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Abstract

The aim of this thesis is to provide an account of the meaning of second-order formulae in
a structuralist context. We first give the necessary background in notions of formality in
logic and argue for the use of second-order logic as language of mathematics, as proposed
by Shapiro. We then formalize Giovannini’s and Schiemer’s theory of structural definitions.
Afterwards, we argue that the meaning of a second-order formula in a structuralist context is
the isomorphism class of structures that satisfy its propositional function. Finally, we show
how this theory of meaning works with respect to the structure of the natural numbers.
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INTRODUCTION

Introduction

In this thesis, we will be concerned with the meaning of mathematical statements. Spe-
cifically, we will answer the question: what is the meaning of a second-order formula in
a structuralist, mathematical context? We will answer this question from the perspective
of structuralism, a contemporary trend in the philosophy of mathematics that states that
mathematics is about structures. From a structuralist perspective, this also answers the
question what the meaning of mathematical statements is, since these can be expressed in
second-order logic. In order to do so, we will first give a short historical overview.

In the philosophy of mathematics, we try to find ways to make sense of the objects that
are studied by mathematicians, such as functions and sets. Another kind of such objects
are numbers. What do we refer to when we reason that 2 is smaller than 3, what is such
an object, ontologically speaking? An important question in the philosophy of mathematics
that tries to give an account of how we can ground this mathematical practice is that of
the foundations of mathematics.1 These groundings can answer the ontological questions we
have regarding mathematical objects.

The subdiscipline of the philosophy of mathematics that we call mathematical logic tries
to formalize the way in which mathematicians reason. Although the reasoning that is done
by mathematicians is intuitively plausible, it is mostly done informally. The branch of philo-
sophy of mathematics that tries to formalize this reasoning usually tries to give a foundation
in terms of the study of valid reasoning: logic.2 There have been quite some attempts in his-
tory of giving such a foundation for mathematics. One of these is logicism, which tried to
ground all of mathematics in (deductive) logic.3 Today it is often believed that grounding
all of mathematics in logic is a bridge too far.4 However, there is still being argued that logic
can be a good way to formalize parts of mathematics and making precise what is going on
while reasoning in mathematics.5 Even though not everything will be grounded by logic, it
can be used as a formalization tool.

One of the debates in this project of formalizing mathematics in logic, is about in what
logic one should work. The choice mainly is between first- and second-order logic. Second-
order logic has more expressive power, but it has a major drawback as it is incomplete. We
will discuss elaborately what this means. It does have a major asset as well, in the form of
categoricity. To understand why categoricity is important, we need to discuss structuralism.
Structuralism can be seen as an answer to both the question of the ontological status of
mathematical objects, and the question of how mathematical reasoning can be formalized.
The choice for second-order logic is natural from a structuralist perspective. Moreover, it
gives us an answer of what mathematicians actually study: structures.

Dedekind is often mentioned as the first author to have started the debate on struc-
turalism.6 In his 1893 book Was sind und was sollen die Zahlen?7 Dedekind gives some
remarks that are often interpreted as being of a structuralist nature.8 To understand well
what structuralism is, however, we will look at Benacerraf’s more modern contribution to
the field of mathematical structuralism.

In the 1960s Benacerraf added a new account to the modern discussion of what is at issue
1. Horsten, ‘Philosophy of Mathematics’, 1.
2. Väänänen, ‘Second-Order Logic and Foundations of Mathematics’, 4.
3. Tennant, ‘Logicism and Neologicism’.
4. Shapiro, Foundations without Foundationalism, 37.
5. Shapiro.
6. Reck, ‘Dedekind’s Structuralism’.
7. Dedekind, Was sind und was sollen die Zahlen?
8. For more information on the historical development of structuralism, please refer to Reck, ‘Dedekind’s

Structuralism’ and Reck and Schiemer, ‘Structuralism in the Philosophy of Mathematics’
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INTRODUCTION

in mathematics in his articleWhat Numbers Could Not Be.9 He argued that, for example, the
natural numbers should be thought of as a structure and the properties of natural numbers
should be thought of as relations between elements of the structure. Whether a structure
exemplifies the natural numbers is not dependent on the elements, but on the relations
between them.10 That way, we can speak of abstract structures that cover the relations such
a structure should bear in order to be an example of the abstract structure. We focus on
the structuralism as discussed in Shapiro’s work.11 Others have also picked up the work of
Benacerraf to further discuss its implications, for example Resnik12 and Hellman.13

Structuralism has since then developed into many sorts, and there have been many philo-
sophers who write on this subject. The position that will be supposed for this thesis is, as
Shapiro calls it, ante-rem structuralism, also called non-eliminative structuralism, according
to which there exist abstract structures: Structures that can be exemplified by any mathem-
atical system of the right kind.14 Eliminative structuralism tries to eliminate structures by
explaining them away, such that there do not exist structures in the abstract sense. If there
exist any structures, they exist because there exists some system that exemplifies them.

There is quite some recent literature on non-eliminative structuralism. For example,
Korbmacher and Schiemer have written on structural properties, giving a formal definition
of which properties of a mathematical object can be said to be structural.15 Moreover, Leitgeb
has written an article on how non-eliminative structuralism can be used in a concrete field of
mathematics, graph theory.16 Shapiro has written a book on structuralism and the ontology
of mathematical objects,17 and Giovannini and Schiemer have given an (informal) account
of how predicates that are defined to be true of a structure acquire their meaning.18

Figure 1: A simple unlabelled (abstract) graph-structure.

Shapiro distinguishes two branches of mathematics. We will restrict us to what Shapiro
calls nonalgebraic mathematics. The branch of nonalgebraic mathematics studies mathem-
atical fields that are about a single structure up to isomorphism.19 A good example of a
nonalgebraic field of mathematics is the study of the natural numbers: any system of the
natural numbers eventually has the same structure. It exemplifies the abstract structure that
dictates what relations there must be between the different elements of the system. Another
example of a nonalgebraic field of mathematics is graph theory. An abstract graph of the
form of Figure 1 can have many instantiations (with different labels), but the underlying
structure remains the same. Algebraic fields of mathematics, however, do not just study a
single structure. For example, group theory is about many structures that are related, but
not the same.20

Structuralism gives us a good reason to consider second-order logic as a way of form-
alization of mathematics. Second-order logic can categorically characterize mathematical
structures. That is, it can give a characterization such that it is true for all (and only) the

9. Benacerraf, ‘What Numbers Could not Be’.
10. Benacerraf, 70.
11. Shapiro, Philosophy of Mathematics.
12. Resnik, ‘Mathematics as a Science of Patterns’.
13. Hellman, Mathematics without Numbers.
14. Shapiro, Philosophy of Mathematics, 85.
15. Korbmacher and Schiemer, ‘What Are Structural Properties?’
16. Leitgeb, ‘On Non-Eliminative Structuralism. Unlabeled Graphs as a Case Study, Part A’.
17. Shapiro, Philosophy of Mathematics.
18. Giovannini and Schiemer, ‘What are Implicit Definitions?’
19. Shapiro, Philosophy of Mathematics, 41.
20. Shapiro, 40.
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INTRODUCTION

systems that exemplify the right structure. In terms of numbers, second-order logic can give
a characterization such that any implementation of the natural number structure fits the
logical description, and no other things do. So, if we want to work with abstract structures
and formalize mathematical reasoning about them, second-order logic is a natural choice.
Of course there is much more to say about this, which will be done in the thesis.

Most structuralists endorse the view that mathematical concepts are implicitly defined
by the theories that use them. For example, the concept of a natural number is defined
implicitly by the Peano axioms. Rather than giving an explicit definition for the meaning of
that concept by stating what objects it denotes, an implicit or structural definition postulates
the requirements for an object to be denoted by the concept. From a structuralist perspective,
these requirements might be relational and somehow uniquely determine what it means to be
a natural number. Giovaninni and Schiemer have extensively studied implicit and structural
definitions.21 However, their account is largely informal. Moreover, it is still unclear what
the actual meaning of such a formula amounts to. We might know how the meaning is given
to a formula, but has not yet been given an account of what the meaning is.

We will argue that the meaning of mathematical statements in a structural context, hence
of second-order logical formulae, is an isomorphism class of mathematical structures that
satisfy the propositional function of the formula. The meaning of a formula thus consists of
all structures that are structurally equivalent to a satisfying structure. We will develop this
view by giving the context of second-order logic and structuralism and studying the theory
of implicit definition. We will then see that this aligns with the above claim.

The thesis is divided into two parts. In the first part, we will lay out the basics of
formal and logical languages, and we will discuss the formalization of mathematics in logic.
The first thing we will do, is giving an account of formality. Logic makes use of formal
languages, so it is necessary to make clear what such a formal language is. Making use of
Dutilh-Novaes’s different conceptions of formality as written in her article,22 we argue that
formality as indifference to particulars is what underlies the step of formalizing statements
about (abstract) structures.

Then, we will look at Shapiro’s account for second-order logic. There are certain prop-
erties that characterize second-order logic, completeness and categoricity, that heavily in-
fluence the choice for second-order logic as a way to codify mathematics. We will discuss
these properties and discuss the most relevant arguments to choose for second-order logic
if we want to codify mathematics as structuralists. We will also discuss the first-order and
second-order theories of arithmetic, so we can concretely see their differences. The important
notion of non-standard models, related to categoricity, will also be covered.

In the second part of the thesis we will move towards the semantics of second-order logic.
We will lay out the differences between proof-theoretic and truth-conditional semantics and
will argue in favour of the latter, relating it to incompleteness and to our position of realism.
We will then discuss the three different semantics that exist for second-order logic: Henkin
semantics, first-order semantics and full second-order semantics. It will be clear that only
full second-order semantics will do for our goals.

After having made clear how second-order semantics works, we can give an account of
what are called structural definitions: Predicates and formulae in structural contexts acquire
their meaning in a typical way, that is informally given by Giovannini and Schiemer. We
will formalize their theory of implicit and structural definitions. Then, making use of the
concept of structural definition, we will give an account of the meaning of a second-order
formula in structural contexts, thus answering the research question.
21. Giovannini and Schiemer, ‘What are Implicit Definitions?’
22. Dutilh Novaes, ‘The Different Ways in which Logic is (said to be) Formal’.
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1 FORMAL SECOND-
ORDER LANGUAGES

Part I

Formalization and Mathematics
The goal of this thesis is to find out what the meaning of second-order formulae is in a
structuralist mathematical context. In this part, we will give the background information
that is necessary to understand the second part of the thesis, in which we will answer the
research question. As second-order formulae are part of a formal language, we will first give
a short introduction in formal languages and, more precisely, second-order formal languages.
After that, we will discuss two notions of formality, introduced by Catarina Dutilh-Novaes,
that are relevant for our goal of finding out the meaning of mathematical second-order
formulae.

When we have discussed the different notions of formality, we will have a closer look at
the relation between second-order logic, its properties and mathematics. Moreover, we will
see why Stewart Shapiro argues for second-order logic as the way in which we can understand
mathematics best, relative to its characteristics.

1 Formal Second-order Languages

A formal language, as opposed to a natural language, is an artificial language made for
special purposes. Formal languages are, in formal terms, an arbitrary set of words w over
some alphabet Σ.23 More concretely we find a definition in Sider (2009):

Why are formal languages called “formal”? (They’re also sometimes called
“artificial” languages.) Because their properties are mathematically stipulated,
rather than being pre-existent in flesh-and-blood linguistic populations. [...] Fur-
ther, formal languages often contain abstractions, like the sentence letters P,Q, . . .
of propositional logic. A given formal language is designed to represent the lo-
gical behavior of a select few natural language words; when we use it we abstract
away from all other features of natural language sentences.24

Formal languages are thus formal by virtue of their properties (such as grammar) being
stipulated by us, and by being more abstract than natural languages; we abstract away from
natural language artefacts that do not add to the logical behaviour of the language.

An example is the logical formalization of the sentence ‘John is tall and John is a human.’
Since we are only interested in the logical form of the sentence, we abstract away from its
meaning, except for the logical connective ‘and’. So, we get p∧q, ignoring the actual content
of the sentences represented by p and q.25 So, in short, a formal language is an abstract,
artificial language that represents certain characteristics of natural languages. We can then
use rules (and in some cases even rule-based machines) to determine whether a sentence is
a member of the language.26 Strictly speaking, formal languages do not have a meaning.
Although some of the symbols do represent certain constructs of natural languages, the
meaning of the language is decided by us in terms of a formal semantics.27 We will, however,
see that intuitively, there still remains some meaning in these formal languages.
23. Sipser, Introduction to the Theory of Computation, 14.
24. Sider, Logic for Philosophy, 4.
25. Sider, 4.
26. Sipser, Introduction to the Theory of Computation, 14.
27. Shapiro and Kouri Kissel, ‘Classical Logic’.
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1 FORMAL SECOND-
ORDER LANGUAGES

Having seen the definition, we can discuss what formal languages are useful for: they can
take away ambiguity and lack of clarity that inevitably come with natural languages. Think
of a programming language as a means of concisely instructing a computer what to do:
giving these instructions in a natural language like English would be a tedious job. Likewise,
in logic there is also a great use for formal languages: Using multiple negations in a sentence
in English makes that sentence almost incomprehensible. A formal language can make such
a sentence easier to understand.

Formal languages in logic can thus be used to make clear how certain inferences work;
natural language sentences can be translated to a formal language. It is not only possible
to translate natural language expressions to formal sentences (think of: the cat lies under
the table); we can as well use formal languages to formalize mathematical statements that
are expressed in mathemateze, the language used by mathematicians. Think of: The number
three is larger than the number two.

The standard example type of formal languages is the set of first-order languages. These
are such that we can express properties of objects. We can say that an object x has a property
P . In addition to this, first-order languages allow us to quantify over objects. Objects cannot
only be denoted by variables (a variable x can be individuated by any object that has the
right properties), we can also state that there exists an object such that it has property P ,
or that all objects have property P . So, for instance, the sentence every ball is red can be
expressed by ∀xB(x) → R(x) with B standing for ‘is a ball’, R standing for ‘is red’ and ∀
being read as ‘for all’. Formally, we have a language with as our alphabet Σ logical symbols
¬,→,∀, parentheses, variables x, y, . . . , predicates F,G, . . . and object names a, b, . . . such
that:

(i) if Π is an n-ary predicate and α1, . . . , αn are terms (variables or object names), then
Π(α1 . . . αn) is a formula

(ii) if ϕ and ψ are formulae and α a variable, then ¬ϕ, (ϕ → ψ), (ϕ ↔ ψ), (ϕ ∨ ψ), (ϕ ∧
ψ),∃αϕ and ∀αϕ are formulae

(iii) Only strings that can be shown to be formulae according to (i) and (ii) are formulae.2829

This results in a language in which we can formally express sentences like „all white
swans are non-Australian” by having a predicate S for being a swan, A for being Australian
and W for being white.

∀x((S(x) ∧W (x))→ ¬A(x)) (1)

For all things that are swans and white, it follows that they are not Australian. In formula
1 we see that we have abstracted from the meaning of the actual words (like ‘swan’) and
have replaced them with a variable and predicates. Only the logical behaviour as mentioned
by Sider is kept.

We can generalize our intended natural language even further by choosing a second-order
language. In second-order languages, we cannot only denote objects by variables, but also
properties. Moreover, we can also quantify over properties. The recursive definition given
above for first-order languages, may now also be used for second-order languages, with the
addition of property and relation variables X,Y, . . . such that, in (i), Π can be either a
predicate (property) or a property or relation variable. Moreover, in (ii) also ∀Xϕ and ∃Xϕ
are formulae.30

28. Sider, Logic for Philosophy, 116.
29. For more details or explanation of the recursive definition given above, please refer to Sider or Boolos,

Burgess and Jeffrey, Computability and Logic
30. Väänänen, ‘Second-order and Higher-order Logic’, 2.
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1 FORMAL SECOND-
ORDER LANGUAGES

For example, Russell used the sentence „Napoleon had all the qualities of a great general”
as an example of a sentence that cannot be expressed using first-order logic.31 This means
that for all properties such that these properties belong to a great general, Napoleon has
them. Formally, this would be

∀X(∀x(G(x)→ X(x))→ X(n)) (2)

with X standing for some property, x for some object, G for being a great general and n for
Napoleon.

