
Solving a highly constrained
Dutch school timetabling

problem

Wesley Enrico Jacobs

Master Thesis

Supervisor: Han Hoogeveen
Second Supervisor: Marjan van den Akker

Computing Science
Utrecht University

May 2021

Abstract

Constructing a timetable for high schools in the Netherlands comes with many
problems. One of the most prominent problems is how to assign students to
classes, specifically for students that are in their second half of their education.
Commonly, class assignments are made during the creation of cluster schemes.
We investigate a local search method to create cluster schemes and compare this
against the existing heuristic. Additionally, we create a new method to create
the class assignments, which focuses on maximizing the number of classes that
can be scheduled together. We make comparisons between the class assignments
produced by this method and the class assignments gained from creating cluster
schemes. This comparison is made by creating initial schedules using the class
assignments and improving them with use of local search.

Acknowledgments

I am deeply grateful to Robin de Munck from Pontes Oranjeweg for providing
me with the data used during this thesis, as well as providing helpful insights
into defining the quality of a school timetable.I would also like to extend our sin-
cere thanks to Han Hoogeveen, supervisor from the University Utrecht, without
whom this thesis would not be possible. I very much appreciate Denise Pieper
and Erik Sander, who provided helpful insights during the writing of this thesis.

1

Contents

1 Introduction 3
1.1 Terminology . 4
1.2 Literature Study . 6

1.2.1 Class-Teacher timetabling 7
1.2.2 Cluster Schemes . 15

2 Problem 19
2.1 Problem Description . 19
2.2 Data . 21

3 Approach 23
3.1 Initial Schedule Lower Years . 23
3.2 Initial Schedule Upper Years . 26
3.3 Improving the schedule . 32

4 Results 35
4.1 Cluster scheme Comparison . 35
4.2 Local Search Running Times . 38
4.3 Initial Schedules . 39

5 Conclusion 42
5.1 Future Research . 43

6 Bibliography 44

Appendix 47

2

Chapter 1

Introduction

During high school, it is not uncommon for students to complain about their
timetable. These complaints can be about having too many idle hours, doubly
scheduled lessons, or simply lessons being scheduled on the last timeslot of the
day. Although these points are taken into consideration when the schedules are
created, how come there are still so many issues?

To answer this question, we first define what the school timetabling problem
is. The problem consists of three core components: students, teachers, and
rooms. Each student follows a list of subjects, such as mathematics, biology or
history. The students need to attend a number of lessons for all subjects they
follow. The lessons of a subject are followed as a class, a group of students,
and all lessons are normally given by the same teacher. Each lesson needs to be
assigned both a timeslot and a room. This needs to be done in such a manner
that all students, teachers, and rooms are only scheduled once per timeslot. If
this is not the case, a clash occurs. The primary goal of the school timetabling
problem can be summarized as scheduling all lessons without any clashes.

However, this is not all there is to the problem. Every school has its own
set of preferences that add complexity to the problem. There are a couple of
common constraints that are required in almost every instance. Teachers might
be unavailable on certain days, or subjects may require specific rooms, such as
labs, gyms or music rooms. Other subjects may need double hours, two lessons
scheduled in a row, to be taught properly. While not an absolute requirement,
both students and teachers alike prefer not to have idle hours. As such, a
common request is to minimize these, resulting in a compact schedule.

Another issue that adds complexity is the situation in the Netherlands. Here,
students have very varied choices in their elective subjects. As this is the case,
it is likely that two elective subjects share at least one student. This student
should still be able to follow both subjects, so the classes of these subjects the
student is in cannot be scheduled at the same timeslot. This also brings us
to another problem. If many students follow a subject, there will be multiple
classes for that subject. Deciding which students are assigned to which class
can make a crucial difference in the quality of the solution.

3

So as to answer the question posed at the start, there are many remaining
complaints about the schedule due to the many components of the problem,
each adding a new layer of complexity. As a measure to make scheduling easier,
schools in the Netherlands commonly make use of cluster schemes. A cluster
scheme consists of multiple groups of classes. The classes within such a group,
called a cluster line, are always scheduled together, on the same timeslot. This in
turn reduces the complexity, as there are less possible variations. Constructing
a good cluster scheme is a problem on its own. However, this can be handled
separately of the scheduling problem. We will further expand on cluster schemes
in Section 1.1.

In this thesis, we look into solving a highly constrained school in the Nether-
lands. First, we go over some terminology used throughout this thesis in Sec-
tion 1.1. Secondly, we examine literature in the area of school timetabling in
general, followed by literature on cluster schemes. In Section 2.1 we introduce
the constraints of our problem instance, while we dive further into the specifics
of the instance in Section 2.2. Afterwards, we go in detail on our approach to
the problem in Section 3. In Section 4 we discuss the results we find using the
discussed approach. Finally, we finish with a concluding statement in Section 5.

1.1 Terminology

In this section, we go over some core terminology used in this thesis. A list of
the terms is also provided at the end of this section. To start, we expand on
the situation in the Netherlands. High schools have 3 levels of difficulty: vmbo,
havo and vwo. These levels respectively study for 4, 5 and 6 years. The first
few years are called the lower years, the first 2 years for vmbo and first 3 for
havo and vwo. During the lower years, students within the same base class
generally follow all of their subjects together. Once students enter the upper
years, they choose a profile. A profile consists of the mandatory subjects, profile
specific subjects, and elective subjects. Scheduling the profile specific subjects
and elective subjects is the crux of the problem, which cluster schemes attempt
to address.

Idle/Free hours
As aforementioned, idle hours are to be avoided. However, a distinction between
idle hours and free hours must be made. If an unscheduled timeslot has no
preceding or succeeding lessons during that day, it is a free hour. Otherwise,
there is both a lesson before and a lesson after the timeslot, which makes it an
idle timeslot. A compact schedule minimizes the number of idle hours, but has
no regard for the number of free hours.

Double Hours
Some subjects require double hours. A double hour is defined by a teacher
teaching a class the same subject for two consecutive hours. A common subject
that requires double hours is physical education. For most subjects however,

4

multiple lessons with one class on the same day is undesirable, as no homework
can be given between lessons. If it does happen that two lessons are scheduled
on the same day, it is often preferred for there to be a double hour rather than
two separate lessons.

Cluster schemes
Cluster schemes are used to help solve the timetabling problem. They do so
by fixing the combinations of classes that can be assigned to the same timeslot.
Each set of classes that are to be scheduled together is called a cluster line.
During scheduling, instead of finding multiple classes to schedule on a timeslot,
we only need to find one cluster line to schedule.

Each class has a number of lessons that need to be scheduled. As such, each
cluster line needs to be scheduled multiple times as well. Considering that all
lessons of each class need to be scheduled, a cluster line needs to be scheduled a
number of times equal to the highest number of lessons of all classes in the line.
The number of times a cluster line needs to be scheduled is referred to as the
length of the cluster line. Similarly, the length of a cluster scheme is the sum of
the lengths of the cluster lines.

Note that not all subjects in a cluster line need to have an equal number of
lessons. As a result, sometimes classes do not have a lesson, even though it is
in the scheduled cluster line. This causes students of that class to have either a
free or idle hour.

Cluster line 1 Economics 2 Biology 1 History
Cluster line 2 Geography Physics Economics 1
Cluster line 3 Biology 2 Mathematics 2 Chemistry
Cluster line 4 Mathematics 1 German Music
Cluster line 5 Informatics 1 French 2
Cluster line 6 French 1 Informatics 2

Table 1.1: An example cluster scheme. The numbers indicate different classes
of the same subject.

List of terms

• Subject: A subject that is taught to students, such as mathematics, eco-
nomics or english.

• Class: A group of students that follow all lessons of a subject together.

• Base Class: A group of students that follow all their main subjects to-
gether.

• Level: a large group of students in the same year and same level of school-
ing, such as first year of vwo or the third year of havo.

• Lesson: A teacher teaching a class about a subject.

5

• Clash: When a teacher, student or room is scheduled multiple times in
the same timeslot

• Free hour: An empty timeslot at the start or end of the school day, in
which the student or teacher does not have to be at school.

• Idle hour: An empty timeslot with lessons scheduled both earlier and later
in the day.

• Double hour: A lesson that takes place during two consecutive hours.

• Compact schedule: A schedule focused on minimizing idle hours.

• Cluster scheme: A set of cluster lines.

• Cluster line: A set of classes that are to be scheduled at the same timeslot.

• Cluster line length: number of times requires to completely schedule the
cluster line.

• Cluster scheme length: sum of the lengths of each cluster line in the cluster
scheme.

1.2 Literature Study

In Stichting et al. [18], instances of the class-teacher timetabling problem are
classified into one of three categories: school, course or examination timetabling.
The main goal of all three is the same: to avoid teacher, student and room
clashes. In the case of school timetabling, classes have either no or complete
overlap of students. In other words, a class follows all of their subjects together.
This is not the case for course timetabling, in which students can have more
variation in their subjects and creating such classes is not possible. Completely
avoiding student clashes is often not seen as reasonable, and instead the focus
shifts to minimizing the overlap of lectures that have students in common. Ex-
amination timetabling once again completely avoids overlap, and additionally
tries to spread out the exams of students as far as possible. Completely avoiding
overlap can be possible, as this category commonly has less exams to schedule
than course timetabling has lessons. According to these definitions, the prob-
lem in the Netherlands that involves the upper years is most similar to course
timetabling. As for the lower years, the problem fits the definition of school
timetabling perfectly.

Although we now have classifications for our problem, using two different
classifications for one problem is not ideal. Instead, Drexl and Salewski [5] made
a distinction between school timetabling and academic course timetabling, based
on the compactness requirements of the schedule. School timetabling often
values compact schedules highly, while the opposite holds for course scheduling.
Going by these definitions, the problem falls under School timetabling.

6

In the rest of this section, we will first investigate common methods to solve
the school timetabling problem, as defined by Stichting et al. [18], henceforth
called the class-teacher timetabling problem to avoid confusion. We start with
this as this problem is more commonly found in other countries, and as such
has been researched more in depth. Afterwards, we discuss some research on
cluster schemes, which are used on the school timetabling problem as defined
by Drexl and Salewski [5].

1.2.1 Class-Teacher timetabling

The problem we are interested in is not directly solvable with methods applicable
to the class-teacher problem. As mentioned earlier, the class-teacher timetabling
problem is defined by classes having either complete or no overlap of students. A
class of students follows all of their lessons together with that group of students.
In most instances, the composition of classes is part of the input data to the
algorithm. In the school timetabling problem, this would be akin to scheduling
the lower years. For the upper years however, the problem is only similar if
a cluster scheme is used and students are already assigned to classes. This is
because a cluster line can be seen as a very large class that requires multiple
rooms and teachers. Many methods that we will see are already capable of
handling such cases or can easily be modified to do so. As such, we investigate
the solution approaches used for the class-teacher problem.

