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Abstract 
 

  Anthropogenic greenhouse emissions persist to unsettle the global energy 

balance, causing unprecedented changes in the Earth’s climate. Understanding the nature 

of this change and its impact on human and natural life is a serious scientific challenge. 

Phenology, the study of cyclic or seasonal natural phenomena, is affected by climate 

change and can, therefore, be used as an indicator to assess climate change. Climate 

change can also impact the risk of false springs, the occurrences of late spring freeze after 

the spring onset. In this study, spatiotemporal patterns of spring onset and false spring 

risk are examined for Europe with use of the E-OBS dataset. Furthermore, the uncertainty 

of the predictions is assessed with the employment of the full ensemble of climatological 

possibilities. To handle the amount of long-term high-resolution gridded datasets on a 

continental scale on a single device, the modelling is embedded in the distributed 

computing framework Dask.   

 

  This study indicates that spring onset is advancing in Europe, especially in western 

Europe and mountainous regions. The increase in spring onset was particularly noticeable 

from 1980 onwards, when global temperatures started to increase rapidly. The change in 

false spring risk was spatially very heterogeneous, with increases in false spring risk 

mostly found in the mid-latitudes and decreases in false spring risk mostly found in the 

higher and lower latitudes. From 1950 until 1979, there was a significant overall increase 

in false spring risk, whereas the change in false spring from 1980 onwards was negligible 

and non-significant. The uncertainty of both spring onset and false spring risk is was high 

in western Europe. The United Kingdom specifically showed high uncertainties in spring 

onset and false spring risk. The uncertainty in false spring risk was relatively high as 

compared to the uncertainty in spring onset. The propagation of temperature uncertainty 

into spring onset uncertainty was highest in western Europe. Furthermore, the mid-

latitudes showed higher propagations of uncertainty as compared with the lower and 

higher latitudes. This study further demonstrates the uniform advancement of spring onset 

and the spatial heterogeneity of false spring risk change. Furthermore, this study highlights 

the importance of taking temperature uncertainty into account in phenological modelling, 

especially when examining false spring risk. The incorporation of temperature uncertainty 

seems especially relevant in areas with higher uncertainties in phenological outputs, in 

this case western Europe. Lastly, the Dask implementation proves to be an efficient and 

relatively uncomplicated solution to the contemporary computational challenges that arise 

from the ever-increasing volume of geospatial data of this world.   

 

Keywords: Phenology, false spring risk, extended spring indices, uncertainty propagation, 

big geo-data, Dask.  
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1. Introduction 
 

1.1 Research context  
 

  Anthropogenic greenhouse emissions persist to unsettle the global energy 

balance, causing unprecedented changes in the Earth’s climate. These changes in climate 

have considerable detrimental effects on human- and natural life. Understanding the 

nature of climate change and its effects is a serious scientific challenge. Phenology, the 

study of the timing of life cycle events, provides prominent examples of the impact of 

climate change on natural life.  

 

  Climate change results in mismatches between species. These mismatches result  

from interacting species from which the regularly repeated phases in their life cycle change 

at different paces, also known as trophic asynchrony. The impact of such mismatches is 

dependent on the ecological interaction between the species. When species have a 

mutually beneficial ecological interaction, the mismatches will have a negative impact on 

both species. Otherwise, the impact will have negative consequences for one species. 

Another example of the impact of climate change on phenology can be observed with 

migration of birds. Migratory birds arrive earlier in their over-wintering grounds due to 

warming climates.   

 

  Vegetation is also affected by climate warming, with advancements in first leaf and 

flowers in spring and delays in senescence in autumn. Because vegetation is affected by 

climate change, changes in plant phenology can be used as a biological indicator to study 

the effect of climate change on natural life. The impact of climate change on phenology is 

also important economically since vegetation productivity is dependent on the length of 

the growing season. Moreover, the timing of leafing and flowering is relevant for the 

agricultural sector and yields may be dependent on the timing of these phenological 

events. Furthermore, the prevalence of freezes that occur after leaving and flowering may 

be affected. These subsequent freezes are known as false springs and cause damage to 

vegetative tissues. False springs can have considerable economic impacts on agricultural 

yields. In 2012, for instance, a late frost caused damage to fruit trees, resulting in half a 

billion-dollar losses in Michigan.   

 

  Studying the effects of climate change on spring onset and false spring risk is 

crucial for local decision-makers and environmental management. To study changes in 

spring onset and false spring risk, models are often employed to estimate historical and 

future changes in spring onset and false spring risk. These models are often primarily 

based on temperature accumulation and frequently utilize gridded observational datasets. 

Regrettably, studies generally do not incorporate uncertainties related to these gridded 

observational datasets. This thesis will incorporate this temperature uncertainty with the 

utilization of the full temperature ensembles. These full ensembles consist of equally likely 

realizations of temperature. The average of the full ensemble is distributed as the ‘best 

guess’ dataset and this is the version that is regularly employed for phenological 

modelling. The extended spring index, a well-renowned model for assessing spring onset 

and false spring risk, is utilized to make the phenological predictions. Modelling phenology 

with the full ensemble results in computational challenges since all ensemble members, 

or equally likely realizations, should be used in the modelling to determine the uncertainty 
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of phenological outputs. To overcome this computational challenge of handling a full 

ensemble of long-term high-resolution gridded datasets on a continental scale, the 

extended spring index is implemented in the distributed computing framework Dask. 

 

1.2 Objectives and research questions  

 

1.2.1 Problem statement and main research objective  

   Phenological research rarely incorporate temperature uncertainties in their 

assessments. This may lead to biased results and conclusions regarding spring onset and 

false springs and potentially inadequate management and decision-making. Incorporating 

temperature uncertainty requires handling much higher volumes of data, making 

assessments computationally challenging. This study aims to address the propagation of 

uncertainty of gridded temperature data to phenological predictions. Temperature 

ensembles are employed to determine the effect of temperature uncertainty on 

phenological predictions. With these assessments, the overall timing of spring onset and 

prevalence of false spring is assessed spatially and temporally. The temporal variability of 

these phenological predictions is assessed by trend analysis. To make these 

assessments, a computational solution that enables handling numerous long-term high-

resolution gridded datasets (i.e. an ensemble of temperature data) is needed. This main 

objective translates into the following main research question: 

How can the uncertainty of phenological predictions be assessed with utilization of an 

ensemble of gridded temperature data? 

 

1.2.2 Sub-objectives and research questions 

1.2.2.1 Computational solution   

  The first research objective (SO1) is to implement a distributed computational 

solution. The implementation of a distributed computational solution is imperative to 

handle the amount of long-term high-resolution gridded datasets on a continental scale on 

a single device. This sub-objective comprises the following research questions: 

RQ1: How to overcome the computational challenge of handling long-term high- 

resolution geographical data on a continental-scale?  

RQ2: How does the performance the distributed model compare to the 

performance of the legacy implementation?  

1.2.2.2 Uncertainty of spring onset predictions  

  The second sub-objective (SO2) is to the assess the uncertainty of spring onset 

predictions with use of individual weather ensemble members. This sub-objective 

comprises the following research questions:   

RQ3: How does the incorporation of temperature uncertainty impact the spring 

onset trends? 

RQ4: How can the propagation of temperature uncertainty into spring onset 

uncertainty be quantified?    

1.2.2.3 Uncertainty of false spring predictions  

  The third sub-objective (SO3) is to the assess the uncertainty of false spring 
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predictions with use of individual weather ensemble members. This sub-objective 

comprises the following research questions:  

RQ5: How does the incorporation of temperature uncertainty impact false 

spring trends?  

RQ6: How can the uncertainty of false spring predictions be assessed and 

quantified?  

RQ7: How do the uncertainty assessments vary for different concepts of 

binary false spring? 

1.2.3 Research scope 
  This study primarily focusses on the assessment of the uncertainty 

propagation of gridded weather data and the implementation of the extended spring 

index in a parallelized environment. Implementation of ensemble member data in 

phenological modeling to assess the uncertainty of phenological predictions is the 

main novelty that is addressed in this research. The extended spring index (SI-x) 

model is employed to assess spring onset and false spring risk in Europe.  

 

1.2.4 Research limitations  

  There are several potentially relevant topics that are excluded in the scope 

of this research. This section will address the most important limitations in detail. 

1.2.4.1 Geographical extent  

  The geographical extent that is used in this research is limited to Europe (and a 

part of North Africa). Therefore, the weather data used in this study is also for the extent 

of Europe. Furthermore, with the spatial aggregation of phenological predictions with the 

bioclimatic zones for some assessments (Section 3.5) the extent is further limited, as the 

bioclimatic zones do not extent into Northern Africa. However, the full extent of the 

bioclimatic zones is not present in the E-OBS dataset either. For instance, everything north 

of 71.5°N is not included in the E-OBS dataset extent, excluding Spitsbergen from 

calculations. The original extent of the E-OBS data 25N-71.5N x 25W-45E is modified to 

34N-71.5N x 25W-45E to minimize computational load. In this new extend the Canary 

Islands and part of North Africa are excluded. The remaining number of grid cells is 

262.500. This total number of cells include grid cells that represent water bodies. 

1.2.4.2 Temporal extent  

  In this research, the phenological predictions will be made from 1950 onwards 

since the E-OBS dataset only has temperature data from this year. The last year that is 

available in the dataset is 2019. Thus, the temporal range is from 1950 until 2019, a total 

of 70 years.  

1.2.4.3 Predictions and forecasts  

  The products that are derived in this research are based on past weather data. 

This means that predictions are made based on past conditions. This research will not 

delve into forecasting of phenology with the inclusion of prospective weather data.   

1.2.4.4 Validation of phenological model  

  In this research, the extended spring index is used to assess phenology and false 

springs (Section 3.2). The validity of the extended spring index has been tested 

extensively by studies in the past (Schwartz et al., 2006, 2013; Schwartz et al., 2000). 
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Therefore, the validity of the model is accepted a priori, and no comparisons will be made 

between the products made in this research and phenological ground observations.   

1.2.4.5 Model predictors  

  The extended spring index uses latitude and temperature variables as its input. 

Furthermore, several intermediary variables are created with the extended spring index. 

The relative influence of these primary and intermediary variables on the phenological 

products may differ temporally and spatially. For instance, the relative influence of short 

term growing degree hours and season-long cumulative count of high-energy synoptic 

events on phenological products were found to vary geographically (Zhu et al., 2019). This 

research, however, will not assess the relative influence of these primary and intermediary 

variables.  

1.2.4.6 Modulating effects of natural climate variability  

  Some studies incorporate the effect of natural climate variability caused by large-

scale climate modes, such as oceanic oscillations, on phenological trends (Labe et al., 

2017; McCabe et al., Palecki, 2006). The effect of such large-scale climate modes on 

phenological trends will not be explicitly studied in this research.   

1.2.4.7 Working with ensemble data  

  The E-OBS ensemble consists of a 100-member ensemble (Haylock et al., 2008). 

Each individual ensemble member is viewed as a separate realization of climate, which is 

independent of the other ensemble members. To approximate the uncertainty of 

computations the separate realizations of reality are employed, which leads to 100 

computations per grid cell per year. 
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2.  Theoretical framework 
 

  The existing literature concerning phenology, false springs, uncertainty in weather 

data, and computational challenges regarding handling big data are reviewed in this 

second chapter.  

 

2.1 Phenology and spring onset  
   

  Phenology is defined as “the study of the timing of recurrent biological events, the 

causes of their timing with regard to biotic and abiotic forces, and the interrelation among 

phases of the same or different species” by the International Biological Program (IBP) 

(Lieth, 1974). The timing of the biological events is influenced by habitat factors, such as 

nutrient availability or elevation, and by seasonal and interannual fluctuations in climate. 

