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Alexandria Ocasio-Cortez





v

UTRECHT UNIVERSITY

Abstract
Faculty of Science

Institute for Theoretical Physics

Master of Science

Homeostatic behaviour in democratic societies under climate change

by Bruno RODRIGUES

Homeostatic behavior is a regulative mechanism in complex systems where internal
state variables are maintained within certain bounds under varying external con-
ditions. In this project we investigate how different parameters lead to regimes of
relative stability in election outcomes and under which circumstances landslides oc-
cur in democratic societies under climate change. We make use of DICE, an inte-
grated assessment model of the world’s climate-economy, and an Ising-like opinion
dynamics model on a 2D-lattice small-scale network which allows for external stim-
ulation. The topology of the network is shown to have an impact on election results
as well as affecting its statistical properties. The effects of authority, connectivity and
clustering between individuals play a heavy role in opinion formation and affect its
critical points between ferromagnetic and paramagnetic phases. A coupling mecha-
nism between the climate-economy feedbacks and their effect on voting behaviour
was formulated. The coupling involves the optimization of an abatement policy to
mitigate climate-induced damages to the world economy by maximizing total wel-
fare, which is distinct for each political party. A projection of election outcomes (and
their consequences to the climate-economy) is then numerically estimated by mak-
ing use of Monte Carlo simulations. We show that the main driving factor in voter
perception is the tax that results from abatement policy and that this leads to an up-
per and lower bound to external stimulation. The climate-induced damages play a
minimal role in the short term, but are shown to take over in later years and force
the voters into a ferromagnetic state.
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Chapter 1

Introduction

In his Theogeny (c. 700 BC), the ancient Greek poet Hesiod narrates the story of the
genesis of the deities of Greek mythology. After invoking the Muses, he tells of the
generation of the first primordial deities:

"Verily at the first Chaos came to be, but next wide-bosomed Gaia (Earth), the
ever-sure foundations of all the deathless ones who hold the peaks of snowy
Olympus..."1

Gaia is the ancestral mother of all life. She is the mother of Uranus (the Sky),
from whose union she bore the Titans (themselves parents of many of the Olympian
gods), the Cyclopes, and the Giants. This personification of Earth as a living being,
an integrated whole, a deity, has a long tradition. Western culture colloquially refers
to it as "Mother Nature". Gaia and the concept "she" represents has entered the
scientific literature through the works of chemist James Lovelock and (co-developed)
by the microbiologist Lynn Margulis in the 1970s [1, 2].

The Gaia hypothesis proposes that all organisms and their inorganic surround-
ings on Earth are closely integrated to form a single and self-regulating complex sys-
tem, maintaining the conditions for life on the planet. This involves the biosphere,
the atmosphere, the hydrospheres and the pedosphere, all tightly coupled as a single
an evolving system. The system as a whole, which they call Gaia, seeks a physical
and chemical environment optimal for the existence of contemporary life on Earth.

The scientific investigation of the Gaia hypothesis focuses on observing how the
biosphere and the evolution of life forms contribute to the stability of global tem-
perature, ocean salinity, oxygen in the atmosphere and other factors important for
habitability in a preferred homeostasis2.

Criticism of the Gaia hypothesis has been primarily focused on it being teleologi-
cal — a belief that things are purposeful and aimed towards a goal. This description
of the living Earth system as an entity with a conscious goal in mind is certainly
unappealing and should be taken as merely a metaphorical description of Earth
processes. Lovelock himself argues that no one mechanism is responsible for home-
ostasis, that the connections between the various known mechanisms may never be
known or fully understood, and that this is accepted in other fields of biology and
ecology as a matter of course.

Nevertheless, many processes in the Earth system are on a delicate balance and
happen to somehow maintain the correct range of conditions required for complex
life to exist. One notoriously important parameter is the average atmospheric tem-
perature, which is critically regulated by the carbon dioxide (CO2) content in the

1"The Theogony of Hesiod" (ll. 116-138). (https://www.sacred-texts.com/cla/hesiod/theogony.htm)
2The tendency towards a relatively stable equilibrium between interdependent elements, especially

as maintained by physiological processes.
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atmosphere. The greenhouse effect is well known to most literate adults, including
the consequences of a greenhouse effect gone haywire: Venus. Since the mid-20th
century these scientific concepts have seeped into the global vernacular as global
warming has been accelerating due to anthropogenic influence. Global warming
and its effects on the stability of the climate system are known as climate change.

The Intergovernmental Panel on Climate Change (IPCC) concluded that "human
influence on climate has been the dominant cause of observed warming since the
mid-20th century". These findings have been recognized by the national science
academies of major nations and are not disputed by any scientific body of national
or international standing [3, 4]. The largest human influence has been the emission of
greenhouse gases, mostly from CO2 and methane. Fossil fuel burning is the principal
source of these gases, with agricultural emissions and deforestation also playing
significant roles. Temperature rise is enhanced by self-reinforcing climate feedbacks,
such as loss of snow cover, increased water vapour, and melting permafrost.

Climate change is therefore seen as a market failure by environmental economists.
As human activity and respective economies continue to drive our energy needs up-
ward, collective emissions of CO2 through the burning of fossil fuels show no in-
dications of slowing down. This has since become the defining political, social and
ethical problem of the 21st century.

Previous attempts at modelling the feedbacks between the climate system and
human economies have resulted in a variety of models, that inform on climate change
policy (with somewhat questionable reliability). In this thesis, we are interested in
adding the element of electoral outcomes to one such model, by coupling a social
network of a democratic society to it and developing a mechanism that conveys the
effects in an accurate fashion. By doing this, we want to explore the consequences
that man made actions, through the economy and its political decisions, have on
regulating the average world temperature and see if homeostasis occurs and under
which conditions.

The structure of this thesis is as follows: In chapter 2, we introduce the basic
concepts that are needed to understand our approach and methodology. We start
with a brief explanation of the Ising model and its essential properties. An explana-
tion of Markov chains and acceptance rates then follows suit, as this methodology
is extended in the custom algorithm of Monte Carlo simulations that we employ to
obtain our results. Lastly, a short overview of the fundamental concepts of graph
theory that we will be repeatedly addressing is presented.

In chapter 3, we present the opinion dynamics model that we have chosen in
order to tackle our problem as well as the motivations behind this particular choice,
considering the extensive range of voter models that exist in the literature. We show-
case the network structure, its topological properties and a description of how the
algorithm for the network formation is implemented. The dynamics of opinion for-
mation and the equations that govern it are explained, with the analogous behaviour
to the Ising model being evident here. A detailed discussion of the algorithm and its
capacity to generate networks with the properties required to emulate real networks
is presented. Also, we show how opinion formation is influenced by multiple net-
work parameters, network temperature and, most importantly, external stimulation,
leading to phase transitions.

Chapter 4 is a short overview of the DICE model, which is how we have chosen
to model the effects of climate chance. The equations of the model are explained
as well as all the necessary concepts from both climate physics and economics. We
abstain from lengthy discussions on the nuances involved, but particular attention
is given to the core concepts that will be used in our extension of this model, such
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as climate damages, climate sensitivity, average atmospheric temperature anomaly
and abatement (cost of climate related policies). We end this chapter with a short
discussion on multiple scenarios that can be model with DICE and its implications,
which will then be used to compare with our results.

In chapter 5, we tackle the main problem we have set out to do by introduc-
ing a framework for coupling the DICE model with our opinion dynamics model.
A brief description of this coupling and how we implement it for a two-party sys-
tem is shown, as well as a discussion on the criteria we use that distinguishes the
political parties from one another3. We then discuss our proposed coupling equa-
tion and the motivations behind its mathematical form, as well as its behavioural
properties. Results are then showcased for a variety of parameters in order to ex-
plore the regimes under which our coupled DICE model operates with reasonably
realistic outcomes. These results are obtained through Monte Carlos simulations
and optimization algorithms, and we discuss the behaviour and implications of the
model with particular attention to the impact of climate damages, network temper-
ature and the importance of considering the future consequences of climate change
into mediating opinion formation. Finally, we see how these different regimes and
subsequent changes in electoral outcomes influence the atmospheric temperature
anomaly curve and how it effectively bounds it to a range of possible scenarios.

In the appendices, we present a simplified version of the Python code used to
perform our simulations, for the purposes of reproducibility and further develop-
ment.

3Attempts at differentiating the political parties by asking them directly were made, as we’ve sent
enquiries to multiple parties present in the Dutch parliament. However, of the responses we got, it
seems that political party officials do not have a stance or knowledge on the climate change parame-
ters/concepts we use in the fields of climate change economics.
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Chapter 2

Theoretical Background

2.1 The Ising Model

In statistical physics, there is hardly a doubt that more hours have been spent thor-
oughly researching the properties of the Ising model than any other. An exact so-
lution of its properties in three dimensions continues to elude us, despite countless
and ever more sophisticated attempts at doing so. Nevertheless, a great deal about
it is known from computer simulations, and also from approximate methods such
as series expansions and perturbation theory.

The Ising model is a model of a magnet, named after Ernst Ising [5]. The basic
assumption is that the magnetism of a bulk material is made up of the combined
magnetic dipole moments of the many atomic spins within the material. The model
postulates a lattice (which can be of any geometry we choose — the simple cubic
lattice in three dimensions is a common choice in solid state physics; or simply a
two dimensional grid as used in sociophysics’ networks) with a magnetic dipole or
spin for each atom.

The spins can then be described as a scalar si in binary form as being either 1
or −1, respectively corresponding to either "up" or "down" dipole states. Should
enough spins align in a certain direction, it leads to the generation of a macroscopic
magnetic field as described by classical electrodynamics. These interactions between
neighbouring spins can also lead to an interesting phenomena; if enough spins are
aligned in a certain direction, all spins in the lattice will align themselves in the same
direction - this is called a phase transition.

In its simplest case, all interactions have the same strength, denoted by J which
has dimensions of energy, and the interactions occur solemnly between spins of sites
which are nearest neighbours on the given lattice configuration. An external mag-
netic field B that acts on the spins can also be added.

In this case the Hamiltonian H is;

H = −J ∑
〈i,j〉

sisj − B
N

∑
i

si (2.1)

where the notation 〈i, j〉 represents the sum over nearest neighbours and N is the
number of sites on the lattice.. Positive values of J make the spins want to line up
with one another, called a ferromagnetic state. If J is negative, it will make the spins
want to anti-align, leading to an anti-ferromagnetic state. The spins also want to line
up in the same direction as the acting external field — they want to be positive if
B > 0 and negative if B < 0.

The probability that the system is in one of those two states is given by
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P =
e−βH

Z
(2.2)

with β = 1/kBT , T the temperature and kB is the Boltzmann constant.
The partition function of the Ising model is

Z = ∑
{si}

e−βH (2.3)

where {si} means that we perform a sum for all spins and for all values of spins,
which are +1 and −1. Hence, {si} represents all possible micro-states of the Ising
model.

The partition function can be interpreted as the normalization constant of the
probabilities. It contains in itself all the statistical information about the system. The
use of these probabilities is essential in implementing a Metropolis algorithm that
can simulate the iterations between different spins and their respective switching
behaviour.

The Ising model has two distinct phases, namely a paramagnetic phase in which
its spins are disordered due to thermal fluctuations, and a ferromagnetic phase in
which its spins start to preferentially align in one direction. These two phases are
separated by a phase transition at some critical temperature T = Tc below which the
system becomes ferromagnetic. We can quantitatively distinguish these two phases
by defining the magnetization

M ≡ 1
N

N

∑
i=1
〈si〉 (2.4)

The magnetization serves as this system’s order parameter, which means we can
use it to describe how ordered the system is; for example, M = 0 corresponds to all
of the spins being disordered (paramagnetic state) and M 6= 0 corresponds to the
spins having a preferred direction (ferromagnetic state).

As we will later discuss, the Ising model can be seen as a very simple model for
opinion dynamics, with agents being influenced by the state of the majority of their
interacting partners.

2.1.1 Estimation of Expected Values

For a simulation of a system, the aim is to calculate the expected value of a quantity.
For instance, the expected value of a quantity Q which follows a Maxwell-Boltzmann
distribution is

〈Q〉 =
∑
µ

Qµe−βEµ

∑
µ

e−βEµ

where µ labels the state of the system and β = 1
kBT and kb is the Boltzmann constant.

When taking this method for calculating the expected value of a quantity, all
states of the system must be considered and this can be realized for systems with
a small number of states. However, when considering larger systems, in order to
calculate the expected value of a quantity of system, a subset of these states must
be used since all states cannot be considered. In this case, because of using a small
portion of states, there will be an error in the calculated expected value. The Monte
Carlo method allows us to get the expected value of a large system with low error.
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Monte Carlo methods select states of the system from a probability distribution
Pµ which we specify. With respect to the Monte Carlo method, the expected value of
a quantity is given by

QM =

M
∑

i=1
QµiPµi

−1e−βEµ i

M
∑

j=1
Pµ j
−1e−βEµ j

(2.5)

where states of the system are {µ1, ..., µM} and QM is an estimator of Q. In the
formulation, we see Pµi

−1 because we chose state Qµi by a probability Pµi from all of
the states.

Now, for an accurate estimation of expected value, Pµ must be defined. For in-
stance, Pµ may be chosen as equal for all states. Then,

QM =

M
∑

i=1
Qµie

−βEµ i

M
∑

j=1
e−βEµ j

This is a poor choice for Pµ. If probabilities of some states are greater than others,
in order to obtain a good estimation of the expected value, these states with high
probabilities can be used. Hence, it is obvious that, if Pµ is chosen in the form of
Maxwell-Boltzmann distribution, then a better approximation to the expected value
will occur.

When the number of states used to calculate expected value of a quantity by
Monte Carlo method is increased, then the estimator of Q converges to 〈Q〉.

lim
M→∞

QM = 〈Q〉

For a system with states which does not have equal probabilities, an appropriate
Pµ must be defined in order to approximate the expected value of the system. We
have specified that if we choose Pµ in the form of a Maxwell-Boltzmann distribution,
then we get a better approximation of the expected value.

We choose Pµ to be of the form,

Pµ = Z−1e−βEµ (2.6)

then

QM =
1
M

M

∑
i=1

Qµi (2.7)

This sampling is called importance sampling. The partition function Z is a nor-
malization constant for the probability Pµ. Since Z is known, then all macroscopic
properties of the system can be calculated.

