-03, from https://
openid.net/connect/

Oracle. (2020). WS-Security Authentication. Retrieved 2020-07-09, from https://
www.oracle.com/topics/technologies/ws-audit-authentication.html

OWASP. (2021a). A1:2017-Injection. Retrieved 2021-01-03, from https://owasp.org/
www-project-top-ten/2017/A1_2017-Injection

OWASP. (2021b). A3:2017-Sensitive Data Exposure. Retrieved 2021-01-03,
from https://owasp.org/www-project-top-ten/2017/A3_2017-Sensitive
_Data_Exposure

Peter, B. (2017). API Lifecycle, Versioning, and Deprecation. Retrieved 2020-07-10, from
https://zapier.com/engineering/api-geriatrics/

Ploesser, K. (2019). Best Practices for Versioning REST and GraphQL APIs.
Retrieved 2020-07-09, from https://www.moesif.com/blog/technical/api
-design/Best-Practices-for-Versioning-REST-and-GraphQL-APIs/

Postman. (2019). Postman State of the API Report. Retrieved 2020-10-12, from
https://www.postman.com/resources/infographics/api-survey-2019/

RapidAPI. (2020). API Versioning – What is API Versioning? Retrieved 2020-07-09,
from https://rapidapi.com/blog/api-glossary/api-versioning/

Redhat. (2020). What Is API Monetization? Retrieved 2020-07-10, from https://
www.redhat.com/en/topics/api/what-is-api-monetization

Reynold, D. (2020). Cybersecurity Breach Protocol: Balancing Legal and Communication

https://www.gartner.com/en/documents/3956412/a-guidance-framework-for-evaluating-api-management-solut
https://www.gartner.com/en/documents/3956412/a-guidance-framework-for-evaluating-api-management-solut
https://graphql.org/learn/best-practices/
https://graphql.org/learn/best-practices/
https://developers.redhat.com/blog/2016/06/13/api-versioning-methods-a-brief-reference/
https://developers.redhat.com/blog/2016/06/13/api-versioning-methods-a-brief-reference/
https://wso2.com/whitepapers/comparison-evaluation-matrix/
https://www.hostingmanual.net/uptime-calculator/
https://kubernetes.io/docs/tasks/debug-application-cluster/resource-usage-monitoring/
https://kubernetes.io/docs/tasks/debug-application-cluster/resource-usage-monitoring/
https://www.accenture.com/_acnmedia/PDF-100/Accenture-How-Banks-Can-Thrive-API-Economy.pdf
https://www.accenture.com/_acnmedia/PDF-100/Accenture-How-Banks-Can-Thrive-API-Economy.pdf
https://icapps.com/blog/api-versioning-overview
https://www.extnoc.com/blog/service-level-agreement-monitoring-reporting/
https://www.extnoc.com/blog/service-level-agreement-monitoring-reporting/
https://smartbear.com/learn/api-design/what-is-an-api-sandbox/
https://smartbear.com/learn/api-design/what-is-an-api-sandbox/
https://www.mulesoft.com/resources/api/types-of-apis
https://www.onelogin.com/learn/how-single-sign-on-works
https://openid.net/connect/
https://openid.net/connect/
https://www.oracle.com/topics/technologies/ws-audit-authentication.html
https://www.oracle.com/topics/technologies/ws-audit-authentication.html
https://owasp.org/www-project-top-ten/2017/A1_2017-Injection
https://owasp.org/www-project-top-ten/2017/A1_2017-Injection
https://owasp.org/www-project-top-ten/2017/A3_2017-Sensitive_Data_Exposure
https://owasp.org/www-project-top-ten/2017/A3_2017-Sensitive_Data_Exposure
https://zapier.com/engineering/api-geriatrics/
https://www.moesif.com/blog/technical/api-design/Best-Practices-for-Versioning-REST-and-GraphQL-APIs/
https://www.moesif.com/blog/technical/api-design/Best-Practices-for-Versioning-REST-and-GraphQL-APIs/
https://www.postman.com/resources/infographics/api-survey-2019/
https://rapidapi.com/blog/api-glossary/api-versioning/
https://www.redhat.com/en/topics/api/what-is-api-monetization
https://www.redhat.com/en/topics/api/what-is-api-monetization

GREY LITERATURE 120

Risks. Retrieved 2020-12-16, from https://boardmember.com/cybersecurity
-breach-protocol-balancing-legal-and-communication-risks/

Salesforce. (2020). AppExchange Security Review. Retrieved 2020-12-16, from
https://developer.salesforce.com/docs/atlas.en-us.packagingGuide
.meta/packagingGuide/security_review_overview.htm

Sandoval, K. (2018a). 3 Common Methods of API Authentication Explained. Re-
trieved 2020-12-16, from https://nordicapis.com/3-common-methods-api
-authentication-explained/

Sandoval, K. (2018b). Methods To Communicate API Change Effectively. Re-
trieved 2020-07-10, from https://nordicapis.com/methods-to-communicate
-api-change-effectively/

Sandoval, K. (2018c). Methods To Communicate API Change Effectively. Re-
trieved 2020-07-06, from https://nordicapis.com/methods-to-communicate
-api-change-effectively/

Santos, W. (2019). APIs Show Faster Growth Rate in 2019 Than Previous Years.
Retrieved 2020-08-11, from https://www.programmableweb.com/news/apis
-show-faster-growth-rate-2019-previous-years/research/2019/07/17

Soliya. (2020). Security and Breach Protocols. Retrieved 2020-12-16, from https://
www.soliya.net/security-and-breach-protocols

Swagger. (2018). Welcome To Swagger Spec Compatibility’s Documentation! Retrieved
2020-07-10, from https://swagger-spec-compatibility.readthedocs.io/
en/latest/

TU Delft. (2018). Template Informed Consent Form. Retrieved 2020-
08-26, from https://www.tudelft.nl/over-tu-delft/strategie/
integriteitsbeleid/human-research-ethics/template-informed
-consent-form/

Tung, T. (2014). Accenture API Management Suite API Maturity Model. Retrieved
2020-09-15, from https://expydoc.com/doc/4730985/download-pdf

Tyk. (2020). Enforced Timeouts. Retrieved 2020-07-10, from https://
tyk.io/docs/planning-for-production/ensure-high-availability/
enforced-timeouts/

Uptrends. (2021). 7 Alerting Optimizations You Should Use in Your Website and API
Monitoring. Retrieved 2021-01-03, from https://blog.uptrends.com/
technology/7-alerting-optimizations-you-should-use-in-your
-website-and-api-monitoring/

Utrecht University. (2020). Informed Consent for Data Sharing. Retrieved 2020-
08-26, from https://www.uu.nl/en/research/research-data-management/
guides/informed-consent-for-data-sharing

Wikipedia. (2019). WS-Security. Retrieved 2020-07-09, from https://en.wikipedia
.org/wiki/WS-Security

Wikipedia. (2020). Zero Trust Networks. Retrieved 2020-12-16, from https://en
.wikipedia.org/wiki/Zero_Trust_Networks

Wikipedia. (2021). XACML. Retrieved 2021-01-03, from https://en.wikipedia
.org/wiki/XACML

WSO2. (2015). API Management Platform Technical Evaluation Framework. Re-
trieved 2020-09-18, from https://wso2.com/whitepapers/api-management
-platform-technical-evaluation-framework/

WSO2. (2020). Monitoring HTTP Access Logs. Retrieved 2020-07-10, from https://
apim.docs.wso2.com/en/3.0.0/administer/product-administration/
monitoring/logging/monitoring-http-access-logs/

https://boardmember.com/cybersecurity-breach-protocol-balancing-legal-and-communication-risks/
https://boardmember.com/cybersecurity-breach-protocol-balancing-legal-and-communication-risks/
https://developer.salesforce.com/docs/atlas.en-us.packagingGuide.meta/packagingGuide/security_review_overview.htm
https://developer.salesforce.com/docs/atlas.en-us.packagingGuide.meta/packagingGuide/security_review_overview.htm
https://nordicapis.com/3-common-methods-api-authentication-explained/
https://nordicapis.com/3-common-methods-api-authentication-explained/
https://nordicapis.com/methods-to-communicate-api-change-effectively/
https://nordicapis.com/methods-to-communicate-api-change-effectively/
https://nordicapis.com/methods-to-communicate-api-change-effectively/
https://nordicapis.com/methods-to-communicate-api-change-effectively/
https://www.programmableweb.com/news/apis-show-faster-growth-rate-2019-previous-years/research/2019/07/17
https://www.programmableweb.com/news/apis-show-faster-growth-rate-2019-previous-years/research/2019/07/17
https://www.soliya.net/security-and-breach-protocols
https://www.soliya.net/security-and-breach-protocols
https://swagger-spec-compatibility.readthedocs.io/en/latest/
https://swagger-spec-compatibility.readthedocs.io/en/latest/
https://www.tudelft.nl/over-tu-delft/strategie/integriteitsbeleid/human-research-ethics/template-informed-consent-form/
https://www.tudelft.nl/over-tu-delft/strategie/integriteitsbeleid/human-research-ethics/template-informed-consent-form/
https://www.tudelft.nl/over-tu-delft/strategie/integriteitsbeleid/human-research-ethics/template-informed-consent-form/
https://expydoc.com/doc/4730985/download-pdf
https://tyk.io/docs/planning-for-production/ensure-high-availability/enforced-timeouts/
https://tyk.io/docs/planning-for-production/ensure-high-availability/enforced-timeouts/
https://tyk.io/docs/planning-for-production/ensure-high-availability/enforced-timeouts/
https://blog.uptrends.com/technology/7-alerting-optimizations-you-should-use-in-your-website-and-api-monitoring/
https://blog.uptrends.com/technology/7-alerting-optimizations-you-should-use-in-your-website-and-api-monitoring/
https://blog.uptrends.com/technology/7-alerting-optimizations-you-should-use-in-your-website-and-api-monitoring/
https://www.uu.nl/en/research/research-data-management/guides/informed-consent-for-data-sharing
https://www.uu.nl/en/research/research-data-management/guides/informed-consent-for-data-sharing
https://en.wikipedia.org/wiki/WS-Security
https://en.wikipedia.org/wiki/WS-Security
https://en.wikipedia.org/wiki/Zero_Trust_Networks
https://en.wikipedia.org/wiki/Zero_Trust_Networks
https://en.wikipedia.org/wiki/XACML
https://en.wikipedia.org/wiki/XACML
https://wso2.com/whitepapers/api-management-platform-technical-evaluation-framework/
https://wso2.com/whitepapers/api-management-platform-technical-evaluation-framework/
https://apim.docs.wso2.com/en/3.0.0/administer/product-administration/monitoring/logging/monitoring-http-access-logs/
https://apim.docs.wso2.com/en/3.0.0/administer/product-administration/monitoring/logging/monitoring-http-access-logs/
https://apim.docs.wso2.com/en/3.0.0/administer/product-administration/monitoring/logging/monitoring-http-access-logs/

121

Citations Belonging with the SLR

Akbulut, A., & Perros, H. G. (2019). Software Versioning with Microservices through
the API Gateway Design Pattern. In 2019 9th International Conference on Ad-
vanced Computer Information Technologies (ACIT) (pp. 289–292).

Andrey Kolychev, K. Z. (2019). Studying Open Banking Platforms with Open Source
Code.

Biehl, M. (2015). API Architecture: the Big Picture for Building APIs. CreateSpace.
Bui, D. H. (2018). Design and Evaluation of a Collaborative Approach for API Lifecycle

Management (Unpublished master’s thesis).
Ciavotta, M., Alge, M., Menato, S., Rovere, D., & Pedrazzoli, P. (2017). A

Microservice-based Middleware for the Digital Factory. In Procedia Manufac-
turing (Vol. 11, pp. 931–938). Elsevier.