Another we find in the identity of indiscernibles: If two objects share all their properties,
then they must intuitively be identical. This can be expressed by the following formula:

(∀X(X(x)↔ X(y))→ x = y) (3)

The formula states that any two objects that have all properties in common, actually
are identical. This could of course be challenged, but it goes beyond the scope of this thesis
to discuss that here.

We can express certain natural language expressions very easily in second-order formal
languages. In the case of the identity of indiscernibles, it is rather clear what the intended
meaning of such a formal expression is. If, however, the expressions become more and more
abstract, for example when describing a structure, the meaning of such a formal sentence
can be less clear. Moreover, we have not yet seen how we can formally express the meaning
of, for example, Formula 3.

Strictly speaking, as we have seen in the definition of a formal language, the formulae
as mentioned above do not have a meaning; they are abstractions from natural language
sentences and the meaning should be given by our semantics. However, intuitively, we would
say that there is some kind of meaning attached to the formula. For example, in formula 3
we simply see that there is some relation between x and y: they both have the properties
the other has. That relation, on its turn, is given by ↔.

When looking at the connective ↔, we would say that its meaning is preserved while
abstracting away from the meaning of the individual objects for which x and y may stand.
If the meaning of ↔ is preserved, then our intuition that ∀X(X(x)↔ X(y)) has a meaning
also makes sense. But what is this meaning in a mathematical context? Or, even stronger:
Is there still a kind of meaning preserved after abstracting away from the meaning of ↔?

In the next chapter, we will see what formality actually means: what is it for a language
to be formal and in what different ways can we formalize a language? After we have looked
into this question, we will see how Shapiro uses second-order logic for his project of codi-
fying mathematics. Besides this, we will also have a look at the different properties that
characterize first- and second-order languages.

In the second part of the thesis, we will see the different types of semantics that can
be used to give meaning to a formal language. Moreover, we will see the two best-known
types of model-theoretic semantics that are being used to give meaning to second-order
logic. Having discussed these theoretical issues, we will give an account of how the meaning
of second-order formulae is given according to the structuralist thesis. Lastly, we will give
a structuralist account of the actual meaning of second-order formulae in such structural
contexts.
31. Russell, My Philosophical Development, 93.
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2 FORMAL LANGUAGES: AB-
STRACTION AND MEANING

2 Formal Languages: Abstraction and Meaning

Since we want to find the meaning of mathematical second-order formulae as exemplified
before, we will study meaning in a formal language, as second-order languages are formal. In
order to understand the meaning of a formal sentence, it is useful to understand what we are
about to analyse: We need to make clear what our analysandum is. What is the reason for
mathematics to prefer a formal language over ordinary language and what does the process
of formalization do with the meaning of a sentence? In this chapter, I will discuss the article
The Different Ways in which Logic is (said to be) Formal by Catarina Dutilh Novaes. We
will see the different types of formality Dutilh-Novaes distinguishes and we will see how the
process of abstraction affects the meaning of a sentence.

As we have seen in the previous section, languages as we use them in logic are formal. By
formalizing a language one can abstract from different things. The result always is a language
with certain characteristics, but what is abstracted from (and so, what stays individuated
32 ) can differ.

In her article The Different Ways in which Logic is (said to be) Formal, Dutilh Novaes
distinguishes eight different notions of formality in logical languages. There is one main
difference between more subtle variations of formality in logical languages: one could see
formality as pertaining to forms, or as pertaining to rules.33 I will discuss these two clusters,
after which I will discuss two notions that are most useful to us.

Formality as pertaining to forms can be seen as a an Aristotelean notion coming from
the distinction between form and matter.34 Individuated objects are both matter and form;
their form is responsible for their essence, what they are. Their matter is responsible for
what they are made of. In a more mathematical context, we can see individuated structures
as being the actual objects, made of atomic objects that are individuated on its turn. The
form then is the abstract structure; no actual objects are used in a formal structure. In a
sense, the abstract structure does not have any matter. Formality in this sense, thus allows
for generality: any object that has the right ‘form’ can be seen as being an individuated copy
of an abstract structure.

Formality as pertaining to rules has a different background. It is more focused on ac-
tions than on ‘essence of being’. This cluster of notions of formality is more concerned with
what logicians and mathematicians do and tries to formulate laws that either describe what
happens or even are the foundation of what happens.35

We will argue that the formal as pertaining to forms is the most interesting cluster
of formality in our case, given that the use of (formal) logic in mathematical contexts is
more focused on being able to generalize, than on being able to do mathematics by strict
rule-following.

Generality in structuralism would mean generalizing towards the form of the subject that
we study.36 Abstracting away from ‘matter’ then is: abstracting away from individuated
structures and trying to get to the core of mathematics: abstract structures; the form of
the structures we are studying. Rule-following here means: being able to make rules that
govern the way of doing mathematics. This could be interpreted as being able to compute
the outcome of our mathematical argument (whatever that would be), or at least being able
to give a set of rules that cover our practice of doing mathematics.37 The main difference
thus comes down to being interested in what the objects of mathematics are or in what
32. With individuated, I mean: not abstracted from, thus referring to an actual object.
33. Dutilh Novaes, ‘The Different Ways in which Logic is (said to be) Formal’, 304.
34. Dutilh Novaes, 304.
35. Dutilh Novaes, 321.
36. Dutilh Novaes, 306.
37. Dutilh Novaes, 321.
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mathematicians do when they study mathematical objects. In this thesis, the main question
is what a formal (second order) sentence means, which is a more fundamental question that
could not be answered in a satisfying way by what is done in mathematical practice. Hence,
we will discuss the formal as pertaining to forms in more detail.

2.1 Formality with Respect to Forms

The ‘formal as pertaining to forms’, a cluster of notions of formality that is focused on what
the formal language is and abstracts from actual object towards a more general structure or
form, is, according to Dutilh Novaes, again divided in subcategories: formal as abstraction
from subject-matter and formal as variability.38 Variability is a main reason to choose a
formal language in our case: the ability to say something about any mathematical object
with the right properties is extremely useful in mathematics. For example, when we want to
say something about the common structure of ‘Ada loves Betty’ and ‘Betty loves Charles’,
we could abstract to a formal language such that the sentence L(a, b) ∧ L(b, c) can be used
to say things about any sentence of the same form. Likewise, we would also like to be able
to abstract from a sentence about, say, a graph, so that it applies to any graph of the same
structure. A difference with formality as abstracting from subject matter is that we still
want the formulae to be applied to a concrete subject eventually.

Abstracting from subject-matter can be read as: generalizing logical languages in such
a way that the subject-matter (content) of expressions is taken away: we do not need to
know what the individual parts of a sentence stand for, in order to do logic. The example
sentence ‘Ada loves Betty and Betty loves Charles’ illustrates nicely that the content of the
sentence is not necessarily interesting to us, we just want to know its logical form. Whether
it is about love, Ada, Betty or Charles does not matter; we just study three objects that
bear some relation to each other.

Both subcategories are interesting to us. We will especially discuss formality as indiffer-
ence to particular objects and formality as de-semantification. The former is a subtype of
formality as variability and turns out to be of great use for the structuralist project: it allows
for generalizing towards more abstract objects, whereas the latter is a subtype of formality
as abstraction from subject-matter and is most often used by logicians.39 According to this
position, symbols should be treated itself as mathematical objects, not having a meaning
at all.40 This subcategory also allows for generalization, but abstracts further away from
meaning than the formality as indifference to particulars. We will discuss the usability of
formality as de-semantification for mathematical goals.

2.1.1 Formality as Indifference to Particulars

The programme of formality as indifference to particulars works, as mentioned earlier, by
abstracting from the matter of an object (in our case this is an individuated structure) while
keeping the form of that structure. 41 By abstracting towards the structure, the form, of a
sentence, we can say something about all sentences with that structure. By replacing actual
38. Dutilh Novaes, ‘The Different Ways in which Logic is (said to be) Formal’, 306.
39. Dutilh Novaes, 314.
40. Dutilh Novaes, 314.
41. The programme of indifference to particular objects is closely related to Tarski and Corcoran, ‘What

Are Logical Notions?’ according to Dutilh Novaes, ‘The Different Ways in which Logic is (said to be) Formal’,
312. In that article, Tarski researches logicality: what notions are logical, meaning what notions are preserved
when changing the meaning of all objects? Notions like ‘and’, ‘or’ are preserved, even when all objects in
the universe are permutated. Logicality then means: abstracting away from particulars in such a way that
the actual objects are variable, but logical notions are not.
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names standing for objects by terms, such as variables a and b, we can say something about
all sentences with this form.

In a structural context, this approach of formality could help us with understanding
abstract mathematical structures. The structures we try to study are characterized by logical
formulae describing an abstract structure, so we really are indifferent to particulars; we want
to say something about all mathematical structures of the same form. If this is what the
formality is about, the symbols being used still bear certain relations to each other, while we
abstract away from the actual ‘particulars’ towards a more variable, thus formal, description
of the structure. We could say that structural meaning is being preserved, also knowing what
this structural meaning is; if an abstract sentence ψ follows from an abstract sentence ϕ, we
can say that any two sentences with the same form bear this relation. Still, in our formal
approach, the reference to particular objects is absent.

In the sentence (P (x)→ Q(x)), x is a free variable. A free variable denotes a particular
object, but we do not specify it; we are indifferent to this particular.42 Likewise, we are
indifferent to which objects actually have the properties stated in the formula (but if they
are P , then they are Q). Any object that does comply with the sentence can be used as
instantiation of x. This is just a simple example of using a formal language to abstract from
particular objects towards the structure of a sentence. There are of course many more cases
in which this notion of formality applies. Think of prime numbers: we can state that if some
member of a natural number structure is prime and larger than two, then it is uneven. What
object it applies to, however, is not part of the formula yet.

This is exactly what makes this position interesting to us: when we abstract away from
individuated structures, such that we end up with variable abstract structures which are
individuated by all structures that share that same form, structural properties are still
preserved.43

In the next chapter, we will see what the application of this notion of formality is to
second-order logic in mathematical contexts, but it is clear that indifference to particulars
is a main reason for us to consider formalizing the way we talk about abstract structures.

2.1.2 Formality as De-semantification

The other notion of formality of logical languages we will consider, is the approach of de-
semantification. On this view, to be purely formal amounts to manipulation symbols as
blueprints with no meaning at all, as pure mathematical objects and thus no longer as signs
that stand for something more concrete.44

In the process of abstraction, we abstract away not only from the meaning of objects in
a sentence, but even from the meaning of the symbols we use to express relations between
objects or variables. Dutilh-Novaes quotes Bernays, who gave a specification of the goal of
the programme: We abstract away from the contents of a sentence, but even more heavily
than we did in the other programmes. We disregard the original meaning of the logical
symbols (whereas in the other case, meaning of logical terminology was preserved), and we
make the symbols like ↔ themselves representatives of formal objects and connections.45

Abstraction then not only means abstraction from individuated object to the form or
structure of that object, but also abstracting away from the meaning of signs.46 ‘Signs’ in
this context are logical symbols, symbols like ∧,→. Abstraction from the meaning of logical
42. Sider, Logic for Philosophy, 131.
43. We will come to structural properties later.
44. Dutilh Novaes, ‘The Different Ways in which Logic is (said to be) Formal’, 318.
45. Dutilh Novaes, 319.
46. Dutilh Novaes, 319.
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symbols allows for ‘doing logic’ by just manipulating symbols, without knowing what they
stand for. In the sentence (P (a)→ P (b))∨P (c) the symbols have no more meaning than the
sentence letters; we can manipulate the symbols by following rules, but we cannot reason
with them in a semantic way.

We could however state that, intuitively, there is a small part of the meaning of symbols
that is preserved. In the sentence (P (x)→ Q(x)), we have the intuition that the symbol ‘→’
is such that it expresses a relation between P (x) and Q(x). We might have abstracted away
from the meaning of that relation, but just the fact that there is a relation is still present.
We can thus say that a certain structural element of the meaning of symbols is preserved in
the process of de-semantification.

We have now seen two different notions of formality, the notion of formality as indifference
to particular objects and the notion of formality as total de-semantification: detachment
from the meaning of even logical symbols. Although the approach of de-semantification is
the most recent notion of formality in logic,47 mathematical contexts require a different
approach, which we find in formality as indifference to particulars.

In order to be able to make a choice between the two notions of formality and decide
which one suits our programme best, we need to understand the role of second-order logic in
mathematical contexts. In the following chapter, we will discuss the programme of Stewart
Shapiro, and see in what way second-order logic can be used to express mathematics.

3 Shapiro’s Case for Second-order Logic as the Lan-
guage of Mathematics

In his book Foundations without Foundationalism,48 Stewart Shapiro argues for a funda-
mental role for second-order logic in mathematics. We will discuss the case Shapiro makes,
and we will see what this means for the notion of formality that is needed. After all, we want
to know the meaning of second-order formulae, which has both an intuitive and a technical
(semantic) side. By discussing the applicable notion of formality, we can get a grasp of the
intuitive meaning of a second-order formula in a mathematical context.

First of all, Shapiro gives different ways in which logic can be of use. The main question
then is: „What is the best logic (or language) in which to (...)?”49 The most interesting item
to fill in the blank in our case is the case for using logic to formalize a particular branch
of mathematics. This can involve both codifying the ‘truths’ of this branch, or describing
the structure studied by that branch.50 Since we try to find the meaning of a second-order
formula that characterizes some structure, we will be concerned with the latter.

Note that using a form of logic as a means to the mentioned end means that we design
a formal language to formalize not a natural language like English, but a ‘natural mathem-
atical’ language, that we sometimes call mathemateze. An expression in mathemateze might
be ‘a graph with two connected nodes’ or ‘the set containing all and only the even natural
numbers’.

First, we will look into an important property of first-order logic: the property of com-
pleteness. This property plays an important role in the process of choosing a certain kind of
logic. We will then see what Shapiro’s conception of logic exactly is, and how that relates
to the notions of formality we have discussed in the previous chapter. We will then discuss
47. Dutilh Novaes, ‘The Different Ways in which Logic is (said to be) Formal’, 318-19.
48. Shapiro, Foundations without Foundationalism.
49. Shapiro, 10.
50. Shapiro, 10.
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the role logic could play in being a foundation of mathematics, after which we will look into
some more technical details concerning second-order logic.

3.1 Completeness and Categoricity

As we have seen in the previous chapter, there are several orders in terms of quantification
in formal languages. We restrict ourselves to two of those: first- and second-order languages.
Whereas first-order languages allow for quantification over objects (in the sense of ‘all objects
having property P ’), second-order languages allow for quantification over properties (or
predicates): We can express an object having all properties of a certain kind in second-order
languages. There are important properties a logical system can have that derive from these
differences in expressive power of the two languages. We will discuss two of them in this
chapter: the property of completeness and the property of categoricity.

The concept of completeness applies to the relation between a semantics and a deductive
system for a logic. When we design a logical language L, we first decide the syntax (grammar)
of the language, and then introduce a semantics for this language, in which we decide the
meaning of different expressions of L. The semantics of a language consists of a formal way
of defining what makes an formula a true formula and when one formula entails another.51

We do this by defining the notion of a model in which we model the situations we want
to discuss and in which we define what formulae are true. A model M then consists of a
domain of discourse D and an interpretation function ·M, since the notion of truth is given
under a certain interpretation.

With an interpretation, we mean the way of interpreting the non-logical vocabulary
of our language which is not already fixed within the language definition itself (which we
call the logical notions, also see Tarski’s What Are Logical Notions?52).53 If it is true that
the interpretation of a set of formulae Γ is such that a formula ϕ is also true under that
interpretation, and this is the case for all models (hence, under all variations of the meaning
of non-logical symbols), we write that Γ � ϕ. We then say that Γ implies ϕ. When a defined
model is such that a formula ϕ is true in that model, we writeM � ϕ.54 We then say that
M makes ϕ true. An interpretation of a piece of vocabulary σ of a language L by a model
M is written as σM .

The interpretation of a predicate RM is defined by giving its extension: In a model we
fix the reference of a predicate. We define the extension of a predicate R by giving the set of
objects in the domain with property R. In the case of domain {1, 2, 3, 4} the interpretation
of predicate E ‘is even’ is EM = {2, 4}.

