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Abstract

The deployment of drones has become increasingly popular in a variety of new applications.

Many of such applications require autonomous and adaptive behaviors, especially when tasks

require the need for dynamic object tracking, such as follow-me behavior. In the past decade,

many applications have seen drastic benefits from using machine learning methods such as Re-

inforcement Learning (RL). RL uses an animal conditioning based approach in computational

tasks to learn new behaviors in specific domains. In this thesis, the implementation of an RL

algorithm is trained and tested inside simulation environments, specifically for the task of a

drone following a person. This algorithm, a Deep Q-Network (DQN), is tested using four differ-

ent approaches. First, two changes to the DQN inputs have been proposed to help improve the

training process and performance. These suggestions include the use of directionality of objects

in its camera inputs using stacked image frames and the inclusion of depth information about

its surroundings using depth maps. Tests have been run with these additions in two environ-

ments, each increasing in obstacle complexity. The results have shown that the use of stacked

imaging resulted in improvements in environments where they relay valuable information to

the agent about the objects in its view. Meanwhile, in environments where the task can be

performed without it, they unnecessarily increase the state-space, resulting in degraded perfor-

mance. Depth images have shown to be a strong improvements to each agent that used them,

further reinforcing their strong simplifying capabilities and reduction of state-space. Second,

the benefits of using RL compared to a static preprogrammed baseline have been evaluated.

These tests have shown that RL allows for much more adaptive and flexible behavior, which is

beneficial in each type of environment. Finally, the ability of RL agents to generalize behavior

from simpler environments to a third, more complex environment has also been examined. This

showed that the agents who were trained in an environment with obstacles, were able to transfer

their knowledge to new similarly designed situations. Meanwhile, agents that had never seen

an obstacle could not. These results show that the use of RL in the specific task of follow-me

behavior or drones is a successful tool because of their adaptive and generalizable behavior.
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1 INTRODUCTION

1 Introduction

Drones are increasingly becoming ubiquitous throughout every day life [1]. Initially developed

for military purposes, drone usage is increasingly moving towards everyday applications. From

package delivery to calimity relief [2], the clear benefit of using drones is that they provide a safe

tool for a variety of tasks that normally either endanger or encumber people. By automating

these processes, dangerous jobs could be made safer. At the same time, the use of drones can also

make new applications available that were previously unavailable, opening up new places where

the utilization of drones could be helpful. Whether it is for automated maintenance [3], health

care applications [4, 5], calimity relief [2] or even entertainment purposes [6], drones are becoming

a part of a larger body of research that could provide interesting solutions to real-world problems.

One way in which drones can be used, is the tracking of objects [7]. The ability of a drone to

keep an object within its field of vision is a type of behavior that can be used in a large variety

of applications. Some already explored examples are the use of drones as a means of following

powerlines and performing overall maintenance [3], or as a tool for guiding blind runners through

their jog and helping them avoid collisions [4]. These applications require the drone to keep a

certain object within their view and maintain this state, while performing an additional task. A

crucial aspect of object tracking involves object localization, which can then be used to automate

the process of keeping an object in its vision.

However, it is important to note, that the target object to be followed can bring with it different

challenges and requirements for the development of the drone behavior. An important distinction

herein is the difference between tracking a moving versus a static object. Additionally, following a

person, with all of its dynamic movements and paths, brings with it different challenges than the

following of more stable moving objects. At the same time, the applicability of drones being able

to follow a person are wide. From the previously mentioned blind runners [4], to the filming of

people from specific perspectives [8], there are multiple avenues that could be aided by automated

person tracking. Therefore, investigating different manners in which to achieve person following

behavior, henceforth follow-me behavior, is still an interesting topic to explore.

A subset of applications require, or benefit from, the ability of autonomous decision making

by the drone. Not all real-world situations can be predicted and programmed into the drone in

order to ensure correct behavior in each of them. The automated agent would be required to

reason on what to perform in situations not anticipated by the developing team. The requirement

of autonomy translates into the need for generalizability. The follow-me behavior is no exception.
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1 INTRODUCTION

In order to fully be capable of keeping a person in its Field of Vision (FoV), the drone would

be required to be able to extrapolate behavior to newly unforeseen situations, requiring a certain

degree of generalizability.

This is where neural networks come into the picture. The recent rise of Deep Learning has

shown that the utilization of machine learning is applicable in a large variety of different problems

[9]. One of the advantages of using neural networks is their ability to generalize from training data

to new previously unseen instances. One of such examples is the ability of an image classsifier to

correctly classify images that are not contained in the dataset that was used for its training. This

generalizability is very well suited for the development of autonomy in robotic systems. The use of

neural networks for the problem of object tracking is, therefore, still relevant.

Looking specifically at robotic systems and autonomous behavior, the application of neural

networks in the field of Reinforcement Learning (RL) has also seen a tremendous boom in recent

years [10]. The field of RL can be illustrated by the learning of behavior in a manner similar to

that of humans. In essence, RL is a formalization of classical conditioning seen in animal behavior

that works by allowing an agent to explore some action space and receiving a reward or punishment

as a learning stimuli [11]. The agent adapts itself according to this reward and thus learns how to

accomplish its goal. Giving an agent a certain amount of training and/or exploration time in an

environment, the agent will train itself to map each state to a most preferred action. However, more

complex environments where RL algorithms could provide a solution, require a large amount of data

to be processed. This is where neural networks provide a valuable solution. Being driven by large

amounts of data, they allow RL agents the ability to process a large amount of experiential data for

their training. Furthermore, using neural networks in a context of RL also provides the ability to

generalize to new situations not encountered during an autonomous agent’s training time. These

advantages of neural networks provide a good addition to the RL algorithm, giving it a robust

ability to be applicable in many situations where autonomous behavior is required. The use of

neural networks in RL problems, also called Deep Reinforcement Learning (DRL), can therefore

be considered a useful paradigm to investigate its applicability in follow-me behavior.

1.1 Goal

This dissertation will investigate whether the use of Reinforcement Learning is a viable means

to develop the desired follow-me behavior in an autonomous drone. Furthermore, the developed

algorithm from this thesis is to be used to take control of a physical standalone drone outside of
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1 INTRODUCTION

the simulation. In order to achieve this, this endeavour will be subdivided in four sub-problems.

The first two will suggest improvements on RL methods that should help the training process and

the resulting behavior. The first of these will be to see whether sensing directionality will improve

the drone’s behavior and the second will be to see whether depth sensing improves the behavior.

Third, the ability of RL to perform generalization will be investigating. Finally, whether the use

of RL is an added benefit compared to more straight-forward methods will also be studied.

The long-term goal is to implement such an agent on a stand-alone drone and to perform the

follow-me behavior outside of the simulation.

1.2 Limits

The context in which this thesis has been written does impose some constraints on the possible

implementations that can be considered. Having the goal for this agent to be implemented on a

standalone drone means that the drone should be able to do all of the required behavior without

relying on a connection with any external device. Many applications use the drone device only

as a action taker, not as the device to make decisions. This is externalized to a local server or a

base-station that performs the processing, which then signals to the drone to perform the actions.

However, the aim for this model is to keep all of the processing on the drone itself. This aspect

brings with it some problems that pose limitations on what type of models and agents can be

considered.

The first of these limits is the carrying capacity that the drone can have. The computational

power that the drone can carry and use to make decisions is limited. Moreover, the developed

agent needs to be able to perform fast enough on the device in order to actively make decisions

in real-time. Throughout this thesis, computational costs and inference times will be taken into

account when deciding on what algorithms and agents to implement.

Additionally, in order to limit carrying capacity and computation, the RL state-representation

for the agent should rely solely on camera inputs. No additional technology to aid in obstacles

detections or decision making can be used. This means that each aspect of the state representation

has to be formulated within these constraints. Again, these limitations are imposed as a means to

reduce the amount of carrying load of the physical drone.

8



2 LITERATURE REVIEW

2 Literature Review

In this section we will discuss the relevant scientific literature about drone control using RL and

methods to perform follow-me behavior.

2.1 Object Tracking Methods

The implementation of RL algorithms in the context of drone control is not novel [8, 12, 13, 14,

15, 16, 17]. Studies have shown that the use of RL in a variety of situations provide a number of

benefits. First, with their experience-driven learning process, RL agents show a potential to handle

complex and dynamic environments [15]. In studies where these agents have been allowed to learn

inside of a variety of environments, they have been able to teach themselves adaptive behavior to

solve a required task. Such abilities are beneficial, especially in situations where the tasks involve

the need to track dynamic objects. However, the strong point here is that the need to predevelop all

the behavior of an agent to solve a certain task is being replaced by the development of the learning

environment. This not only removes the limitations which are posed by preemptively predicting

what situation an agent might encounter, but also removes possible constraints in behavior that

such an agent could form. RL agents are notorious for behaving differently than expected [18].

Such features can sometimes be a detriment when very specific behavior is required, however, they

can also be advantageous. In situations where the behavior needs to be adaptive and flexible, being

able to find new ways in which to reach the goals can be beneficial.

Another advantage is that machine learning, and by extension RL, is able to generalize its

learned behavior to new situations [17]. Generalizability is especially crucial when developing

agents that should function in a variety of environments. In the context of dynamic object tracking,

such a feature is critical since being able to predict every situation that a drone must handle is

complicated. Having access to an agent that is able to deduce appropriate behavior in a multitude

of new situations from the learning process is very relevant. This is also something which RL agents

have been shown to be able to perform to some extent.

There have been other methods that have been applied in the context of tracking objects, or

people specifically [19, 20, 21, 22]. These methods employ a variety of technologies to improve the

object detection, object tracking and decision-making process capabilities of a drone. Additionally,

they have shown to be able to fulfill the task successfully. Furthermore, the action-selection process

is a straightforward goal oriented algorithm that focuses on making sure the target object is centered

in its view. The additional technologies are introduced as a means to target behavior in irregular
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2 LITERATURE REVIEW

situations or to improve the overall stability and reliability of the information which this algorithm

uses. The aforementioned advantages of using RL agents are still very applicable to the action-

selection process in these suggested algorithms. The ability to be flexible and adaptive still provides

robustness to an agent to new situations and could potentially also remove the need for more

intricate technologies to be added to a drone altogether. For these reasons, research into what role

RL could take in the development of agents that control drones in dynamic object tracking tasks

is still relevant.

2.2 Reinforcement Learning and Follow-Me Behavior

Within the field of RL, there are a variety of algorithms to choose from to perform the learning

process [23, 24, 25, 26, 27, 28]. Many of these are state-of-the-art algorithms in RL domains and

have generally shown very promising results. However, the more foundational algorithm of Q-

learning is still a widespread introductory method throughout a variety of exploratory studies [29].

Overall, Q-learning algorithms employ a tabular representation of the action-selection procedure,

which is characterized by determining an appropriate action for each possible state. Such methods

are simple to implement and provide ample insights into how an RL agent functions inside new

domains. Next to this, when conditions are right, DQNs have shown to converge definitely to an

optimum [30], therefore lending itself well to perform tests with in differing environments.

Many studies have explored methods to which RL could be used in the case of drone control

[12, 13, 14, 15]. Nonetheless, a problem is that many of these studies have only investigated

specific tasks to be learned by the RL agent. For example, one such task is the navigation through

different types of environments [12, 14, 15, 31]. Others focus more on very specific movements of

drone control, such as taking off and landing the device [32]. Many of these studies have shown

the strong positive aspect of using RL in these tasks. There is still the questions whether the

task of object tracking could benefit from RL algorithms, more preferably even: person tracking.

There have been some efforts to investigate this issue [17, 33], showing promising results. However,

RL is very sensitive to environmental variables. The definition of state-spaces, action-space and

reward function are crucial aspects that determine what behavior will be learned and how well

these algorithms are suited for such a task. Each of these aspects merit some further attention.
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2.3 Reinforcement Learning Elements

The development of RL agents is synonymous with defining each aspect of the RL domain in which

the agent will operate. Each of these will be discussed further.

2.3.1 Reward Engineering

First and foremost, the reward signal is the foundation for the learned behavior in RL. The reward

can be equated with the goal of the agent themselves, such that the problem is captured in a

formal sense [11]. The definition of a reward function therefore becomes crucial in the process

of training an agent with a behavioral goal in mind. However, defining the reward brings with

it some challenges that need to be addressed. One such challenge is the trade-off between how

much predetermined information is implemented in the reward function and how much is left

open [34, 35]. The provision of this information happens in the sense that the reward function

specifies some intermediary states as being more desirable compared to others, as to achieve a

goal. Following this hierarchy, the agent is forced to learn the behavior in a specific way, confined

to these constraints. However, the disadvantages of creating such an ordering is that it requires

domain-specific knowledge about when an agent is closer to the goal or not. This imbuing of some

predetermined knowledge in the reward function also blocks the agent from finding new ways to

solve the problem and is a problem in situations where the set of permissible behavior is not known

prior to training. Next to this, such reward functions are extremely sensitive to small mistakes in

the order of states, leading to sub-optimal performance [36].