Coste, R., & Miclea, L. (2019). API Testing for Payment Service Directive2 and Open
Banking. In International Journal of Modeling and Optimization (Vol. 9).

De, B. (2017). API Management. Springer.
Familiar, B. (2015). IoT and Microservices. In Microservices, IoT, and Azure (pp. 133–

163). Springer.
Fremantle, P., Kopeckỳ, J., & Aziz, B. (2015). Web API Management Meets the

Internet of Things. In European Semantic Web Conference (pp. 367–375).
Gadge, S., & Kotwani, V. (n.d.). Microservice Architecture: API Gateway Consider-

ations. In GlobalLogic Organisations,.
Gámez Díaz, A., Fernández Montes, P., & Ruiz Cortés, A. (2015). Towards SLA-

driven API Gateways. In XI Jornadas De Ciencia E IngenierÍA De Servicios.
Hofman, W., & Rajagopal, M. (2014). A Technical Framework for Data Sharing. In

Journal of Theoretical and Applied Electronic Commerce Research (Vol. 9, pp. 45–58).
Universidad de Talca.

Hohenstein, U., Zillner, S., & Biesdorf, A. (2018). Architectural Considerations for a
Data Access Marketplace Based upon API Management. In International Con-
ference on Data Management Technologies and Applications (pp. 91–115).

Indrasiri, K., & Siriwardena, P. (2018). Developing Services. In Microservices for the
enterprise (pp. 89–123). Springer.

Jacobson, D., Woods, D., & Brail, G. (2011). APIs: A Strategy Guide. O’Reilly Media.
Jayathilaka, H., Krintz, C., & Wolski, R. (2015). EAGER: Deployment-time API

Governance for Modern PaaS Clouds. In 2015 IEEE International Conference on
Cloud Engineering (pp. 275–278).

Krintz, C., Jayathilaka, H., Dimopoulos, S., Pucher, A., Wolski, R., & Bultan, T. (2014).
Cloud Platform Support for API Governance. In 2014 IEEE International Con-
ference on Cloud Engineering (pp. 615–618).

Lourenço Marcos, E., & Puccinelli de Oliveira, R. (2019). A Framework for Guidance
of API Governance: A Design Science Approach.

Matsumoto, O., Kawai, K., & Takeda, T. (2017). Fujitsu Cloud Service K5 PaaS
Digitalizes Enterprise Systems. In Fujitsu Scientific & Technical Journal (Vol. 53,
pp. 17–24).

CITATIONS BELONGING WITH THE SLR 122

Medjaoui, M., Wilde, E., Mitra, R., & Amundsen, M. (2018). Continuous API Manage-
ment: Making the Right Decisions in an Evolving Landscape. O’Reilly Media.

Montesi, F., & Weber, J. (2016). Circuit Breakers, Discovery, and API Gateways in
Microservices. arXiv preprint arXiv:1609.05830.

Nakamura, N. (2017). Fujitsu’s Leading Platform for Digital Business. In Fujitsu
Scientific & Technical Journal (Vol. 53, pp. 3–10).

Patni, S. (2017). Pro RESTful APIs. Springer.
Preibisch, S. (2018). API Gateways. In API Development (pp. 125–142). Springer.
Raivio, Y., Luukkainen, S., & Seppala, S. (2011). Towards Open Telco-Business Mod-

els of API Management Providers. In 2011 44th Hawaii International Conference
on System Sciences (pp. 1–11).

Siné, M., Haezebrouckl, T.-P., & Emonet, E. (2015). API-AGRO: An Open Data and
Open API Platform to Promote Interoperability Standards for Farm Services
and Ag Web Applications. In Journal of Agricultural Informatics (Vol. 6, pp. 56–
64). Hungarian Association of Agricultural Informatics.

Šnuderl, M. (2018). Rate Limiting in API Management (Unpublished doctoral disserta-
tion). University of Ljubljana, Faculty of Computer and Information Science.

Thielens, J. (2013). Why APIs Are Central to a BYOD Security Strategy. In Network
Security (Vol. 8, pp. 5–6). Elsevier.

Vijayakumar, T. (2018). Practical API Architecture and Development with Azure and
AWS: Design and Implementation of APIs for the Cloud. Apress.

Weir, L. (2019). Enterprise API Management: Design and Deliver Valuable Business APIs.
Packt Publishing Ltd.

Weir, L. A., Bell, A., Carrasco, R., & Viveros, A. (2015). Oracle API Management 12c
Implementation. Packt Publishing Ltd.

Xu, R., Jin, W., & Kim, D. (2019). Microservice Security Agent Based On API Gate-
way in Edge Computing. In Sensors (Vol. 19, p. 4905). MDPI AG.

Zhao, J. T., Jing, S. Y., & Jiang, L. Z. (2018). Management of API Gateway Based on
Micro-service Architecture. In Journal of Physics: Conference Series (Vol. 1087,
p. 32). IOP Publishing.

123

Appendix A

Process Deliverable Diagram

Preliminary Work

Identify Scope &
Domain

Preliminary
Research

Extract API
Management

definitions

Propose new API
Management

definition

Extract API
Management
activities &

features

RESEARCH SUBJECT

API MANAGEMENT

DEFINITION

COLLECTION

NEW API

MANAGEMENT

DEFINITION

API MANAGEMENT

ACTIVITY & FEATURE

COLLECTION

Input for

Input for

Input for

Research Phase 1

Write Short
Proposal

SHORT PROPOSAL

Extracted
 from

Input for

Conduct Literature
Review

Input for

Conduct Related
Work Review

RELATED WORK

REVIEW

Write Long
Proposal

Conduct SLR

1

1

LONG PROPOSAL

[rejected]

[approved]

[rejected]

[approved]

LITERATURE BODY

LITERATURE REVIEW

Create Research
Approach

Research
Approach

1 .. *

1

1 .. *

1 .. *

1

1 .. *

1 .. *

1 .. *

1

1

1

1 .. *

1

1

1

Appendix A. Process Deliverable Diagram 124

Framework Design

Compose Design
Science Artefact

Overview

ARTEFACT

COLLECTION

ARTEFACT TYPE
Select Artefact

Type

Populate Draft
Framework

Selected
From

DRAFT FRAMEWORK

Refine Framework
API MANAGEMENT

ASSESSMENT

FRAMEWORK

Refined
into

Framework Evaluation

[no refinement
 needed]

[refinement
needed]

Prepare Expert
Interviews

INTERVIEW

PROTOCOL

Input for

Evaluates

Process Interview
Findings

FRAMEWORK

CHANGES

Input for

[modifications
needed]

[no modifications
needed]

Framework Validation

Prepare Case
Study

EXPERT INTERVIEW
Conduct Expert

Interviews

Conduct Case
Study

CASE STUDY

PROTOCOL

CASE STUDY

Input for

Used for

Research Phase 2

Write Thesis

Prepare Thesis
Presentation

THESIS

THESIS

PRESENTATION

Input for

1 .. *

1

11

1

1

1

1

1

1

1 .. *

1 .. *

1 1

1 .. *

1

1

1

1

1

1

1

1

125

Appendix B

Interview Protocol

B.1 Interview Protocol Checklist

Appendix B. Interview Protocol 126

B.2 Preliminary Survey
Thank you for showing interest in potentially taking part in an interview to evaluate
the first version of our API management assessment framework. In order to deter-
mine whether you fit the desired characteristics for participating in our research, we
would like to ask you a few quick questions. First, please answer the questions be-
low regarding your current role in your organization and the amount of years you
have been working with APIs or in the field of API management. If you have any
questions, please contact one of the researchers:

m.mathijssen@students.uu.nl
slinger.jansen@uu.nl
michiel.overeem@afas.nl

1. What is your e-mail address?

2. What is your current role within your organization?

3. Can you briefly describe how often and in what way you work with APIs? PS:
feel free to answer this question in Dutch!

4. How many years worth of experience do you have with either consuming, de-
veloping, integrating, providing, versioning, monitoring or managing APIs?
(0 - 10+)

API Management Knowledge
Thank you for answering the two previous questions. In order to further deter-

mine whether you fit the desired characteristics for participating in our research, we
would like to measure your knowledge on various API management-related con-
cepts. Before answering the following questions, we would like to ask you to please
briefly read through the descriptions below, corresponding to the six main topics the
API management assessment framework consists of. After having read the descrip-
tion of a topic, please answer the question attached.

Lifecycle
Generally speaking, an API undergoes several stages over the course of its life-

time; creation, publication, realization, maintenance and retirement. In order to
control and guide the API through these stages, the organization must be able to
perform a variety of activities. At its core, the organization must be able to set the
various stages in motion by being able to create API endpoints and proxies, publish
or import APIs and deprecate it when needed. In order to maintain the API, the
organization must decide on a versioning strategy, notification channels and meth-
ods in case of updates, perform interface translation and have design- and run-time
policies in place. In doing so, the organization is able to manage and maintain the
versions the API goes through as it evolves over time.

• How experienced or knowledgeable are you on the topic described above? (1
/ not at all - 5 / very much)

Security

Appendix B. Interview Protocol 127

Due to their programmatic nature and their accessibility over the public cloud,
APIs are prone to various kinds of attacks. Hence, the organization should under-
take various measures to prevent this from happening. For example, one of many
available authentication and authorization protocols should be implemented, pre-
vention for attacks such as DoS or SQL script injection attacks should be in place
and sensitive data should be encrypted or masked.

• How experienced or knowledgeable are you on the topic described above? (1
/ not at all - 5 / very much)

Performance
The overall performance of a client app is dependent on the performance of the

underlying APIs powering the app. Hence, the importance of performance for APIs
increases greatly. In order to ensure performance and stability of their APIs, organi-
zations must be able to perform various activities. For example, being able to per-
form caching improves an API’s performance through reduced latency and network
traffic. Additionally, using rate limiting and throttling mechanisms to manage traf-
fic and using connection pooling and load balancing to route traffic more effectively
also improves the API’s performance.

• How experienced or knowledgeable are you on the topic described above? (1
/ not at all - 5 / very much)

Monitoring
As an organization, it is necessary to have insight into the API program to make

the right investments and decisions during its maintenance. Through various mon-
itoring techniques, the organization is able to collect metrics which can shed light
on the API’s health and performance, which in turn, improve the decision making
process on how to enhance the business value by either changing the API or by
enriching it. Additionally, by being able to log API access, consumption and perfor-
mance, input may be gathered for analysis, business value or monetization reports.
These may be used to strengthen communication with consumers and stakeholders
or check for any potential service-level agreement violations.

• How experienced or knowledgeable are you on the topic described above? (1
/ not at all - 5 / very much)

Community Engagement
As an organization exposing APIs for external consumers and developers to con-

sume, it is often desirable to foster, engage and support the community that exists
around the API. For example, this entails offering developers the ability register on
the API and offering them access to test environments, code samples and documen-
tation. Additionally, the organization may support developers in their usage of the
API by offering them support through a variety of communication channels and
allowing them to communicate with the organization or among another through a
community forum or developer portal. Furthermore, it is desirable for developers
to be able to freely browse through the API offering, review operational status up-
dates regarding the API, create support tickets in the event of an error and to share
knowledge, views and opinions with other developers.

Appendix B. Interview Protocol 128

• How experienced or knowledgeable are you on the topic described above? (1
/ not at all - 5 / very much)

Community Engagement
As an organization exposing APIs for external consumers and developers to con-

sume, it is often desirable to foster, engage and support the community that exists
around the API. For example, this entails offering developers the ability register on
the API and offering them access to test environments, code samples and documen-
tation. Additionally, the organization may support developers in their usage of the
API by offering them support through a variety of communication channels and
allowing them to communicate with the organization or among another through a
community forum or developer portal. Furthermore, it is desirable for developers
to be able to freely browse through the API offering, review operational status up-
dates regarding the API, create support tickets in the event of an error and to share
knowledge, views and opinions with other developers.