Pillay [11] made an overview of research on the class-teacher problem, in
which both the approach and the considered constraints are shown. Evolution-
ary algorithms are the most popular method, followed by local search-based
methods, with integer programming being a close third. A few comparative
studies exist, although most research is devoted to creating new methods or
improving existing ones. The latter can be done by, for example, improving
the neighbourhood search in local search-based methods. If a new method
is created, it is commonly compared to existing methods. The improvements
within a method, however, are often only compared to solutions within the same
methodology. As such, comparisons between methods are scarce.

A more recent survey by Tan et al. [19] focuses on the advancement of the
field, considering the different methodologies. They take note of the recent
notable papers for each methodology. From this, they find a shift in popularity
from local search-based methodologies to mathematical optimization methods,
such as linear programming. Additionally, they discuss several proposed data
formats for the problem, taking their respective data sets in consideration.

The International Timetabling Competition placed its focus on the class-
teacher timetabling problem in 2011. For this competition, a xml-standard for
datasets was agreed upon [13]. At the time of writing, about 50 datasets are pub-
licly available, along with their solutions and respective objective scores. Some
datasets from the Netherlands are available, which include a cluster scheme for
solutions to use.

In the rest of this section we will go over some of the more popular ap-
proaches. We examine two categories of metaheuristics, the first based on evo-

7

lutionary algorithms, and the second based on the principle of local search.
Afterwards, we evaluate the more exact approach of linear programming.

Evolutionary Algorithms

Evolutionary algorithms are population-based metaheuristics. They function
by keeping a set of solutions, known as the population. With each iteration,
also called a generation, the population changes, using the following principles
found in evolution: selection, crossover, and mutation. In the selection phase,
individuals from the population are selected to pass on their genes to the next
generation. From these individuals, crossover is used to create new solutions by
combining existing solutions. Once new solutions have been created, mutation
can be used to make a small change inside each solution. Commonly, a form
of elitism is used to ensure that the overall quality of the population does not
degrade. This is achieved by, for example, maintaining the best solution for the
next generation.

For the class-teacher timetabling problem, evolutionary approaches can be
split into two categories. The first category applies the evolutionary principles
to a timetable. The second category makes use of a string of operations, which
is used to create the timetable. The evolutionary operations are applied on the
string of operations, instead of on the timetable itself. We will now discuss a
paper from either category, after which we discuss other research in lesser detail.

Wilke et al. [22] used an approach from the first category. They chose to
represent a timetable as a sequence of timetables, one for each class. This has
two distinct advantages: a class can only be scheduled once per timeslot, and
crossover between solutions is more intuitive. Crossover on a complete timetable
consisting of all lessons is difficult to accomplish. With this data structure,
crossover can consist of interchanging class-timetables between solutions. This
is similar to crossover operations used on bit strings, a commonly used data
structure, and as such, existing operators can be used. In their specific prob-
lem, teachers are to be assigned to lessons. For this, each teacher expresses a
preference for each lesson, indicating whether they want, or do not want to give
that lesson. Although the authors do not specifically mention when teachers
are assigned to lessons, it can be assumed that it is done before or during the
creation of the initial solutions. This assumption comes from their crossover
and mutation operators, which do not change a lesson’s assigned teacher.

Their algorithm starts by creating a population of initial solutions. An initial
solution is created by assigning their lessons to random timeslots for each class.
This is done in such a manner that there is only one lesson per timeslot for each
class. They then iteratively repeat the procedure of evolutionary algorithms of
selection, crossover, and mutation. The two best solutions of a generation are
automatically selected. For the other solutions, fitness proportionate selection
is used. This makes it so that the probability that a solution is selected is equal
to its fitness divided by the total fitness scores of all solutions. The fitness of
a solution is proportional to the violations of constraints, with a higher fitness

8

indicating a higher quality. Note that normally, the quality of a solution is
higher when the score, computed as a sum of penalty points, is lower. Due to the
nature of their instance, which use teacher preferences and some contradictory
soft constraints, there is a lower bound for the quality of a solution. The exact
conversion from score to fitness is not declared.

Once the parents are selected, they use a variety of crossover operators to
create the new solutions, such as one-point crossover and uniform crossover.
As for mutation, two different operators are used, both only capable of making
small changes within a class-timetable. The first can swap the content of two
timeslots. The second operator changes the assigned room of a lesson.

A problem that occurred is that solutions were often infeasible. To mitigate
this, they added repair operators. These repair operations focus on fixing infea-
sibilities. For example, if a teacher has two lessons scheduled on one timeslot,
one of the lessons is randomly moved to a new timeslot. They invoke the re-
pair operators when the overall quality of the population does not increase for
a number of generations. This is likely done because the repair operators are
computationally more expensive than the normal iterations.

In addition to these repair operators, they added a reconfiguration operator.
This operator randomly changes the probability that another operator is used. If
we take the crossover operators as example, it could be that there is a probability
of 40% to run one-point crossover, and a 20% chance to run uniform crossover.
After the reconfiguration operator is used, this could change to 30% and 30%
respectively.

This algorithm was then used to solve the timetabling problem of a German
high school. According to them, the theoretical optimal solution would have a
score of roughly 15.000. They found that while running the algorithm with just
selection, crossover and mutation resulted in a score of about 20.000. When
including the repair operators, they found a significant increase in quality, re-
sulting in score of about 17.500. Finally, when they included the reconfiguration
operator, the resulting solution had a score of about 16.500.

Raghavjee and Pillay [14] used a sequence of operations to create a timetable,
and as such, their approach falls under the second category. In this category,
the evolutionary operators modify a sequence of operations. This sequence is
then used to create a timetable. Each sequence is then given a score, which is
equal to the score of the timetable that is created using it. Before we go into
the different operations that can be found in a sequence, it is useful to know
what the constructed timetable looks like. In their implementation, a timetable
is represented as a two-dimension matrix, in which a row represents a timeslot,
and a column represents a class. Each cell of the matrix is either empty, or has
a single lesson assigned to it, represented as a teacher-room pair. This structure
is very similar to the sequence of class timetables that Wilke et al. [22] used.
As such, the advantages are similar. In this case, a class can once again only
be scheduled once per timeslot. As for the operations that can be done on the
timetable, they used seven different operations:

9

• A) Allocate: Schedules a lesson to a feasible period with lowest increase in
score. If there is no feasible period, allocate to a random period instead.

• D) Deallocate: Removes a random lesson from the schedule.

• 1) Two violation mutation: Swaps the contents of two periods which cause
constraint violations.

• 2) One violation mutation: Swaps the content of a cell causing constraint
violations with a random cell.

• 3) Random swap: Swaps the content of two random cells.

• 4) Row swap: Swaps the contents of two random rows.

• 5) One violation row swap: Swaps the contents of a row with a cell which
causes a constraints violation and a random row.

To preserve the assignments of lessons to their respective classes, the swaps
are only done within a column. The operations are used to both create and
improve the timetables. The sequence of operations determines both which
operations are done, and when. As mentioned, the sequences are the individuals
that are modified by the evolutionary operators. They first select the parents
using tournament selection. Mutation is then done by randomly selecting an
operation and replacing it with a random operation. For crossover, they use
the cut and splice operator. This operator takes two individuals, each a list of
operations, and creates two new individuals. To do so, a random point in each
individual is selected. The first new individual is then created by taking the
part of the first old sequence before the point, and the part after the selected
point in the second old sequence. The second new individual is created in the
same way, but then the first part of the second individual is taken, and the
last part of the first sequence. For example, if two sequences, ADADAAA341
and 21444ADADA are used, and points 4 and 8 are selected, the resulting
individuals are ADADDA and 21444ADAAAA341.

Their implementation of the algorithm is split into two phases. The first
phase is dedicated to finding a feasible timetable, and as such, the quality of an
individual is linked to the hard constraint violations. Once a feasible timetable
is found, it is stored. They then create a new population, and the second
phase is started. This phase focuses on improving the stored timetable. The
operations in a sequence are applied to the timetable, and the quality of that
sequence is based on the improvement, with regard to the soft constraints. The
best timetable that is found in phase 2 is then the resulting solution of the
algorithm.

They compared the results of this approach to different methods using an
artificial data set with small instances. On this data set, they found that their
approach always found a feasible schedule. In comparison, the simulated an-
nealing, neural network and genetic algorithm approaches did occasionally find

10

an infeasible solution. They did not compare the scores of the best found so-
lutions between methods. When testing the algorithm on a data set of Greek
high schools, it was outperformed by particle swarm optimization and simulated
annealing approaches.

We have seen an example from both categories. Further research on the first
category can be found in papers by Nurmi and Kyngäs [9] and Odeniyi et al.
[10]. Nurmi and Kyngäs [9] use hill-climbing in combination with a tabu list to
create their offspring, and investigate the use of an adaptive scoring method.
Odeniyi et al. [10] integrate parts of simulated annealing into their approach, by
using the acceptance function to determine whether a new solution will replace
an old solution in the population. They compared this approach to generic
simulated annealing, and found better results for two tests cases on a Nigerian
school.

As for the second category, Bufé et al. [1] used a queue of events as their
data structure. Each event corresponds to one lesson or a group of lessons.
This queue represents the order in which the events will be scheduled. They
then use a deterministic timetable builder to create a timetable from this queue.
Similarly, Domrös and Homberger [2] also used a queue of lessons to be sched-
uled. They iteratively improve a single solution using only mutations, making
this approach closer to local search than evolutionary algorithms. It is, how-
ever, still worth mentioning here, as using an order of operations is somewhat
unique to evolutionary algorithms. This algorithm was successfully used for
the International Timetabling Competition in 2011, reaching the finals of the
competition.

Local Search

In contrast to evolutionary algorithms, local search algorithms usually keep
track of a single solution. This solution is iteratively modified with small
changes, so that a good solution can be found. This is similar to the muta-
tion part of evolutionary algorithms. The set of solutions that can be found
from the current solution is called the neighbourhood. Common neighbour-
hoods consist of swapping the timeslots of two lessons, moving a timeslot of a
lesson, changing the assigned room, or a combination of these. This is akin to
the mutation operator used in evolutionary algorithms. Multiple local search
techniques have been used to solve the class-teacher timetabling problem, such
as tabu Search, simulated annealing and hill climbing.

Zhang et al. [24] investigated an alternative neighbourhood compared to
the commonly used single swap between timeslots. Instead, they investigated
swapping multiple lessons between two timeslots. They do so by iterating over
all possible swaps between these two timeslots in a random order. Each swap
is checked by the acceptance function of simulated annealing, which determines
if it is applied or not. They found that using this neighbourhood over a single
swap resulted in more consistent quality of solutions. Furthermore, the higher

11

quality solutions are obtained faster.

