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Chapter 1

Introduction

1.1 The party problem

"What is the least amount of people you should invite so that at least 3 people know
each other or at least three people do not know each other?". Even though it is a
very simple question the answer is not straightforward.

In mathematics, especially in combinatorics and graph theory, there is a
concept under the name Ramsey number. In order to get a good grasp on
what a Ramsey number is we will describe a popular problem named the
party problem. Later on we will try to generalize the concept to the Ramsey
numbers.

The best way to solve this problem is to use a graph representation1. Let
us assume a fully connected graph where each invited person is represented
by a vertex and every mutual connection between two guests is represented
by a colored edge. If the edge is blue the corresponding guests do not know
each other but if the edge is red colored the corresponding guests know each
other. The way we should color the graph should be abstract so that there is
no bias or in other words the guests are chosen in a unbiased manner. Now
that we visualised the situation the next step is to find the answer starting
from the simplest case and by trial and error increase the number of guests
until we come into accordance with one or both statements.

It is obvious that starting with one or two people will never answer the
question to the party problem. Next, let us think about 3 guests in total. In
this case we can always dissatisfy both statements by simply choosing a fully
connected graph using two colors for the edges. Moving on to 4 or 5 guests
we can avoid the statement by coloring appropriately the graph. For example
as we can see below figure 1.1 describes all the cases described before.

Continuing the search for the answer to the initial question we take a look
at n = 6 guests. And here a strange but at the same time interesting thing
happens. No matter how we color the edges for the party problem with 6
people invited there will always be at least one blue colored "triangle"2 or

1Graphs have vertices and edges and as it will be explained later the only type of graphs
we are going to talk about in this thesis is the complete graphs.

2A triangle, square, pentagon or whatever will be defined as a 3, 4, 5 or whatever fully
connected monochromatic graph from now on.



Chapter 1. Introduction 2

FIGURE 1.1: Party problem for 3,4 or 5 guests in total.

FIGURE 1.2: Party problem for 6 guests.

one red-colored "triangle"3. Figure 1.2 shows explicitly what is going on for
a specific coloring of a party with 6 guests.

We can see that structures 2 − 6 − 4 and 3 − 4 − 5 are monochromatic.
In other words we found the least populated party so that at least 3 people
know each other or, in this case both statements are true, at least 3 people are
completely strangers.

It is not hard to see that in case we further increase the number of guests,
e.g. 7,8 onwards, we cannot avoid the monochromatic structures that already
appeared for 6 guests. For this reason the least amount of people part of the
statement is required since there is a lower bound over which there is no
need to discuss further.

Before moving on to the more general concept we need to see some ter-
minology originating from graph theory so that this thesis is more accessible
to fields other than physics.

1.2 Small manual from graph theory

Let us present some useful terminology4. A graph is a set of vertices and
edges connecting these vertices. It can be directed or undirected but in our
case we will deal exclusively with undirected graphs, so there is no need to
draw arrows. In the simplest case the edges have one color but in general

3Recall that monochromatic triangles in the graph representation refer to 3 people (ver-
tices) mutually knowing or not knowing at all each other (blue or red edges connecting
them). We do not refer to the usual meaning of triangles from geometry.

4For the interested reader a good source about combinatorics and graph theory is [2,
section 1.8]. It discusses Ramsey Theory.
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we can use many colors depending on the problem at hand. Also, graphs
are classified in complete and incomplete graphs. A complete graph is one
where every vertex is connected to every other vertex, so in other words it
is a fully connected graph. In this thesis we are going to discuss only com-
plete graphs since Ramsey numbers deal only with that. One very important
concept that we need to highlight is the clique. The clique is a complete sub-
graph of a larger graph. In our case, since we are going to color the edges in
more than just one color, we will need to consider monochromatic cliques
only5. Last but not least, one more term that is going to be extremely useful
in our study is the adjacency matrix. This is a square matrix used to repre-
sent a graph. The elements of the matrix indicate whether pairs of vertices
are adjacent or not in the graph. For example in a graph with two colors al-
lowed if two vertices are connected by an edge then the input can be 1 or -1
depending on the convention of which color goes accordingly with the edge.
Since in our case we study the relation between distinct elements (e.g differ-
ent people, doesn’t make sense to say I know me) the diagonal of this matrix
is zero or irrelevant. Also since the graph is undirected the adjacency matrix
is symmetric.

Adjacency matrix will be very useful since it is the matrix representation
of a graph that we are going to use in our simulations later on and is easy to
implement in our coding scripts.

1.3 Generalization of Ramsey numbers & notation

After discussing and solving the party problem let us introduce a concise
notation for the Ramsey numbers. The party problem is no other thing than
asking what is R(3, 3) =?. We saw that R(3, 3) = 6. If we want to be more
detailed we could write R(3, 3) = 6. Now let us remind once again what this
expression means before we proceed. The last expression says the following:
6 is the least number of vertices of a complete graph where no matter how we color,
by either blue or red, the edges there will be at least a blue clique with 3 vertices or a
red clique with 3 vertices.

Accordingly if we see something like R(n, k) = x then this means: x is the
least number of vertices of a complete graph where no matter how we color, by either
blue or red, the edges there will be at least a blue clique with n vertices or a red clique
with k vertices.

Generally, we can have R(x1, x2, ..., xn) = K. Let us give the meaning of
this last notation and then move on to the next section. The last expression
simply means that: K is the least number of vertices of a complete graph where no
matter how we color, by either blue or red or... or green the edges, there will be at
least a blue clique with x1 vertices or a red clique with x2 vertices or ... or green
clique with xn vertices.

As you can guess on your own there can be many more Ramsey num-
bers just by using more colors (which means different types of connections
between atoms) or by making statements which discuss about "3 or 3", "3 or

5To be more exact we will consider blue or red colored cliques.
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TABLE 1.1: Some Ramsey numbers. Unknown Ramsey num-
bers are estimated in terms of intervals. [x, y] is a closed interval

from x up to y.

(x, y) R(x, y)

(3,3) 6
(3,10) [40,43]
(4,4) 18
(5,5) [43,49]
(6,6) [102,165]

4", "5 or 5", or whatever possible combination of two or even more natural
numbers. So far we have described Ramsey numbers, but what is so special
about them? The answer is simple and the reason being that mathematicians
have not solved the Ramsey numbers problem for every possible combina-
tion you can think of. To be more precise there is a table where mathemati-
cians indicate which Ramsey numbers are known and which are not known
but residing in some speculated intervals6. Table 1.1 shows some of these
numbers to get an idea.

1.4 Purpose of this project

Our initial goal is to reproduce some known Ramsey numbers by using a physics
methodology using Statistical Mechanics and Monte Carlo simulations. After check-
ing that this methodology works the other goal is to tackle an unknown Ramsey
number and study this "system"7 from a thermodynamic perspective. Before mov-
ing on to try and achieve the goals mentioned before we need to cover some
background regarding Monte Carlo simulations and Statistical Physics.

6For further details you can check the following source link: https://mathworld.
wolfram.com/RamseyNumber.html

7By saying systems we can think of interacting systems of many particles such as an Ising
system. In complete analogy a Ramsey system will be treated the same way we treat an Ising
model where spins are corresponding to edges of a graph. In the next chapter this analogy
will be discussed in more detail.

https://mathworld.wolfram.com/RamseyNumber.html
https://mathworld.wolfram.com/RamseyNumber.html
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Chapter 2

Modeling the Ramsey numbers

2.1 Analogy to Ising model

In order to proceed and introduce the technique from physics we remind
ourselves of the Ising model. Basically we try to map the Ramsey number
problem to an Ising type problem. The reason being the Ising model is rel-
evant to Ramsey numbers of two arguments, has been widely studied both
analytically and numerically, and in our case we are going to make an anal-
ogy to the numerical approach of this model. The initial step to try and create
this analogy is by observing that in the Ramsey number of two colors we can
assign each color a specific number. This is similar to assigning each of the 2
spin states of a spin 1/2 in the Ising model a number. From now on when-
ever we refer to the color blue we assign the number −1 and to the color red
the number +1. Ignoring the Ising model dynamics, which in this case are
simply neighboring interactions, the general characteristics are more or less
the same. An Ising system is a collection of many units where each unit has
two possible degrees of freedom known as 1/2 spins. We will not get into the
specific physics of spins but we have to keep in mind that there are two pos-
sible values of a spin 1/2 unit. Either spin up, lets us say number 1, or spin
down, −1. Recall from chapter 1 that Ramsey numbers with two arguments
have edges that are blue or red. So we will assume a one to one correspondence
between 2 colored edges and 1/2 spins.

Now that we have the aforementioned convention at hand we know how
to represent a graph properly by using the adjacency matrix. Let us see an example
from the graph in figure 2.1. Since we have already labeled all vertices of

FIGURE 2.1: Graph with 6 vertices in R(3, 3) case.

the graph by numbers then the adjacency matrix will be the following 6× 6
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symmetric1 matrix2: 
0 1 1 −1 −1 1
1 0 1 −1 −1 −1
1 1 0 1 −1 −1
−1 −1 1 0 1 −1
−1 −1 −1 1 0 1
1 −1 −1 −1 1 0

 .

Practically the matrix representation, as well as the graph representation
for bigger graphs, is useless to the common eye but it can be of great im-
portance when this representation is read by a computer. This way studying
even much larger graphs can be realised using simulations. Now that we
know how to represent a graph for Ramsey numbers the next thing we need
to tackle is actually trying to solve it. The idea is simple in its sense and it has
to do directly with the definition we discussed previously.