Besides a semantics, we can also design a deductive system which tells us how we can infer
logical truths in a syntactic manner. There are systems that allow us to do so by following
rules from certain starting points called axioms.55 More generally, a deductive system is a
syntactic system that consists of a fixed set of rules such that one formula can be derived
from another. A deductive system allows us for making deductive inferences (without having
to know what the formulae we use actually mean). If a formula ϕ is syntactically deducible
from a set of formulae Γ, we write Γ ` ϕ.56

Naturally, we want that the notion of implication and that of deduction to coincide: if a
set of formulae implies some formula, it would feel counter-intuitive if our deductive system
did not allow for proving the implication. This is the point at which the notion of soundness
51. Montague, Formal Philosophy, 223, footnote.
52. Tarski and Corcoran, ‘What Are Logical Notions?’
53. Shapiro, Foundations without Foundationalism, 5.
54. Awodey and Reck, ‘Completeness and Categoricity. Part I’, 2.
55. Shapiro, Foundations without Foundationalism, 4.
56. Awodey and Reck, ‘Completeness and Categoricity. Part I’, 2.
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and completeness comes in: if a logical system is complete, any sentence that is semantically
implied by another set of sentences can also be proved by the chosen deductive system. If it
is sound, any provable inference is also a semantically valid argument.

In their paper on completeness and categoricity, 57 Steve Awodey and Erich H. Reck give
a very comprehensive account of what completeness and categoricity are and their history.
Given a syntax and a semantics for a language L, we define the following.

Definition 1 (Completeness) The deductive consequence relation ` is called complete
relative to the semantic consequence relation � iff for all sentences ϕ and all sets of sentences
Γ of L it holds that if Γ � ϕ, then Γ ` ϕ.58

Informally put, if a logical system has the completeness property, any argument that
we can make semantically, also holds syntactically. So, if we can infer that ‘all humans are
mortal, Socrates is a human, therefore Socrates is mortal’ is a semantically valid inference,
in a complete system this also means that we can infer this sentence by means of derivation.
This works the other way around when talking about soundness: in a sound system, if we
can prove that ‘Socrates is mortal’ follows from premises ‘all humans are mortal, Socrates
is a human’, this is also a semantically valid argument. We therefore define soundness as
follows:

Definition 2 (Soundness) The deductive consequence relation ` is called sound relative
to the semantic consequence relation � iff for all sentences ϕ and all sets of sentences Γ of
L it holds that if Γ ` ϕ, then Γ � ϕ.59

Because of the importance of the concept for codifying mathematics in logic, we will
define categoricity: when a logic is categorical this means that there exists a theory that
can be interpreted by the logical, such that the theory T has essentially only one model. To
give a formal account of this notion, we first need to discuss the concept of isomorphism.
Intuitively, two objects are isomorphic when they share the same ‘form’: they are structurally
the same. This means that two isomorphic objects are structurally indiscernible.60 In terms
of logical languages, two models can be isomorphic which means that they share the same
structure. This also yields the result that the two isomorphic models have the same set of
truths.61 An isomorphism between two structures is defined as follows.

Definition 3 (Isomorphism in a logical system) If M and N are models of a language
L, then M is isomorphic to N iff there is an bijective function62 f which assigns to each
member of the domain of M a member of the domain of N , such that f applied to an
interpretation of a member σ of the non-logical vocabulary L by M yields the interpretation
of σ by N : f(σM ) = σN .63

A function f as above preserves the structure ofM : if it exists then everythingM models
can also be modelled by N and since each interpretation of the language by M is uniquely
mapped to an interpretation of the language by N , we can say that all differences between
the two models are purely related to content: from a structural point of view, the models
are exactly the same. We write M ' N .
57. We will discuss the notion of categoricity later in this chapter.
58. Awodey and Reck, ‘Completeness and Categoricity. Part I’, 2.
59. Halbeisen and Krapf, Gödel’s Theorems and Zermelo’s Axioms, 40.
60. Corcoran, ‘Categoricity’, 190.
61. Corcoran, 190.
62. We say a function is bijective when it assigns to each member of the domain a unique member of the

co-domain and when each member of the codomain is assigned to a member of the domain.
63. Corcoran, ‘Categoricity’, 196.
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Now that we know what an isomorphism between two models is, we can look into the
notion of categoricity. We say that a theory, a set of axioms of some logical language L, is
categorical if it essentially has only one model. That is, all models we can think of that make
the axioms true, boil down to being isomorphic. In more formal terms, we define:

Definition 4 (Categoricity of a theory) A theory T is categorical relative to a semantics,
iff for all models M,N of T in that semantics, M ' N .64

There are some well-known examples of categorical second-order theories, given a certain
semantics: one is second-order Peano arithmetic, which categorically expresses our ‘standard’
arithmetic. Hence, all second-order models of Peano arithmetic are isomorphic. We will
discuss this theory later, but for a very short introduction of second-order Peano arithmetic,
one can refer to Awodey and Reck.65 First, we will discuss concisely in what logical systems
the completeness property holds and what its importance is.

Without going into completeness and incompleteness in too much detail, we will discuss
the results of the completeness theorem and the incompleteness theorem of Kurt Gödel.
According to Gödels completeness theorem, which we find in his 1930 paper,66 the com-
pleteness property holds for first-order languages with a deductive system equivalent to the
deductive system to which Gödel’s proof initially applied, and a complete semantics (that
is, a semantics that renders any formula either true or false). In short, Gödel’s completeness
theorem states that Definition 1 holds for first-order logic: there exists a deductive system
such that every semantically valid formula is derivable.67

However, for standard second-order logic, there cannot be such a completeness proof.
Gödel proved that any theory which implements arithmetic is inherently incomplete. His
proof is about a different kind of completeness, negation completeness, but from that one
can infer that second-order logic lacks the type of completeness we are interested in. Negation
completeness is defined as follows:

Definition 5 (Negation completeness) A theory T is called negation complete, iff for
all sentences ϕ, either T ` ϕ or T ` ¬ϕ.68

Definition 6 (Semantic completeness) A theory T is semantically complete iff for all
sentences ϕ, either T � ϕ or T � ¬ϕ.69

Gödel showed in his article that any ω-consistent theory that can interpret first-order
Peano arithmetic cannot be negation complete. There are sentences such that neither the
sentence nor its negation can be proved from the axioms in T.70

As we will see, second-order logic can be used to categorically (see Definition 4) ax-
iomatize second-order Peano arithmetic.71 Since second-order Peano arithmetic is also an
implementation of arithmetic, second-order Peano arithmetic cannot be negation complete
either. Hence, second-order logic can never be negation complete as it is possible to interpret
Peano arithmetic in second-order logic.
64. Awodey and Reck, ‘Completeness and Categoricity. Part I’, 3.
65. Awodey and Reck, 7.
66. Gödel, ‘Die Vollständigkeit der Axiome des logischen Funktionenkalküls’.
67. Gödel, 350.
68. Awodey and Reck, ‘Completeness and Categoricity. Part I’, 4.
69. Awodey and Reck, 3.
70. Gödel, ‘Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I’, 174.
71. Awodey and Reck, ‘Completeness and Categoricity. Part I’, 7.
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Any theory that is categorical is also semantically complete.72 It is a mathematical fact
that, since second-order Peano arithmetic can be categorically characterized in second-order
logic, the implementation of second-order Peano arithmetic must be semantically complete as
in Definition 6.73 But from Gödels theorem it follows that the theory T of Peano arithmetic
is not negation complete as in Definition 5. Hence, there will always be some semantic facts
that cannot be deduced in any deductive system. That means that the language we are
working in does not comply with Definition 1. Because of its categoricity, second-order logic
is incomplete.74

We will now discuss what influence the property of completeness and that of categoricity
has on the choice of a logical system (that is, the choice between first- or second-order logic).
In order to do so, we will first discuss the debate on, as Shapiro calls it, foundationalism in
logic.

3.2 Conceptions of Logic

Shapiro mentions two conceptions of logic. We will show that there are some parallels
between those conceptions and Dutilh-Novaes notions of formality as discussed in Section 2.

Shapiro discusses the notion of the foundationalist conception of logic, as opposed to the
semantic conception of logic. According to the foundationalist conception of logic, an abso-
lutely secure (or as secure as humanly possible) logical foundation of mathematics exists.75

According to Shapiro, foundationalists are usually interested in the deductive system of a
logic.76 Shapiro does not give further arguments to support this claim, but there are some
good reasons to think he is right, given his interpretation of this foundationalist conception
of logic. I will give the argument for axiomatic proof systems, but it goes analogous for other
deductive systems as well.

For a foundationalist, it is important that inferences are absolutely certain in order to
provide a solid foundation for mathematics. Moreover, the reasoning that is being used in
such inferences should be self-evident; there should be no reasonable way to doubt the rules
used in the inferences.77

Especially the fact that deductive systems allow for more clarity on their way of inferring
truths seems like a good reason for an advocate of the foundationalist conception of logic to
prefer a reasoning in a deductive system over semantic reasoning. Codifying true propositions
in a branch of mathematics can of course in principle be done by defining a semantics, but
proving true statements in such a system is less clear than syntactic proofs.

When we want to prove that a formula ϕ follows from a set of formulae Γ, I argue
that proving this deductively provides more clarity than the semantic proof for the same
proposition. With clarity, I here mean that a proof can be followed by any subject that has
basic reasoning skills. First of all, the starting axioms are clear. Then, when a syntactic
argument is given, this is done on a step-by-step basis with a fixed set of rules. In order to
give a correct proof in a deductive system, every step needs to be made clear and should be
written down; inferences can only be made with the rules provided beforehand. One does
not have to know anything about the justification of the rules in order to see that they
are applied correctly: whether the rules are applied correctly can be seen very quickly just
because of the step-by-step reasoning that is given. If ϕ can be deduced from the axioms
and the formulae in Γ by the rules given, one does not need to know the meaning of either ϕ
72. Awodey and Reck, ‘Completeness and Categoricity, Part II’, 83.
73. Awodey and Reck, ‘Completeness and Categoricity. Part I’, 4.
74. Shapiro, Foundations without Foundationalism, 8.
75. Shapiro, 35.
76. Shapiro, 36.
77. Shapiro, 35.
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or the formulae in Γ, the axioms or the rules: seeing that a rule is correctly applied requires
only basic capacities in reasoning.

This property does not hold for semantic proofs: usually a proof that a formula ϕ se-
mantically follows from a set of formulae Γ requires more words and text than a deductive
proof. This is not a big problem, but moreover, a semantic proof requires a basic conception
of the meaning of the formulae; by assuming the antecedent formulae in Γ one can, by the
meaning of these formulae, argue that ϕ is also true.

The correctness of such a proof is not as clear at one glance as is the case with a deductive
proof: Instead of a fixed set of rules, any rule can be used, as long as it is justified correctly.
These rules appeal to the meaning of the formulae used, and in order to see whether they
are justified or not, one needs more than just a basic intuition of what is valid reasoning
and what not. Even if the semantic proof is given step-by-step, a reader would still need a
grasp of the meaning of the formulae but it also takes quite some reasoning to get one’s head
around the different steps taken in the proof. As there is no fixed set of rules, everything goes
as long as the rule can be justified. That demands a lot more of the reader of the proof, so
for the need of self-evident reasoning, syntactic proofs are the better choice: one can directly
see the validity of such a proof, as opposed to semantic proofs.

Besides this reason of clarity, there is another thing which can be said in favour of
deductive systems if one wants to give a foundation of mathematics: there can be multiple
interpretations of a logical system of which all valid inferences can be codified by using a
single deductive system. One deductive system can codify many different semantics. This
is also something which can be a reason to choose reasoning by deduction over semantic
reasoning: if a certain language (say, that of mathematics) is to be formalized, this formal
language might be interpreted by several different relevant semantics. If a deductive system
can be given such that it is sound and complete with respect to these different semantics,
checking validity of an inference in the deductive system requires less work than checking
the validity in all relevant semantics.

All in all, we see that, in order to give a foundation of mathematics, focusing on a
deductive system has clear advantages. We will assume that if the foundationalist conception
of logic is being endorsed, its users are interested in deductive proofs rather than semantics.

The ultimate goal of the foundationalist conception of logic is to find a logical system
that can be the foundation of a mathematical theory: every ideally justified statement (that
is, intuitively valid in the natural language) must also be provable. This foundation should be
purely deductive; all possible true inferences according to the mathematical theory should
be deducible. Most authors use a deductive system such that this comes down to being
deducible from axioms, using the rules defined in the deductive system.78

The semantic conception of logic is different in the way that, according to this position,
correct inferences are defined in terms of semantic validity. The ultimate goal is not to give
a foundation for a certain theory such as arithmetic, but to model this theory such that
every sentence that is intuitively valid in the ‘natural language’ of the subject matter, also
is a semantically valid inference in the logical system that is being used.79

There have been several efforts over the last century, such as the logicist programme,
which tried to give a foundation of all mathematics in a logical language.80 For a somewhat
modest attempt we can refer to Nicolas Bourbaki, a group of mathematical philosophers
who, in their paper Foundations of Mathematics for the Working Mathematician81 tried to
78. Shapiro, Foundations without Foundationalism, 35.
79. Shapiro, 39.
80. Shapiro, 29.
81. Bourbaki, ‘Foundations of Mathematics for the Working Mathematician’.
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give an account of a logical and set-theoretical foundation of mathematics, from a descriptive
perspective.

According to Bourbaki, logic has little purpose outside the context of mathematics.82

Instead of being useful outside mathematics, we can use it for describing what mathem-
aticians do. The system that comes out of this process has no prescriptive use, it is based
on mathematical texts that are already there and should model the statements made there
in an abstract manner, but it should not go beyond that use. The logician should be guided
by what mathematicians do (or more precise: have done) and not by what they exactly
study. If a logical system is made to be of normative value, it needs to at least allow for
the things mathematicians want and not ‘try to make him comform to some elaborate and
useless ritual’.83

Bourbaki points out that such logical analyses of mathematics can help to find contra-
dictions, after which mathematicians refine their theory. In the rest of this article, Bourbaki
sets out a formal system that can be used to build on their mathematics up to that date.84

It basically is an implementation of (weakened) set-theory in first-order logic.85 It is, thus,
an attempt to give a foundation of mathematics in first-order logic, which is in line with the
ideas of the foundational conception of logic.

As their system is built in first-order logic, the inferences that can be made are provable
due to completeness as in Definition 1. From a foundational perspective this is something
important: if we want to give a description of the axiom on which all mathematics can
be built (by means of deduction), we must be sure that all true statements in fact can
be deduced, otherwise the foundation cannot be used for the ultimate goal of giving the
foundations of all mathematics.

Although advocates of the fundationalist conception of logic argued to stick with first-
order logic because of its completeness, there are also reasons not to be willing to accept this
limitation. It might, for example, be the case that the expressive power of first-order logic is
too small. It then is a possibility to introduce the incomplete but categorical second-order
logic: Its expressive power is much larger and that might be enough reason to have a closer
look at it, even despite its drawback of the lack of completeness.86

The foundational conception of logic as found in the work of Bourbaki is related very
closely to notion of logic as describing, or formalizing, the laws of thought: it formalizes
the ways in which rational agents should reason.87 Logic can, according to this view, be
used to find out according to which patterns or laws mathematicians work. This logical
programme makes use of broadly the same notion of logical formality as Dutilh-Novaes’
notion of formality as pertaining to rules.

As we have already seen in the previous chapter, this notion of formality is not as useful
for our goals of understanding what mathematical structures are, so if we look at the notion
of formality used in the foundationalist conception of logic, it is not really useful to us.

This is in line with the conclusion that Shapiro draws; he states that it is almost im-
possible to know or recognize that a certain deductive system (the system of axioms and
rules) is sufficient: in order to be so, any justified argument in our natural language (math-
emateze) would need to have a deduction in the logical formal language. To know or see
whether this is the case, is to expect a lot from our powers.88 It would require some kind of
‘map of logical space’ in order to determine which arguments are deducible; that is something
82. Bourbaki, ‘Foundations of Mathematics for the Working Mathematician’, 2.
83. Bourbaki, 2.
84. Bourbaki, 3.
85. Rosser, ‘Review of Foundations of Mathematics for the Working Mathematician’, 248.
86. Shapiro, Foundations without Foundationalism, 35.
87. Shapiro, 36.
88. Shapiro, 37.
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we simply do not have.89 The foundationalist conception of logic expects too much from its
users to be a feasible option for our programme. Luckily, there is still another conception of
logic.

The other conception of logic mentioned by Shapiro is the semantic conception. This
conception makes use of a formal language in a way that we called formality as pertaining
to forms earlier. Although Shapiro does not give a detailed description of the notion of
formality preferred by him, we can benefit from knowing what his ‘semantic conception’ of
logic exactly means, in order to see what notion of formality distinguished in the previous
chapter fits our goals of understanding mathematical structures best.