• How experienced or knowledgeable are you on the topic described above? (1
/ not at all - 5 / very much)

Commercial
Oftentimes, exposing and consuming APIs has a commercial aspect tied to it. For

API consumers and providers, this is often embodied by legal business contracts for
the use of the APIs which they are bound to. These business contracts called service-
level agreements govern the service levels and other aspects of API delivery and
consumption. Another commercial aspect of API management is that of monetiza-
tion. Considering APIs provide value to the consuming party, organizations often
opt to monetize the services and APIs and build a business model for them. Utiliz-
ing the right monetization model for APIs enables organizations to reap the benefits
of their investment in their APIs.

• How experienced or knowledgeable are you on the topic described above? (1
/ not at all - 5 / very much)

Thank you for your participation in this preliminary survey. We will contact you
as soon as possible to either invite you to participate in an interview or to inform
you as to why you do not fit our desired characteristics, and to thank you for your
interest and time.

Appendix B. Interview Protocol 129

B.3 Interview Information Sheet

Appendix B. Interview Protocol 130

B.4 Interview Informed Consent Form

Appendix B. Interview Protocol 131

B.5 Interview Protocol Mapping Matrix

Appendix B. Interview Protocol 132

Appendix B. Interview Protocol 133

B.6 Interview Protocol

Appendix B. Interview Protocol 134

135

Appendix C

Experts & Interviews Summaries

C.1 API Evangelist

API Evangelist is currently working independently as a product manager for an or-
ganization that supplies climate systems. In this role, he is focused on the internal
community, which entails determining how APIs should be configured, maintained
and used by teams. Furthermore, he has worked as an API evangelist for the com-
munity of a large organization that provides Enterprise Resource Planning (ERP)
software. Activities as part of this previous role involved advising the organization
on how to configure APIs, and requesting the development for APIs that the com-
munity asked for. Additionally, API Evangelist is currently involved in advisory
projects with another organization, where he also acts as an API evangelist. These
projects involve evaluating and encouraging banks to incorporate the usage of APIs
in their business processes. Because of his experience with the commercial and com-
munity engagement aspects of API management, the Community Engagement and
Commercial focus areas were selected to be discussed. Notable input gathered as a
result of this interview included suggestions for addition of practices and capabili-
ties related to community involvement and management.

C.2 CEO A

CEOA is one of the founders of a small organization that provides customers with
a project management tool, which is used by companies to allocate employees and
resources to projects of their choosing. Previously, CEOA was responsible for prod-
uct acceptance, implementation, and support. Currently, he is involved with sales.
Considering that the organization’s software is often integrated with other systems,
the organization provides customers with a public API through which anyone with
the proper rights is able to access data. Additionally, the organization has an inter-
nal API on which their software is built. Because of his experience with providing
support to consumers of the organization’s public API, the Community Engagement
focus area was selected to be discussed. However, CEOA indicated that because of
the fact that his organization only serves a small amount of customers and hence
does not have a substantial community surrounding its API, and only provides one
public API, he does not have sufficient knowledge with regards to capabilities such
as community management and portfolio management. However, interesting sug-
gestions for the addition of practices belonging to the documentation capability were
made.

Appendix C. Experts & Interviews Summaries 136

C.3 CEO B

CEOB acts as the managing director of Trancon, which is a small organization that
he is also the partial owner of, but has been the CTO for the largest part of his time
with the organization. He is responsible for operations, HR, support, development,
and architecture. Trancon supplies warehouse management software for logistics,
which is used to integrate with ERP systems. Furthermore, the organization devel-
ops internal APIs for their own devices to use. Additionally, the organization also
uses various APIs internally to handle business processes such as providing support.
Two interviews were conducted with CEOB, due to the fact that he possessed knowl-
edge on a variety of focus areas due to his wide range of responsibilities within his
organization. These interviews yielded a large amount of interesting insights, in-
cluding many suggestions for addition of practices regarding version management.

C.4 Engineer

Engineer works as a software engineer for Uber, which is a large-scale multinational
organization that provides customers with a transportation application. He is a part
of a development team that is mainly responsible for optimizing the performance
and scalability of the public API that is provided by the organization, as well as de-
veloping new functionalities. Because of the activities Engineer is involved in, the
Performance and Monitoring focus areas were selected for evaluation. This interview
resulted in new suggestions for the addition of a variety of practices related to scal-
ing, as well as monitoring and load balancing techniques.

C.5 IT Consultant

IT Consultant works for Devoteam, and is a member of the IT strategy consultancy
team which specializes in API management. Devoteam advises a variety of com-
panies that differ in terms of scale and size, and is partnered with several large
API management platform providers such as Apigee, Akana, and Mulesoft. IT
Consultant has advised multiple companies, which for example, involved him act-
ing as the lead architect in implementing an enterprise API management platform
for a large telecom provider. Additionally, he has been responsible for maintaining,
managing, and upgrading API management platforms, as well as having conducted
many training projects on behalf of his organization. During these training sessions
and workshops, IT Consultant educates practitioners on the relevance, benefits, and
importance of various concepts related to API management. Because of his experi-
ence in consultancy and implementing various API management platforms from dif-
ferent vendors, IT Consultant is able to provide insight that aids in discerning what
aspects of API management are platform or tool specific, and those that are generic
elements of the topic. Hence, two interviews were conducted with IT Consultant,
which were focused on the evaluation of the Commercial, Community Engagement, Se-
curity, and Lifecycle focus areas. These interviews yielded many interesting sugges-
tions and comments, such as the addition of several practices related to design-time
and run-time governance, error handling, and authentication.

Appendix C. Experts & Interviews Summaries 137

C.6 Product Manager

Product Manager is currently working as a commercial product manager for Ex-
act, an organization that develops and provides Enterprise Resource Planning (ERP)
software. His responsibilities include maintaining the product’s vision, and man-
aging the product’s lifecycle and strategy. The product is composed of a partner
API, including the ecosystem surrounding it, and the organization’s mobile strategy.
Product Manager is involved with ensuring that customers use the API as frequently
as possible, as well as communicating customer wishes to the strategic and execu-
tive teams, and driving new strategic partnerships that involve API integrations.
Furthermore, he is involved with the security architecture of the product. Because
of his activities, the Security and Commercial focus areas were selected for evalua-
tion. However, the latter focus area was not discussed due to a lack of time. Notable
findings from this interview included suggestions for addition of capabilities and
practices related to transparency, authentication, and threat protection.

C.7 Lead Engineer A

Lead EngineerA is a lead engineer for a large consultancy organization, as part of the
IT risk advisory team. This team is responsible for developing software products
that are sold to customers. His role involves all technical aspects of developing these
products, as well as leading the development team. Lead EngineerA’s team uses
internal APIs, third-party service integrations to access data from service providers,
and also is in the process of starting to expose (partner) APIs to customers. Because
of this transition his organization is making towards exposing partner and public
APIs, Lead EngineerA noted that he is currently involved with many practices that
are assigned to the Performance and Monitoring focus areas. Hence, these focus focus
areas were selected for evaluation as part of this interview.

C.8 Lead Engineer B

Lead EngineerB is the head of engineering at an organization that partners with
leisure companies, whom make use of venue management systems, to extract in-
formation regarding current availability from their software and then place new
bookings. To do so, the organization utilizes several APIs internally, and provides
its integration partners with an ’inventory API’ so that they can communicate their
availability statuses to the organization. Lead EngineerB is responsible for software
development, as well as development and maintenance of APIs. Because of his tech-
nical experience, and his experience in managing partner relationships and integra-
tions, the Commercial and Performance focus areas were selected for evaluation as part
of this interview. Notable findings included the addition of several capabilities and
practices related to the commercial aspect of API management, as well as SLAs.

C.9 Lead Engineer C

Lead EngineerC works for a food delivery organization, where he is the lead engineer
of two product teams. These teams develop multiple internal APIs, that are used to
integrate with other services and clients. Additionally, he is responsible for ensuring
that these APIs are up to date, versioned when needed, and monitored sufficiently.

Appendix C. Experts & Interviews Summaries 138

The organization is well-versed and strict in enforcing backwards compatibility and
avoiding breaking changes. Considering his experience with versioning and lifecy-
cle management, the Lifecycle focus area was selected to be evaluated. The resulting
interview with Lead EngineerC yielded in the validation of several previously un-
confirmed practices relating lifecycle control, as well as additional information on
several practices.

139

Appendix D

Descriptions of Focus Areas,
Capabilities & Practices

D.1 Focus Areas & Capabilities

1. Lifecycle Management: Generally speaking, an API undergoes several stages
over the course of its lifetime; creation, publication, realization, maintenance
and retirement (Medjaoui et al., 2018). In order to control and guide the API
through these stages, the organization must be able to perform a variety of
activities. In order to maintain the API, the organization must decide on a ver-
sioning strategy, notification channels and methods in case of updates, as well
as decouple their API from their application. In doing so, the organization is
able to manage and maintain the versions the API goes through as it evolves
over time.

1.1 Version Management: APIs evolve over time with newer business require-
ments. In order to cope with this, the organization should have a ver-
sioning strategy in place, such as managing multiple versions of an API
to support existing consumers, or by avoiding breaking changes as part
of an evolutionary strategy. Additionally, the organization should be able
to deprecate and retire older versions of their API smoothly. With proper
notice and period, deprecated APIs should be retired and removed so as
to avoid any maintenance overheads (De, 2017). In order to guide this
process, the organization may also have a deprecation protocol in place.

1.2 Decoupling API & Application: When an organization creates an API to
expose its data and services, it needs to ensure that the API interface is
intuitive enough for developers to easily use (De, 2017). However, the
interface for the API will most likely be different from that of the back-
end services that it exposes. Therefore, the organization should be able to
transform the API interface to a form that the back end can understand.

1.3 Update Notification: Changes made to an API may adversely affect its con-
sumers. Hence, consumers must be notified of any planned updates of the
API (De, 2017). The organization should have the ability to inform devel-
opers using the API of any changes by distributing change logs, using a
communication channel such as email, the developer portal, or preemp-
tively through the use warning headers or a versioning roadmap.

2. Security: APIs provide access to valuable and protected data and assets (De,
2017). Therefore, security for APIs is necessary to protect the underlying assets

Appendix D. Descriptions of Focus Areas, Capabilities & Practices 140

from unauthenticated and unauthorized access. Due to the programmatic na-
ture of APIs and their accessibility over the public cloud, they are also prone
to various kinds of attacks. Hence, the organization should undertake various
measures to prevent this from happening. For example, one of many available
authentication and authorization protocols should be implemented, preven-
tion for attacks such as DoS or SQL script injection attacks should be in place
and sensitive data should be encrypted or masked.

2.1 Authentication: Authentication is the process of uniquely determining and
validating the identity of a client (De, 2017). In order to achieve this, the
organization may implement an authentication mechanism such as API
keys or protocols such as WSS or OpenID Connect, or the Single Sign-on
method.

2.2 Authorization: Authorization controls the level of access that is provided
to an app making an API call and controls which API resources and meth-
ods that can invoke (De, 2017). The organization may implement autho-
rization through access control or an industry-standardized authorization
protocol such as OAuth 2.0.

2.3 Threat Detection & Protection: The likelihood of bad actors making attacks
using malicious content is high, in addition to common threats such as
DoS attacks. Content-based attacks can be in the form of malformed XML
or JSON, malicious scripts, or SQL within the payload (De, 2017). There-
fore, the organization should be able to detect malformed request formats
or malicious content within the payload and then protect against such at-
tacks.

2.4 Encryption: Oftentimes, message payloads sent in API calls contain sensi-
tive information that can be the target for man-in-the-middle attacks (De,
2017). Therefore, the organization should secure all communication be-
tween the client app and the API service through using techniques such
as TLS encryption by default. Furthermore, it is desirable for the organi-
zation to prevent exposure of sensitive data by making utilizing methods
such as masking or hashing.