The alternative leads to a simplified reward function, where the goal states have been marked

with a positive signal, and the remainder with a neutral or negative one. A problem here, however,

is the sparse nature of the reward space. Having a small set of states which produce a positive signal

in a larger state-space means that there are large swaths of states where no signal is given. This

means that during the exploration of the state-space, it becomes harder for the agent to find states

where a positive signal is observed. Next to this, the previously mentioned problem of unexpected

behavior that RL algorithms suffer from also becomes more relevant [18]. With predetermined

hierarchy in states, the freedom of an agent to develop completely new sets of behavior that still

optimize the reward function is less likely to occur. However, with a sparse reward function, the

agent is much more likely to develop unexpected behaviors.

Nonetheless, these advantages with using sparse rewards, combined with the latest technologies

in improving the training processes of RL algorithms in such environments [37], does lend this
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method of reward engineering to new training avenues.

2.3.2 Environment Selection

The choice of environment in which the agent will be trained, is another important aspect for the

problem definition. These can vary from either neighborhood type environments [14], to indoor

hallways and rooms [12], to more simplistic abstract environments [13]. There is a clear trade-off

between the use of simplified abstract environments compared to more complex environments. The

degree to which a neural network is able to generalize is not endless and placing an agent in a

completely different environment than which it was trained in, can cause issues in its performance.

Additionally, using more specific environments also limit the agent’s generalization capabilities,

because of the specificity of the encountered situations during training time. Previous attempts at

testing the generalization abilities of RL algorithms in complex situations. These tests have shown

that there is a large potential for learned behavior to transfer to new environments [12]. However,

there are a number of issues that are still unresolved. First, the environments that have been

tested are mostly similar in complexity. Generalizability is especially interesting when training can

be performed in more simplified environments and knowledge can be transferred to more complex

situations. This problem is also dependent on the way the agent perceives the environment through

its state input. Training agents with normal (RGB) camera inputs, as performed in this study,

can bring the added problem of having the agent be unfamiliar with similar situations but differing

color spaces. Therefore, there is still room to investigate whether other state-representation could

potentially relate the same information without encountering these problems.

2.3.3 State-space Representation

The manner in which the state is being represented is a crucial element in agent training [38].

As has been showed before, the state representation can be a problem when it comes to multiple

aspects of the RL agents, including their generalizability [12]. Good state selection is the basis on

which the agent can perceive its environment, but it also determines what information it can use

for its decision-making. An important point is to make sure that the relevant information is being

fed to the agent. Relevant information should include important aspects that influence the reward

signal throughout the world. If the agent does not receive any input about important conditions

that determine the reward signal, it is not able to change its behavior in order to optimize this

signal. When specifically considering the task of follow-me behavior, the object to be tracked is
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2 LITERATURE REVIEW

dynamic. This means that there are different movements from the target that can lead to obscure

the target object. This thesis will specifically look at two options with which to improve the agent’s

ability to track such a dynamic object.

Directionality

The dynamic movements of a person can lead to the person being obscured by obstacles. Obstacles

such as corners and walls might be potential pitfalls for the drone with which it should be able to

deal with. There is a need for the agent to be able to anticipate the movements from the target

object, in order to reposition itself accordingly to avoid losing the person from its view. In this

case, a sense of directionality of the person is what is required. For this, there are two ways with

which to imbue the agent with this information.

The latest state-of-the-art approaches to this issue use Recurrent Neural Networks (RNNs) as a

means for an agent to perceive some sense of change in time series inputs [17, 39]. RNNs are neural

networks where the outgoing signal of a neuron or layer is used as an input for that same neuron or

layer during the next pass-through. The specific structure of which activations are re-used as inputs

vary with different techniques, but the overlapping feature is that the neural network receives the

activations of previous inputs when performing a feed forward the network. This means that the

network is able to gather patterns from combinations of inputs, instead of only one. In the context

of RL, this means that the network is now capable of making decisions taking into account previous

moments as well. In some applications, this has been used as a means for the model to sense the

direction of a target object and decide on an action. An unfortunate disadvantage of using RNNs

is that they are computationally more complex and exhaustive than CNNs [40]. This impediment

not only reduces inference times, which could severely curb overall performance of the agent, but

also reduces training times.

There is, however, a simpler more straight-forward approach, that can be used. Instead of

changing the architecture of the underlying neural network, the state could also be represented as

a video, or a stack of frames. Feeding such a stack of frames can also communicate the movements

of the objects in a state. This approach can also be done in RL, as the video input of a couple of

seconds can be used to feed forward through the network and is not an unfamiliar method. Basic

RL problems have been solved applying this method [41] and it is a preliminary alternative to

using more state-of-the-art approaches [42]. Such state-representations require minimal changes to

architecture and methodology while still being able to communicate the required information to
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the agent.

Depth Sensing

Next to receiving information about the direction of the person, there is also the need to perceive

the surrounding objects. To achieve follow-me behavior in environments with obstacles, the agent

should receive some information about its position in relationship to objects in its vicinity.

There are multiple ways in which to communicate distances to drone devices [20, 42]. However,

keeping to the constraints of using only camera inputs, as described in Section 1.2, the use of

computer vision techniques is the most obvious method to solve this problem. One such technique

is the creation of a depth map, as can be seen in Figure 1. Depth maps are constructed by

representing each pixel by the distance from the camera to the object that is in that specific pixel.

The resulting image, is one where an agent can perceive its distances to all the objects in its FoV.

In this example, the darker the pixel, the farther away that object is.

Figure 1: Example of a depth image [43]

Even though there are multiple technologies that can be used in order to calculate these distances

[44, 45, 46], they still have the similarity of culminating those distances in the form of a depth map.

These can then be used in a variety of applications, one of which could be an RL agent.

Using depth maps as a state-input for RL agents has been performed before [13, 14, 42]. How-

ever, studies about whether the application of such depth maps in the context of drone control allow

the agent to generalize better are still lacking. As described earlier, generalizability using RGB

images can bring with it some problems that depth imaging could potentially solve. Furthermore,

what the implications are for this state-representation in the specific task of follow-me behavior is

also relevant.
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3 Theory

In this section, the relevant theoretical background that is essential to the domain of Deep Rein-

forcement Learning will be introduced.

3.1 Reinforcement Learning

RL is a method that is mostly used in dynamic game-like environments where an algorithm receives

control of some actions and is required to learn a certain behavior [11]. Examples of this can be

seen where agents apply RL algorithms to Atari games and achieve relatively high scores on a

selection of them [41]. Being a type of machine learning, it employs a means to map situations

to actions according to the maximization of a pre-determined numerical reward function [11].

The main process of learning is to adapt a decision maker, referred to as an agent, according to

experiences. Here, an action is performed after which a reward is given in the form of a scalar value

by the environment. All the externalities that determine what state the agent is in, is defined as

the environment. This reward is then used as a cue to alter the mapping from states to actions

accordingly. Using this process allows the agent to learn from experience on how to act in order

to maximize its reward signal. The foundation of RL is based on the collaboration between the

agent and the environment. For each time step, the agent finds itself in a certain state. During

this state, the agent has a certain set of actions that it can choose from. For each of these actions,

there is an effect on the environment. After performing a chosen action, the agent finds itself in a

new state, repeating the process of action-selection. This loop is illustrated in Figure 2.

Figure 2: Agent-Environment interaction in RL [11]

The essence of this algorithm is based on the environment’s response to each action from the

agent. During training time, the environment gives the agent a reward, possibly in the form of a

punishment. The function that determines this reward signal, is in turn what the agent will try to
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optimize and therefore, by definition, what the agent will try to learn [11].

To formalize this process, the agent takes a time-step t which is defined to be a single sequence

of state retrieval, action decision and new state retrieval. This is also written as (St, At, Rt+1, St+1).

In this sequence, the agent receives a state St on which it decides on an action a out of the possible

available set of actions A using a certain policy π. Performing this action changes the environment

and provides the agent with a new state: St+1. The environment also provides the agent with a

reward rt. By finding an optimal policy a = π(s) that maximized this reward signal, the agent

learns new behavior. An important aspect to consider for the agent, is the consideration of future

rewards as well, which is recorded in the return Gt of a certain action in a specific state. However,

what actions will be chosen by the agent is dependent on the policy π that the agent employs. The

policy is defined as a probability distribution over the possible actions for each state. Therefore,

by defining an optimal policy that maximizes the return, the goal is achieved.

A crucial concept in RL algorithms is the balance between exploration and exploitation [11].

When the policy is completely directed towards exploitation, the agent will not explore many of

the other possible actions that can be taken that could potentially lead to higher returns. Instead,

it simply tries to maximize its reward signal as much as possible from what it already knows about

the world. However, there are potentially new states that the agent could explore that could yield

higher returns. It would therefore be wise to explore the state-space some more. There is a strong

interplay between exploration and exploitation during the training time of an agent that determines

how much reward the agent will eventually be able to gather. The policies which perform the best

are the ones that are able to balance both of these strategies in order to maximize the overall

returns.

3.2 Q-Learning

There are multiple ways in which to implement the learning algorithm in RL [11]. One of the more

popular approaches, is the method of Q-learning. This method is characterized by keeping track

of the value of performing each action during each state. Each action-state pair’s value is defined

to be the Q-value which is represented as the expected return for choosing an action a in state s,

expressed as Q(s, a) = Eπ [Rt | st = s, at = a]. Intuitively, the expected return is the total sum of

expected reward that will be collected by choosing this action and continuing from there onwards.

This leads to the following simplified recursive equation:
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Q(s, a) = r + γmax
a′

Q
(
s′, a′

)
(1)

The function of this equation in the context of Q-learning is, therefore, to update the Q-values

throughout the learning process where different action-state pairs are being explored. Since the

agent, when just beginning, is unaware of what the values are for each action, it is imperative that

it first probes the environment in order to explore the state-action space. The longer this process

takes, the larger the size of explored state-action space is, and the more accurate the agent’s

predictions about the Q-values can be.

Since Q-values represent the overall return of choosing an action, this will create a mapping

from each state to what the value is of each action in this state, taking into account later state-

action pairs. Having this information provides the algorithm with an overview of good and bad

actions to take in each situation. By then employing a policy that chooses the action with the

highest Q-value in each state, which is also called a greedy policy, the agent is able to maximize

the reward signal.

3.3 Deep Q-Learning

In many RL applications, including the use of RL as a means to control a drone, there is the issue

of how states and actions are represented. The implementation of Deep Q-Learning [27] pose a

solution to this problem, which will be discussed below.

In many domains where this algorithm is useful, the state or actions can be either continuous or

discrete. In most discrete state-spaces, keeping a table of each Q-value for each state-action pair is

a reasonable method to keep track of this information. However, in the case of a continuous space,

keeping a tabular state-representation would vastly inflate the computational costs of storage, let

alone searching time required to sift through this table. This means that there is a necessity to

represent the action space, not categorically, but as a function.

Additionally, in some applications, the state space is being represented as an image. Using im-

ages, which can take up a large range of values per pixel, can further complicate how the mapping

of state to action values happens. However, more importantly, the location of the values become

important. Image processing requires the processing of the interrelated connections between pix-

els in its 2-dimensional spaces. These problems necessitate different requirements to the function

approximation tasks compared to a simple one-dimensional state input.
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Convolutions and Neural Networks

Neural networks have previously been used in order to perform function approximations, especially

in the context of RL [41]. Neural networks are a biologically inspired network of digital neurons that

make predictions and adapt accordingly when presented with a ground truth [47]. The building

blocks, the neurons themselves, have weighted connections to other neurons. These connections

are the weighted sums of their inputs and a bias term. During initialization of such a network,

all of these values, also called parameters, are random. The training process is defined by the

modification of these weights and bias terms in order to fit to the data that it is being fed. This

process happens by the network producing an output prediction, which is then checked according

to a ground truth. Using the difference between this ground truth and the prediction, a cost value

is produced and thereby, a cost function. An algorithm is then used that calculates the gradient of

the parameters that will minimize this cost function, which is also referred to as backpropagation.

During a training cycle, a batch of data is fed forward through a network and a gradient towards

better weights and biases is calculated and applied. Iterating this process, modifies the network to

adapt to the data. More importantly, this also provides the network with the ability to generalize

to new, yet unfamiliar data points. There is a strong trade-off regarding the degree to which a

neural network has been fitted to training data. The more the network adapts, the better it fits

the data and can generalize. Nevertheless, it is possible to overdo this, causing the network to fit

to the data too much, losing its generalization abilities. This phenomenon is called overfitting.