The word phenology is derived from the Greek word phaino, which means to appear or to 

show. Phenological events include, but are not limited to, the emergence of leaves and 

flowers, the timing of migration of animals, hatching of birds, the timing of leaf coloring in 

fall, and hibernation of animals. Phenology has a long history that can be dated back 

thousands of years ago when people realized that documentation of recurrent phenomena 

could be useful for making decisions in agriculture. Over the last centuries, phenology as 

a field itself has been viewed with some indifference. In the past, phenology suffered the 

status of being performed by amateur naturalists, but not as an innovative science. The 

last decades, scientific interest in phenology has much increased due to its importance in 

monitoring climate change (Menzel et al., 1999; Piao et al., 2019; Schwartz et al., 2006; 

Schwartz et al., 2000). Phenological events are very sensitive to temperature changes 

driven by weather and climate. Hence, phenology can be used as an indicator of long-

term biological impacts of climate change on the timing of plant and animal life cycle events 

(Peñuelas et al., 2002; Schwartz, 2003).   

 

  Plant phenology encompasses all vegetative life cycle events. Examples of plant 

phenology include first leaf of the year, first flower of the year, first fruit of the year, 

senescence of leaves in fall, and leaf drop in the fall. It is demonstrated that spring onset 

is one of the most reliable biological indicators of climate change (Schwartz et al., 2006). 

Due to the high sensitivity of spring onset to climate variability, spring onset is especially 

useful for studying the effect of climate change on vegetation (Cayan et al., 2001; 

Schwartz et al., 2006). Spring onset consists of the first leaf and flowering of plants after 

winter dormancy. Due to climate change, spring onset is likely to occur earlier (Schwartz 

et al., 2006, 2013; Zhu et al., 2019). Changes in spring plant phenology are extensively 

observed for in situ observations in Europe, North America and Eastern Asia (Piao et al., 

2019). From these in situ observations there is consensus that spring is mostly advancing 

in these regions (Dragoni et al., 2011; Fu et al., 2015). This advancement is further shown 

from phenological modeling with climate data in the Northern Hemisphere (figure 1) 

(Schwartz et al., 2006). This advancement of the start of spring is especially noticeable 

from 1980 onwards (Dai et al., 2019). There is variability in the amount of advancement in 

the different studies, species, and regions (Piao et al., 2019). In Northern America spring 
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seems to be advancing slower as compared to spring advancement in Europe. Satellite 

observations further confirm the advancement of spring throughout the northern 

hemisphere (Stöckli et al., 2004; Zhou et al., 2001). However, while in situ and satellite 

observations show overall spring advancement from 1980s onwards, there is evidence 

from studies looking at satellite observations that the advancement of spring onset has 

been reduced or even reversed from the 2000s (Jeong et al., 2011; Piao et al., 2019).  

This stagnation of spring advancement may be due to the warming hiatus period, which is 

a slowdown in global warming from 1998 until 2013 (Karl et al., 2015).   

 

  There are many factors influencing spring onset. These factors include humidity, 

precipitation, soil moisture, soil temperature, light regime, photoperiod, nutrient availability, 

and air temperature (Dai et al., 2019). From these factors, air temperature is the most 

influential when it comes to spring onset (Dai et al., 2019; Schwartz, 2003). There is a 

direct relation between warmer years and earlier springs. Likewise, cooler years have later 

springs as a result (Menzel et al., 2006). The relationship between spring onset and 

temperature, however, is mostly nonlinear (Fu et al., 2015). The photoperiod is another 

important driver in plant phenology. The photoperiod is the time of a day in which an 

organism receives illumination. Photoperiod co-regulates spring onset through its 

interaction with temperature.   

 

  There are various models that predict spring onset based on several variables. 

These models generally include a component that accumulates temperature over time. 

Such models include the Spring Warming Model (Sarvas, 1974) and the Thermal Time 

Figure 1. Advancement of spring onset in the Northern Hemisphere approximated by phenological modeling. The 
standard error is shown at 5-year intervals with the error bars. The linear regression trend is shown with the heavy 
black dashed line (Schwartz et al., 2006) 
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Model (Cannell et al., 1983). Growing degree days (GDD), a measure of daily temperature 

accumulation, is a concept that is often employed in such models. Growing degree hours 

(GDH) and growing degree minutes (GDM) show higher accuracy in heat summation than 

GDD (Gu, 2016).  

 

2.2 False springs  

 

  The onset of spring has advanced in the recent decades due to a rise in global 

temperatures. This overall advancement of spring onset may result in longer growing 

seasons and vegetation productivity (Menzel et al., 1999; Peñuelas et al., 2001), which in 

turn may increase carbon uptake by vegetation and diminish climate change (Dragoni et 

al., 2011). On the other hand, advancement of spring onset may result in mismatches 

between timing of phenological events and animal species dependent on these events 

(Kellermann et al., 2015; Schweiger et al., 2008). Moreover, earlier spring onset in 

combination with greater temperature fluctuations in some regions could lead to damage 

to vegetation due to freezes that occur after spring onset (Ault et al., 2013; Gu et al., 2008). 

The spring in 2012 in North America is exemplary of the impact early spring onset may 

have on agricultural yields. In this year, the spring onset was very early due to abnormally 

high temperatures in the start of the year. However, due to subsequent freezing there was 

much damage to plants, resulting in major financial losses in the agricultural sector (Ault 

et al., 2013). A start of spring, which is then interrupted by a damaging spring frost, is 

called a false spring. The term ‘false spring’ has always be accompanied with a great deal 

of ambiguity. Vulnerability to frost damage, for instance, varies across tissues and also 

Figure 2. Advancement of last spring freeze date across the Northern Hemisphere. The standard error is shown 
at 5-year intervals with the error bars. The linear regression trend is shown with the heavy black dashed line 
(Schwartz et al., 2006) 
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seasonally with plant development (Chamberlain et al., 2019). Some tissues in general 

are less vulnerable to frost damage than other plant tissues. Flower tissue and fruit tissue 

are very sensitive to frost and are easily damaged by false springs (CaraDonna et al., 

2016). Contrarily, wood, bark and leaf tissues show less sensitivity to frost and in general 

are better capable of surviving false springs (Charrier et al, 2011; Strimbeck et al., 2015). 

Development of cold hardiness (or freezing tolerance) in vegetative tissues is the primary 

cause for seasonal variability in frost tolerance. Cold hardiness consists of physiological 

mechanisms that allow vegetation to resist cold temperature better (Strimbeck et al., 

2015). Besides the variability in different seasons, species and tissues, the actual timing 

of the false spring is relevant for the vulnerability of the plant tissues. Often, the later the 

frost occurs after initial spring onset, the more damage occurs in the plant tissues (Allstadt 

et al., 2015; Peterson et al., 2014). Therefore, when modeling false spring risk, often earlier 

and later false springs are distinguished (Peterson et al., 2014; Zhu et al., 2019).   

 

  Like spring onset, last spring freeze dates are advancing across the Northern 

Hemisphere over the last decades (figure 2) (Schwartz et al., 2006). However, there is no 

scientific consensus as to whether the risk of false spring is increasing or decreasing due 

to climate change. Some studies find that cold weather diminishes faster than that spring 

onset is advancing, which would result in decreased risk of false springs (Peterson et al., 

2014; Schwartz et al., 2006). Contrarily, other studies show an overall increased risk of 

false spring due to a faster advancement of spring onset as compared to the diminishment 

of cold weather (Zhu et al., 2019). Most studies agree that the risk of false springs will vary 

locally, where some locations will have an increased risk and others a decreased risk of 

false springs (Allstadt et al., 2015; Zhu et al., 2019). False spring risk can be associated 

with circulations in the atmosphere. In western Europe, these atmospheric circulations 

bring cold and clear air from the north, which allows radiation to escape at night and 

reduces temperature significantly. A climate change signal in these atmospheric 

circulations has not been detected. Therefore, this phenomenon is likely to persist in 

warmer climates (Belmecheri et al., 2017). This could be an indication that false spring 

risk will increase in regions that are influenced by these atmospheric circulations, including 

western Europe.   

 

2.3 Uncertainty of gridded temperature data  

   

  Many different models have been employed to extrapolate in-situ observations of 

spring onset to unvisited areas (Czernecki et al., 2018; Mehdipoor et al., 2020). These 

models are designed to predict spring onset in various locations. Temperature is often the 

primary driver in spring onset and false spring risk (Dai et al., 2019; Schwartz, 2003). 

Therefore, to make spatially continuous phenological prediction, spatially continuous 

temperature data is required. Gridded weather data is frequently used as an input in 

phenological models (Izquierdo-Verdiguier et al., 2018; Schwartz et al., 2013; Wu et al., 

2016). Gridded weather data that is derived from interpolating data from weather stations 

are a representation of reality and is inherently subject to uncertainty (Cornes et al., 2018; 

Scully, 2010). There are different sources of uncertainty that are inherent in these gridded 

observational datasets. Zumwald et al. (2020) distinguishes three general sources of 

uncertainty in observational temperature datasets (figure 3). The first type of uncertainty 

arises during the generation of the dataset and involves how an environmental parameter 

is measured (1a) and how the measurement outcome is further processed (1b). The 
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second source of uncertainty is uncertainty that deals with where and when a 

measurement is conducted, and it ultimately concerns the representativeness of the 

measurement sample (2). The third source of uncertainty concerns the uncertainty that 

arises from the adequacy of abstract properties for a certain purpose (3). These abstract 

properties include the spatial and temporal resolution of a gridded dataset, the metric of a 

dataset, and the unit in which a dataset expresses its value. The first two types of 

uncertainty are representational uncertainties, whereas the third type represents a non-

representational source of uncertainty (Zumwald et al., 2020).  

 

  Ensembles may be employed to account for the different types of uncertainty of a 

dataset. Factors that induce uncertainty can be methodically varied to create the dataset 

ensembles. These variations include the parameter values, the model structures, the 

measurement sample, and the dataset properties (Zumwald et al., 2020). From these 

different possible variations, four types of dataset ensembles can be distinguished. From 

varying the parameters, and applying different plausible parameter values, parametric 

ensembles are constructed. A structural ensemble of datasets helps assess structural 

uncertainty, which arise through underdetermination of modeling approaches in 

measurement device construction or processing of measurements. Resampling-based 

ensembles assess uncertainty through passing subsamples of measurements into the 

processing procedure. Generally, resampling helps address biases but is not employed to 

correct them. Lastly, the property ensembles are created by varying abstract properties of 

the ensemble, such as resolution or metric that is used (Zumwald et al., 2020).   

 

  The E-OBS dataset is a daily gridded temperature and precipitation observational 

dataset that is created for the range of Europe (Haylock et al., 2008). The dataset is a 

parametric ensemble, in which parameter values are varied to create a 100-member 

Figure 3. Graphical representation of the three sources of uncertainty in observational gridded datasets. Uncertainty 
related to the accuracy of a measurement (1a) and the subsequent processing (1b); uncertainty related to the degree 
of representativeness of a sample (2); and uncertainty related to the adequacy of certain properties for a specific 
cause (3). In reality, these sources are more complex and mutually dependent (Zumwald, 2020). 
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ensemble (Cornes et al., 2018). These parameters can be used in different ways to 

interpolate the weather station data. Decisions must be made regarding features that 

affect the interpolating algorithm and the resulting gridded dataset. Such features include 

the search radius for inclusion of influencing stations and the impact of co-variates such 

as latitude, elevation, and distance to the nearest water body (Cornes et al., 2018). This 

results in an ensemble of possible gridded datasets resulting from differing interpolations. 

The mean of the ensemble of gridded dataset is labeled as the best approximation and 

distributed as a dataset. These best approximation datasets are frequently used in 

phenological modelling (Izquierdo-Verdiguier et al., 2018; Wu et al., 2016). Uncertainty of 

phenological model outputs deriving from gridded temperature uncertainty is rarely 

assessed. For this purpose, the spread of temperature could be integrated when modeling 

phenology. The spread is the difference between the lower and upper percentiles over the 

ensemble, which indicates a correspondent uncertainty range (Cornes et al., 2018). 

However, a more thorough approach to assess uncertainty propagation would be to 

incorporate full weather ensembles in the modelling process.  