3. Performance: APIs are no longer exclusively seen as mechanisms for integra-
tion but have become mainstream for the delivery of data and services to end
users through various digital channels (De, 2017). This increases the demand
on APIs to perform well under loads. The overall performance of a client app
is dependent on the performance of the underlying APIs powering the app.
Hence, the importance of performance for APIs increases greatly. In order to
ensure performance and stability of their APIs, organizations must be able to
perform various activities. For example, enabling consumers to implement
caching improves an API’s performance through reduced latency and network
traffic. Additionally, using rate limiting and throttling mechanisms to manage
traffic and using load balancing to route traffic more effectively also improves
the API’s performance.

Appendix D. Descriptions of Focus Areas, Capabilities & Practices 141

3.1 Resource Management: In order to improve the performance of their API(s),
it is important for an organization to effectively manage the available re-
sources. This may be accomplished through the use of mechanisms such
as load balancing, scaling, or by having a failover policies in place.

3.2 Traffic Management: Another aspect of improving API performance is ef-
fectively managing incoming traffic. In order to do so, the organization
may choose to implement mechanisms such as caching, rate limiting or
throttling, or by prioritizing traffic based on customer characteristics.

4. Observability: As an organization, it is necessary to have insight into the API
program to make the right investments and decisions during its maintenance.
Through various monitoring techniques, the organization is able to collect met-
rics which can shed light on the API’s health, performance and resource usage.
In turn, these metrics may be aggregated and analyzed to improve the decision
making process on how to enhance the business value by either changing the
API or by enriching it (De, 2017). Additionally, by being able to log API access,
consumption and performance, input may be gathered for analysis, business
value or monetization reports. These may be used to strengthen communica-
tion with consumers and stakeholders or check for any potential service-level
agreement violations.

4.1 Monitoring: As an organization, it is important to be able to collect and
monitor metrics and variables concerning the exposed API. For example,
information regarding the health and performance of the API, as well as
resources used by the API should be monitored so that it may be used as
input for activities such as generating analysis reports and broadcasting
the API’s operational status.

4.2 Logging: In monitoring their API(s), it is helpful for the organization to be
able to perform logging of consumer behavior and activities. This may in-
clude logging of API access, usage and reviewing historical information.

4.3 Analytics: As an organization, it is important to be able to analyze the
metrics and variables that are collected through monitoring. For example,
information regarding the health and performance of the API may be uti-
lized to decide which features should be added to the API. Additionally,
it is desirable for the organization to be able to extract custom variables
from within the message payload for advanced analytics reporting.

5. Community: As an organization exposing APIs for external consumers and
developers to consume, it is often desirable to foster, engage and support the
community that exists around the API. For example, this entails offering devel-
opers the ability register on the API and offering them access to test environ-
ments, code samples and documentation. Additionally, the organization may
support developers in their usage of the API by offering them support through
a variety of communication channels and allowing them to communicate with
the organization or among another through a community forum or developer
portal. Furthermore, it is desirable for developers to be able to freely browse
through the API offering, review operational status updates regarding the API,
create support tickets in the event of an error and to share knowledge, views

Appendix D. Descriptions of Focus Areas, Capabilities & Practices 142

and opinions with other developers.

5.1 Developer Onboarding: To start consuming APIs, developers must first reg-
ister with the organization that is providing them. The sign up process
should be simple and easy, possibly by supporting developers with re-
sources such as (automatically generated) SDKs and testing tools such as
an API console or sandbox environment.

5.2 Support: In order to strengthen the community around the API, the orga-
nization should support developers whom are consuming it. This may
be accomplished by establishing an appropriate communication channel,
adequately managing issues and handling errors, should they present
themselves.

5.3 Documentation: API documentation can help speed up the adoption, un-
derstanding and effectiveness of APIs (De, 2017). Hence, the organization
must provide consumers of their API(s) with reference documentation.
Additionally, they may be supplied with start-up documentation, code
samples and FAQs to further accelerate understanding of the API.

5.4 Community Management: Oftentimes, app developers wish to know the
views of other developers in the community. They may want to collab-
orate and share their API usage learnings and experiences with one an-
other (De, 2017). In order to facilitate these wishes, the organization may
choose to provide developers with a community forum or developer por-
tal.

5.5 Portfolio Management: As an API providing organization, a platform to
publicize and document APIs is needed. Hence, a discoverable catalog of
APIs through which potential consumers are able to browse may be pro-
vided.

6. Commercial: Organizations have been consuming third-party APIs to simplify
and expand business partnership. APIs provide faster integration and an im-
proved partner/customer experience, enabling organizations to grow rapidly
(De, 2017). Oftentimes, exposing and consuming APIs has a commercial aspect
tied to it. For API consumers and providers, this is often embodied by legal
business contracts for the use of the APIs which they are bound to. These busi-
ness contracts called service-level agreements govern the service levels and
other aspects of API delivery and consumption. Another commercial aspect
of API management is that of monetization. Considering APIs provide value
to the consuming party, organizations often opt to monetize the services and
APIs and build a business model for them (De, 2017). Utilizing the right mon-
etization model for APIs enables organizations to reap the benefits of their
investment in their APIs.

6.1 Service-Level Agreements: A service-level agreement (SLA) defines the API’s
non-functional requirements, serving as a contract between the organiza-
tion and consumers of their API. As such, the organization should ensure
that the consumer of their API agrees with the SLA’s contents. These may
include matters such as terms and conditions for API usage, consumption
quotas, uptime guarantees and maintenance or downtime information.

Appendix D. Descriptions of Focus Areas, Capabilities & Practices 143

6.2 Monetization Strategy: APIs securely expose digital assets and services that
are of value to consumers. Hence, the organization may wish to adopt a
monetization strategy to enable monetization of the exposed services and
APIs by constructing a business model around them. This may be accom-
plished through a monetization model which can be based on consumer
characteristics such as their type of subscription, access tier or the amount
of resources used.

6.3 Account Management: It is desirable to effectively manage accounts in or-
der to foster a qualitative relationship with customers, stakeholders and
the organization’s management. This may be achieved by reporting on
the API’s business value internally through the use of business value re-
ports, as well as externally by providing consumers of the API with sub-
scription reports and training them in using the API as efficiently as pos-
sible.

Appendix D. Descriptions of Focus Areas, Capabilities & Practices 144

D.2 Practices
Li

fe
cy

cl
e

M
an

ag
em

en
t

Ve
rs

io
n

M
an

ag
em

en
t Practice Code: 1.1.2 Practice Name: Implement Evolutionary API Strategy

Description: The organization utilizes an evolutionary strategy to continuously version
their API over time. Using this strategy, the organization evolves a single API by avoiding
the introduction of breaking changes. Optionally, this may be accomplished by adhering to
the GraphQL specification (GraphQL, 2020).
Implemented when:
• The organization maintains one version of their API.
• The organization utilizes an evolutionary API versioning strategy.
Literature: (Madhvani, 2018; Ploesser, 2019)

Practice Code: 1.1.5 Practice Name: Implement Multiple API Versioning Strategy
Description: The organization has a versioning strategy in place which entails the
process of versioning from one API to a newer version. In order to do so, the organization
must be able to maintain multiple versions of (one of) their API(s) for a period of time.
Possible strategies include URI/URL Versioning (possibly in combination with adherence
to the Semantic Versioning specification), Query Parameter versioning, (Custom) Header
versioning, Accept Header versioning or Content Negotiation.
Implemented when:
• The organization utilizes one of the following versioning strategies: URI/URL Versioning,
Query Parameter versioning, (Custom) Header versioning, Accept Header versioning or
Content Negotiation.
Literature: (De (2017); (Anji, 2018; Guerrero & Ramos, 2016; RapidAPI, 2020)

Practice Code: 1.1.6 Practice Name: Implement API Deprecation Protocol
Description: The organization has a protocol in place that details what steps should
be taken when deprecating one of their APIs. This includes determining the amount of
developers currently consuming the API through the use of monitoring, and then setting
a threshold that details the amount of developers that should have migrated to the new
version of the API before commencing with deprecation of the old version. Furthermore,
developers, including their contact information, should be identified so that they may be
notified of the deprecation through their preferred communication channel. This notifica-
tion should be accompanied by a migration period and deprecation date, so that consumers
have a clear target to migrate their apps over to the new API version. Additionally, referrals
to to documentation and the new endpoint should be included. Furthermore, the protocol
should detail what course of action should be taken to roll back to a previously deployed
version of an API in the event of an incorrect deployment of the API.
Implemented when:
• The organization has implemented the ’Distribute Versioning Notification Through Chan-
nel(s)’ (1.3.3) and ’Log Activity’ (4.2.3) practices.
• The organization has a deprecation protocol in place.
Literature: (Peter, 2017)

Practice Code: 1.1.7 Practice Name: Check Backwards Compatibility
Description: The organization has an approach in place with which it is able to detect
breaking changes when versioning their API(s). Approaches include using a unit test suite,
plugging an automated contract test suite into the CI/CD pipeline or by using the swagger-
spec-compatibility library to detect differences between two Swagger / OpenAPI specifica-
tions (Swagger, 2018).
Implemented when:
• The organization has implemented the ’Implement Evolutionary API Versioning Strategy’
(1.1.2) practice.
• The organization has a backwards compatibility checking approach in place.
Literature: (Bhojwani, 2018)

Appendix D. Descriptions of Focus Areas, Capabilities & Practices 145

Li
fe

cy
cl

e
M

an
ag

em
en

t

D
ec

ou
pl

in
g

A
PI

&
A

pp
lic

at
io

n Practice Code: 1.2.1 Practice Name: Decouple API & Software Versioning
Description: The organization has decoupled the version of their API(s) from its
software implementation. The API version should never be tied to the software version of
the back-end data/service. A new API version should be created only if there is a change in
the contract of the API that impacts the consumer.
Implemented when:
• The organization has decoupled the version of their API(s) from its software implementa-
tion.
Literature: (De, 2017)

Practice Code: 1.2.4 Practice Name: Decouple Internal & External Data Model
Description: The organization has decoupled the data model that is used internally,
as well as externally. Doing so is considered to be beneficial, since an application might
use a normalized relation data model internally. While this data model is less suitable to
expose through a public API, this separation of concerns allows the organization to evolve
the relational data model at a different speed than the API.
Implemented when:
The organization has decoupled the data model that is used internally, as well as externally.
Literature: None.
Practice Code: 1.2.5 Practice Name: Decouple Internal & External Data Format
Description: The organization has decoupled the data format that is used internally,
as well as externally. Doing so is considered to be beneficial, since an application might
use a data format such as XML internally, while using a data format such as JSON for the
API(s). This separation of concerns grants the organization greater flexibility in designing
and developing their APIs.
Implemented when:
• The organization has decoupled the data format that is used internally, as well as exter-
nally.
Literature: None.
Practice Code: 1.2.6 Practice Name: Decouple Internal & External Transport Proto-

col
Description: The organization has decoupled the transport protocol that is used inter-
nally, as well as externally. Considering that an application might internally use a protocol
that is less commonly used in modern APIs such as SOAP or JDBC internally, which may be
less suitable for public APIs, the organization may opt to use a different protocol for their
API(s). This separation of concerns grants the These protocols are less commonly used in
modern APIs, or are less suitable for public APIs, and the organization can decide to use a
different protocol for the APIs. This separation of concerns grants the organization greater
flexibility in designing and developing their APIs.
Implemented when:
• The organization has decoupled the transport protocol that is used internally, as well as
externally.
Literature: None.