3.2.1 The Semantic Conception of Logic

Whereas the foundational conception of logic focuses on a deductive system, the semantic
conception of logic focuses on correct inferences in terms of semantic validity; validity in
terms of meaning.90

What we ultimately try to find, is a logical system such that an inference is valid, if and
only if it is a justified argument in the corresponding natural language: Whether a semantics
is plausible, depends on whether the valid inferences correspond to judgements about the
natural-language inferences and vice-versa. If the two do not match well, the semantics can
be adjusted, or maybe the judgements about natural language inferences.91 Forming a useful
semantics thus is a quite holistic enterprise, according to Shapiro, in which we adjust our
intuitions and our semantics step by step, as soon as we find incongruence. A correct model
(at a certain point in time) thus forms some kind of equilibrium.

It is the fact that this conception of logic uses semantic inference, rather than deduc-
tion, that makes categoricity an important notion here. Categoricity, after all, is a semantic
notion itself: it tells us something about all models that exist for a certain theory. If we can
categorically define a theory, that means we defined it in such a way that there is essentially
only one interpretation of that theory. Hence, if a theory defines a structure, it will uniquely
do so: All interpretations will be isomorphic. Concretely, if the natural numbers are defined
by a categorical theory, there is essentially only one model. The theory thus uniquely defines
the structure; there are no competing interpretations.

This is the point at which things start to get interesting in terms of structuralism: if two
models are the same up to isomorphism, then their structural properties are identical.92 If we
can categorically define a certain mathematical structure using a second-order formula, we
have basically defined all structures of that ‘kind’. Think of a labelled graph: if we manage to
describe that structure categorically, the resulting model will describe any graph that shares
it structure (that is, the same graph with different labels). The fact that second-order logic
can thus be used to describe structures categorically, is of great use for the structuralist
programme.

Of course, not every theory or field in mathematics can be categorically characterized.93

There are theories that have many structures that satisfy them. Topology and group theory
are such theories: They are about a class of structures. Hence, for group theory there is not
one unique structure up to isomorphism that satisfies it. As mentioned in the introduction,
we will not say much about these theories, that are part of the class of algebraic fields of
mathematics. It is, however, good to know that categoricity is not something that applies,
or should apply, to any theory in mathematics.
89. Shapiro, Foundations without Foundationalism, 37.
90. Shapiro, 38.
91. Shapiro, 39.
92. Korbmacher and Schiemer, ‘What Are Structural Properties?’, 304.
93. Shapiro, Philosophy of Mathematics, 40.
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Now we can look back at the notion of formality that is tacitly being used by Shapiro.
The question comes down to the role the formal language plays in the semantic conception
of logic. Sure enough it is not about capturing the rules of mathematical practice in a
formal language or give rule-based deductions in order to describe mathematics: finding an
equilibrium in the way one has to do in order to model a natural language or phenomenon
is not subject to strict rules: there are many ways of doing so.

The notion of formality which is used by this conception of logic must then be one of
the cluster that we called formal as pertaining to forms as in the previous chapter. That
means that either the notion of formality as variability or formality as de-semantification
is used. Since Shapiro considers the distinction between logical vocabulary and non-logical
vocabulary important, as we would not consider interpreting (P ∧ Q) as ‘P or Q’ valid,
there is some meaning inside the formulae before interpreting them: call this the intended
reading.94 Denying this intended reading comes down to playing an entirely different game:
such an interpretation of the language does not allow for a serious discussion.

Formalizing the language in such a way that even the symbols become meaningless would
result in a language with no logical vocabulary; we can interpret everything the way we want.
Even though this might be useful in a deductive system, in which the meaning of symbols
is completely irrelevant, this goes too far for the semantic conception of logic. In trying to
find a fitting semantics, at least some things have to keep their meaning; otherwise only
inferences that already have their conclusion as a premise are valid.95 In semantics, we need
the meaning of the formulae to reason about them and to make rules such that we can
reason. Since deductive systems work with a fixed set of rules, we can forget about the
meaning of sentences once these rules have been fixed.

However, as having hinted at before, the notion of formality as de-semantification might
keep some of the meaning of logical symbols, even if we treat them as ‘meaningless signs’. To
keep some kind of meaning, we need to interpret formulae as structures themselves. This can
best be seen with an example. The formula (P (x)∧Q(x)) has a certain underlying structure
which makes it rather irrelevant whether ∧, & or P is written, as long as that structure is
instantiated. So, if we see the formula (P (x)∧Q(x)) as having an underlying structure, that
structure is instantiated by both (P (x) ∧ Q(x)) and P ((x)&Q(x)). Structurally speaking,
these two formulae are identical; there is no way in which they express different things apart
from the symbols. So, even after de-semantification of the individual symbols, there seems
to be some meaning left in terms of structure: P (x) and Q(x) have a structural relation,
even though it is not clear at plain sight what this relation exactly is.

Although the two conceptions of logic have a different goal, it might well be the case
that the foundational and the semantic conception of logic extensionally coincide: they
amount to the same thing. This is of course so when the logic that is being used is both
sound and complete; any inference that is valid in the semantics can also be deduced and
any deducible argument can also be proved in a semantic way. Since the foundationalist
conception is associated with deductive systems, and the semantic conception is associated
with a semantic theory, we can see that the two conceptions ultimately are the same since the
deductive system and the semantics allow for deriving the same truths. When the used logic
is incomplete, there cannot be such a collapse of the difference between the two conceptions
of logic; we then have to choose. Because of the high demands that the foundationalist
conception puts on its users and because of the notion of formality that is not really useful
for our project, we better go with the semantic conception of logic.
94. Shapiro, Foundations without Foundationalism, 39.
95. Shapiro, 39.
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3.3 Logic and Codification of Mathematics

Now that we know that the semantic conception of logic fits our goal best, we can look
into Shapiro’s case for second-order logic to codify mathematics. First, we will reconstruct
Shapiro’s argument for the use of second-order logic instead of first-order logic, after which
we will give a short introduction in some mathematical concepts described by second-order
logic. One of those will be the abstract structure of arithmetic, in which we are particularly
interested.

In order to reconstruct Shapiro’s argument for the rejection of first-order logic, it is good
to have a running example, which we find in the Peano arithmetic-axioms. The simplest
axioms of first-order Peano-arithmetic, which only define the natural numbers N, are given
by:

(i) ∀x(0 6= S(x))

(ii) ∀x, y(S(x) = S(y)→ x = y)

(iii) (ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(S(x)))→ ∀xϕ(x)96

We use S as representing a successor function (which, in a model, should in fact give the
successor of a certain number). Note that the third axiom actually is an axiom scheme: it
is instantiated for every formula ϕ that is a member of the first-order language L. So, every
instance of (iii) is an axiom. We call this formula the induction scheme: it assures us that if
something can be said about the first natural number and of every successor of that number,
it can be said of all natural numbers.

In second-order logic, we replace the induction scheme by the induction axiom which is
second-order:

(iii*): ∀X((X(0) ∧ ∀x(X(x)→ X(S(x))→ ∀xX(x)).97

Whereas first-order Peano arithmetic consists of axioms (i), (ii) and (iii), we state that
second-order Peano arithmetic is axiomatized by (i), (ii) and (iii*). We see that X ranges
over the properties of our domain and is not a formula scheme: Peano arithmetic is finitely
and categorically axiomatizable in second-order terms.

The most interesting differences between second-order logic and first-order logic (and the
shortcomings of the latter) lie in semantical issues.98 There are some widely used mathem-
atical notions which first-order languages are incapable of expressing. For example, one of
these notions is that of finitude and cardinality, the number of elements in a set. Although
we can construct a theory such that it only allows for infinite models, we cannot express in
a first-order axiomatization of set-theory that a certain set is finite without having to give a
maximum number of elements.99 That is, we cannot state that a set has n elements without
having to give the value of n.

Moreover, Boolos has proved that comparisons in terms of cardinality can only been
given for specific sets, but not in general terms.100 The fact that first-order logic is too
weak to be able to express these important mathematical concepts show that it might be
interesting to accept second-order logic in order to codify more of mathematics.

There is, however, a maybe even bigger problem with first-order theories: they might not
be able to cover all of the notions we want them to, but they sometimes cover too much.
Some first-order theories allow for the existence of non-standard models. For a mathematical
96. Shapiro, Foundations without Foundationalism, 82,110.
98. Shapiro, 111.
99. Shapiro, 102.
100. Shapiro, 102.

21



3.3 Logic and Codification of Mathematics 3 SHAPIRO’S CASE FOR SECOND-
ORDER LOGIC AS THE LAN-
GUAGE OF MATHEMATICS

field that has both a first-order and a second-order theory, we define a non-standard model
as follows:

Definition 7 (Non-standard model) A model of a first-order theory is non-standard iff
that model is not part of the set of models of the corresponding second-order theory.101

The property of being a non-standard first-order model thus boils down to not being part
of the models of the respective second-order theory. As the second-order theory of arithmetic
is categorical, all of its models are isomorphic to one another. We can therefore sharpen the
definition a bit more using this idea:
A model of a first-order theory is non-standard iff it is not isomorphic to the categorical
models of the corresponding second-order theory.
We say that, since the models of second-order Peano arithmetic exactly cover the natural
numbers (or an isomorphic structure), these models are the intended models: they interpret
arithmetic in the way we meant it. Of course this does not automatically follow for any
theory (there might be first-order theories of which the models of the second-order theory
are intuitively unwanted), but there are some theories for which it holds. Peano arithmetic is
one of them: if a model interprets the natural numbers, it does what we expect it to do. Any
model of second-order Peano arithmetic does just that: it interprets a structure isomorphic
to that of the natural numbers. We can therefore say that any model of second-order Peano
arithmetic is a standard model.102 Since non-standard models are not isomorphic to this
intended model, we can label them as unintended: they allow for interpretations of Peano
arithmetic that do not correspond with our intuitions or with what we meant to codify.103

The existence of such non-intended models of first-order Peano arithmetic would imply
that first-order languages are not strong enough to interpret only those things we want
them to do. More concretely, the existence of non-standard models implies the allowance of
first-order theories for models that may codify more than just the natural numbers. These
non-standard models have been proved to exist by Thoralf Skolem,104 and we will sketch
the proof of it (without using too many technical details). For more details of the proof, one
can refer to Skolem’s paper.

Skolem’s proof is not exactly like the nowadays commonly used proof using compactness.
He does, however, in an elegant way show the existence of non-standard models of Peano
arithmetic. In short, he proves that for a set of sentences M such that M contains all first-
order formulae definable in L that are valid for the series of natural numbers N (N thus in
fact being a model), we can also define a series N∗ such that all formulae in M are valid for
N∗, but N∗ is an extension of N such that it is not the case that N∗ ' N .105

Concretely, Skolem’s proof shows that, using Peano axioms, it is possible to construct
a model that contains more than just the natural numbers: besides the natural numbers,
it contains numbers that are larger than any natural number. It can therefore never be
isomorphic to the set of natural numbersN . This clearly proves the existence of non-intended
models of Peano arithmetic.

A more modern proof makes use of the compactness theorem.

Definition 8 (Compactness) If a language L is compact, then any set of formulae Γ is
consistent iff every finite subset ∆ ⊆ Γ is consistent.106

101. Shapiro, Foundations without Foundationalism, 111.
102. Montague, ‘Set Theory and Higher-Order Logic’, 136.
103. Enayat and Kossak, Nonstandard Models of Arithmetic and Set Theory, 1.
104. Skolem, ‘Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich
vieler Aussagen mit ausschliesslich Zahlenvariablen’.
105. Skolem, 159.
106. Halbeisen and Krapf, Gödel’s Theorems and Zermelo’s Axioms, 30.
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It is a mathematical fact that first-order logic is compact.107 We construct a theory based
on Peano arithmetic. We abbreviate the first-order Peano axioms as given before by PA.
We then define an extension PA+ with a constant c such that PA+ = PA ∧ ∀x(c > x). We
thus define the interpretation of the constant c to be a numeral larger than any numeral in
the standard model of Peano arithmetic. Since Definition 8 holds for first-order logic, if we
can show that every finite subset of PA+ is consistent, we know that also PA+ as a whole
is consistent. By soundness, there then exists a model for PA+ so that we have shown that
there exists a non-standard model of arithmetic, with some number larger than any number
in the standard model.

For any finite subset S of PA+, we can give a modelM that interprets the non-logical
vocabulary in just the same way a standard model of arithmetic would do, except for cM =
s(n) with n the largest numeral of S. So, we define c to be the successor of the largest
number of all finite subsets. AsM interprets S in just the same way as the standard model
of Peano arithmetic, we get that M � PA and since M � ∀x ∈ S(c > x) we also get that
M � S. As this construction can be done for all finite subsets of PA+, we can conclude by
compactness that there exists a non-standard modelM of Peano arithmetic.

The fact that such unintended models exist is one of the main reasons for Shapiro to argue
against the use of first-order logic to provide a foundation for (parts of) mathematics.108

Second-order logic, however, is able to characterize the abstract structure of the natural
numbers. By characterizing only models isomorphic to the intended model of arithmetic,
the second-order Peano axioms single out the abstract structure of the natural numbers.
Any, and only a, valid interpretation of the natural numbers will satisfy the axioms. More
on this will be said in the next part.

There are of course also positive arguments to choose second-order logic to describe
mathematics in a logical system. One is epistemic, another one is related to the languages
both logical systems make use of. We will have a quick look at them.

The epistemic argument appeals to the idea of why one would accept the induction
scheme as used in axiomatizing arithmetic in first-order logic. Shapiro argues that one would
accept the induction scheme only because one already believes that the induction axiom is
correct.109 But in order to do so, second-order logic is already presupposed. If one would
reject the second-order axiom because of ontological reasons, using that same axiom to justify
the acceptance of the induction scheme is impossible. He states that if a non-second-order
epistemic justification of the first-order induction scheme exists, it is yet to be found.110

It seems that the advocates of first-order and second-order logic use different kinds of
arguments while arguing for ‘their’ kind of logic. First-order logic advocates tend to argue
against second-order logic because of its ontological presuppositions, whereas advocates of
second-order logic like Shapiro and Kreisel (quoted by Shapiro) give arguments related to
epistemics. What counts more is a question that has yet to be answered. From a scientific
perspective, epistemological clarity may be preferable. However, preventing a theory from
becoming too ontologically ‘heavy’ might be more important from a philosophical point of
view. Shapiro responds to the claim that second-order logic presupposes a too large ontology
by stating that the line between logic and mathematics cannot be drawn so clearly;111 the
absence of such a sharp border would imply that logic might presuppose the ontology that
is used by mathematics, which is indeed ‘staggering’, without too many problems.

Another argument that Shapiro gives in favour of second-order logic is related to the
expressive power of first and second-order languages. It is also closely related to the idea
107. Halbeisen and Krapf, Gödel’s Theorems and Zermelo’s Axioms, 30.
108. Shapiro, Foundations without Foundationalism, 116.
109. Shapiro, 118.
110. Shapiro, 118.
111. Shapiro, 97.
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of the power of first-order logic to distinguish between different models of arithmetic that
we discussed in the paragraph about non-standard models. The point of his argument is
that in second-order Peano arithmetic, we do not have to extend our theory with axioms
(i) to (iii*) with arithmetical functions like ×,+, as those are already derivable from the
induction axiom. We can of course explicitly state these functions in our theory, but any
model of such a theory will be isomorphic to the models for the more ‘bare’ theory without
extra functions.112

This is not the case for first-order logic. Extending, for example, a first-order theory
of arithmetic with only the + function to a theory that also has the × function, can be
done in multiple ways. We can, indeed, only extend such a theory non-categorically.113 This
means that an extension of ‘basic’ arithmetic (so only the definition of the natural num-
bers) is essentially different from arithmetic with arithmetical functions. Peano arithmetic
is relatively simple, but when we want to extend a logical description of the real numbers,
we must add terminology for e.g. π, whereas in a second-order theory this kind of special
numbers can just be derived.114 Second-order theories are thus more powerful than their
first-order counterparts in the sense that only the basic axioms have to be defined; all other
functions and elements can be derived from those. As Shapiro states, in first-order theories
the schemes should be modified on the go, and it is not a trivial thing to decide when we
have added enough of the new functions or elements.