Fonseca et al. [6] also used simulated annealing, but combined it with the
usage of iterated local search. They first run simulated annealing, resetting the
temperature a number of times. Then, if they still have computing time left,
they run an iterated local search process to further improve the solution. Both
processes utilise the same neighbourhood, consisting of:

• Swapping timeslots assigned to lessons

• Moving a lesson to a different timeslot

• Swapping the teachers assigned to lessons

• Assigning a new teacher to a lesson

• Kempe Chain: A chain of movements of lessons between two timeslots,
in such a manner that the next move in the chain removes all conflicts
created by the previous move.

• Reassigning Resource times: Changes the order of subjects in a teacher’s
schedule. For example, if a teacher teaches class 1, 2 and then 3, it could
become, 3, 1 and then 2.

They implemented this algorithm for the International Timetabling Com-
petition in 2011. It managed to improve the best solutions found thus far in
the first round and had the overall best performance in the second and third
rounds.

Souza et al. [17] opted to use tabu search, and placed their focus on an
improvement procedure. This procedure is invoked when the tabu search stum-
bles upon a schedule without clashes. Before we go into this procedure, it is
important to know that their timetable is represented as a timetable for each
teacher. In this data structure, only one lesson can be scheduled per timeslot,
so no teacher clashes can exist. While their timetable places its focus on the
teacher’s schedules, the improvement focuses on the classes. This is done by
zooming in on a single class and creating a graph.

To start, a vertex is created for each timeslot the class is scheduled in. The
vertex represents the timeslot. These vertices are connected by directed edges.
An edge exists from v1 to v2 if the teacher scheduled on v1 is available on v2.
An edge from v1 to v2 represents moving the lesson on v1 to v2. Each edge is
assigned a cost, computed by taking the difference in solution score if the move
it represents is performed. If this graph contains a cycle with a negative cost,
a feasible schedule with a lower cost exists. This schedule can then be created
by executing the moves that the edges in the cycle represent.

Using this improvement procedure improved the attained results signifi-
cantly. This allowed the program to find results within seconds, of a quality
that could not be attained without the improvement procedure.

12

Integer Linear Programs

Integer linear programs are models used to solve the problem in an exact manner.
In contrast to the previous two methods, a solver for a linear program will
find the optimal solution. Unfortunately, this comes with a significant increase
in computation time, with instances of the class-teacher timetabling problem
being unsolvable in a reasonable time frame. This is mostly due to the binary
constraints on variables. If these are dropped, the program can be solved. The
score of the solution we find is then a lowerbound of for the instance with
binary constraints. To mitigate the unreasonable computation time, problems
are often decomposed into smaller subproblems. This can significantly increase
the computation time, but the drawback is that the found solution is no longer
guaranteed to be optimal.

Santos et al. [15] used a column generation approach for finding lower bounds.
This approach focuses on the individual timetables of teachers. More specifi-
cally, they create timetables for teachers, separated further by day. As such, the
binary decision variable in the main program is λtdj , in which t is the teacher
index, d is the day index, and j is an identifier for the specific allocation. λtdj
has a value of 1 if the allocation is used, and 0 otherwise. Each allocation is
accompanied by a constant xtdjcp, which indicates if class c is taught on period
p, with the other variables the same as before. Furthermore, a cost constant is
used to track the costs of each allocation. To ensure that all lessons are sched-
uled, the main program makes us of constants rtc, indicating how many lessons
teacher t teaches class c. It should also be noted that they do not consider room
assignments in their problem instance.

The main program handles three different constraints:

• Exactly one allocation is selected per teacher per day

• Each class is only scheduled one per timeslot

• All lessons are scheduled

Using the variables λtdj and constants xtdjcp, they are respectively formu-
lated as: ∑

j

λtdj = 1 ∀t, d (1.1)

∑
t

∑
j

λtdjxtdjcp ≤ 1 ∀d, c, p (1.2)

∑
d

∑
j

∑
p

λtdjxtdjcp = rtc ∀t, c (1.3)

The pricing problem is solved to find new allocations for each day, for each
teacher. While finding new allocations, three constraints need to be respected:

13

• A lesson can only be scheduled on a timeslot if the teacher is available on
that timeslot

• At most 1 lesson can be scheduled per timeslot

• A maximum of m lessons can be given to each class

By solving the pricing problem, we find new allocations that the main pro-
gram can make use of. This approach allowed them to determine optimal solu-
tions for instances that were available for a long time.

A similar approach was used by Dorneles et al. [4]. Their approach also
makes use of column generation, however, instead of creating schedules per
teacher per day, they create complete week schedules for teachers. An inherent
advantage of this is that scheduling all lessons is easier to accomplish. In the
approach by Santos et al. [15], the main program has to find an arrangement of
day schedules in such a manner that this constraint is fulfilled. In contrast, if
one creates a complete schedule, it is only required that it contains all lessons.

To find new schedules, they also solve the pricing problem. A difference,
however, is that they take a graph approach to create new schedules. For each
teacher, a directed graph is created. A path through this graph represents a
schedule for that teacher. This graph is split into different sections, one for each
day. Each day has a number of vertices equal to the number of timeslots +
1. Imagine an example instance with 4 timeslots, and as such, 5 vertices for a
given day, numbered 1 to 5. The edges from vertex 1 to vertex 2 represent the
lessons that can be given in the first timeslot. These edges are directed and can
only go to a vertex with a higher number than the one it originates from. Idle
hours are also included in this. An edge from vertex 2 to vertex 4 would be
equal to an idle hour in timeslot 2, and a lesson in timeslot 3. To simulate free
hours, days can start and end at any vertex. With this, any path through this
section of the graph is a daily schedule, and by combining the path through all
sections, a complete schedule is formed.

The pricing problem is then solved by finding a path in this graph. They
do so with a linear program, using a variable xta, indicating that teacher t uses
the edge a. This approach was compared to the algorithm by Santos et al.
[15]. They found similar or better lower bounds, with a significant reduction in
computing time.

Dorneles et al. [3] investigated a new way to solve the linear program. Or-
dinarily, a solver such as CPLEX is used to solve a linear program. In their
approach, they continuously fix most of the variables, allowing only a small
subset of variables to be changed and optimized by the program. They consider
three different ways to fix variables, either fixing a number of classes, teachers,
or days. By iteratively changing which variables are allowed to be optimized, a
good solution can be found. As the algorithm progresses, the size of the subset
to be optimized increases. For example, at first only the schedule of class A is
free to be optimized. In the next iteration, the schedule of class A is also fixed,

14

but now the schedule of class B can be optimized. Once all classes have taken
a turn, the program can move to optimizing multiple classes at the same time.

As mentioned, they considered three different ways to fix the variables. They
found that fixing the days provided worse results than fixing the classes or
teachers. Between these two, the best results were found by using a combination
of fixing class schedules and teacher schedules. When compared to the general
purpose solver CPLEX, they found an overall increase in quality, even when
CPLEX was allotted ten hours of computing time, compared to the ten minute
running time of their algorithm.

Comparative Studies

Seven algorithms are compared using a real-word problem by Wilke and Killer
[20], including an evolutionary algorithm, tabu search and simulated annealing.
While the evolutionary algorithm initially improved the solution at a rapid rate,
simulated annealing ended on a better solution, while also requiring significantly
less time to compute. Tabu search was slightly faster than simulated anneal-
ing, but found the worst solution of the three algorithms. Ultimately, they
found that simulated annealing produces the best solutions, while maintaining
a comparatively good computing time.

In Wilke and Ostler [21] a comparison between tabu search, simulated an-
nealing, an evolutionary algorithm and a linear program with branch and bound
is made. They compared these algorithms on an instance of a German high
school. Tabu search could find good solutions quickly but had a violation of a
hard constraint in every solution. Similarly, the evolutionary algorithm could
not find a feasible solution, but was able to find a good solution, albeit slower
than tabu search. The linear program using branch and bound produced the
worst solution, while requiring the longest running time. Simulated annealing
was the only algorithm capable of producing a feasible solution, with a running
time between tabu search and the evolutionary algorithm.

1.2.2 Cluster Schemes

To be able to properly make use of a cluster scheme, it must adhere to some
conditions. Two obvious requirements are that both students and teachers only
appear once per cluster. Furthermore, each cluster line should include as many
students as possible. Ideally, all students are included in a cluster line, so
that none of them have an idle hour. However, if the classes in a cluster line
have varying numbers of lessons, the students of a class with fewer lessons have
an idle hour at one of the scheduled timeslots, so that needs to be taken into
consideration as well. Finally, if we include the assignment of students to classes
in the generation of the cluster scheme, there should not be a large disparity
in number of students assigned to each class of a subject. Commonly, multiple
cluster schemes are created. This is done as usually, students do not overlap
between years and level of education. As such, creating a separate cluster scheme
for each year of each level has very little influence on the quality of the cluster

15

scheme. This decreases the number of possible cluster schemes we can create,
allowing for faster computation.

Post and Ruizenaar [12] use a heuristic enumeration algorithm to create
cluster schemes for a school in Enschede. To do so, they first define the length
of a cluster scheme as the number of timeslots the cluster scheme needs to be
scheduled completely. This can also be defined as the sum of how often each
cluster line needs to be scheduled. Each cluster line needs to be scheduled a
number of times equal to the maximum a class in that line needs to be taught.
For example, in a cluster line with 3 subjects that respectively need to be taught
2, 3 and 3 lessons, the cluster line needs to be scheduled 3 times. As such, cluster
schemes with larger length require more timeslots to be scheduled, which leads
to more potential idle time when a student is not scheduled in a cluster line. For
this student, the timeslot is either an idle or free hour, depending on when on
the day it is scheduled. If a cluster scheme has a larger length, the proportion of
lines at the start or end of a day decreases. In turn, this increases the likelihood
of idle hours. As such, they argue that the quality of a cluster scheme depends
on its length, and a lower length indicates a higher quality cluster scheme.
This metric takes both maximizing the number of students in a cluster line and
possible differences in number of lessons into consideration.

The main goal of their algorithm is to minimize the length of the cluster
scheme. During the creation of the cluster scheme, students are also assigned
to the different classes of the subjects. They want each class of a subject to
have a similar number of students, which is their secondary objective. The
results of this method were compared to the commercial package that was used
at the school. They found that their implementations found cluster schemes
with lower or equal length. This method was later used in Haan et al. [7] to
create a complete schedule for the same school.

Wood and Whitaker [23] investigated a similar problem for schools in New
Zealand. Students there have a restricted choice in elective subjects due to
computational constraints on the schedule. The authors wanted to confirm
whether these computational problems still exist, and investigated a hypotheti-
cal situation where students have free choice over their elective subjects. In this
situation, teachers are always available. To approach this problem, they first
constructed a cluster scheme, then assigned students to the groups, and finally
created a schedule using it.