2.2 Markov Process and Selection Probabilities

In order to pick states so that each one appears with its correct Maxwell-Boltzmann
probability, we implement multiple Markov Processes in our simulation.
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The Markov Process is a mechanism found by the Russian Mathematician An-
drey Markov. For a given state µ, the mechanism creates a new random state ν. The
probability to move a state from µ to ν is the transition probability, P(µ→ ν).

The transition probabilities must satisfy two conditions: they should be time
independent and depend only on the initial and final states, µ, ν, respectively. Also,
it is obvious that,

∑
ν

P(µ→ ν) = 1 (2.8)

that is, the sum of all probabilities of transitioning from a state µ to other states ν (
and also the probability of staying in the same state) is equal to 1.

2.2.1 Markov Chain

When simulating a system with a Monte Carlo method, the Markov Process is used
repeatedly, as a chain, creating what is known as a Markov Chain. The simulation
cycles through the states, µ→ ν→ δ→ λ→ ....

The Markov Process is chosen specially so that when it is run for long enough
with any given initial state, it will eventually produce a succession of states which
appear with probabilities given by the Maxwell-Boltzmann distribution.

In order to get a stable distribution at the end of a Markov chain, we should
achieve the equilibrium condition. The equilibrium condition states that, transitions
into a state and out of that state must be equal.

An equilibrium condition can be written as follows,

∑
ν

PµP(µ→ ν) = ∑
ν

PνP(ν→ µ) (2.9)

Therefore,
Pµ = ∑

ν

PνP(ν→ µ) (2.10)

If the above equation is satisfied at any step of the Markov chain, then our prob-
ability distribution at the end of the chain will be Pµ. Now, we need a condition to
achieve intended Pµ at equilibrium state. To achieve this intended Pµ, we should
reach simple equilibrium, by avoiding dynamic equilibrium.

1. Simple Equilibrium:

Let P be a matrix that consists of transition probabilities P(µ → ν), P is called
a Markov Matrix or Stochastic Matrix and let ωµ(t) be the probability that the
system is at a state µ at time t. Then,

ων(t + 1) = ∑
µ

P(µ→ ν)ωµ(t)

Using matrix notation
ω(t + 1) = Pω(t) (2.11)

ω(t) is an array consisting of ωµ(t).

If a simulation reaches simple equilibrium, then

ω(∞) = Pω(∞) (2.12)

In this case, ω(∞) equals a Maxwell-Boltzmann distribution, by choosing the
appropriate probabilities.
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2. Dynamic Equilibrium:

If we reach dynamic equilibrium, the probability distribution ω rotates around
different values. This rotation is called limit cycle. If we are in a limit cycle, we
get

ω(∞) = Pnω(∞) (2.13)

where n is the length of the limit cycle. To get rid of a dynamic equilibrium,
we should satisfy the detailed balance condition.

3. Detailed Balance:

By using detailed balance, we obtain a Maxwell-Boltzmann distribution after
achieving the equilibrium condition. Detailed balance is given by the equation

PµP(µ→ ν) = PνP(ν→ µ) (2.14)

The detailed balance condition clearly forbids dynamic equilibrium. For in-
stance, we have a given probability for a state and this probability will increase
at limit cycle. In order to increase this probability we must have more transi-
tions to this state than out of it, on average; however, detailed balance prevents
this from happening.

If we look at the detailed balance condition, it also includes the equilibrium
condition described above. If detailed balance is satisfied, then the equilib-
rium condition will be satisfied as well and we will avoid getting dynamic
equilibrium and limit cycles.

Once we remove limit cycles in this way, it is straightforward to show that the
system will always tend to the probability distribution Pµ as t → ∞. (citation
p.38 Newman+Barkema). It means that ωµ(∞) = Pµ.

Let us now show that the system tends to Pµ as t→ ∞;

It is known that, ω(t + 1) = Pω(t). If t is chosen to be equal to zero, we will
get ω(1) = Pω(0) and by making some iterations, then

ω(t) = Ptω(0) (2.15)

Also, ω(0) can be expressed as a linear combination of eigenvectors vi of P, [6]

ω(0) = ∑
i

aivi (2.16)

Then
ω(t) = Pt ∑

i
aivi

We know that Pvi = λivi, where λi is the eigenvalue corresponding to the
eigenvector vi. Then,

ω(t) = ∑
i

aiλi
tvi (2.17)

As t → ∞, λi
t grows with t and the equation will be dominated by λ0. This

implies that ω(t) is proportional to v0 with its eigenvector corresponding to
λ0.
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We know that ∑
ν

P(µ → ν) = 1. Thus, the sum of all elements in each column

of the Markov matrix equals to 1. On the other hand, since elements of the
Markov matrix describe probabilities, they must be in the range [0, 1].

Let’s assume a 2x2 Markov Matrix P;[
a b

1− a 1− b

]

its transpose is PT [
a 1− a
b 1− b

]
To find its eigenvectors and eigenvalues PTvi = λivi then, (PT − λi I)vi = 0 =
Kvi then K is [

a− λ 1− a
b 1− b− λ

]
Hence, generally for the transpose of an nxn Markov Matrix P, the eigenvector
vi is 

1
1
...
1


and for this unit element eigenvector, there is an eigenvalue of 1. To see this,
using the same 2x2 Markov Matrix, and PTvi = λivi; a− λ + 1− a = 0; b + 1−
b− λ = 0 then λ = 1.

The Markov matrix P and its transpose have the same determinant, then P−λI
and PT − λI also have the same determinant. Eigenvalues of P and PT are the
same (because the determinants are equal). Therefore, the Markov Matrix P
has an eigenvalue of 1.

Now, let’s assume vi is an eigenvector corresponding to eigenvalue |λ| > 1
and Pnvi = |λ|nvi, so its length grows exponentially as n → ∞. Hence, for
large n, an element of Pn must be larger than one (to satisfy equality), which is
impossible. Therefore, all eigenvalues of P are smaller or equal to 1.

Also, we have found
ω(t) = ∑

i
aiλi

tvi

as t→ ∞. Eigenvalues with absolute value smaller than 1 vanish and the right
hand side of the equation is dominated by λ0 = 1. For a large enough t, ω(t)
is proportional to v0 which is the eigenvector corresponding to λ0 which has
elements of 1. Hence,

ω(∞) = a0v0 (2.18)

In equilibrium, we have that Pµ = ∑
ν

PνP(ν → µ), in vector notation, is equal

to p = Pp. This p is a vector whose elements are Pµ. For an eigenvalue and its
corresponding eigenvector of a matrix A, Av = λv. We can then write

Pp = λp
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, and p is a normalized eigenvector of P which has eigenvalue 1. It means that
v0 = p

Therefore, ω(∞) is p. Because of this, when t goes to infinity, ω(t) goes to p:

lim
t→∞

ω(t) = p (2.19)

By carefully choosing transition probabilities which satisfy the detailed bal-
ance condition, we can reach any probability distribution p in equilibrium.

Now, we want to satisfy the Maxwell-Boltzmann distribution in equilibrium
condition. In order to do this we choose pµ as the Maxwell-Boltzmann proba-
bilities. By using detailed balance condition;

P(µ→ ν)

P(ν→ µ)
=

Pν

Pµ
= e−β(Eν−Eµ) (2.20)

Also, to show that all states must be a part of the system, we should satisfy the
ergodicity condition.

4. Ergodicity:

With respect to the ergodicity condition, some of the transition probabilities
may be zero. However, for any two states which have transition probabilities
equal to zero, there must be at least one path of non-zero probability. Thus, all
states in the system must be reachable by at least one path, it means that all
states must be a part of the system.

We must then satisfy three conditions:

(a) P(µ→ν)
P(ν→µ)

= Pν
Pµ

= e−β(Eν−Eµ)

(b) ∑
ν

P(µ→ ν) = 1

(c) Ergodicity

If these three conditions are satisfied, then we get a Maxwell-Boltzmann dis-
tribution as an equilibrium distribution.

There are a lot of transition probabilities to satisfy these conditions. There
are also plenty of algorithms to implement these mechanics, such as the con-
ventional Metropolis algorithm. However, a purpose-built algorithm can often
give a much faster simulation than an equivalent standard algorithm, and the
improvement in efficiency can easily make the difference between finding an
answer to a problem and not finding one [6].)

Such is the case with the modified Monte Carlo algorithm we used, where the
probabilities of the opinion switch mechanism operate under the same condi-
tions.

2.2.2 Acceptance Ratio and Selection Probabilities

We have two equations to satisfy, one is the ratio of transition probabilities and the
other is the sum of transition probabilities to move a state to other states.

Let us consider a "stay-at-home" condition ν = µ. For this scenario, the ratio of
transition probabilities equals 1, so the first condition (detailed balance) is satisfied,
independently of P(µ → µ). We can then choose other transition probabilities more
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easily. This flexibility comes from the ∑
ν

P(µ → ν) = 1, and we can adjust any

P(µ → ν). For an adjustment in P(µ → ν), we balance P(ν → µ) out to keep the
ratio constant. So, by changing P(µ→ µ), we can use any value of P(µ→ ν).

Let’s assume
P(µ→ ν) = g(µ→ ν)A(µ→ ν)

where g(µ → ν) is the selection probability, which is the probability of generating a
new state and A(µ → ν) is the Acceptance Ratio. Acceptance ratios are about the
"stay-at-home" conditions, for example if we choose A(µ → ν) = 0 for all ν then
P(µ→ µ) = 1, because if we don’t accept any move to another state, then our "stay-
at-home" probability is 1. So we are free to choose any value of A(µ→ ν) in between
0 and 1.

If we look at the equation P(µ→ν)
P(ν→µ)

= Pν
Pµ

= e−β(Eν−Eµ), then we have a constraint in

P(µ→ ν)

P(ν→ µ)
=

g(µ→ ν)A(µ→ ν)

g(ν→ µ)A(ν→ µ)

We can choose any value of A(µ→ν)
A(ν→µ)

and this gives us a freedom in the value of
g(µ → ν) and g(ν → µ). Hence, we will create a MC algorithm that creates new
states with probabilities g(µ → ν) and then we will accepts it with probabilities
A(µ→ ν).

However, there is also a requirement in the values of A(µ → ν). If we choose
acceptance ratios to be low, then we cannot generate enough states. Thus, we want
to choose A(µ → ν) as close as to unity. For chosen selection probabilities, we only
have a constraint on the ratio A(µ→ν)

A(ν→µ)
. Hence, we choose largest acceptance ratios as

1, that implies, for example, A(µ → ν) = 1, and the other is fixed by the ratio of
acceptance probabilities.

2.3 Graph Theory

The study of complex networks has traditionally been the territory of graph theory.
While graph theory initially focused on regular graphs, since the 1950’s large-scale
networks with no apparent design principles were described as random graphs, pro-
posed as the simplest and most straightforward realization of a complex network.
Random graphs were first studied by the Hungarian mathematicians Paul Erdős
and Alfréd Rényi [7]. According to the Erdős–Rényi model, we start with N nodes
and connect every pair of nodes with probability p, creating a graph with approxi-
mately pN(N − 1)/2 edges distributed randomly. This model has been the guiding
model of the study of complex network decades after its introduction (see Fig. 2.1a).
However, the growing interest in complex systems has led many to reconsider if real
networks as diverse as the cell, the Internet, or social networks are fundamentally
random. Our intuition and love for patterns would suggest that complex systems
must display some underlying ordered structure which should be at somewhat ev-
ident in their topology. If the topology of these networks is indeed distinct of that
of a random graph, we need to overview the means with which we quantitatively
describe the underlying patterns.

In the past few years we have witnessed considerable advancements in this di-
rection, prompted by multiple parallel developments. The large amount of data ac-
quired by computerization led to the emergence of immense databases on the topol-
ogy of a wide variety of real networks [9]. Increased computing power has allowed
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(a) (b)

FIGURE 2.1: (a) A random Erdős–Rényi graph. (b) A Barabási–Albert graph showcasing its
hierarchical structure and cluster formation. Made with [8].

the investigation into networks containing millions of nodes, opening doors to ques-
tions that could not be addressed before. There has also been a slow but noticeable
breakdown of boundaries between disciplines. This has offered researchers access
to diverse databases, allowing them to uncover the generic properties of complex
networks. Finally, there is an increasingly voiced need to move beyond reductionist
approaches and try to understand the behaviour of the system as a whole, search-
ing for emergent properties. Motivated by these developments many quantities and
measures have been proposed and investigated in depth in the past few years. The
three main ones, that are essential for the understanding of this project, are small-
worldness, network clustering and degree of distribution.

1. Small Worldness: In simple terms, the small world concept describes the fact
that despite their often large size, most networks exhibit relatively short paths
between any two nodes. The distance between two nodes is defined as the
number of edges along the shortest path connecting them. The most popular
manifestation of small worldness is the concept of ”six degrees of separation”,
uncovered by the social psychologist Stanley Milgram [10], who concluded
that there was a path of acquaintances with typical length of about six between
most people in the United States [11]. The small world property appears as a
characteristic of most complex networks: the actors in Hollywood are on aver-
age within three costars from each other, or the chemicals in a cell are separated
typically by three reactions. While intriguing, this is not an indication of a par-
ticular organizing principle. The typical distance between any two nodes in a
random graph scales as the logarithm of the number of nodes, as demonstrated
by Erdős and Rényi. Thus random graphs are small worlds as well.

2. Clustering: A common property of social networks is the grouping of indi-
viduals into circles of friends or acquaintances in which every member knows
every other member. This tendency to cluster in groups is quantified by the
clustering coefficient [12]. Let us focus first on a selected node i in the network,
having ki edges which connect it to ki other nodes. If the first neighbours of the
original node were part of the same group, there would be ki(ki − 1)/2 edges
between them. The ratio between the number Ei of edges that actually exist
between these ki nodes and the total number ki(ki − 1)/2 gives the value of
the clustering coefficient of a given node i
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Ci =
2Ei

ki(ki − 1)
(2.21)

The clustering coefficient of the whole network is the average of all individual
Ci’s. In a random graph, since the edges are distributed randomly, the cluster-
ing coefficient is C = p. However, it was Watts and Strogatz who first pointed
out that in most, if not all, real networks the clustering coefficient is typically
much larger than it is in a random network of equal number of nodes and
edges [13].