Regarding a specific Ramsey number the way to proceed is working from
the bottom up. In other words we will test a graph of some size3 by using
Monte Carlo simulations and in case we do not find any monochromatic cliques
for this specific size, this immediately tells us that the lower bound of our
estimation is the present size that we already studied. However to make sure
that this is indeed the Ramsey number we are looking for, we need to run
simulations at greater sizes and look out for graphs with no monochromatic
structures. If we cannot find these non-monochromatic states then we can
assume as the Ramsey number the lower bound we already found. It may be
the case that our algorithm is not as efficient as it should be and thus finding
non-monochromatic states is almost impossible. This results in not being
sure that the lower bound might be higher in practice. For example suppose
that we are trying to find R(3, 3) without knowing that the true answer is 6.
If our simulation methodology finds zero energy states up to 4 vertices then
this does not necessarily mean that this is the real value for R(3, 3) since in
principle could be 6 or 7 or 17. I.e. 4 is just the first lower bound we found and
may be replaced by a greater lower bound4. It could be that our simulations
are not efficient enough to find non-monochromatic states5 or that the true
value is greater. So the best estimation we can make is to find a lower bound.
However, since mathematicians provide a table with values using analytic
methods then we can cross our results with theirs and make more concrete
conclusions.

1The upper triangular part of this matrix is relevant to our problem and is going to be the
state of our Ramsey system.

2Recall that the A(i, j) entry of the adjacency matrix A is simply the color of the edge
connecting the i-th vertex with j-th one.

3Obviously this size is going to be the maximum number between the two arguments of
the Ramsey number we focus on. E.g. for R(m, n) the starting point would be max(m, n)
number of vertices.

4In this example 4 gets replaced by the true answer 6.
5We should remind ourselves that an algorithm that we use is not always the most effi-

cient. So other approaches may come in handy.
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2.2 Hamiltonian of a Ramsey system

Counting monochromatic cliques is an important aspect of our model. But
where are we going to use this counting we referred to? The idea, which is
the inspiring point of the thesis, comes from using the number of monochro-
matic cliques in our Hamiltonian. In other words we are going to penalize
our system for having too many monochromatic cliques and the goal of our
simulations is no other than an optimization problem6 for finding the graph
configuration7 which has the least possible amount of monochromatic cliques. Thus
the definition of a Hamiltonian for a Ramsey system in some state s8 will
simply be:

H(s) = ∑
∀cliques

(nblue(s) + nred(s)). (2.1)

By definition this Hamiltonian is positive definite, since n ∈ N. In prac-
tical terms for a specific Ramsey system our goal is to find the state of the
system which minimizes this Hamiltonian. In case we find at least one state
which has zero energy9 we have a lower bound for calculating the Ramsey
number we are looking for. On the other hand if we are not able to find the
ground state this means either we found the Ramsey number, which is quite
ambitious as we will see later, or the algorithm we are using in our simula-
tions is not the optimal. Going back to figure 2.1 as an example we notice
that there are 2 monochromatic cliques, one is blue (1− 2− 3) and one red
(2− 4− 6), so the energy of this graph is 2.

Even though the Hamiltonian we introduced does not contain any inter-
action terms we stress that the system by itself is non-local by definition and
this will make things more difficult when tackling higher Ramsey numbers.
In contrast the Hamiltonian of the Ising model most of the times includes
interactions between neighboring spins thus the dynamics is much simpler.

2.3 Perturbations of a Ramsey system

Continuing the analogy with the Ising model we mention the excitations.
For an Ising model studied by Monte Carlo simulations, and more specif-
ically to simulations that use the Metropolis algorithm, the excitations are
simply done by flipping spins, one at a time. The equivalent to do for a Ram-
sey system will be "flipping" the color of a random edge. Thus in general
our way of exploring the different states in a Ramsey simulation is through
randomly10 flipping edge colors and check how the energy varies along the
computation.

6To be more specific it is going to be a minimization problem.
7From now on we are going to call it a state to go along with the physics terminology.
8As we saw before a state is represented by a matrix. Here this matrix is denoted by s

with s standing for the word state.
9In other words and from now on we will say ground state.

10In the next chapter we will see that the algorithm we implement is not completely ran-
dom.
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2.4 Observables

Last but not least we need to discuss what observables we are going to en-
counter in a bit. We already mentioned the Hamiltonian which is very im-
portant and in it’s essence embodies the statement of how to find a Ramsey
number just by:

• counting monochromatic cliques

• penalizing states with many cliques, i.e. high energy states.

Other observables that will be quite useful will be the specific heat c, the
residual entropy Sres and the ground state degeneracy g(E = 0). The reason
being that later on we will make a thermodynamic study on the model in
case we observe any possible phase transitions and the specific heat is going
to help us with that. For the specific heat the formula we are going to use is
the following11:

c(T) =
〈E2〉 − 〈E〉2

NT2 , (2.2)

where

N =

(
n
x

)
, (2.3)

is the total number of all x-cliques for a R(x, x) system with n vertices.
The reason for using this instead of the total number of edges, i.e. (n

2), is
because the energy scales with (n

x). Moving on, since we need to check the
degeneracy of the ground state the way to do that is by first calculating the
residual entropy per clique S̃res and then estimate the ground state degener-
acy. I.e.

S̃res ≡
Sres

N
= ln 2−

∫ ∞

0
dT

c(T)
T

, (2.4)

from which the ground state degeneracy is obtained by

g(E = 0) =
S̃res

ln 2
. (2.5)

A concise description based on the Ising model for the residual entropy
and the ground state degeneracy can be found in [1, chapter 9].

So far we saw how a graph can be represented by using the adjacency
matrix. This matrix subsequently can be used to extract information about
the specific state of a graph. For example what the energy of the graph is and
how far from reaching the ground state the state is. Before diving into the ac-
tual simulations we conduct for the Ramsey numbers on the next chapter we

11∆E = 〈E2〉 − 〈E〉2 is the energy variance, T is the dimensionless temperature and N is
the energy scaling factor. For the Ising model the energy scales by the total number of spins.
Later on we will see that the energy scales by the total number of monochromatic cliques for
the Ramsey system.
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will explain roughly how Monte Carlo simulations help us explore the phase
space of all possible states by simple examples. Then we will see how using
statistical mechanics we can study Ramsey numbers using the Metropolis
algorithm which is widely used for the Ising model12.

12A quick review of how the Ising model is studied using the Metropolis Monte Carlo
simulation might be helpful for the reader who is not familiar with this topic. A very good
source is [3].
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Chapter 3

Monte Carlo Simulations

3.1 What is a Monte Carlo simulation?

Let us describe a Monte Carlo simulation first to understand how it works
and later on we will try to combine it with statistical mechanics. Monte Carlo
comes from the city of Monte Carlo where casinos and gambling are what
characterize this city. Basically, this name stands for randomness and this is
exactly what we are utilizing except for the fact that we operate on systems
under the canonical ensemble. So in some words, they are simulations that
evolve randomly.

Imagine that we have a square and inside a circle which is tangent to the
four edges as depicted in figure 3.1. Assume that the edge of the square is 2 so
the area of the circle is π × 12 = π. Without using any geometry knowledge
we can make an estimation for π just by using random sampling. Let’s say
that we are throwing darts randomly onto the square, for a large number of
times, and then count how many darts reside inside the circle with respect
to how many were thrown in total. After the experiment, if we count the
fraction of darts in the circle over the darts in the whole square, what we get
is an estimate of π since:

π ∗ a2

(2a)2 =
π

4
≈ nc

ns
. (3.1)

FIGURE 3.1: Estimating Pi using Monte Carlo Method.
http://selkie-macalester.org/csinparallel/modules/
CrossPlatformProgramming/build/html/MonteCarloPi/Pi.

html

http://selkie-macalester.org/csinparallel/modules/CrossPlatformProgramming/build/html/MonteCarloPi/Pi.html
http://selkie-macalester.org/csinparallel/modules/CrossPlatformProgramming/build/html/MonteCarloPi/Pi.html
http://selkie-macalester.org/csinparallel/modules/CrossPlatformProgramming/build/html/MonteCarloPi/Pi.html
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Basically what we are doing, ignoring π as a known irrational number,
is to determine the area of a circle through random sampling with a simple
division, just by probing if specific locations of darts are inside (hit) or outside
(miss) of an area. By taking enough samples we get a good idea of how big
an area is.

Now let’s give a similar example from a simple calculation of the average
body weight of humans in a specific area like in a real world study. Let’s
say we want to estimate the average body weight of all humans in Europe.
Ideally we should be able to weigh each human in this continent and then
average over all measurements taken. Practically this is not an easy task
because the population is enormous so we should try doing something dif-
ferent. Instead, we can choose a much smaller group of humans and expect
that their average body weight is a good estimate for all European citizens.
But we should take into account some things.

• The first thing is that the smaller group we chose has to be unbiased
and there are many reasons for this. If this group resides in the same
city, for example, the weights tend to be quite different than other cities
due to different quality of life from area to area or resources or even
personal habits. In other words this small group might not be a good
representative for the estimation of the average value. So in order to
be unbiased we should choose people randomly through the whole
Europe.

• The next thing we need to consider is the size of the group. If we only
weigh 50 people out of millions the chances of picking heavy or light
ones is very high. To be more confident about the estimation we need
to pick a much much larger group so that variety is guaranteed. In
mathematics and especially in probability and statistics this is called
the law of large numbers. As a result the deviation from the mean
value tends to zero1.

The same is valid for Monte Carlo simulations if you think about it. The
main idea is that we can obtain a representative group of samples of some
large population of possibilities if we allow the simulation to evolve ran-
domly.

The first example with the darts, we would need to check every possible
point in the square so that we determine if a dart resides in or out the circle to
calculate precisely the area. Just like we, in principle, would need to measure
the body weight of each citizen to calculate the average weight accurately.
Instead, we can rely on randomly selected samples, and according to the law
of large numbers we can be more and more confident about the result the
more samples we take.