Before they can create the cluster scheme, they set up an approximation for
the number of student clashes between two subjects. They do so by considering
how many groups the subjects have. If one of the subjects has two or more
groups, they assume that student clashes can be avoided by scheduling the
groups in different periods. If both subjects have exactly one group, the expected
number of student clashes is equal to the number of overlapping students. This
approximation is used when they create the cluster schemes.

The teacher assignment to classes is required as part of the input. They
do so because most schools pre-assign teachers to classes. Furthermore, each

16

class has its own maximum number of students. They assume that a feasible
clustering exists with no idle hours for students, and as such, limit the number
of cluster lines to the maximum number of subjects that students can follow.

The cluster scheme is created using simulated annealing, which they initiate
by randomly assigning groups to cluster lines. The neighbourhood is then com-
posed of random interchanges of groups between lines. During this process, the
following constraints are considered:

• All groups are placed in a cluster line

• The number of groups in a line is smaller than or equal to the number of
rooms available

The cluster schemes are given a score, based on the number of teacher clashes
and the expected number of student clashes using the aforementioned approx-
imation. The goal of the algorithm is to minimize the score, while complying
with the hard constraints. Once a good cluster scheme is found, they assign
the students to the groups. This is done by taking a random student, assigning
it to groups using the Hungarian assignment algorithm, and repeating until all
students have been assigned.

After the groups are constructed, they assign the cluster lines to timeslots.
They argue that the problem is similar to an incomplete Latin rectangle; a
matrix in which a set of numbers need to be placed in such a way that every
number appears only once per row and column. The matrix has a number of
rows equal to the available periods per day, and a number of columns equal to
the available days. The goal is then to place each cluster line in such a manner
that it appears only once per row, and once per column. Each cluster line is
required to be scheduled as many times as needed, so a number of times equal
to its length.

The results were compared against schedules created by hand. They found
that the program can construct timetables of similar quality compared to those
created manually. A key difference is that the program can create schedules
significantly faster, with the process taking a couple of minutes, compared to
the days it takes to create one by hand.

Although implemented for the academic course scheduling problem, Shat-
nawi et al. [16] used a modified data mining algorithm to generate clusters. They
modified the FP-growth algorithm [8], which is normally used to find frequent
item sets in a transactional database, such as which items are frequently bought
together in case of a store. This modified algorithm first sorts the subjects by
number of students in descending order. For each student, they then sort the
student’s subjects based on the found order. This sorting is important for the
creation of a tree data structure. The tree starts with an empty node, known as
the root. The other nodes in the tree represent subjects, and each node keeps
track of a counter. A subject can occur multiple times in the tree, however, two
children of the same node cannot have the same subject. For each student’s
sorted list of subjects, they repeat the following procedure on the tree:

17

Taking a student’s sorted list of subjects, they start with the first subject
S1. To start, they look at the children of the root node. If one of the children
represents S1, its counter is increased by 1. If there is no representing node,
a new child of the root is created for S1, with the counter set to 1. For the
second subject S2, we look at the children of the node of S1. The same process
is done, if there is a child node representing S2, its counter is increased by 1,
and otherwise a new node is created. This procedure is done for all subjects of
a student.

Once the end of a student’s list of subjects is reached, they return to the
root, and restart the process with the next student. This is repeated until all
students have been examined.

Figure 1.1: Example of a part of a tree constructed by the modified FP-growth
algorithm

This process results in a tree in which each complete path represents one or
multiple student’s chosen set of subjects. Each level of this tree can be used as a
cluster line. However, the number of students assigned to each group in the line
varies greatly, with some groups having more students than should be allowed,
while others have too few. The latter is fixed by searching for a different cluster
line in which they can combine this group with another of the same subject.
Groups with too many students are split into multiple groups.

Unfortunately, we do not think this algorithm is fit for the school timetable
problem. In many cases of school timetabling, the number of groups is already
set, and thus less flexible than the above algorithm would require. Furthermore,
due to students having more subjects, there are many more unique combinations
of subjects. This makes it so that the tree becomes very wide, with each node
representing very few students. This in turn requires us to find new cluster lines
for most groups, which defeats the point of the algorithm.

18

Chapter 2

Problem

2.1 Problem Description

The problem of interest is the school timetabling problem, specifically for high
schools in the Netherlands. In general, schools are divided into three levels,
vmbo, havo and vwo. Each level has its own curriculum with different subjects
the students must follow. For example, vwo students are required to choose
one specific type of mathematics from a variety of options, whereas this is not
necessarily the case for havo and vmbo. Once a student reaches the upper years,
starting from 3rd year of vmbo or 4th year of havo and vwo, they get to choose a
basic profile and elective subjects. While the profiles do apply some restrictions
on possible elective subjects, many different combinations are possible. This
allows for a large number of classes with overlapping students, which makes
scheduling more difficult. To counteract this, a common strategy is to make use
of cluster schemes.

The specific instance of interest is ’Pontes’, a secondary school in Goes, the
Netherlands, with the data being from the academic year 2019-2020. They
feature a timetable with 9 timeslots per day, and 5 days in a week. Each lesson
is to be given by a prespecified teacher. For the lower years, the classes that
follow each lesson are given, while for the upper years, the students have yet to
be assigned to classes. It is, however, known how many classes are required for
each subject and who they are taught by. Other than the regular constraints
such as room requirements and schedule quality, some more specific constraints
are called for. The complete list of constraints is:

Hard Constraints

1. Teachers can only be scheduled once per timeslot

2. Teachers have their requested number of days off per week

3. Rooms can only be scheduled once per timeslot

19

4. Some lessons require specific rooms such as gyms, music rooms or labs

5. Some lessons require multiple consecutive timeslots

6. Lower year students can only be scheduled once per timeslot

7. Lower year students have no scheduled idle hours

8. Some lessons have fixed timeslots

9. Upper year students are able to follow all their main subjects

In addition to these constraints, which define if a schedule is feasible, we
have a number of soft constraints that determine the quality of the schedule:

Soft Constraints

10. Minimize number of missed lessons for upper year students

11. Minimize number of idle hours for upper year students

12. Minimize number of idle hours for teachers

13. Minimize teacher’s movement between lessons

14. Minimize students moving between floors between lessons

15. Lessons of a subject should preferably be taught in a room dedicated to
that subject

16. Lessons of a subject should be spread out over the week

17. Minimize the number of lessons scheduled in the 9th timeslot

The first six constraints are relatively basic constraints of the problem. Con-
straint 2 usually has specific days off for each teacher, but because this data was
not made available, we limit this to their requested number of days off. Due
to how heavily constrained the problem is, it may not always be possible for
students to attend all of their lessons. As such, upper year students are allowed
to miss lessons from their elective subjects, albeit at a heavy penalty.

The design of the school building plays a large role in the scheduling prob-
lem. Firstly, the building is divided into different sections for each subject.
Preferably, a subject is given in a room associated with that subject, or as close
by as possible. Secondly, when many students move between floors at the same
time, the stairs may become congested, which can cause them to be late for their
lessons. It is therefore requested that the movement of students between the
three floors is minimized. If a student has to move between the first and third
floor or vice-versa, it is counted as two floor movements. During a school day,
there are two breaks, during which the students move to the ground floor. This
movement does not count towards the quality of the schedule. Teachers have
voiced a very similar preference but included movement in general. For them,

20

it is preferable to teach in the same classroom multiple times in a row, without
having to move at all. This preference varies per teacher, but we have decided
to include this. It is important to note that a higher priority is placed on teach-
ing in a room associated with the subject, rather than minimizing movement of
teachers.

Of course, the overall quality of everyone’s schedule is important as well. As
such, idle hours are penalized for both upper year students and teachers. Finally,
the lessons of a subject are preferably spread out over the week. With this,
teachers can properly assign homework between lessons. This also somewhat
prevents students from having the same subject multiple times on the same day.

While in many schools the lower years have all of their classes together, it
is not quite the case at this school. Here, the lower year students have extra
curricula they can opt for. For example, there is an art track, in which the
students have different music lessons, as well as acting or dancing. There may
not always be enough students to form a complete class for these curricula. As
such, some classes may consist of students with varying curricula. For example,
a class may consist of students with a regular curriculum, as well as students
from the art track. While these students follow most of their lessons together,
there are some classes which only feature students from one curriculum. This,
in combination with the fact that lower years are not supposed to have idle
hours, and the available days for teachers, makes scheduling the lower years
significantly more difficult than usual.

2.2 Data

In this section, we further describe the specific instance of the school timetabling
problem we tackled in this thesis. While we discussed the problems induced by
the constraints in Section 2.1, this section places its focus on the data itself.

To start, the lower years consist of 29 different classes. There are four differ-
ent curricula for the lower years: Regular, Art, Gymnasium and Technasium.
The goal of the school is to create classes consisting of about 30 students. How-
ever, there may not be enough students in each curriculum to create classes
with enough students. As such, some classes may have students from multiple
curricula. Additionally, some students may have a fast track program, which
can be combined with different curricula. Similarly, students in the fast track
program have additional subjects, which replace some lessons of the shared
schedule between curricula. Accounting for this, we end up with a total of
69 different groups of students, each group sharing the exact same curriculum.
These groups are spread out over 35 different base classes, consisting of a total
of 862 students.

Looking at the upper years, we find a total of 719 different students. Each
of these students has chosen a profile and accompanying elective subjects. To
better illustrate what these choices look like, we translated the profile choice
paperwork for vwo into English, which can be found in Appendix A. Seeing as
there are so many options, it is not strange that there are 435 unique sets of

21

subjects among these students. The school also already assigned students to
base classes, which follow their mandatory subjects together. Accounting for
these base classes, we find a total of 532 unique schedules.

Across all years, there are a total of 1975 lessons that must be scheduled,
of which 1095 are for the lower years. Of these lessons, 66 lessons are already
assigned to a fixed day and timeslot. The 1975 lessons are taught by 124 different
teachers. Most teachers can be scheduled flexibly, with an average of 4 available
days, compared to the average of 16 lessons per teacher. However, there are 9
teachers who are only available for the number of days strictly required by their
lessons. For example, a teacher with 15 lessons is required to teach at least two
days.

22

Chapter 3

Approach

As this problem has now become more complex, we will break it down into
multiple parts. First, we try to find a feasible solution. This feasible solution
should adhere to all hard constraints. We begin by focusing on the lower years,
as it is important they have as few idle hours as possible. This is exceptionally
useful because teachers with the most constraints in availability tend to teach
in the lower years. Once we have made a schedule for the lower years, we create
a feasible assignment for the upper years, making sure to avoid clashes with
the schedule of the lower years. Doing so gives us a feasible solution that does
not yet take the soft constraints into account. We take these soft constraints
into consideration by using a local search algorithm starting with this feasible
solution. In the rest of this section, we go over our approach in more detail.