3. Degree Distribution: Not all nodes in a network have the same number of
edges. The spread in the number of edges a node has, or node degree, is char-
acterized by a distribution function P(k), which gives the probability that a
randomly selected node has exactly k edges. Since in a random graph the edges
are placed randomly, the majority of nodes have approximately the same de-
gree, close to the average degree 〈ki〉 of the network. The degree distribution of
a random graph is a Poisson distribution with a peak at P(〈k〉). Recent empiri-
cal results have shown that for most real networks the degree distribution sig-
nificantly deviates from a Poisson distribution. These include the World-Wide
Web [14], the Internet [15] or metabolic networks [16], the degree distribution
has a power-law tail

P(k) ∼ k−γ (2.22)

These are called scale-free networks [17]. While some networks do display an
exponential tail, it is often the case that the functional form of P(k) still deviates
significantly from the Poisson distribution expected of a random graph.

These concepts have originated a boom in the field of network modelling. The
three main focus points have been random graphs, small world graphs and scale-
free graphs. Random graphs are variants of the Erdős–Rényi model widely used in
many fields. They serve as a benchmark for many modelling and empirical studies,
being the starting point of our attempted network modelling.

One of the most famous models for complex hierarchical random networks is
the Barabási–Albert model [17]. Its construction starts from a small set of m fully
interconnected nodes and new nodes are introduced one by one. Each new node
selects m older nodes according to the preferential attachment rule, i.e., with proba-
bility proportional to their degree, and creates links with them. This procedure stops
once the required network size N is reached. The network obtained has an average
degree 〈ki〉 = 2m, a small clustering coefficient (of order 1/N) and follows a power
law degree distribution P(k) ∼ k−γ, with γ = 3. They also conclude that networks
that have degree distributions with γ ≤ 3 are scale-free (see Fig. 2.1b).

However, despite being the entry point for studying graphs, random graphs are
not the best description for the topology of a social network. The class of small
world models followed the discovery of clustering. These models interpolate be-
tween the highly clustered regular lattices and random graphs. Finally, the discov-
ery of the power-law degree distribution has led to the construction of various scale-
free models that, by focusing on the network dynamics, aim to explain the origin of
the power-law tails and other non-Poisson degree distributions seen in real systems.
These models obtain the network topology by executing the network dynamics.



15

Chapter 3

Opinion Dynamics

Opinion dynamics is the study of how groups of individuals adjust their beliefs and
opinions as a result of interactions with one another, and exposure to additional in-
formation, media, or propaganda. The opinions held by individuals are expressed
as variables - either real numbers within set bounds for continuous models, or a
selection from a finite set in the case of discrete models. Relationships between in-
dividuals are modelled as edges on a graph, and rules to govern their interactions
are introduced to represent real life. In each time step of the simulation, a group of
agents interact with one another, and as a result shift their opinions towards or apart
from one another.

Physicists have employed this type of approach to modelling social systems
based on molecular dynamics [18, 19] and Metropolis and Monte Carlo [20] sim-
ulations. The main objective of these simulations is to address the problem of emer-
gence from the lower (micro) level of the social system to the higher (macro) level.

The dynamics of opinion formation among individuals is a complex subject, be-
cause the individuals themselves and their motivations are. Modelling of social sys-
tems is a non-trivial matter and statistical physicists working on opinion dynamics
aim at defining the opinion states of a population, and the elementary processes that
lead to transitions between such states. The main question is whether this is pos-
sible and whether this approach can accurately describe human populations or if
its merely a mathematical curiosity. Any such mathematical model must therefore
consider opinion has a variable, or a set of variables, that is simple to manipulate.
This may appear too reductive, when we consider the complexity of a person and
of each individual position one can hold. However, multiple binary examples exists
in day-to-day life that where people are given a limited set of choices on specific is-
sues, which often are as few as two: right/left, buy/sell, PC/Mac, etc. Therefore, if
these can be represented by a simple ±1 representation, the challenge lies solemnly
on finding an adequate set of mathematical rules that describe the mechanisms re-
sponsible for their evolution.

The first physicist to attempt to model opinion dynamics formation was based
on a probabilistic framework [21], with the Ising model making its first appearance
in the field a decade later [22, 23]. In such models, the spin-spin coupling represents
the pairwise interaction between individuals, while the magnetic field represents the
enforced cultural majority or media propaganda. Individual fields are also added, in
an attempt to determine personal preferences towards either orientation. Depend-
ing on the strength of these individual fields, the system may reach a total consensus
toward one of the two possible opinions (ferromagnetic), or a state where both opin-
ions coexist with a certain ratio (paramagnetic).

The development of the field of opinion dynamics has been largely uncoordi-
nated and based on individual attempts, where social mechanisms considered rea-
sonable by the authors turned into mathematical rules, without a general shared
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framework and often with no reference to real sociological studies or backing by big
data. Nevertheless, attempts at unifying these frameworks have been done in re-
cent years and interdisciplinary cooperation between physicists working on opinion
dynamics and sociologists is (slowly) becoming more prevalent [24, 25, 26].

3.1 Opinion Formation in a Social Network

Over the past decades, physicists have actively worked on the field of complex net-
works and social dynamics, developing a wide range of models. An exhaustive
description of these models is beyond the scope of this thesis, but we mention here
those that have received the most attention in the physics literature over the past
years and that we’ve considered using: the voter model [27, 28], the q-voter model
[29], majority rule model [30], Sznajd model [31], amongst others [32]. Ultimately,
most of these models did not allow for a convenient mechanism with which to ex-
ternally shape opinion formation of the network, relying solemnly on the internal
mechanisms acting between individuals. The topology of the networks used is also
important, and one cannot rely on randomly generated graphs to provide an accu-
rate representation of a real society.

We make use of an Ising-like opinion formation model that allows for external
influences analogous to a magnetic field to affect the network’s behaviour [33]. This
particlar model also makes use of a network topology that is hierarchical and scale
free, in an attempt to be an accurate aproximation of real social networks. Here
we will present a description of this model, its equations and our implementation
through a Python algorithm, which makes use of auxiliary modules to simulate
graphs [8]. We also exhaustively investigate the properties of networks generated
with our algorithm and its efficiency at doing so.

3.2 Network Structure

We describe the population as a two-dimensional lattice made up of N = L× L in-
dividuals. The graph structure is evenly spaced and arranged in such a way that
each node is identified by the indices (i, j), which correspond to their fixed locations
in the lattice. Each individual can have one of two states Sij = ±1 assigned to them
which correspond to their opinion regarding a certain topic or question. For our
purposes, the opinion Sij corresponds to their choice of political party. Individuals
are randomly assigned one of two states in such a way that the average opinion at
the start is 〈S〉 = 0.
To accurately describe the way human populations interact we have to take into ac-
count the location of individuals within the lattice and their respective social connec-
tions with each other. These interpersonal interactions (social connections, friend-
ships and random contacts) have a hierarchical structure. The distinction between
first and second level connections is subsequently explained. The network of social
connections is scale-free, meaning that the distribution of connectivity of individuals
has the form P(k) ∼ k−γ, with k ∈ (kmin, kmax). Here we make a distinction between
the connectivity of a node kij and its maximum allowed connectivity Kij. The values
of the connectivity distribution are assigned to each node and they correspond to the
maximum number of connections that each individual is allowed to form, Kij. Ini-
tially, the grid has no connections between individuals and therefore the actual value
of connectivity for each node is kij = 0. Connections are then formed over multiple
iterations over all nodes of the network until kij = Kij (or until no new connections
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FIGURE 3.1: (a) Power laws for different exponents γ. The region shaded in green corre-
sponds to the range usually seen in both natural and artificial networks: 2 < γ < 3. (b)
Probability to form first level connections in function of the distance l between nodes for a
lattice with L = 100 and multiple values of LG. The second term in Eq. (3.1) causes P(l)
to reach zero slowly enough and parameters a and b ensure most connections are formed

within the local group.

are possible, that is, the network is saturated). To generate the network of connec-
tions between individuals, we iterate over all nodes Sij and pair them to a node Snm,
where n = i± l1; m = ±l2 and l =

√
(i− n)2 + (j−m)2 is the distance between the

nodes (l1, l2 are two independent random variables and the sign is generated with
probability 0.5).

First level connections are created between individuals Sij and Snm based on a
distance probability rule given by equation:

P(l) ∼ 1
1 + exp[(l − a)/b]

+ 0.001
L− 1

L
(3.1)

The population is divided into local groups of NG = LG × LG individuals, where
the parameters a = LG and b = LG/4 of Eq. (3.1) ensure that most of the first level
connections created are in the same local group. A simple example of the structure
of the network from the point of view of a certain individual is depicted in Fig. 3.2a.
Whenever a first level connection is formed between nodes Sij and Snm, connections
between Snm and each neighbour of Sij are formed with probability pc (Fig. 3.2b).
Similarly, attempts to form connections between Sij and neighbours of individual
Snm are done, also with probability pc. Connections formed this way are second
level connections and through this procedure they influence the clustering coeffi-
cient of the nodes and, consequentially, the network. The clustering coefficient of
the network is defined as the average

C =

〈
2Eij

kij(kij − 1)

〉
(3.2)

where Eij is the number of connections between neighbours of the node (i, j).

Connections between two individuals can only be created once and new connec-
tions are only formed if the number of connections of an individual kij is lower than
its maximum allowed number of connections Kij (that is: kij < Kij). This ensures that
we obtain the desired distribution of connectivity for the network. We also point out
that individuals with larger k cannot form connections with individuals with smaller
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(a)

S

S

nm

ij

(b)

FIGURE 3.2: (a) Structure of a simple network with L = 24 and LG = 8 from the point of
view of the individual S13,14 (in red), which has k13,14 = 8 connections (green lines) with
its neighbours (in blue). The network has nine local groups and five of the connections are
within the local group. (b) Distinction between first and second level connections. When a
first level connection (black line) is formed between individuals Sij and Snm, the individual
Snm attempts to form second order connections (dotted lines) with the neighbours of Sij,
with probability pc. Subsequently, connections between the neighbours of Snm and Sij are

created (not depicted).

k. This means individuals with high connectivity act as hubs and are forced to create
connections between each other. For large enough pc we have highly interconnected
groups.

3.3 Network Properties

We now look at some of the statistical properties of the network and how its multiple
parameters influence it. We can see in Fig. 3.4a that the distribution of connectivity
P(k) depends only on the parameter γ, which is to be expected since our algorithm
for creating network connections will add edges to a node but not after its number
of connections kij reaches the maximum allowed number of connections Kij, drawn
at the start from the power law distribution ∼ k−γ. In Fig. 3.4b we can see that the
distribution of connectivity is unaffected by the size of the local group LG. It’s worth
pointing out that for increasingly higher values of γ the distribution will have higher
scattering for larger values of connectivity k. This is can be a bit problematic for our
algorithm, as we will later discuss. The relation between the clustering coefficient of
a node and its number of connections is shown in Fig. 3.5 [we use a grid of L = 100
because of computational limitations - I’d like to repeat this for L = 1000 to get better
statistics and less scattering]. Here we can see how the parameter pc influences the
clustering coefficient of the nodes

[for a larger network L = 1000 multiple values of LG should also be plotted to see
how little the size of the local group influences clustering. For now, I am skipping
this since generating connections for large networks is very slow. I also want to fit the
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FIGURE 3.3: Visualization of a small network (L = 50) done with Gephi [34]. Upon the
execution of our network generator algorithm, the grid layout can be rearranged so that the
scale-free structure of the network is more evident. The size of every node corresponds to
the relative degree of a node (its number of connections/neighbours kij). The node with
highest degree (k8,22 = 97) is highlighted in red, along with all of its neighbours. Nodes
with low degree are pushed to the periphery of the graph while the nodes with high degree
form clustered hubs concentrated at the centre. The structure of the network is such that
hubs are formed in a hierarchical manner, with low degree nodes linking to increasingly
higher degree nodes in a tree-like way. The average degree of the network is 〈k〉 = 17.522,
with corresponding power law connectivity distribution ∼ k−γ. The network clustering
coefficient is C = 0.202. Fixed parameters are γ = 3; LG = 20; kmin = 10; kmax = 100; and

pc = 0.5.
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FIGURE 3.4: (a) Distribution of connectivity P(k) for LG = 20. Power law fits for the dis-
tributions presented are, respectively: γ1 ≈ 0.98957; γ3 ≈ 2.86341; and γ5 ≈ 5.02414. (b)
Distribution of connectivity P(k) for fixed γ = 3 and different sizes of the local group. We
can easily see that the size of the local group has no effect on the distribution. Fixed param-

eters on both plots are L = 1000; kmin = 10; kmax = 100; and pc = 0.5

(a) (b)

FIGURE 3.5: Average clustering coefficient of a node in relation to its number of connections
k. Fixed parameters on both plots are L = 100; kmin = 10; kmax = 100; and LG = 20 [re-do

for a larger network]

results of clustering coefficient to a power-law C(k) ∼ k−α to check if it matches with
the conclusions of the paper, since such power-law is observed in real networks]

Fig. 3.6a shows that the exponent α is slightly influenced by the parameter γ.
Scattering for higher values of connectivity is high for two main reasons. First of,
because there are only a few nodes with very high connectivity. This effect can be
lessened in larger networks, since the power law distribution for such systems will
allocate a larger number of high connectivity nodes. Secondly, larger networks also
allow the generator algorithm more opportunities to create primary and secondary
connections for these high connectivity nodes. The effect can be seen for the case
where γ = 5, where there’s noticeable scattering due to the low probability of high
connectivity nodes occurring.

3.4 Opinion-Switch Mechanism

To model the opinion dynamics of the network we make use of an Ising-like ap-
proach. Each individual is influenced by the local field hij, which depends on the
interactions with its neighbours, as follows:
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FIGURE 3.6: (a) Average clustering coefficient of a node in function of its number of connec-
tions k for fixed pc = 0.5 (b) Average connectivity kNN of nearest neighbours of a node in
function of the number of connections k. The upper values correspond to γ = 1 and val-
ues underneath (with large scattering) are for γ = 3. Fixed parameters on both plots are

L = 1000; kmin = 10; kmax = 100; and LG = 20.

hij(t + 1) =
1
kij

( kij

∑
n=1

Al(n)m(n)Sl(n)m(n)(t) +
1

NG

NG

∑
n=1

Al(n)m(n)Sl(n)m(n)(t)

)
+ IE (3.3)

Opinion formation of an individual (i, j) is then controlled by the interpersonal
interactions with its kij neighbours (the first term in Eq. (3.3)) and the influence of
their local group (the second term in Eq. (3.3)). The first term is the most effective
one, while the influence of the local group has a weaker role. The added parameter
IE is the external stimulation, which will be discussed in detail later. The parameter
Aij is the authority of the individual (i, j) which is a property of each node, similar to
Sij. The values of the authority are generated from a truncated Gaussian distribution
in the range Aij ∈ (0, 1) with mean value µ = 0 and variance σ. This property of
the node corresponds to an individual’s influence over other individuals regarding
opinion formation. Higher authority Aij means that the opinion of individual (i, j)
has higher importance in the social community. We can then describe the probability
pij that an individual changes their opinion (the value of Sij) based on the authority
and local field:

pij =

{
(1− Aij)(1−exp[hijSij/T]); hijSij ≤ 0
(1− Aij)exp[−hijSij/T]; hijSij > 0

(3.4)

where T is the statistical physics parameter for temperature, here interpreted as
some sort of measure of "social unrest". For higher values of Aij, the less likely it
is that the individual will change their opinion. With greater hij, the greater the
probability that an individual will have the opinion that conforms with the local
field. On the other hand, for increasing temperature T there is an increase in the
probability that the individual will oppose the opinion of the local field hij. For the
case when T = 0, Eq. (3.4) simplifies to:

pij =

{
(1− Aij); hijSij < 0
0; hijSij ≥ 0

(3.5)
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Therefore, when the opinion of an individual is in agreement with the local field
(hijSij > 0) the probability of switching opinion equals to zero.