Appendix D. Descriptions of Focus Areas, Capabilities & Practices 146

Li
fe

cy
cl

e
M

an
ag

em
en

t

U
pd

at
e

N
ot

ifi
ca

ti
on

Practice Code: 1.3.2 Practice Name: Distribute Changelogs
Description: The organization uses (automated) email services to distribute changel-
ogs describing the versioning of their API(s) to consumers. Ideally, the organization offers
consumers the ability to opt-in or opt-out of this service.
Implemented when:
• The organization uses (automated) email services to distribute changelogs describing the
versioning of their API(s) to consumers.
Literature: (Sandoval, 2018b)

Practice Code: 1.3.3 Practice Name: Distribute Versioning Notification Through
Channel(s)

Description: The organization has the ability to distribute versioning notifications
among consumers of their API(s) through established communication channels. Possible
channels include email, social media, and announcements within the developer portal or
reference documentation. Ideally, the organization offers consumers of their API(s) the
option to select the communication channel they prefer receiving versioning notifications
through.
Implemented when:
• The organization has implemented the ’Establish Communication Channel’ (5.2.1) and
’Distribute Changelogs’ (1.3.2) practices.
• The organization has the ability to distribute versioning notifications among consumers
of their API(s) through established communication channels.
Literature: (De (2017); Sandoval (2018b)

Practice Code: 1.3.5 Practice Name: Extend API with Versioning Information
Description: The organization has the ability to extend their API specification to incor-
porate warning headers into responses in run-time. By doing so, consumers of the API are
notified of its impending deprecation, and possibly requested to change their implementa-
tion.
Implemented when:
• The organization has implemented the ’Provide API Status Page’, ’Reference Documenta-
tion Standard Used’ or ’Developer Portal’ practice.
• The organization has the ability to introduce warning headers.
Literature: (De, 2017)

Practice Code: 1.3.9 Practice Name: Announce Versioning Roadmap
Description: The organization has announced a roadmap that details the planned
dates on which the current (old) version of their API will be versioned to a new version, in
order to notify consumers ahead of time. This may be done through email, social media,
announcements within the developer portal or reference documentation.
Implemented when:
• The organization has implemented the ’Distribute Versioning Notification Through Chan-
nel(s)’ (1.3.3) practice.
• The organization has announced a versioning roadmap.
Literature: (De, 2017)

Appendix D. Descriptions of Focus Areas, Capabilities & Practices 147

Se
cu

ri
ty

A
ut

he
nt

ic
at

io
n

Practice Code: 2.1.1 Practice Name: Implement Basic Authentication
Description: The organization has the ability to implement basic authentication in order
to authenticate consumers of their API(s). This may be accomplished through the use of
HTTP Basic Authentication, with which the consumer is required to provide a username
and password to authenticate, or by issuing API keys to consumers of the API. An app is
identified by its name and a unique UUID known as the API key, often serving as an identity
for the app making a call to the API.
Implemented when:
• The organization has implemented HTTP Basic Authentication, or is able to issue API
keys.
Literature: (Biehl (2015); De (2017); Zhao, Jing, and Jiang (2018); (Sandoval, 2018a)

Practice Code: 2.1.4 Practice Name: Implement Authentication Protocol
Description: The organization has implemented an authentication protocol or method
in order to authenticate consumers of their API(s). In order to apply security For SOAP
APIs, the usage of a WS Security (WSS) protocol (Wikipedia, 2019) may be opted for. This
protocol specifies how integrity and confidentiality can be enforced on messages and allows
the communication of various security token formats, such as Security Assertion Markup
Language (SAML), X.509 and User ID/Password credentials. Consumers of REST APIs
may be authenticated by using methods and protocols such as Client Certificate authenti-
cation, SAML authentication, or OpenID Connect (OpenID, 2021). OpenID Connect 1.0 is
an authentication protocol that builds on top of OAuth 2.0 specs to add an identity layer. It
extends the authorization framework provided by OAuth 2.0 to implement authentication.
Implemented when:
• The organization has implemented a WSS authentication protocol, or methods and proto-
cols such as Client Certificate authentication, SAML authentication, or OpenID Connect.
Literature: (De (2017); (Oracle, 2020; Wikipedia, 2019)

Practice Code: 2.1.7 Practice Name: Implement Single Sign-On
Description: The organization has implemented Single Sign-on (SSO), which is a au-
thentication method that enables users to securely authenticate with multiple applications
and websites by using one set of credentials. The user is then signed in to other applications
automatically, regardless of the platform, technology, or domain the user is using.
Implemented when:
• The organization has implemented the ’Implement Authentication Protocol’ (2.1.4) prac-
tice.
• The organization has implemented the Single Sign-on (SSO) authentication method.
Literature: (De (2017); (Auth0, 2021b; Onelogin, 2020)

Appendix D. Descriptions of Focus Areas, Capabilities & Practices 148

Se
cu

ri
ty

A
ut

ho
ri

za
ti

on

Practice Code: 2.2.2 Practice Name: Implement Access Control
Description: The organization has implemented an access control method in order
to identify and authorize consumer potential users of their API(s). In order to accomplish
this, the Role-based Access Control (RBAC) method may be used, with which permissions
may be assigned to users based on their role within the organization. Alternatively, the
Attribute-based Access Control (ABAC) may be used, with which permissions are granted
based on an identities’ attributes. Optionally, RBAC and ABAC policies may be expressed
by using the eXtensible Access Control Markup Language (XACML).
Implemented when:
• The organization has implemented the Role-based Access Control (RBAC) or Attribute-
based Access Control (ABAC) method.
Literature: (De (2017); Hofman and Rajagopal (2014); Thielens (2013); (Wikipedia, 2021)

Practice Code: 2.2.4 Practice Name: Implement Token Management
Description: The organization provides consumers of their API(s) with the ability to
perform (access) token and API key management. This is an activity that involves measures
to manage (i.e. review, store, create and delete) the tokens and API keys that are required to
invoke back-end APIs.
Implemented when:
• The organization allows consumers to manage their tokens and API keys.
Literature: (De, 2017; Hofman & Rajagopal, 2014)

Practice Code: 2.2.6 Practice Name: Implement Standardized Authorization Proto-
col

Description: The organization has implemented an industry-standardized authorization
protocol, such as the OAuth 2.0 Authorization protocol. OAuth is used as a mechanism to
provide authorization to a third-party application for access to an end user resource on
behalf of them. OAuth helps with granting authorization without the need to share user
credentials.
Implemented when:
• The organization has an industry-standardized authorization protocol.
Literature: (De, 2017; Gadge & Kotwani, n.d.; Gámez Díaz et al., 2015; Hofman &
Rajagopal, 2014; Hohenstein, Zillner, & Biesdorf, 2018; Matsumoto, Kawai, & Takeda, 2017;
Patni, 2017; Thielens, 2013; Xu, Jin, & Kim, 2019; Zhao et al., 2018)

Practice Code: 2.2.7 Practice Name: Implement Authorization Scopes
Description: The organization has implemented an authorization scopes mechanism,
such as the OAuth 2.0 Scopes mechanism (Auth0, 2021a), to limit access to their applica-
tion(s) to their users’ accounts. An application can request one or more scopes, where after
this information is then presented to the user in a consent screen. Then, the access token
that was issued to the application will be limited to the scopes granted.
Implemented when:
• The organization has an authorization scopes mechanism.
Literature: None.

Appendix D. Descriptions of Focus Areas, Capabilities & Practices 149

Se
cu

ri
ty

Th
re

at
D

et
ec

ti
on

&
Pr

ot
ec

ti
on

Practice Code: 2.3.1 Practice Name: Implement Allow & Deny IP Address Lists
Description: The organization has the ability to impose allow and deny list policies.
Through these policies, specific IPs can either be excluded from requests, or separate quotas
can be given to internal users by throttling access depending on their IP address or address
range.
Implemented when:
• The organization has the ability to impose allow and deny list policies.
Literature: (Gadge & Kotwani, n.d.; Gámez Díaz et al., 2015; Hohenstein et al., 2018)

Practice Code: 2.3.2 Practice Name: Implement Injection Threat Protection Policies
Description: The organization has implemented injection threat protection security poli-
cies. Injection threats are common forms of attacks, in which attackers try to inject malicious
code that, if executed on the server, can divulge sensitive information. These attacks may
take the form of XML and JSON bombs or SQL and script injection.
Implemented when:
• The organization has injection threat policies in place against XML or JSON bombs or SQL
or script injection.
Literature: (De (2017); Preibisch (2018); (OWASP, 2021a)

Practice Code: 2.3.5 Practice Name: Implement DoS Protection
Description: The organization has protection against DoS attacks in place. Hackers may
try to bring down back-end systems by pumping unexpectedly high traffic through the
APIs. Denial-of-service (DoS) attacks are very common on APIs. Hence, the organization
should be able to detect and stop such attacks. Identification of a DoS attack is done through
Spike Arrest.
Implemented when:
• The organization has protection against DoS attacks in place.
Literature: (De, 2017; Gadge & Kotwani, n.d.; Gámez Díaz et al., 2015)

Practice Code: 2.3.7 Practice Name: Implement Security Breach Protocol
Description: The organization has a security breach protocol in place, which details
what steps should be taken in the event where a security breach occurs. This protocol may
include activities such as notifying stakeholders and consumers of the API, identifying the
source of the breach by scanning activity logs, containing the breach by stopping the data
leakage, and consulting third-party IT security and legal advice providers.
Implemented when:
• The organization has a security breach protocol in place.
Literature: (Reynold, 2020; Soliya, 2020)

Practice Code: 2.3.9 Practice Name: Conduct Security Review
Description: The organization has the ability to conduct security reviews that potential
consumers of their API(s) must pass before being allowed to integrate the organization’s
API(s) into their application. This typically involves testing the degree to which customer
data is protected and encrypted, and identifying security vulnerabilities that may be ex-
ploited, such as threats related to script injections and non-secure authentication and access
control protocols.
Implemented when:
• The organization has the ability to conduct security reviews.
Literature: (Salesforce, 2020)

Practice Code: 2.3.10 Practice Name: Implement Zero Trust Network Access (ZTNA)
Description: The organization has implemented a Zero Trust Network Access (ZTNA)
security architecture, where only traffic from authenticated users, devices, and applica-
tions is granted access to other users, devices, and applications within an organization.
ZTNA may be regarded as a fine-grained approach to network access control (NAC), iden-
tity access management (IAM) and privilege access management (PAM), offering a replace-
ment for VPN architectures. Optionally, a ZTNA may be implemented through third-party
providers such as Akamai, Cloudflare, or Cisco.
Implemented when:
• The organization has implemented a Zero Trust Network Access (ZTNA) security archi-
tecture.
Literature: (Wikipedia, 2020)

Appendix D. Descriptions of Focus Areas, Capabilities & Practices 150

Se
cu

ri
ty

En
cr

yp
ti

on

Practice Code: 2.4.1 Practice Name: Implement Transport Layer Encryption
Description: The organization has implemented current and up-to-date encryption
protocols such as Transport Layer Security (TLS). It is always desirable to have TLS compli-
ant endpoints to safeguard against man-in-middle attacks, and bi-directional encryption of
message data to protect against tampering.
Implemented when:
• The organization has implemented TLS encryption.
Literature: (De, 2017; Familiar, 2015; Gadge & Kotwani, n.d.; Hofman & Rajagopal, 2014;
Preibisch, 2018)

Practice Code: 2.4.2 Practice Name: Prevent Sensitive Data Exposure
Description: The organization has measures in place to prevent exposure of sensitive
data, such as passwords and credit card numbers. Considering APIs expose data that may
be sensitive, such data should be visible only to its intended recipient. If such data gets
logged anywhere, it must be masked, encrypted or hashed at rest, which may be considered
to be a data privacy requirement. Furthermore, caching for responses that contain sensitive
data should be disabled, and all data in transit should be encrypted with protocols such as
TLS.
Implemented when:
• The organization has measures in place to prevent exposure of sensitive data.
Literature: (De (2017); (OWASP, 2021b)