3.1 Initial Schedule Lower Years

While the lower years are overall easier to schedule, they do come with their
own set of restrictions. In our specific problem, there are three constraints that
pose significant issues.

1. Lower Year students should not have any idle hours

2. Parts of a class may follow different curricula.

3. Each teachers is only available for a limited number of days

These constraints are especially troublesome when put together. For clarity,
we first define lessons as standard or extracurricular. Lessons are standard when
all parts of a class follow that lesson, and we define them as extracurricular when
not all parts of a class follow the lesson. For the first and second constraint,
there are two possible ways to adhere to both: all extracurricular lessons are
scheduled either at the start or end of the day, or the other parts of the class
also attend an extracurricular lesson during the same timeslot. However, both

23

methods are hindered by the third constraint. Teachers that teach the extracur-
ricular subjects often teach multiple classes, which makes it difficult to place all
extracurricular classes at the start or end of the day. It is also common that
parts of two different classes have a extracurricular lesson together, which makes
them even more difficult to schedule. Although it was requested for lower year
students to have no idle hours, in recent years this has not been successfully
applied. As such, some idle hours may be required, although they should be
minimized.

Initially, we assign the lessons to the timetable in such a manner that the
limited availability of teachers is adhered to. We also consider the lessons that
require multiple consecutive hours by scheduling those hours on the same day.
In this specific instance, the only subject that requires consecutive hours is
Physical Education (PE), of which all lessons should preferably be scheduled
consecutively. As such, we limit the PE lessons to one day. We make this
assignment by means of an integer linear program (ILP), with the main decision
variable xlds, defined as follows:

xlds =

{
1, if lesson l is assigned to day d on timeslot s

0, otherwise
(3.1)

As each lesson needs to be scheduled exactly once, we add the following
constraint: ∑

d,s

xlds = 1 ∀l (3.2)

As mentioned, a large issue is that different parts of a class can have different
schedules. To handle this, we introduce the definition of a group; students who
follow the exact same schedule. Each group can only be scheduled once per
timeslot. We make use of an auxiliary variable, ggds, to track this. This variable
tracks the number of lessons the group g is part of in each timeslot. To do so,
we first find the set Lg, defined as the set of all lessons that group g attends.
Using Lg, we define ggds as follows:

ggds =
∑
l′∈Lg

xl′ds ∀d, s (3.3)

And to prevent groups from being scheduled multiple times on the same
timeslot, we add the constraint:

ggds ≤ 1 ∀g, d, s (3.4)

We then repeat this process for the teachers. Instead of the set Lg, we now
introduce the set Lt, the set of lessons that teacher t teaches.

ttds =
∑
l′∈Lt

xl′ds ∀d, s (3.5)

24

ttds ≤ 1 ∀t, d, s (3.6)

As teachers are only available a limited number of days, represented by At,
we introduce variables dtd indicating that teacher t teaches on day d:

dtd =

{
1, if teacher t is assigned to a lesson on day d

0, otherwise
(3.7)

dtd should be set to 1 if t teaches on any timeslot on day D:

dtd ≥ ttds ∀t, d, s (3.8)

teacher t can teach on up to At days:∑
d

dtd ≤ At ∀t (3.9)

We apply the same principle again for the PE lessons:

pgd =

{
1, if group g has a Physical Education lesson on day d

0, otherwise
(3.10)

pgd ≥ xldsif g attends lesson l and lesson is PE ∀d, s (3.11)

∑
d

pgd ≤ 1 ∀g (3.12)

For each day, we now have an assignment of lessons to timeslots. However,
this assignment does not yet consider idle hours for groups, nor the double
hours. To amend this, we use a simple local search algorithm on each day
assignment. This local search algorithm is a simplified version of simulated
annealing, in which the acceptance probability α is static. To measure the
quality of a schedule we calculate a score based on the number of idle hours,
and the number of PE lessons that are not scheduled as a double hour. For
the neighbourhood, we make use of a single variation operator. This operator
takes a lesson l and tries to assign it to a new timeslot. However, we want
to ensure that the solution remains feasible. To accomplish this, we fix any
clashes generated by moving l by moving the lessons that cause the clashes
to the original timeslot of l, essentially swapping l with a number of different
lessons. We then check if moving these lessons to the original timeslot does not
cause any clashes. If they do, the move is not accepted. If there are no clashes,
we check the quality of the schedule. If the score increases, the move is only
accepted with probability α, and otherwise rejected.

25

3.2 Initial Schedule Upper Years

After constructing the schedule for the lower years, we shift our focus to the up-
per years. This introduces a new component to the problem: students have yet
to be assigned to classes. This new dimension of the problem massively expands
the search space. Furthermore, the feasibility of a schedule strongly depends on
the class assignment. Preferably, we would like to decompose the problem into
the class assignment problem and the scheduling problem. Unfortunately, mea-
suring the quality of a class assignment is difficult. While balancing the number
of students for classes of a subject is important, there are other constraints
which are influenced by the class assignment which we cannot directly measure,
such as idle hours for students. This can only be measured once the classes are
scheduled. As aforementioned, a common strategy that is used is to create a
cluster scheme. A cluster scheme allows us to take some constraints, such as
idle hours, into consideration. Furthermore, a class assignment is usually made
during the creation of a cluster scheme. However, due to the limited available
days for teachers, cluster schemes can be difficult to work with. As such, we
investigate an alternative method to assign students to classes. Afterwards, we
go into detail on the clustering algorithm by Post and Ruizenaar [12], which we
use as a comparison.

Pair based class assignment
Although we cannot directly measure the influence of the class assignment on
the timetabling constraints, what we can somewhat measure is how freely we
can schedule a class. Because classes cannot be scheduled together if they share
one or more students, classes can be scheduled more freely if there are more
classes it does not share any students with. If classes can be scheduled more
freely overall, the scheduling problem has more feasible solutions. Following
this reasoning, we try to find a class assignment with as many pairs of classes
without any overlapping students as possible. Henceforth, we define a c-pair as
two classes without any overlapping students.

We approach this problem by finding a set of c-pairs, from which we can
construct the class assignment. As our goal is to assign students to classes, we
only consider c-pairs from the same year and level of education. It is important
that the set of c-pairs we find allows us to create a feasible class assignment.
For a class assignment to be feasible, it needs to adhere to two requirements.
Firstly, all students need to be assigned to a class of each subject they follow.
Secondly, the classes of a subject each need to have a similar number of students
assigned to them.

We redefine a c-pair as a class and a subject, in which the class has no
students that follow the subject. This definition is stricter than before, as we
now require no student from an entire subject, rather than just the students in
a class. However, this definition does allow us to check the feasibility of a set of
c-pairs more easily. Now, since a class is not allowed to have any students from
a subject, all overlapping students between subjects need to be placed in the
other classes of the subject of the class. If this would require us to place more

26

students in these classes than allowed, the class assignment is infeasible.
This expands to multiple classes of the same subject. If a subject has three

classes, and a set of students cannot be in either two of the classes, they need to
be assigned to the third class. Finally, if a student cannot be assigned to any of
the three classes, the assignment is also infeasible. Let Ā be the set of students
that cannot be placed in class A. For a subject with three classes, A, B and C,
and a maximum class size of 30 students, we obtain the following rules:

|Ā| ≤ 60 (3.13)

|B̄| ≤ 60 (3.14)

|C̄| ≤ 60 (3.15)

|Ā ∩ B̄| ≤ 30 (3.16)

|Ā ∩ C̄| ≤ 30 (3.17)

|B̄ ∩ C̄| ≤ 30 (3.18)

|Ā ∩ B̄ ∩ C̄| ≤ 0 (3.19)

While this method takes all students that cannot be assigned to a class into
account, we have not yet discussed how we compute Ā if class A is involved in
multiple c-pairs. To do so, we iterate over all c-paired subjects of A, and add
all students of these subjects together. These students cannot be placed in class
A, however, if the students do not follow the subject of A, this is already the
case. As such, we intersect this with the set of students of the subject of class
A. To summarise, we take the union of students of each c-paired subject, and
intersect this with the students of the subject of class A.

Let us examine a more fleshed out example. We consider the subject of
mathematics, which has 71 students spread out over three different classes. At
some point, we arrive at the following c-pairs for the classes:

Math1: Physics & Chemistry
Math2: History, Geography & Economy
Math3: Economy

To use the counting rules, we first find the students who cannot be assigned
to each of the classes, respectively noted as Math1, Math2 and Math3. If we look
at Math1, we find the students who follow both mathematics and physics, as
well as the students that follow both mathematics and chemistry. We add these
two sets together to find Math1. Now these students cannot be in Math1, so
they must be assigned to either Math2 or Math3. This was previously defined
in rule 3.13. However, as we now have a total of 71 students, the maximum
number of students in Math1 is 48, since we want balanced classes. The exact
same principle applies to the classes Math2 and Math3, with their respective
c-pairs.

27

If none of these three rules are violated, we move on to the rules that look
at two classes. For the first one, we find the students that are in both Math1
and Math2. These students must be assigned to Math3, so there can be at most
24 students. If we look at Math2 and Math3, we see that economy is paired
with both, so all students who follow both economy and mathematics must be
assigned to Math1.

Now we have one more rule, which says that there should be no students
who are in Math1, Math2 and Math3. If this is the case, the student cannot
be assigned to any of the classes, which is obviously infeasible. If we were to
add economy as a c-pair to Math1, all students that follow economy cannot be
assigned to any class. Adding this c-pair makes the class assignment infeasible,
unless there are no students who follow both economy and mathematics.

To find the c-pairs, we initially opted for a greedy algorithm. This algo-
rithm would continuously add c-pairs, provided that it would still create a
feasible class assignment. However, the resulting class assignment could not
be scheduled within the allowed timetable. As such, we opt for a local search
heuristic. This changes two things compared to the greedy algorithm. Firstly,
we add a probability β to remove a random c-pair from the set. Secondly,
instead of looking for a set with as many c-pairs as possible, each new c-pair
is weighed. We presume it is more beneficial if two classes can be scheduled
decently freely, rather than one class with many options, while the other class
cannot be scheduled with any other classes. The weight we use is thus based on
how many c-pairs each class already has. We calculate the score for one class
as log2 (1 + #c-pairs of the class). The total score of the set is then the sum of
the scores of each class. Following this, the neighbourhood is as follows:

• Add a random c-pair

• Remove a random c-pair

Once we establish the c-pairs, we assign students to the classes using an
integer linear program. By using the rules we established, this can be done
separately per subject. We make use of the decision variable xcs, defined as
follows:

xcs =

{
1, if student s is assigned to class c

0, otherwise
(3.20)

Note that if a student cannot be assigned to a class, xcs is always set to 0
for that class-student combination. To ensure that the classes are balanced, we
make use of a constraint that sets the total students allowed in a class to the
average students per class + 1.∑

s xcs ≤ Avg + 1 ∀c (3.21)

Running this ILP gives us our class assignment, which we will use to schedule
the lessons. However, before we discuss how we schedule the lessons, we examine
a different method to create the class assignment.