3.5 Simulation Results

We run all simulations from initial conditions where the network is settled in a para-
magnetic phase (〈S〉 ≡ N−1 ∑L

i,j Sij = 0) and then run a Monte Carlo method that
swipes through the entire network and gives random individuals a go at attempt-
ing to convince their neighbours to conform to their opinion Sij. Effectively, this
implies that every one of our Monte Carlo steps corresponds to N2 attempts at opin-
ion switching. This can be done in two ways: One can either swipe the entire net-
work and let every single individual enforce their opinion Sij on their neighbours,
therefore consulting all the nodes at each Monte Carlo step; or alternatively, one can
randomly select nodes as is done in conventional atomic simulations. There is, how-
ever, a concern that a certain bias could emerge if a lattice swipe is performed, even
though both methods were tested and shown to have similar results when averaged
over multiple independent simulations. Regardless, for the simulations shown here,
the node selection is always random. A visual representation of the matrices associ-
ated with the main network properties is shown in Fig. 3.7.

3.5.1 Acceptance Rates

We start by analysing the acceptance rates of the algorithm used for our network
generation. This is relevant for the purposes of confirming that the algorithm is not
only creating connections as expected, but also for choosing the number of iterations
required to obtain a final network that matches the theoretical power law distribu-
tion P(k) ∼ k−γ. Since allocation of connections is based on Eq. 3.1, the distance
between nodes is a crucial factor. As nodes create connections between them, their
maximum allowed number of connections is reached - this is not necessarily true for
nodes with large Kij, and ends up being critical to obtaining a network that matches
P(k) sufficiently well. In Fig. 3.8 we show the acceptance rate for four different in-
stances of pc over the course of 10000 generator iterations. For the case where pc = 0,
only primary connections are generated (Fig. 3.8a). Networks built under these
parameters have very low connectivity and take a considerable amount of time to
match the power law distribution P(k). Most notably, the generator algorithm slows
down considerably once nodes that are spatially close to each other have their max-
imum number of connections allocated. Since under these conditions the distance
between nodes is the only factor influencing edge creation, it becomes increasingly
unlikely for the network to reach a saturation that is within a satisfactory agreement
with P(k). This turns out to be a significant limitation of the algorithm. The sub-
sequent cases are for a non-zero value of pc and therefore we allow for secondary
connections to be formed. Most connections are formed within the first 1000 itera-
tions and the most clear observation we can make is that for low pc (Fig. 3.8b) the
number of secondary connections formed never surpasses the number of primary
connections. For higher pc (Fig. 3.8c and 3.8d) we see that secondary connections
overtake primary connections quite quickly, and this is very important for the net-
work to reach the required power law distribution P(k) within a reasonable amount
of computational time. For illustrative purposes, Fig. 3.9 and 3.10 shows how most
connections are formed within the first 250 iterations of the algorithm.
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FIGURE 3.7: Visual representations of the network properties for L = 200; γ = 3; kmin = 10;
kmax = 100; pc = 0.5; and LG = 20. Each node of the grid is represented as a coloured
pixel. (a) Opinion Sij, with Sij = 1 in red and Sij = −1 in blue. (b) Maximum number
of connections Kij drawn from the distribution ∼ k−γ, where the values are integers in the
range (kmin, kmax). (c) Authority Aij, where values are drawn from a truncated Gaussian
distribution in the range (0, 1). (d) Network saturation (here simply the difference Kij − kij)

after 1000 iterations of the connection generator algorithm.
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FIGURE 3.8: Acceptance rates for the network generator algorithm for different values of
pc, subsequently affecting the final network clustering. Generator iterations are set at 10000,
with each iteration cycling over all nodes (L2 = 40000) until it either succeeds in forming an
edge or fails. Fixed parameters are L = 200; γ = 3; kmin = 10; kmax = 100; and LG = 20. (a)
pc = 0 and C ∼ 0.0081 - note that here, only primary connections are generated. (b) pc = 0.1

where C ∼ 0.0771. (c) pc = 0.5 where C ∼ 0.1803. (d) pc = 1.0 where C ∼ 0.3110.
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FIGURE 3.9: Primary connections generated over the first 250 iterations for different values
of pc. (a) Number of edges generated at each iteration. (b) Ratio of secondary connections
and total number of generated connections for each iteration. Fixed parameters are L = 200;

γ = 3; kmin = 10; kmax = 100; and LG = 20.
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FIGURE 3.10: Secondary connections generated over the first 250 iterations for different val-
ues of pc. (a) Number of edges generated at each iteration. (b) Ratio of secondary connec-
tions and total number of generated connections for each iteration. Fixed parameters are

L = 200; γ = 3; kmin = 10; kmax = 100; and LG = 20.
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FIGURE 3.11: Network saturation over 10000 iterations for different values of pc. Fixed
parameters are L = 200; γ = 3; kmin = 10; kmax = 100; and LG = 20.

3.5.2 Network Saturation

To ensure that a network matches the power law distribution P(k) with a reason-
able level of satisfaction, we devise a way to check how much of the theoretically
available space for connections has been filled up by our algorithm. To do this, we
measure the saturation of the network by simply comparing the maximum number
of connections allocated to each node by the distribution P(k) (denoted Kij) with the
actual number of connections of each node as built by the algorithm (denoted kij).
This is simply kij/Kij and we want this to be as close as possible to 1. We set a mini-
mum threshold for saturation to be of 0.998 for most of our shown networks. This is
necessary, as otherwise the nodes with higher connectivity will not match the power
law distribution. Networks with low pc and consequently low clustering coefficient
C are notoriously difficult to be made to meet this criteria. The saturation of different
networks over the course of the first 10000 iterations is shown in Fig. 3.11 in both
linear and logarithmic scales. One can see that only networks with pc > 0.5 are suf-
ficiently close to 1 and our required threshold. Since the saturation is asymptotic, we
can say that networks with pc < 0.5 will never meet this requirement and therefore
their "quality" is questionable at best, which is a limitation of our algorithm. Despite
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FIGURE 3.12: Relation between 〈S〉 and the clustering coefficient C for different values of
kmax and T = 0. Values of other parameters are L = 100; LG = 20; kmin = 8; σ = 0.3; and
IE = 0. Results are averaged over 100 independent simulations. The number of time steps

of each simulation is 1000.

that, since real networks have pc ∼ 0.5, this will not be a problem.

3.5.3 Network Clustering

We now focus our attention on the effect of the clustering coefficient C on the value
of 〈S〉. For a small value of C, in most cases, the system settles into a ferromag-
netic state (〈S〉 = 1). However, for increasing values of clustering coefficient, 〈S〉
decreases, as seen in Fig. 3.12. One would still expect that a higher number of sim-
ulations would reach a ferromagnetic phase for low clustering coefficient, but this is
not shown to be the case. Two main points contribute to this disparity: the topolog-
ical quality of the network generated (which for low clustering coefficient C means
a low value of pc), and the authority matrix Aij. As we have previously discussed,
there are limitations when trying to generate a network that matches the theoretical
power law distribution for low pc. Take pc = 0; the only type of connections gener-
ated are first order connections. This means that all attempts at creating connections
are dependant on the distance probability and, when employing all the conditions
for generating said connections, filling all available connections for nodes with high
Kij is very unlikely to happen within a reasonable simulation time. Network quality
is then hindered. The quality of the network is measured by the network satura-
tion. Another factor is the authority matrix Aij. As the opinion switch mechanism
is inherently random, it is perfectly possible for an individual with high authority
to quickly subjugate the entire network, or at least the vast majority. This authority
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FIGURE 3.13: Relation between 〈S〉 and the network temperature T for different values of
IE. Values of other parameters are L = 100; LG = 20; pc = 0.5; kmin = 8; kmax = 24; and
σ = 0.3. Results are averaged over 100 independent simulations. The number of time steps

of each simulation is 1000.

bias seems to be amplified under these extreme cases, when connectivity is low and
the system is then prone to settle into local minima.

For large C the population is divided into clusters (domains) of highly connected
individuals with the same state. The individuals from different domains weakly
interact among themselves.

3.5.4 External Stimulation

The main motivation for working with this specific model of opinion formation was
because it offered us a simple way to externally influence the opinion of individuals
within the network. This is done with the external influence parameter IE, which
acts on the local field hij analogously to an external magnetic field on an Ising mag-
net (see Eq. (3.3)). We are therefore interested in exploring how the network reacts
to it and how it affects the average opinion formation. Fig. 3.13 shows how the av-
erage opinion 〈S〉 changes under a constant IE for different network temperatures
T when starting from a paramagnetic phase. We can see that the for low network
temperatures the system always settles in a ferromagnetic phase. As the network
temperature increases, we can see a phase transition towards a paramagnetic phase,
which occurs at a critical temperature Tc. The system can settle into 〈S〉 = ±1, but
for the sake of presenting our results we only consider 〈S〉 > 0 states while T < Tc
since we take IE > 0 (results for IE < 0 are the same). For T > Tc, the system enters
a paramagnetic phase and here we consider all values of 〈S〉 into our data. This is
done so we can better understand the impact of external influence IE on forming
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FIGURE 3.14: Relation between 〈S〉 and the network temperature T for IE = 0.05 (in blue)
and IE = 0.10 (in red), starting from a state 〈S〉 = −1. A transition value is observed for
Tt(IE = 0.05) ≈ 0.11 and Tt(IE = 0.10) ≈ 0.06. Values of other parameters are L = 100;
LG = 20; pc = 0.5; kmin = 8; kmax = 24; and σ = 0.3. Results are averaged over 100

independent simulations. The number of time steps of each simulation is 1000.
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opinion. Each data point is obtained by averaging the results of 100 independent
simulations. From this we can see that a higher external influence IE leads to an
increase in the critical temperature Tc of the network. The critical transition tem-
peratures are Tc(IE = 0) ≈ 0.12, Tc(IE = 0.05) ≈ 0.16 and Tc(IE = 0.10) ≈ 0.18.
Since we are interested in running our model under these conditions, we want to be
within the transition regime of the network so that the external influence can be used
as the regulating parameter of opinion formation. To better understand how influ-
ential IE is we perform another set of tests but starting from a ferromagnetic phase
with sign opposite to IE. Fig. 3.14 shows just that: we start from 〈S〉 = −1 and act
on the network with constant IE over different temperatures T. This allows us to
see the wider range of temperatures where the external influence can sway opinion.
We see that for low network temperatures the system stays in it’s initial ferromag-
netic state which has opposite sign to IE. This means that for temperatures close to
zero, the external influence parameter has no impact on the average opinion of the
network - a society under these conditions is too conformist and the status quo is
never challenged. As temperature increases we encounter an abrupt transition from
〈S〉 = −1 to 〈S〉 = +1, which indicates the temperature at which IE becomes a driv-
ing force in opinion formation in the network. These occur at Tt(IE = 0.05) ≈ 0.11
and Tt(IE = 0.10) ≈ 0.06. For network temperatures above this value, the results
match Fig. 3.13. Equipped with this information, we set T = 0.15 as an accept-
able network temperature to simulate a democratic society. Under these conditions,
the external influence IE can be used as a the driving factor in changing electoral
outcomes in a society. We ensure that the temperature is not too low in order for a
one party state to emerge and that it is not too high that the system is locked into a
paramagnetic phase and therefore the electoral outcomes are only subject to thermal
fluctuations.
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Chapter 4

The DICE model

The DICE model is a so-called Integrated Assessment Model (IAM) used to assess
climate policies. It was developed by William Nordhaus, who was awarded the 2018
Nobel Prize in Economics "for integrating climate change into long-run macroeco-
nomic analysis." Nordhaus started working on the DICE model in 1992 [35] and has
subsequently improved and updated the model over the years, with its latest release
being DICE-2016 [36, 37], which we will make use of here. IAMs combine a simple
climate model to a simple macroeconomic model. The aim is to find a sensible cli-
mate policy - i.e. the best compromise between the (economic) costs of cutting down
CO2 emissions and the (economic) damages caused by climate change. The model
views the economics of climate change from the perspective of neoclassical economic
growth theory [38]. In this approach, economies make investments towards future
growth thereby reducing present day consumption, in order to increase consump-
tion in the future. DICE extends this approach by including the “natural capital”
of the climate system. That is, the concentrations of greenhouse gases are taken to
be negative natural capital, and reductions in greenhouse emissions as investments
that raise the quantity of natural capital (or reduce the negative capital). By devoting
output to emission reductions, economies reduce consumption today but prevent
economically harmful effects of climate change and thereby increase consumption
in the future.
DICE is primarily designed to optimize policy, but it can also be run as a simple
projection model. In both cases, the approach is to maximize an objective function.
The objective function refers to the economic well-being (or utility) associated with
a path of consumption. There are two control variables in the model (assumed to be
determined by human actions/policy). One is the abatement ratio µ, and the other
one is the saving rate s (the fraction of the economic production Q used for invest-
ment rather than consumption). In principle, humanity can decide on these two
variables every time step. For the sake of simplicity, we will only optimize abate-
ment.

4.1 Model Equations

4.1.1 Welfare Function and Discounting

The model tries to find the policy that maximizes the social welfare function W:

W =
Tmax

∑
t=0

U[c(t), L(t)]R(t) (4.1)



32 Chapter 4. The DICE model

FIGURE 4.1

FIGURE 4.2: Schematic representation of the DICE model. In blue, the economics module;
in green, the climate module; and in yellow, the feedback processes linking them together.