Using neural networks has been an extremely useful tool in many domains [9, 48]. One such

domain is computer vision, which deals with different vision tasks such as visual recognition, image

classification, object localization, and object detection [49]. Some of these tasks have seen drastic

improvements with the introduction of a specific type of neural network called a Convolutional

Neural Network (CNN) [50, 51, 52]. CNNs rely on the principle of convolutions as an operation

on the input. This convolution employs a filter (also referred to as a kernel) which is a matrix

that is applied to the input pixels as a sliding window. Performing this operation on the input,

creates a new image which extracts specific features, dependent on the filter being applied. In the

case of a CNN, the goal is to learn relevant filters to be applied on the input, in order to make

correct predictions. The final layers of a CNN mostly consist of fully connected layers, which are

identical to the normal neural network architecture as described earlier. CNN architectures output

a probability distribution over all the available classes, where the highest probability class is chosen

as a prediction.
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The application of neural networks as function approximators in RL has been a popular choice

[53], but especially so in the case of Q-learning. The determination process of the state-action pairs

and their corresponding Q-values can be performed using the CNN. Instead of a class distribution,

the CNN now outputs predictions about the Q-values of each available action, forming this value

approximation method. By employing a certain policy using these values, different behaviors can

now be either found or performed.

Deep Q-Network

The combination of using both a CNN (or any other type of neural network as a function approx-

imator), as a Q-learning algorithm is called Deep Q-Learning. An agent employing this is called a

Deep Q-Network (DQN) [27] and works similar to a normal Q-learning algorithm. The agent gath-

ers experiences in a certain environment, and stores these experiences in a replay buffer. During

training time, it samples a batch from this replay buffer and performs the feed forward through

the CNN. Using the outputs from the network to compare against what was actually observed

during the batch of experiences. With this difference, a gradient can be calculated which can be

backpropagated through the network to become more accurate in its Q-value predictions. Iterating

this process eventually ensures that the agent converges at either a local or global minimum. Using

samples of experiences as training data is done for a more stable training process because a possible

danger of using only the latest acquired experiences is that the agent will forget learned behavior

from older experiences degrading its performance. Furthermore, changes in parameters also mean

changes in behavior, which leads to new experiences and consequently, a bias in the data. The

fact that the training batches will always contain a proportion of considerably older experiences,

assures that the agent will always be updated with those experiences as well, enabling overall more

stable a training process.

Once a DQN has been trained, policy selection is straight-forward because a greedy policy can

be applied to maximize the current knowledge about the reward space. However, during training

time, to be able to tweak the exploration-exploitation process, an ε-greedy policy can be applied.

This policy selects the actions with the highest Q-value, expect for an ε proportion of times, where

a random action is chosen. Maintaining an amount of randomness during action selection during

training time, ensures that at least some degree of exploration will be present. Once the training

process has been finished, this ε can be reduced to naught, prioritizing exploitation.

19



4 RESEARCH QUESTIONS

4 Research Questions

In this section, the research focus of this thesis will be discussed, together with the sub-problems

that will divide the main problem. This thesis will investigate the following question.

Main − To what extent is the use of Reinforcement Learning in the task of Follow-Me

behavior applicable and beneficial?

In order to formalize the process of answering this question, the next sub-questions are defined.

4.1 Directionality

Since the target object is a dynamic moving object, the need to implement some type of directional-

ity information, as described in Section 2.3.3, in the state representation is required. In this thesis,

the choice has been made to implement a stack of images as means to convey this information. Do-

ing this could improve the training process, in speed and convergence, and could also alter the way

in which the follow-me behavior is being performed. From the literature, it is still unclear whether

the agent will be benefited by adding this in the input regarding successful follow-me behavior. In

order to investigate this, an implementation of an agent trained on state-representation containing

directionality will be tested to answer the following question.

1 − Does the implementation of stacked images as state-representation improve an RL

agent’s training and performance in follow-me behavior?

4.2 Obstacle Avoidance

The desired behavior would preferably not only be to follow a person, but to also successfully

identify and avoid objects that are in the way. Therefore, we will implement a type of state-

representation that can convey to the RL agent information about where potential obstacles are. For

this, state-representations will be changed from normal images to depth maps as an implementation

of this object sensing. Implementing this, allows us to see whether this has an influence on the

training process or the learned behavior and help answer the second research question.

2 − Does the implementation of dept maps as state-representation improve the perfor-

mance of the RL agent in the context of follow-me behavior?
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4.3 Baseline Comparison

Another aspect that will be investigated is the benefit of using Reinforcement Learning compared to

a baseline model. Overall, the goal is to see whether Reinforcement Learning works in the context

of follow-me behavior. An interesting approach to answering this question is to see how the best

working RL agent works compared to a pre-programmed baseline model similar to the techniques

used in previous studies.

3 − Does the use of Reinforcement Learning provide any benefit over a baseline agent?

4.4 Generalizability

Finally, to see whether the agent is able to generalize its learned behavior to new, more complex

environments, the agents will be tested in previously unseen situations. By training agents in

environments where systematic obstacles have been added and consequently testing them in more

complex environments, conclusions can be drawn about how much of the behavior from the previous

environment is transferred.

4 − Do Reinforcement Learning agents generalize their behavior in an unseen and more

complex environment?
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5 Methods

This section will be an examination of the experiments that will be performed to answer the research

questions, as well as the implementation to do so. First, the software that was used to build the

foundation for the RL framework will be discussed. Next, the implementation of the RL framework

will be explained. Furthermore, the metrics and the experiments will be explained.

5.1 Architecture

Each part of the architecture that will be used for the training and testing of the agent will be

addressed. An overview can be seen in Figure 3.

Figure 3: Overview of each element in the architecture used to perform the experiments in

5.1.1 Simulation

The most important aspect of the framework and architecture is the simulation system in which

the drone will operate. As seen in Figure 3, the simulation is the most crucial aspect in which the

RL framework operates. The simulation is a combination of multiple aspects that will be discussed

further, namely the person, AirSim and the physics engine defining the physical environment of

the drone. Each aspect of the simulation environment will be discussed in the coming sections.

AirSim

The program that will be used to take control of a drone will be Microsoft’s AirSim [54]. AirSim

is a coding library that is used in order communicate with drones instantiated in simulation envi-

ronments or physical drones. Next to this, the program allows the user to instantiate a quadcopter
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directly in a virtual environment, together with simulated vision possibilities including a normal

camera and depth-view. These views can be observed at the bottom of Figure 4.Furthermore, using

the Unreal Engine [55], this program allows for a multitude of created environments to be used.

This feature allows the ability to create or use different environments that systematically introduce

variables to be tested. What is more, AirSim has the ability to command the vehicles through a

Python or C++ script, which makes AirSim very suitable to perform Deep Learning. What makes

it even more attractive, is that AirSim allows easy connectivity with the PixHaw API, which makes

it easy for the drone to be implemented on an actual physical drone in order to allow development

for real-life applications.

Figure 4: The AirSim program features

Environments

Another aspect of the simulation, is the physical environment in which the drone will fly. For

this, three environments have been created. A set of agents will be trained and tested in each

environment which will be specified in Section 5.2. Snapshots of the environments from the top

view are visible in Figure 5.
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Figure 5: The layout and obstacles for each individual environment and the walking path of the
person

The shape of the person’s walking path inside of the environments are kept a steady variable.

This shape was picked as a means of balancing the amount of time the person will be walking

straight and making turns. At the same time, in order to keep an even amount of right and left

turns, the need to have two left and right turns was kept in mind. For the Warehouse environment,

a variation was used, where the turns of the person were expanded. Keeping the walking routes

the same eliminates this variable as a possible explanation for why certain models might perform

less well in certain tests.

The people that the drone will be following can vary per environment. As will become clear in

Section 5.1.2, the input states will not contain any information about the specific individual that

is being followed. For this reason, during training time and testing time, a different target person

can be implemented. Nonetheless, at any point in time there will be at most one person in the

environment, which will be the person that the drone will have to follow. Again, in order to isolate

the required task of the agent to follow an individual person, the choice has been made to not

include multiple people.

Looking at the implemented environments, the first environment will be BlocksNormal, which

will consist of no obstacles for the agent to deal with. In this situation, the agent’s ability to learn

the follow-me behavior will be assessed. The second will be BlocksObstacles in which different types

of obstacles have been added to simulate three different situations, namely: tight hallways, wide

hallways and corners. Their locations can be seen in Figure 6. In this environment, the agents

ability to deal with these situations will be gauged. Finally, the Warehouse environments will

contain similarly designed situations, however with much more details. Here, the objects consist

of different types of objects and textures but create similar obstacles for the drone to avoid as in
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Figure 6: Locations of each
type of situation in the envi-
ronments

The areas correspond to
the following situations:
Green = Tight hallways
Blue = Wide hallways
Yellow = Corners

the BlocksObstacle environment. In this way, the behavior can be analyzed specifically by looking

at how the agent deals with each specific situation to see whether the agents are able to generalize

their behavior to new situations.

5.1.2 Agent Structure

In this thesis, a DQN will be implemented as an agent that will perform Q-learning. The choice

for this type of learning has been made because of the aforementioned reason that the DQN can

easily be implemented to be tested in new domains. Furthermore, its inputs are easily changed as

necessary for the experiments that will be run. Now the overall architecture of the agent, which is

the decision making body that is actually in control of the drone, will be described.

Inputs

The camera inputs of the agents will have a resolution of 128 x 72. Next to this image, the bound-

ing box of the person in the view of the drone will be derived. This will provide the drone with

information about the location and distance of the person in its camera view. The bounding box

will be retrieved using AirSim’s Segmentation maps. These maps provide the same image as the

view from the camera of the vehicle, but instead each pixel represents what object is in view. An

example of one such segmentation maps can be seen in Figure 7. The color in this segmentation

map for the person is preemptively set during initialization of the entire program, and when the

drone receives this frame, it searches for the pixels corresponding to this color. When this is avail-

able, simply taking the extremes on both axes will provide the agent with the bounding box of the

person. The pixels in this bounding box area will then all receive a -1 value while the rest of the

image will be processed according to what type of combination of state-representation is chosen.
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These images could be stacked, which would result in the repetition of this process three times.

The image itself could also be a depth map, in which case no further processing is done. If the

image is a normal RGB image, it is first grayscaled. Doing this removes the three channels in an

RGB image while still maintaining all of the required information. Before passing this state to the

agent for training and decision making, the image is normalized in order to stay within a range of 0

to 1. An important note here to make is that the range of the bounding box in the image will stay

-1, making the possible values for each input to the agent range between -1 and 1. This normalized

image is then used as an input for the agent to decide on what action to take.

Figure 7: Segmentation Map from AirSim

Network and Hyperparameters

Every type agent will be a variation of the DQN agent and will therefore, contain the same network.

This network can be seen in Figure 8 and the specific architecture details can be found in Table 1.

Being quite modest in size, this neural network has approximately 2M parameters, which makes it

computationally easy to train and deploy. This architecture has been chosen because of the fact

that a convolutional network is required, as it is supposed to process image data. However, it does

not require to be a large network as the limitation of this thesis is that it should stay resource

efficient. Furthermore, it is only required to make decisions upon these images, so the network

architecture does not necessitate a network that is extremely large. The optimizer that will be

used is Root Mean Square Propagation (RMSProp) [56] with a learning rate of 0.001.
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Table 1: Network Architecture of the DQN

Layer Parameters

Convolutional layer 32 Filters of 8x8 and stride 4
Convolutional layer 64 filters of 4x4 and stride 2
Convolutional layer 64 filters of 3x3 and stride 1
Fully connected layer 512
Fully connected layer 128

Figure 8: Network Architecture

Outputs

The DQN’s output will be an integer between the range of 0 and 5, each of these representing

an action as is illustrated in Table 2. These actions have been chosen so that the agent is able

to manoeuver in the environment in most directions. The ability to orient itself is a requirement

in order to change its direction. However, this orientation is only possible on a horizontal axis.

Vertically, the drone will remain at a static height. Its vertical orientation is unable to change as

these movements would also result in a horizontal displacement. Changing the camera positions is

synonymous with moving the drone itself. An important note to make is that the drone is unable

to move backwards. The reason for this lack of movement is because the drone is unable to sense

what is happening in the back. Nonetheless, the movements to the right and left have been included

because the drone is able to partially observe the obstacles in these settings.

27



5 METHODS

Table 2: Mapping from network output to actions

Integer Action
0 Do nothing
1 Orient right
2 Orient left
3 Go straight
4 Move right
5 Move left

5.1.3 Agents and variations

In order to answer the research questions (4), a variation of the DQN will be implemented. There

will be two types of agents and an additional of two variations that will be used in this dissertation.

Each of these variations will be introduced and discussed here.

Baseline

First, a baseline that does not use RL techniques but more straight forward heuristics to decide on

an action will be implemented. The method used for this, has been inspired by the techniques that

are used in drone control when RL is not used, as discussed in Section 2.1. These methods use the

simple assumption that the drone is tracking the object when a set of conditions are met. These

conditions include that the object is centered inside of the camera input and that the size of the

object corresponds to a certain proportion. From these conditions the distance to the object can

be derived and whether the drone is looking at it.