Practice Code: 2.4.3 Practice Name: Implement Certificate Management
Description: The organization has the ability to manage its TLS certificates. This
involves monitoring and managing the certificates’ acquisition and deployment, tracking
renewal, usage, and expiration of SSL/TLS certificates.
Implemented when:
• The organization has the ability to manage its TLS certificates.
Literature: (De, 2017; Gadge & Kotwani, n.d.; Hohenstein et al., 2018; Siné, Haeze-
brouckl, & Emonet, 2015; Thielens, 2013)

Appendix D. Descriptions of Focus Areas, Capabilities & Practices 151

Pe
rf

or
m

an
ce

R
es

ou
rc

e
M

an
ag

em
en

t Practice Code: 3.1.2 Practice Name: Implement Load Balancing
Description: The organization has implemented load balancing to distribute API traffic
to the back-end services. Various load balancing algorithms may be supported. Based on the
selected algorithm, the requests must be routed to the appropriate resource that is hosting
the API. Load balancing also improves the overall performance of the API.
Implemented when:
• The organization has implemented load balancing.
Literature: (Biehl, 2015; Ciavotta, Alge, Menato, Rovere, & Pedrazzoli, 2017; De, 2017;
Gadge & Kotwani, n.d.; Gámez Díaz et al., 2015; Montesi & Weber, 2016; Nakamura, 2017;
Xu et al., 2019; Zhao et al., 2018)

Practice Code: 3.1.5 Practice Name: Implement Scaling
Description: The organization has the ability to scale the amount of available resources
up or down depending on traffic and API usage in a reactive manner. This may be done
either manually or automatically, through the use of a load balancer.
Implemented when:
• The organization has implemented the ’Implement Load Balancing’ (3.1.2) practice.
• The organization has the ability to scale the amount of available resources up or down.
Literature: (Akbulut & Perros, 2019; Gadge & Kotwani, n.d.; Hofman & Rajagopal, 2014;
Jacobson et al., 2011)

Practice Code: 3.1.6 Practice Name: Implement Failover Policies
Description: The organization has the ability to mitigate outages through the imple-
mentation of failover policies. This may be done by automatically deploying a service to a
standby data center if the primary system fails, or is shut down for servicing. By being able
to perform a failover, the particular service is guaranteed to be operational at one of the data
centers. This is an extremely important function for critical systems that require always-on
accessibility.
Implemented when:
• The organization is able to impose timeout policies on their API(s).
Literature: (Barracuda, 2020)

Practice Code: 3.1.10 Practice Name: Implement Predictive Scaling
Description: The organization has the ability to scale the amount of available resources
up or down depending on traffic and API usage in a proactive manner. This may be done
either manually or automatically, through the use of a load balancer as based on insights
gained from predictive analytics.
Implemented when:
• The organization has implemented the ’Implement Load Balancing’ (3.1.2) and ’Enable
Predictive Analytics’ (4.3.9) practices.
• The organization has implemented predictive scaling.
Literature: None.

Appendix D. Descriptions of Focus Areas, Capabilities & Practices 152

Pe
rf

or
m

an
ce

Tr
af

fic
M

an
ag

em
en

t Practice Code: 3.2.1 Practice Name: Set Timeout Policies
Description: The organization is able to set timeout policies, by detecting and customiz-
ing the amount of time that is allowed to pass before a connection times out and is closed.
Using timeout policies, the organization is able to ensure that the API always responds
within a given amount of time, even if a long-running process hangs. This is important in
high-availability systems where response performance is crucial so errors can be dealt with
cleanly.
Implemented when:
• The organization is able to set timeout policies on their API(s).
Literature: (Tyk, 2020)

Practice Code: 3.2.2 Practice Name: Implement Request Caching
Description: The organization utilizes caching as a mechanism to optimize performance.
As consumers of the API make requests on the same URI, the cached response can be used
to respond instead of forwarding those requests to the back-end server. Thus caching can
help to improve an APIs performance through reduced latency and network traffic.
Implemented when:
• The organization utilizes caching as a mechanism to optimize performance.
Literature: (Biehl, 2015; De, 2017; Gadge & Kotwani, n.d.; Gámez Díaz et al., 2015; Hof-
man & Rajagopal, 2014; Indrasiri & Siriwardena, 2018; Patni, 2017; Preibisch, 2018; Šnuderl,
2018; Vijayakumar, 2018; Zhao et al., 2018)

Practice Code: 3.2.3 Practice Name: Perform Request Rate Limiting
Description: The organization has a mechanism in place with which limits on the
amount of requests API consumers are allowed to make, may be imposed. Requests made
within the specified limit are routed successfully to the target system. Those beyond the
limit are rejected.
Implemented when:
• The organization has a rate limiting mechanism in place for their API(s).
Literature: (De, 2017; Gadge & Kotwani, n.d.; Gámez Díaz et al., 2015; Hofman & Ra-
jagopal, 2014; Jacobson et al., 2011; Jayathilaka et al., 2015; Lourenço Marcos & Puccinelli de
Oliveira, 2019; Raivio, Luukkainen, & Seppala, 2011; Šnuderl, 2018)

Practice Code: 3.2.4 Practice Name: Perform Request Rate Throttling
Description: The organization has a mechanism in place with which API requests
may be throttled down, without the connection being closed. This can help to improve
the overall performance and reduce impacts during peak hours. It helps to ensure that the
API infrastructure is not slowed down by high volumes of requests from a certain group of
customers or apps.
Implemented when:
• The organization has a rate throttling mechanism in place for their API(s).
Literature: (De, 2017; Familiar, 2015; Fremantle, Kopeckỳ, & Aziz, 2015; Gadge &
Kotwani, n.d.; Hohenstein et al., 2018; Indrasiri & Siriwardena, 2018; Jacobson et al., 2011;
Thielens, 2013; L. A. Weir et al., 2015)

Practice Code: 3.2.5 Practice Name: Manage Quota
Description: The organization has policies in place regarding the number of API calls
that an app is allowed to make to the back end over a given time interval. Calls exceeding
the quota limit may be throttled or halted. The quota allowed for an app depends on the
business policy and monetization model of the API. A common purpose for a quota is to
divide developers into categories, each of which has a different quota and thus a different
relationship with the API.
Implemented when:
• The organization has implemented the ’Perform Request Rate Limiting’ (3.2.3) practice or
’Perform Request Rate Throttling’ (3.2.4) practice.
• The organization has quota policies for their API(s) in place.
Literature: (De, 2017)

Practice Code: 3.2.6 Practice Name: Apply Data Volume Limits
Description: The organization has a mechanism in place with which the amount of
data consumers of their API(s) are allowed to consume in one call may be limited. This can
help to improve the overall performance and reduce impacts during peak hours. It helps to
ensure that the API infrastructure is not slowed down by calls that transport unnecessarily
high chunks of data volumes.
Implemented when:
• The organization has implemented the ’Monitor Resource Usage’ (4.1.5) practice.
• The organization has a data volume limiting mechanism in place.
Literature: (Dropbox, 2021)

Practice Code: 3.2.9 Practice Name: Prioritize Traffic
Description: The organization is able to give a higher priority in terms of processing API
calls, based on certain customer characteristics and/or classes. This priority may be based
on their subscription, customer relationships, or agreements made in the SLA.
Implemented when:
• The organization is able to prioritize traffic based on customer characteristics and/classes.
Literature: (De, 2017)

Appendix D. Descriptions of Focus Areas, Capabilities & Practices 153

O
bs

er
va

bi
lit

y

M
on

it
or

in
g

Practice Code: 4.1.1 Practice Name: Monitor API Health
Description: The organization is able to perform health monitoring on its API(s),
possibly through an management platform, external monitoring tool/dashboard, functional
testing or custom scripts and plugins. This should return basic information such as the
operational status of the API, indicating its ability to connect to dependent services.
Implemented when:
• The organization is able to perform health monitoring on its API(s).
Literature: (Averdunk and Moen (2020); (Gadge & Kotwani, n.d.)

Practice Code: 4.1.3 Practice Name: Monitor API Performance
Description: The organization is able to perform performance monitoring on its API(s),
possibly through an management platform, external monitoring tool/dashboard, functional
testing or custom scripts and plugins. Doing so should provide performance statistics that
track the latency within the platform and the latency for back-end calls. This helps the
organization in finding the source of any performance issues reported on any API.
Implemented when:
• The organization is able to perform performance monitoring on its API(s).
Literature: (De, 2017; Xu et al., 2019)

Practice Code: 4.1.5 Practice Name: Monitor Resource Usage
Description: The organization is able to perform resource monitoring on its API(s),
possibly through an management platform, external monitoring tool/dashboard, functional
testing or custom scripts and plugins. Doing so should provide hardware metrics related to
the resources that are consumed as a result of calls made to the API(s), such as CPU, disk,
memory, and network usage.
Implemented when:
• The organization is able to perform resource monitoring on its API(s).
Literature: (Kubernetes, 2021)

O
bs

er
va

bi
lit

y

Lo
gg

in
g

Practice Code: 4.2.1 Practice Name: Log Errors
Description: The organization has the ability to internally log errors that are generated as
a result of consumption of their APIs. Error logs should typically contain fields that capture
information such as the date and time the error has occurred, the error code, and the client
IP and port numbers.
Implemented when:
• The organization has the ability to internally log errors.
Literature: (Andrey Kolychev, 2019; De, 2017; Medjaoui et al., 2018)

Practice Code: 4.2.2 Practice Name: Log Access Attempts
Description: The organization has the ability to generate access logs, in which HTTP
requests/responses are logged, to monitor the activities related to an APIs usage. Access
logs offer insight into who has accessed the API, by including information such as the con-
sumer’s IP address.
Implemented when:
• The organization is able to perform access logging.
Literature: (WSO2, 2020)

Practice Code: 4.2.3 Practice Name: Log Activity
Description: The organization has the ability to perform basic logging of API activity,
such as access, consumption, performance, and any exceptions. In doing so, it may be
determined what initiated various actions to allow for troubleshooting any errors that occur.
Implemented when:
• The organization is able to perform activity logging.
Literature: (De, 2017; Fremantle et al., 2015; Gadge & Kotwani, n.d.)

Practice Code: 4.2.5 Practice Name: Audit User Activity
Description: The organization is able to perform user auditing. Doing so enables
the organization to review historical information regarding API activity, to analyze who
accesses an API, when it is accessed, how it is used, and how many calls are made from the
various consumers of the API.
Implemented when:
• The organization is able to perform user auditing.
Literature: (De, 2017; Gadge & Kotwani, n.d.)

Appendix D. Descriptions of Focus Areas, Capabilities & Practices 154

O
bs

er
va

bi
lit

y

A
na

ly
ti

cs

Practice Code: 4.3.2 Practice Name: Report Errors
Description: The organization has the ability to report any errors to consumers that may
occur during usage of their API(s). Error reports typically include information such as the
error code and text describing why the error has occurred.
Implemented when:
• The organization has implemented the ’Log Errors’ (4.2.1) practice.
• The organization is able to report any errors to consumers.
Literature: (Andrey Kolychev, 2019; De, 2017; Medjaoui et al., 2018)

Practice Code: 4.3.3 Practice Name: Broadcast API Status
Description: The organization broadcasts the status of its API(s) to consumers by
providing them with operational information on the API in the form of an external status
page, possibly on the developer portal or a website. The function of this status page is to let
consumers know what is going on with the API at a technical level at any point in time.
Implemented when:
• The organization has implemented the ’Monitor API Health’ (4.1.1) practice.
• The organization broadcasts the operational status of its API(s) to consumers.
Literature: (Sandoval, 2018c)

Practice Code: 4.3.6 Practice Name: Generate Custom Analysis Reports
Description: The organization is able to generate custom analysis reports on metrics of
choice, possibly through an API management platform or monitoring tool.
Implemented when:
• The organization is able to generate custom analysis reports.
Literature: (De, 2017)

Practice Code: 4.3.7 Practice Name: Set Alerts
Description: The organization has the ability to set and configure alerts that should
trigger in case of certain events or thresholds being exceeded. Such events or thresholds
may include resource limits being exceeded, or occurrence of outages. Ideally, the organiza-
tion is able to configure what persons should be alerted about the event, and through what
communication channel they should be contacted.
Implemented when:
• The organization has implemented the ’Monitor API Health’ (4.1.1), ’Monitor API Perfor-
mance’ (4.1.3), and ’Monitor API Resource Usage’ (4.1.5) practices.
• The organization has the ability to set and configure alerts.
Literature: (Uptrends, 2021)

Practice Code: 4.3.9 Practice Name: Enable Predictive Analytics
Description: The organization has the ability to aggregate predictive analytics, through
techniques such as pattern recognition, data mining, predictive modelling, or machine
learning, by analyzing current and historical facts to make predictions about future or oth-
erwise unknown events.
Implemented when:
• The organization has implemented the ’Monitor API Performance’ (4.1.3) and ’Monitor
API Resource Usage’ (4.1.5) practices.
• The organization has the ability to aggregate predictive analytics.
Literature: None.