We have now seen some arguments for the use of second-order logic to codify mathemat-
ics. Especially the fact that second-order logic is categorical is an important reason to choose
for second-order logic rather than first-order logic. As we endorse the structuralist position
that structures are to be studied in mathematics, categoricity is of great use. It means that
we can actually describe a structure using our logic, without the problem of including un-
wanted structures in the interpretations of the theory. Hence, we will now continue working
in second-order logic.

In the next part, we will spell out the semantics for our logic. We will discuss the
different types of semantics, and we will give two semantics for second-order logic. Then,
we will formalize the notion of implicit definitions, which is an account of how formulae
acquire their meaning in a structural context. After we have spelled out how formulae get
their meaning, we will also give a formal account of what that meaning is.
112. Shapiro, Foundations without Foundationalism, 120.
113. Shapiro, 121.
114. Shapiro, 122.
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Part II

Semantics and Meaning
Up to now, we have mainly focused our research on intuitive meaning: When we see and
read a formula, we think it has some kind of meaning even though the formula is abstract.
The identity of indiscernibles, Formula 3, is a rather clear example of this. We tend to
interpret formulae as meaningful sentences, even though strictly speaking, we do not give
them meaning, but the semantics does.

In a logical system formulae are given a meaning by the semantics that is being used in
the logic. As we are especially interested in second-order logic, we will look at semantics that
are applicable to second-order logic. First, we will distinguish two main types of semantics:
proof-theoretic and truth-conditional semantics, sometimes referred to as ‘model-theoretic
semantics’. We will see that truth-conditional semantics are most useful in our case.

On the level of truth-conditional semantics, we can again distinguish two kinds of se-
mantics. We will look into both full second-order semantics and Henkin semantics, which is
very similar to first-order semantics.

After having discussed the two most common semantics in second-order logic, we will
continue working in full second-order semantics and investigate the notion of structural
definitions. Then, we will develop a view of what the meaning of a formula is in a structuralist
context. We argue that the meaning of a formula in such a context is the isomorphism class
of structures that satisfy its propositional function.

4 Semantics: Types and Uses

As stated above, there are roughly two different ‘kinds’ of semantics: proof-theoretic and
truth-conditional semantics. We will discuss both and argue that for our goal of understand-
ing the meaning of mathematical second-order formulae, we best choose truth-conditional
semantics.

4.1 Types of Semantics, Realism and Intuitionism

The distinction between proof-theoretic semantics and truth-conditional semantics has many
philosophical groundings and implications. We will discuss the realism versus anti-realism
debate, and the different angles from which the two theories shed light on the question of
semantics: from an epistemological or a metaphysical point of view. That question comes
down to whether truth is an epistemologically or metaphysically relevant notion.

The notion of proof-theoretic semantics can be linked to the logical basis of the meta-
physics of Michael Dummett.115 According to Dummett, the ultimate question of analytical
philosophy is ‘what is a theory of meaning?’116 Both proof-theoretic and truth-conditional
semantics give a formal account of a possible answer to this question. When we give a
(correct) proof of a formula ϕ following from a set of formulae Γ, we may be interested in
multiple things related to the proof. First, we may be interested in whether the proof holds,
so if ϕ really does follow from Γ. We are then interested in the consequence relation and
115. Schroeder-Heister, ‘Proof-Theoretic Semantics’.
116. Dummett, ‘What Is A Theory of Meaning? (I)’, 1.
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we can call this an extensional type of semantics. This corresponds to truth-conditional se-
mantics: What the proof actually states does not matter to us, but the consequence relation
expressed by the proof does.117

We may, however, also be interested in what the proof actually says. In most proof
systems, there are many ways to prove that Γ � ϕ. Even though the relation expressed by
the proof is identical in all proofs, the means of arriving there differs. Call this an intensional
type of semantics, that corresponds to proof-theoretic semantics: We are interested in both
the consequence expressed by the proof but also in the way in which it is actually proved.118

According to Dummett, adopting a certain semantic view for a given class of statements
forces one into accepting a realist or an anti-realist view relative to the objects the statements
are about. Accepting a proof-theoretic view of semantics also means accepting an anti-realist
view of the objects (and accepting anti-realism for that class of objects also means accepting
a proof-theoretic view of semantics), whereas going with truth-conditional semantics forces
one into adopting a realist view of the world.119 Note that Dummett writes ‘theory of
meaning’ here, but this concept can be perfectly formalized to ‘semantics’ as well.

This realist or anti-realistist stance to the world not only corresponds to the semantics one
chooses to work with, but has an even deeper grounding: the acceptance of the principle of
bivalence for a class of statements.120 The principle of bivalence states that every statement
that can be made is either true or false. It is quite reasonable to think that this is not the
case for some class of statements: think of ethics or counterfactuals. The sentence ‘If the
student had not attended the lectures, she would not have passed the course.’ does not seem
to have a clear truth-value: we cannot determine the truth-conditions of such a sentence,
that is, we cannot say what should be the case in the world for the sentence to be true. The
same goes for ethical statements: maybe some things are good nor bad.

When we are realist towards a given part of the world, that means that we must also
accept bivalence over the class of statements about that part of the world: something is the
case or it is not, thus we can say that some statement about such a real object is true or
false. This also allows us for adopting a truth-conditional semantics: Some statement may
be true or false and a proof can show us that. However, we do not need anything beyond
the information that the consequence relation of the proof holds; we already know why the
proof holds: because of the state of affairs in the world.

However, when we adopt an anti-realist view and abandon the principle of bivalence,
we cannot justify the truth of our statements by pointing at the state of affairs. A truth-
conditional semantics will therefore not fit our needs: we cannot just rely on truth values
for our semantics. A proof not only shows that a statement is true, but we can say that
the statement is true in virtue of the proof we can give for it.121 Our interest in the proof
goes further than just the consequence relation: there are many ways to give a proof for a
given statement and if that statement is true in virtue of its proof, it can be true because
of different reasons. When we recognize a proof for some statement, we may only know why
it is true by having a closer look at the contents of the proof. It does not suffice to point
towards the world in order to justify a statement when we are anti-realists. The meaning
of a statement is not given by its truth-conditions, but by how a proof for it would be
constructed, thus by the inferences and rules used to prove an expression.122

Dummett’s anti-realist position regarding meaning is heavily inspired by the intuitionist
position of logic and mathematics. Intuitionistic logic rejects the principle of bivalence,
117. Schroeder-Heister, ‘Proof-Theoretic Semantics’, 1.1.
118. Schroeder-Heister, 1.1.
119. Dummett, ‘What Is A Theory of Meaning? (II)’, 64.
120. Dummett, 57.
121. Dummett, 70.
122. Dummett, 70.
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which means that both the law of excluded middle (A∨¬A) and the law of double negation
elimination (¬¬A → A) are rejected.123 Proof-theoretic semantics are adapted to these
intuitionistic starting points. They do not make use of the law of excluded middle (for
example to do reductio ad absurdum), and expressions of the form A → B are interpreted
as ‘A proof of B can be obtained by a proof of A’.124

As stated earlier, the difference between proof-theoretic and truth-conditional semantics
can also be put in terms of what we are interested in: metaphysics or epistemology. When
we use a proof-theoretic semantics, we are interested in how a certain proof goes; we want
to know why B follows from A. However, when studying truth-conditional semantics, we are
solely interested in the truth of a statement, so in the consequence relation a proof proves:
if B follows from A. In the case of truth-conditional semantics, we are thus interested in
how things are: we prove things about the state of affairs in the world and are interested in
how the world is. This can be seen as a metaphysical point of view.125 In the case of proof-
theoretic semantics though, we are interested in how we know that B follows from A; how
the proof actually is constructed. This leads to the view that proof-theoretic semantics is
much more epistemological than metaphysical.126 The state of affairs is not directly related
to the truth of a statement, so there is not much to say metaphysically about a proof. A
proof might make use the state of affairs to show the truth of a statement, but it is not
necessary to do so.

4.2 Truth-Conditional Semantics: an Argument from Incomplete-
ness

Now we have discussed the differences between proof-theoretic and truth-conditional se-
mantics, and have also seen what their groundings and consequences are, we can investigate
which of the two we can use best for our main question: what is the meaning of a second-
order formula in a mathematical context. The question therefore comes down to: what is
the best type of semantics to give meaning to a second-order formula in such a context.
We will ‘choose’ between proof-theoretic and truth-conditional semantics here. I will give an
argument for the use of truth-conditional semantics from the incompleteness of second-order
logic.

A semantics ideally is set up in such a way that only the expressions we would intuitively
call true in the natural language are also true in the intended model given by the semantics.
We will call this idea informal adequacy. If we use a logical system to codify mathematics,
we can state this more narrowed-down: all and only mathematical facts are true in the
semantics. So, a notion of ‘intuitive completeness’ would mean that any expression that is
a mathematical fact, should be provable in some deductive system.

Definition 9 (Informal adequacy) A semantics is informally adequate iff any informal
mathematical statement A is true according to the mathematical theory iff the formalization
ϕ of A is true in the intended model given by that semantics.

Let us again focus on second-order Peano arithmetic. We have seen that we can categor-
ically define Peano arithmetic in second-order logic with standard semantics and that the
second-order theory of arithmetic therefore is semantically complete. But we have also seen
that any theory that codifies arithmetic is negation incomplete: there are statements that
can neither be proved, nor can their negation. This yields the theorem that second-order
123. Iemhoff, ‘Intuitionism in the Philosophy of Mathematics’.
124. Sundholm, ‘Proof Theory and Meaning’, 485.
125. Schroeder-Heister, ‘Proof-Theoretic Semantics’, 1.1.
126. Schroeder-Heister, 1.1.
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logic is incomplete. But it also gives us an important hint about which type of semantics we
should use.

The categorical formulation of Peano arithmetic in second-order logic with standard
semantics is one in which the ‘only’ model (all models that exist are identical up to iso-
morphism) actually is the intended model: all and only statements that we would intuitively
think should be true, are true in the model. The model of the theory is the model of the
natural numbers – exactly what it should be. We can therefore say that the model-theoretic
approach of second-order Peano arithmetic narrows down all and only the natural numbers.
The structure that is given by the model covers everything we want it to cover, and nothing
more. Moreover, we can tell the truth-value of the formalization of any statement about the
natural numbers – second-order Peano arithmetic is semantically complete after all.

The intuitions we have about the natural numbers are thus formalized in the model
given by the standard semantics of second-order logic when applied to arithmetic. Standard
semantics can account for an informally adequate formalization of arithmetic. Any other
approach would need to satisfy the principle of informal adequacy as well to qualify as a
good semantics for second-order logic in mathematical contexts. We will see that proof-
theoretic semantics cannot guarantee that our intuitions are formalized in the right way.

As said, we want a semantics to formalize the intuitions we have about a certain (part of
a) language or theory. A proof-theoretic semantics should eventually yield the same truths
in a model, consequences and validities as the truth-conditional semantics to be informally
adequate. Again applied to Peano arithmetic, this means that any truth that holds in the
intended model should be provable, so that it also hold in the proof-theoretic semantics.

We have seen, though, that second-order logic is incomplete; there are true statements
according to the standard semantics, that we cannot prove in any deductive system. For a
statement to be rendered true by a proof-theoretic semantics, it must be possible to prove
it. Since proving a statement semantically in order to check its truth-value in that semantics
is not viable, this must be done deductively.

But if there are some true statements about a theory that we cannot prove, this means
that any proof-theoretic semantics is intuitively incomplete. That is, there are statements
that should be valid in the semantics, but which are not: they cannot be proved. That yields
the result that some statements that are true according to the standard semantics (that
yield an intended model) are not true in a proof-theoretic semantics. This can best be seen
by using the Gödel sentence as an example.

The Gödel sentence G is a sentence which refers to itself by stating its own unprovability.
G: ‘G is not provable in any ω-consistent formal system F ’.127 Of course the sentence is,
in case of Peano arithmetic, given in terms of arithmetic, but it amounts to the same: it
asserts that the sentence itself is not provable. If we can prove that this is true, this leads
to a contradiction. If we can prove that the negation of G is true, that would mean that
the sentence is provable which again leads to a contradiction. The Gödel sentence thus is
provable nor refutable.128

But the fact that the sentence is provable nor refutable means that G is true. In truth-
conditional semantics, we can account for that. The properties of the Gödel sentence are such
that the truth-conditions of the sentence are fulfilled. However, in proof-theoretic semantics
we face a problem: if we cannot prove a sentence, we cannot tell whether it is true or not.

This means that proof-theoretic semantics can never account for the statements we think
must be true. The model theory and the proof-theoretic semantics do not ‘rhyme’, which
is problematic because we intuitively feel that the standard semantics yields the correct,
127. Kennedy, ‘Kurt Gödel’, 2.2.2.
128. Kennedy, 2.2.2.
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intended model. That also means that no proof-theoretic semantics will ever be able to
match this intended model: there will be unprovable but intuitively true statements, due
to Gödel’s incompleteness theorems. Hence, proof-theoretic semantics will, in the case of
second-order logic, always be intuitively inadequate.

It would therefore be a bad idea to use a proof-theoretic semantics for second-order logic:
doing so would mean that not all intuitively true statements can be formalized in the logical
system. A truth-conditional theory of meaning does not have this drawback: we have already
seen that standard semantics yields the intended model for, for example, Peano arithmetic.

4.3 Truth-Conditional Semantics: an Argument from Realism

There are more reasons to prefer truth-conditional over proof-theoretic semantics. The argu-
ment from incompleteness gives a very clear result, but also has implications for our position
in terms of the realism–anti-realism debate. I will argue why from a (structural) realist per-
spective it is necessary to use a truth-conditional theory of meaning. This is an argument
coming from a realist position. Of course, assuming realism does weaken the argument, but
we have already seen that there is another reason to choose truth-conditional semantics.
Moreover, in our eventual research question, finding the meaning of a formula describing a
structure, the realist assumption is already made. We then thus have two compelling reasons
to prefer truth-conditional semantics over proof-theoretic semantics, of which one applicable
to any context in which second-order logic is used.

We will argue that it is natural to accept a truth-conditional semantics when being
realist with respect to that part of the world that the theory of meaning covers. Therefore,
we should first have made clear why a realist position implies a truth-conditional theory of
meaning. We will then lay out why realism with respect to structures is a reasonable starting
point.

Proof-theoretic semantics is inherently inferential, as proofs are inferential: they make
use of inferences to constitute their meaning.129 So, the meaning of an expression depends
on the inferential role it plays in a proof. More concretely, the meaning of an expression
depends on the proof one can give for it.

Suppose that we are realists towards the natural numbers: we think that ‘1 + 1 = 2’ is
true because there exists an object referred to by ‘1’, which equals an object referred to by
‘2’ when it is added to itself. In a truth-conditional theory of meaning, this idea can be very
well embedded: if ‘1’ denotes the object 1 and ‘2’ denotes the object 2, then the meaning
of ‘1 + 1 = 2’ is given by its truth-conditions, which are the state of affairs regarding the
numeral objects.

However, if we adopt a proof-theoretic semantics, we could not sustain our realist position
in a meaningful way. We would actually ‘lose’ the reference to the world by adopting such a
semantics: There is, in ‘bare proof-theoretic semantics’, no way in which we can guarantee
that the meaning of an expression ‘1 + 1 = 2’, that is the proof for the expression, actually
is about the objects of which we think that they exist. The inferences used in the proof do
not necessarily make use of reference to the actual objects out there. It might be that the
proof holds because of certain properties of the object 1, but it is not necessarily the case
that the justification of the proof uses reference to that object.

Although there is no contradiction in being realist and accepting a proof-theoretic se-
mantics, the tension is clear: the realist position loses its actual realism if the meaning of
expressions does not refer back to the objects regarding to which one is realist. The expres-
sions about these objects are not necessarily rendered true by the state of these objects;
129. Schroeder-Heister, ‘Proof-Theoretic Semantics’, 1.1.
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one could as well accept an anti-realist position then. A truth-conditional theory of meaning
appears to be a more natural choice, given a realist position towards mathematics.

There is more to say about this. It is not very difficult to find a way of grounding
one’s proof-theoretic theory of meaning such that proofs are ultimately grounded by the
objects the relevant statements are about. If that approach works, it would still be possible,
and result in less friction, to adopt a proof-theoretic semantics while insisting on a realist
metaphysical view. For example, one could maintain that the rules and axioms that are used
in a proof-theoretic semantics are trivially true because they are made true by the objects
they are about.