 

2.4 Big data & computation  
   

  Ecology and other Earth sciences increasingly must deal with big data in the recent 

years and decades. Throughout the domain of ecology, volumes of databases are 

increasing rapidly (Farley et al., 2018). Furthermore, the variety, complexity, and 

heterogeneity of data is increasing, and one of the main challenges of ecology is to 

structure and order the abundance of data (LaDeau et al., 2017). Due to a rapid increase 

in citizen-based science efforts the credibility of ecological data can be at stake (Farley et 

al., 2018). Lastly, the increased rate of data generation may require high-velocity analytical 

solutions and iterative modeling (Dietze et al., 2018). Phenology, as part of ecology, is no 

exception in this case, and technologies are advancing to keep up with contemporary 

challenges. For instance, the consistency of volunteered phenological observations are 

checked (Mehdipoor et al, 2018), phenological modeling and satellite-based vegetation 

metrics are coupled with machine learning (Czernecki et al., 2018), and iterative plant 

phenology forecasting is being automated (Taylor et al., 2020).   

 

  Phenological modeling often involves dealing with gridded observational datasets 

(Section 2.3). Through technological advancement, the resolution of these gridded 

observational datasets is increasing over time (Farley et al., 2018). Multiple solutions have 

been employed to work with long-term high-resolution gridded datasets on a continental 

scale in phenological modeling. These solutions often integrate scalability, which is the 

ability of a computer application to function for increasing volumes of data. While it is 

possible to acquire hardware that can load and process high volumes of weather data, it 

is less costly and more efficient to perform downscaling and iteratively execute 

computations on smaller portions of weather data. Various frameworks that employ 

scalability have been used for phenological modelling, including Apache Spark (Zurita-

Milla et al., 2019), Google Earth Engine (Izquierdo-Verdiguier et al., 2018), and Dask 

(Taylor et al., 2020).  

 

 Pangeo is a new open-source community driven platform that enables scalability 

to meet current and future challenges of big data (Abernathey et al., 2017). The core 

mission of Pangeo is to develop a cooperative environment in which open-source analysis 
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tools for Earth sciences can be developed and sustained. The core technologies of the 

Pangeo platform are the Python packages Dask (Dask Development Team, 2016) and 

Xarray (Hoyer et al., 2017). Dask is a flexible parallel computing library with dynamic task 

scheduling possibilities. Xarray is provides conventional data structures (e.g. arrays, 

datasets) with user-friendly meta-data tracking, visualization, and indexing. Both Dask and 

Xarray are integrated with netCDF datasets, a standard file format for large or complex 

geodata which is commonly used in the field of Earth science. The Pangeo platform 

connects end users to a high-performance computing (HPC) system through Jupiter 

Notebook on a conventional internet browser. The user can then perform data analysis on 

Xarray. Dask is employed to schedule computations across computer nodes, allowing 

parallel reading of data from the storage system as necessary (figure 4) (Abernathey et 

al., 2017). In many aspects, Pangeo is similar to other big-data libraries, such as Hadoop 

or Apache Spark. These libraries also enable analysis of bigdata on HPC computing and 

facilitate parallelism. The primary advantage of the Pangeo platform over existing tools is 

its versatility (Abernathey et al., 2017, Xu et al., 2019). Hadoop and Apache Spark are 

primarily oriented towards tabular data structures and cannot effortlessly ingest large 

multidimensional numeric arrays, whereas Pangeo provides more efficient handling of 

large multidimensional arrays. This makes the Pangeo platform especially appropriate for 

Earth sciences such as ocean, atmosphere, and climate sciences, since large 

multidimensional arrays are relatively common in those sciences. 

  

Figure 4. Schematic overview of the Pangeo elements and their interrelations. The end user is connected to 
the HPC system through Jupyter Notebook on a regular internet browser. The user can perform data analysis 
in the Xarray environment on the HPC system. Dask regulates task scheduling and facilitates parallel reading 
of data.  
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3. Materials and methods 
 

 In this third chapter, the materials and methods that are used to answer the 

research questions are explained. Firstly, the temperature data that is used in the 

computation is presented. Secondly, the extended spring index is explained. Thirdly, the 

software that is employed is reported and the computation and adjustments to the original 

model are explained. Fourthly, the false spring assessments are made clear. Lastly, the 

assessments of uncertainty of both spring onset and false spring risk are explained.   

 

3.1 Temperature data  
 

  The E-OBS dataset is used in this research. This dataset is a product of the 

European Climate Assessment and Dataset (ECA&D) project and covers the whole of 

Europe as well as Northern Africa and Turkey (Haylock et al., 2008). ECA&D combines 

daily observations at meteorological stations and creates datasets consisting of daily 

temperature, precipitation, radiation, and sea-level pressure. For this research, we use the 

daily maximum (TX) and minimum (TN) temperature with a spatial resolution of 0.1 

degrees (version 21.0e). 

The full ensemble will be 

used in this study to account 

for the uncertainty of 

gridded temperature data. 

This full ensemble for TX 

and TN consists of a 100-

member ensemble. The 

ensemble means of 

minimum temperature 

(MTN) and the ensemble 

means of maximum 

temperature (MTX) are 

employed to compare with 

the outputs from this 

research (Section 3.4). 

Figure 5 shows the 

geographical extent of the 

dataset that is used in this 

study. The figure depicts the 

spatial distribution of the 

maximum temperature on 

an arbitrary day (1 April 

1999).  

 

Figure 5. The geographical extent of the E-OBS dataset that is used in this 
study. The figure shows the spatial distribution of the maximum temperature in 
Celsius on an arbitrary day (1 April 1999). The blue color indicates lower 
temperatures and the red color correspond with higher maximum temperatures 
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3.2 Extended spring index 
 

  The extended spring indices (SI-x) are utilized to calculate spring onset. The SI-x 

models predict the first leaf date (FLD) and first bloom date for three indicator species, 

namely one lilac (Syringa chinesis “Red Rothomagensis”) and two honeysuckle clones 

(Lonerica tatarica “Arnold Red” and L. korolkowii “Zabeli”). Daily minimum and maximum 

temperature and latitudinal information of the sites are the inputs for the model (Schwartz 

et al., 2013). From the daily minimum and maximum temperature, the growing degree 

hours (GDH) can be calculated, which is the foundation of the SI-x models. The exact 

workings of the model for the three different species are shown in the equations below:  

 

𝐸𝑞(1)               𝐷𝐷𝐸2 ∗ 0.201 + 𝐷𝐷57 ∗ 0.153 + 𝑆𝑌𝑁𝑂𝑃 ∗ 3.306 + 𝑀𝐷𝑆0 ∗ 13.878 ≥ 1000 

𝐸𝑞(2)               𝐷𝐷57 ∗ 0.248 + 𝑆𝑌𝑁𝑂𝑃 ∗ 4.266 + 𝑀𝐷𝑆0 ∗ 20.899 ≥ 1000 

𝐸𝑞(3)               𝐷𝐷𝐸2 ∗ 0.266 + 𝑆𝑌𝑁𝑂𝑃 ∗ 2.802 + 𝑀𝐷𝑆0 ∗ 21.433 ≥ 1000  

 

  The equations show the model and its predictors for the lilac (Eq (1)), the Arnold 

Red honeysuckle (Eq(2)), and the Zabeli honeysuckle (Eq(3)). In these equations, DDE2 

is the GDH accumulation (base temperature of 0.6 °C) over three days that were 0-2 days 

prior to the current date of calculation. DD57 is the GDH accumulation (base temperature 

of 0.6 °C) over the three days that were 5-7 days prior to the current date of calculation. 

SYNOP is the number of high-energy synoptic events that have occurred since MDS0, 

which is a counter that starts on January 1st for FLD calculations. FLD equals the date at 

which the cumulative weighted addition of DDE2, DD57, and SYNOP calculations is equal 

to or surpasses 1000, an arbitrary value that is used to calculate the weights of Eq(1-3).

  

  In this study, the first bioindicator FLD will be used to determine spring onset and 

the subsequent first bloom date will not be considered. The FLD is especially relevant for 

the scope of this research as it the bioindicator that is used in false spring risk predictions. 

Moreover, FLD has been capture overall ecosystem green in general, including spring 

onset of shrubs, grasses, and fruit trees (Allstadt et al., 2015; Schwartz et al., 2006, 2013). 

The employment of different phenology models and temperature datasets to calibrate the 

models prevent accurate comparisons of the results among different regions and species. 

Utilizing a widely used and well-parameterized model facilitates adequate comparisons 

and reduces uncertainty (Zhu et al., 2019). In this research, spring onset or leaf out is 

characterized as the average of the FLD of the three indicator species (Ault et al., 2015a). 

Since only the FLD will be considered in this thesis the model will henceforth be called the 

extended spring index and not the extended spring indices.   

 

3.3 Software and computation 
 

3.3.1 Software  
  Python is the main software that is used in this research. Python is an open-source 

high-level programming language that is often employed in the scientific community 

(Downey, 2015). Due to the high level of abstraction, Python language it is relatively easy 

to use and, therefore, especially convenient for people with no comprehensive knowledge 

in computer science. Another major benefit of Python is the extensive availability of 

libraries. A library in a programming language is a collection of precompiled methods 
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which can be used in a program. The Xarray1 (version 0.14.1), Dask2 (version 2.1.0) and 

NumPy3 (version 1.16.4) libraries are employed for the SI-x model runs. The subsequent 

computation section (version 3.6.2) will elaborate on the implementation of these libraries 

in the computation. The matplotlib4 (version 3.1.0) library is employed for visualization 

purposes and the SciPy5 (version 1.2.1) library for analysis.  

 

3.3.2 Computation   

  The extended spring indices were originally written in the Fortran programming 

language. Ault et al. (2015b) translated the original Fortran code to MATLAB and 

developed supporting documentation to guide model users (Ault et al., 2015b). MATLAB, 

however, is a proprietary language that is not freely available for everyone. Therefore, in 

this research a translated Python version of the original model will be used (figure 8A1). 

As mentioned in the previous sub-section, another notable asset of Python is the 

availability of many libraries.  

 

  Working with the high-resolution 0.1-degree temperature data poses a significant 

challenge. When a temperature grid is loaded on a single device with 16 GB RAM, a 

memory error occurs (figure 6). The data is too large to handle on a single device. Most 

python libraries, such as NumPy, are not originally designed handle data that does not fit 

the memory. A distributed computational framework must be employed to handle the many 

computation on high resolution. The Python library Dask provides the tools to enable 

parallel computing.  Dask parallelizes many libraries in the Python ecosystem, including 

Pandas and NumPy. Dask allows the libraries to scale either on a single machine with 

multi-core memory parallelism, or on large distributed clusters (on a cloud, for instance). 

Dask is integrated with existing libraries to enable easy transitions from traditional single 

machine workflows to parallel and distributed computing without the need to learn new 

frameworks or rewriting all the code. In this research, Dask will be implemented locally on 

a single machine (figure 8A2). This is the default setup for Dask and is relatively easy to 

configure. Even though there is no cloud computing, the model will be run in parallel on a 

 
1 http://xarray.pydata.org/en/stable/ 
2 https://dask.org/ 
3 https://numpy.org/ 
4 https://matplotlib.org/ 
5 https://www.scipy.org/scipylib/index.html 

Figure 6. When the 0.1-degree TN data is loaded in python, a memory error occurs. 
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single machine, resolving the memory issue. The computation will be parallelized on 

different batches, where each worker will do the computation of only that batch. The 

batches are split along the latitudes. The optimal batch size/number of batches to run the 

model on will be determined and subsequently the data was run in that specific batch size.  