Appendix D. Descriptions of Focus Areas, Capabilities & Practices 155

C
om

m
un

it
y

D
ev

el
op

er
O

nb
oa

rd
in

g Practice Code: 5.1.1 Practice Name: Facilitate Developer Registration
Description: The organization has a mechanism in place with which API consumers are
able to register to the API so that they can obtain access credentials. Consumers can then
select an API and register their apps to use it.
Implemented when:
• The organization has a mechanism in place with which API consumers are able to register
to their API(s).
Literature: (De, 2017)

Practice Code: 5.1.4 Practice Name: Provide SDK Support
Description: The organization offers API consumers the option to either download
client-side SDKs for the API, or generate the SDK themselves from standard API definition
formats such as OpenAPI (formerly known as Swagger). These functionalities are usually
offered through the developer portal, where app developers often look for device-specific
libraries to interact with the services exposed by the API.
Implemented when:
• The organization offers API consumers the option to download or generate client-side
SDKs for their API(s).
Literature: (De, 2017)

Practice Code: 5.1.5 Practice Name: Implement Interactive API Console
Description: The organization provides API consumers with an interactive console.
Using this console, developers are able to test the behavior of an API.
Implemented when:
• The organization provides API consumers with an interactive console.
Literature: (Biehl, 2015)

Practice Code: 5.1.8 Practice Name: Provide Sandbox Environment Support
Description: The organization provides API consumers with an environment that they
can use to mimic the characteristics of the production environment and create simulated
responses from all APIs the application relies on.
Implemented when:
• The organization provides API consumers with a sandbox environment.
Literature: (Bui (2018); Jacobson et al. (2011); Patni (2017); (Mueller, 2020)

C
om

m
un

it
y

Su
pp

or
t

Practice Code: 5.2.1 Practice Name: Establish Communication Channel
Description: The organization has established a communication channel between the
API provider and consumer with which support may be provided to the consumer. Possible
communication media include email, phone, form, web, community forum, blogs or the
developer portal.
Implemented when:
• The organization has established one of the following communication channels with con-
sumers of their API(s): email/phone/form/web/ community forum/blog/developer por-
tal.
Literature: (De, 2017; Jacobson et al., 2011)

Practice Code: 5.2.4 Practice Name: Manage Support Issues
Description: The organization is able to manage any support issues with their API(s).
API consumers must be able to report any issues, bugs or shortcomings related to the API.
They should be able to raise support tickets and seek help regarding API usage. Addition-
ally, the API provider must be able to track and prioritize support tickets.
Implemented when:
• The organization is able to manage any support issues with their API(s).
Literature: (De, 2017; Jacobson et al., 2011)

Practice Code: 5.2.6 Practice Name: Dedicate Developer Support Team
Description: The organization employs a dedicated that offers support to consumers of
their API(s). This team should be well-trained and possess knowledge that enables them to
assist consumers with any problems or difficulties they may experience during the usage or
implementation of the API.
Implemented when:
• The organization has implemented the ’Establish Communication Channel’ (5.2.1) prac-
tice.
• The organization employs a dedicated developer team that offers support to consumers
of their API(s).
Literature: None.

Appendix D. Descriptions of Focus Areas, Capabilities & Practices 156

C
om

m
un

it
y

D
oc

um
en

ta
ti

on

Practice Code: 5.3.1 Practice Name: Use Standard for Reference Documentation
Description: The organization provides consumers of their API(s) with basic reference
documentation on their website, developer portal or an external, third-party documentation
platform. This documentation should document every API call, every parameter, and ev-
ery result so that consumers are informed on the API’s functionality. Additionally, it must
be specified using a documentation framework such as Swagger, RAML, API Blueprint,
WADL, Mashery ioDocs, Doxygen, ASP.NET API Explorer, Apigee Console To-Go, Enunci-
ate, Miredot, Dexy, Docco or TurnAPI.
Implemented when:
• The organization provides consumers of their API(s) with basic reference documentation.
• The organization utilizes one of the following (or comparable) documentation tools to
specify its API documentation: Swagger (OpenAPI), RAML, API Blueprint, WADL, Mash-
ery ioDocs, Doxygen, ASP.NET API Explorer, Apigee Console To-Go, Enunciate, Miredot,
Dexy, Docco or TurnAPI.
Literature: (De, 2017; Jacobson et al., 2011; Medjaoui et al., 2018)

Practice Code: 5.3.3 Practice Name: Provide Start-up Documentation & Code Sam-
ples

Description: The organization provides consumers of their API(s) with start-up docu-
mentation on on their website, developer portal or an external, third-party documentation
platform. This type of documentation explains key concepts by summarizing the refer-
ence documentation, accelerating understanding as a result. Optionally, a list of Frequently
Asked Questions and code samples that may be readily used in apps to invoke the API may
be included.
Implemented when:
• The organization has implemented the ’Use Standard for Reference Documentation’ (5.3.1)
practice.
• The organization provides consumers of their API(s) with start-up documentation.
Literature: (De, 2017; Jacobson et al., 2011)

Practice Code: 5.3.5 Practice Name: Create Video Tutorials
Description: The organization is able to create video tutorials in order to provide
consumers with visual information that details how to use the API and integrate it into
their applications.
Implemented when:
• The organization is able to create video tutorials.
Literature: None.

Appendix D. Descriptions of Focus Areas, Capabilities & Practices 157

C
om

m
un

it
y

C
om

m
un

it
y

En
ga

ge
m

en
t Practice Code: 5.4.1 Practice Name: Maintain Social Media Presence

Description: The organization is able to maintain their social media presence on plat-
forms such as Facebook or Twitter. This may involve activities such as reporting on the
API’s status, announcing news and updates, responding to questions, or reacting to feed-
back.
Implemented when:
• The organization is able to maintain their social media presence on platforms such as
Facebook or Twitter.
Literature: None.
Practice Code: 5.4.3 Practice Name: Provide Community Forum
Description: The organization provides (potential) consumers of their API(s) with a
community forum, possibly through a website or API management platform. This forum
may assist in building and interconnecting a developer community, by providing them with
a central hub they can use to communicate with one another and the organization. Addi-
tionally, it may serve as a repository with guides on API usage, documentation and support.
Implemented when:
• The organization provides API consumers with a community forum.
Literature: (De, 2017)

Practice Code: 5.4.4 Practice Name: Provide Developer Portal
Description: The organization provides (potential) consumers of their API(s) with a
developer portal. A developer portal provides the platform for an API provider to commu-
nicate with the developer community. Addtionally, it typically offers functionality such as
user registration and login, user management, documentation, API key management, test
console and dashboards.
Implemented when:
• The organization has implemented a developer portal.
Literature: (De, 2017; Fremantle et al., 2015; Medjaoui et al., 2018; Siné et al., 2015)

Practice Code: 5.4.7 Practice Name: Organize Events
Description: The organization is actively involved in organizing or participating in
events that are aimed towards engaging and motivating the developer community to in-
corporate their API(s) into their applications. This may include events such as hackathons,
conferences, or workshops.
Implemented when:
• The organization is actively involved in organizing or participating in developer commu-
nity events.
Literature: None.
Practice Code: 5.4.9 Practice Name: Dedicate Evangelist
Description: The organization employs a dedicated API evangelist. This individual is
responsible for evangelizing the API by gathering consumer feedback, and promoting the
organization’s API(s) by creating samples, demos, training materials and performing other
support activities aimed towards maximizing the developer experience.
Implemented when:
• The organization employs a dedicated API evangelist.
Literature: None.

Appendix D. Descriptions of Focus Areas, Capabilities & Practices 158

C
om

m
un

it
y

Po
rt

fo
lio

M
an

ag
em

en
t Practice Code: 5.5.1 Practice Name: Enable API Discovery

Description: The organization provides potential consumers of their API(s) with a mech-
anism to obtain information, such as documentation and metadata, about their API(s). This
mechanism may take the shape of an external website, hub or repository that consumers
can freely browse through.
Implemented when:
• The organization has a mechanism in place with which their API(s) may be discovered.
Literature: (Biehl, 2015; Hofman & Rajagopal, 2014)

Practice Code: 5.5.4 Practice Name: Provide API Catalog
Description: The organization provides API consumers with an API Catalog. This is a a
searchable catalog of APIs. An API catalog is also sometimes referred to as an API registry.
API consumers should be able to search the catalog based on various metadata and tags.
The catalog should document the API functionality, its interface, start-up documentation,
terms and conditions, reference documentation, and so forth.
Implemented when:
• The organization has implemented the ’Enable API Discovery’ (5.5.1) practice.
• The organization provides API consumers with a searchable API catalog.
Literature: (De, 2017; Hofman & Rajagopal, 2014; Lourenço Marcos & Puccinelli de
Oliveira, 2019; Medjaoui et al., 2018; Vijayakumar, 2018)

Practice Code: 5.5.5 Practice Name: Bundle APIs
Description: The organization is able to combine two or more APIs into a bundle.
This is a collection of API products that is presented to developers as a group, and typically
associated with one or more rate plans for monetization.
Implemented when:
• The organization is able to combine two or more APIs into a bundle.
Literature: (Apigee, 2020)

Appendix D. Descriptions of Focus Areas, Capabilities & Practices 159

C
om

m
er

ci
al

Se
rv

ic
e-

Le
ve

lA
gr

ee
m

en
ts Practice Code: 6.1.1 Practice Name: Publish Informal SLA

Description: The organization has the ability to publish and agree upon an informal,
bare-bones SLA with consumers of their API(s). This type of SLA is minimalistic and loose
in terms of the nature and amount of agreements it contains, as well as the consequences
attached to these agreements should they be violated. This type of SLA is satisfactory for
organizations that provide non-critical services and that have close relationships with their
consumers and partners.
Implemented when:
• The organization has the ability to publish and agree upon an informal SLA with con-
sumers.
Literature: None.
Practice Code: 6.1.3 Practice Name: Provide SLA
Description: The organization has the ability to provide and agree upon a formal,
elaborate SLA with consumers of their API(s). This type of SLA is extensive and strict
in terms of the nature and amount of agreements it contains, as well as the consequences
attached to these agreements should they be violated. Typically, agreements regarding the
guaranteed uptime of the API on a monthly or yearly basis are included in this type of SLA,
along with guaranteed response times in the event of incidents, as well as policies regarding
privacy, security, and possibly rate and data quotas. Additionally, when providing a formal
SLA, the organization should have a plan in place that details what course of action should
be taken in the event where agreements are failed to be upheld.
Implemented when:
• The organization has the ability to provide and agree upon a formal SLA with consumers.
Literature: (De, 2017)

Practice Code: 6.1.6 Practice Name: Proactively Monitor SLAs
Description: The organization is able to proactively monitor metrics that are relevant in
checking whether the agreements made with API consumers are adhered to. Such metrics
may include availability, performance and functional correctness.
Implemented when:
• The organization has implemented the ’Monitor API Resource Usage’ (4.1.5) practice.
• The organization is able to perform SLA monitoring.
Literature: (Moiz, 2020)