28

Enumeration Heuristic
While our algorithm focuses on freedom of scheduling, the algorithm by Post and
Ruizenaar [12] finds a cluster scheme that can be scheduled in as few timeslots
as possible. To reiterate, a cluster scheme groups classes together, which will be
scheduled on the same timeslots. Each such group of classes is called a cluster
line. The length of a cluster scheme is the number of timeslots required to
schedule the whole cluster scheme. Similarly, the length of a cluster line is the
number of timeslots required to schedule all classes in the line, which is equal
to the highest number of lessons any class in the line has. During the creation
of the cluster scheme, students are assigned to classes. We will make use of this
class assignment to create an initial solution.

To create the cluster scheme, Post and Ruizenaar [12] employ a heuristic
enumeration scheme. For this, we first discuss how we judge the quality of a
cluster scheme. Their main goal is to minimize the length of the cluster scheme,
while their secondary goal is to balance the number of students in classes of a
subject. Combining this, they formulate the quality of a cluster scheme as:

Score(scheme) = α · Length(scheme)+
β
∑

subjects(
∑

classes #students in class− average per class)2

(3.22)
Here, α and β represent the difference in importance between the length and

the balance. These should be set in such a manner that the length is of higher
importance. Note that adding more classes to the scheme can only increase the
score. Because of this, we can use a branch and bound-like technique with the
quality definition in 3.22.

Before we create the cluster scheme, it should be noted that we create a clus-
tering for each year of each level. This can be done without much difference in
the total clustering, as there are no overlapping students between these. While
a point can be made for the teachers, which do overlap, the search space is dras-
tically smaller when split, allowing us to find the cluster scheme significantly
faster. Additionally, only the elective subjects are clustered. This is a com-
mon strategy, as the mandatory subjects are already assigned to base classes.
Scheduling all base classes on the same timeslot encompasses all students, and
by not fixing them as a cluster scheme we retain the freedom to schedule the
mandatory subjects in other combinations.

To initialize the enumeration heuristic, we first sort the subjects based on
the number of classes it has, in ascending order. This is the order in which we
will assign the subjects. Subjects with fewer classes are more constrained in
their scheduling, so handling them earlier on shrinks the search space further.
We then iterate over the subjects in this order. The first subject we encounter
is likely to have only one class. Seeing as we have no cluster lines thus far, we
create a new cluster line and add the class to this line. The next subject is also
likely to have one class. For this assignment, we now have two options, either
add it to the existing cluster line, or create a new cluster line and add it to the
new line. Both of these options are explored, given that there are no student or

29

teacher clashes. Later subjects will have more options, but the sample principle
applies for all their options.

Once we reach subjects with multiple classes, assigning classes to lines be-
comes more complicated. The assignment is still done in a very similar manner.
For example, if we have two existing cluster lines and we want to assign a sub-
ject with two classes, we have six different assignments, as illustrated in Figure
3.1.

Figure 3.1: Example of how a subject with two classes can be a assigned to
three different cluster lines

For each of these assignments, we greedily assign the students of the subject
to the classes. We do so by iterating over all students and assigning them to
a class if possible. Preferably, we assign the student to the class that contains
the fewest students thus far. However, a student may already be assigned on
this cluster line, so this is not always possible. If a student cannot be assigned
to any class, then this cluster line assignment is deemed infeasible and we stop
further expanding on this assignment.

Once all the students of a subject have been assigned, we calculate the score
of the current assignment. If the current score is higher than the score of a
completed cluster scheme we found earlier on in the algorithm we can stop
expanding this assignment, as the score can only increase. For this to function
properly, new assignments are explored in a depth-first manner.

30

Algorithm 1: Heuristic Enumeration Algorithm

Sort subjects on class count
Enumurate(empty solution, first subject)

Function Enumurate(solution, subject):
Find all combinations of assigning classes to lines
if all subjects assigned then

return solution
end
foreach line assignment combination do

if all students can be assigned to a class then
if score ≤ best score then

return Enumurate(current solution, next subject)
end

end

end

Our implementation of this algorithm is exactly as defined in the paper
by Post and Ruizenaar [12]. However, some improvements do exists, such as
assigning students using a max flow problem instead of greedily.

Local Search
Although Post and Ruizenaar [12] employ techniques to improve the speed of
the enumeration, computing the cluster schemes may still require a fair amount
of time. Additionally, the cluster schemes it finds are likely not optimal, due
to the order the subjects are assigned in and the greedy assignment of students
to classes. As an alternative, we consider a local search algorithm to create
the cluster scheme. This algorithm uses the same quality formulation, denoted
in 3.22. We surmise that this can create cluster schemes of very similar quality,
while requiring less computation time.

As such, we create a simulated annealing algorithm, with a neighbourhood
consisting of two operators:

• Move a class to a different cluster line

• Move a student of a subject to a different class

In addition to the quality measure denoted in 3.22, we increase the score
of a scheme based on the number of student clashes and teacher clashes. For
the heuristic enumeration algorithm, this was unneeded, as such schemes are
discarded. Finally, we decrease the temperature linearly over time.

Creating the initial schedule
Once we have found the class assignments, whether by our method or the
method discussed by Post and Ruizenaar [12], we can start scheduling the upper
years. Much like with the lower years, we first look for a feasible schedule using

31

an ILP. The ILP we use largely resembles that which was used for the lower
years, but instead of looking for group clashes, each class is assigned a set of
classes that the class cannot be scheduled with. This gives us the following ILP:

xlds =

{
1, if lesson l is assigned to day d on timeslot s

0, otherwise
(3.23)

∑
d,s

xlds = 1 ∀l (3.24)

For the classes that cannot be scheduled together, we use the constraints:

xlds + xl′ds ≤ 1 ∀l, d, s, l′ ∈ lessons l cannot be scheduled with (3.25)

Unfortunately, in our instance, completely avoiding student clashes makes
finding a feasible initial schedule highly unlikely. As such, we allow lessons to
be scheduled together even if this creates student clashes. Preferably, we would
like to minimize these clashes, however, doing so would drastically increase the
computation time required to find the initial schedule. As a result, we allow
two lessons to be scheduled together if they create a minimal number of student
clashes, but we do not track or minimize the total number of clashes. This is
done by simply loosening the restrictions on 3.25.

For teacher availability, we use the same method as in the lower years. Fur-
thermore, if scheduling a lesson on a timeslot would create a clash with either
the fixed lessons or the lessons of the lower years, xlds is forced to have a value
of 0.

3.3 Improving the schedule

As seen in Section 1.2.1, many algorithms have been used for the class-teacher
problem. From these, we initially limit our choice to one of the better performing
algorithms. We consider three different candidates: an evolutionary algorithm,
a local search-based algorithm, or a integer linear program.

Each of these algorithms can start from an initial schedule. However, making
changes to the class assignments is troublesome using integer linear programs.
As such, we drop these from our consideration. The advantages of evolution-
ary algorithms and local search are very similar. Evolutionary algorithms have
the considerable downside that the variation operators are problem specific and
require a large amount of problem specific knowledge. Alternatively, one could
use a standard data structure, which allows common techniques to be applied.
This does, however, require a mapping from the problem instance to such a
data structure. Furthermore, parameters such as population size need to be
investigated, as the best values differ for each problem. A similar issue is ap-
parent in local search algorithms, which require good parameters for escaping

32

local optima. Additionally, a good neighbourhood search is required, which is
a problem specific operator.

Simulated annealing has been shown to have better results than both evo-
lutionary algorithms and tabu search, as discussed in Section 1.2.1. For this
reason, simulated annealing will be the algorithm of choice for improving the
initial timetable.

The neighbourhood structure we use in our simulated annealing is composed
of multiple operators.

1. Move lesson to a new timeslot and/or day

2. Move a student between classes of a subject

3. Swap all lessons between two timeslots

4. Swap all students between classes of a subject

5. Move all lessons of a teacher scheduled on a day to another day

The first two operators mentioned are fairly basic operators to alter the
timetable. Operators 3 and 4 are extensions of the first two, increasing the range
of the operator. These operators create larger changes in the timetable, which
are unlikely to be achieved using just the first 2 operators. Finally, operator 5
is included to allow us to divert more from the initial schedule. Without this
operator, moving lessons of highly constrained teachers is difficult, as they either
create a clash or exceed their number of allowed days. The latter is assigned
a high cost, which makes it less likely that such a move would be accepted. If
we move all lessons of a teacher on a day to a new day, we do not exceed their
maximum allowed number of days, which is more likely to be accepted.

After each move, we check the quality of the timetable. If it is an improve-
ment, we accept the change, if this is not the case, we only accept the change
with a probability determined by the simulated annealing process. We deter-
mine the quality of the timetable using the constraints found in Section 2.1.
However, due to the complexity of the problem, we decided to drop the assign-
ment of rooms to lessons. While this was requested, the importance of these
constraints are lower than the overall quality of the schedule of the lessons. As
such, we only consider the maximum number of lessons on a timeslot, so as to
not require too many rooms.

To encourage lessons of a class to be spread out over the week, we employ
multiple measures. First, we penalise scheduling more than 2 lessons of a class
on the same day. Secondly, we look at the number of days between the first
lesson in the week and the last lesson in the week, which we will call the dayspan.
For example, if a class has a lesson on tuesday, and a lesson on friday, it has
a dayspan of 4. Preferably, we want a class to have a dayspan equal to the
number of lessons + 1, unless a class has only one lesson. Doing so allows
teachers to assign homework, for which students will have at least one or two
days to complete.

33

Although we want to minimize the idle hours, we would rather balance out
the idle hours rather than stacking them on a few students or teachers. To do so,
higher numbers of idle hours for a student or teacher are penalised harder. We
take the number of idle hours raise it to the power of an exponent. The outcome
of this is multiplied with the penalty for idle hours. Students and teachers use
different penalties and exponents for idle hours.

Penalty(Idle Hours) : #idle hoursidle exponent · idle hour penalty (3.26)

During the creation of the initial class assignment, we mentioned that we
want the classes of a subject to have a balanced number of students. This
requirement still stands during the improvement phase. During this phase, we
calculate the penalty for unbalanced classes in the same manner as during the
creation of the initial class assignment.