1More samples means less variation.
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3.2 Energy and Statistical Mechanics

Monte Carlo simulations are widely used in physics too. But there is a sig-
nificant difference regarding the previous explanation. In physics, there is an
important quantity called energy. Every physical system can be in a variety
of states and every state is characterised by it’s energy. The natural evolution
of a physical system is going towards the state of minimum energy which
is known as ground state. However in order to reach this ground state the
system must be perturbed in the least possible way. The role of perturba-
tion is played by temperature. And this is where statistical mechanics comes
into play. In terms of simulations we can achieve that by using the canoni-
cal ensemble2. We need to ensure that the perturbations are low enough so
that the system’s energy is not increased high enough and goes away from
the ground state energy. So we try to siumulate using low temperature val-
ues hoping that we do not get stuck in a metastable minimum during the
simulation.

Assume that a system is in equilibrium at some temperature T. Then from
statistical mechanics we know that a state s has a probability Ps to occur:

Ps =
e−Es/kT

Z
(3.2)

where Z is the partition function of the system in the canonical ensem-
ble3 which is a normalization factor and is the sum of weights of all possible
states:

Z =
n

∑
i=1

e−Ei/kT. (3.3)

Having a Hamiltonian assigned to our system then we can proceed to do
a study and even try to find a ground state. Going back to the discussion
of Monte Carlo simulations in case we have a physical system we can make
use of random sampling but with a slight difference now. Every time we
generate a random number, which subsequently is going to be translated to
a new state, we need to take into account the perturbations of a heat bath at
temperature T that our system resides. For example we can generate a new
state which is totally fine from the random aspect but it might violate the
Boltzmann distribution which is essential to be satisfied at all times. Thus in
Monte Carlo simulations we will make a slight modification by satisfying the
Boltzmann distribution by using something known as Metropolis algorithm.

2In the canonical ensemble a system is part of a larger system with which is in equilibrium
in the sense that it can only exchange energy but nothing else. Equilibrium then is achieved
when the exchange of energy is almost zero.

3Also known as Boltzmann distribution. k = 1.380649× 10−23 J × K−1 is the Boltzmann
constant in SI units. Later on we will consider k = 1 using reduced units for simplicity.
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3.2.1 Energy and Ramsey numbers

In section 1.3 it was made obvious that in order to find the Ramsey number
for a specific case, e.g. (3, 3) what we need to do is to find a graph config-
uration which has no monochromatic cliques involved. Thus, if we want to
define some kind of energy of this Ramsey system then this energy should
simply count the number of monochromatic cliques, i.e.

H = ∑
cliques

(nblue + nred),

as we already saw in section 2.2.
Whenever this quantity becomes zero for a specific graph generated by

Monte Carlo simulations then we move on to the next graph size until we
can no longer find a zero-energy ground state4. The largest graph size for
which a ground state of zero energy has been found will be our estimation
for a particular Ramsey number.

3.2.2 Fixed temperature Metropolis algorithm for Ramsey num-
bers

Having in mind how the Metropolis algorithm works for the Ising model we
can proceed in describing how the algorithm works for Ramsey systems. Let
us start by illustrating how the algorithm works for a R(k, l) system.

Initially we have to create the smallest size of a graph which is no other
than the maximum number between k or l. Before moving on we define the
temperature under which the Ramsey system is going to be perturbed. This
value should be low enough so that perturbations are not high enough and
ground state is more easily obtained. Next, we flip the color of an edge which
is chosen randomly. Then, we calculate the energy of the new state. Every
time we calculate the energy we check if this energy is zero. If the energy is
zero we stop our simulation and we proceed to the next graph size and repeat
the steps of the simulation. Otherwise, with this finite energy we found we
calculate the difference between the energy of the new random state and the
previous one and we estimate the Boltzmann factor e−∆E/T, where ∆E ≡
Enew− Eprev, and we accept the new state with probability e−∆E/T or we reject
it with probability 1 − e−∆E/T. In case the new state is accepted we keep
the new state and ignore the previous one. Then we update the state of the
system and repeat the procedure from the beginning till we reach a ground
state. Below we can see a flowchart where the algorithm is presented.

4To avoid any confusion we should point out that there will always be a ground state.
However, in our case there can be ground states of energy higher than zero.
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Start

Choose
random state

State

Flip one edge

Energy zero?

Lower bound
increment

Accept with
e−∆E/T

Increase graph size by 1

Stop

yes

no

FIGURE 3.2: Fixed temperature Metropolis algorithm
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There are some things we need to keep in mind. First of all we cannot
simulate at zero temperature. This is easy to see when looking at the Boltz-
mann factor. When temperature is zero then the Boltzmann factor becomes
zero thus not accepting any moves. What we can do however is to conduct
simulations at temperatures just above zero. For example at temperatures 0.1
or 0.01 etc. However, we need to be careful of what temperature we are us-
ing. The reason being that the energy landscape of a physical system might
be very complex so that small temperatures do not perturb strongly enough
the system so that it explores the whole phase space in order to find the point
or points of minimum energy, i.e. the ground state or ground states. Below
you can see two examples of energy landscapes where the ground states are
depicted as the global minima of their respective graphs. The one on the top
is a simple landscape while on the bottom the situation is far more difficult
for a simulation at a fixed temperature to reach the ground state.

FIGURE 3.3: Simple energy landscape with a global minimum

FIGURE 3.4: Complex energy landscape with a global mini-
mum and many metastable regions

The dilemma is the following: Should we use high enough temperature
to explore the whole phase space of the system or use a small value and try
to find the minimum instead hoping we do not get stuck in a metastable re-
gion? Although the question is simple the answer is not so easy to find. That
is where many different algorithms appear in the literature to tackle these
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kind of situations. One of these algorithms is known as Simulated Anneal-
ing algorithm. The way the algorithm works is quite simple but for now we
will postpone the discussion for later on when we will discuss the thermo-
dynamic aspect of Ramsey systems.

Now that we have the Metropolis algorithm we can start doing some san-
ity checks for some known Ramsey numbers. Then we will try to attack one
unknown Ramsey number which is R(5, 5).
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Chapter 4

Attacking R(3, 3), R(4, 4), R(5, 5)

After discussing what the Ramsey number is by definition and the party
problem example then we described how someone can calculate it by us-
ing an approach inspired from physics. The energy minimization where
the ultimate goal is to find the ground state or states, in general. Now let
us implement this approach in practice starting from two easy cases, i.e.
R(3, 3) = 6 & R(4, 4) = 18. Then after this double check we attack the un-
known 43 ≤ R(5, 5) ≤ 49.

4.1 First sanity check of R(3, 3)

The first check we need to make in order to see in practice if the fixed temper-
ature Metropolis algorithm works is to study the easiest non trivial Ramsey
system R(3, 3). We note that our simulations were done in MATLAB pro-
gramming language and we will include our scripts written in MATLAB for
the interested reader to try on his/her own. In Appendix A you can find
the script for the R(3, 3) system. Starting from the smallest graph size up to
the desired size, which in this case is 6 vertices we get the following results
shown in figure 4.1.

As indicated before, recall that we use the convention where blue edges
are represented by −1 and red by +1.

The running time was pretty short, as expected, and the temperature we
used for this simulation was T = 0.11, as indicated in the respective script
in appendix A. For completeness, in figure 4.2 we demonstrate one ground
state of an R(3, 3) Ramsey system for 6 vertices. Challenge yourself by trying
to decrease even further the system’s energy with 6 vertices and you will be
convinced in practice that R(3, 3) = 6.

Reassuring that R(3, 3) = 6 is the first out of 2 sanity checks in total. We
reconfirmed that R(3, 3) = 6 by using Monte Carlo simulation implementing
the Metropolis algorithm. The next step is to do the same for a bit heavier
task, i.e. to reconfirm R(4, 4) = 18. Notice that the approach we follow using
energy minimization through thermal equilibrium at "low" temperatures2 is

1We are using reduced units where temperature is dimensionless.
2By the term "low" we simply mean a temperature value which is capable of giving us

the ground state. For R(3, 3) we used T = 0.1 but 0.01 or 1 or even greater values work fine.
The reason being that the energy landscape of R(3, 3) is very simple.
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(A) 3 vertices (B) 4 vertices [∼ 0.005 sec]

(C) 5 vertices [∼ 0.005 sec]

FIGURE 4.1: R(3, 3) ground states for 3,4 and 5 vertices with
zero energies.

working fine to begin with. Later on we will encounter R(5, 5) where search-
ing through phase space for ground states becomes extremely difficult. As
you can already see, depicting ground states by graphs becomes quite diffi-
cult to read. For the suspicious reader in the Appendix C we provide the cor-
responding adjacency matrices for ground states we found with the largest
graph size for each R(x, x) system3. At the very least we can expect that com-
plexity becomes even more significant when we proceed to greater Ramsey
indices (4, 4), (5, 5), (6, 6) etc.

4.2 Second sanity check of R(4, 4)

For the R(4, 4) case the total number of computations that need to be done
by the computer are much more. In fact, the total number of edges for a
4-vertices clique are (

4
2

)
= 6. (4.1)

3It is meaningless to provide ground states for all graph sizes if we provide only those
that correspond to the largest graph sizes.
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FIGURE 4.2: 6 vertices & ground state with energy greater than
0. [∼ 0.05 sec]

Thus the program needs to take into account 3 vertices more than previ-
ously when calculating the energy of a specific clique. Moreover, the total
number of cliques in a n-vertices R(4, 4) system are(

n
4

)
=

n!
4!(n− 4)!