Practice Code: 6.1.7 Practice Name: Customize Personalized SLA
Description: The organization has the ability to provide consumers of their API(s) with
personalized SLAs. This type of SLA is suitable for intensive consumers that utilize services
offered by the API in such a way that requires customized agreements as compared to those
that are offered as part of the organization’s standard SLA. For example, some consumers
may require minimal latency and response times for their calls, want to make large amounts
of calls, or demand API uptime approaching 100%. Additionally, a personalized SLA may
be required due to the consumer being located in a different geographic location than other
consumers, requiring customized agreements with regards to privacy laws and regulations.
Implemented when:
• The organization has implemented the ’Provide SLA’ (6.1.3) practice.
• The organization has the ability to provide consumers of their API(s) with personalized
SLAs.
Literature: (Hosting Manual, 2020)

Appendix D. Descriptions of Focus Areas, Capabilities & Practices 160

C
om

m
er

ci
al

M
on

et
iz

at
io

n
St

ra
te

gy

Practice Code: 6.2.6 Practice Name: Adopt Subscription-based Monetization Model
Description: The organization has adopted a monetization model that is based on a
subscription basis. With this model, API consumers pay a flat monthly fee and are allowed
to make a certain number of API calls per month.
Implemented when:
• The organization has implemented the ’Implement Subscription Management System’
(6.3.2) and ’Manage Quota’ (3.2.5) practices.
• The organization has adopted a monetization model that is based on a subscription basis.
Literature: (Budzynski, 2016)

Practice Code: 6.2.8 Practice Name: Adopt Tier-Based Monetization Model
Description: The organization has adopted a monetization model that is based on
tiered access. Typically, each tier has its own set of services and allowances for access to API
resources, with increasing prices for higher tiers.
Implemented when:
• The organization has implemented the ’Prioritize Traffic’ (3.2.7) and ’Manage Quota’
(3.2.5) practices.
• The organization utilizes a monetization model that is based on tiered access.
Literature: (Budzynski, 2016; Redhat, 2020)

Practice Code: 6.2.9 Practice Name: Adopt Freemium Monetization Model
Description: The organization has adopted a monetization model that is based on
freemium functionalities and access. This involves providing consumers with a limited
part of the services and functionalities the API offers as a whole. Consumers that wish to
utilize all services and functionalities are required to have an active, paid subscription to
the API.
Implemented when:
• The organization utilizes a monetization model that is based on freemium functionalities
and access.
Literature: (Budzynski, 2016; Redhat, 2020)

Practice Code: 6.2.10 Practice Name: Adopt Metering-Based Monetization Model
Description: The organization utilizes a monetization model that is based on metering.
With this model, API consumers pay for the amount of resources they use. This may be
measured in terms of bandwidth, storage or amount of calls made.
Implemented when:
• The organization has implemented the ’Monitor Resource Usage’ (4.1.5) practice.
• The organization utilizes a monetization model that is based on metering.
Literature: (Budzynski, 2016; Redhat, 2020)

Appendix D. Descriptions of Focus Areas, Capabilities & Practices 161

C
om

m
er

ci
al

A
cc

ou
nt

M
an

ag
em

en
t Practice Code: 6.3.2 Practice Name: Implement Subscription Management System

Description: The organization has a system in place with which it is able to man-
age existing subscriptions (consumers of) on their API. A subscription management system
provides support for billing on a recurring basis, as well as providing insight into active
subscriptions.
Implemented when:
• The organization has implemented a subscription management system.
Literature: (Fremantle et al., 2015; Preibisch, 2018; Raivio et al., 2011)

Practice Code: 6.3.7 Practice Name: Report on API Program Business Value
Description: The organization is able to generate business value reports associated
with their API(s). Business value reports gauge the monetary value associated with the API
program. Monetization reports of API usage provide information on the revenue generated
from the API. Value-based reports should also be able to measure customer engagements.
Engagements can be measured by the number of unique users, the number of developers
registered, the number of active developers, the number of apps built using the APIs, the
number of active apps, and many other items. Optionally, these metrics may be visualized
in the form of dashboards, so that they may then easily be shared and presented to relevant
internal stakeholders to communicate the API program’s business value.
Implemented when:
• The organization has implemented the ’Generate Custom Analysis Reports’ (4.3.6) prac-
tice.
• The organization is able to generate business value reports associated with their API(s).
Literature: (De, 2017)

Practice Code: 6.3.8 Practice Name: Provide Subscription Report to Customer
Description: The organization is able to generate subscription reports for consumers of
their API(s). These reports contain metrics gathered through internal monitoring and ana-
lytics. Such metrics may include amount of calls made, performance, and status regarding
remaining allowed quotas.
Implemented when:
• The organization has implemented the ’Generate Custom Analysis Reports’ (4.3.6) and
’Implement Subscription Management System’ (6.3.2) practices.
• The organization is able to generate subscription reports for consumers of their API(s).
Literature: (De, 2017)

Practice Code: 6.3.9 Practice Name: Proactively Suggest Optimizations to Cus-
tomers

Description: The organization has the ability to train and help customers in using their
API(s) as well and efficiently as possible. This may be in the best interest of both parties, as
optimizing inefficient calls may positively impact traffic load on the API infrastructure.
Implemented when:
• The organization has implemented the ’Monitor API Performance’ (4.1.3) and ’Monitor
Resource Usage’ (4.1.5) practices.
• The organization is able to generate business value reports.
Literature: (Bui, 2018; De, 2017)

162

Appendix E. Case Study 163

Appendix E

Case Study

E.1 Data Collection Spreadsheet

Appendix E. Case Study 164

E.2 Evaluation Survey

Thank you for having previously participated in providing valuable input and eval-
uating the first version of the Focus Area Maturity Model for API Management (API-
m-FAMM). Now that the results of the expert interviews have been analyzed and
processed, the API-m-FAMM has been modified to accommodate the variety of sug-
gestions and improvements that were provided by experts. In order to measure
whether the model is usable in practice without assistance, and whether these mod-
ifications have improved certain characteristics of the model, such as it’s usefulness,
effectiveness, and ease of use, we would like to ask you a few quick questions.

In order to review the API-m-FAMM in it’s entirety, please refer to the visual
variant of the model you have been provided through email. Should you have any
further questions, please refer to the source document you have been provided with,
or feel free to contact one of the researchers:

m.mathijssen@students.uu.nl
slinger.jansen@uu.nl
michiel.overeem@afas.nl

1. What is your e-mail address?

2. Have you filled out the provided spreadsheet or are you interested in doing
so? (yes/no)

Evaluation Questions

1. For which organization or software product have you filled out the spread-
sheet?

2. Do you want your answers to be anonymized, or are you comfortable with
the name of your organization being published in our work along with the
answers you have provided us? (I want the name of my organization to be
anonymized / I am comfortable with the name of my organization being pub-
lished)

3. Do you want us to contact you and discuss these answers with you, to clarify
or explain parts of the model? (yes/no)

4. How easy did you find it to use the API-m-FAMM to self-assess and evaluate
your organization’s maturity in API management? (1 / Not easy at all - 5 /
Very easy)

5. How effective do you think the API-m-FAMM is in helping you and your or-
ganization improve on their API management related processes? (1 / Not
effective at all - 5 / Very effective)

6. How useful do you think the API-m-FAMM was in providing you and your
organization with valuable and interesting insights in your organization’s API
management related processes? (1 / Not useful at all - 5 / Very useful)

7. Are you expecting that you or your organization will use the API-m-FAMM
in practice again to evaluate and improve on your API management related

Appendix E. Case Study 165

processes, so that you can track your progress? (1 / Not likely at all - 5 / Very
likely)

8. Do you have any further questions, comments, or suggestions for improve-
ment of the API-m-FAMM?

Thank you again for your participation in evaluating the API-m-FAMM! Once
this project has been finalized, we will provide you with a copy of the final model
and the thesis describing the project.

	Abstract
	Acknowledgements
	Introduction
	Problem Statement
	Research Objective
	Background
	Research Questions
	Thesis Outline

	Research Approach
	Design Science Research
	Research Methods

	Research Design
	Problem Statement
	Knowledge Analysis
	Solution Design
	Solution Evaluation
	Evaluation Strategy
	Expert Interviews
	Case Study Implementation

	Literature Review
	Application Programming Interfaces (APIs)
	API Types
	Web (Service) APIs & Protocols
	Representational State Transfer (REST)
	Simple Object Access Protocol (SOAP)

	API Ownership Types

	API Economy
	API Value Chain

	API Management
	Developer Services
	Analytics Services
	API Gateway Services

	API Management Capabilities
	API Lifecycle Management
	API Version Management

	Developer Enablement for APIs
	Developer Onboarding
	Documentation
	Developer Support

	Secure, Reliable and Flexible Communications
	Security
	Traffic Management
	Interface Translation

	API Auditing, Logging and Analytics
	Activity Logging
	Health Monitoring

	Actors & Roles in API Management
	API Governance
	Background
	API Management Maturity Assessment Frameworks
	Accenture - API Management Suite API Maturity Model
	Endjin - API Maturity Matrix

	API Gateway & Management Platform Comparisons
	WSO2 - API Management Platform Technical Evaluation Framework
	Gamez - API Gateway Feature Comparison
	Broadcom - API Management Playbook

	API Management Advisory Reports
	Accenture - APIs: The Digital Glue

	Non-Publicly Available Evaluation Frameworks & Case Studies
	Gartner - Guidance Framework for Evaluating API Management Solutions
	Devoteam - API management at Liberty Global Inc

	Comparison Matrix

	Framework Design Tracing
	Design Science Artifact Selection
	Maturity Models
	Focus Area Maturity Models (FAMM)
	Focus Area Maturity Model for API Management

	Constructing the API-m-FAMM
	Scope
	Design
	Populate
	API-m-FAMM v0.1
	API-m-FAMM v0.2
	API-m-FAMM v0.3
	API-m-FAMM v0.4
	API-m-FAMM v1.0

	Evaluating the API-m-FAMM
	Test
	First Evaluation Cycle
	Interview Results (API-m-FAMM v1.1)
	Changes and Decisions Made (API-m-FAMM v1.2)
	Evaluation Criteria Results
	Maturity Level Assignment (API-m-FAMM v2.0)

	Second Evaluation Cycle

	Case Study
	Deploy
	Embedded Single-Case Study Company
	AFAS Profit
	AFAS Focus

	Multiple Single-Case Study Companies
	ConsultComp
	EAMComp
	Exact
	Uber

	Case Study Protocol

	Results
	Embedded Single-Case Study Company Results
	AFAS Profit
	AFAS Focus

	Multiple Single-Case Study Companies Results
	ConsultComp
	Exact Online
	Uber

	Misinterpreted Case Study Company Results
	EAMComp

	Discussion of Results
	Changes Made as Result of Case Study Findings (API-m-FAMM v3.0)

	Discussion
	Findings and Implications
	Scientific Contribution
	Validity
	Construct Validity
	Internal Validity
	External Validity
	Reliability

	Limitations
	Opportunities & Future Work

	Conclusion
	Process Deliverable Diagram
	Interview Protocol
	Interview Protocol Checklist
	Preliminary Survey
	Interview Information Sheet
	Interview Informed Consent Form
	Interview Protocol Mapping Matrix
	Interview Protocol

	Experts & Interviews Summaries
	API Evangelist
	CEO A
	CEO B
	Engineer
	IT Consultant
	Product Manager
	Lead Engineer A
	Lead Engineer B
	Lead Engineer C

	Descriptions of Focus Areas, Capabilities & Practices
	Focus Areas & Capabilities
	Practices

	Case Study
	Data Collection Spreadsheet
	Evaluation Survey