34

Chapter 4

Results

Previously, we discussed four different methods for creating the class assign-
ments. In this section, we compare these methods. We primarily do so by
comparing the final timetables after improving the initial timetables produced
by these four methods using local search. In addition to the four methods, we
include a completely random initial timetable.

However, before we make this comparison, we use the quality measure de-
fined by Post and Ruizenaar [12] to compare the cluster schemes created by
the enumeration heuristic and the local search variant. Although this quality
definition may not necessarily be indicative of a good class assignment, it is still
an interesting comparison to make.

Other than investigating the varying methods for creating the class assign-
ments, we also experiment with varying running times for creating the cluster
schemes using local search. Similarly to comparing the methods, we focus our
comparison on the final timetables.

All tests are run on an Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz.

4.1 Cluster scheme Comparison

First, we compare the local search version of the method by Post and Ruizenaar
[12] to their heuristic enumeration algorithm using their quality measure. Al-
though this quality measure is not necessarily indicative of a good resulting
timetable, it should be the case that cluster schemes with lower length are eas-
ier to schedule. Initially, we run the local search for 5 minutes for each level of
education. Throughout the results, each local search algorithm is run 3 times,
with the results averaged. The enumeration heuristic works in a deterministic
manner, so it is only run once. It should be noted that we established a hard
limit on the length of cluster schemes created by the enumeration heuristic to
restrict the running time. For this, we chose a length of 32. We went for this as
we require about 10 timeslots for scheduling the main subjects. The results of
this can be seen in Table 4.1. Later, in Section 4.2 we compare different running

35

times of the local search algorithm.

Level Score HE Time HE (min) Score LS Time LS (min)
m3 343,0 0:19 338,2 5
m4 321,0 0:04 321,4 5
h4 404,0 3:31 401,3 5
h5 478,2 43:38 337,8 5
v4 301,4 0:00 257,7 5
v5 316,0 0:02 370,3 5
v6 310,6 0:01 310,4 5

Table 4.1: Comparison between the heuristic enumeration (HE) and local search
(LS) method to create the cluster schemes according to the score formulation
by Post and Ruizenaar [12] with α = 10 and β = 0.25.

Overall, the local search version creates cluster schemes with a lower score.
Other than this, there are two notable details. First, the computation time for
the enumeration heuristic is quite short, but takes a while longer for h4 and a
significant longer time for h5. Additionally, these cluster schemes have a high
score compared to the other levels. Secondly, although the local search variant
overall produces better cluster schemes, it is not the case for v5. To explain
these occurrences, we examined the produced cluster schemes in greater detail.

Heuristic enumeration score and running time
Examining the cluster schemes of levels h4 and h5 created by the enumeration
heuristic further, we find that high score is due to severely unbalanced classes.
For example, German at the h4 level has one class with 34 assigned students,
while the other class has 2 students. This is most likely due to the heuristic
using multiple greedy approaches. With this in mind, we further examined the
cluster schemes of the other levels. Although less prevalent, we find some classes
that are highly unbalanced.

Furthermore, we reckon that the long running time is also caused by the
high score. During the algorithm, we prune partial cluster schemes if their score
is higher or equal to the score of the current best complete cluster scheme. If
the score of the best cluster scheme is higher, less pruning is done, resulting in
a significantly longer running time.

To allow more flexibility during the creation of the cluster schemes, we in-
creased the bound on the length to 38. However, this did not necessarily improve
the found cluster schemes. Due to the greedy assignments, it is possible that we
find cluster schemes with worse scores than with a lower bound on length, as
can be seen in Table 4.2. With this increase in score, we also found an increase
in running time, most significantly for h4, which took more than 15 hours to
compute.

Score difference for level v5
We move on to examining the difference in score between the two methods for

36

Level Score Max 32 Time Max 32 (min) Score Max 38 Time Max 38 (min)
m3 343,0 0:19 310,0 0:10
m4 321,0 0:04 361,0 0:02
h4 404,0 3:31 629,0 878:16
h5 478,2 43:38 510,2 43:18
v4 301,4 0:00 301,4 0:00
v5 316,0 0:02 380,0 0:01
v6 310,6 0:01 310,6 0:01

Table 4.2: Comparison between the heuristic enumeration method bounded by
a maximum cluster scheme length of 32 and 38.

the level v5. We quickly find that the length of the cluster scheme created
by local search is quite high, ranging from 35 to 38. Although this is not the
case for the enumeration heuristic, they only accomplish this by abusing a few
unbalanced classes. A large issue is the difficulty of scheduling for this level.
Compared to the other levels, there are fewer students and fewer subjects with
multiple levels, making it more difficult to create a good cluster scheme. The
only level with a similar problem is v6, however, they have fewer lessons in total,
allowing us to still find a scheme with a manageable length.

A bounded local search
To amend the high lengths of the cluster scheme found by local search, we added
an additional restrained to the local search. By increasing the score per length
to 100 for lengths larger than 32, we create a soft bound on the length of the
cluster schemes. We compare the resulting cluster schemes and their respective
lengths in Table 4.3. Note that in this table, the length of a cluster scheme
always counts as 10 towards the score, even if during the bounded local search
it may count as more.

Unbounded Bounded
Level Score Length Score Length
m3 338,2 33,7 313,1 31,0
m4 321,4 32,0 320,7 32,0
h4 401,3 36,0 345,1 32,0
h5 337,8 33,7 321,1 32,0
v4 257,7 25,7 264,3 26,3
v5 370,3 36,7 320,5 32,0
v6 310,4 31,0 307,0 30,7

Table 4.3: Comparison of the cluster schemes computed by local search, one
bounded using an extra penalty for lengths above 32, and one unbounded

We can see that on most levels, the cluster schemes are of similar quality,
which is to be expected. For the levels h4, h5 and v5, we find a decrease in
length, without creating severely unbalanced classes. This is very beneficial,

37

however, it does require some problem specific knowledge to set the bound to a
value that does not heavily skew the balance, while still enforcing lower length.

4.2 Local Search Running Times

Next, we investigate the effect of the running time on the resulting cluster
schemes created by local search. Previously, we used runs spanning 5 minutes
per level, however, shorter runs may also suffice. In this section, we will compare
the running times of 1 minute, 2 minutes and 5 minutes. We do this for both
the unbounded and bounded version. We compare the running times in two
different manners. First, we compare the score of the cluster scheme using the
quality measure by Post and Ruizenaar [12], similarly as in the previous section.
Next, we make a comparison based on the resulting timetables, both initially
and after improvement using local search. Once again, each noted result is the
average of 3 runs.

Unbounded Bounded
Level 1 minute 2 minutes 5 minutes 1 minute 2 minutes 5 minutes
m3 360,2 338,7 338,2 316,8 310,1 313,1
m4 360,7 347,4 321,4 324,2 320,7 320,7
h4 422,0 398,5 401,3 351,8 348,5 345,1
h5 371,1 367,8 337,8 321,1 333,6 321,1
v4 281,3 257,7 257,7 281,0 267,7 264,3
v5 375,3 370,5 370,3 320,5 320,5 320,5
v6 310,4 310,4 310,4 310,4 310,4 307,0

Table 4.4: Comparison between multiple running times for the local search
algorithm

As we can see in Table 4.4, there is a larger difference between a running time
of 1 minute and 2 minutes, compared to a the difference between 2 minutes and
5 minutes. Although runs allocated 5 minutes do still outperform, the difference
with the 2 minutes runs is slight. Most commonly, the only difference is a slightly
better balance of the class assignment.

As mentioned earlier, while the quality measure by Post and Ruizenaar [12]
is interesting, it does not directly translate to how well a cluster scheme can be
scheduled. As such, we compare the scores of the initial timetables constructed
using the found class assignments, as well as the score of the final timetables
after improvement using local search. These results can be seen in Table 4.5.

For both the unbounded and bounded variant, taking more time to create
the cluster schemes results in a lower score, for both the initial timetables as
well as the final timetables. Furthermore, we can see that the bounded variant
of local search results in better final timetables for all running times. These
results however, are not statistically significant at p = 0.05; the lowest p-value
is 0.1, between the 2 and 5 minutes of the unbounded local search.

38

Initial timetable Final timetable
Score σ Score σ

1 minute unbounded 31219035 413267 1137926 121277
2 minutes unbounded 30754323 4852107 1135627 53362
5 minutes unbounded 30510642 885867 1051802 17807
1 minute bounded 32647457 982680 1040658 120403
2 minutes bounded 31125833 1737742 1023301 11503
5 minutes bounded 23120102 2939399 994763 86195

Table 4.5: Scores with standard deviations (σ) of both initial and final timeta-
bles after improvement, for different running times of the local search algorithm
to create cluster schemes.

4.3 Initial Schedules

To find the effectiveness of each initial schedule and class assignment, we com-
pare the final schedules after improvement using local search. The parameters
for the local search are the same for each run. The probabilities for each opera-
tor can be found in Table 4.6. For further details on how the score is computed,
a breakdown of the best found timetable is included in Appendix B.

Operator Probability
Move a lesson to a different timeslot 70%
Move a student between classes of a subject 25%
Swap all lessons between two timeslots 3%
Swap all students between classes of a subject 1%
Move all lessons of a teacher scheduled on a day to another day 1%

Table 4.6: Probability of each operator in the local search for timetable im-
provement.

We run two different comparisons for the schedules. First, we do five runs of
1 hour long for each method, each starting with a new initial timetable for each
run. Secondly, we do one run that lasts 8 hours for each method. This run will
result in a timetable that is further optimized than the runs with running time
of 1 hour. In addition to the four different methods we use for creating an initial
class assignment, we add a comparison with a completely random initial class
assignment and schedule. In total, we compare five different methods to create
class assignments: The heuristic enumeration (HE) by Post and Ruizenaar [12],
a local search (LS) variation of the enumeration heuristic, a bounded local search
(LSB) variant, the assignment based on maximal pairs, and a completely random
assignment.

1 hour runs
To analyze the differences in each method, we created five different initial timeta-
bles for each method. However, as the quality of these timetables does not reflect

39

how easily the timetable is improved upon, we run a local search to improve
each timetable. The average result of each method can be found in Table 4.7.

Initial timetable Final timetable
Method Score σ Score σ
LS 33079524 2503696 1108928 79847
LSB 31158073 672183 1061743 16264
HE 15655114 1067048 1086163 49762
Pairs 17066964 1242826 1060216 84610
Random 419756314 4270100 4191253 74340

Table 4.7: Scores with standard deviations (σ) of both the initial timetables
and the final timetables after a running time of 1 hour.

If we first analyze the initial timetables, we see that interestingly, the initial
timetables for the heuristic enumeration and pair based class assignment are
better than the ones created from the local search cluster schemes. However,
the difference between the final timetables of any of these four methods is not
significant enough to distinctly call one method better than another. What can
be said, is that the randomly initialised timetable performs significantly worse
than the other methods.