Using these principles, the following agent has been developed. With the received camera input,

the baseline agent determines where the bounding box is in the image. If the center of this bounding

box is in the left side view, the agent will rotate left. If the bounding box is in the right side of the

view, the agent will rotate right. If the bounding box center is within a range of the center of the

view, the agent will check what the height of the bounding box is to see how much it differs from

the goal height. The goal height being 20% of the image height, an additional margin of error will

be permitted in order to prevent constant movements of the agent. In the case that the bounding

box height is within this margin of 25%, the agent will not move. In the other case, the agent will

move forward, coming closer to the person.

Using these methods removes the need to perform calculations about the exact location of the

person, while also maintaining sufficient distance from the person. At the same time, as will be

elaborated upon in Section 5.1.4, these values have been fine-tuned with the reward function in
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order to also maximize the reward function using this method. This agent does not require any

training and is therefore simply used as a baseline model in order to compare the RL models to.

State-representation variations

The RL agent that will be used will be a DQN. However, its state can vary and these will be tested

accordingly. In this thesis, two such variations will be implemented and investigated.

The first variation to the state-representation that can be made is the use of stacking. Con-

sidering the limitations of this study to maintain a low computationally functioning agent, the

decision has been made to opt for video input as a means to communicate directionality to the

agent. The use of RNNs, would require too much computing power. This has been implemented

by taking three consecutive frames from the environment with 0.1 second intervals as a means to

form a video. This video can also be considered a stacked image of the last three frames. This

stacked image can be created by getting a frame from AirSim (either normal or depth), deriving

from it the bounding box, processing it as described in Section 5.1.2 and then finally, simply to

stack them in a 3-dimensional image as can be seen in Figure 9. This object is now used as the

input for the agent.

Figure 9: Pipeline to process AirSim images in order to create a state for the DQN agent

Another variation is the use of depth images. In order to allow the agent to sense obstacles in

its surroundings, the choice has been made to us depth maps. This option combines the ability
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for the agent to receive image input, perceive the person and detect the distances to the obstacles

around it. AirSim provides the ease of simply requesting depth maps from the environment, giving

the agent access to the ground truth distances to all of its surroundings. Important to note, these

depth maps can easily be combined with the stacking of them, allowing for all of the possible

combinations of these agents to be tested.

5.1.4 RL Framework

The reinforcement learning framework are also an important part of the implementation that re-

quire some discussion. The use of a python library that builds upon the machine learning library

Tensorflow, called TF-Agents has been opted for. Tensorflow is, in itself, a library that abstracts

machine learning algorithms to be implemented. Adding to this, TF-Agents allows for a high-level

abstraction of the RL implementations. Nonetheless, more specific RL environment aspects require

to be developed, each of which will be elaborated upon in the next sections.

RL Environment

An important aspect of reinforcement learning is the RL environment. Here we refer not to the

simulated environment where the drone is flying in, but the RL environment that creates the

states and returns rewards where necessary, as seen in Figure 3. The agent interacts with the RL

environment, which again interacts with the simulated environment in order to get the required

information. Crucially, RL algorithms tend to operate in episodes. An episode is characterized by

a beginning state and a terminal state, with transitions of steps that the agent is taking in between.

After this terminal state, the environment resets and a new episode begins.

In this implementation, the starting state of the person is directly behind the person at a slight

distance. Keeping this initial distance from the person removes a bias in reward in earlier states of

an episode. After this, a step is taken by the agent. This step process is defined as follows. First,

a state is retrieved, which is performed as described in Section 5.1.2. Consequently, an action is

chosen by the agent according to this state after which a reward is calculated for this new state.

Finally, in each step, an assessment will be made as to whether an episode has ended, to determine

whether the terminal state has been reached. This will be done by checking whether one of the

next three requirements have been met: the agent has collided with an object, the agent has no

bounding box in its camera, meaning the person was lost from its view; more than 50 steps have
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been taken. These conditions ensure that an episode consist of a finite sequence of actions for

the DQN to be able to learn from. Between these episodes, the environment resets. This reset

makes sure that the drone is reinstantiated to the correct position. In this case, the drone is being

positioned directly behind the person and made sure to be oriented towards the direction of the

person as well. These resets are meant as means to not waste time in state-spaces during training

time that are not conducive for the agent to learn. States where it has collided or loses sight of the

person are not relevant for the drone in order to learn how to follow successfully. Therefore, before

too much time has been lost in these states, the environment resets to a moment from where it can

continue its learning process successfully.

Training

Before the models can start training, some preparatory steps are performed. DQN requires a replay

buffer where it stores a large dataset of experiences. This is necessary for the DQN as it requires

samples from this buffer as an input for the network for each training step. Since this would also

cause the primary training steps to be skewed, it’s necessary to fill part of the replay buffer before

training begins. Therefore, before training is started, an agent that performs random actions moves

about in the world for 500 steps, filling a portion of the replay buffer, which has a size of 10,000

experiences total. This makes sure that an initial portion of the state-space is explored already

before training begins.

Next, the training process can be described as a loop where the same steps are being taken each

time, also referred to as an epoch. This loop starts by performing 50 movements in the environment.

These 50 movements correspond to a full episode before the environment resets. Some of the earlier

episodes might not reach their 50 steps limit, however, nevertheless, a total of 50 steps will be taken

before the network is trained on these experiences. This stabilizes the increase in replay buffer size

throughout each epoch. The batch size of a sample is 64 and each model will be trained either to

convergence or 2000 epochs.

It is important to note that the TF-agents library maintains two policies for an agent. One

collect policy which is meant to always keep a degree of randomness in order to always keep some

level of exploration. Next to this, is an evaluation policy which is the optimal policy the agent has

learned. Every 50 iterations, an evaluation step is taken. Here, 10 episodes are being played by

the evaluation policy. The required metrics, as discussed later, are stored and the training loop

continues.
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Reward Function

The most important aspect of RL is the reward function. Since learning in this context depends on

the maximization of the reward function, the behavior that the agent will learn is highly dependent

on this reward function. In this thesis, the choice has been made for an easily-developed sparse

reward function. This is because, as mentioned before, there is no need to imbue the agent with

pre-determined knowledge about how to reach the goals. This will allow the agent freedom in

interpretation about how to solve this problem and not limit it to behavior decided upon by the

developers.

The reward function requires a connection from the state input. If this is missing, the agent

is unable to actually perceive the impact of its actions on its states. To solve this problem, the

bounding box will be used as an object to determine the reward, considering as it contains both

information about the relative location as well as the distance to the person. Here, similar assump-

tions as the baseline will be made about relative location of the person, as well as its distance.

The person should simply be in front of the drone, where centering the person in the middle of its

camera view is included in the reward function. With regards to the distance to the person, a goal

bounding box height has been determined using the distance to the drone. The goal distance to

the person has been determined to be four meters, which, combined with the height of the drone,

results in the person taking up 30% of the image height. Combining both the centering and the

distance conditions in a reward function results in the following set of rules.

If there is a bounding box and no collision is happening, there are three conditions that are

required to be met. The first of these is the location of the x value of the bounding box center.

When this value is within a 20% range of the center of the image, this condition is met. The second

condition to be met is that the height of the bounding box is within a 30% range of the goal height.

The final condition to be met is that the location of the y value of the bounding box center should

fall in the top 80% portion of the image. This ensure that the drone is not positioned too close

to the person. When all of these conditions are met, the reward is determined to be 1. In case of

detected collision or a bounding box is missing, a -1 is returned. All other cases return a 0.

In all of the tests, the reward function is kept a constant, in order to use this function as a

metric for the performance of each agent. This way, all of the tests can be compared measured

according to the reward received.

32



5 METHODS

Metrics and Methods of Analysis

The metrics to evaluate the training process, the follow-me performance and the behavior will be

discussed. Multiple perspectives will be taken. First, the training process is evaluated according

to certain metrics. Next, overall performance metrics will be used as well. Finally, in order to

compare the behavior of each agent, some formalizations will be introduced.

An overall crucial metric, which will be used throughout this thesis, is the average return. In

this metric the average reward that was gathered in an episode is recorded. This metric will be used

to evaluate both the training procedure but also the agent’s overall performance. As this metric

encapsulates all of the requirements of the agents behavior, namely obstacle avoidance, person

centering and keeping its distance.

Metrics specific to the training procedures are the following. First, next to the average return,

the average length of an episode will be tracked. Since the episode can end early when a crash

happens, or the person is out of sight, the longer an episode takes, the better the drone is at

following the person. The cap here is at 50 steps, since that is when an episodes resets regardless.

During the evaluation step there is a variation to these metrics. Instead of the average episode

length and the loss, the minimum and maximum return are being recorded. These express the

worst episode and the best episode that the model performed. The preferred situation is where the

range between these two value is not too large. However, if that is not the case, looking at these

extremes can shed a light on where the model is still lacking.

With regards to quantifying the agent’s behavior, a number of analysis techniques have been

used to get in-depth information. First, for each of the 50 possible time-steps that an episode

can last, the average received reward will be recorded. This information gives insight into how

an average episode progresses for the agents and express potential bottlenecks of the agent as it

showcases what the distribution is of the received reward through an average episode. Next to

this, the paths the drone has taken throughout the test run and the location and type of episode

ending will also be recording. This information provides data about the behavior of the agent and

in which situations it is struggling the most. All of these aspects will be used to draw conclusions

about the performance and behavior of each individual agent.

5.2 Experiments

In order to answer the research questions from this thesis a set of experiments will be run in the

effort to answer them. The experiments will be performed per environment, each of them increasing
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in complexity. First, tests will be run in BlocksNormal, after which BlocksObstacles will be used

to run tests in. Finally, tests will be run in the Warehouse. These tests together with the research

question they answer, are illustrated in Figure 10. Each will be discussed in the following sections.

5.2.1 BlocksNormal

First, four agents will be trained and tested in the BlocksNormal environment. The procedure in

which this will happen, will interchange training with test sessions. Primarily, a DQN with single

normal images and a DQN with stacked normal images will be trained. After this, both of them

will be tested. The best working state-representation will be used for the final agent to be trained

using depth images. This means that either a single depth or a stacked depth image DQN will be

trained and tested. Finally, a baseline will also be tested and used for a comparison. After all of

these tests have been run, the behaviors will be analyzed together with their overall performance.

This means that each of the agents will be compared to the baseline in order to quantify how much

better the RL agents perform compared to the baseline.

5.2.2 BlocksObstacles

The second procedure will be performed in the BlocksObstacles environment and this will be per-

formed in the exact same order as the previous environment. However, in the end, the performance

will not simply be compared to the baseline. After the two tests in the BlocksNormal and the

BlocksObstacle environments, the expectation is that there is a degradation in performance. This

proportion of degradation will be used to compare the decrease in performance of each RL agent as

well. Performing this comparison will give insight in whether the agents are comparatively better

at handling this environment than the baseline. Finally, the best working agent in this environment

will be retrained using a slightly modified reward function. This reward function will have tighter

margins. Where the normal reward function had a margin of 25 %, this one will be performed using

10 %. Performing this test will reveal how the behavior can be targeted using the reward function.

5.2.3 Warehouse

Finally, training and tests will be performed in the Warehouse environment. Starting by test-

ing and comparing both the best working RL agent from the BlocksNormal and BlocksObstacles

environment. The better working model of these will be retrained inside of the Warehouse envi-

ronment. Performing these tests will give insights in to how much each agent was able to transfer
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knowledge from its trained environment to this new environments. Comparing these models to the

baseline degradation, similarly to the previous environments, will again show how much better the

RL agents are.

Figure 10: Experimental procedure that will be followed. The order will be to start with the
BlocksNormal environment, moving to the BlocksObstacles and ending with the Warehouse
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6 Results

This section will present and analyze the results from the described experiments and will be ad-

dressed similarly to that structure. However, first, the baseline will be tested in each environment

in order to establish the complexity of the environments beforehand.

6.1 Hardware

The experiments have been performed on a NVIDIA Geforce GTX 980M graphics card, with 8GB

of RAM and an Intel Core i7-4720HQ CPU with 2.60GHz. The simulation uses a mix of both the

GPU and the CPU in order to perform the basic operations. The RL framework relied solely on

the CPU in order to allow the rest of the GPU space to be used for the training of the agent.

6.2 Baseline Performance

The initial tests will first be performed by a baseline agent. This agent has been run in each

environment, in order to see how it performs and behaves. The same metrics as for the RL

agents will be recorded, and these values will be used as a measuring tool for the RL agents. More

specifically, the degradation in performance with the previous environment will be calculated. After

having run the tests, these results can be seen in Figure 3.

Table 3: Average return of the baseline agent in each environment and the corresponding degrada-
tion of performance compared to the previous environment

Environment Average Return (/50) Difference*

BlocksNormal 40.2 -
BlocksObstacles 22.9 -43.0 %
Factory 9.9 -56.8 %

*The difference has been calculated by comparing the average return of an agent with the average return in
the previous environment.