Adapted from blog article by C. Wieners [39].

where U is the current utility (which we interpret as a measure of “the pleasure the
world population enjoys at time t”). U can be written as follows:

U[c(t), L(t)] = L(t)
[

c(t)1−α

1− α

]
(4.2)

In this equation, the parameter α is a measure of the social valuation of different
levels of consumption, which has several interpretations. It represents the curvature
of the utility function, the elasticity of the marginal utility of consumption, or the rate
of inequality aversion. It effectively measures the extent to which a region is willing
to reduce the welfare of high-consumption generations to improve the welfare of
low-consumption generations.
If we take (the limit of) α = 1, it wields the logarithmic utility function:

U[c(t), L(t)] = L(t) log(c(t)) (4.3)

The logarithmic term always increases with c (the more consumption, the happier),
but the increase gets slower when c is high (a certain extra amount of consumption
means less to a person who is already consuming much). This means that in princi-
ple we prefer to consume the same every year over irregular consumption with the
same time-average. Often, α will also be used to represent risk aversion, but these
are distinct concepts and should not be confused [40, 41].
Finally, people are supposed to be impatient, and prefer consuming now over con-
suming later. This is expressed through R (called “discount factor arising from pure
time preference”), which decreases with time (later consumption is valued less):

R(t) = (1 + ρ)−t (4.4)

Here ρ is called pure rate of time preference and (if made time dependent) is as-
sumed to decrease slightly in time:

ρ(t) = ρ(0) exp(−gρt) (4.5)
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FIGURE 4.3: DICE2016 exogenous variables of (a) population and (b) total factor productiv-
ity. Time span shown is for the entire 500 years on which the model is run, chosen as such

for the purposes of optimization and the time-span of climate change.

where gρ is the rate of time preference.
The DICE model is rather simplified relative to many models since it assumes

a single commodity, which can be used for consumption, investment or abatement.
Consumption should be viewed broadly to include not only food and shelter but
also non-market environmental amenities and services.

4.1.2 Population Growth

The economic module of DICE is standard to macroeconomic literature. The main
difference is the very long time frame that is required for climate-change modelling.
While most macroeconomic models run only for a few years, or a few decades,
climate-change projections span over more than a century. The result is that many
of the projections and assumptions are based on very thin evidence and the validity
of DICE in the far future is questionable if not outright wrong.

The population L is assumed to increase, but at a decreasing rate (tending to-
wards a stable value), and is given by:

L(t) = L(t− 1) [1 + gL(t)] (4.6)

where gL(t) is the population growth rate, which declines with an exogenous
rate δL, as follows:

gL(t) = gL(t− 1)
1

1 + δL
(4.7)

The parameter values are fitted to UN population projections and do not arise
from the model itself, with an asymptotic maximum population of 11.5 billion peo-
ple [42]. This is shown in Fig. 4.3a.

4.1.3 Investment and Economic Output

Every year the population spends a certain ratio of its economic output Q(t) on
investment I(t) (the rest is consumed):

Q(t) = C(t) + I(t) (4.8)
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Here C(t) is the total consumption which is defined by the per capita consumption
c(t) by:

c(t) =
C(t)
L(t)

(4.9)

In absence of climate damage and emission abatement, the economic output is de-
termined by the capital K(t) and the labour (which scales with L):

Q(t) = A(t)K(t)γL(t)1−γ (4.10)

The dynamics of the labour output, called total factor of productivity, A(t) is given

A(t) = A(t− 1) [1 + gA(t)] (4.11)

Its development in time is taken from economic projections and is prescribed as:

gA(t) = gA(t− 1)
1

1 + δA
(4.12)

The factor δA controls the time dependency of gA(t) and the constant γ determines
how economic output depends on capital and labour input. In Fig. 4.3b the total
factor productivity can be seen for standard DICE2016 parameters.

The capital K at time step t is determined by the capital at the previous time step
t− 1, investments during the last time period and some annual value loss (machines
and so on lose value over time by getting used) called “capital depreciation” (deter-
mined by the constant δK):

K(t) = I(t)− δkK(t− 1) (4.13)

with the investment I being determined by a saving rate policy:

I(t) = s(t)Q(t) (4.14)

From here, we must take into account climate damage and policies. Climate change
is assumed to reduce Q by a factor which depends on the global mean temperature
change with respect to the pre-industrial temperature. In addition, it is assumed that
if we reduce CO2 emissions by a factor of µ (by switching to cleaner energy, not by
reducing energy consumption), this induces costs which also reduces Q. Giving us:

Q(t) = [1−Λ(t)] A(t)K(t)γL(t)1−γ 1
1 + Ω(t)

(4.15)

Λ(t) and µ(t) are climate related effects to the economy. They represent respectively
the climate change damages and the abatement cost (the cost of the reduction of CO2
emission).

Ω(t) = φ1TAT(t) + φ2TAT(t)2 (4.16)

Λ(t) = θ1µ(t)θ2 (4.17)

The damage equation (4.16) quantifies the economic impacts of climate change,
which is a delicate issue in climate-change economics. These estimates are essen-
tial for making reasonable decisions about the appropriate balance between costly
emissions reductions and the damages induced by climate change. However, pro-
viding reliable estimates of these damages over such long time spans has proven to
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be extremely challenging. Nordhaus revisits this multiple times and this form of the
damage function is taken with consultation of Tol’s surveys [43, 44]. Ultimately, it is
extremely difficult to quantify damages and account for a plethora of factors, such
as: economic value of losses from biodiversity, ocean acidification, political reac-
tions, extreme events (sea-level rise, changes in ocean circulation and tipping points
in the climate system), impacts that are inherently difficult to model (catastrophic
events and very long term warming) and uncertainty associated with virtually all
components of the model.

Substitution from fossil fuels to renewable energy takes place over time as fossil
fuels become more expensive, either due to resource exhaustion or because policies
are taken to limit carbon emissions. Renewable energies also get less expensive over
time as supply chains, economies of scale and improvements in technology take
place. DICE also includes a backstop technology, which is a technology that can re-
place all fossil fuels. This essentially leads to the possibility for negative emissions
(carbon capture). The backstop technology could be one that removes carbon from
the atmosphere directly or an all-purpose environmentally benign zero-carbon en-
ergy technology (whatever that might be). The price of this technology is assumed
to be initially high and to then decline over time with technological improvements.

4.1.4 Carbon Emissions

Global annual industrial CO2 emissions Eind depend on how strong our economic
activity is and how carbon-efficient our energy is:

Eind(t) = σ(t) [1− µ(t)] A(t)K(t)γL(t)1−γ (4.18)

where µ is again the carbon abatement, and σ scales the CO2 emissions per economic
output in absence of climate policy. The parameter σ is prescribed and decreases
slowly (even without climate change we need less carbon per energy because we
learn to make more efficient power plants for cost reasons):

σ(t) = σ(t− 1). [1− gσ(t)] (4.19)

The time evolution of gσ is given by:

gσ(t) = gσ(t− 1).
1

1 + δσ
(4.20)

Land use change also leads to CO2 emissions Eland(t) which are prescribed and reg-
ulated by δ1:

Eland(t) = Eland(0)(1− δ1)
t (4.21)

The total CO2 emissions per year are then given by:

E(t) = Eind(t) + Eland(t) (4.22)

We also set a limit of carbon emission as a constraint:

CCum ≥
Tmax

∑
t=0

Eind(t) (4.23)

Carbon fuels are limited in supply, with a total limit set at 6000 billion tons of carbon.
This constraint is non binding for a baseline projection.
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FIGURE 4.4: Temperature anomaly under the optimal climate policy for different values of
climate sensitivity λ. The maximum value of each curve corresponds to the selected peak
temperature projected for that optimal path. All optimization curves shown correspond to
initial settings at the year 2015. (a) Atmospheric temperature anomaly. (b) Average ocean

temperature anomaly.

4.1.5 Geophysical Equations

The climate model of DICE includes several geophysical relationships that are linked
to the economy with the different feedbacks that lead to man-made climate change.
These include the carbon cycle, radiative forcing, climate-economy coupling, and
a climate-damages relationship. Since DICE is an IAM, the modules operate in an
integrated fashion rather than taking variables as exogenous inputs from other mod-
els or assumptions. One needs to simplify the inherently complex dynamics of the
climate system into a small number of equations that can be used in an integrated
economic-geophysical model.

In DICE, the only greenhouse gas that is subject to abatement is industrial CO2.
This is simply because CO2 is the major contributor to global warming and that other
greenhouse gases are likely to be controlled in different ways. Other greenhouse
gases are included as an added exogenous term in radiative forcing; these include
primarily CO2 emissions from land-use changes, other well-mixed greenhouse gases
and aerosols.

The emitted carbon first gets into the atmosphere (AT) , but from there, a certain
part is absorbed by an “upper” (UP) reservoir (land biosphere and top layers of the
ocean), from here some part is transferred into the lower (LO) ocean. On the other
hand, the lower ocean might also release carbon to the upper ocean and the upper
ocean to the atmosphere. MX is the mass of carbon (in Gigatons of C) in reservoir X
and φij are positive coefficients determining carbon exchange between reservoirs:

MAT(t) = E(t) + φ11MAT(t− 1) + φ21MUP(t− 1) (4.24)

which means that atmospheric CO2 content depends on its previous value, and
emissions in the previous time step. In addition, the atmosphere gains φ21MUP(t−
1) from the upper ocean. The atmosphere does not communicate directly with the
lower ocean.

MUP(t) = φ12MAT(t− 1) + φ22MUP(t− 1) + φ32MLO(t− 1) (4.25)

MLO(t) = φ23MUP(t− 1) + φ33MLO(t− 1) (4.26)
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The mixing between the deep oceans and other reservoirs is extremely slow and
the deep oceans provide a large sink for carbon in the long run. The carbon which is
present in the atmosphere leads to radiative forcing F (i.e. blocks some long-wave ra-
diation which would otherwise escape into space). However, there is also radiative
forcing not related to CO2 (e.g. from other greenhouse gases). These contributions
are denoted by O(t) and are prescribed.

F(t) = η

{
ln
[

MAT(t)
MAT(1750)

]}
+ O(t) (4.27)

where η is a constant (the radiative forcing arising from doubling MAT if all other
greenhouse gases remain at pre-industrial levels), and MAT(1750) the pre-industrial
value of atmospheric carbon.

The radiative forcing ensures that energy which otherwise would escape into
space is retained in the climate system, warming the earth (implicitly it is assumed
that the pre-industrial state was in equilibrium). This energy can end up in the sur-
face reservoir (land, atmosphere, upper ocean), which has a relatively low heat ca-
pacity and reacts quickly to radiative forcing, with temperature changes TX, with
X being the carbon reservoir. We will from now on refer to it as the "temperature
anomaly", since this quantity corresponds to the difference in temperature with re-
spect to pre-industrial levels. Part of the heat is slowly transferred to the lower
ocean, causing temperature changes there (TLO). The equations are:

TAT(t) = TAT(t− 1) + ξ1
{

F(t)− ξ2TAT(t− 1)− ξ3 [TAT(t− 1)− TLO(t− 1)]
}

(4.28)
TLO(t) = TLO(t− 1) + φ4

{
TAT(t− 1)− TLO(t− 1)

}
(4.29)

where ξ3 governs the heat transfer from the lower to the upper ocean and ξ4 the
heat transfer from the upper to the lower ocean. Note that in equilibrium (T(t) =
T(t− 1) = TLO(t) = TLO(t− 1)) the equilibrium temperature Teq becomes F(t)/ξ2,
hence η/ξ2 is the “climate sensitivity”, i.e. temperature change (w.r.t. pre-industrial
value) when doubling the carbon concentration w.r.t pre-industrial levels. This is
governed by the relation:

∆TAT(t) =
∆F(t)

ξ2
(4.30)

The equilibrium climate sensitivity is an important concept in climate physics
and DICE-2016 takes it as being 3.1 °C for an equilibrium CO2 doubling. The value of
climate sensitivity is riddled with large uncertainties despite it being well document
in literature and is subject to contentious debate, but an extended discussion of this
topic is beyond the scope of this project (for a detailed discussion see [45, 46]).

4.2 Model Scenarios

We now present and briefly discuss some well established scenarios that result from
DICE. Nordhaus focuses his attention primarily on the economic impacts, but we are
more concerned with the average temperature anomaly and how it can be regulated
through policy. Therefore we shown the carbon emissions (Fig. 4.5a) and average
temperature anomaly (Fig. 4.5b) for the next century and for four distinct scenarios
as calculated by our implementation of DICE-2016 (these are in agreement with lit-
erature [37]). The baseline case (in red) represents the outcome of market and policy
factors given current circumstances. It is an attempt to project the levels and growth
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FIGURE 4.5: (a) Yearly CO2 emission total and (b) atmospheric temperature anomaly.

of major economic and environmental variables as they would occur with current
climate-change policies. It does not make any case for the social desirability of the
distribution of incomes over time of the existing conditions. Note that this does not
mean that no abatement policy is being taken, in fact it takes into account a rough
estimate for µ based on current efforts to mitigate climate change. This approach is
standard for forecasting, say of government budgets, and is more appropriate for a
world of evolving climate policies - which is what we will do once we couple DICE
to our democratic network. The baseline case, nonetheless requires an estimation of
emission intensities and therefore multiple emission scenarios can be taken into ac-
count. Under current projections, carbon emissions will continue to increase as the
economy grows over the next century. Transition to renewable energies is minimal
and this is projected to lead to a large average temperature anomaly of 4.5°C by year
2110. One can’t blame the relentlessness of climate activist in pressuring world lead-
ers to act when asked to dwell on these grim "business as usual" projections. For the
optimal policy scenario (in blue), abatement policies maximize economic welfare,
with full participation by all world governments starting in 2015 and without any
climate constraints. This scenario assumes the most efficient climate-change poli-
cies; in this context, efficiency involves a balancing of the present value of the costs
of abatement and the present value of the benefits of reducing climate damages. This
is of course unrealistic, but this scenario provides an efficiency benchmark against
which other policies can be compared to. A similar optimization curve can be cal-
culated depending on the ideology of political parties, should they make use DICE
to inform their abatement policy decisions. Under this scenario, carbon emissions
are reduced over the next century until we reach a carbon neutral economy by year
2115. The implementation of abatement policies lead to a steady transition towards
renewable energies. However, the temperature anomaly still reaches a somewhat
large value at 3.5°C by year 2100. This is a consequence of the continued rate of
carbon emissions and also the lag of the climate system into reaching a state of equi-
librium and reacting to the CO2 that we already emitted in past years, whose conse-
quences are only now starting to be felt. We also showcase two other scenarios that
are prevalent in the literature: the Stern Review scenario [47] and the Paris Agree-
ment’s limit of 2.5°C temperature increase scenario [48]. The Stern Review advocates
using very low discount rates for climate-change policy. This was implemented us-
ing a time discount rate of 0.1% per year and a consumption elasticity of 1. This
leads to low real interest rates and generally to higher carbon prices and emissions
control rates. Stern argues this with moral concerns, stating that one needs to take
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the well being of future generations into account. Since climate change is such a long
scale problem, it will disproportionally affect future societies. Under this scenario
(in green), stringent abatement policies are introduced as we discount towards the
future more than Nordhaus’ standard settings and prefer to consume less at present
time. It leads to a quick transition into a carbon neutral economy, but it has a harsh
impact on economic growth. As for the last scenario, the 2.5-limited scenario (in
yellow), we show just how dramatic emissions would have to be reduced in order
for the very ambitious targets of the Paris Climate Agreement to be met. Here, the
optimization of abatement is subject to the constraint that global temperature does
not exceed 2.5°C above the 1900 average. This “temperature-limited” scenario is a
variant of the optimal scenario that builds in a precautionary constraint that a spe-
cific temperature increase is not exceeded (the upper limit of the Paris Agreement is
set at 3°C).