However, this leaves two problems unsolved. First of all, there is still the problem of
incompleteness as discussed before. Moreover, because of proof-theoretic semantics being
a formalization of the meaning is use-principle,130 proof-theoretic semantics contains prin-
ciples of pragmatism that are unacceptable from a realist perspective.

A theory of inferentialism (which also applies to proof-theoretic semantics) contains a
lot of pragmatism, due to it being a formalization of the principle of meaning is use.131 This
implies that meaning not only depends on the inferences made in order to write a proof for
a certain expression, but also on the ability of a speaker to make those inferences.132 Thus,
if a certain proof has not yet been found, but in principle can be given, a statement such as
1 + 1 = 2 may still not be true. This is of course problematic from a realist perspective, as
the ability of drawing inferences does not depend or only partly depends on the actual state
of affairs. The meaning of a statement becomes an epistemological notion (whether one can
draw the relevant inferences or not) instead of a metaphysical one (whether certain objects
are so and so).

4.4 Structural Realism and Abstract Structure

So, if a realist position makes sense in our case, this is another reason to accept a truth-
conditional theory of meaning as an alternative to a proof-theoretic semantics. If we have
another look at the ultimate goal of this thesis, we will see that a realist position towards
the second-order expressions is useful and justified. To do so, we will distinguish three
structuralist positions: ante rem, in re, and post rem structuralism.133 We will see that, by
the question posed in the thesis, ante rem structuralism is a natural position to choose here
and corresponds to a realist position regarding structures.

The positions of in re and post rem structuralism both state that structures do not
exist independently of the systems that individuate them.134 In re structuralists think that
structures exist in the mathematical systems that exemplify them,135 whereas post rem
structuralists state that the relevant structures are built out of the elements found in a
system, thus being posterior to the mathematical systems.136

According to ante rem structuralism, sometimes called ante rem realism, the abstract
structures of mathematical systems exist prior to those systems.137 Although all three pos-
itions can be realist, only ante rem structuralism is realist towards abstract structures; the
other positions admit the existence of structures only in an individuated sense: without
at least one system that individuates a structure, the structure would not have existed.
130. Schroeder-Heister, ‘Proof-Theoretic Semantics’, 1.1.
131. Kügler, ‘Putting Brandom on His Feet’, 79.
132. Kügler, 80.
133. Reck and Schiemer, ‘Structuralism in the Philosophy of Mathematics’, 2.3.
134. Shapiro, Philosophy of Mathematics, 84.
135. Shapiro, 85.
136. Reck and Schiemer, ‘Structuralism in the Philosophy of Mathematics’, 2.3.
137. Shapiro, Philosophy of Mathematics, 84.
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Concretely: the natural numbers structure would not have existed if there was no system
individuating the structure of the natural numbers (whatever such a system might be).
Dummett puts ante rem structuralism as ‘mystical structuralism’, the position according to
which mathematics is concerned with abstract structures, so independent of their exempli-
fying systems.138

Mathematicians are interested in structural properties: it does not matter what the
properties of the actual objects are in a system of the natural numbers, as two instantiations
of the natural number 2 have the same structural properties. We can therefore state that
what is of interest is the abstract structure of, in this case, the natural numbers. Since
second-order logic can describe such abstract structures so that we can study them, it would
be a natural thing to accept an ante rem structuralist view. Not only is this view very
perspicuous, as it is clear on how structures in general work and on how structures exist
in mathematical systems, it is also a reasonable assumption to say that the structures of
which we wonder what they are, exist: It makes much more sense to ask for the ontological
status of something we think is real in this case. Ante rem structuralism, according to
Shapiro, also comes closest to capturing how mathematical theories are conceived.139 The
idea of studying abstract structures as they are, so without being invoked by a system, is
called free-standingness by Shapiro.140 We can make statements about the natural numbers
that are true of any system that exemplifies the natural number structure. The structure
then really is freestanding: it does not matter in what way the places in the structured are
occupied, as long as they bear the right relations to each other. We can talk of ‘the number
three’, but what we really mean is the object that plays the role of three in any natural
number system. We can talk about structures without knowing, or even caring about, the
concrete systems that exemplify these structures. The ante rem account of structuralism
can accommodate these insights about structure in a very clear way,141 which is why we can
reasonably make it an underlying premise in this thesis.

By having good reasons to accept ante rem structuralism, we also have good reasons to
accept a truth-conditional theory of meaning. We will therefore continue by defining two
different truth-conditional semantics for second-order logic.

The position of structural realism does raise other meaning-related questions: How are
logical expressions and structures formally related? How is a formula given meaning by the
structural context? We have seen that logical expressions (axiomatizations) can characterize
a structure, without actually invoking a model-theoretic instance of that particular structure.
In a way, the expression seems to define the structure, without explicitly doing so. There
exists a theory endorsed by structuralist that accounts for this: implicit definition. We will
discuss this theory, after we have given a brief overview of second-order truth-conditional
semantics.

4.5 Second-order and Henkin Semantics

We will distinguish two different types of semantics for second-order logic: standard second-
order semantics and Henkin semantics. The latter ‘weakens’ second-order logic to regain some
of the features of first-order logic that are lost by second-order logic, such as completeness.142

However, Henkin semantics also has its drawbacks: one cannot categorically define infinite
structures in it.143

138. Dummett, Frege, 295.
139. Shapiro, Philosophy of Mathematics, 90.
140. Shapiro, 100.
141. Shapiro, 100.
142. Shapiro, Foundations without Foundationalism, 90.
143. Shapiro, 95.
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We will briefly discuss the technicalities of both types of semantics, after which we will see
that only standard second-order semantics can suit our needs, especially categoricity. We will
discuss a few properties of both semantics: the definition of a model, validity, satisfiability
and consequence. The definitions below come from chapter 3, Shapiro (2001).144 More details
can be found there.

First, we will look at full second-order semantics. Like in first-order logic, the most im-
portant notions of our semantics are the model and the assignment function. The modelM
consists of a pair 〈D, ·M〉, in which D is the domain of discourse and ·M is the interpreta-
tion function that assigns members of D to any non-logical item of our language (think of
constants and predicates). The assignment function α assigns to each first-order variable a
member of D, and to each n-ary predicate variable a subset of Dn. Each n-ary function vari-
able gets assigned a function from Dn to D. The set of all variables, functions and constants
is called the set of terms.

We then want to know how we should interpret second-order variables, both free and
bound. We distinguish the following cases:

Free variable If Xn is a relation variable and 〈t〉n is a sequence of n terms, thenM, α � Xn〈t〉n iff
the sequence of members of D denoted by 〈t〉n is an element of α(Xn).

Universal quantifier M, α � ∀Xϕ iffM, α′ � ϕ for every assignment α′ that agrees with α at every variable
except possibly X.

Existential quantifier M, α � ∃Xϕ iffM, α′ � ϕ for some assignment α′ that agrees with α at every variable
except possibly X.

Function variable M, α � ∀fϕ iffM, α′ � ϕ for every assignment α′ that agrees with α at every variable
except possibly f .

We now only need to define the notions of validity, satisfiability, and consequence to get
a good grasp of standard semantics. We say that ϕ is valid iffM, α � ϕ for everyM, α. Γ is
satisfiable iff for someM, α,M, α � ϕ for every ϕ ∈ Γ. ϕ is a consequence of Γ iff Γ∪ {¬ϕ}
is not satisfiable. These notions are the same as in first-order logic.

Henkin semantics narrows down the expressive power of second-order logic by restricting
the range of the second-order variables. It does that by having a fixed collection of relations
on the domain, over which the relation variables can range.145 The definitions below again
come from chapter 3, Shapiro (2001). More details can be found there.

A Henkin modelMH consists of a tuple 〈D, R, F, ·MH 〉 with D the domain of discourse,
·MH the interpretation function like in standard semantics. There are two new elements in
M: R is a sequence of sets of relations and F is a sequence of sets of functions. For each
number n, R(n) is a (non-empty!) subset of the powerset of Dn. That is, for any arity n,
R(n) gives a fixed collection of relations over D. F (n) on its turn gives a non-empty set of
functions from Dn to D. Both R and F thus give a fixed range to both relation and function
variables.

It will be no surprise, then, that variable-assignment function α assigns a member of R(n)
to every n-ary relation variable, and a member of F (n) to every n-ary function variable.

The interpretation of the second-order variables remains the same. The real difference
lies in the assignment function: instead of ranging over the complete domain, second-order
variables are bound to a subset of the domain. Of course it is possible to think of an MH

144. Shapiro, Foundations without Foundationalism.
145. Shapiro, 73.
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with R and F such that R(n) equals the powerset of Dn and F (n) is the set of all functions
from Dn to D. We then say thatMH is a full model.

As has been stated earlier, any second-order language with Henkin semantics cannot
categorically characterize a structure. Since we are interested in the meaning of expressions
that categorically define such structure, Henkin semantics is not adequate for our goals. We
will therefore stick with standard second-order semantics. As deductive systems are not our
main interest (meaning is), we can live without completeness without any problems.

Also note that Henkin semantics share many features with first-order logic semantics.
In fact, there exist implementations of first-order semantics for second-order logic that, like
Henkin semantics, bring back completeness, but at the cost of categoricity.146 First-order
semantics and Henkin semantics are actually equivalent: For every first-order model there
exists a Henkin model such that a sentence ϕ is true in that model iff it is true in the
first-order model. Henkin semantics and first-order semantics thus are essentially the same,
despite a few technical differences.147

Before moving to the meaning of formulae in mathematical contexts, we need to discuss
how their meaning can be determined. We will do so by laying out the ideas of implicit
definition in the next section.

5 Implicit Definitions and Structuralism

We have seen that it is possible to give an account of several mathematical structures by
giving second-order axioms. One of those structures is the natural-number structure: Using
the Peano axioms, we can categorically characterize arithmetic and therefore the structure
of the natural numbers.

However, the link between those structures and their (second-order) axiomatization is
still unclear. How do these formulae in mathematical contexts acquire their meaning? Struc-
turalists have a common answer to this: implicit definitions. Since there already exists a
theory of how the meaning of a statement in a mathematical context is determined, it can
help us with determining what the meaning is, as there is not yet a satisfying answer to this
question.

Giovannini and Schiemer give an informal definition of implicit definition:

Definition 10 (Implicit definition) A theory implicitly defines predicate R iff it uniquely
determines its interpretation relative to a given interpretation of the non-logical symbols of
the base language.148

Applied to a structure, such as the natural numbers, we can say that the facts that (i)
zero is not the successor of any number, (ii) every natural number has a unique successor and
(iii) the induction principle holds, the Peano axioms, together implicitly define a predicate
ϕN (x): ‘is a natural number’, and therefore uniquely determine the structure of the natural
numbers.

We will work out Giovannini’s and Schiemer’s more formal account of implicit defini-
tion149 a bit more. We can give a formal account of this definition as follows. The formula
ϕ(~x) is a formula ϕ possibly with free variables x1, . . . , xn. ~x thus stands for the variables

146. Shapiro, Foundations without Foundationalism, 95.
147. Shapiro, 76.
148. Giovannini and Schiemer, ‘What are Implicit Definitions?’, 4.
149. Giovannini and Schiemer, 3.
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x1, . . . , xn. Note that ϕ(~x) is a complex predicate, consisting of formulae, such that the
interpretation of ϕ(~x) in a modelM is the set consisting of exactly these objects for which
ϕ(~x) holds according toM. So, withM, α � ϕ(~d) we meanM, α(~x 7→ ~d) � ϕ(~x). Note that
~d = (d1, . . . , dn) here.

ϕ(~x)M = {~d :M � ϕ(~d)}
Another terminological note has to be made on the interpretation of a theory T in a model
M. The interpretation of the theory is an n-tuple consisting of the interpretation of the
constants, the function symbols and the predicates that are being used in the theory. Ba-
sically, this is a model without the domain: TM is the interpretation function applied to all
non-logical vocabulary in T, but the domain still has to be given.

TM = (cM, fM, RM : c ∈ C, f ∈ F , R ∈ R)

Here C is the set of constants in T, F the set of functions and R the set of predicate symbols.
The formal definition for implicit definitions then is:

Definition 11 (Implicit definition) A complex predicate ϕ(~x) is implicitly defined by a
theory T iff for all modelsM,N , if TM = TN , then ϕ(~x)M = ϕ(~x)N .

This matches with the informal Definition 10: Relative to the interpretation of the non-
logical vocabulary of T, the interpretation of predicate ϕ(~x) is fixed. If for any two models,
the interpretation of ϕ(~x) is equal if and only if the interpretation of T is equal, we may
state that it is fixed relative to T.

We have seen in Part 1 that the meaning of a predicate in a model is determined by
giving its extension. In this case, we could use as a domain the actual numbers, or any other
set that has the same structure. We must, however, fix it in advance. If we then give the
extension d as the interpretation of 0M, and interpret successor function SM = f : D → D,
then the extension of ϕN (x) follows from the two interpretations we have just fixed and
it becomes ϕN (x)M = {d, f(d), f(f(d)), . . .}. So, once the interpretations 0M and SM are
fixed, the extension of ϕN (x) follows.

The predicate ϕN (x) is thus implicitly defined by implicitly giving its extension, which
can be inferred from the axioms (i), (ii), (iii): The axioms define which objects in the model
satisfy the formula. We will see that this approach is not feasible from a structuralist per-
spective. In the next section, we will discuss the extension of implicit definitions that define
abstract structures. We will also say more on this in the next chapter, in which we discuss
propositional functions.

5.1 Structural Definitions and Abstract Structures

By fixing the meaning of the successor function S and the number zero, the predicate ϕN (x)
is defined, and its meaning is uniquely determined. Hence, this is an implicit definition
according to Definition 11. However, by fixing the meaning of 0 and successor function S,
the implicit definition is still limited to a particular system. The facts that are stated by the
Peano axioms are purely structural, they only say things about the relations that the natural
numbers bear to each other. The objects themselves are not relevant here, only structure
matters.150 It would therefore be better if we could make use of a type of definition that
does not need a fixed interpretation of the non-logical vocabulary.

Structural accounts of implicit definitions, defining abstract structures, are dubbed struc-
tural definitions by Giovannini and Schiemer.151 This distinction requires a slightly different
150. Shapiro, Philosophy of Mathematics, 130.
151. Giovannini and Schiemer, ‘What are Implicit Definitions?’, 4.
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definition: the interpretation of non-logical symbols does not have to be already fixed. That
yields the following informal account of structural definitions:

Definition 12 (Structural definition) A theory structurally defines predicate R iff it
uniquely determines its interpretation.152

Following Giovannini and Schiemer, we rename the implicit definitions as in Definition
10 as implicit definitions in the strict sense. It can be the case that some terms that are
used in the structural definition by a theory, are defined themselves in that theory.153 It is
necessary then, however, that the theory is coherent,154155 such that the theory singles out
a structure by giving the axioms the structure should satisfy.

Because Giovannini and Schiemer do not make the difference between these two types
of implicit definitions extremely clear, we will point out here why distinguishing them is
important. We are particularly interested in definitions not of concrete systems, but of
abstract structures. By fixing the meaning of all non-logical vocabulary except the defined
predicate, as one does in an implicit definition in the strict sense, one already fixes one
system. In the example of arithmetic, the constant 0 is already fixed to refer to a certain
object; the definition determines a system, not an abstract structure.

This is exactly why implicit definitions in the strict sense will not do for structuralists.
Arithmetic, for example, has many different instantiations which are not identical, but which
are isomorphic. Two interpretations should both fit the definition of arithmetic if they bear
the same structure. However, the interpretation of 0 and successor function S, as well as the
domain D, may be different. To successfully define the abstract structure of the natural num-
bers, one should therefore not fix the non-logical vocabulary to any particular interpretation.
The underlying idea of determining the meaning of a predicate as determining its extension
then does not work any more: by determining the extension, one fixes the interpretation.
The meaning of a predicate should therefore be given in other terms, which accounts for
the idea of a structure being defined, and the possible existence of many instantiations that
bear that structure (thus are isomorphic).

If the meaning of the non-logical vocabulary is not yet fixed, but all non-logical symbols
can be specified by the same implicit definition, as can be done in structural definitions, the
definition is not tied to any system in particular. In case of arithmetic, we would get just the
axioms (i), (ii) and (iii). When a system bears the right structure, thus is isomorphic to the
natural number structure, it fits the definition. The structural definition of Peano arithmetic
pins down any system that is isomorphic to the intended model. In fact, it yields essentially
only one structure, as second-order Peano arithmetic is categorical. However, the definition
is not limited to one system.