What can be deduced from these initial results, is that the baseline agent has more trouble

the more obstacles are being added to the environment. With the addition of walls in the Block-

sObstacles environment, the agent already performs considerably worse. However, what becomes

clear, is that the implementation of the agent in an even more complex environment, results in an

even bigger performance drop. These findings more strongly emphasize the weaknesses of baseline

implementations: namely their inability to deal with obstacles and complex environments.

In order to further investigate how an average episodes is performed by the baseline, a reward
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distribution has been created, as seen in Figure 11. Here the proportion of time that a positive

reward signal was received at a given step in the episode has been plotted, with the green line

representing a running average of the last 5 steps.

Figure 11: Baseline reward distributions in each environment

The first five frames of an average episode look the same for each agent. This is reflected in the

image by the sharp increase in reward early in the episode. During the first frames, it is hard for the

agent to receive reward because of the reset distance between the drone and the person. Reflected

in the figure, the beginning frames contain low values. This lack of reward in the initial steps is

also the explanation for why the agent will never be able to receive an average reward of 50, as

receiving a reward in these initial steps is extremely hard. The consequent steps, however, increase

drastically, seeing as the drone is approaching the person. This behavior happens in each episode

because in the first moments, the chances that the person will have walked behind an obstacle are

slim, resulting in these moments where the agent is able to follow. Nonetheless, it is still very hard

to maintain a 100% reward in each consequent step, as the agent sometimes acts slightly too late,
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resulting in some steps where no reward is received. This same pattern is visible in two obstacle

environment, however with a proportional degradation in rewards in the later stages. This points

at the inability of this agent to avoid obstacles after the initial run-up to the person.

Yellow = Normal end | Blue = Out of View | Red = Collision

Figure 12: Paths and episode ends of the baseline ends during 100 episode test runs for each
environment

Looking at the path of the baseline inside of the BlocksNormal environment in Figure 12, it is

clear that the agent follows the paths of the person neatly. During the turns, the paths of the agent

finds itself inside of the diameter of the turn, which is to be expected since in these moments all

the agent needs to do is simply turn to keep the person in its FoV with the sporadic move forward

in order to keep the person at the right distance. However, performing this behavior inside of the

other two environments posed problems for this agent as can be seen by the increase of collisions

and moments of losing the person further illustrated by Table 4

Table 4: Unsuccessful episode endings of the baseline in each environment during the test run

Episode End Type BlocksNormal BlocksObstacles Warehouse

Out of View 0 33 16
Collisions 0 20 60

Total (/100) 0 68 76

Looking at both types of hallways that the agent finds itself, it does not seem to struggle with

these situations. Both the tight hallways on the outer sides of the walking route and the wider

hallway in the middle of the map, seem to be easy situations for the baseline to handle. This

makes sense, as the baseline is programmed to simply move forward in these situations. It is the

corners situation where this agent is unable perform adequately. There are four clusters where

these problems seem to arise. Two at the bottom at the beginning of the turn, where the agent
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keeps losing sight of the person, and two at the top where the drone keeps crashing into the wall

as well as lose sight of the person. Why the agent struggles in these situations is an expression of

the fact that in these turns, it is necessary to be able to avoid an obstacle. Such behavior is not

programmed, resulting in failing situations. An example of a failing moment can be seen in Figure

13.

Image: view of the drone | Arrows: Action the agent performed

Figure 13: How the baseline loses sight of the person in BlocksObstacle

Since the person is within the correct distance, the agent does not come closer but instead

keeps centering the person in its view. However, as can be seen in the last three frames, the wall

is becoming visible. This does not influence its behavior, leading to the person walking behind the

wall which makes the drone lose sight of the person. The reason why the collisions occur in the top

two clusters, has to do with the type of situation the drone is in. In the top two turns, the drone

is leaving tight hallways, where there is less room for mistakes leading to early collisions. This is

less of a problem in the bottom two turns, where the drone is in a wider hallway with more space.

Finally, looking at the performance of the baseline in the warehouse environments, it is clear

that the agent has even more problems. As seen in Table 4, a vast majority of the episodes

have ended in either a collision or the drone losing sight of the person. Looking at Figure 12, it

becomes clear that the agent struggles in exactly the same situations as in the BlocksObstacles

environment. The clusters of out of views and collisions happen exactly in the same situations as

in the BlocksObstacles environment. The exact locations can be observed in Figures 20 and 25 in

Appendix A.

With these experiments, it becomes clear that the baseline is an agent that works the best in

the BlocksNormal environment, where no obstacles are present. However, with the introduction of

obstacles, this heuristic method becomes increasingly problematic and unable to deal with these

new additions to the environment. These shortcomings show that the use of heuristic based methods

are unable to deal with changing factors, unless explicitly programmed to do so. There is still a

benefit for agents to be able to adaptively behave according to the environment, which would be the
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case for RL agents. Using this behavior as a control condition in the next experiments enables the

drawing of concrete conclusions about the specific way in which RL agents are able to outperform

such a baseline.

6.3 BlocksNormal Environment

In this section, the training and test results of the agents inside of the BlocksNormal environment

will be discussed. First, the training procedure will be addressed after which the test runs will be

elaborated upon.

6.3.1 Training Process

Inside of the BlocksNormal, a set of agents have been trained. Which variation on the agents has

been trained has been selected by looking at each consecutive test result. After training the single

normal image DQN and the stacked normal image DQN, test runs are performed to see which

performs better. The agent with the higher average return is used for the next training session,

where it is retrained using depth images instead.

The training progression can be observed in Figure 14. The data of this process has been

smoothed in order to observe the underlying trend in the volatile data. Meanwhile, the range of

the data has also been added in order to still perceive the volatility of the training process.

As has been discussed previously, the training processes is interrupted by evaluation moments

at each 50 iterations. The differences between training and evaluation can be seen in the figure.

The two main metrics that are recorded during training time are the average episode length and

the average return during each episode, while the evaluation cycles are being observed through

average return, maximum return and minimum return.

Initially, the starting points of each average episode length during training are all divergent.

This happens because the initial parameters of each model are instantiated randomly. When this

happens, the agent also acts randomly making the probability that the drone loses sight of the

person low. Losing the person from its view happens because the required behavior to lose the

person consists of a sequence of the same movements, specifically a rotation in any direction. The

chances that such a sequence occurs under a random acting agent is very slim. As the agents

start to learn, new behaviors appear, including faulty ones such as sequences that lose sight of the

person. This process is what can be seen in the initial dip that is visible in Figure 14.
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Figure 14: Training Process in BlocksNormal Environment

After this, the agent learns better behavior leading to the recovery in the average return. This dip

is not reflected in the average return, because this learning process happens before the agent has

found the right distances to the person to receive a reward.

Furthermore, during the training process, all the agents were capable of converging their average

episode length close to the maximum number. Since an episode can at most be 50 steps, if the

agent is capable of keeping the person in its FoV throughout this entire time, the episode length

will be 50. Seeing as all the agents are able to converge close to this limit, this signifies that the

agents have all been able to learn how to keep the person in their FoV, whatever its distance. This

is reflected in the training average return as well, where the curve is similar in shape to the average

episode length. The longer the episodes, the higher the average rewards that the agent is receiving

throughout each episode. Being able to keep the person in its FoV signifies a first step to learning

how to perform the follow-me behavior.

The volatility in the data is explained by the random initialization of the agents. As the epochs

progress, this volatility reduces, furthermore emphasizing that the agents are becoming more stable.
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When it comes to the average return during training cycles, all the agents are able to converge

to similar values, being around 30. This means that out of the 50 steps that the agent is taking,

an average of 30 frames were spent in goal states. The remaining frames have therefore been spent

in states where the person was either not centered or not close enough. Comparing this to the

evaluation average return, this metric converges higher, around 35. The reason why this is larger

than the training value can be explained with the fact that the training cycles happen with a

collect policy which includes a certain degree of randomness. The evaluation cycles are performed

using a greedy policy. This means that there will always be a slight discrepancy between these two

converged values in favor of the evaluation average return.

Looking at the progression of how the agent learned its behavior, the maximum value that the

agent earned in the evaluation run also converged around 50. Therefore, the best episode that the

agent is able to perform, is one where in most of the steps the agent was in a goal state. Considering

this, it is interesting to see that the single depth image model was able to achieve these near perfect

episodes the fastest, compared to the other models. The ability to sense the distances between itself

and other objects seemed to have a positive influence on the training process for the agent in an

environment where no obstacles are present.

Finally, the minimum return in an evaluation run is very volatile. This most likely has to do

with the fact that some episodes seem to still confuse the agent enough for it to end the episode

very quickly by losing it out of sight. Nonetheless, the overall trend of the minimum rewards seems

to have a positive slope. The final values that all of these agents converge on is around 20, which

means that the agents have all learned to have a type of behavior that at the very least, is able to

gather around 20 reward points per episode.

6.3.2 Test Results

The average return and baseline comparisons of the test runs performed in the BlocksNormal

environment can be observed in Table 5.

42



6 RESULTS

Table 5: Average return of the agents and performance comparison with the baseline in the Block-
sNormal environments

Agent
Average return

(max. 50)

Compared

to baseline

Baseline 40.2 -

DQN - Single Normal 35.2 -12.43 %

DQN - Stacked Normal 31.9 -20.64 %

DQN - Single Depth 42.0 +4.5 %

Overall, these results show that only some of the RL agents in this environment are able to

match the performance of the baseline. A surprising result, is that the stacking of images did

not seem to improve the performance, and had the largest performance drop compared to the

baseline. This is interesting, as this means that although the RL algorithms were able to match

the performance of the baseline throughout their learning process, the stacked image RL agent did

not. Although RL is able to teach itself behavior that would be similar to a very straight-forward

baseline method, the addition of a stacked image state-representation impeded the agent so much

as to reduce its average return.

Furthermore, the use of depth images instead of normal images did appear to boost the agent’s

performance, enough for an average of 7 frames per episodes and an increase in performance com-

pared to the baseline. In order to better understand the behaviors of each of the RL agents during

these test runs, the next sections will focus on each specific aspect of their behavior.

Reward Distribution

In order to analyze how each agent performs an average episode and where each agent’s strongest

aspects are, Figure 15 has been made, where the green line represents a running average of the last

5 values.
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Figure 15: Reward Distribution of each agent in BlocksNormal environment

As can be seen, there are differences in how each agent performs an average episode. Most

notable is that, with the exception of the depth agent, most agents struggled with keeping a stable

reward for longer than 25 steps. Initially, this is not different from the baseline and points to

the fact that the longer an episode takes, the higher the chance the episode ends unsuccessfully.

However, the contrast with the depth image is surprising, who performs very stable. This shows

that the model has learned to keep making decisions that allow the agent to stay in goal states on

a stable basis.

These results show some shortcomings of the RL models which did not use a depth imaging.

Both of these agents were less stable in their behavior throughout an average episode than the

baseline agent. In order to analyze what the exact behaviors are that lead to these reward distri-

butions, a more in-depth look will be taken at each of them inside of the environment.

Behavior

To analyze the overall behavior of the agents, the paths throughout the 100 episode test runs have

been superimposed over the path of the person. This imposition can be seen in Figure 16. The

added green lines are the path of the agent during the episode. The red dots have been the episode
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Figure 16: Paths and episode
ends of all the agents during
a 100 episode test run. The
green lines represent the flight
paths of the agent.

The dots correspond to
the following episode ends:
Red = Collisions
Blue = Out of View
Yellow = Normal

ends that occurred through a crash. Blue dots indicate the drone lost sight of the person and a

yellow dot simply means that the episode ended after 50 steps.

The most notable element in this image, is the contrast that the single normal and stacked

normal image agents have compared to the other two agents. Both of the former agents have

very rough flying paths compared to the other two. The single normal image has taught itself

how to follow the person around its paths, but has done so with behavior that is still sub-optimal

considering its average return and includes a high level of variability. Considering the frequencies

of unsuccessful episode ends from Table 6, this further emphasizes the weaknesses of this agent.

Table 6: Out of View of the agents in the BlocksNormal environment during testing

Agent Out of View (/100)

Baseline 0

DQN - Single Normal 15
DQN - Stacked Normal 19
DQN - Single Depth 0

A possible explanation for this high variability could be the fact that the use of normal images
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results in a large state-space making it hard for the agent to find a global optimum. Instead, it

settles at a local optimum and the search for better action sequences remains hard and prone to

fail.

With regards to the other underperforming agent, the stacked normal agent performs a com-

pletely different behavior than all of the others. This agent positions itself to the right of the person

and attempts at keeping the person in view from this perspective. This strategy works throughout

the moments where the person is walking forward, however, as can be observed in Figure 17, it

finds itself in a situation that is much more difficult to successfully process afterwards.

Image: view of the drone | Arrows: Action the agent performed

Figure 17: Stacked normal agent losing sight of the person

Such situations explains the sudden drop in the reward distribution in Figure 15, which happen

because the agent deals with these states in later stages of an episode, as seen in Figure 16.