. (4.2)

However this relation is not enlightening enough to get an idea of what
values we are encountering, so below there is a table showing the fast in-
crease of the binomial coefficient.

# vertices (n
4)

4 4
5 5
6 15
7 35
8 70
9 126
10 210
11 330
12 495
13 715
14 1001
15 1365
16 1820
17 2380
18 3060
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Now let us see the graphs we obtained by finding ground states of R(4, 4)
system4 starting from 4 vertices and ending at 18 vertices.

4In contrast with the previous R(3, 3) system now we increase the total number of Monte
Carlo steps to 104 because the energy landscape is more complex. The temperature was kept
same with value T = 0.1.
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(A) 4 vertices (B) 5 vertices

(C) 6 vertices (D) 7 vertices

(E) 8 vertices (F) 9 vertices

(G) 10 vertices (H) 11 vertices

FIGURE 4.3: R(4, 4) ground states for 4 ≤ n ≤ 11 vertices with
zero energies.
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(A) 12 vertices (B) 13 vertices

(C) 14 vertices (D) 15 vertices

(E) 16 vertices (F) 17 vertices

FIGURE 4.4: R(4, 4) ground states for 12 ≤ n ≤ 17 vertices with
zero energies.
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Simulating R(4, 4) system we reconfirmed that R(4, 4) = 18 as discov-
ered by mathematicians. However the simulations are getting more difficult
since the binomial coefficients we encountered are much greater than the bi-
nomial coefficients involved for the R(3, 3) case. That is why we increased
the total Monte Carlo steps from 103 to 104 since the phase space, i.e. all pos-
sible states, is much larger. The graphical representation is becoming even
more difficult to read by naked eye but at least we can agree on the fact that
complexity increases significantly.

Since our algorithm works for the known cases R(3, 3) and R(4, 4) let us
try attacking the unknown case of 43 ≤ R(5, 5) ≤ 49. In the next section we
will try to study the R(5, 5) system.

4.3 Attacking the unknown R(5, 5)

To begin with let us mention firstly the total number of cliques for a R(5, 5)
system with n-vertices, which is:(

n
5

)
=

n!
5!(n− 5)!

. (4.3)

To get a grasp on what order of magnitude we are dealing with we present
the table below.

# vertices (n
5) # vertices (n

5)

5 5 19 11628
6 6 20 15504
7 21 21 20349
8 56 22 26334
9 126 23 33649

10 252 24 42504
11 462 25 53130
12 792 26 65780
13 1287 27 80730
14 2002 28 98280
15 3003 29 118755
16 4368 35 324632
17 6188 43 962598
18 8568 49 1906884

TABLE 4.1

According to what we did in the two previous sections we will imple-
ment the fixed temperature Metropolis algorithm. However, as we saw from
R(4, 4) case we are expecting higher complexity in the R(5, 5) case thus run-
ning times will increase significantly as well as the algorithm will not be so
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effective. Using T = 0.1 and 104 total Monte Carlo steps we obtain the fol-
lowing results.



Chapter 4. Attacking R(3, 3), R(4, 4), R(5, 5) 25

(A) 5 vertices (B) 6 vertices

(C) 7 vertices (D) 8 vertices

(E) 9 vertices (F) 10 vertices

(G) 11 vertices (H) 12 vertices

FIGURE 4.5: Some of the R(5, 5) ground states for 5 ≤ n ≤ 12
vertices.
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(A) 13 vertices (B) 14 vertices

(C) 15 vertices (D) 16 vertices

(E) 17 vertices (F) 18 vertices

(G) 19 vertices (H) 20 vertices

FIGURE 4.6: Some of the R(5, 5) ground states for 13 ≤ n ≤ 20
vertices.
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(A) 21 vertices (B) 22 vertices

(C) 23 vertices (D) 24 vertices

(E) 25 vertices (F) 26 vertices

(G) 27 vertices (H) 28 vertices

FIGURE 4.7: Some of the R(5, 5) ground states for 21 ≤ n ≤ 28
vertices.
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(A) 29 vertices (B) 30 vertices

(C) 31 vertices (D) 32 vertices

FIGURE 4.8: Some R(5, 5) ground states for 29 ≤ n ≤ 32 ver-
tices.
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Until 32 vertices the total number of Monte Carlo steps we used were
enough for the simulation to find ground states5. However, at some point we
need either increase the total number of Monte Carlo steps or use a different
approach. Let us increase the Monte Carlo steps to 105. We expect this to
have more chances finding a ground state because the total number of cliques
for 33 vertices is 237, 336. Figure 4.9 shows a ground state we found for 33
vertices by simply increasing the total steps of the simulation.

FIGURE 4.9: R(5, 5)-system ground state with 33 vertices.

We noticed that the running time for the figure 4.9-simulation increased
significantly in relation to the previous sizes. At this point we realised that
we needed to make a crucial modification to our script which has to do with
the energy calculation on the run. When running a simulation at the point
where we flip the color of a randomly chosen edge when we compute the
energy of the "flipped" configuration we consider all possible cliques and
count how many of them are monochromatic. It is easy to see that when
the size of a graph increases then the total number of monochromatic cliques
increases exponentially thus making our current simulation much slower.
However we can overcome this computational obstacle by changing the way
we calculate the energy.

What we can do is the following: after flipping the color of one edge we
focus only on the cliques that include the flipped edge and ignore the rest. Let

5Since 32 vertices are less than the estimated 43 these ground states have zero energy as
expected.
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us calculate how many cliques are affected in principle by a simple example.
Assume that we have a graph of n vertices in some random state. Now let us
consider a specific edge of the aforementioned graph and try to count how
many cliques are connected to this edge. Since we are in the R(5, 5) case
we know that we examine cliques of 5 vertices. From the specific edge two
vertices have already been taken into consideration which gives a freedom
for the rest 3 vertices chosen out of all n− 2 vertices. So we can choose from
n− 2 vertices for the 3 free vertices6, which is(

n− 2
3

)
=

n!
3!(n− 5)!

. (4.4)

In practice this means that the number of computations done by the com-
puter reduce by a significant amount. Table 4.2 shows the values we get by
this modification.

# vertices (n−2
3 ) # vertices (n−2

3 )

5 1 19 680
6 4 20 816
7 10 21 969
8 20 22 1140
9 35 23 1330
10 56 24 1540
11 84 25 1771
12 120 26 2024
13 165 27 2300
14 220 28 2600
15 286 29 2925
16 364 35 5456
17 455 43 10660
18 560 49 16215

TABLE 4.2

Comparing to table 4.1 we see a difference of 2 orders of magnitude. This
is going to make our simulations run faster.

One more thing we need to point out is that since the energy landscape
becomes more and more complex we need to change the way we treat ther-
mally our system. Since we are not getting a ground state as easy as for the
smaller graphs instead of using a fixed low temperature algorithm we can
use a simulated annealing approach. Namely, we start heating our system
in an initial temperature and then we evolve it by lowering the temperature
until we reach a final value. Throughout this cooling process we keep track

6The order does not matter in our case. Strictly speaking we choose without repetition
with no order out of a set of numbers, i.e. vertices.
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of the energy and if it becomes zero then we terminate the simulation out-
putting the corresponding state. Now we can move on to the 34 vertices by
using the accelerating trick and the simulated annealing algorithm. Figure
4.10 shows two ground states for graphs of 34 and 35 vertices.

(A) 34 vertices; Simulation used 50 Monte
Carlo Sweeps, 1 Touch per sweep, 25 tem-
peratures with high temperature 5 and low

temperature 0.2. It lasted for 82 seconds.

(B) 35 vertices; Simulation used 100 Monte
Carlo sweeps, 1 touch per sweep, 25 temper-
atures with high temperature 5 and low tem-

perature 0.2. It lasted 188 seconds.

FIGURE 4.10: R(5, 5) ground states for 34 ≤ n ≤ 35 vertices.

The largest graph size whose a ground state has been found with our
approach is 35 vertices and the corresponding adjacency matrix can be found
in Appendix C. For n ≥ 36 vertices it is very difficult to find a ground state.
The simulations get very slow and the energy landscape becomes even more
complex.
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Chapter 5

Thermodynamic Study and
Conclusions

At some point the energy minimization approach attempting to estimate
R(5, 5) is not as efficient as we expected. The greatest graph size for which
we found a state with no monochromatic structures is 35 vertices. For 36
vertices onward it is almost impossible to track any graphs with zero energy.
Even though we cannot proceed any further with the minimization problem
we can, however, study the Ramsey system R(5, 5) from a thermodynamic
point of view.

5.1 Thermodynamics of R(5, 5)

Going back to the analogy of a Ramsey model to the Ising model to make
a thermodynamic study and see the behavior over temperature, if there is a
phase transition or not we need to calculate the specific heat. Here we are
not going to elaborate on how the specific heat formula is derived, for those
who want to see a detailed derivation they can check [3, subsection 1.2.1],
but we are going to use the formula and create plots that will give us a bet-
ter understanding on what is happening over a wide range of temperatures.
It would be very interesting to know if a phase transition is happening or
if the Ramsey system behaves thermodynamically as a frustrated magnetic
system1.

5.1.1 Thermal equilibrium

In order to estimate the specific heat for the R(5, 5)-system we need to stress
some things first. Since we need to measure the system’s energy at a fixed
temperature we need to make sure that it has reached thermal equilibrium.
The only way to ensure equilibrium at a fixed temperature is by checking the
average value of the system’s energy and see if it is the same for two different
initial states that we start our simulation with. There is no observable like
the magnetization for the Ising model which helps us characterize if we have
equilibrium or not. The system will achieve thermal equilibrium if we let it

1This is a good guess that actually makes sense from the fact that non-locality that Ramsey
systems have can behave as frustrated anti-ferromagnetic systems where it is way far from
obvious what the ground states look like.
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in thermal contact for a good amount of time, i.e. for sufficient Monte Carlo
steps. In our case we are going to let our system heat up for 100 Monte Carlo
sweeps2 and then we are going to start measuring the energy.