41

Chapter 5

DICE-Voter Coupling

In order to incorporate voter behaviour into the DICE model, we have to develop
a coupling mechanism between the social network that we have previously con-
structed to simulate opinion dynamics and the multiple iterations of DICE. The time
step of DICE is typically chosen to be 5 years, which can be taken as a full election
cycle for a democratic society. This means that at each iteration of DICE we will have
to consult the social network and the resulting opinion average 〈S〉. The opinion av-
erage then reflects which political party has won the election and stays in power
for the duration of that election cycle, and they get to implement their policies re-
garding the climate. Once elected, the political party will select an optimal value
of abatement which is obtained by an optimization of DICE that takes into account
their particular world view regarding climate change and the economy. We there-
fore make a distinction between the optimized, party-specific DICE model and the
"real-DICE", which is the real-time model where election cycles occur. A schematic
representation of this is shown in Fig. 5.1.

Here arises the challenge of finding an adequate way to bridge the information
obtained by the climate model to the perceived idea that a society has about it. Es-
sentially, we want to translate the DICE output for a particular election cycle into the
external influence parameter IE, and use that to influence voter behaviour.

5.1 Political Parties

When considering agents with respect to climate change, Geisendorf [49] suggested
two extreme opposites he labelled “Individualists” and “Egalitarian” agents. Indi-
vidualists believe in the power of free market forces and a great resilience of nature.
Nature tends to equilibria, which, after perturbations, reinstall themselves. They
believe the climate-economic system will fix itself and economic activity should not
be restricted. In contrast, Egalitarians are fundamental environmentalists and very
risk-averse. Imbalances in the natural equilibrium will lead to disaster and thus re-
quests to prevent any strong impact on nature. They’d rather live on a very basic,
but equally distributed level of wealth than risk to disturb nature with our capitalist
economy. Egalitarians opt for zero growth and high environmental protection.

These are in stark contrast with one another, and it’s perfectly possible to attempt
to describe the intentions of these two agents. However, for such extreme views it
is not so difficult to decide on how to construct the parameters of the DICE model
coupling since, if in power, the Individualists would easily simply choose not to
optimize abatement policy and run with zero abatement. Egalitarians would push
for abatement policies that could meet rigorous temperature anomaly constraints
regardless of the consequences for the economy.
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FIGURE 5.1: Schematic representation of the coupled DICE model. The real-DICE projects
the outcome over the course of one century. The coupling equation conveys this yearly
outcome to the network in the form of the external influence IE, resulting in party A or B
winning the election. Each party optimizes the policy outcome based on the economic and
climate variables at the year they are elected and implements said policy over the course of

the next election cycle.

We consider two distinct political parties, one is the "Lukewarmers"1 and the
other being the "Greens". The former think that climate change is a problem, but not
so big or urgent one; the latter think it’s a big problem, but not to the point as to
hinder economic growth (at least if it can be avoided). In this way, both parties are
somewhat less extreme than the ones proposed by Geisendorf.

In order to build an appropriate coupling equation that translates the results of
DICE into an external influence onto the network opinion, we will go through a
rather extensive list of variables that these parties could disagree about.

1. Rate of Pure Time Preference: Disagreements on the rate of pure time pref-
erence are not new [47]. The Nordhaus standard value, which is based on
observations of the market and is considered by many as unethically high, is
easily linked to the Lukewarmers. The Greens should aim for a rate of pure
time preference that is as low as possible without crashing the model - DICE
suffers from these problems when taking low discount rates.

2. Damage Function: Agreement on what form the damage function should take
could be an easy point of divergence between parties. The main issue is that
consensus on what that form should be is not clear and therefore, all sorts
of damage functions could be chosen either way, as shown by Weitzman [50]
[51]. Lukewarmers could easily take Nordhaus’ standard damage function,
which most scientists agree to be on the mild side. The Greens could take, for
example: Nordhaus×3, or a threshold damage function, where the damage
gets very serious as soon as a particular threshold is reached [52]. Weitzman’s
damage function is not very suitable, because his proposed damage function
only becomes very drastic from about 4K warming; below 3K, it very much
resembles Nordhaus’.

1One who believes that climate change is due to human activity but who does not think it is a
serious problem.
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3. Climate Sensitivity:

(a) Simple; The two parties could hold different views on the climate sensitiv-
ity. The main disadvantage is that climate sensitivity is scientifically well
researched [45] - uncertainty is big, admittedly, but no party can claim that
they are sure of its value. Therefore, this is not realistic behaviour. One
can still argue that both parties have the scientific information on climate
sensitivity, but they interpret it differently: The Lukewarmers would go
for the typical value (3K/doubling CO2), while the Greens could plan for
the worst case scenario (or at least a rather more pessimistic one), and
optimize as if the climate sensitivity is 5K/doubling CO2.

(b) Risk Aversion; Alternatively, one can let both parties acknowledge that
there is uncertainty, and let them optimise expected welfare (depending
on the probability density function of the climate sensitivity). However,
the Green party applies risk aversion and the Lukewarmers not. Interest-
ingly, if there is no risk aversion, then the policy under uncertain climate
sensitivity (optimising expected welfare) is very similar to what one gets
when optimising the ordinary model with the expected climate sensitiv-
ity.

(c) Bayesian Learning; Parties might initially have different beliefs about cli-
mate sensitivity, but learn the true value gradually through measuring
temperature and comparing it to past carbon emissions. A mechanism
like this would be an interesting addition that could better account for
discrepancies between optimized DICE and the "real" DICE.

4. Exogenous Carbon Intensity Improvement: In DICE, the carbon intensity
(that is, the carbon emissions in the absence of policy) decreases over time,
about 0.5%/year. The Lukewarmers could use a stronger decrease than the
Greens (e.g. 1%/year vs 0.25%/year), i.e. the Lukewarmers believe that the
climate problem to some extent solves itself through technological progress.

5. Cost of Abatement:

(a) Parametric; In such case, the Lukewarmers would consider abatement to
be costly, as is done in the standard DICE. The Greens however, think it
is not too bad - around a third of the standard DICE. DICE is probably
rather on the high side when it comes to abatement costs, especially in
the long run [53].

(b) Structural; The Lukewarmers could believe that abatement will be costly
forever (costs depend on µ) and the Green party thinks that abatement
is investment-like, i.e. costs are transitional (depend on µ̇). (again, see
[53]). This will make Lukewarmers want to postpone abatement, whereas
Greens believe that we should tackle the transition quickly and then live
happily ever after. This has the following caveat: if costs are partly tran-
sitional, then it does not hold anymore that the marginal abatement cost
(the cost to abate 1 extra ton of carbon - i.e. the desired tax value) equals
the social cost of carbon [37]. The reason is that with transitional costs,
some expenditure we do today (e.g. building a solar cell) will also save
carbon tomorrow. So in fact a lower carbon tax suffices to bring about the
necessary abatement.
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5.2 The Coupling Equation

Voter’s behaviour concerning climate change could be influenced by three main
points: discontent about current taxation, discontent about current climate damages,
and a worry about (expected) future temperature change. This yields an equation of
the form:

ĪE(t) = ᾱD(t)− X(t) + ω̄F(T̂) (5.1)

where D(t) is the current climate damage as given by the DICE damage func-
tion and X(t) is the carbon tax or abatement cost. Both are normalised so that the
payment is per inhabitant. T̂ is the expected peak temperature, which we will dis-
cuss further below). F is some function of temperature (could be identity, but could
also for example equal the damage function). We call ᾱ the "awareness parameter",
which is some measure of how much people understand that the damage is caused
by climate change, and ω̄ is called the "worry parameter", which captures how much
people take future threats into account. The value ĪE is related to the external influ-
ence parameter of the network IE by a scaling factor ζ such that IE = ζ ĪE. The scaling
factor must be calibrated to the specific network that we use and is chosen in a such
a way that the network maintains its paramagnetic state - that is, the voter opin-
ion only fluctuates around 〈S〉 = 0 and dramatic election results (landslides) don’t
occur. A higher ĪE translates into a higher acceptance for stringent climate policy.

The tax X(t) is simply the carbon tax raised by the parties. This would always
be the parties social cost of carbon (SSC) along their optimal path - except if a party
assumes abatement costs to be transitional.

We can expect ᾱD(t)−X(t) to always be negative, at least in the first few decades,
because D(t) only takes into account current damages for that specific time step,
which is initially low, while X(t) takes future damages into account, even when dis-
counted. A population that is then unable to look into the future will always oppose
climate policy. In order to counteract this, we make use of T̂ which is a measure of
expected future climate change, specifically it corresponds to the future peak tem-
perature under the current abatement policy being implemented.

However, the question arises as to how this peak temperature expectation is
made; that is, if it is obtained by the party-specific DICE optimization or by the real-
time DICE. It could be that the public uses the real-DICE model to infer expected
future temperatures - maybe informed by what we could consider to be politically
unmotivated scientists - but it could also be that the political parties propagate their
own predictions of future temperatures as determined by their optimization scheme.
If the parties have a different view on climate sensitivity (or use a different F, e.g. be-
cause of different damage functions), then probably their own predicted F(T̂) turn
out to be more similar than reality. This is because the Lukewarmers would do a
mild climate policy (which should lead to high future climate change) but at the
same time they propose that climate (damage) does not react strongly to emissions.
The Greens, on the other hand, do a stringent abatement policy, so they will keep
climate change lower, but at the same time work with the assumption of a sensi-
tive climate. Hence, the voters have a harder time distinguishing the parties’ future
climate impact, if they strongly believe the parties’ own predictions.

Mathematically, one could in fact formulate (at least if F is the identity)

T̂(µ) = γopT̂op(µ) + γgovT̂gov(µ) + γsciT̂sci(µ) (5.2)
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where µ is the current abatement policy, and T̂x is the peak temperature ex-
pected by group x - the current opposition party, the current governing party and
the scientists who are politically neutral). The γ are all parameters in [0, 1] such that
γop + γgov + γsci = 1 and γop < γgov. In fact, γgov and γop could very well be made
time dependent. It would be affected by the time that the governing party is already
in power - government propaganda takes some time to sink in. If the two parties
(and the scientists) not only have different peak temperature T̂ but also different
F(T̂), then the above equation takes a more general form given as

F(µ) = γopFop(T̂op(µ))) + γgovFgov(T̂gov(µ)) + γsciFsci(T̂sci(µ)) (5.3)

5.3 Coupling Regimes

We choose a relatively small network, with somewhat realistic parameters, to be
coupled to the DICE model. The chosen settings are L = 200; LG = 20; kmin = 10;
kmax = 100; pc = 0.5; σ = 0.3 and T = 0.15. We select climate sensitivity as the
distinguishing element between political parties due to its simplicity. Each party
runs their DICE optimization schemes using the starting conditions of the current
election year, with the Green party taking climate sensitivity as being 5K/doubling
CO2 and the Lukewarmer party using 3K/doubling CO2.

5.3.1 Scale Factor

In order to properly couple the output of DICE and port it over to the network, we
have to find the appropriate scale for the coupling equation. In order to do this, we
investigate the effect of ζ onto the coupled DICE model for a simple case where we
take a form of Eq. (5.1) with ᾱ = 1 and ω̄ = 0 such that:

IE = ζ ĪE(t) = D(t)− X(t) (5.4)

The damages and tax contributions are normalized with respect to their initial
model values in order to make the coupling a dimensionless quantity:

ĪE(t) =
D(t)
D(0)

− X(t)
X(0)

(5.5)

To find a regime where political balance is maintained, we must ensure that the
coupling equation does not bridge over to a range of values for the external influence
parameter IE that cause an abrupt phase transition from the starting paramagnetic
state of the network to a ferromagnetic state. We expect the coupling equation to
cause party shifts over the election cycles, but not to observe dramatic majority elec-
tion results. A simple demonstration of this can be seen in Fig. 5.2a, which shows
the external influence parameter that comes out of the coupled DICE model for the
first century. Abrupt shifts in IE over successive iterations are to be expected due
to the nature of the coupling equation, as the influence of climate policy leads to an
increase in the carbon tax in the later years of the model. The election results that
arise from the IE are shown in Fig. 5.2b, and we can clearly see that if the external
influence parameter becomes too high it leads to large election majorities. As we
are mostly interested in regimes where no party wins the election by huge margins,
Figs. 5.2c and 5.2d show the results for lower values of ζ. It is not difficult to see that
an increase in the scale factor ζ will lead to the external influence parameter taking
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FIGURE 5.2: Output of the coupled DICE model for different scale factors ζ. (a) The scaled
external influenced parameter IE. (b) The resulting opinion average of the network, translat-
ing to the political party selection. (c)(d) Same as the previous plots, but showing only the

paramagnetic regimes - where dramatic election landslides do not occur.
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FIGURE 5.3: The behaviour of the main terms of the coupling equation for different scale
factors ζ. (a) Time evolution of climate-induced damages. (b) Normalized (dimensionless)
damages. (c) Time evolution of the climate tax (here the marginal abatement cost). (d) Nor-
malized tax. (e) Comparison of the range of the coupling terms - Green party optimal path
in lime green (upper boundary) and Lukewarmer party optimal path in light blue (lower

boundary).