A potential explanation could be the fact that a combination of an increased state-space by

the stacking of images and the ability to perceive movements better when the drone is positioned

sideways is impeding the learning process. Positioning itself to the side at some point during the

training process could lead to higher rewards for the agent. Once this behavior has been reinforced

through a large number of training cycles, it is increasingly hard for the agent to unlearn this

behavior. This is especially the case considering that the DQN samples from a the larger replay

buffer, reinforcing its memory that these actions lead to higher rewards. Furthermore, when these

sequences of actions lead to later situations that are problematic, as seen in Figure 17, the increased

state-space also impedes the agent even more to find better action sequences.

Finally, looking at the single depth agent, the higher values in average return are being reflected

in its behavior. The overall flight paths are smooth, even compared to the baseline. Its behavior

is therefore very stable, further emphasizing its stability as was observed in its reward distribution

(Figure 15). Furthermore, no episode has ended in the agent losing sight of the person.

In contrast to the other agents, the performance of the depth agent points to the simplifying

ability of using a depth map state-space. Additionally, the opposite can be said about the use of

stacks of images. Increase in state-space in this manner is not helpful, at least in environments
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where they do not convey useful additional information and the opposite effect with regards to the

stacking the state-space. Comparing the agents to the baseline, indicates that there is a benefit of

using RL methods combined with depth maps over the baseline in the task of follow-me behavior

in an obstacle-free environment. Meanwhile, the use of normal images and stacked imaging do not

provide useful additions to an agent in this context.

6.4 BlocksObstacles Environment

In this section, a similar procedure will be performed in the BlocksObstacles environment. Ad-

ditionally, extra analysis regarding the behavior of the agents will be performed to get a grip on

the bottlenecks of each specific agent. Furthermore, using the best working agent from the initial

training and test runs, another agent will be trained using the same architecture, however with a

different reward function. This will be performed in order to measure the impact of the reward

function on the acquired behavior in the context of an environment that contains obstacles. The

training procedure of all of these agents will be described, which will then be followed by the test

results of each of them.

6.4.1 Training Process

The training process has proceeded very similarly as in the BlocksNormal environment, with some

extra points of attention. The exact process can be observed in Figure 18. The most notable point

that can be seen is that the agents were not able to converge their average episode length to the

maximum. Some performed better than others however, but none of them were able to exceed a 25

step average. An overall trend in all the metrics is a significant decrease in performance compared

to the previous environment. This was to be expected looking at the drop in performance of the

baseline in this newer more complex environment.

Another interesting point to note is that in the training average metric, we see that the stacked

depth model was able to get to its convergent value the soonest. Especially the single normal image

model underperformed compared to the other two models, which converged around a similar value.

These features are also observed in the evaluation average return metrics, where the stacked depth

image model reached the highest values the quickest.

Finally, the maximum return of the agents did reach a convergence value of almost 50, mean-

ing, again, that the agent’s best episodes were the best that the agent could have done in these

situations. At the same time, the minimum return of the evaluation episodes were much lower in
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comparison to the Blocks training cycle. These features show that the models have diverged much

more to the extreme, especially in the lower ends, which resulted in the reduced performance. It

is clear that the obstacles in the environment have had a worse effect on the minimum return and

not so much on the highest return.

Figure 18: Training Process in BlocksObstacles Environment

6.4.2 Test Results

Next, we will look at the results that were obtained from testing the models trained in BlocksOb-

stacles environment in their own environment. The test runs results for this can be seen in Table

7. This time, the expected return looking at the baseline degradation has also been included and

the increase in performance compared to the expected return can also be seen. Finally, drop in

performance compared to the last environment has also been added.

These results show that the additions have had a positive influence on the performance of each
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Table 7: Average return comparisons of test runs in BlocksObstacles

Agent
Average return

(max. 50)
Expected
return*

Difference
expected
return**

Difference
previous

environment***

Baseline 22.6 n.a. n.a. -43.7 %

DQN - Single Normal 19.1 19.8 -3.5 % -45.7 %
DQN - Stacked Normal 24.8 18.0 +37.7 % -22.3 %
DQN - Stacked Depth 30.1 23.6 +21.6 % -28.3 %

*The expected return has been calculated by using the degree of degradation of the baseline going from the
BlocksNormal to the BlocksObstacles environment. In this case, it was 43.7%.
**The percentage change in performance of the agents compared to the expected return.
***The performance change for each agent compared to their counterpart in the previous environment.

consecutive agent implementation. Most notably, the use of stacked images has proven to be a

more useful addition to the agent than previously, having the largest performance boost compared

to the expected performance. Next to this, the fact that the performance difference of the stacked

normal agent is significantly less than the single normal image also emphasizes this point. This

is the case for both the comparison between the trained agent in the previous environment, but

also for the comparison to the expected return. Meanwhile, the use of depth imaging had even

better results. Although the difference has been slightly higher, the overall performance is still the

highest. Seeing as the depth agents have been the best performing models in both environments,

this slightly higher performance difference is not unsurprising. Overall, the stacked and depth

agents outperformed the baseline performance, both in expected degradation and average return.

These results show an initial clue that the use of RL algorithms can produce better performing

models compared to the baselines. However, the state-representation used for these RL agents

does matter. Further details will be elaborated upon in the next section. The specific behavioral

elements that comprise these results will be analyzed next.

Reward Distribution

Looking at the rewards that each agent received on an average episode during the test run, which

can be found in Figure 19, we see some differences between the agent’s behavior.
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Figure 19: Reward distributions of models trained in BlocksObstacles environment

The only difference that stacking the images does is a slightly larger reward during the interme-

diate steps of an episodes. This means that the agent is in goal states for a longer duration, before

dropping to the lower values. However, both of these agents, in contrast to the stacked depth image

model, have a downward trend. The longer the episode, the more the agent struggles with follow-me

behavior, getting itself in crashes, losing sight of the person or simply being too far. However, the

stacked depth image model can keep a steady value from the 15th frame onwards, despite a drop

in the initial frames. It is clear that the previously observed stable behavior in the BlocksNormal

environment is also appearing in this new environment. Again, the use of depth maps has been a

beneficial aspect with regards to the agents developing overall stable behavior. Nonetheless, the

depth agent still is struggling with later stages in an episode. The behaviors responsible for these

distributions will be analyzed next.

Behavior

The next analysis will look at the flight paths of the agents in the BlocksObstacles environment.

The visualization for these paths can be seen in Figure 20. Additions to this figure are the areas in

which the episode ends have taken place. These areas will be used to analyze the specific obstacles

50



6 RESULTS

and situations the agents struggled with. The flight paths without these areas can be seen in Figure

30 in appendix A.

Figure 20: Paths and episode
ends of all the agents during
a 100 episode test run in
BlocksObstacles. The green
lines represent the flight paths
of the agent.

The areas correspond to
the following situations:
Green = Tight hallways
Blue = Wide hallways
Yellow = Corners

The dots correspond to
the following episode ends:
Red = Collisions
Blue = Out of View
Yellow = Normal

From these images, the erratic behavior of the single normal image is visible again. Furthermore,

the stacked normal agent also repeats the pattern of behavior of positioning itself to the side of the

person, however this time on the left side.

Moving on to the next agent, the depth agent, the same pattern of smooth and stable flight paths

can be observed as previously. Nonetheless, in this environment, the number of collisions and out

of views has increased, as can be observed in Table 8. The specific behavior that resulted in these

numbers will be further analyzed. This will be performed by looking at each type of obstacle sepa-

rately. What ending location corresponded to what area in this count can be observed in Figure 20.

Hallways

The two types of hallways will be discussed further, starting with the wider hallway. This type of

situation has been comparatively the easier obstacle to deal with by the agents. Here, the only

51



6 RESULTS

Table 8: All of the unsuccesful ends inside of the BlocksObstacles environment test runs

Agent Collisions Total Out of View Total
Total

Overall

Obstacle Type Tight Wide Corners Tight Wide Corners

Baseline 0 0 20 20 2 0 30 33 53
Single Normal 25 3 18 46 0 4 39 43 89
Stacked Normal 17 7 14 38 0 0 24 24 62
Stacked Depth 0 0 25 25 0 0 24 24 49

agents that have had problems have been the normal image agents. The fluctuant pattern of the

single normal agent results in a sporadic end where it crashed against the wall. However, the other

times the agent crashes or loses the person, it is as a run-up to the oncoming turn of the person.

Looking at the flight patterns in Figure 30, these mishaps are the results of the overall volatile

behavior that this agent exhibits and not of a specific behavior pattern that was learned by the

agent.

Adding stacked images to this agent has shown the number of crashes in the wider hallway

situation to be increased, while the times it lost sight of the person brought to zero. Looking at

the flight patterns of this agent, much as in the previous environment, it clearly has a tendency

to position itself to the side of the person. However, this time to the left. This, unfortunately,

positions the drone in such a way that the walls are not visible anymore and a crash occurs. One

such situation can be seen in Figure 21.

Image: view of the drone | Arrows: Action the agent performed

Figure 21: How the stacked normal agent crashes into the wall from behind

This behavior is a continuation of the problems during the learning process that was described

in the previous section and is probably explained by a similar interpretation. However, a possible

explanation for why this time the preferred side of the agent to position itself differs, is a random

choice early in the learning process. Developing this behavior early in the training process, an initial

choice about which direction to go is made randomly. It is then hard to unlearn this behavior, as

mentioned earlier, because of the replay buffer sampling of the DQN.

Looking at the tighter hallways, these situations have been a more difficult setting for some of
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the agents to deal with. Again, a similar division of the agents can be perceived, where the normal

image agents have the most trouble with this situation, and the baseline and depth agent had no

problems at all. For the two problematic agents, the pattern of behavior that leads to these failed

endings are similar to those in the wider hallway. The increase in frequencies can be explained

by the fact that the hallway is tighter, bringing about these situations sooner and more often.

The baseline, which follows the path of the person very tightly, logically did not struggle with this

situation. However, interesting to note is that this type of following is not achieved by the normal

image agents, but has been by the depth agent, as reflected in the table. These findings additionally

reinforce the hypothesis that the depth state-space allows for easier learning of behavior compared

to the grayscale state-space. On top of that, the use of stacked state- representation seems to ba a

valuable addition in some contexts. Here, the environment and the type of pixel value matters.

Corners

With regards to the corner situations, the variations to the agents proved to be useful additions

that allowed them to better avoid the obstacles. However, the ability to perform significantly better

than the baseline in this aspect is not observed. The single normal image had trouble completing

any episode successfully, as can be seen in Table 8, struggling the most with corners, where a large

portion of the collisions and out of view endings happened. This effect likely explained by the

high volatility of its behavior that results in many different types of episode ends and beginnings.

Overall, these results more strongly emphasize the problems of using single normal images as a

state-representation, especially compared to the other agents. What’s more, this agent does not

show clear advantages over using the baseline method.

The stacked agent was recorded having significantly less endings where the drone lost sight of

the person. The number of times that a collision has occurred has decreased, but not by a large

margin. This is explained by the fact that instead of having trouble in multiple places, the agent

now is struggling at more specific moments, which in this case is the moment halfway through a

turn. An example of the agent in this situation can be seen in Figure 22.
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Image: view of the drone | Arrows: Action the agent performed

Figure 22: How the stacked normal agent loses the person

It is apparent that the agent is upholding the behavior of following the person from the left. In

some cases, it allows the drone to pass the first corner but holding on to this behavior leads to the

problem of being blindsided by the wall that is appearing moments later. When in the situation of

the last two frames of the figure, the agent is too close and unable to correct is behavior on time

before losing sight of the person. In the clusters in the bottom left turns, the antithesis to this

behavior is visible. Here the drone is too far away from the person to handle the final stages of

the turns, resulting in losing the person. Finally, the top two turns have their own clusters, but

in these situations, collisions are more apparent. This difference is because in the bottom turns,

the drone is coming out of the wider hallway, which lends more space to position itself accordingly.

In the top, the drone is coming out of the tighter hallway, lending less space for such manoeuvers.

These results show that the stacking of images helps the agent in overall performance, meaning

that the agent spends more time in goal states compared to the previous implementation. However,

significant improvement in performance compared to the baseline is missing, and the increase in

unsuccessful episode ends emphasize shortcomings in the learned behavior.

Finally, the depth agent was struggling exclusively in the corners, mimicking the baselines

behavior much more. As can be seen, in the top two corners, the agent has clusters of crashing,

while in the lower two it is exclusively losing sight of the person. Again, this difference is explained

by drone exiting either a wide or tight hallway. The baseline exhibits the same behavior. However,

an interesting difference, is that the stacked depth agent has taught itself to position itself much

closer to the person, as can be seen in Figure 23.
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Image: view of the drone | Arrows: Action the agent performed

Figure 23: How the stacked depth agent loses the person

It does so especially during the moments where the turn is occurring, in order to move past the

first wall, so that it can focus on centering the person in its view. However, the issue is that after

this has been done, the person is walking towards the second corner, which the drone is unable to

see and correct for on time. What is interesting about this behavior is that it shows the ability of

the agent to learn how to navigate itself around the first corner. It is struggling with the second

stage of this process, because it is unable to observe the wall in order to act on time. These patterns

are furthermore emphasized by the comparison of the flight paths seen in Figures 20 and 16. For

the general flight paths, Figure 30 in appendix A can be consulted.