5.1.2 Statistical independence

After the system reaches equilibrium we ignore the previous part of the sim-
ulation tending to the equilibrium and with the rest part we take energy mea-
surements. Since these measurements are derived by Markov Chain Monte
Carlo simulations many of these measurements are statistically correlated.
In order for our specific heat estimation to be unbiased right before calculat-
ing the energy variance we need to consider only statistically independent
measurements. To do that we have to calculate the time displaced auto-
correlation function χ(t) of the energy at a specific temperature:

χ(t) =
∫

dt
′
[E(t

′
)− 〈E〉][E(t′ + t)− 〈E〉] (5.1)

=
∫

dt
′
[E(t

′
)E(t

′
+ t)− 〈E〉]2. (5.2)

Remember however that time is discrete in simulations therefore we use the
discrete version:

χ(t) =
1

tmax − t

tmax−t

∑
t′=0

E(t
′
)E(t

′
+ t) (5.3)

− 1
tmax − t

tmax−t

∑
t′=0

E(t
′
)× 1

tmax − t

tmax−t

∑
t′=0

E(t
′
+ t), (5.4)

where tmax is the duration of the simulation3. The auto-correlation func-
tion will give us the amount of time we need to wait between two mea-
surements so that subsequent measurements are statistically independent. In
other words the amount of time we need to wait is also known as correlation
time τ. To be more specific the correlation time is given by:

τ =
∫ ∞

0
dt

χ(t)
χ(0)

, (5.5)

whose discrete version is simply the following sum,

2When doing simulations with systems that are made up of many components then we
flip, on average, at least once each component so that after touching all of them the new
state of the system can be statistically independent from the previous state. Which gives us
the right to make measurements without worrying about statistical correlations and biased
measurements. Recall the discussion about Monte Carlo simulations on the Chapter 2.

3After reaching equilibration. From now on time is measured in sweeps. This way we
can compare systems of different sizes in case it’s needed.
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τ =
∞

∑
t=0

χ(t)
χ(0)

. (5.6)

In our case after doing the calculation of the correlation time we found
that it is always zero. Thus, we get uncorrelated states before and after each
sweep, which gives us the right to do statistics right on. This is also a sign
of how easy it is for a Ramsey system to go from one state to a completely
different one. It might be that these states have the same energy but the
chances of these configurations to be exactly the same or at least correlated
after each sweep4 are very low.

5.1.3 Specific heat

The next thing in line is the calculation of the specific heats using equation
2.2. At a fixed temperature we collect all the energy measurements and we
calculate the variance σ2(E) =< ∆E >2. The tricky part has to do with the
error of our c(T) estimation at each respective temperature. And for this.
we use the bootstrap method. This error estimation method is described in
detail in [3, subsection 3.4.3] so we sketch the outline of it. At a fixed tempera-
ture after collecting the energy measurements5 we resample a new collection
of measurements out of which we extract a new value for c. After doing this
resample for quite many times, in our case we chose to resample 200 times
using a collection of 1000 energy measurements, we get the estimation for
the error of the specific heat. I.e.

σ =
√

c̄2 − c̄2, (5.7)

where X̄ denotes the average value over a set of resamples at a fixed temperature.
Finally we are ready to see the results for the specific heat for systems of

different sizes.

4We forgot to mention that for a graph of n vertices the sweep is equal to the total number
of edges (n

2).
5Which ideally should be statistically independent, or unbiased in other words.
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(A) 20 vertices (B) 30 vertices

(C) 35 vertices (D) 43 vertices

(E) 49 vertices (F) Altogether

FIGURE 5.1: Specific heat for various graph sizes.

Examining the specific heat plots we can say that for every size there is
a region where a peak shows out. This peak behaves as an obstacle and
tells us that around the respective temperature region there are many states
having the same energy thus making it difficult for us to reach the ground
state starting from a high temperature simulated annealing cooling proce-
dure.Furthermore it suggests that there might be a phase transition of second
order.
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Chapter 6

Conclusions

6.1 Conclusions

After looking at the results we derived from calculating the specific heat for
Ramsey graphs of different sizes for the R(5, 5) type we notice peaks that are
indicative for a second order phase transition. Methods such as finite-size
scaling are needed to make a more detailed analysis on the transition that is
observed. In this project this analysis is not executed. One more point we
need to stress is the algorithm we are using to track the ground states for
different types of Ramsey graphs. We saw in the previous chapters that the
algorithm we implemented in our simulations is the Simulated Annealing al-
gorithm but this does not seem to be the optimal algorithm for our purposes.
At this point we need to mention that we tried to make use of the Parallel
Tempering algorithm1 with no success. The reason was that some fine tun-
ing of temperatures for the Parallel Tempering parameters was needed which
was not obvious at all how to do. Even though Parallel tempering algorithm
is very promising the implementation is not obvious at all.

Ramsey numbers are complex by definition. The way these graphs be-
have as physical systems is not easy to understand. Dealing with fully con-
nected graphs from a physicist’s perspective means to tackle a non-local sys-
tems. In contrast the Ising model we used to make the analogy is a local sys-
tem thus giving us limitations on what we can achieve. So far the methodol-
ogy we introduced in this project seems to work up to some point. However,
after this point we need to make use of a more efficient algorithm. And if this
algorithm is found then we can double-check the analytical results derived
for the Ramsey numbers or even better make some corrections to them.

1Also known as Replica Exchange MCMC sampling.
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Appendix A

Fixed temperature Metropolis
algorithm scripts

A.1 Fixed temperature Metropolis algorithm for R(3, 3)

The script using the fixed temperature Metropolis algorithm is shown below.
Lines of code that need to be explained are commented on the side so that
reading the script makes sense.

1 % R(3,3) system
2 % Fixed temperature Metropolis algorithm
3

4 rng(" shuffle ") % random number generator
5 n=5; % # vertices [INPUT]
6 edges = nchoosek(n,2); % # edges
7 mc_steps =1000; % # Monte Carlo steps [INPUT]
8 beta = 10; % Inverse temperature [INPUT]
9 de = 1; % Energy of monochromatic clique [INPUT]

10 % energy = -ones(1,mc_steps); % Preallocation
11 energy = NaN(1,mc_steps); % Preallocation
12 % Random initial Adjacency matric (Zero trace & Symmetric)
13 B = unidrnd (2,[n,n])*2-3;
14 B = triu(B,1);
15 B = B + B.’;
16 first = cc_energy(n,B,de); % Initial total energy
17

18 % If initial energy is zero we terminate
19 if first ==0
20 fprintf ("\n\n case 01: success \n\n"); % first senario
21 return
22 end
23

24 % Otherwise we proceed with the simulation
25 for i=1: mc_steps
26 % calculate energy of old state
27 energy(i) = cc_energy(n,B,de);
28 % we search in the upper triangular part of
29 % the adjacency matrix
30 row = randi(n-1); % choose a random row
31 col = randi ([min(row+1,n),max(row+1,n)]); % same for column
32 B(row ,col) = B(row ,col)*(-1); % flip random matrix entry
33 B(col ,row) = B(row ,col); % symmetrize adjacency matrix
34 % calculate energy of NEW state
35 energy(i+1) = cc_energy(n,B,de);
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36 % if new energy is zero terminate
37 if energy(i+1)==0
38 fprintf ("\n\n case 02: success \n\n"); % second senario
39 break
40 % else perturb thermally the system
41 else
42 % energy difference (new -old)
43 delta_energy = energy(i+1) - energy(i);
44 % Boltzmann factor acceptance rule
45 if rand > acceptance(beta , delta_energy)
46 B(row , col) = B(row , col)*(-1);
47 B(col ,row) = B(row ,col);
48 energy(i+1) = energy(i);
49 end
50 end
51 end
52

53 [red ,blue] = cc_r_b(n,B); % count red & blue cliques
54 fprintf ("\n\n case 03: failure \n\n"); % third senario
55 fprintf(’\n - For %d vertices we obtain :\n’,n);
56 fprintf(’\n - final energy = %d\n\n’,energy(i+1));
57

58 % GRAPH
59 % Input graph weights: Bonds matrix will give us the weights
60 figure (2)
61 G=graph(B,’upper ’);
62 plot(G,’NodeColor ’,’k’,’EdgeCData ’,G.Edges.Weight)
63 c = colorbar;
64 w = c.LineWidth;
65 c.LineWidth = 1.5;
66 colormap cool
67

68 % FUNCTIONS
69 % - R(3,3) system energy calculation
70 function e = cc_energy(n, B, de)
71 e = 0;
72 for i=1:n
73 for j=(i+1):n
74 for k=(j+1):n
75

76 if ( abs( B(i,j) + B(j,k) + B(k,i) ) == 3 )
77 e = e + de;
78 end
79 end
80 end
81 end
82 end
83

84 % - Acceptance rule calculation
85 function a = acceptance(beta , delta_energy)
86 a = min(1,exp(-beta*delta_energy));
87 end
88

89 % - Counting red and blue cliques separately
90 function [red ,blue] = cc_r_b(n,B)
91 red = 0;
92 blue = 0;
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93 for i=1:n
94 for j=(i+1):n
95 for k=(j+1):n
96 if ( ( B(i,j) + B(j,k) + B(k,i) ) == 3 )
97 red = red + 1;
98 elseif ( ( B(i,j) + B(j,k) + B(k,i) ) == -3 )
99 blue = blue + 1;

100 end
101 end
102 end
103 end
104 end

A.2 Fixed temperature Metropolis algorithm for R(4, 4)

The script using the fixed temperature Metropolis algorithm is shown below.
Lines of code that need to be explained are commented on the side so that
reading the script makes sense.