 

3.3.3 Code adjustments   

  The code mostly has the same structure as the MATLAB implementation (Ault et 

al., 2015b). However, the bloom calculations in the original code are not used in this 

research. The influence of the bloom calculation on the performance of the model was 

tested to ascertain an optimal model performance for the scope of this research. In a test 

run with a smaller spatial and temporal extent, the speed was tested for calculating the 

FLD with the original code (including bloom calculations) and an implementation from 

which all bloom calculation was excluded. The implementation excluding bloom 

calculations performed over two times as fast as the original implementation. This is a 

significant difference, especially since the model must be run on larger spatial and 

temporal extents of a 100-member ensemble. Therefore, the redundant  bloom 

calculations are eliminated from the original code in this implementation to minimize 

computational load. Furthermore, vectorization has been applied to parts of the model to 

minimize the number of loops, as loops generally are computationally expensive. The 

optimization is based on code 

provided by Crimmins et al., (2017)6. 

These optimizations resulted in year-

by-year calculations, as compared to 

MATLAB all-in-one calculations.  

 

3.3.4 Model verification and 

benchmarking 

  The new Dask implementation 

will be verified by comparing the 

model outputs to the model outputs of 

the MATLAB implementation. The 

results from both implementations are 

checked for three sub-regions and 

three years to ascertain similar 

behavior spatially and temporally. 

The ensemble number that is used in 

the computation is randomized. The 

three sub-regions that are used for 

this comparison are at different 

latitudes to get spatially diverse 

comparisons. The sub-areas that are 

used in the computation are 3-degree 

square regions, consisting of 900 grid 

cells. Figure 7 shows the locations of 

the sub-areas that are employed in 

comparing the FLD output from both 

 
6 https://github.com/usa-npn/gridded_models 

Figure 7. The sub-areas that are used for the MATLAB 
implementation and Dask implementation comparison. 
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implementations. This comparison is done by Pearson correlation of the outcomes for both 

implementations. If the Pearson correlation is 1, then the implementation that is used here 

is identical to the MATLAB implementation (figure 8B). Furthermore, the RMSE is 

calculated to determine any errors between the FLD output of both implementations. 

Besides the verification of the Dask implementation, the different SI-x models that may be 

employed to calculate FLD and LFD are compared in their computation time. The 

implementations that are run and compared are the MATLAB implementation, the direct 

Python translation of the MATLAB code, the optimized Python model, and the parallelized 

optimized model in the Dask environment. Since the full ensemble of one year does not fit 

into memory, the first 10 ensemble members are used in the calculation.  

 

3.4 False spring risk  

 

  The SI-x model produces derivative products, besides the FLD and first bloom date 

calculations, that enable false spring risk calculations. These derivative products include 

calculation of the last freeze date (LFD) and the damage index (DI), which is the difference 

in days between the FLD and the LFD. The last day prior to the 1st of June with a 

temperature below -2.2 °C qualifies as the LFD (Schwartz et al., 2006).  The DI has been 

extensively used to assess false spring risk (Allstadt et al., 2015; Izquierdo-Verdiguier et 

al., 2018). From the DI, binary definitions of false spring are employed to assess false 

spring risk (Allstadt et al., 2015; Peterson et al., 2014; Zhu et al., 2019). These binary false 

springs are either false spring or no false spring, depending on the LFD in comparison to 

the FLD. However, even for the binary definition of false spring risk, there are varying ideas 

of what constitutes a binary false spring (Allstadt et al., 2015; Chamberlain et al., 2019). 

This ambiguity is due to the fact that vegetation is more vulnerable in later phenological 

stages (Augspurger, 2013). Following Peterson et al. (2014), this study employs a 0, 7, 

10, 14-day lag between FLD and LFD to calculate the binary false springs. The added 

value of the DI is that it registers early LFDs in combination with late FLDs as positive 

values, whereas this information is lost with the binary false springs. Contrarily, the 

different binary false springs provide insight into the uncertainty of earlier and later false 

springs specifically.   

 

3.5 Uncertainty assessment  

 

  For the determination of the uncertainty of phenological predictions, the 100-

member ensemble weather data is utilized. The SI-x model is run on all 100 members of 

the ensemble, resulting in 100 FLDs and false spring date calculations per grid cell per 

year (figure 8B). The calculations will be carried out for the study period 1950-2018. Grid 

cells may miss FLD values for some year. For instance, in very cold regions or 

mountainous areas where the cumulative weighted addition of DDE2, DD57, and SYNOP 

may not surpass 1000 for some years. Furthermore, if fewer than four stations are found 

in a distance from 500 km from the grid cell, the value is set to missing (Cornes et al., 

2018). Therefore, grid cells with sufficient FLD values in the study period are considered 

for trend analysis. Following Schwartz et al. (2006) and Ault et al. (2015a), at least 80 

percent of the years should have valid FLDs. This means that at least 56 years out of the 

70-year reference period should have valid FLD values for the trend analysis. Missing 

years are removed from the trend analysis.  
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(A2) Implement model 

in Dask environment 

(A1) Rewrite code in 

Python language 

(B) Run full ensemble 

(FE) in Dask 

environment model 

(B) FLD and FS 

(through LFD and 

FLD) values for FE 

(B) Compare FLD from 

Dask model to FLD of 

MATLAB model through 

Pearson correlation 

(J) Calculate uncertainty 

of ensemble FLD 

outputs (90% CI, CV) for 

all grid cells/years  

(K) Average 

uncertainty (90% 

CI, CV) over 

study period 

(M) Average ES 

value for all days 

prior to the 

associated 

averaged FLD 

(L) Acquire E-

OBS  ensemble 

spread (ES) 

(N) Assess 

propagation of 

uncertainty with CI 

of FLD and the ES  

(O) Calculate 

uncertainty of 

ensemble FS outputs 

for all grid cells/years  

(P) 90% CI for the 

damage index (DI)  

 (Q) Probability (p-

value) and Shannon 

entropy H(p) for 

binary FS  

 (R) Compare 

uncertainty of 

different binary false 

spring through H(p) 

values  

 (D) Average the FLD 

and DI values for 

each grid cell/year 

 (H) Assess 

significance of all 

trends 

 (F) Run model with 

ensemble mean 

(EM) in Dask model 

(G) Create trends 

with FLD and DI 

values from EM 

(E) Create trends 

from averaged FLD 

and DI values 

 (I) Compare FLD 

and DI trends derived 

from EM and FE 

Figure 8. Flowchart of the methods of this research. The first steps of this 
research entail implementing the original MATLAB model in a python Dask 
environment, running the model on all ensemble data, and verifying the 
new model (A, B, C). Thereafter, temporal trends can be made of the FLD 
and DI outputs, and the outputs from the full ensemble may be compared 
to the outputs from the ensemble mean model runs (D, E, F, G, H, I). 
Besides the trend analysis, the uncertainty of outputs is examined. The 
uncertainty of spring onset outputs is calculated, and the propagation of 
uncertainty is determined (J, K, L, M, N). Likewise, the uncertainty is 

calculated for the false springs (O, P, Q, R). 
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3.5.1 Spring onset uncertainty  
  To assess the impact of working with the full ensemble on the FLD trends, the trends 
created from the averaged FLD from the full ensemble is compared to the trends from the 
ensemble mean. The average FLD from the full ensemble is not necessarily the same as the 
FLD derived from the ensemble mean (MTN and MTX), since the SI-x model captures non-
linearity in the accumulation of temperature. Therefore, the FLDs of the full ensemble are 
averaged for each grid cell/year (figure 8D). From these averaged FLDs, trends are generated 
with the parametric linear regression test (Helsel et al., 1992) (figure 8E). The parametric linear 
regression is usually employed for phenological trend analysis and is based on ordinary least 
squares estimation (Bock et al., 2014; Dai et al., 2014). However, the parametric linear 
regression is sensitive to outliers in the temperature data. Therefore, besides the linear 
regression, the more robust Theil-Sen estimator is employed to analyze trends. The Theil-Sen 
estimator is a method that fits a line to the sample points by choosing the median of the slopes 
of all lines through pairs of two-dimensional sample points (Theil, 1992). The advantages of 
the Theil-Sen estimator compared to linear regression include simplified computation, 
robustness to outliers, better capability of testing assumptions, analytical estimates of 
confidence intervals, and requires less information regarding measurement errors (Fernandes 
et al., 2005; Wang et al., 2018). The trends of the full ensemble FLDs are compared to the 
trends created with the FLDs that are acquired from running the model with MTN and MTX 
(figure 8F/8G). Besides the slopes, the statistical significance of the different trends is 
computed for each grid cell (figure 8H). The linear regression and Theil-Sen Estimator are 
estimated with functions from the Python package SciPy. The trends that are derived from the 
ensemble mean and the full ensemble are compared with analysis of covariance (ANCOVA). 
(figure 8I). The change in FLD value over time is the independent variable. The year of 
observation is used as a covariate. The effect of the year of observation is of secondary interest 
and controls the main effect of the independent variable. The analysis of covariance is 
performed with functions of the statistical Python package Pingouin.  
 
  The uncertainty of the FLD calculations is measured as the 90 percent uncertainty 
range (90% CI) of FLD and the coefficient of variation (CV) (figure 8J). The 90% CI of is also 
used in quantifying the propagation of temperature uncertainty. Larger widths of the 90% CI 
and higher CV values indicate higher uncertainty of FLD model output. To illustrate this, if the 
90% CI for FLDs for a particular grid cell for a specific year is from 90-120 (Julian dates), then 
the range which is considered in the calculation of the overall uncertainty of FLD is 30 (the 
width of the 90% CI). The relative spread of 90% CI and the CV values are averaged over the 
study period to summarize uncertainty of FLD predictions over all grid cells (figure 8K). The 
change of uncertainty over the study period through trend analysis is not assessed since the 
uncertainty would change primarily due to changes in weather station density, and not due to 
changes in climate.  
 
  To quantify the propagation of uncertainty of FLD from the gridded temperature data, 

the uncertainty range of both TN and TX is compared to the confidence interval of the 

associated FLD. As the GDH is calculated from hourly temperatures, which are interpolated 

from daily TN and TX, the average confidence interval of the average temperature is a good 

approximation of temperature uncertainty. The spread of the average temperature of the 

ensemble is employed as a measure of temperature uncertainty (figure 8L). The spread is 

calculated as the difference between the 5th and 95th percentiles  calculated from the 100 

members at each grid cell. The ensemble spread provides a measure indicate of the 90% 

uncertainty range. The spread is averaged from the 1st of January until the average FLD of the 

associated grid cell to compress the temperature uncertainty to a single value (figure 8M). The 

propagation of temperature uncertainty into FLD uncertainty can be quantified by comparing 

the compressed temperature uncertainty value with the 90% CI of FLDs (figure 8N). Figure 9 

shows the concept of uncertainty propagation quantification graphically. The individual dots 
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represent the different grid cells. The propagation of uncertainty temperature into FLD 

uncertainty is low for the cluster of grid cells at A, whereas the propagation of uncertainty is 

high for the grid cells at B. As there will be no trend analysis for the uncertainty propagation 

quantification, the quantification of uncertainty will be averaged over the years in the study 

period.  

 

3.5.2 False spring uncertainty  
  To assess the impact of working with the full ensemble on the false spring trends, the 

trends created from the averaged DI from the full ensemble is compared to the DI trends from 

the ensemble mean. To do this, the DIs of the full ensemble are averaged for each grid cell/year 

(figure 8D). From these averaged DIs, trends are generated with linear regression and the 

Theil-Sen estimator (figure 8E). The trends of the full ensemble DIs are compared to the trends 

created with the DIs that are acquired from running the model with MTN and MTX (figure 

8F/8G). The statistical significance of the trends is computed for each grid cell (figure 8H) and 

the differences between the trends are assessed through the ANCOVA test (figure 8I).  