The important difference between fixing the meaning of non-logical vocabulary or not is
the ability to single out an abstract structure or only concrete systems respectively. It is also
important to note that, when defined structurally, ϕN (x) is not a ‘primitive predicate’ any
more in the sense that its extension can simply be given in terms of domain members. There
is not an extension one could give as there is no model to which ϕN (x) is relatively defined.
ϕN (x) stands for a formula that singles out the right structures: The complex predicate
should be true for all systems that exemplify the natural number structure.

With this knowledge at hand, we can give a formal account of structural definitions.
First, we again need to get some terminology straight. First of all the notion of substructure:
152. Giovannini and Schiemer, ‘What are Implicit Definitions?’, 4.
153. Giovannini and Schiemer, 4.
154. Shapiro, Philosophy of Mathematics, 133.
155. Please note that Giovannini and Schiemer use the term ‘consistent’ here. I choose to use the, admittedly
more vague, term ‘coherent’ here due to incompleteness issues. We will come to coherence later.
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any model M that interprets a theory T, is a structure for that theory. We can define
substructures of such a model for any given (complex) predicate or formula.

Definition 13 (Substructure of a model) A structure S is a substructure of M iff S
interprets just a subset of the non-logical vocabulary that M interprets such that for all σ
interpreted by S it is the case that σS = σM.

Definition 14 (Model for a formula) A structure X, writtenMϕ, is a model for a for-
mula ϕ(~x) iffMϕ = (ϕ(~x)M, cM, fM, RM : c ∈ Cϕ, f ∈ Fϕ, R ∈ Rϕ).

Note that with Cϕ we mean Cϕ = {c ∈ C : c occurs in ϕ(~x)}. The definitions of Fϕ and
Rϕ are analogous.

So, the modelMϕ for a formula ϕ(~x) consists of an interpretation of just the non-logical
vocabulary that occurs in ϕ(~x). It interprets the non-logical vocabulary in the same way as
some (possibly larger) modelM. That means thatMϕ is a submodel ofM.

Theorem 1 (Submodel for a formula) If Mϕ is a model for some formula ϕ(~x), then
it is a submodel of a possibly larger modelM.

Note that the domain of some Mϕ is the extension of ϕ(~x) in that model, that is, the
set of things that make ϕ(~x) true. In case of two models the domains may be different, but
will still be isomorphic. Concretely, the domain of Mϕ consists of the elements necessary
to interpret ϕ(~x) so that ϕ(~x) is made true: D = {~d : Mϕ � ϕ(~d)}. Now we have the
terminology set for the formal definition of structural definitions:

Definition 15 (Structural definition) A complex predicate ϕ(~x) is structurally defined
by a theory T iff for all modelsM,N , ifM � T and N � T, then there exists a substructure
Mϕ and Nϕ such thatMϕ ' Nϕ.

As we do not have to fix the non-logical vocabulary, as there are many models that
satisfy T and so there are many models that interpret ϕ(~x) in a different way, the extension
of ϕ(~x) is not limited to a specific system any more. In the case of arithmetic, any model that
satisfies the Peano axioms will eventually interpret a structurally defined predicate in such
a way that the interpretations between different systems are isomorphic. An isomorphism
between interpretation here means: a bijection from the one substructure-interpretation to
the other.

This relates to what Shapiro calls the places-are-objects-view of structuralism, in contrast
with treating the places in a structure as offices. According to the latter position, we should
think of places in a structure in terms of systems that exemplify the structure, whereas
according to the position of places-are-objects, the places in an abstract structure should be
treated as actual objects.

We find a good real-life example in the work of Shapiro, making use of the political
system in America. If we think of the different places in the structure of America’s politics
as offices, we see them as places that yet have to be filled by an object. The office of the
vice-president may be filled by Mike Pence or by Kamala Harris, and we can talk about
differences between two vice-presidents: The one may be more intelligent than her or his
predecessor. When we talk about the vice-president we mean an office that is filled by a
concrete person: We discuss the places in the structure in terms of an exemplification of it.
So, we can talk about different natural number systems that are isomorphic, but implement
the structure in different ways. That makes the statement that ‘the von Neumann 2 has
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one more element than the Zermelo 2’ is a meaningful one.156 The idea of strict implicit
definitions and of determining the meaning of a predicate as determining its extension fit
this places-as-offices perspective. For ante rem structuralism, however, we need a different
perspective: We need to be able to discuss structures without having to fix extensions of
non-logical vocabulary, such that many isomorphic structures fit the definition we give.

According to the places-are-objects-position, we should treat positions in a structure as
actual objects. When we say that the vice-president of America is president of the Senate,
we do not make a statement about one concrete vice-president, but about the structure as
a whole. Any vice-president is president of the Senate, since that is how the relations in the
structure are. The same can be said of arithmetic: Arithmetic is about the structure of the
natural numbers, and ‘number 2’ refers not to an actual system, but rather to the second
place in the structure. The statement about the number of elements in 2 does not make
much sense, according to this view. The statement that ‘2 is the only even prime number’
does: We refer not to a specific system, but to a place in the natural number structure in
general.157

What can we then call the meaning of the ‘meaning’ of a predicate? The meaning of a
structurally defined predicate cannot be determined by its extension, but it has to account
for the many different isomorphic systems. What we ultimately want, is that the meaning
of the example predicate ϕN (x) ‘is a natural number’ contains all systems that satisfy the
structure. Both ϕN ({{}, {{}}})) (the Von Neumann ordinal 2) and ϕN ({{{}}}) (the Zermelo
ordinal 2) should be true, even though the interpretation of the other non-logical vocabulary
is different between the two systems. Giovannini and Schiemer state that a natural model-
theoretic framing of a structural definition would be a class of structures that satisfy the
axioms.158 We will work out a model-theoretic account in terms of isomorphism classes.

An isomorphism class of a structureM consists of all structures that are isomorphic to
M. Hence, they share the same abstract structure. In the case of a predicate, the extension
of a structurally defined predicate would be the class of all interpretations by a model that is
isomorphic to the abstract structure defined by the structural definition. The meaning of a
predicate is not simply a fixed extension, but a class of interpretations, determining (possible)
extensions. If predicate ϕN (x) is defined by a structural definition, then the meaning of
ϕN (x) in model-theoretic terms would be the class consisting of all interpretations by models
of the natural numbers. These models may have a different domain and interpret ϕN (x) in
a different way, but their structure eventually is identical, so that the interpretations of
ϕN (x) are isomorphic as well. The extension of a structurally defined predicate ϕN (x) thus
is the isomorphism class of some domain and interpretation (D, ϕN (x)M) of a model M
that satisfies the definition.

As we already said, the domain of a substructure Mϕ for some formula ϕ(~x) is the
extension of ϕ(~x) in that model. A substructure of a model of arithmetic for some formula
defined by arithmetic thus has a domain that is equal to the extension of ϕ(~x) in that model,
such that the domain and interpretation occur in the isomorphism class ofMϕ. All models
that satisfy the theory by which ϕ(~x) is structurally defined interpret ϕ(~x) in structurally
the same way. That aligns nicely with the idea of the extension of a structurally defined
predicate being an isomorphism class. Since all substructuresMϕ that satisfy ϕ(~x) must be
isomorphic if ϕ(~x) is defined by a categorical theory, the extension of ϕ(~x) should contain
all structures containing the interpretation and the domain with all objects to which the
interpretations of the non-logical vocabulary could possibly refer. With an isomorphism class
of models this is accomplished. We argue in the next section that a good way to determine
whether a structure satisfies a formula, is to determine whether that structure makes the
156. Shapiro, Philosophy of Mathematics, 82.
157. Shapiro, 83.
158. Giovannini and Schiemer, ‘What are Implicit Definitions?’, 21.

37



5.2 Coherence and Categoricity 5 IMPLICIT DEFINITIONS
AND STRUCTURALISM

propositional function of the formula true. First, we will cover coherence and categoricity as
requirements for a successful structural definition.

5.2 Coherence and Categoricity

In order to successfully single out such a structure, two requirements are in place: first of all,
the structure must exist (otherwise nothing is to be singled out by the axioms). Secondly,
the definition should only single out a unique structure; if a definition fails to uniquely define
an object, it is ambiguous which is problematic if one tries to be as precise as mathematics
demands one to be.159 In model-theoretic terms, we could say that a structural definition
defines a class of models: The axioms of Peano arithmetic structurally define the class of
all natural number systems (thus being isomorphic to the natural number structure).160

By understanding structural definitions in that way, we can talk about abstract structures
without having to refer to concrete systems that exemplify them.161 After all, the axioms
extensionally define a class of models, which could be seen as possible instantiations,162 but
do not make use of any of them. In the case of a categorical theory, only one structure is
characterized.163

We now need to make clear how we can make sure a structural definition actually defines
an existing structure and its uniqueness. We will make use of two crucial concepts: coher-
ence and categoricity. Put differently, we want a structural definition to define at least one
structure and at most one structure.164

As we have already discussed categoricity, the uniqueness property is easiest to discuss
first. We have already seen that there sometimes exists a relation between second-order
theories and their models, such that any model eventually comes down to being the same
as any other model. First-order theories do not have this property: We have seen that there
exist non-standard models of arithmetic. The same goes for other first-order theories with
infinite models. Unintended models cannot be ruled out, as the Skolem paradox shows us.165

First-order theories can thus not be said to uniquely determine a certain structure. There
exist non-standard models of for example arithmetic, that do not bear the same structure as
the intended model: the two structures are not isomorphic. However, second-order logic can
uniquely determine structures. By giving a categorical second-order theory, we can make
sure that the determined structure is unique.

All models of a categorical theory are isomorphic, and therefore share the same structure.
Hence, only one structure is determined. There may be many models, but all those models
essentially are identical. If a categorical theory characterizes a structure, it uniquely does so.
Structural definitions in second-order languages (of infinite structures that can be categor-
ically defined) therefore satisfy the uniqueness condition.166 Thus, this not only holds for
arithmetic, but for any categorically definable structure (think of graph theory, or Euclidean
geometry).

There are some things to be noted now that we have discussed the uniqueness condition.
Remember that we have defined the domain of a substructureMϕ of ϕ(~x) to be the extension

159. Shapiro, Philosophy of Mathematics, 132.
160. Giovannini and Schiemer, ‘What are Implicit Definitions?’, 17.
161. Giovannini and Schiemer, 17.
162. The problem of reference is a hard one, and I will not say too much about it here. The model members
of the class an implicit definition refers to may not be known to actually exist, but may be merely possible
in the sense that they are isomorphic to the abstract structure that is defined.
163. Shapiro, Philosophy of Mathematics, 140.
164. Shapiro, 132.
165. Shapiro, 133.
166. Shapiro, 133.
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of ϕ(~x) in that model. What happens when the defining theory is categorical (which it must
be to structurally define a predicate according to the uniqueness condition), is that any two
models of T are isomorphic, and there exists a bijection between the two domains of model
M and N . Any submodel for ϕ(~x) will make use of a subset of the domain of its parent
model: {~d :Mϕ � ϕ(~d)} ⊆ DM. Moreover, we said that a submodelMϕ interprets any part
of the language in the same way asM: σMϕ = σM.

Then, for two models M and N of a categorical theory T, the submodels Mϕ and Nϕ
must also be isomorphic. As there exists a bijection from the domain ofM and the domain of
N by Definition 3, and the domain of a substructure of a model is a subset of the domain of
its parent model, such that in contains only the objects necessary for interpreting ϕ(~x), there
must also exist a bijection between the domain of Mϕ and the domain of Nϕ. Moreover,
from isomorphism it follows that this bijection applied to an interpretation σM yields σN .
Since the interpretation of some σ ∈ ϕ(~x) by Mϕ equals the interpretation of σ by M, it
also follows that this bijection between the domain of Mϕ and the domain of Nϕ satisfies
isomorphism. From this a theorem follows immediately:

Theorem 2 (Substructure isomorphism) If a theory T structurally defines some pre-
dicate ϕ(~x), then for allM � T,N � T,Mϕ ' Nϕ.

The uniqueness condition thus is a concept that hangs together nicely with categoricity:
any categorical theory that structurally defines a model, uniquely defines a model. The
existence condition is a bit harder, especially since there is no mathematical counterpart
that is as clear as categoricity. We will, however, consider the property of coherence, which
will serve as a formal condition that can be used.

Definition 16 (Coherence) ϕ(~x) is a coherent sentence (or formula) in a second-order
language iff there is a structure that satisfies ϕ(~x).167

Coherence is tied closely to the existence of mathematical objects and the problem of
reference to those objects. Since we assume structuralism, mathematical objects ultimately
come down to being (places in) structures, that exist if there is a coherent axiomatization
of them. If we find a coherent axiomatization of a structure, we are sure that the structure
exists according to Definition 16.168 However, the notion of coherence should be made clear
first, to prevent us from running in circles.

Coherence can be grounded in a deductive or a semantic principle. For coherence in a
deductive sense, we can use the principle of deductive consistency.

Definition 17 (Deductive consistency) A set of formulae Γ is deductively consistent
iff no contradiction can be derived from the axioms in Γ.169

A structural definition must then be consistent in the sense that no contradiction may
be derived from the axioms. The semantic alternative is satisfiability. We will first give the
definition of satisfiability:

Definition 18 (Satisfiability) A set of formulae Γ is satisfiable iff there exists a model
M and assignment function α, such thatM, α � ϕ for all ϕ ∈ Γ.170

167. Shapiro, Philosophy of Mathematics, 133.
168. Shapiro, 134.
169. Shapiro, 134.
170. Sider, Logic for Philosophy, 134.
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In first-order logic, the two possible groundings for coherence coincide. First-order logic
is complete, so any set of formulae is consistent if and only if it is satisfiable. In second-
order logic, however, this is not the case: We can construct a set that is not satisfiable
(and intuitively false according to the standard model) but consistent. Take Gödel sentence
G. G might state the consistency of Peano arithmetic, and is true in second-order Peano
arithmetic.171 Also take set P , the axioms of second-order Peano arithmetic. We know that P
is consistent: Would that not be the case, then a contradiction could be derived, from which
anything would be provable, also the Gödel sentence for Peano arithmetic. We know that
the Gödel sentence cannot be proved, nor can it be refuted. The Peano axioms thus must be
consistent. The set of formulae P ∪ {¬G} will still be consistent, as G is not provable, so no
contradiction can be derived. However, P ∪ {¬G} is not satisfiable, since Peano arithmetic
is consistent, and the statement therefore is false. There is no model that is characterized by
the set P ∪ {¬G} (as any model is isomorphic to the standard model), so it is not coherent.
Here coherence and deductive consistency part ways. However, satisfiability still can be a
good way to model coherence.

There is a problem here, though: A model is a structure itself. To define coherence as
satisfiability would be to ground existence of a structure in terms of existence of a structure;
that will not work. However, being a modelM comes down to being a member of the set-
theoretic hierarchy, yet another structure.172 After all, a model is nothing more than an
ordered set consisting of a set of elements (the domain) and an interpretation function. For
a formula to be satisfiable, there needs to exist a model, so there needs to exist a set. The
coherence of set-theory therefore is crucial to have a working account of coherence based on
satisfiability. If we have enough reason to accept set theory as a grounded framework, we
can build our notion of coherence on it.

Shapiro mentions some reasons to believe we could accept set theory as a solid base. We
cannot define mathematics (of which set theory arguably is part). It is not without reason
that we chose not to work with the foundationalist conception of logic in Part 1: Grounding
mathematics in a more precise and secure framework than mathematics never succeeded,
and there are few reasons to think that it will ever work.173 In first-order logic, both the
completeness and incompleteness theorems hold. Part of the incompleteness theorems is
also the mathematical fact that no theory can prove its own consistency.174 However, it
is very common to assume the consistency of the ZFC-axiomatization of set theory: No
contradiction has been found yet and all things we intuitively want to be true are provable
in ZFC.175 Thanks to completeness in first-order logic, this means that there would exist
a model, hence a set, that makes all of set theory true. This is, however, not the case for
second-order logic: As there is no completeness in second-order logic, we cannot derive that
there is a model of set theory by arguing for its consistency.