1 % R(4,4) system
2 % Fixed temperature Metropolis algorithm
3

4 rng(" shuffle ") % random number generator
5 n=18; % # vertices [INPUT]
6 edges = nchoosek(n,2); % # edges
7 mc_steps =10000; % # Monte Carlo steps [INPUT]
8 beta = 10; % Inverse temperature [INPUT]
9 de = 1; % Energy of monochromatic clique [INPUT]

10 % energy = -ones(1,mc_steps); % Preallocation
11 energy = NaN(1,mc_steps); % Preallocation
12 % Random initial Adjacency matric (Zero trace & Symmetric)
13 B = unidrnd (2,[n,n])*2-3;
14 B = triu(B,1);
15 B = B + B.’;
16 first = dd_energy(n,B,de); % Initial total energy
17

18 tic
19

20 % If initial energy is zero we terminate
21 if first ==0
22 fprintf ("\n\n case 01: success \n\n"); % first senario
23 return
24 end
25

26 % Otherwise we proceed with the simulation
27 for i=1: mc_steps
28 % calculate energy of old state
29 energy(i) = dd_energy(n,B,de);
30 % we search in the upper triangular part of
31 % the adjacency matrix
32 row = randi(n-1); % choose a random row
33 col = randi ([min(row+1,n),max(row+1,n)]); % same for column
34 B(row ,col) = B(row ,col)*(-1); % flip random matrix entry
35 B(col ,row) = B(row ,col); % symmetrize adjacency matrix
36 % calculate energy of NEW state



Appendix A. Fixed temperature Metropolis algorithm scripts 40

37 energy(i+1) = dd_energy(n,B,de);
38 % if new energy is zero terminate
39 if energy(i+1)==0
40 fprintf ("\n\n case 02: success \n\n"); % second senario
41 break
42 % else perturb thermally the system
43 else
44 % energy difference (new -old)
45 delta_energy = energy(i+1) - energy(i);
46 % Boltzmann factor acceptance rule
47 if rand > acceptance(beta , delta_energy)
48 B(row , col) = B(row , col)*(-1);
49 B(col ,row) = B(row ,col);
50 energy(i+1) = energy(i);
51 end
52 end
53 end
54

55 toc
56

57 [red ,blue] = dd_r_b(n,B); % count red & blue cliques
58 fprintf ("\n\n case 03: failure \n\n"); % third senario
59 fprintf(’\n - For %d vertices we obtain :\n’,n);
60 fprintf(’\n - final energy = %d\n\n’,energy(i+1));
61

62 % GRAPH
63 % Input graph weights: Bonds matrix will give us the weights
64 figure (2)
65 G=graph(B,’upper ’);
66 plot(G,’NodeColor ’,’k’,’EdgeCData ’,G.Edges.Weight)
67 c = colorbar;
68 w = c.LineWidth;
69 c.LineWidth = 1.5;
70 colormap jet
71 colorbar off
72 axis off
73 box off
74

75 % FUNCTIONS
76 % - R(4,4) system energy calculation
77 function e = dd_energy(n, B, de)
78 e = 0;
79 for i=1:n
80 for j=(i+1):n
81 for k=(j+1):n
82 for c=(k+1):n
83 if ( abs( B(i,j) + B(j,k) + B(k,c) +...
84 B(c,i) + B(i,k) + B(j,c) ) == 6)
85 e = e + de;
86 end
87 end
88 end
89 end
90 end
91 end
92

93 % - Acceptance rule calculation
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94 function a = acceptance(beta , delta_energy)
95 a = min(1,exp(-beta*delta_energy));
96 end
97

98 % - Counting red and blue cliques separately
99 function [red ,blue] = dd_r_b(n,B)

100 red = 0;
101 blue = 0;
102 for i=1:n
103 for j=(i+1):n
104 for k=(j+1):n
105 for c=(k+1):n
106 if ( ( B(i,j) + B(j,k) + B(k,c) +...
107 B(c,i) + B(i,k) + B(j,c) ) == 6 )
108 red = red + 1;
109 elseif ( ( B(i,j) + B(j,k) + B(k,c) +...
110 B(c,i) + B(i,k) + B(j,c) ) == -6 )
111 blue = blue + 1;
112 end
113 end
114 end
115 end
116 end
117 end

A.3 Fixed temperature Metropolis algorithm for R(5, 5)

The script using the fixed temperature Metropolis algorithm is shown below.
Lines of code that need to be explained are commented on the side so that
reading the script makes sense.

1 % R(5,5) system
2 % Fixed temperature Metropolis algorithm
3

4 rng(" shuffle ") % random number generator
5 n=5; % # vertices [INPUT]
6 edges = nchoosek(n,2); % # edges
7 mc_steps =10000; % # Monte Carlo steps [INPUT]
8 beta = 10; % Inverse temperature [INPUT]
9 de = 1; % Energy of monochromatic clique [INPUT]

10 % energy = -ones(1,mc_steps); % Preallocation
11 energy = NaN(1,mc_steps); % Preallocation
12 % Random initial Adjacency matric (Zero trace & Symmetric)
13 B = unidrnd (2,[n,n])*2-3;
14 B = triu(B,1);
15 B = B + B.’;
16 first = ee_energy(n,B,de); % Initial total energy
17

18 tic
19

20 % If initial energy is zero we terminate
21 if first ==0
22 fprintf ("\n\n case 01: success \n\n"); % first senario
23 return
24 end
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25

26 % Otherwise we proceed with the simulation
27 for i=1: mc_steps
28 % calculate energy of old state
29 energy(i) = ee_energy(n,B,de);
30 % we search in the upper triangular part of
31 % the adjacency matrix
32 row = randi(n-1); % choose a random row
33 col = randi ([min(row+1,n),max(row+1,n)]); % same for column
34 B(row ,col) = B(row ,col)*(-1); % flip random matrix entry
35 B(col ,row) = B(row ,col); % symmetrize adjacency matrix
36 % calculate energy of NEW state
37 energy(i+1) = ee_energy(n,B,de);
38 % if new energy is zero terminate
39 if energy(i+1)==0
40 fprintf ("\n\n case 02: success \n\n"); % second senario
41 break
42 % else perturb thermally the system
43 else
44 % energy difference (new -old)
45 delta_energy = energy(i+1) - energy(i);
46 % Boltzmann factor acceptance rule
47 if rand > acceptance(beta , delta_energy)
48 B(row , col) = B(row , col)*(-1);
49 B(col ,row) = B(row ,col);
50 energy(i+1) = energy(i);
51 end
52 end
53 end
54

55 toc
56

57 [red ,blue] = ee_r_b(n,B); % count red & blue cliques
58 fprintf ("\n\n case 03: failure \n\n"); % third senario
59 fprintf(’\n - For %d vertices we obtain :\n’,n);
60 fprintf(’\n - final energy = %d\n\n’,energy(i+1));
61

62 % GRAPH
63 % Input graph weights: Bonds matrix will give us the weights
64 figure (2)
65 G=graph(B,’upper ’);
66 plot(G,’NodeColor ’,’k’,’EdgeCData ’,G.Edges.Weight)
67 c = colorbar;
68 w = c.LineWidth;
69 c.LineWidth = 1.5;
70 colormap jet
71 colorbar off
72 axis off
73 box off
74

75 % FUNCTIONS
76 % - R(5,5) system energy calculation
77 function e = ee_energy(n, B, de)
78 e = 0;
79 for i=1:n
80 for j=(i+1):n
81 for k=(j+1):n
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82 for c=(k+1):n
83 for w=(c+1):n
84 if ( abs( B(i,j) + B(j,k) + B(k,c) +...
85 B(c,w) + B(w,i) +...
86 B(i,k) + B(j,c) +...
87 B(k,w) + B(i,c) +...
88 B(j,w) ) == 10)
89 e = e + de;
90 end
91 end
92 end
93 end
94 end
95 end
96 end
97

98 % - Acceptance rule calculation
99 function a = acceptance(beta , delta_energy)

100 a = min(1,exp(-beta*delta_energy));
101 end
102

103 % - Counting red and blue cliques separately
104 function [red ,blue] = ee_r_b(n,B)
105 red = 0;
106 blue = 0;
107 for i=1:n
108 for j=(i+1):n
109 for k=(j+1):n
110 for c=(k+1):n
111 for w=(c+1):n
112 if ( ( B(i,j) + B(j,k) + B(k,c) + ...
113 B(c,w) + B(w,i) +...
114 B(i,k) + B(j,c) +...
115 B(k,w) + B(i,c) +...
116 B(j,w) ) == 10)
117 red = red + 1;
118 elseif ( ( B(i,j) + B(j,k) + B(k,c) +

...
119 B(c,w) + B(w,i) +...
120 B(i,k) + B(j,c) +...
121 B(k,w) + B(i,c) +...
122 B(j,w) ) == -10)
123 blue = blue + 1;
124 end
125 end
126 end
127 end
128 end
129 end
130 end
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A.4 Simulated annealing Metropolis algorithm for
R(5, 5)

The script using the simulated annealing Metropolis algorithm is shown be-
low. Lines of code that need to be explained are commented on the side so
that reading the script makes sense. We remind to the reader that the two dif-
ferences with the previous script are the implementations of the flip_energy
function and the use of a cooling down process.