 

  The uncertainty of the false spring is assessed differently for the DI index and for the 

binary false springs (figure 8O). The uncertainty of the DI is assessed with the 90% CI that 

derives from the full ensemble outputs (figure 8P). The CV is not considered for DI uncertainty, 

as the mean DI may be close to 0, which will result in spurious CV values. The binary false 

spring data, however, is ultimately categorical data, and the uncertainty is in the likelihood of 

Figure 9. Illustration of the quantification of temperature uncertainty propagation to FLD model output. The average width 
of 90% uncertainty range of average temperature for the days up until the FLD is displayed on the x-axis. The width of the 
90% uncertainty range of FLDs is displayed on the y-axis. The R-squared is a measure of the strength of the relationship 
between average temperature uncertainty and FLD uncertainty, where high R-squared values represent a strong 
relationship. The individual dots represent the different grid cells. The propagation of uncertainty temperature into FLD 
uncertainty is low for the cluster of grid cells at A, whereas the propagation of uncertainty is high for the grid cells at B. 
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the occurrence of a false spring. If a binary false spring occurs a value 1 is assigned and if a 

false spring does not occur a value of 0 is assigned. The value that is received for the 100-

member ensemble will be a probability value (p-value) between 0 and 1. The uncertainty of the 

outcome of the 100-member ensemble is maximum at 0.5, since the occurrence of a false 

spring is as likely as it is unlikely. The uncertainty of a false spring occurrence, therefore, is 

best quantified with a function that assigns high uncertainty values for p-values that 

approximate 0.5, and low uncertainty values for values that are closer to either 1 or 0. The 

uncertainty H(p) from the binary Shannon entropy function is an appropriate function that 

assigns uncertainty approximations in this fashion (figure 8Q) (figure 10) (Shannon, 1948). 

Lastly, the probability values and uncertainty values from the different binary false springs can 

be compared (figure 8R).  

    

  There are two main inputs responsible for the uncertainty of false spring predictions, 

namely the uncertainty of FLD and the uncertainty of the LFD. As the false spring calculations 

are the result of the subtraction LFD from FLD quantifying the uncertainty in the same way as 

with the FLD predictions would be inconsequential as the quantification would be the direct 

result of both uncertainties. Therefore, the influence of both input uncertainties on the 

uncertainty of false springs is measured as the 90% CI of the FLD and the LFD.  

 

  

.   

 

  

Figure 10. Binary Shannon entropy function which calculates the uncertainty (H(p)) as a function of 
the probability (p-value). 



29 
 

29 
 

4. Results  

 

  The results from this research are presented in this fourth chapter. Firstly, the 

performance of the Dask implementation is discussed. Secondly, the spring onset results, with 

the corresponding trends, are discussed and presented. Thirdly, the false spring risk outputs 

and trend analysis are considered. Lastly, the uncertainty assessments of both spring onset 

and false spring risk are conveyed.    

 

4.1 Performance evaluation 
   
  The optimal batch size proved to be 75 latitudes per batch, resulting in 5 batches per 

ensemble computation. For all the different spatial and temporal extents, the Pearson’s 

correlation between the FLD obtained with the Dask implementation and the FLD obtained 

with the MATLAB implementation was 1. Moreover, the RMSE values that were calculated 

between the different implementations and different temporal and spatial extents were all 0. 

The computation time for 1 ensemble members for a single year was a little less than 3 

minutes. This makes the computation of the 100-member ensemble for one year approximately 

4.75 hours. The total computation time for the 262.500 pixels for 70 years and 100 ensemble 

members was approximately 330 hours on a single device. The computation time for the 

ensemble mean for 70 years was 3.5 hours in the Dask implementation. The computation time 

for the different model implementations is shown in table 1.  Initially, the Dask computation is 

much faster than the direct Python translation with an almost 24 times faster computation time. 

After making the optimization adjustments, the MATLAB implementation was still faster than 

the optimized Python implementation, with a computation time of a little less than twice as fast. 

The Dask implementation is the fastest implementation, with a computation time of 37.6% of 

the computation time of the MATLAB implementation.  

 

4.2 First leaf dates   

 

  The first leaf date values were calculated for all the cells in the spatial extent of the 

dataset and for all ensemble members and the years and in the temporal scope. The spatial 

and temporal average of the FLD is on the Julian date 101, or the 11th of April. Figure 11 shows 

the averaged FLD output for all ensemble members and all the years. Earlier FLD values 

correspond with greener colors, whereas yellow colors correspond with relatively late FLD 

values. The variation of FLD output is reasonably broad, with the earliest FLD on the 25th of 

January and the latest FLD on the 22nd of July. In general, the FLD is later in northern Europe 

as compared to southern Europe. Furthermore, the FLD seems to be later in eastern Europe 

as compared to western Europe for the same latitudes. Even though the FLD is best explained 

by the South-to-North gradient and West-to-East gradient, there are numeral exceptions to this 

Table 1. The computation time of the different possible implementations in seconds. The computation times are based 
on the computation of 10 ensemble members. The computation times of 4 different implementations are compared, 
namely, the MATLAB implementation, the direct translated Python implementation, the optimized Python 

implementation, and the Dask implementation. 

Implementation Computation time (s) 

MATLAB 3189 

Python translation 76212 

Python optimized 5852 

Dask implementation 1201 
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generalization. For instance, there 

are several ‘cold spots’ that have later 

FLD values than the grid cells from 

the same latitudes. Prominent cold 

spots include the Alps, the Pyrenees, 

and the Caucasus Mountains. 

Moreover, lower mountainous 

regions such as the Spanish Meseta, 

the Italian Apennines, the 

Scandinavian mountains, and the 

Scottish Highlands are also 

distinguishable due to later FLD 

values as compared to their 

immediate surroundings. Even 

though the pattern shown in figure 11 

resembles the pattern of maximum 

temperature for a single day (figure 

5), the spatial  patterns are 

fundamentally dissimilar. The 

straightforward difference is that 

figure 5 shows the temperature for a 

single day, whereas figure 11 depicts 

the average spring onset for multiple 

years and ensemble members. A 

more intricate distinction between the 

establishment of the patterns is that 

the SI-x model captures non-linearity 

in the accumulation of temperature 

and is therefore more than the simple 

accumulation of growing degree 

days (Schwartz et al., 1988; Wu et 

al., 2016). The non-linear 

relationship between temperature 

and FLD emerges from the inclusion 

of high-energy synoptic events that 

serve as capstones to spring onset, 

the so-called the ‘capstone effect’ 

(Schwartz et al., 1988).   

 

  The variability of FLD over 

the years is shown in figure 12. The 

variability is lowest in the south of 

Spain and Italy and the largest part 

of North Africa. Furthermore, the 

variability is relatively low in 

Scandinavia and the East European 

Plains in Western Russia. The 

variability is highest in Western 

Europe, with high standard 

deviations in the United Kingdom, the 

Netherlands, and Denmark. 

Figure 11. The spatial distribution of the average FLD for all ensemble 
members and years. Earlier FLD values correspond with greener colors, 
whereas yellow colors correspond with relatively late FLD values. 

Figure 12. The across-year variation of the average FLD of the 100-member 
ensemble. The blue color corresponds with low across-year variabilities, 
whereas the red color corresponds with high across-year variabilities. 
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Moreover, regionally higher variabilities exist, predominantly in mountainous regions, such as 

the Alps, the Apennines, the Caucasus, the Pyrenees, and the Spanish Meseta.  

 

4.2.1 FLD trends  

  The spring onset advances on average with 2 days per decade for all grid cells for the 

full temporal range (table 2). However, the slope of the trends is low from 1950 until 1979 (0.2 

days per decade) and higher from 1980 until 2019 (3.1 days per decade). Furthermore, the 

trends are significant for the full temporal range and from 1980 until 2019 (p-value of 4.02E-11 

and 2.83E-06, respectively), and non-significant for the temporal range from 1950 until 1979 

(p-value of 0.78). This means that there the warming temperatures from 1980s onwards 

induced an advancement of spring onset. Figure 13 shows the average FLD for all grid cells 

per year and the corresponding trends for the different temporal ranges. A sharp decrease in 

FLD is noticeable from 1980 onwards. 

  Both the Theil-Sen slopes (figure 14A) and the linear regression slopes (Appendix A) 

indicate that the FLD is decreasing for most grid cells. The downwards slope is highest for 

countries in western Europe, especially for the United Kingdom and Denmark. Furthermore, 

mountainous regions, such as the Caucasus and the Alps, appear to have sharp decreases in 

FLD values. The significance of the trends is high in almost all regions with a negative trend, 

approximating a p-value of 0 (figure 14B). The sparse regions with positive trend values and 

slope values approximating 0 uniformly show relatively high p-values, indicating that there are 

no regions with significant increases of FLD over the study period.  

Period Slope P-value Std. err. 

1950-1979 -0.02 0.78 0.08 

1980-2019 -0.31 2.83E-06 0.06 

1950-2019 -0.2 4.02E-11 0.03 

Table 2. FLD slope values for three different temporal ranges, namely 1950-1979, 1980-2019, and 1950-2019. 
All slopes are negative and the slopes for the entire temporal range and for 1980-2019 are significant. 

Figure 13. The average FLD for all grid cells per year and the corresponding trends for the different temporal ranges. The left 

figure shows the trend for the full temporal range with the orange line. The right figure shows the trend for the 1950-1979 in 

red and the trend for the 1980-2019 period in cyan. A sharp decrease in FLD is noticeable from 1980 onwards.  
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4.2.2 Impact of full ensemble 

on FLD trends  

  To assess the impact of 

employing the full temperature 

ensembles on the FLD outputs and 

trend assessment, the model was 

run on the ensemble means. The 

difference between the average 

FLD of the full ensemble and the 

FLD resulting from the ensemble 

mean was calculated for each year 

and the absolute differences were 

averaged over the study period 

(figure 15). Regions with very early 

FLD values showed the least 

difference between the two 

methods, approximating an 

average difference of 0 days per 

year. Areas in the middle latitudes 

showed moderate differences, 

ranging from 0.5 and 1.5 days per 

year difference. Relatively low 

differences are visible in 

Scandinavia and the East 

Figure 14. (A) The FLD Theil-Sen slope values. Most grid cells have negative slope values, indicating a decrease in FLD 
values over time. (B) The statistical significance of the slope values. Most grid cells with negative slope values have p-
values approximating 0, whereas positive slope values and slope values of approximately 0 show relatively high p-values 
and low significance.  

Figure 15. The average difference between the average FLD of the full 
ensemble and the FLD resulting from the ensemble mean. The blue color 
corresponds with small differences between the methods, whereas the 

red color corresponds with large differences. 
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European Plains in Western Russia, with difference values ranging from 0.25 and 1 days per 

year difference. The most difference in FLD outputs from the two methods are found in the 

north of the United Kingdom and in Iceland, as well as in the Spanish Meseta and regions in 

Greece and Turkey. Differences in these regions could be as high as 2 days difference on 

average. Areas with high weather station density, such as in Germany, show relatively little 

difference between the two methods. ANCOVA showed a slight difference in the slope between 

the ensemble mean (slope of -0.18) and the full ensemble (slope of -0.20) FLD’s. However, 

the difference in slope was non-significant (P = 0.42).  

 

4.3 False spring  
 

  Like the first leaf date values, the DI values were calculated for all the cells in the spatial 

extent of the dataset and all the years in the temporal scope. Figure 16 shows the averaged 

DI output for the years 2007 (figure 16A) and 2008 (figure 16B). The negative values that are 

shown with the green color correspond with areas where the FLD occurred after the last frost 

and the positive values that are shown with the red color correspond with areas where the FLD 

occurred before the last freeze. As with the FLD values, the variation of DI output is reasonably 

broad, with the highest damage index values of around 80 and the lowest DI under -40. As 

shown in figure 16, the DI values vary significantly for different years, showing the erratic nature 

of false springs. For instance, the DI was positive for most grid cells in Iceland for the year 

2007 (figure 16A), whereas those grid cells were negative for the year 2008 (figure 16B). 

However, there are also recurring spatial patterns in the DI values over the years. Figure 17  

shows the average DI values over all the years in the study period. Mountainous regions, such 

as the Alps, the Pyrenees, and the Caucasus Mountains, on average have very high DI values, 

Figure 16. The average DI for the year 2007 (A) and 2008 (B). The negative values that are shown with the green color 
correspond with areas where the FLD occurred after the last frost and the positive values that are shown with the red 
color correspond with areas where the FLD occurred before the last freeze. The DI values vary significantly for 2007 and 
2008, showing the erratic nature of false springs. 