8 hour runs
While running the improvement phase for 1 hour results in a decent timetable,
there is still room for improvement. By extending the running time to 8 hours,
we should be able to find further progress in the quality of the timetable. The
results of these runs can be found in Table 4.8.

Method Initial score Final score
LS 34291911 893976
LSB 31387990 710004
HE 15023008 759788
Pairs 16466525 810146
Random 427537877 2867308

Table 4.8: Scores of the resulting timetables after a running time of 8 hours.

Here we can once again see that starting with a decent initial timetable is a
significant improvement over starting with a completely random one. Compared
to the runs with a duration of 1 hour, there is a larger variance between the
resulting timetables of each method. However, as we only did a single run with
this duration, a fair comparison cannot be made. Nonetheless, we can compare
the methods on a different aspect; the time required to construct the initial
timetable.

Time to create the initial timetable
With the parameters we used, constructing an initial timetable using the pair

40

based method takes the least amount of time. Although the computation time
of both local search methods is variable, we used 5 minutes per level as we used
this value during our computations. However, by limiting the computation
time to 2 minutes per level, the construction time is similar to the pair based
method. Nevertheless, both the local search methods and the pair based method
benefit from a static computation time. Although the heuristic enumeration
method finds most cluster schemes quickly, it can get stuck on difficult instances,
resulting in a long computation time and poorly balanced classes.

Method Time to construct initial timetable (min)
LS 39
LSB 39
HE 48
Pairs 16

Table 4.9: Comparison of the total time taken to create initial timetables for
each method.

41

Chapter 5

Conclusion

During this thesis, we experimented with a local search variant of the method
by Post and Ruizenaar [12]. According to their quality measurement, we found
that using local search produces better and more consistent cluster schemes,
albeit requiring a longer running time for most levels of education. The cluster
schemes constructed using local search mostly improved on the balance of the
classes.

Although the enumeration heuristic requires a significantly lower computa-
tion time for most levels, it may take an undesirable amount of time if the
instance is difficult. For these instances, it may be more beneficial to have a
fixed running time, which the local search variant provides. Finally, another
trait of the enumeration heuristic is that the quality of the cluster scheme varies
with the bound on the length of the cluster scheme. It may be the case that a
higher bound will result in a lower quality cluster scheme, which is troublesome.

As such, for constructing the cluster scheme, we recommend either using the
local search variant or running both the local search variant and the enumeration
heuristic at the same time. For the latter, we would take the cluster scheme that
is computed faster, although it is advised to check the balance of the classes of
the enumeration heuristic.

In our instance of the problem, making use of cluster schemes provided
to be a difficult assignment due to the restrictions in teacher’s schedules. As
such, we used a local search algorithm to improve upon an initial timetable.
This initial timetable is constructed using an initial assignment of students to
classes. We compared different methods to create this assignment of students to
classes. First, we used both the aforementioned heuristic enumeration algorithm
and local search variant to create cluster schemes, from which we specifically
used only the class assignment. Additionally, we investigated a completely new
method to produce class assignments. By maximizing the number of classes
that can be scheduled together, we allow the timetable to more easily explore
the search space during the improvement stage. While we found that adding
a good soft bound to the length of a cluster scheme created using local search

42

can lead to better cluster schemes, we cannot confidently say that any discussed
method is better than another.

In conclusion, we investigated two new methods, a local search for creating
cluster schemes, and a pair based method that exclusively creates a class assign-
ment. The local search is capable of creating cluster schemes more consistently
at a static computation time. Previously, the computation time could ramp up
indefinitely depending on the problem and the parameters given.

Although we cannot say that the pair based method to create class assign-
ments results in a higher or lower quality timetable, it does consistently have the
lowest time to compute the class assignments compared to all other discussed
methods.

5.1 Future Research

In future works, multiple facets of the methods discussed in this work can be
improved upon. In this study, we explored a new method of assigning students
to classes. This method is based on a counting argument, which may be overly
strict. Future research could be done on improving the counting argument,
allowing for more pairs to be found. It could also be interesting to create
cluster schemes using the class assignment found using this method, instead of
assigning students during the creation of the cluster scheme.

Furthermore, we examined the work by Post and Ruizenaar [12]. We found
that while their method is effective, it is restricted by the greedy assignment of
students to classes and set order in which to assign the subjects. This could be
improved by allowing the class assignments to change later on in the algorithm,
or assigning students based on the flexibility of the class, instead of how balanced
the classes currently are.

43

Chapter 6

Bibliography

[1] M. Bufé, T. Fischer, H. Gubbels, C. Häcker, O. Hasprich, C. Scheibel,
K. Weicker, N. Weicker, M. Wenig, and C. Wolfangel. Automated solution
of a highly constrained school timetabling problem - preliminary results.
pages 431–440, 04 2001. doi: 10.1007/3-540-45365-2 45.

[2] J. Domrös and J. Homberger. An evolutionary algorithm for high school
timetabling. Practive and Theory of Automated Timetabling (PATAT
2012), pages 485–488, 2012.

[3] Á. P. Dorneles, O. C. de Araújo, and L. S. Buriol. A fix-and-optimize
heuristic for the high school timetabling problem. Computers & Operations
Research, 52:29–38, 7 2014.

[4] Á. P. Dorneles, O. C. de Araújo, and L. S. Buriol. A column generation
approach to high school timetabling modeled as a multicommodity flow
problem. European Journal of Operational Research, 256:685–695, 02 2017.
doi: 10.1016/j.ejor.2016.07.002.

[5] A. Drexl and F. Salewski. Distribution requirements and compactness con-
straints in school timetabling. European Journal of Operational Research,
102:193–214, 1996.

[6] G. Fonseca, H. Santos, T. Toffolo, S. Brito, and M. Souza. Goal solver:
A hybrid local search based solver for high school timetabling. Annals of
Operations Research, 08 2014. doi: 10.1007/s10479-014-1685-4.

[7] P. Haan, R. Landman, G. Post, and H. Ruizenaar. A case study for
timetabling in a dutch secondary school. pages 267–279, 01 2006. doi:
10.1007/978-3-540-77345-0 17.

[8] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. SIGMOD Rec., 29(2):1–12, May 2000. ISSN 0163-5808. doi:
10.1145/335191.335372.

44

[9] K. Nurmi and J. Kyngäs. A framework for school timetabling problem. 01
2007.

[10] O. A. Odeniyi, E. O. Omidiora, S. O. Olabiyisi, and C. A. Oyeleye. Mathe-
matical programming model and enhanced simulated annealing algorithm.
Asian Journal of Research in Computer Science, pages 21–38, 5 2020. doi:
10.9734/AJRCOS/2020/v5i330136.

[11] N. Pillay. A survey of school timetabling research. Annals of Operations
Research, 218, 02 2013. doi: 10.1007/s10479-013-1321-8.

[12] G. Post and H. Ruizenaar. Clusterschemes in Dutch secondary schools.
Number 1707. University of Twente, Department of Applied Mathematics,
2004.

[13] G. Post, S. Ahmadi, S. Daskalaki, J. Kingston, J. Kyngas, C. Nurmi, C. Go-
gos, N. Musliu, N. Pillay, H. Santos, and A. Schaerf. An xml format for
benchmarks in high school timetabling. Annals of Operations Research,
194:385–397, 04 2012. doi: 10.1007/s10479-010-0699-9.

[14] R. Raghavjee and N. Pillay. A genetic algorithm selection perturbative
hyper-heuristic for solving the school timetabling problem. ORiON, 31, 04
2015. doi: 10.5784/31-1-158.

[15] H. Santos, E. Uchoa, L. Ochi, and N. Maculan. Strong bounds with cut
and column generation for class-teacher timetabling. Annals of Operations
Research, 194:399–412, 04 2012. doi: 10.1007/s10479-010-0709-y.

[16] S. Shatnawi, F. Albalooshi, and K. Rababa’h. Generating timetable and
students schedule based on data mining techniques. International Journal
of Engineering Research and Applications, 2:1638–1644, 07 2012.

[17] M. Souza, N. Maculan, and L. Ochi. A GRASP-Tabu Search Algorithm
for Solving School Timetabling Problems, pages 659–672. 01 2004. ISBN
1384-6485. doi: 10.1007/978-1-4757-4137-7 31.

[18] C. Stichting, M. Centrum, and A. Schaerf. A survey of auto-
mated timetabling. Artificial Intelligence Review, 13, 01 1996. doi:
10.1023/A:1006576209967.

[19] J. Tan, S. L. Goh, G. Kendall, and N. Sabar. A survey of the state-of-the-
art of optimisation methodologies in school timetabling problems. Expert
Systems with Applications, 09 2020. doi: 10.1016/j.eswa.2020.113943.

[20] P. Wilke and H. Killer. Comparison of algorithms solving school and course
time tabling problems using the erlangen advanced time tabling system
(eatts). PATAT 2010 - Proceedings of the 8th International Conference
on the Practice and Theory of Automated Timetabling, pages 427–439, 01
2010.

45

[21] P. Wilke and J. Ostler. Solving the school timetabling problem using
tabu search, simulated annealing, genetic and branch & bound algorithms.
PATAT 2008 - Proceedings of the 7th International Conference on the Prac-
tice and Theory of Automated Timetabling, 8 2008.

[22] P. Wilke, M. Gröbner, and N. Oster. A hybrid genetic algorithm for school
timetabling. pages 455–464, 12 2002. doi: 10.1007/3-540-36187-1 40.

[23] J. Wood and D. Whitaker. Student centred school timetabling. Jour-
nal of the Operational Research Society, 49(11):1146–1152, 1998. doi:
10.1057/palgrave.jors.2600628.

[24] D. Zhang, Y. Liu, R. M’Hallah, and S. Leung. A simulated annealing with
a new neighborhood structure based algorithm for high school timetabling
problems. European Journal of Operational Research, 203:550–558, 06 2010.
doi: 10.1016/j.ejor.2009.09.014.

46

Appendix

Appendix A

Figure 6.1: Profile choice form VWO

47

Appendix B

Number of lessons scheduled on 9th hour 0
Score for lessons scheduled on 9th hour: 0
Score for balanced number of students for classes 10980
Score for balancing lessons across the week 165045
Total score for upper years 481040
Total score for lower years 27000
Total score for Teachers: 25939
Total score 710004

Table 6.1: Summary of score breakdown of best found timetable

Upper Years Lower Years Teachers
Clashes Idle Hours Clashes Idle hours Clashes Idle Hours

Total 16 2827 0 11 0 496
Average 0.03 3.93 0 0.16 0 4
σ 0.18 1.90 0 0.43 0 2.92
Highest 2 9 0 2 0 13

Table 6.2: Detailed summary of the number of clashes and idle hours of the
upper year students, lower year groups and teachers

48