Interestingly, when looking at the flight paths of the depth agent in this environments compared

to the BlocksNormal environments, it appears that the shape is different. The shape is clearly

correcting for the obstacles in the former environments. It is unfortunately not always able to

successfully finish this route, but the behavior does show that the agent is aware of the structures

and has taught itself behavior to avoid it, albeit not completely infallible.

A possible reason for why these situations are still so hard for the agent to deal with, could

relate to shortcomings of the DQN agent. Considering the fact that DQNs are implemented using a

memory buffer, they sample from their memory during the entire learning process. Seeing as most

of the time, the person is walking straight, the largest proportion of experiences in the training

batch will include transitions where the person is walking straight. Overall, this creates a bias in

this replay buffer towards straight walking experiences, making it much harder for the agent to

learn what to do with the turns. Nonetheless, compared to the baseline, these results have shown

promising results for the capabilities of RL agents to learn behavior to avoid obstacles.
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6.5 Warehouse Environment

The final environment in which tests have been performed, is the Warehouse environment. Here,

the best performing agent from each environment is tested. Since these had different state-

representation, the better working version of these agents in the Warehouse environment test runs

will be retrained inside of this environment.

6.5.1 Training Process

After the tests runs have been performed, for which the results and their corresponding elaboration

can be seen in Section 6.5, the best performing model was the stacked depth model. The training

process for this agent can be observed in Figure 24.

Figure 24: Training of Stacked Depth agent in Warehouse

The results for the training of the stacked depth agent inside of the warehouse environment show
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a similar degradation in training performance as was perceived in the BlocksObstacles environment

compared to the BlocksNormal. However, the degree of this degradation in this environment is

lower. The average episode length during training time converged around a similar value than the

BlocksObstacles environment, which was around 20 steps. Furthermore, both the average return

during training time and evaluation time converged around a value of 10. These are only marginally

lower than their counterparts in the BlocksObstacles environment, being 10 and 20 respectively.

This is most likely cause by a lower minimum return, being almost never higher than zero. Next to

this, the maximum return is also lowered, not reaching the maximum score of 50. The complexity

of the environment has added increased difficulty for the learning process of the agent. The test

results will elaborate on whether this also has an impact on the degree to which the agent behaves

inside of the environment compared to other agents.

6.5.2 Test Results

The final tests that have been performed all focus on the generalizability of RL agents to a new,

more complex environment. This will be performed by using the degradation in performance that

was observed in the baseline performing in the new environment. This drop in performance of the

baseline is compared to the trained DQN - single depth agent in the BlocksNormal environment,

the trained DQN - stacked depth agent in the BlocksObstacles, and a retrained DQN - stacked

depth agent in the Warehouse environment. The average returns and the compared performance

drops can be observed 9.

Table 9: Average return comparisons for the test runs in the Warehouse environment

Agent
Average return

(max. 50)
Expected
return*

Difference
expected
return**

Difference
previous

environment***

Baseline 9.9 – – -56.2 %

(Normal) Single Depth 11.5 11.5 0 % -72.7 %
(Obstacles) Stacked Depth 13.8 13.1 +5.3 % -54.1 %
(Warehouse) Stacked Depth 21.6 – +64.9 % -28.3 %

*The expected return has been calculated by using the degree of degradation of the baseline going from the
BlocksNormal to the BlocksObstacles environment. In this case, it was 56.2%.
**The percentage change in performance of the agents compared to the expected return.
***The performance drop for each agent compared to their counterpart in the previous environment.

Unsurprisingly, the baseline was the most underperforming agent of the set. However, the

transferred agents, from both environments, only improved slightly. This is especially visible when
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compared to the expected return according to the degradation of the baseline. The single depth

agent, trained in BlocksNormal, showed the exact amount of performance degradation as the base-

line. Furthermore, the BlocksObstacles trained agent only improved slightly compared to the

expected results. Nonetheless, the performance drop compared to their trained environments, can

be seen to be the lowest for the BlocksObstacles trained agent. Nonetheless, the newly trained

agent had the overall better performance. The added complexity of the obstacles formed a much

larger problem for single depth agent. These results suggest that there has been little transfer of

knowledge to the new domain. However, to further confirm these findings, a more in-depth look

will be taken at their specific behavior.

Figure 25: Paths and episode
ends of all the agents during
a 100 episode test run in the
Warehouse environment. The
green lines represent the flight
paths of the agent.

The areas correspond to
the following situations:
Green = Tight hallways
Blue = Wide hallways
Yellow = Corners

The dots correspond to
the following episode ends:
Red = Collisions
Blue = Out of View
Yellow = Normal

Visible in Figure 25 is the fact that the depth images trained in environments with obstacles,

showed the similar stable behavior that was observed in the previous two experiments, is visible in

this one as well. However, what is interesting, is the fact that the agent trained in BlocksNormal

was much more erratic. More surprisingly, is that a similar behavior that was observed in the

stacked normal image agents, is now visible in this agent. The agent is trying to position itself

to the left of the person throughout the episodes. This results in the increased crashes and out

58



6 RESULTS

of views that is visible in Table 10. This behavior only being expressed in this environment, is a

sign that the agent is confused with the state-space. Not having been trained on any state that

included obstacles, now clearly shows to be a problem for the agent in spaces where there are

objects. This perturbs the agent so much as to illicit this unusual behavior, with a bias towards the

”move left” action. This shows that there is a limit to the generalizability capabilities of RL. Not

having seen any instances of a given situation renders the agent incapable of acting accordingly.

This explains the minimal transfer of its behavior to this new environment, as seen in Table 9.

Further emphasizing this point, is Table 10.

Table 10: All of the unsuccesful ends inside of the Warehouse environment test runs

Agent
(trained in:)

Collisions Total Out of View Total
Total

Overall

Obstacle Type Tight Wide Corners Tight Wide Corners

Baseline 0 1 15 16 5 13 42 60 76
BlocksNormal 21 8 27 56 0 5 51 38 94
BlocksObstacles 0 0 22 22 0 0 25 25 47
Warehouse 1 0 2 3 11 12 45 68 71

What is interesting to see is that the two stacked depth agents performed better, but their

results are mixed. The stacked depth agent trained in the BlocksObstacles environment scored a

lower average return, but had much less unsuccessful episode ends. These two results contradict

each other. What seems to happen is that the retrained agent had much more trouble with not

losing the person in the corners. Looking at the behavior, it is clearly visible that the agent is

following the person much more closer than in the previous environment, as can be seen in Figure

26.

Image: view of the drone | Arrows: Action the agent performed

Figure 26: How the stacked depth agent comes very close
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This behavior is much more helpful with avoiding crashes and keeping the person in its FoV,

however, it is not helpful for receiving reward, as is reflected in its average return. This is not

reflected in the behavior of the stacked depth that has been retrained in the warehouse environment.

However, this agent is impeded by the fact that it has not learned how to deal with these obstacles

accordingly and keeps losing the person from its view. It has, however, taught itself to to avoid

crashes, suggesting its ability to sense the obstacles and avoid them enough to not crash. Looking at

the distribution of unsuccessful episode ends, both agents were mostly struggling in the situations of

corners. The difference between the agents in the other two situations stems from the fact that the

BlocksObstacles trained agent is closer to the person, leading to failed ends closer to the corners.

On the other hand, the retrained agent is much farther and is therefore failing in similar situations

nonetheless. These differences show that the best approach is still to train an agent in a specific

environment. Doing this gives an agent the familiarity with the relevant situations to be able

to behave accordingly. Nonetheless, transferring this knowledge from different environments still

shows promising results, as the transferred agent behaved quite similarly as it had in the previous

environment. Emphasizing this even further, is the fact that compared to the baseline, both agents

performed significantly better.

6.6 Reward Functions Comparison

In the final test, the reward function has been slightly adjusted as described in Section 5.2. Using

the best working agent from BlocksObstacles, which was the DQN - stacked depth agent, a new

agent was trained using this new reward function. This reward function was a slight decrease in

goal states. By making the margins of the goal distances to the person smaller, the reward function

is made stricter. The overall reward function is thereby made even sparser. Testing this newly

trained agent will give insights into the effect of the reward function on the acquired behavior.

6.6.1 Training Process

The training process of this agent, as can be seen in Figure 29 in Appendix A, has proceeded almost

identical to the training of the same agent using the normal reward function. These results are

unexpected seeing as the reward function has been made even sparser. Seeing as there are even

less states in which the agent receives a positive reward, it would be increasingly hard for the agent

to find its way to these goal states. Considering this, the rewards should be overall lower, as the

complexity of the problem has increased. Nonetheless, it appeared to converge at exactly the same
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values. These results potentially show that the agent learned the exact same behavior as before,

leading to the similar learning results. This will analyzed below.

6.6.2 Test Results

Having trained the agent using a new reward, a comparison can be made the same agent trained

using the normal reward. This comparison can be seen in Table 11.

Table 11: Average return of the retrained agent with an adjusted reward function

Reward
function

Average return
(max 50)

Difference*

Normal Reward 39.1 +65.7 %
Adjusted Reward 30.2 –

*The difference is calculated considering the expected reward for the Stacked Depth model as referenced in
Table 7. This expected reward was 23.6.

This table shows that testing the agent using the adjusted reward has given a similar reward

as the agent trained with a normal reward (Table 7). What is interesting, however, is that when

testing this agent using the normal reward function, the average return is much higher. Seeing

this increase by itself is not a surprising result, considering as the adjusted reward is much more

strict compared to the normal one. These results show that the more precise a reward function is,

the more focussed the agent becomes in keeping in these goal states. This is beneficial seeing as

normally sparse reward functions make the learning process harder, decreasing reward. Important

to note, is that there is a behavioral change, showing that although the training process was similar,

the agents have learned different behaviors, which will be analyzed next.

Looking more specifically at an average episode in Figure 27, it is clear that this agent is better

able to maintain the original level of rewards received in the early stages of the episode.
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Figure 27: Reward Distribution of agent trained in BlocksObstacles with adjusted reward function.
The collected rewards have been measured using the normal reward function.

Next to this, the decreasing trend afterwards is less apparent than the agent trained using

a normal reward. It is in these initial stages especially that this agent is earning more rewards

compared to the normal agent. How this is achieved with behavior can be observed in Figure 28.

Figure 28: Locations of each
type of situation in the envi-
ronments

The dots correspond to
the following episode ends:
Red = Collisions
Blue = Out of View
Yellow = Normal

As can be seen, the overall behavior seems similar. Many of the earlier mentioned behaviors are

apparent again, namely: keeping a stable flight path; staying close to the person’s walking route;

and having no trouble with the hallways situations. These aspects are further emphasized by the

frequencies of unsuccessful episode ends as seen in Table 12.

However, a difference between the agents, is that the agent trained using the adjusted reward

had overall less unsuccessful episode ends than before. However, what is more interesting, is the

exact location in which these unsuccessful ends have happened. For the agent trained with the
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Table 12: Episode ends for the same agent trained using two different reward functions in Block-
sObstacles

Agent trained using: Out of View Collisions Total (/100)

Normal Reward 24 25 49
Adjusted Reward 21 21 42

normal reward, there were multiple corners that were problematic. With collisions and out of view

clusters at both the start and ending of the turn. However, this agent specifically had problems

with the entrances and exits of the tight hallways. As can been seen in Figure 28, the agent

trained using the restrictive reward function mostly had collisions in the top two turns, in the first

stages of exiting the tight hallway. An explanation for why it is struggling here is similar as in

the BlocksObstacles environment. Leaving the tight hallways is hard as there is less room and the

agent needs to explicitly move around it, which is a harder task in this situation than leaving the

wider hallway. Next to this, entering the tight hallway is also a problem for the agent, seeing as

there is another cluster of collisions in the bottom left turn.

A positive point, nonetheless, is the fact that this agent is not struggling with the rest of the

turn. This shows that the agent has learned to perform the rest of the turn successfully. This is

an improvement compared to the agent trained using the normal reward, as this agent had trouble

with both corners in the top turns. Making sense of this, the agent has taught itself to follow the

person much more tightly than the previous agents. Such behaviors are advantageous in situations

where there is more room to make the turns. However, they also pose problems in the situations

where there is no such room. It is apparent that the agent struggles more in these situations, and

less in these others. This juxtaposition nonetheless shows an improvement in overall performance,

and only a slight improvement in the unsuccessful episode ends. Overall, however, this reward

function has been a beneficial addition to the learned behavior of the agent.

Concluding, changes to the reward function have a strong influence on the learned behavior.