48 Chapter 5. DICE-Voter Coupling

control of the value of the local field hij as given in Eq. (3.3). This is consistent with
the phase transitions from a paramagnetic to ferromagnetic state seen in Fig. 3.13.

It is also important to observe how the different terms of the coupling equation
behave over time. The contribution of climate damages is the most stable part of the
coupling equation as we can see in Fig. 5.3a and 5.3b. Since climate damages are
determined by the "real" DICE, there is very little change in the damage curves for
different scale factor ζ. The damage function is a function of the atmospheric tem-
perature anomaly given by Eq. (4.16), therefore, the impact of each election cycle and
subsequent party/policy shifts won’t be significant in the short term. Damages do
increase considerably over time, a consequence of rising atmospheric temperature
(Fig. 4.4a). Our "real" DICE runs with climate sensitivity λ = 3.1 and the projected
temperature anomaly is roughly equivalent to the grey curve. Although, we point
out that the temperature curves in Fig. 4.4 correspond to optimal paths. The "real"
DICE merely projects based on the governing party climate policy, it does not opti-
mize.

The tax term in the coupling equation ends up being the main factor that influ-
ences party selection. It fluctuates considerably between political parties as can be
seen in Fig. 5.3c and 5.3d, a consequence of the different optimal policy paths calcu-
lated by each party. This is easily seen in the tax curves - the upper values follow the
Green party’s optimal path (λ = 5), while the lower values follow the Lukewarm-
ers’ path (λ = 2). When putting these two contributions together into the coupling
equation, we perform a normalization of the results in order to get IE as a dimen-
sionless quantity and to ensure that both terms operate within the same range. This
is a simple way to compare the evolution of both terms, but it should be taken into
account that for the coupling equation to have a meaningful interpretation, the units
of both terms must be made to match Nordhaus’ model (which we will later do).

A major consequence of how we construct the coupling and of the dominating
effect of the tax term on the external influence parameter IE is that the coupling
equation is effectively bound between the tax curves of each party (Fig. 5.3e). The
optimal curves for each party were shown not to be meaningfully affected by the
time evolution of our "real" DICE model. In other words, the optimal curves that
result from the initial conditions at the year 2015 are the same as if we run the party
optimization scheme for initial conditions taken every 5 years (differences are mini-
mal and have no relevant impact on the resulting abatement policy µ). This means
we can streamline the model by removing the optimization altogether (it only needs
to be done once) and the resulting climate policy is always taken from the specific
bounds at the respective year a party wins an election. Note that this is only true for
an unchanged ideology. Should the political parties adjust their beliefs on the go,
then the resulting tax curves would differ.

5.3.2 Awareness Parameter

A significant issue that we have encountered is associated with the contribution of
the climate damages term. Our dimensionless coupling equation suffers from a clear
dominance of the tax term on the electoral outcome, by being the main factor deter-
mining the external influence parameter IE. In order to balance out this effect, we
resort to a control parameter ᾱ, called the awareness parameter. This is introduced in
order to mediate how much a population cares about the impact of current climate
damages. The awareness parameter ᾱ can be a constant or it can be chosen to be time
depend ᾱ(t), although its functional form is subject to debate. Looking at the dimen-
sionless normalization of the coupling equation that we previously introduced, we
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FIGURE 5.4: Effect of awareness ᾱ on a dimensionless normalization of the coupling equa-
tion. The scale parameter is set at ζ = 0.0005. On the left, the resulting external influence
parameter IE and its respective tax and damage contributions. On the right, the resulting

opinion average. (a)(b) ᾱ = 0.25 (c)(d) ᾱ = 1.0 (e)(f) ᾱ = 1.5 (g)(h) ᾱ = 2.0.
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can see how ᾱ (chosen as a constant value) affects the electoral outcome. This can be
seen in Fig. 5.4, with the external influence IE and its respective terms shown on the
plots on the right and the consequential opinion average being shown on the plots to
the left. We can see that for ᾱ < 1, the contribution of damages to the coupling turns
out to be irrelevant and leads to an outcome favourable towards the Lukewarmers
(Fig. 5.4b), by guaranteeing that the tax term will always control the value of IE (Fig.
5.4a). This, of course, is to be expected given what was previously established with
respect to the climate term contribution. The awareness parameter must be ᾱ ≥ 1 in
order for it to have any meaningful impact on the coupling equation. Increasing the
awareness parameter will amplify the contribution of climate damages to the cou-
pling equation and push the result in favour of the Greens. The balance of power
is maintained for most of the simulation, but eventually the tax term will reach its
highest value and lose relevance over time due diminishing returns. Since climate
damages continue to climb even after the tax term is capped, we see phase transi-
tions towards a ferromagnetic state for later years, also to be expected. Its important
to point out that for the party balance regime to be satisfied, the climate contribu-
tion must be kept between the lower and upper bounds of the optimized tax policy
of both parties, as shown in Fig. 5.3e. If the climate damages fall bellow the lower
bound, the external influence will always be IE < 0 and favour the Lukewarmers
(Fig. 5.4c through 5.4h). On the other hand, if climate damages surpass the upper
tax bound it results in IE > 0 favouring the Greens. Phase transitions from a para-
magnetic state to a ferromagnetic one are not necessarily guaranteed, but these will
most certainly occur if IE crosses over the network’s critical point. This is shown to
always happen in favour of the Green party at later years.

Despite the behaviour of the coupling equation under these conditions being
acceptable, it can certainly be improved. A dimensionless normalization of the cou-
pling equation lacks a good basis for how to properly form a link between the DICE
model and the network, in such a way that it accounts for the more intricate nu-
ances of how the economic and climate modules of DICE interact. The evolution of
the climate and tax terms behave in a rather nice manner and ultimately are only
compared with the initial values, due to our dimensionless approach. We therefore
implement a different normalization for the coupling equation, that preserves the
units of different quantities of DICE. Our normalization proposal takes into account
how each individual would perceive the effects of both climate and the tax terms.
Society would perceive the effect of the tax term as the levied carbon tax imposed
by policy makers (the marginal abatement in our simple case), multiplied by total
yearly emissions. The climate damages term would be unchanged, only being ad-
justed according to the awareness parameter ᾱ. Both terms would be divided by the
world population at the time, so that IE translates into a contribution per individual.
This normalized form of the coupling equation is now

ĪE(t) = L(t)−1 [ᾱD(t)− µ̄E(t)] + ω̄F(T̂) (5.6)

where L(t) is the world population at a given year, ᾱ is the awareness parameter,
D(t) the yearly climate damages, µ̄ is the levied tax (the marginal abatement cost
or social cost of carbon), E(t) the total yearly carbon emissions and finally, the last
term, account for future worries, which we will discuss later. We can see how this
impacts the evolution of both the climate and tax terms in Fig. 5.5. The immediate
consequence is the shape of the term curves, which are now no longer directly con-
ditioned by the upper and lower bounds of the tax policies (even though the bounds
still apply). This is because of our new choice of normalization, which now accounts
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FIGURE 5.5: Effect of awareness ᾱ on a normalization of the coupling equation that complies
with DICE’s units. The scale parameter is set at ζ = 0.0005. On the left, the resulting external
influence parameter IE and its respective tax and damage contributions. On the right, the

resulting opinion average. (a)(b) ᾱ = 1.0 (c)(d) ᾱ = 1.5 (e)(f) ᾱ = 2.0.
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FIGURE 5.6: Effect of the worry parameter ω̄ on the coupling equation. The scale parameter
is set at ζ = 100 and the awareness is ᾱ = 100000. On the left, the resulting external influence

parameter IE. On the right, the resulting opinion average 〈S〉.

for diminishing returns in the public perception of the tax in a more realistic manner.
We observe a more stable party regime (in the examples shown, the dominance of
the Lukerwarmers is evident - but this occurs for this particular set of chosen pa-
rameters and because we are yet to introduce a future worry term). At later years, a
critical transition towards the Green party always occurs, as expected. A few last re-
marks about this choice of normalization: using the carbon tax to measure people’s
dislike of policy is somewhat arbitrary. Much of the tax would in real life be paid
by companies, not by people, though part of the tax would indirectly affect people
by making their products more expensive. Producers who do manage to abate more
cheaply will not have to increase the price of their product by the carbon tax, but
by its (lower) abatement cost. Finally, in real life, a tax does not simply vanish, but
generates government income that can be used for other purposes such as higher
unemployment benefits, further investments and other beneficial programmes. Our
voters are obviously a very watered down representation and therefore shriek in
disagreement about the tax, whereas in reality the economic "loss" due to abatement
is only the abatement cost. In reality, when abatement increases, people pay less and
less carbon tax because they don’t emit as much (hence the importance of normaliz-
ing the tax term with the yearly emissions), but they still pay abatement cost - this
effect might be something to worry about with respect to how much our coupling
equations holds true.

5.3.3 Peak Temperature and Worry Parameter

A major difficulty of the coupling equation is including a term that is capable of
conveying a society’s worry about future events. As the consequences of climate
change are long term, we don’t expect immediate events to heavily influence elec-
tion results. From the form of Eq. (5.1), we have seen that the carbon tax is the
dominant short term effect on the coupling equation, bringing IE towards negative
values that favour the Lukewarmers. As climate damages ramp up, this will trans-
late into a phase transition favouring the Greens at later years. However, by then
the climate damages are considerably high and the average world temperature also.
Early abatement is critical in order to mitigate the rampant increase of the average
world temperature, but without a term that makes our population worry about the
future impacts of climate change, we will never see the implementation of policies
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by the Green party. We have previously introduced this worry term and how we
construct it based on the peak temperature anomaly projected by each party, but we
will now show the actual impact of its implementation.

From this point onwards, we will always take our coupling equation (5.1) to be
of the form

IE(t) = ζ{ 1
L(t)

[ᾱD(t)− µ̄E(t)] + ω̄F(T̂)} (5.7)

with F(T̂) as the identity, such that it reduces to the form of Eq. (5.2). The value
of parameters change considerably from previous examples due to our choice of
normalization, but this is a recurring issue with our model - parameters have to be
specific to the chosen normalization and the network properties.

We chose a scale parameter ζ = 100 and awareness of ᾱ = 100000 for our sub-
sequent examples. Fig. 5.6 presents the results for a range of different values of
the worry parameter ω̄ where the network stays in a paramagnetic regime where
occasional political party shifts occur. We can see that for low values of ω̄, the cou-
pling equation is for the most part negative, locking the system into a permanent
bias towards the Lukewarmers. A more interesting behaviour is observed when we
increase the worry parameter, which leads to phase transitions towards a ferromag-
netic state in favour of the Greens. Like we have seen before, this is to be expected
at later years due to how the climate damage term and tax term evolve over time.
The affect of the worry term is to allow for party shifts to occur when the system is
still relatively paramagnetic, so that the ruling party alternates over the years. This
is more prominent for the regime where ω̄ = 0.00005, which is the closest regime to
displaying a somewhat realistic political party balance behaviour in the first century.
For the regime where ω̄ = 0.00007, the system exhibits the same balanced behaviour
until it transitions into a ferromagnetic phase at year 2115. On the upper end, when
we take ω̄ = 0.00010 the phase transition happens at year 2095, but we point out that
despite the system being in a paramagnetic state in the previous years, the party that
stays in power for the most part is the Greens - this is a result of IE being just high
enough to nudge the system with a slight, but noticeable bias towards the Green
party.

5.3.4 Network Temperature

Previously, we discussed how the temperature of the network itself can be inter-
preted as a measure of social unrest of a given population. One could port this anal-
ogy to a society that is undergoing problems related with crime, inequality, racial
discrimination and even disagreements regarding climate change and economic tur-
moil. For this reason, it is worth seeing how this affects the behaviour of our model.
The results are shown in Fig. 5.7, where we highlight the most interesting regimes.
Throughout all of our simulations, we have always set the network temperature at
T = 0.15, which is the standard network temperature in the literature [33]. This
regime is highlighted and plotted in red, and it exhibits the same behaviour seen
in Fig. 5.6 when ω̄ = 0.00005). However, when we lower the network tempera-
ture the system very quickly settles in a ferromagnetic phase (see the blue and green
curves in Fig. 5.7b). When the network temperature is increased, the system stays
locked in a paramagnetic phase. This behaviour is in agreement with the properties
of the network and how its temperature impacts the effect that the external influ-
ence IE has on swaying the opinions of individuals (see Fig. 3.13 and 3.14). This
reinforces the fact that societies need to be in a very specific condition in order for
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FIGURE 5.7: The behaviour of the (a) external influence parameter IE and (b) opinion average
〈S〉; for networks at different network temperature T. The scale parameter is set at ζ = 100,
the awareness is ᾱ = 100000, and the worry parameter is ω̄ = 0.00005. Highlighted are
the lower network temperature regimes where phase transitions occur. For high network

temperature, the system is locked in a paramagnetic state.

public opinion to be shaped by external factors that are, in our model, connected
to climate and economic events. Societies that have a low network temperature are
conformists, where the lack of societal unrest and disagreements amongst its popu-
lation will lead to everyone voting for the same party. Higher network temperature
societies on the other hand are riddled with so much unrest that it’s much too di-
vided in order for one particular political party to take the upper hand. Here we
give a nod to the highly politically polarized state of the United States of America.

An interesting thing that the network temperature tests clearly showcases is the
year where climate related concerns overtake tax concerns. In Fig. 5.7a we can see
that the IE curve takes an upward turn at year 2090. The irregularity between distinct
years is a result of the tax term associated with each party, but these are nonetheless
within an upper and lower bound. These upper and lower bounds of IE are once
again directly linked to the parties’ climate abatement policies as seen in Fig. 5.3e.

As remark, it is not immediately clear how to regulate the network temperature
in such a way that it matches the world’s current state of affairs or even how to im-
plement a mechanism that allows for a dynamic network temperature that is linked
to the time evolution of the real-DICE model.