1 % R(5,5) system
2 % Simulated Annealing Metropolis algorithm
3

4 rng(" shuffle ") % random number generator
5 n=33; % # vertices [INPUT]
6 edges = nchoosek(n,2); % # edges
7 mcs =20; % Monte Carlo Sweep; 300; 50; [INPUT]
8 touches =1; % X (# touches or attempt frequency); [INPUT]
9 sweep=edges*touches;

10 temps =25; % # temperatures; [INPUT]
11 energy=NaN(1,sweep*mcs*temps +1); % preallocation
12 measure_e=NaN(temps ,mcs); % energy measurements
13 Ts=NaN(1,temps); % temperatures
14

15 t=1; % index for counting Monte Carlo steps realized
16 T_i =5; % initial temperature; 1; 0.5; [INPUT]
17 T_f =0.2; % final temperature; 0.1; 0.5; [INPUT]
18 de = 1; % Energy of monochromatic clique [INPUT]
19

20 % Random initial Adjacency matric (Zero trace & Symmetric)
21 B = unidrnd (2,[n,n])*2-3;
22 B = triu(B,1);
23 B = B + B.’;
24

25 energy (1) = ee_energy(n,B,de); % energy initialization @ T_i
26 measure_e (1,1)=energy (1); % measure_e initialization
27

28 tic
29

30 % If initial energy is zero we terminate
31 if energy (1)==0
32 toc
33 fprintf ("\n\n case 01: success \n\n"); % first senario
34 return
35 end
36

37 % Otherwise we proceed with the simulation
38 for k=1: temps
39 T = (T_f -T_i) * (k-1) / (temps -1) + T_i; % linear decrease
40 beta = 1/T; % inverse temperature
41 Ts(k)=T; % temperature vector
42 for w=1: mcs % monte carlo sweep
43 for i=1: sweep % sweeping all edges times touches
44 % we search in the upper triangular part of
45 % the adjacency matrix
46 row = randi(n-1); % choose a random row
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47 col = randi ([min(row+1,n),max(row+1,n)]); % same for
column

48

49 % calculate energy of cliques connected to row -col
edge

50 flip = flip_energy(n, B, row , col , de);
51 % calculate energy of the rest cliques
52 rest = energy(t) - flip;
53

54 B(row ,col) = B(row ,col)*(-1); % flip random matrix
entry

55 B(col ,row) = B(row ,col); % symmetrize adjacency
matrix

56

57 flap = flip_energy(n, B, row , col , de);
58 % calculate energy of NEW state
59 energy(t+1) = rest + flap;
60

61 % if new energy is zero terminate
62 if energy(t+1)==0
63 fprintf ("\n\n case 02: success \n\n"); % second

senario
64 toc
65 return
66 % else perturb thermally the system
67 else
68 % energy difference (new -old)
69 delta_energy = energy(t+1) - energy(t);
70 % Boltzmann factor acceptance rule
71 if rand > acceptance(beta , delta_energy)
72 B(row , col) = B(row , col)*(-1);
73 B(col ,row) = B(row ,col);
74 energy(t+1) = energy(t);
75 end
76 t = t + 1;
77 end
78 end
79 measure_e(k,w)=energy(t);
80 end
81 end
82

83 toc
84

85 [red ,blue] = ee_r_b(n,B); % count red & blue cliques
86 fprintf ("\n\n case 03: failure \n\n"); % third senario
87 fprintf(’\n - For %d vertices we obtain :\n’,n);
88 fprintf(’\n - final energy = %d\n\n’,energy(i+1));
89

90 % GRAPH
91 % Input graph weights: Bonds matrix will give us the weights
92 figure (2)
93 G=graph(B,’upper ’);
94 plot(G,’NodeColor ’,’k’,’EdgeCData ’,G.Edges.Weight)
95 c = colorbar;
96 w = c.LineWidth;
97 c.LineWidth = 1.5;
98 colormap jet
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99 colorbar off
100 axis off
101 box off
102

103 % FUNCTIONS
104 % - R(5,5) system energy calculation
105 function e = ee_energy(n, B, de)
106 e = 0;
107 for i=1:n
108 for j=(i+1):n
109 for k=(j+1):n
110 for c=(k+1):n
111 for w=(c+1):n
112 if ( abs( B(i,j) + B(j,k) + B(k,c) +...
113 B(c,w) + B(w,i) +...
114 B(i,k) + B(j,c) +...
115 B(k,w) + B(i,c) +...
116 B(j,w) ) == 10)
117 e = e + de;
118 end
119 end
120 end
121 end
122 end
123 end
124 end
125

126 % - Acceptance rule calculation
127 function a = acceptance(beta , delta_energy)
128 a = min(1,exp(-beta*delta_energy));
129 end
130

131 % - Counting red and blue cliques separately
132 function [red ,blue] = ee_r_b(n,B)
133 red = 0;
134 blue = 0;
135 for i=1:n
136 for j=(i+1):n
137 for k=(j+1):n
138 for c=(k+1):n
139 for w=(c+1):n
140 if ( ( B(i,j) + B(j,k) + B(k,c) + ...
141 B(c,w) + B(w,i) +...
142 B(i,k) + B(j,c) +...
143 B(k,w) + B(i,c) +...
144 B(j,w) ) == 10)
145 red = red + 1;
146 elseif ( ( B(i,j) + B(j,k) + B(k,c) +

...
147 B(c,w) + B(w,i) +...
148 B(i,k) + B(j,c) +...
149 B(k,w) + B(i,c) +...
150 B(j,w) ) == -10)
151 blue = blue + 1;
152 end
153 end
154 end
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155 end
156 end
157 end
158 end
159

160 % - Finding all combinations of cliques connected keeping fixed
a specific

161 % - edge
162 function e = flip_energy(n, B, x, y, de)
163 % flipped edge (x,y) where x<y<=n
164 % 2 fixed indices {x,y}
165 % 3 free indices {i,j,f}
166 % 5 vertices cliques
167 % n: # total vertices
168 % B: Adjacency matrix
169 e = 0;
170 % 01
171 for i=(y+1):n
172 for j=(i+1):n
173 for f=(j+1):n
174 if (abs(B(x,y)+B(y,i)+B(i,j)+B(j,f)+B(f,x)...
175 +B(x,i)+B(y,j)+B(i,f)...
176 +B(x,j)+B(y,f))==10)
177 e = e + de;
178 end
179 end
180 end
181 end
182 % 02
183 for i=1:(x-1)
184 for j=(y+1):n
185 for f=(j+1):n
186 if (abs(B(i,x)+B(x,y)+B(y,j)+B(j,f)+B(f,i)...
187 +B(i,y)+B(x,j)+B(y,f)...
188 +B(i,j)+B(x,f))==10)
189 e = e + de;
190 end
191 end
192 end
193 end
194 % 03
195 for i=1:n
196 for j=(i+1):(x-1)
197 for f=(y+1):n
198 if (abs(B(i,j)+B(j,x)+B(x,y)+B(y,f)+B(f,i)...
199 +B(i,x)+B(j,y)+B(x,f)...
200 +B(i,y)+B(j,f))==10)
201 e = e + de;
202 end
203 end
204 end
205 end
206 % 04
207 for i=1:n
208 for j=(i+1):n
209 for f=(j+1):(x-1)
210 if (abs(B(i,j)+B(j,f)+B(f,x)+B(x,y)+B(y,i)...
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211 +B(i,f)+B(j,x)+B(f,y)...
212 +B(i,x)+B(j,y))==10)
213 e = e + de;
214 end
215 end
216 end
217 end
218 % 05 ATTENION NOW TAKE (y,x)
219 for i=(x+1):n
220 for j=(i+1):n
221 for f=(j+1):(y-1)
222 if (abs(B(x,i)+B(i,j)+B(j,f)+B(f,y)+B(y,x)...
223 +B(x,j)+B(i,f)+B(j,y)...
224 +B(x,f)+B(i,y))==10)
225 e = e + de;
226 end
227 end
228 end
229 end
230 % 06
231 for i=(x+1):(y-1)
232 for j=(y+1):n
233 for f=(j+1):n
234 if (abs(B(x,i)+B(i,y)+B(y,j)+B(j,f)+B(f,x)...
235 +B(x,y)+B(i,j)+B(y,f)...
236 +B(x,j)+B(i,f))==10)
237 e = e + de;
238 end
239 end
240 end
241 end
242 % 07
243 for i=1:(x-1)
244 for j=(x+1):(y-1)
245 for f=(y+1):n
246 if (abs(B(i,x)+B(x,j)+B(j,y)+B(y,f)+B(f,i)...
247 +B(i,j)+B(x,y)+B(j,f)...
248 +B(i,y)+B(x,f))==10)
249 e = e + de;
250 end
251 end
252 end
253 end
254 % 08
255 for i=1:n
256 for j=(i+1):(x-1)
257 for f=(x+1):(y-1)
258 if (abs(B(i,j)+B(j,x)+B(x,f)+B(f,y)+B(y,i)...
259 +B(i,x)+B(j,f)+B(x,y)...
260 +B(i,f)+B(j,y))==10)
261 e = e + de;
262 end
263 end
264 end
265 end
266 % 09
267 for i=(x+1):n
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268 for j=(i+1):(y-1)
269 for f=(y+1):n
270 if (abs(B(x,i)+B(i,j)+B(j,y)+B(y,f)+B(f,x)...
271 +B(x,j)+B(i,y)+B(j,f)...
272 +B(x,y)+B(i,f))==10)
273 e = e + de;
274 end
275 end
276 end
277 end
278 % 10
279 for i=1:(x-1)
280 for j=(x+1):n
281 for f=(j+1):(y-1)
282 if (abs(B(i,x)+B(x,j)+B(j,f)+B(f,y)+B(y,i)...
283 +B(i,j)+B(x,f)+B(j,y)...
284 +B(i,f)+B(x,y))==10)
285 e = e + de;
286 end
287 end
288 end
289 end
290 end
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Appendix B

Brief discussion on observables

B.1 Residual entropy & ground state degeneracy

For the Ising model the energy scales by the total number of spins. Instead
for a Ramsey system, let us assume R(x, x), the energy scales as(

n
x

)
,

which is the total number of cliques. Thus the specific heat can takes the
following form:

c =
∆E

(n
x)kT2 .