Considering the results of this experiment, minimal changes to the reward functions improved the

behavior significantly. These findings further reinforce the aforementioned concepts that the reward

signal is the foundation for the learned behavior of an RL agent. Other tests with the possibilities

of different reward functions are still required, but are out of the scope of this thesis.

63



7 DISCUSSION

7 Discussion

In this section, we will discuss the overall conclusions that can be drawn from the results in

perspective of the posed research questions (Section 4). After this, the limitations and problems of

this thesis, together with possible future work that could be performed will be discussed.

7.1 Experiments and Research Questions

Looking at the experiments, the previously posed research questions will be addressed. Each of

these questions will be used as a perspective on the acquired results.

7.1.1 Directionality

To start, the first research question investigated whether the use of stacked imaging improved the

training process and performance in the Follow-Me task. What has becomes clear, is that there is

a benefit to stacking the frames. However, there is a caveat that needs to be added, which is that

the context in which the agent is operating matters.

Looking at the results, the stacked normal image agent outperformed the single image input

model in the BlocksObstacles environment. However, in the BlocksNormal environment, it did not.

The reason for this difference is that the stacking of the images as an input increased the state-

space unnecessarily. When the images are stacked, the state-space is increased drastically. The

expectation was that this increase would nonetheless provide sensible information that the drone

could use to learn the required behavior faster and better. However, the lack of this observation in

the obstacle-free environment, but the presence of it in the BlocksObstacles environment, confirms

that this increase is only relevant in certain environments. Specifically, agents trained in environ-

ments that require the agent to handle obstacles are aided with this new state-representation. Such

results emphasize that overall increases in state-spaces of an RL problem should be accompanied

with valuable information for the agent to better optimize its reward. If this is already possible

without this increased state-space, its learning process is only impeded. Such impediments lead

to problematic behaviors, as observed in the results. In both environments that it was tested in,

the agent taught itself a behavior that positions itself next to the person. In both environments,

this lead to problems that the agent was not able to unlearn or deal with. This also lead to a high

number of collisions or out of view moments, making this agent still prone to strong shortcomings.

These results further reinforce the usefulness of using stacked imaging as an initial test for

whether directionality in state-representation. Having been useful in initial deep RL domains [41],
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its potential is further enforced in this thesis. At the same time, its shortcomings in more complex

tasks are also laid bare. Seeing as this technique is a very straight-forward communication of the

required information to the agent about moving objects, there are still questions about how to

perform this more efficiently. This thesis has shown that such techniques are only beneficial when

their impact on the state-space is mitigated by the possible benefits that they could add. In the

specific task of follow-me behavior, this specific technique was not significantly more beneficial

compared to its absence. However, these results nonetheless show promising results for the testing

of more complex solutions in solving this task, such as the earlier presented RNN implementations

[17, 39].

In conclusion, possible benefits from using state-representations that include information about

the directionality of objects within the environment can provide valuable information to the agent

to perform follow-me behavior. However, the overall benefits compared to using a single image are

not convincing, and there is room for better techniques to be implemented to deal with this type

of information.

7.1.2 Obstacle Avoidance

Next, the influence of depth maps in state-representation in the task of follow-me behavior has

been tested. Overall, the results show implementing such information in the state-representation

has significant benefits for the training process and its overall learned behavior.

Looking at the results, the depth agents have either performed equally to, or even better than,

the baseline in each of the environments. On top of this, the expected degradation in performance,

was not matched by these agents, showing that they have been able to perform above what could be

expected of them in each environment. Furthermore, compared to their normal image counterparts,

the depth agents learned positive behavior the fastest compared to the others in some environments.

These benefits stem from the fact that this change in state-space leads to simplifying the relevant

information for the agent to behave well, the antithesis of the problems that stacking the images

caused. To explain, two important aspects are required for the agent to perform follow-me behavior

adequately. The drone should be able to sense the target object to follow and it should be able to

sense its surroundings in order to see whether objects are in its way. The implementation of depth

maps simplifies this latter information. Where normal images can represent walls in a variety of

combinations of pixel values, depth maps represent these areas by their distances alone. With this,

the information is simplified and it becomes easier for the drone to map such states to appropriate
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actions.

These advantages translate to their learned behavior as well. In both the BlocksNormal and

the BlocksObstacles environments, this agent outperformed all the other agents. With very stable

movements and keeping a close route to the person’s walking path, this agent has been able to

find better optima in its search for behavior that maximizes the reward. Compared to the normal

image models, depth map agents had no problems with hallway situations, where no collisions

have been recorded. On top of this, these agents also showed a slight improved ability to learn to

avoid corners, having less problems with these situations than the other agents. Nonetheless, there

are still points of improvements in this aspect, as these agents were not able to deal with corners

adequately.

The advantage to using depth maps over normal images has not been researched in the context of

follow-me behavior. However, previous implementations using depth-maps to aid agents (including

other vehicles) have been shown to be successful [14, 42]. Their use has shown that agents can

benefit from being able to sense surrounding objects when this is required for a task to be completed.

In the context of follow-me behavior, this thesis has presented the benefits to this specific task.

Nonetheless, there is still room to explore other technique that sense objects, as mentioned before

[20, 44].

Concluding, the results confirm the hypothesis that the addition of depth images as a means to

replace a normal images, is a positive influence on the performance and training of a RL agent in

the task of follow-me behavior.

7.1.3 Baseline

Next, the third research question addressed the advantage of using RL methods over a heuristic

inspired baseline. The results have shown that in cases where the perfect behavior has been adapted

for, there are minimal differences between RL algorithms and agents that behave according to

static rules. However, when adaptive behavior is required in exceptional situations, this difference

is increased in the favor of RL method.

Emphasizing this more strongly, the results have shown that in the BlocksNormal environment,

where no obstacles are present, the set of rules that determine the baseline’s behavior are sufficient

to behave adequately. RL agents, in this context, are nonetheless able to match this. However,

when obstacles have been added, this changes. Baseline methods are unable to adapt, as expected,

and the advantages of trained RL agents are visible. Their degradation in performance was much
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less compared to the baselines degradation, showing that these agents have been able to adapt their

behavior accordingly in these new situations. This is further explained by the behaviors that the

agents exhibited. The baseline agent, with its static behavior, has specific problems that it is not

able to deal with. However, RL agents have shown an ability to adapt their behavior to different

situations, resulting in better performances overall. Even though problems persisted with the RL

agents, their ability to adapt according to their environment shows the clear advantage that RL

has over heuristic based approaches where new programming is required for each new situation.

Looking at previous research in object tracking using similar heuristic rules [19, 20, 21, 22], it

becomes clear that adaptive behavior is still very relevant, especially for dynamic object tracking

tasks. Even though additional technologies improve the conditions in which these agents operate,

their static foundation still can be improved using adaptive learning methods, such as RL. This

thesis has presented the clear benefits of training such agents in these settings as opposed to

adapting baselines.

In conclusions, these findings reinforce the hypothesis that RL do provide advantages over more

pre-programmed approaches in performing follow-me behavior.

7.1.4 Generalizability

Finally, the last research question studied the generalizability of RL from simpler environments to

more complex environments. Agents trained in simpler environments, have been tested in a more

complex environment to see how much of the behavior has been transferred to these new situations.

The results showed that RL methods do have generalizability, but show limits to the situations it

can correctly infer.

Specifically looking at the agent that was trained in BlocksNormal, it showed that it was strongly

perturbed in the Warehouse environment. Not having seen these states during training, the agent

is unfamiliar with these new states and performs unexpected behavior that was not observed in

the training environment. RL agents trained in obstacle-free environments are therefore unable to

generalize their behavior to environments where obstacles are present. On the other hand, the agent

trained in BlocksObstacles, showed much more behavior transfer to the Warehouse environment.

Although its average return showed marginal improvement, its behavior showed many similarities

when compared to its performance in its own environment. The difference between training an

agent and transferring its knowledge seemed marginal as well, giving promising results for the

ability of RL to generalize learned behavior to more complex situations.
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Looking at earlier attempts at transferring behavior to new environments [12], shortcomings

were observed regarding state-space. The use of normal images showed reduced generalizability to

new environments, especially when colors and textures were changed. In this study, the agents have

been trained using depth imaging and their generalizability has been tested. The generalizability

of these agents has shown promising results and show the ability of RL agents to perform adaptive

behavior to more complex environments. Furthermore, tests about whether RL agents are able to

be trained in simple environments, and transfer this behavior to more complex environments have

been missing.

Many studies have shown problems with models developed in simulation environments being

transferred to the real world [12, 17]. The increase in complexity in this transition is an impediment

to many agents that have been developed for a variety of tasks. The development of adaptive agents

that are able to flexibly transfer behavior to real-world application is still relevant. The findings

of this study have shown potential indications that RL agents are able to perform such adaptable

behaviors.

The findings in this study further emphasize the utility of using RL agents in developing more

general behavior to be used in a variety of situations. Especially considering the comparison with

baselines, where such behavior require pre-programming.

7.2 Limitations and Future Work

Some topics of improvement require further attention. This dissertation has shown the overall

usefulness of RL in the task of follow-me behavior. However, some elements could use some more

in-depth research.

To start, even though the implementation of the DQN has shown promising results in learning

behavior, there might be some drawbacks to using this type of learning. As has been seen in

the results, the best performing agents still struggled with some situations. The reasons for these

struggles are most likely caused by a bias in the memory buffer of the DQN agent towards situations

that occur most often. This lends itself to studying whether training methods that include weight

experiences, such as Prioritized Experience Replay [57], could improve the behavior sufficiently to

solve these issues. Furthermore, other agents learn using different methods, some of which being

without a memory buffer [23, 25, 26]. Potential future work could investigate whether these agents

are valuable additions in improving the drone’s behavior.

Furthermore, the action space of the agent in this study has been turned discrete as a means to
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implement the DQN. Relevant actions have been included in order to perform basic movements in

the environment. However, there is also the possibility to give agents full control of the continuous

actions space of a drone. Specific directions and velocities could be variables that an agent could

take control of to ensure more stable behavior. Additional, vertical flight paths as a means to

improve person centering could also be implemented. The ability of RL agent to take control of

continuous action spaces has been shown previously [8, 14]. Interesting research could be performed

about whether RL agents with abilities to handle continuous spaces [23, 25, 26, 24] could perform

follow-me behavior.

Moving on, as shown in the results, the reward function is a fundamental element when it

comes to the behavior that is learned. For RL algorithms, the goal behavior is synonymous with

maximizing the reward function [11], meaning that the reward function has an essential relationship

with the learned behavior. In this thesis, the choice has been made for a sparse reward function

because of the possible problems that could be encountered with using the alternative manually

shaped reward functions [35, 36]. However, as shown in the results, even within the specific reward

function created in these experiments, there is room for further shaping. Restricting the rewards

even more changed the behavior of the agent measurably. There could still be different reward

functions that could improve overall behavior in ways as to reduce collisions and other problems.

Such investigation have fallen outside of the scope of this research, but they could be an inspiration

for future work in developing follow-me behavior.

Next, the techniques used to test different state-representations have shown promising results,

but more research could be done in different types of techniques. As mentioned before, the use

of stack imaging is a straight-forward approach to providing an agent with information about

dynamic objects [41, 42], however, there are still others that could improve overall results. Different

architectures of RNNs could be implemented to improve these skills. Furthermore, with the goal of

further deployment in real world applications, there is still considerable room for future work into

different methods of creating depth maps, as there is always some margin of error in such methods

[44, 45, 46].

Finally, one shortcoming of RL algorithms is that they suffer from results that are hard to

reproduce [58]. RL is extremely sensitive to changes in the hyperparameters leading to completely

different results. Considering the fact that in the scope of this thesis, no hyperparameters search

has been performed, it is not clear that these results are completely optimal. However, since the

goal has been to test the agents in comparison to baseline methods, these problems fall out of the
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scope of this thesis, but could potentially pose problems in further deployment of similar models.

7.3 Conclusion

To conclude, this thesis has investigated to what extent the use of Reinforcement Learning is a viable

method for follow-me behavior using an autonomous drone. The results have shown that there is

potential in using RL methods for this task, especially over straight-forward static approaches.

Furthermore, implementing state-representations that incorporate information about the dynamic

movements of objects and their distances, show strong advantages over RL algorithms that solely

rely on camera inputs. Adding to this, the abilities of RL agents to transfer their behavior to more

complex environments, show potential for the development of agents that teach themselves more

general behavior to be applied in a larger variety of situations. Even though future work is required

before deployment into real-world applications is possible, the use of RL shows strong advantages

in the adaptive decision-making processes and generalizability.
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A Appendix A

Figure 29: Training Process in BlocksObstacles Environment with Adjusted Reward
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Figure 30: Overview of paths
in BlocksObstacles environ-
ment

The dots correspond to the
following episode ends:
Red = Collisions
Blue = Out of View
Yellow = Corners

76



A APPENDIX A

Figure 31: Overview of paths
in Warehouse environment

The dots correspond to the
following episode ends:
Red = Collisions
Blue = Out of View
Yellow = Corners
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