 

Figure 15. The average DI for the year 2007 (A) and 2008 (B). The negative values that are shown with the green color 
correspond with areas where the FLD occurred after the last frost and the positive values that are shown with the red 
color correspond with areas where the FLD occurred before the last freeze. The DI values vary significantly for 2007 
and 2008, showing the erratic nature of false springs. 
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which means that false springs are 

more likely to occur in these regions. 

In Iceland, you can clearly see the ice 

caps emerging in red. The large red 

dot indicates Vatnajökull, the largest 

ice cap in Europe. The green areas 

can be found in the South of Spain 

and Italy, the Greece Islands and 

Northern Africa. These areas do not 

experience freezing weather often. 

The spatial and temporal average of 

the DI was 5.5, indicating that false 

springs are common.  

 

  The variability of the DI values 

is higher than for the FLD values (see 

Appendix B). The variability of DI 

values is especially high in regions 

where late freezes may occur, such 

as in Scandinavia and in Alpine 

regions. These late freezes may 

occur in some years and not in 

others, resulting in highly variable DI 

values. Contrarily, the variability of DI 

values is low in regions where 

freezes rarely occur, such as in the 

south of Spain and parts of Northern 

Africa. In these regions the variability of DI values is mostly dependent on the FLD values, for 

which the variability is relatively low in these same regions.   

 

4.3.1 False spring trends 
  The DI decreases on average with 0.2 days per decade for all grid cells for the full 

temporal range (see table 3). However, the slope of the trends is positive from 1950 until 1979 

(increase of 1.4 days per decade) and negative from 1980 until 2019 (decrease of 0.6 days 

per decade). Furthermore, the trend is only significant from 1950 until 1979 (p-value of 0.01), 

and non-significant for the full temporal range and from 1990 until 2019 (p-values of 0.36 and 

0.18 respectively). Figure 18 shows the average DI for all grid cells per year and the 

corresponding trends for the different temporal ranges. As with the FLD, there appears to be 

a change in slope values from 1980 onwards. The significant positive trend seems to stop 

around 1980, followed by a more erratic period from 1980 until 2019.   

 

Table 3. DI slope values for three different temporal ranges, namely 1950-1979, 1980-2019, and 1950-2019. The 
slope from 1980-2019 is the only significant slope and it is a positive trend. 

Period Slope P-value Std.err. 

1950-1979 0.14 0.01 0.06 

1980-2019 -0.06 0.18 0.04 

1950-2019 -0.02 0.36 0.02 

Figure 17. The average DI values over all the years in the study period. 
The green color depicts areas where false springs are relatively common, 

whereas in the red areas, false springs are rare. 

 

Figure 16. The average DI values over all the years in the study period. 
The green color depicts areas where false springs are relatively common, 
whereas in the red areas, false springs are rare. 
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  Both the Theil-Sen slopes (figure 19A) and the linear regression slopes (Appendix C) 

indicate that the DI slope values are spatially highly variable. Positive trends, which means an 

increase in DI and higher probabilities of false spring occurrences over time, are mainly found 

the United Kingdom, the Netherlands, Denmark, the Spanish Meseta, and the East European 

Plains in western Russia. Negative trends, indicating a decrease in DI and lower probabilities 

of false spring occurrences over time, are mainly found in Iceland, northern Africa, and  
mountainous regions, such as the Scandinavian Mountains and the Alps. The significance of 

the trends is high in most regions with clear negative and positive trends, approximating a p-

value of 0 (figure 19B). Due to the high spatial variability of DI slope values, there are many 

Figure 18. Damage Index (DI) 100 ensemble member average for the year 2007 (A) and the year 2008 (B). The negative 
values that are shown with the green color correspond with areas where the FLD occurred after the last frost and the positive 
values that are shown with the red color correspond with areas where the FLD occurred before the last freeze. The 
spatiotemporal variability of DI is relatively high. 

 

Period Slope P-value Std.err. 

1950-1979 0.14 0.01 0.06 

1980-2019 -0.06 0.18 0.04 

1950-2019 -0.02 0.36 0.02 
 Figure xx. Damage Index (DI) 100 ensemble member average for the year 2007 (A) and the year 2008 (B). The negative 
values that are shown with the green color correspond with areas where the FLD occurred after the last frost and the positive 
values that are shown with the red color correspond with areas where the FLD occurred before the last freeze. The 
spatiotemporal variability of DI is relatively high. 

Figure 19. (A) The DI Theil-Sen slope values. The red color indicates areas where there is an increase in DI, whereas the blue color 
indicates a decrease in DI. The DI slope values are spatially highly variable. (B) The statistical significance of the slope values. Most 
grid cells with either clear negative or positive slope values have p-values approximating 0, slope values of approximately 0 show 
relatively high p-values and low significance.  
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regions are between positive slope regions and negative slope regions. These transition zones 

have trend values of approximately 0 and relatively high p-values (figure 19B). Appendix D 

shows the spatiotemporal patterning of slope and significance values for 1950 until 1979 and 

from 1980 until 2019. From 1950 until 1980, the slope values are mostly positive, especially in 

western Europe, whereas the slope values are less prominent and more spatially diverse for 

1980 until 2019. Interestingly, for many regions the slope values are reversed for the different 

temporal ranges.  

 

4.3.2 Impact of full ensemble on DI trends  
  To assess the impact of employing the full temperature ensembles on the DI outputs, 

the difference between the average DI of the full ensemble and the DI resulting from the 

ensemble mean was calculated for each year and averaged over the study period (figure 20A). 

The differences in DI values between the two methods are more prominent than the differences 

between FLD. As with the FLD differences between the two methods, regions with very early 

FLD values showed the least difference in DI values between the two methods, approximating 

an average difference of 0  to 2.5 DI value per year. Most areas in the mainland Europe showed 

moderate differences, ranging from 5 to 10 DI values difference. Relatively high differences 

are visible in parts of Scandinavia, Spain, North Africa, the United Kingdom, Iceland, and 

France, with DI difference values ranging from 12.5 to 20 on average per year. The dots with 

lower difference values compared to their immediate surroundings, for instance in Scandinavia 

and Russia, are the locations of weather stations. In contrast with the FLD slopes, the 

ANCOVA showed a significant change in the DI slope between the ensemble mean and the 

full ensemble (P < 0.001). The slope for the ensemble mean is -0.02 days per year (or a 0.2 

DI per decade decrease) and the slope for the full ensemble is 0.05 (or a 0.5 DI per decade 

increase). Locally, the differences in DI trends for the full ensemble and the ensemble mean 

calculated with ANCOVA were mostly significant (figure 20B). The regions where station 

density is relatively high (see figure 22) showed non-significant differences in trends. These 

mostly include regions in Germany, Scandinavia, and the Caucasus mountains.    

 

Figure 20. (A) The average absolute difference between the average DI of the full ensemble and the DI resulting from the 
ensemble mean. The blue color corresponds with small differences, whereas the red color corresponds with big differences. 
(B) The significance of the difference in DI trends for the full ensemble and the ensemble mean calculated with ANCOVA. 
The dark blue color corresponds with low and significant p-values, which can be found in most grid cells.  
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4.4 Uncertainty assessments  
 

4.4.1 FLD uncertainty  

  The uncertainty in FLD output is expressed as the coefficient of variance (CV) and the 

90 percent confidence range (90% CI) over the ensemble members, rendering FLD uncertainty 

measures for each grid cell for each year. The average CV and 90% CI values over the study 

period are summarized in figure 21. The average CV (figure 21A) and the average 90% CI 

values (figure 21B) show similar patterning, with high uncertainty values in the United Kingdom, 

the Spanish Meseta, Greece, and Turkey, and low uncertainty values in Scandinavia and the 

East European Plains. However, the average CV is higher at lower latitudes since the CV 

normalizes variance with the mean and lower latitudes have significantly lower mean FLD 

values due to warmer climates.   

 

  For the uncertainty propagation approximation, the average spread of mean 

temperature was calculated. Figure 22 shows the average spread for all days prior to the 

average FLD value, averaged over all years. The average temperature uncertainty is highest 

in the regions with lower weather station densities, with average spreads values of 3.5 to 5 °C. 

These regions include Greece, Turkey, the Middle East, North Africa, the East European 

Plains, Iceland, and central Spain. The average temperature uncertainty is lowest in regions 

with high weather station densities, with average spreads values of 1 to 2.5 °C. These regions 

include Germany, Scandinavia, and the Caucasus mountains. The propagation of uncertainty 

is defined as the uncertainty of FLD for each degree Celsius uncertainty of the average spread 

(figure 23). There is a high variability in the propagation of temperature uncertainty into FLD 

uncertainty. The areas where the propagation of uncertainty is the smallest are in the south of 

Spain and Portugal, and the coastal areas in North Africa. In these areas, for each degree 

Figure 21. FLD uncertainty approximations. (A) The average coefficient of variance (CV) of FLD over all study years. (B) The 
average 90 percent confidence interval (90% CI) over all study years. Although the patterns are approximately the same, the 
average  is higher at lower latitudes since the CV normalizes variance with the mean and lower latitudes have significantly lower 
mean FLD values due to warmer climates.  

 

Figure xx. FLD uncertainty approximations. (A) The average coefficient of variance (CV) of FLD over all study years. (B) The 
average 90 percent confidence interval (90% CI) over all study years. Although the patterns are approximately the same, the 
average  is higher at lower latitudes since the CV normalizes variance with the mean and lower latitudes have significantly lower 
mean FLD values due to warmer climates.  
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Celsius average temperature 

uncertainty, the FLD uncertainty is 

approximately 0.05 to 0.10 days. The 

propagation of uncertainty is slightly 

higher in the East European Plains 

and areas in the Middle East, where 

each degree Celsius uncertainty 

results in an FLD of approximately 

0.10 to 0.15 days. The propagation of 

uncertainty is moderately high in 

Scandinavia, East Europe (excluding 

Russia), Turkey, and inland North 

Africa. In these areas, for each 

degree Celsius average temperature 

uncertainty, the FLD uncertainty is 

approximately 0.15 to 0.20 days. 

Lastly, the areas with the highest 

propagation of uncertainty are in 

western Europe, peaking in the 

United Kingdom, Iceland, and the 

Netherlands. In these areas, the FLD 

uncertainty is roughly 0.2 to 0.4 days 

for each degree Celsius uncertainty. 

 

4.4.2 False spring uncertainty  
  The uncertainty in DI values is 

indicated with the 90% CI. Figure 24 

shows the average 90% CI of DI 

averaged over the study period. The 

range of the uncertainty interval is 

higher as compared to the FLD 90% 

CI with values ranging from 0 to 7 

days difference (as compared to 0 to 

1.2 days difference). The spatial 

pattern of DI uncertainty 

approximates that of the last freeze 

date uncertainty (Appendix E) 

because the LFD uncertainty is much 

higher than the LFD uncertainty, and 

therefore more influential in the 

determination of DI uncertainty. The 

difference between the LFD of 

ensemble members could be months. 

The DI uncertainty is lowest in areas 

where freezes do not or rarely occur, 

such as the coastal areas of North 

Africa, the southern coasts of Sicily 

and Spain. In these areas the 

uncertainty range is approximately 0 

to 1. The East Europe has 

Figure 22. The average spread for all days prior to the average FLD value, 
averaged over all years. The average temperature uncertainty is highest 
in the regions with lower weather station densities. The dots that are visible 
are lower spread values that result from the proximity of a weather station.  

 

Figure xx. The average spread for all days prior to the average FLD 
value, averaged over all years. The average temperature uncertainty is 
highest in the regions with lower weather station densities. The dots that 
are visible are lower spread values that result from the proximity of a 
weather station.  

Figure 23. The propagation of temperature uncertainty to FLD uncertainty. 
The propagation of uncertainty is defined as the uncertainty of FLD for 
each degree Celsius uncertainty of the average spread.    