In second-order logic, Gödels completeness theorem does not hold. That means that,
in principle, we could prove that there exists a model of ZFC: It would from there not
follow that ZFC is consistent, thus no contradiction with Gödel’s theorems is derived. Up
to now, though, mathematicians have not succeeded in doing so. It is plausible that there
exist (second-order) models of ZFC: The von Neumann universe is thought to be a good
model of ZFC. Intuitively, it seems to model the axioms of ZFC in a good way, and it also
aligns with how we usually think sets work. Again, this is not proved yet, but up to now
there have been found no incongruities between the von Neumann universe and the axioms
of ZFC. As a working hypothesis, it is thus assumed that the von Neumann universe models
ZFC, hence set theory.176 For a more in-depth and complete overview of the arguments why
171. Shapiro, Philosophy of Mathematics, 135.
172. Shapiro, 135.
173. Shapiro, 135.
174. Shapiro, 135.
175. Shapiro, 136.
176. Schoenfield, ‘Axioms of Set Theory’, 344.

40



6 STRUCTURAL DEFIN-
ITIONS AND MEANING

the von Neumann universe can be thought of as modelling ZFC, please refer to Schoenfield,
1977.177

Due to the lack of proof that set theory has a working model, we cannot define coherence
as satisfiability. Luckily, this is not necessary either. We could turn towards a somewhat more
instrumentalist stance: what can we use as a formal, mathematical model for the intuitive
notion of coherence? It turns out that satisfiability could well serve us.178

If we take coherence to be an intuitive notion, which cannot be explicated more, then
the decision whether a theory is coherent also becomes a matter of intuition. However, there
clearly is a link between satisfiability and coherence: Satisfiable theories denote a structure
and theories that do not denote a structure are not satisfiable.179 This also matches the se-
mantic reading of Hilbert’s views on structural definitions.180 We could thus use satisfiability
not as a definition, but as a formal model of our intuitive notion of coherence. In mathem-
atical practice, the coherence of set theory is presupposed by many mathematicians: Both
model theory and logic use set theory as their background ontology. Following this practice,
we can rather safely state that satisfiability sufficiently models coherence.181

With satisfiability as an acceptable model of coherence, we can finally give the following
two conditions for uniqueness and existence:

Existence A structural definition successfully characterizes a structure iff the theory that forms
the definition is coherent, which we model by satisfiability.

Uniqueness A structural definition uniquely characterizes a structure iff the theory that forms the
definition is categorical.

6 Structural Definitions and Meaning

Now we have seen what is a common theory of how formulae get their meaning according to
structuralists, we are still left with the question what this meaning is. According to Ketland,
the essence of an abstract structure eventually comes down to the propositional content of
the formula that characterizes it.182 What is this propositional content? The meaning of a
formula in mathematical contexts is tied down by categorically characterizing the abstract
structure, so what is the meaning that is given to the formulae that way? In this chapter,
we will answer that question in both an informal and a formal way. The brief, informal
answer will make use of the concepts discussed in the first part of the thesis, whereas the
formal answer will make use of propositional functions, which will be discussed in terms of
the concepts of the second part.

6.1 Informal Meaning: Structure and Formulae

As we have seen in the first part of this thesis, by abstracting from natural languages towards
formal languages, we still ascribe a certain intuitive meaning to the resulting formulae. We
will give a very brief account of how this intuitive meaning could be established.

The formula ∀x(0 6= S(x)) intuitively states that zero is not the successor of any number.
‘Zero’ here means, as the places-as-object position states, the first position in any structure
177. Schoenfield, ‘Axioms of Set Theory’.
178. Shapiro, Philosophy of Mathematics, 135.
179. Shapiro, 136.
180. Giovannini and Schiemer, ‘What are Implicit Definitions?’, 9.
181. Shapiro, Philosophy of Mathematics, 136.
182. Ketland, ‘Abstract Structure’, 29.
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of arithmetic, not any concrete instantiation. There are two relevant ways, as discussed in
the first part, in which the formalization of the natural language sentence can be done:
by indifference to particulars and by de-semantification. We will only discuss the notion of
meaning in a formal language that is formal as indifference to particulars here.

When we interpret the step of formalization as abstracting away from concrete objects,
we incorporate the idea of places-as-objects: instead of concrete objects (‘zero’ as the abstract
object zero), we give ‘zero’ the meaning of a place in the structure of the natural numbers.
This step can already be taken before the step of abstraction and formalization: In natural
language, the meaning of ‘zero’ could shift from a concrete object to a structure. However, the
real step of abstraction where the abstraction is made clear, is in the step of formalization.
As 0 formally has no meaning yet (it will be given a meaning by the semantics), we are left
with the intended reading. Abstraction from individuals is one of the goals of formalization,
so our intended reading should account for that.

Such an intended reading interprets the logical vocabulary in the usual way, but 0 should
not be interpreted as a constant for any particular object. Less than particular objects, we
aim for an interpretation that is indifferent to particulars, thus structural in meaning. Then 0
must be interpreted as an intuitive isomorphism class: ‘the first place in the natural number
structure’. The whole sentence ∀x(0 6= S(x)) then intuitively has a meaning such that the
formula is true for and in any model of arithmetic. The meaning of such a sentence thus
should contain an element that, when applied to a structure, returns true or false. The
meaning of a formula then consists of an element that yields a truth-value: It is true iff zero
is not the successor of any number in the structure, and it will return false in any other case.
We will formalize this idea using propositional functions.

6.2 Substructures and Propositional Functions

What is the element in a formula that returns true or false relative to a given structure?
How is this element related to meaning? We will answer these questions in this section. We
will argue for propositional formulae that return ‘true’ given a structure that satisfies it.
Then, in the next section, we will give an example of how such formulae would work for
both graph-theory and arithmetic.

Consider again predicate ϕN (x): ‘is a natural number’. Because it is easier to see how
propositional formulae work in case of a bit lower-level predicate, we choose predicate ϕP (x):
‘is a natural number system’ without loss of generality. ϕP (x) is a complex predicate that
is structurally defined by the theory of Peano arithmetic. The meaning of ϕP (x) should be
such that, applied to a structure, it is true if and only if that structure satisfies the theorems
of Peano arithmetic.

A propositional function can account for this. Let us say that for ϕP (x) the propositional
formula is called Q. It is a function from structures to truth-values: Q : S → {0, 1}. It must
of course be defined when Q returns 0 or 1. Such propositional function may resemble the
axioms of the theory, but there is an important difference: the relevant non-logical vocabulary
is replaced by variables. Call this formula ΦQ. So, if we know that a certain formula can
determine whether Q holds in a model, ΦQ should be independent of such a model. It should
have variables for domains, constants and predicates. The assignment specification of the
propositional function therefore will contain second-order variables. We can define this using
logical terminology: For a structure S, the function returns 1 iff ΦQ is true when the variables
are assigned to the right vocabulary of S.

This directly relates to the meaning of a formula ϕ(~x). If we consider ϕP (x), its meaning
is not just this propositional function. It is the class of structures that make the proposi-
tional function true. This is independent of syntax, and two formulae that express the same
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propositional function eventually have the same meaning. This function on its own does not
give us much information: an extra step is required in order to determine whether a certain
structure lines up with the meaning of the formula. However, when we consider the mean-
ing of the formula to be the isomorphism class of structures that make this propositional
function true, this relation is immediately clear.

Theorem 3 The meaning of any formula ϕ(~x) that is structurally defined by a theory T is
fixed by T.

This immediately follows from categoricity. The meaning of any formula ϕ(~x) that is
structurally defined by T is the isomorphism class of structures that satisfy ϕ(~x)’s proposi-
tional function. As a theory has to be categorical to structurally define predicates, any model
two models M and N of T are isomorphic. Therefore, any substructure S for ϕ(~x) must
also be isomorphic to any other substructure for ϕ(~x) as follows from Theorem 2. Hence,
all substructures for ϕ(~x) are contained in the isomorphism class of structures that satisfy
the propositional function of ϕ(~x). That means that its meaning is fixed by the categorical
theory: There is no meaning other than the submodels of T give us. Hence, the meaning of
a formula ϕ(~x) in T is fixed by T.

We can also say some things about the meaning of formulae that are not structurally
defined by a categorical theory. There may be formulae in the language that have no meaning
in the sense of a single isomorphism class. Take for example the theory of first-order Peano
arithmetic. We know that this theory allows for non-standard models: There are models
that make the theory true, but have a different structure compared to the intended model.
A predicate defined by the first-order Peano axioms, ϕN1(x), would then not just have one
isomorphism class of models as its meaning.

When there are many non-isomorphic models that make the theory (and so formula
ϕN1(x)) true, there are many isomorphism classes of models as well. That means that the
meaning of ϕN1(x) is not an isomorphism class with all models N ' MϕN1 , because there
are many such models MϕN1 that make ϕN1(x) true, but are not isomorphic. Therefore,
there also exist many isomorphism classes of models. That does not mean that ϕN1(x) has
no meaning. It does mean, however, that we cannot determine its meaning in an elegant
way like we could in the case of a categorical theory.

In a sense, we can state that ϕN1(x) hasmany meanings because of its many isomorphism
classes. A more comprehensive way to put it, may be the statement that ϕN1(x) is ambiguous.
There exists more than one meaning of the formula, and all meanings are in a sense equally
plausible: they all make the formula true. However, we still have the notion of an intended
model: The model that interprets ϕN1(x) in the way that we would intuitively call right.
Formally, there is no way to distinguish between the different meanings. Hence, in case of a
formula that is not structurally defined because it does not characterize a single structure,
we can only say that its meaning is ambiguous.

If a formula ψ(~x) is nor defined by a categorical theory, nor coherent, it does not single
out a structure. That means that there does not exist a model Mψ � ψ(~x). So there also
does not exist an isomorphism class of models: It is an empty class. Hence, a formula that
is incoherent (for example due to a contradiction) has no meaning. At first sight, this might
feel counter-intuitive. Why would a formula (X(n)∧¬X(n)) have no meaning? When there
are no models in which the formula is true, there also exist no objects a model could use to
interpret the formula. From a structural realist perspective, this makes sense: If a formula
cannot be made true, what would it refer to? A nonsensical formula does not refer to anything
and in that sense has no meaning, just like a nonsensical sentence ‘the ball is both round and
square’ does not have a meaning in that sense. Because of our choice for a model-theoretic
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semantics, reference determines the meaning and in that paradigm the idea of a formula not
having a meaning fits well.

Summarizing, the meaning of a formula in a (mathematical) structural context is the
isomorphism class of structures that satisfy its propositional function. A rough sketch of
what such a function would look like is given above, but we will now give a more concrete
application of this idea for the natural numbers. The account of meaning as an isomorphism
class of structures is, however, not limited to graph or natural number structures. Any non-
algebraic field of mathematics can be given such a theory of meaning. As long as the theory
for such a field is able to structurally define formulae, it fixes the meaning of these formulae.

6.3 Propositional Functions in Arithmetic

Now that we have a general theory of meaning for structurally defined formulae, we can give
an example of the meaning of predicate ϕN (x): ‘is a natural number’. The predicate ϕN (x)
is structurally defined by the Peano axioms. From these axioms, we can infer what is needed
for a structure to be a natural number structure, and by checking whether an element is
member of one of the structures of the right kind, we can say whether it is a natural number.
The predicate ϕN (x) can thus be split up: for some modelM and element a,M � N(a) iff
a ∈ X ∧ ϕP (X) with ϕP (X): ‘is a natural number structure’. X is a second-order variable
and can be assigned a set in an interpretation.

ϕP (X) is also a complex predicate, which we can split into several other (complex)
predicates. We will use PA2 here as an abbreviation for the second-order Peano axioms.
The predicate Def(X) stands for: ‘the property of being a natural number can be defined
in structure X’. Then ϕP (X) stands for:

M, α � S(X) iffM, α � PA2 ∧Def(X)

M, α � Def(X) iff X = N iffM, α � ∀Y ⊆ X(z ∈ Y ∧ ∀n(n ∈ Y → F (n) ∈ Y )→ Y = X)

So, the predicate Def(X) is true in a model iff X equals the natural numbers, which we
express using a second-order formula. We see that this formula contains three variables:
X,F, z. X must be a set, the domain of the structure, F must be a function, the successor
function, and z must be the system’s element that denotes 0. A structure of the right kind can
make this formula true or false: (DM, FM, 0M) is such a structure consisting of a domain,
function and interpretation of zero.

The meaning of a formula is the isomorphism set of structures that make its propositional
function true. The propositional function of predicate ϕN (x) is a function P : (d, S)→ {0, 1}
with d an object and S a structure of the right kind, so of the form (DM, FM, 0M). The
propositional function of PA2 returns ‘true’ iff the axioms of second-order Peano arithmetic
hold in the structure in question.

P (d, S) = 1 iffM, α(a 7→ d,X1 7→ DM, X2 7→ FM, y 7→ 0M � a ∈ X1∧

∀Y ⊆ X1(0 ∈ Y ∧ ∀n(n ∈ Y → X2(n) ∈ Y )→ Y = X1) ∧ PA2

We see that any member of a system that instantiates the natural number structure
makes the predicate N true. It has an interpretation of 0, a domain and a successor function
such that the propositional function P is true: Def makes sure that there do not exist non-
standard models and the Peano axioms make sure that for any number there is a successor
(plus the other constraints). The meaning of N(a) is thus given by its propositional function,
that is true if a is a member of a valid natural number system.
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Any member of a non-standard model of arithmetic will make the propositional formula
P false: Def will not hold for such a structure. Also any system that fails to model all
numbers will make P false as it does not satisfy the Peano axioms.

We have now seen an example of how a propositional function determines whether a
certain structure satisfies a formula. The meaning of the formula is the class of all structures
isomorphic to such a satisfying structure. Here, it would be the class of all structures that
are such that P (d, S) = 1. All structures that make the propositional function true are in
this case isomorphic to the natural numbers.

The structure of the right kind, which is here (DM, FM, 0M), is exactly a ϕ-structure
as described earlier. The model Mϕ for formula ϕN (x) that is defined by theory TP of
Peano arithmetic interprets exactly the non-logical vocabulary in ϕN (x). (DM, FM, 0M) are
already part of any modelM for TP , and as the structureMϕ is a substructure ofM, it will
interpret (DM, FM, 0M) in the same way asM. What this means, is that any interpretation
of the theory of Peano arithmetic yields an interpretation of ϕN (x) by a substructureMϕ.
Hence, any such structure will be part of the isomorphism class of structures satisfying
ϕN (x)’s propositional formula. Those structures will be of the form (DM, FM, 0M) with
the interpretation inherited from their superstructure.

ϕN (x) will thus have as its meaning the isomorphism class of structures that make its
propositional formula true. In this case that means the isomorphism class of (DM, FM, 0M).
Different models will interpret ϕN (x) in a different way, but if their submodel’s interpretation
is isomorphic to (DM, FM, 0M), it is a member of the isomorphism class and thus still a
model for ϕN (x). It is easy to see how this would work for a different nonalgebraic field
of mathematics, for example graph theory. The propositional function returns true for a
structure that satisfies the formula describing the abstract graph, and the meaning of that
formula is the class of all structures isomorphic to a satisfying structure.
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Conclusion

In this thesis, we have answered the question: what is the meaning of a second-order formula
in a structural, mathematical context? We argued that the meaning of a second-order formula
in such a context equals the isomorphism class of structures that satisfy its propositional
function.

We have done this by laying out the basics of formal and logical languages, and discussing
the formalization of mathematics in logic. Then, we have looked at Shapiro’s account for
second-order logic. We have seen that second-order logic is a very useful way of codifying
mathematics, from a structuralist perspective. The fact that second-order logic can categor-
ically define theories makes that structures can be uniquely determined. We have studied
the meaning of mathematical statements that are made in second-order logic in the second
part of the thesis.

First, we have laid out the differences between proof-theoretic and truth-conditional
semantics and we have argued that truth-conditional semantics is the right choice from our
perspective. We have also given the definition of full second-order semantics, in which we
have done the rest of our work.

We then discussed an account of structural definitions that is informally given by Gio-
vannini and Schiemer. We have formalized their account in terms of substructures, so that
we could use it for answering the research question. Following the discussion regarding im-
plicit and structural definitions, we used the results from there to give a formal account of
the meaning of a formula in a structural context in terms of isomorphism classes. We have
argued that the meaning of a mathematical statement from the viewpoint of structuralism
is the isomorphism class of structures that satisfy the propositional function of a formula.

We have restricted our study to what we called nonalgebraic fields of mathematics. It
would be natural to follow this research up by extending the results to algebraic fields of
mathematics, that is, fields with mathematical theories that define concepts that determine
more than one isomorphism class of structures. We leave this to further research.
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