Moreover, the residual entropy Sres is:

Sres =

(
n
x

)(
ln 2−

∫ ∞

0
dT

c
T

)
,

thus the residual entropy per clique S̃res will be:

S̃rex ≡ Sres/
(

n
x

)
= ln 2−

∫ ∞

0
dT

c
T

,

from which the ground state degeneracy g(E = 0) is obtained by

g(E = 0) =
S̃res

ln 2
.

B.2 Counting states

The way we count states for a Ramsey system in order to do correctly the
calculation of the 3 aforementioned observables, c, Sres, S̃res, takes into ac-
count the energy of a clique. From the energy perspective a clique can be
excited or not. Thus, ignoring any additional degeneracies that may affect
our counting, the total number of states with respect to energy are:

2(
n
x),
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where n is a specific graph size, x is the argument of R(x, x) giving us the
x−cliques for the energy calculation. 2 comes from the fact that each clique
can be in two states energetically speaking, i.e. excited or not, as discussed
before. However there are many details that need to be considered in case we
want to do a strict count of states when we are not interested energetically.
For example each excited state has two possibilities, i.e. can be either blue
or red, if we have two arguments for the Ramsey number, thus for energies
greater than zero we need to correct by a factor of 2. If we are more cautious
we observe that there is 2-fold degeneracy because energetically there is no
difference if we inverted the colors from blue to red or vice versa. This is
similar to Ising model with no external magnetic field.
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Appendix C

Adjacency matrices

C.1 A ground state of a R(4, 4)-system with 17 ver-
tices

Below you can find the adjacency matrix of a ground state for a graph with
17 vertices for a R(4, 4)-system. Recall R(4, 4) = 18. Therefore you can copy
and paste the following configuration on your own to double check that this
is indeed one ground state.

0,-1,1,1,-1,1,1,-1,-1,-1,-1,-1,1,1,-1,1,1
-1,0,-1,-1,1,1,-1,-1,1,-1,1,1,1,1,-1,1,-1
1,-1,0,1,-1,-1,1,-1,1,1,1,1,-1,1,-1,-1,-1
1,-1,1,0,1,-1,-1,1,-1,-1,1,1,-1,-1,-1,1,1
-1,1,-1,1,0,1,1,-1,-1,-1,1,1,-1,-1,1,-1,1
1,1,-1,-1,1,0,1,-1,1,1,-1,-1,-1,-1,-1,1,1
1,-1,1,-1,1,1,0,-1,-1,1,1,-1,1,-1,1,-1,-1
-1,-1,-1,1,-1,-1,-1,0,1,1,1,-1,1,-1,1,1,1
-1,1,1,-1,-1,1,-1,1,0,1,1,-1,-1,1,-1,-1,1
-1,-1,1,-1,-1,1,1,1,1,0,-1,1,-1,-1,1,1,-1
-1,1,1,1,1,-1,1,1,1,-1,0,-1,1,-1,-1,-1,-1
-1,1,1,1,1,-1,-1,-1,-1,1,-1,0,-1,1,1,1,-1
1,1,-1,-1,-1,-1,1,1,-1,-1,1,-1,0,1,1,1,-1
1,1,1,-1,-1,-1,-1,-1,1,-1,-1,1,1,0,1,-1,1
-1,-1,-1,-1,1,-1,1,1,-1,1,-1,1,1,1,0,-1,1
1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1,-1,-1,0,-1
1,-1,-1,1,1,1,-1,1,1,-1,-1,-1,-1,1,1,-1,0
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C.2 A ground state of a R(5, 5)-system with 35 ver-
tices

Below you can find the adjacency matrix for oe ground state of a graph with
35 vertices for a R(5, 5)-system. Recall 43 ≤ R(5, 5) ≤ 49. Again you by
copying the matrix below you can check on your own that it is a ground
state.

0,1,-1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,-1
1,0,1,1,1,1,-1,1,-1,-1,-1,-1,-1,1,1,1,-1,1,-1,1,1,1,1,-1,1,1,-1,-1,-1,1,-1,1,-1,-1,-1
-1,1,0,-1,-1,-1,-1,1,-1,1,1,1,1,1,1,1,-1,-1,-1,1,1,1,-1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1
1,1,-1,0,-1,-1,1,-1,-1,-1,-1,-1,-1,1,-1,1,-1,-1,1,1,1,-1,1,-1,1,-1,1,1,1,1,1,1,1,-1,1

-1,1,-1,-1,0,-1,-1,1,1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,1,1
-1,1,-1,-1,-1,0,-1,-1,1,1,1,-1,-1,1,-1,1,1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,1,1,1,-1
1,-1,-1,1,-1,-1,0,-1,1,1,1,-1,1,1,1,-1,1,1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,1,-1,1,-1,1,-1,1
1,1,1,-1,1,-1,-1,0,1,-1,-1,1,1,1,-1,-1,-1,1,1,1,-1,-1,1,1,-1,1,-1,1,-1,-1,1,-1,-1,1,-1
-1,-1,-1,-1,1,1,1,1,0,-1,1,-1,1,-1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,1,1,1,-1,1,1,-1,1,-1,1
-1,-1,1,-1,-1,1,1,-1,-1,0,1,1,-1,-1,1,1,-1,1,1,-1,1,1,-1,-1,-1,1,-1,1,1,-1,1,1,-1,-1,1
1,-1,1,-1,1,1,1,-1,1,1,0,-1,-1,1,1,-1,1,-1,1,1,-1,-1,1,-1,1,1,-1,1,1,-1,-1,1,1,-1,-1
-1,-1,1,-1,-1,-1,-1,1,-1,1,-1,0,-1,1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1,1,-1,1,1,1,1,1,1
1,-1,1,-1,1,-1,1,1,1,-1,-1,-1,0,1,-1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1,1,-1,1,1,1,1,1,-1,-1
1,1,1,1,1,1,1,1,-1,-1,1,1,1,0,-1,1,-1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,1,-1,1,-1,-1,1,-1
-1,1,1,-1,-1,-1,1,-1,-1,1,1,1,-1,-1,0,-1,-1,1,-1,1,1,-1,1,1,1,1,1,-1,-1,-1,-1,1,1,-1,-1
-1,1,1,1,1,1,-1,-1,1,1,-1,-1,-1,1,-1,0,1,-1,-1,1,1,-1,-1,1,1,-1,1,1,-1,-1,1,-1,1,1,-1
1,-1,-1,-1,-1,1,1,-1,-1,-1,1,1,-1,-1,-1,1,0,1,1,1,-1,1,-1,1,1,1,1,-1,1,1,-1,-1,-1,1,-1
1,1,-1,-1,1,1,1,1,-1,1,-1,-1,1,-1,1,-1,1,0,-1,1,-1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1

1,-1,-1,1,1,-1,-1,1,-1,1,1,1,1,-1,-1,-1,1,-1,0,-1,1,-1,1,-1,-1,1,-1,1,-1,-1,-1,1,1,1,-1
-1,1,1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,1,-1,0,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1
1,1,1,1,-1,-1,1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,-1,0,1,-1,1,-1,1,1,-1,-1,-1,-1,1,-1,1,1
1,1,1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,-1,1,-1,-1,-1,1,0,-1,-1,1,-1,-1,-1,1,1,-1,1,1,1,1
-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,-1,1,1,-1,-1,-1,1,1,-1,-1,0,1,-1,1,-1,1,1,-1,1,1,-1,1,-1
-1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,-1,1,1,1,1,-1,1,1,-1,1,0,1,1,-1,-1,1,-1,-1,-1,1,1,1
1,1,-1,1,1,1,-1,-1,-1,-1,1,-1,1,-1,1,1,1,1,-1,-1,-1,1,-1,1,0,1,1,-1,-1,-1,-1,-1,1,-1,1
-1,1,-1,-1,1,-1,-1,1,1,1,1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,1,1,0,1,-1,1,-1,1,-1,-1,-1,1
1,-1,1,1,1,-1,-1,-1,1,-1,-1,1,1,-1,1,1,1,-1,-1,1,1,-1,-1,-1,1,1,0,-1,-1,1,1,1,-1,1,-1
1,-1,1,1,-1,-1,-1,1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,-1,-1,-1,-1,0,-1,1,1,-1,1,-1,1
-1,-1,1,1,1,-1,1,-1,-1,1,1,-1,1,1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,1,-1,-1,0,1,-1,-1,-1,1,1
1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,-1,-1,1,1,-1,1,-1,1,-1,-1,-1,-1,1,1,1,0,-1,1,-1,-1,1
-1,-1,-1,1,-1,1,1,1,1,1,-1,1,1,1,-1,1,-1,1,-1,-1,-1,-1,1,-1,-1,1,1,1,-1,-1,0,1,-1,-1,-1
-1,1,-1,1,-1,1,-1,-1,-1,1,1,1,1,-1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-1,1,1,0,1,1,-1
-1,-1,-1,1,1,1,1,-1,1,-1,1,1,1,-1,1,1,-1,-1,1,-1,-1,1,-1,1,1,-1,-1,1,-1,-1,-1,1,0,-1,1
1,-1,-1,-1,1,1,-1,1,-1,-1,-1,1,-1,1,-1,1,1,1,1,-1,1,1,1,1,-1,-1,1,-1,1,-1,-1,1,-1,0,1
-1,-1,-1,1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,1,1,-1,1,1,1,-1,-1,1,1,0
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