 

Figure xx. The propagation of temperature uncertainty to FLD 
uncertainty. The propagation of uncertainty is defined as the uncertainty 
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intermediate uncertainty ranges, with values  ranging  2 to 4. The highest uncertainties are 

found in West Europe, where values can be as high as 7. Mountainous regions, such as the 

Alps and the Caucasus, have higher uncertainty than their immediate surroundings.  

 

  Besides the DI, the binary false spring probability values for a 0-, 7-, 10- and 14-day 

lag were calculated. Figure 25 shows the average probability values for the different binary 

false springs. The patterning for the different binary false springs is approximately the same, 

however, the probability of false spring diminishes with increasing lag times. In general, false 

springs are likely in West Europe, and specifically in France, the Spanish Meseta, the 

Scandinavian mountains, and the United Kingdom. The probability of a false spring is low in 

the East European Plains, and in the areas where freezes rarely occur. Furthermore, coastal 

areas are less likely to have false springs as compared to inland areas.   

 

  The uncertainty of binary false spring is calculated with Shannon’s binary entropy 

function. This function penalizes intermediate p-values where uncertainties are high. The 

binary false spring uncertainty is low in areas where the false spring probability values are 

either very low or very high. For instance, the East European Plains have very low probabilities 

of false springs, which translates to low uncertainties, whereas the Spanish Meseta have high 

probabilities of false springs and thus also low uncertainties (Appendix F). The uncertainty of 

binary false springs in general decrease with increasing lag times for areas where the 

probability of early false springs is already low, for instance in the East European Plains and 

most coastal areas. Contrarily, the uncertainty of binary false springs generally increases with 

increasing lag times for areas where the probability of early false springs is high, such as in 

France and the Spanish Meseta. In general, the uncertainties of earlier binary false springs (0- 

and 7-day lag) are higher than the uncertainties of later binary false springs (10- and 14-day 

lag). 

Figure 24. The average 90% CI of DI averaged over the study period. The areas with the red colors have relatively 
high uncertainty in DI. The highest uncertainties are found in West Europe, where values can be as high as 7. 

Mountainous regions, such as the Alps and the Caucasus, have higher uncertainty than their immediate surrounding. 

 

Figure xx. The propagation of temperature uncertainty to FLD uncertainty. The propagation of uncertainty is 
defined as the uncertainty of FLD for each degree Celsius uncertainty of the average spread.    
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Figure 25. The binary false spring probability values for the (A) 0-, (B) 7-, (C) 10-, and (D) 14-day lag were calculated. The blue 
color corresponds with low p-values and the red color with high p-values. The patterning for the different binary false springs is 
approximately the same, however, the probability of false spring diminishes with increasing lag times. 
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5. Discussion and conclusions 
 

  In this fifth chapter, the temperature data and the phenological model that are used in 

this research will be discussed, and limitations regarding to the data and the model are 

highlighted.  Furthermore, the results from this research will be further elaborated and placed 

in a broader perspective with relevant scientific literature. From the synthesis, the research 

question can be answered in the conclusions section.  

 

5.1 Temperature data   
 

  The E-OBS temperature data was mostly complete for geographic range. However, 

some regions did not have sufficient coverage of temperature data and sufficient FLD values 

for the trend analysis. These regions include areas in central Turkey, the Middle East, and part 

of North Africa. The spread in average temperature is related to the density of weather stations, 

as depicted by figure 22. Lower station densities and higher temperature uncertainties were 

found in the East European Plains, Turkey, and North Africa. The lower uncertainties close to 

weather stations can clearly be seen in the average temperature spread (figure 22) and several 

uncertainty approximations (figure 20 until 24) as dots. This nicely illustrates the importance of 

weather station proximity in uncertainty approximations.   

 

  The E-OBS dataset is a parametric ensemble, in which different plausible parameter 

values are applied to get equally likely realizations based on these different parameter values. 

These parameter values include the search radius for inclusion of stations that influence the 

grid cell, impact estimates of homogeneity issues on the quality of input station data, impact of 

co-variates such as latitude or distance to wat bodies, and the inclusion of station data of which 

the base period is less precisely known. The 100-member ensemble deals with uncertainty 

related to these parameters. Errors in the underlying station data can also propagate into the 

gridded datasets. These errors include incorrect station location information and individual 

erroneous values or inhomogeneities in the station time series (Cornes et al., 2018; Hofstra et 

al,, 2010). The E-OBS datasets that are employed in this study do not correct these 

inhomogeneities. Moreover, the number of stations that are used in the determination of the 

observational gridded datasets varies over time. These deficiencies may impact the trend 

analysis based on these temporal gridded datasets.    

 

5.2 Extended spring indices  

 

  The SI-x is a widely used and well-parameterized phenological model, which facilitates 

adequate comparisons across space and time and reduces uncertainty (Ault et al., 2015a; 

Labe et al., 2017; Zhu et al., 2019). This makes the SI-x model especially useful for scientific 

analysis of spring onset and false springs. However, the SI-x model has some notable 

limitations. The current SI-x model uses three shrub species, namely two honeysuckle species 

and a lilac species, to approximate green-up. Populating the SI-x model with a richer ecology 

of indicator species could make the SI-x model more comprehensive (Ault et al., 2015b). 

Alternatively, species-specific models could be designed to ensure more accurate predictions 

to better understand potential effects on natural and agricultural systems  (Allstadt et al., 2015; 

Mehdipoor et al., 2017). Another possible drawback of the SI-x model is that it reflects 

temperature variation only. Parameters such as preseason temperature, solar radiation, 

precipitation, winter chilling, biotic factors, and large scale circulation anomalies are not taken 
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into account into the predictions (Ge et al., 2014; Ma et al., 2012; Mehdipoor et al., 2016). For 

instance, in arid regions water is often a limiting factor and precipitation is often correlated with 

spring onset (Piao et al., 2006). Likewise, warmer winter temperatures in temperate regions 

could counterintuitively result in delayed spring onset since chilling requirements are not met 

(Guo et al., 2015), which may result in an overestimation of spring onset advancement in these 

regions (Zhu et al., 2019). Lastly, the SI-x assumes vegetation homogeneity, whereas in reality, 

there are geographic variations in vegetation. Moreover, species can adjust phenological 

responses based on climatic change, resulting in temporally differing responses to similar 

climatological circumstances. 

 

5.3 Computational solution  

 

  The Dask implementation of the extended spring index proved to be a valuable 

alternative to the conventional MATLAB implementation. The output from both 

implementations is identical. Moreover, the computation in the Dask environment resulted in 

less than 38% of computation time than the MATLAB implementation. When running the model 

for high resolutions, this reduction could result in significantly shorter computation times, 

enabling researchers to receive their spring onset and false spring output data faster. The 

Python environment is an open-source platform, enabling easy access and use. MATLAB, on 

the other hand, is proprietary, closed-source software with expensive licenses. This greatly 

reduces accessibility to the MATLAB environment for most. Lastly, the Python environment 

allows for scalability through packages like Dask, whereas MATLAB does not provide this 

scalability.  

 

  Even though the implementation used in this study greatly reduced computation times, 

the employment of the full ensemble and the full temporal range that was available resulted in 

a staggering 330 hours of computation. Therefore, further optimizations are desirable when 

running the model on this volume of data. For instance, the model could be rewritten to ignore 

Not a Number (NaN) values in the computation by masking the areas that do not have valid 

temperature values for all ensemble members and all years. For the geographic range in this 

study, this could theoretically result in over 50% reduction in computation time since over half 

of the grid cells represented NaN values. Furthermore, even though optimized version of the 

SI-x model ensures that daylengths are calculated only once for each ensemble member, the 

model could be rewritten to ensure identical daylengths are calculated once for all ensemble 

members and years. Lastly, the Dask implementation could be optimized. In the current 

implementation, some workers finish their computation of the ensemble members faster than 

others, rendering them idle until the last worker finished its share of the computation. The lag 

between the completion of computation between the workers could be over a minute, greatly 

reducing the efficiency of the Dask implementation. To overcome this problem, different 

ensemble members could be loaded dynamically to the idle workers, reducing overall 

computation time. Even though these suggested optimizations would further reduce 

computation times, it is likely that employing high performance computers is desirable when 

running the SI-x model on full ensembles at high resolution.  

    

5.4 Spring onset predictions  

 

  As expected, the average FLD was later in higher latitudes and mountainous areas, 

where average temperatures are generally lower (figure 11). The across year variability of FLD 

was spatially highly heterogeneous (figure 12). Especially mid-latitudes in West Europe 
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showed high year-to-year variability in FLD. The low variability in warmer climates are logical 

since consistently high temperatures in the beginning of the year result in similarly early FLDs, 

and thus low variabilities. The relatively low variability in Scandinavia and the East European 

Plains is somewhat harder to explain. It seems that later spring onsets correspond with lower 

across-year variabilities. These regions, in general, have shorter daylengths and lower 

temperatures, resulting in less accumulation of temperature. In turn, this may result mostly 

short-term growing degree hours and relatively low cumulative count of high synoptic events. 

The absence or presence of cumulative counts of high synoptic events can impact the FLD 

significantly (Zhu et al., 2019). The low impact of the cumulative count of high synoptic events 

may thus explain the lower variabilities in FLD. The high across-year variability in the mid-

latitudes in West Europe may be caused by yearly early-year fluctuations of temperatures over 

and under the base temperature and variable across-year cumulative count of high synoptic 

events.  

 

  In accordance with previous studies (Schwartz et al., 2006; Wu et al., 2016), a 

significant advancement of spring onset was seen for most regions in Europe (figure 13 and 

figure 14). West Europe and mountainous regions especially showed sharp decreases in FLD. 

Temporally, the advancement was most prominent from approximately 1980 onwards as a 

result of an increase in global temperatures. The trend slopes modelled with the 100-member 

ensemble did not significantly differ from the trend slopes derived with the ensemble mean. 

However, the average difference between the two methods is not negligible in most areas, 

peaking in Iceland and the United Kingdom with an average difference of two days difference 

between the two methods (figure 15). Moreover, the uncertainty can be quantified by 

employing the full ensemble. This indicates that even though the trend slopes are not 

significantly impacted, the influence of working with the 100-member ensemble on FLDs 

should not be completely disregarded. 

 

5.5 False spring predictions  

 

  In areas where freezes rarely occur, false springs were relatively uncommon and 

average DI values were negative (figure 17). In most regions, and Scandinavia and 

mountainous areas in particular, the average DI was positive, indicating that freezes often 

occur after FLD. The geographically dominant increase in DI as a consequence of increasing 

mean temperature may seem counterintuitive but has been already been reported in historical 

studies and may be the result of a faster advancement of spring onset as compared to LFDs 

(Allstadt et al., 2015; Augspurger, 2013; Ma et al., 2019). The variability in DI was higher in 

areas where (late) freezes are relatively common. Changes in false spring risk depend on both 

the change in timing of spring onset and last freeze date. In accordance with literature (Allstadt 

et al., 2015; Augspurger, 2013; Ma et al., 2019; Zhu et al., 2019), the temporal change in false 

spring risk is spatially highly heterogeneous, with some areas showing increased risk of false 

spring and other areas decreased risks (figure 19). Interestingly, the DI trends and 

spatiotemporal patterning from 1950 until 1979 and from 1980 until 2019 are predominantly 

different (Appendix D). Many areas even show reverse trends for the different temporal 

windows. In general, from 1950 until 1979 there was a significant increase in false spring risk, 

whereas, although non-significant, there was a decrease in false spring risk from 1980 until 

2019. The trend slopes modelled with the 100-member and the trend slopes derived with the 

ensemble mean were significantly different. This significant difference was also found for most 

regions in the geographical extend, especially for grid cells further from weather stations (figure 

20B). Moreover, the average difference between the two methods was substantial in most 
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areas (figure 20A). This indicates that working with the 100-member ensemble has a high 

impact on both the trends and the average DI. 

 

5.6 Uncertainty assessments  

 

5.6.1 Spring onset uncertainty  

  Both measures of FLD uncertainty (CV and 90% CI) were relatively low (figure 21). The 

maximum FLD uncertainty could be found in Iceland and only amounted to an average 90% 

CI of 1.2 days. The CV was employed to get uncertainty approximations that were normalized 

for the mean, as it is expected that higher means generally result in higher uncertainties due 

to longer accumulation periods and uncertainty propagation opportunities. Counterintuitively, 

both the 90% CI and CV were relatively low for regions where spring onset was late, such as 

in Scandinavia and the East European Plains. The propagation of uncertainty was calculated 

as the uncertainty caused by one-degree Celsius average spread (figure 23). Thus, the 

uncertainty propagation value represents the sensitivity of FLD uncertainty to temperature 

uncertainty, highlighting regional susceptibility to temperature uncertainty. The uncertainty 

propagation was highest in West Europe, especially in the mid-latitudes, indicating that these 

regions are especially susceptible to temperature uncertainty. The FLD uncertainty patterns 

and the uncertainty propagation patterns resemble the across-year variability of FLD, 

indicating that it is likely that the same mechanisms are responsible for the uncertainty 

propagation and the across-year and within-year variability. This could mean that the relative 

influence of short-term growing degree hour and the cumulative count of high synoptic events 

in the determination of FLD could be momentous in the uncertainty assessments as well as 

the across-year variability. Possibly, the high variability and uncertainty in the mid-latitudes of 

West Europe could be the result of variable cumulative counts of high synoptic events between 

years and ensemble members. If the temperature accumulation surpasses the synoptic events 

threshold, the event is counted as a high synoptic event. If regions generally have temperature 

accumulations that approximate this threshold, the variability between years and ensemble 

members can be explained since some ensemble members or years will exceed the threshold, 

whereas others may not. The geographic variability in the relative influence of short-term 

growing degree hour, the cumulative count of high synoptic events, and daylength (depicted 

by latitude) in the determination of FLD was high for China (Zhu et al., 2019). Explicitly linking 

the relative influence of these different factors to uncertainty approximations could be a 

relevant follow-up study that gives insight in the mechanisms underlying FLD uncertainty.  

 

  The methodology used in this thesis to approximate spring onset (and false spring) 

uncertainty is adequate and produces reliable results. However, the methodology for the 

uncertainty propagation and the assessment of uncertainty in the trends could be more 

rigorous and comprehensive. Bayesian methods are often employed for robust uncertainty and 

uncertainty propagation analysis in environmental sciences (Clark, 2005; Smith et al., 2009). 

Implementing Bayesian methods could be an improvement in the methodology for future 

studies quantifying phenological uncertainty from ensemble temperature data, resulting in 

more robust uncertainty assessments.   

 

5.6.2 False spring uncertainty  

  The uncertainty of the damage index and binary false springs is substantial, especially 

in regions where late spring freezes are common, such as in Scandinavia and mountainous 

areas. In these regions the average 90% CI per year could be as high as 7 days difference in 

DI (figure 24). Furthermore, the employment of the full ensemble instead of the ensemble mean 
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had a significant impact on the DI slope. The false spring uncertainty propagated largely from 

last freeze date uncertainty and not from spring onset uncertainty since the uncertainty of LFD 

is much higher than the FLD uncertainty and, therefore, more influential in the determination 

of DI uncertainty (see figure 21 and appendix E). The reason for the substantial uncertainty in 

last freeze date is explainable from the use of the 100-member ensemble. When some of the 

ensemble members report that a freeze occurs in late spring and other ensemble members do 

not show a temperature below the threshold, last freeze dates between different ensemble 

members could be months apart, resulting in high last freeze date uncertainties. This greatly 

impacts the false spring assessments and uncertainties associated with these assessments. 

  

 

  While the impact of working with the full ensemble is significant for assessing false 

spring risk, this uncertainty of last freeze date is essentially overlooked in preceding false 

spring risk studies with the extended spring indices. Ideally, the uncertainty associated with 

the last freeze date should be considered and reported in false spring risk research with the 

employment of the full temperature ensembles. However, since the computational effort of 

running the full ensemble of temperature data on high-resolution long-term data is significant, 

this might not be ideal for all prospective studies. Though, computing resources are improving 

over time and computational challenges related to handling these volumes of data may soon 

be of the past.  Alternatively, the false springs could be reported differently. Perhaps the notion 

of a false spring with a single temperature threshold is too simplistic and highly susceptible to 

uncertainty. The false springs could be categorized in different strengths as a range close to 

the threshold value. Then, if a temperature of -2.1 °C arises, it will not be completely 

disregarded but will be administered as a slightly less likely/strong last freeze date. The range 

in which the strength of false springs is calculated could represent the freezing tolerance range 

across the species which are meant to be represented by the phenological model that is 

employed. For instance, researchers can gather data on freezing tolerances across relevant 

species and across populations of these species and use this to change the false spring risk 

metrics accordingly with the employment of range of freeze tolerance value that can be used 

to determine the overall strength of the false spring. This approach, however, would have 

certain limitations. If a stronger frost is followed by a weaker frost the next day, there will be 

some ambiguity whether the weaker later frost should be addressed or the stronger earlier 

frost. False spring researchers could address these limitations and adjust metrics that both 

represent variation in freezing tolerance and remove the high uncertainty related to the binary 

nature of a single threshold last freeze date.  Using a gradual approach instead of a binary, 

single threshold last freeze date approach could eradicate some of the uncertainty associated 

with false spring assessments. However, the full ensemble should still be employed to fully 

capture the uncertainty related to false spring risk assessments.   

 

  Defining binary false spring uncertainty with the Shannon binary entropy function was 

a novelty of this study. The resulting uncertainties of the different lag times are shown in 

appendix F. Overall, the uncertainty of binary false springs with a lag-time of 0 resulted in the 

highest uncertainty. The binary false springs with lag-times 7, 10, 14 generally had decreasing 

uncertainties. However, this pattern was reversed for areas with high initial 0-day lag binary 

false spring probabilities. Besides the reversal of this uncertainty pattern, no astute patterns or 

mechanisms could be extracted from the binary false spring assessments. The false spring 

uncertainty assessments with the DI resulted in more insightful results than the binary false 

spring uncertainty assessments, thus, we recommend the employment of the DI as the false 

spring definition for prospective studies assessing false spring risk uncertainty.  
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5.7 Conclusions  

 

RQ1: How to overcome the computational challenge of handling long-term high-resolution 

geographical data on a continental-scale?  

 

  The Dask implementation of the SI-x model effectively parallelized the computation, 

making the overall computation more time efficient. Implementing the SI-x model in the Dask 

environment was relatively straightforward, making it a valuable alternative for future studies. 

However, when employing the full ensemble, it is recommended to in addition utilize high-

performance computers to reduce computation times further.   

 

RQ2: How does the performance the distributed model compare to the performance of the 

legacy implementation?  

 

  The output from the Dask implementation is identical to the output of the legacy 

implementation in MATLAB. Moreover, the computation time of the Dask implementation is 

over 2.5 times as fast as the MATLAB implementation. Therefore, the Dask implementation 

that is employed in this study is a valuable alternative for scientists researching spring onset 

or false spring with the SI-x model.    

 

RQ3: How does the incorporation of temperature uncertainty impact the spring onset trends? 

 

  Even though there was a slightly more prominent decrease in spring onset over the 

study period with the full ensemble, the inclusion of the full ensemble did not significantly 

impact the spring onset slope. However, the average difference between the two methods was 

considerable in some areas, indicating that even though the trend slopes are not significantly 

impacted, the influence of working with the 100-member ensemble on FLDs should not be 

completely disregarded.  

 

RQ4: How can the propagation of temperature uncertainty into spring onset uncertainty be 

quantified? 

 

  The propagation of uncertainty is estimated with the spread in FLD values and the 

spread in average temperature. This resulted in geographic variability of uncertainty 

propagation estimations. The propagations of temperature uncertainty into FLD uncertainty is 

highest in the mid-latitudes of West Europe.  

 

RQ5: How does the incorporation of temperature uncertainty impact false spring trends? 

 

  The false spring trends were significantly impacted by the employment of the full 

ensemble. Moreover, the average differences between the false spring approximation from the 

ensemble mean and the full ensemble were substantial. This highlights the importance of 

regarding temperature uncertainty in false spring risk estimations.   

 

RQ6: How can the uncertainty of false spring predictions be assessed and quantified?   

 

  The uncertainty of the DI and binary false springs is approximated differently. The DI 

incorporates the variability in all FLD and LFD combinations, whereas the binary false spring 

uncertainties are only relevant for specific relations between FLD and LFD. The DI uncertainty 

is estimated as the 90% CI and is highest in regions with prevalent late spring freezes. The 

uncertainty of binary false springs calculated from the percentage of false spring occurrences 
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among the 100-member ensemble. From these probability values the uncertainty is defined 

with an entropy function. The DI uncertainty assessments proved to be more insightful than 

the binary false spring assessments.   

 

RQ7: How do the uncertainty assessments vary for different concepts of binary false spring? 

 

  Uncertainty of binary false springs is low if false springs are extremely likely, such as 

in the Spanish Meseta, or extremely unlikely, such as in the coastal areas of North Africa. As 

compared to earlier false springs, later false springs estimations become more uncertain in 

regions with initially high early false spring probabilities, and less uncertain in regions with 

initially low early spring probabilities. Uncertainty values are in general relatively high due to 

the high uncertainty in LFDs.  
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7. Appendix 
 

A. Temporal FLD trends from linear regression 

  

Appendix A. The linear regression FLD slope values for 1950 until 2019. Most grid cells show negative trend 

values in blue, indicating an advancement of spring onset. 
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B. The variability of the DI values over the years 

  

Appendix B. The standard deviation of the DI values for 1950 until 2019. Most grid cells show moderate standard 
deviation values in yellow and green. Warmer climate regions, such as areas in the south of Spain and areas in 
northern Africa, show low variability in DI values. These areas show low variability as freezing rarely occurs in 
these regions and FLD values are more or less constant. Areas in Scandinavia and mountainous regions, such as 
the Alps and the Caucasus, show high variability. This may be caused by the occurrence of late freezes, which 
may vary on a year-to-year basis, resulting in a high variability of DI values.  
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C. Temporal DI trends from linear regression 

 

 

 

  

Appendix C. The linear regression DI slope values for 1950 until 2019. The red color indicates positive slopes, 
which means an increase in DI values, whereas the blue color indicates negative slopes, which means a decrease 
in DI values. The spatial variability of slope values is relatively high, indicating a strong relationship between location 
and temporal change of DI. The slope values acquired with linear regression are approximately the same as with 

the Theil-Sen estimation. 
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D. Theil-Sen slopes and significance for 1950-1979 and 1980-

2019 
 

 

 

Appendix D. The spatiotemporal patterning of slope and significance values for 1950 until 1979 and from 1980 until 2019. 
From 1950 until 1980, the slope values are mostly positive, especially in western Europe, whereas the slope values are less 
prominent and more spatially diverse for 1980 until 2019.   
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E. Average 90 percent confidence in last freeze date 

 

  

  

Appendix F. The average 90 percent uncertainty range for the last freeze date. The last freeze date uncertainty is more 
influential in determining the false spring uncertainty than the FLD uncertainty, as the last freeze date uncertainty is much 
higher. Therefore, the patterning of DI uncertainty approximates the patterning that are shown in this figure.  
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F. Uncertainty of binary false springs  

  

Appendix F. The average uncertainty of (A) 0-, (B) 7-, (C) 10-, and (D) 14-day lag binary false springs calculated with the 

Shannon’s binary entropy function. The uncertainty of binary false springs in general decrease with increasing lag times for 

areas where the probability of early false springs is already low, for instance in the East European Plains and most coastal 

areas. Contrarily, the uncertainty of binary false springs generally increases with increasing lag times for areas where the 

probability of early false springs is high, such as in France and the Spanish Meseta.  
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G. Python/Dask implementation 
 

A digital version of the model is also available on the following link: 

https://github.com/gurensch/Dask_SIx 

 

The GitHub page contains a documentation on how to set-up the model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  