5.3.5 Authority

Finally, we are interested in exploring how the distribution of authority Aij impacts
our model. According to Grabowski and Kosiński, the authority can be interpreted
as a measure of a population’s education. We instead argue that it more accurately
represents an individual’s resistance to changing their opinion - a measure of stub-
bornness, if you will. In order for authority to be somewhat comparable to one’s
level of education (we don’t necessarily mean the level of one’s academic achieve-
ments, but how well informed an individual is on a given subject) we have to en-
sure that the distribution of Aij makes somewhat sense with the randomly allocated
initial values for Sij. It is possible to specifically assign a certain Sij to individuals
that have high authority on the chosen subject. In our case, if we assume that high
authority relates to how well educated an individual is on the topic of man-made
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FIGURE 5.8: The behaviour of the (a) external influence parameter IE and (b) opinion average
〈S〉; for networks with different variance σ, i.e. different distributions of authority Aij. The
scale parameter is set at ζ = 100, the awareness is ᾱ = 100000, and the worry parameter is

ω̄ = 0.00004. Highlighted are the two regimes discussed in the text.

climate change, we can then assign Sij = 1 to individuals with high authority. How-
ever, it is clear that that the system will very quickly reach 〈S〉 = 1 under these
conditions. As this behaviour is unrealistic, it cannot be accurately linked to a popu-
lation’s education. The tests performed for different distributions of authority (done
by taking different values of the variance σ) are shown in Fig. 5.8. These results
(see Fig. 5.8b) are quite inconclusive, as there is no apparent trend in the opinion
average 〈S〉. The system seems to be in a paramagnetic phase in most of the plotted
curves, with the regimes σ ≈ 0.30 exhibiting what looks like a transition into a para-
magnetic phase at later years (note that σ = 0.30 is the authority distribution we’ve
taken throughout all our simulations). Higher σ seems to indicate that the effect of
the external influence IE into swaying opinion is diminished. This is on a par with
our interpretation of Aij as a measure of stubbornness, since individuals with higher
Aij are not only more likely to be able to enforce their opinion on others, but also
they are less likely to have their own opinions change. A strange result is the case
when σ = 0.10: we can see that when IE < 0, we have 〈S〉 > 0 and when IE > 0,
we get 〈S〉 < 0. This seems to suggest that for low distributions of authority the
resulting opinion average is opposite to the external influence IE. An explanation
for this is currently lacking. We do not exclude the possibility that more interesting
regimes for σ 6= 0.3 exist. If they do, however, an exhaustive search that would
require a completely different set of coupling parameters (ζ; ᾱ; and ω̄) would be
needed. Due to time constraints we did not further explore this. For this reason, fu-
ture work would be needed into potential affects of authority and its interpretation
in the context of our coupled-DICE model.

5.4 Atmospheric Temperature Homeostasis

Ultimately, our intent is to show how the electoral outcomes of democratic societies
can have an impact on the average world temperature, and under which conditions
we can observe a regulatory mechanism of the Earth’s temperature based on human
activity. We know, of course, that economic activity leads to an increase in the av-
erage world temperature through carbon emissions. By adding abatement policies
we can lower our collective emissions in the future and consequentially lessen the
impact of anthropogenic activity on the climate system.
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FIGURE 5.9: The average atmospheric temperature anomaly for the different regimes we’ve
explored. (a) Worry parameter (ω̄) regimes. (b) Network temperature (T) regimes.

We can see how the different regimes for the worry parameter ω̄ and network
temperature T lead to different curves of the atmospheric temperature anomaly and
how it compares to established scenarios (Fig. 5.9). In both plots the dotted grey
lines correspond to the DICE-2016 baseline (upper) and optimal policy (lower) sce-
narios. Since our coupled-DICE is itself bound by the optimal policies of both par-
ties, the outcomes of the different regimes are always within this range and this
ports over to the average world temperature. Effective tackling of climate change
and the rampant increases in world temperature that follow ultimately require ac-
tive and ambitious policy to be implemented. Since we have assumed that both the
Lukewarmers and the Greens will do this (despite having different views on how to
do so), the world temperature curves will always be lower than the baseline, "busi-
ness as usual" scenario. The most ambitious policies are obviously the ones of the
Green party. Our model sets the lower bound for world temperature changes to the
curve where the system is always ferromagnetic in favour of the Greens (〈S〉 > 0)
throughout the entire simulation. These are the ω̄ = 0.00010 purple curve in Fig.
5.9a and T = 0.05 blue curve in Fig. 5.9b. The upper bound happens when the
Lukewarmers are always in power and corresponds to the ω̄ = 0.00001 blue curve
in Fig. 5.9a. This upper bound never happens in the network temperature regimes
we have studied (Fig. 5.9b), but this is because of how the system is locked in a
paramagnetic phase and subject to fluctuations for high network temperature. Un-
der our political party balance regimes, chosen for the sake of realism, the resulting
curves are always intermediate. Therefore, for a two party system, we can easily
conclude that the regulation of global warming is immediately bound by the climate
ideologies of the parties that are up for election; which in our examples are set by
a simple distinction in the climate sensitivity parameter λ of the DICE-2016 policy
optimization.
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Chapter 6

Conclusion

Throughout this thesis, we have taken steps in the exploration of the complexity that
arises from the interconnectedness of fields as distinct as physics, economics and so-
ciology and its interesting results. We have developed a framework for how demo-
cratic societies play a major role in the future development of the climate change
crisis that humanity is facing. The coupled DICE model that we have devised pro-
vides a simple way to explore the impact of elections on the climate systems and
the world’s economy. Through an analysis of multiple regimes, we have seen how
human perception of the consequences of climate change affects opinion formation
and electoral outcomes. The role of taxation for purposes of tackling the climate
emergency is clearly the main concern of voters, pushing them to prefer political
parties that enforce lower abatement policies. It is only when voters care about the
immediate climate damages and future impacts that we see pro-climate parties win-
ning elections and enforcing their higher abatement policies. Transitions of voter
behaviour from a relatively stable balance of power between parties are also ob-
served at later years in favour of pro-climate parties, but the consequences of cli-
mate change may well be too severe at that stage for us effectively do something
about it. Ultimately, we see how these different regimes lead to atmospheric tem-
perature anomaly scenarios that are within a given range, set by the party ideology
regarding climate change. If this can be considered to be a homeostatic regime, it
leaves much to be desired. When constrained by the policies of the Greens and the
Lukewarmers, we don’t see how climate change can be "fixed" in a way that won’t
lead to significantly high atmospheric temperature anomalies. It seems to suggest
that tackling the challenges of climate change (even under optimal policy regimes)
won’t be enough to prevent the consequences of rampant anthropogenic activity
since the industrial revolution. We also do not account for the nuances of dynamic
networks and how the network properties could be preserved under such circum-
stances, or even how opinion formation would operate with more than two political
parties. Further development on this subject could also help shed light in the role
that the authority of individuals plays and how we can make it more dynamic, as
well as taking into account shifting political ideologies and learning behaviours for
both parties. In the end, it will seem that fixing climate change will require decisive
coordinated global action of unprecedented ambition.
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Appendix A

Network Generator Algorithm

Here, we present a simple version of the network generator algorithm.

import numpy as np
import networkx as nx
import m a t p l o t l i b . pyplot as p l t
from m a t p l o t l i b . font_manager import FontProper t i es

font = FontProper t i es ( )
font . s e t _ s t y l e ( ’ i t a l i c ’ )

from scipy . s t a t s import truncnorm
from mpl_ too lk i t s . axes_gr id1 import make_axes_locatable

from datetime import datetime
star tTime = datetime . now ( )

# MAIN MODEL PARAMETERS
L = 100 # s i z e of the square grid
N = L * * 2 # number of i n d i v i d u a l s /nodes ( L*L )
Lg = 20 # s i z e of the l o c a l groups
Ng = Lg * * 2 # number of i n d i v i d u a l s /nodes per l o c a l group
Lgx = i n t ( L/Lg ) # required f o r l o c a l group i d e n t i f i e r

gamma = 3 . 0 # exponent of the power law d i s t r i b u t i o n f o r the
c o n n e c t i v i t y k

kmin = 10 # minimum number of connect ions of a node
kmax = 100 # maximum number of connect ions of a node
pc = 0 . 5 # p r o b a b i l i t y to c r e a t e second l e v e l connect ions

i t = 2500 # number of i t e r a t i o n s f o r the NETWORK generator

# acceptance counters

c o u n t _ i t = np . l i n s p a c e ( 1 , i t , i t , dtype = np . i n t 3 2 )

s a t u r a t i o n = np . zeros ( i t )
a v g _ c l u s t e r in g = np . zeros ( i t )

count_primary = np . zeros ( i t )
count_secondary = np . zeros ( i t )
c o u n t _ r e j e c t e d = np . zeros ( i t )

# SECONDARY MODEL PARAMETERS

var iance = 0 . 3 # sigma * * 2 ( needed f o r truncated Gaussian d i s t r i b u t i o n )

a = Lg # parameter f o r d i s t a n c e p r o b a b i l i t y funct ion
b = Lg/4 # parameter f o r d i s t a n c e p r o b a b i l i t y funct ion
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l c r i t = 100 # c r i t i c a l d i s t a n c e parameter f o r node s e l e c t i o n ( improves
speed )

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
# −−−−−−−−−− MAIN BODY −−−−−−−−−− #
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #

# MATRIX GENERATORS

S i j = 2*np . random . randint ( 2 , s i z e =(L , L ) ) −1 # generates the matrix S i j

# algorithm t h a t ensures opinion average i s 0 a t the s t a r t ( only works f o r
even N) !

while np . sum( S i j ) /N != 0 :

i f (N % 2) != 0 :
break

i f np . sum( S i j ) /N > 0 :

l 1 = np . random . randint ( 0 , L )
l 2 = np . random . randint ( 0 , L )

i f S i j [ l1 , l 2 ] > 0 :

S i j [ l1 , l 2 ] = ( −1) * S i j [ l1 , l 2 ]

e l s e : continue

e l s e :

l 1 = np . random . randint ( 0 , L )
l 2 = np . random . randint ( 0 , L )

i f S i j [ l1 , l 2 ] < 0 :

S i j [ l1 , l 2 ] = ( −1) * S i j [ l1 , l 2 ]

e l s e : continue

p r i n t ( f ’ Opinion average ={np . sum( S ) /N} ’ )

K i j = np . zeros ( shape =(L , L ) ) # generator matrix f o r k i j
count = −1 # counting index

# c o n n e c t i v i t y matrix generated through a power law d i s t r i b u t i o n
# re −maping funct ion
def power_law ( kmin , kmax , y , gamma) :

re turn ( ( kmax**( −gamma+1)−kmin **( −gamma+1) ) * y+kmin **( −gamma+ 1 . 0 ) )
* * ( 1 . 0 / ( −gamma+ 1 . 0 ) )

s c a l e _ f r e e _ d i s t = np . zeros (N, f l o a t ) # empty d i s t r i b u t i o n matrix

# transforming a uniform d i s t r i b u t i o n to a truncated power law shape
f o r n in range (N) :

s c a l e _ f r e e _ d i s t [ n ] = i n t ( power_law ( kmin , kmax , np . random . uniform ( 0 , 1 ) ,
gamma) )

# assignment of the d i s t r i b u t i o n values to K i j matrix
f o r i in range ( L ) :

f o r j in range ( L ) :
count +=1
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K i j [ i , j ] = s c a l e _ f r e e _ d i s t [ count ]

# checking f o r the p r o b a b i l i t y d i s t r i b u t i o n funct ion
kcount = np . zeros ( 1 0 1 )

f o r n in range (N) :
k i = i n t ( s c a l e _ f r e e _ d i s t [ n ] )
kcount [ k i ]+=1

# Gaussian d i s t r i b u t i o n to generate a u t h o r i t y matrix
mu, sigma = 0 , np . s q r t ( var iance ) # mean and standard devia t ion

# re −parametrized truncated normal d i s t r i b u t i o n funct ion
def get_truncated_normal (mean=0 , sd =1 , low=0 ,upp=10) :

re turn truncnorm (
( low−mean) /sd , ( upp−mean) /sd , l o c =mean , s c a l e =sd )

X = get_truncated_normal (mean=0 , sd=sigma , low=0 ,upp=1)

A = X . rvs (N) # a u t h o r i t y values from d i s t r i b u t i o n

Ai j = np . zeros ( shape =(L , L ) ) # a u t h o r i t y matrix
count = −1 # counting index

# assignment of values to a u t h o r i t y matrix
f o r i in range ( L ) :

f o r j in range ( L ) :
count +=1
Ai j [ i , j ] = A[ count ]

# saving the r e l e v a n t arrays [ opt iona l ]
#np . save ( " S [ L_%d ; gamma_%d ; pc_%f ; LG_%d ] . npy " % ( L , gamma, pc , Lg ) , S i j )
#np . save ( "K [ L_%d ; gamma_%d ; pc_%f ; LG_%d ] . npy " % ( L , gamma, pc , Lg ) , K i j )
#np . save ( "A [ L_%d ; gamma_%d ; pc_%f ; LG_%d ] . npy " % ( L , gamma, pc , Lg ) , Ai j )

# ( a l l matrix generator p l o t s a t the end [ opt iona l ] )

# NETWORK GENERATOR ( slowest part )

k i j = np . zeros ( shape =(L , L ) ) # r e a l number of connect ions of each node/
indiv idua l

C = np . zeros ( shape =(L , L ) ) # c l u s t e r r i n g c o e f f i c i e n t matrix

# generates a plus or minus sign with equal p r o b a b i l i t y
def s ign ( ) :

re turn 1 i f np . random . random ( ) < 0 . 5 e l s e −1

# c r e a t e s a grid graph
G = nx . grid_2d_graph ( L , L )

# p o s i t i o n the nodes with equal d i s t a n c e in a l a t t i c e s t r u c t u r e
pos = d i c t ( ( n , n ) f o r n in G. nodes ( ) )

# d e l e t e s a l l edges from the graph G, leaving only the nodes
G = nx . create_empty_copy (G)

# p l o t s the empty graph ( j u s t to check ) [ opt iona l ]
# figG = p l t . f i g u r e ( f i g s i z e = ( 8 , 8 ) )
#nx . draw (G, pos=pos , node_size =1 , node_color = ’k ’ , width = 0 . 5 )
# p l t . a x i s ( ’ o f f ’ )
# p l t . s a v e f i g ( ’ empty_grid . pdf ’ , format = ’ pdf ’ , bbox_inches = ’ t i g h t ’ )
# p l t . show ( )
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# algorithm t h a t generates second l e v e l connect ions
def second_order ( i , j , n ,m) :

# secondary connect ions ( i , j ) −−> ( n ,m)
neigh = l i s t (G. neighbors ( ( n ,m) ) ) # l i s t of neighbours of

node ( n ,m)
f o r z in range ( len ( neigh ) ) : # i t e r a t e over a l l

neighbours

i f ( i , j ) == neigh [ z ] : # ignores s e l f : ( i , j )
continue

i f G. number_of_edges ( ( i , j ) , neigh [ z ] ) < 1 :

r o l l = np . random . random ( )

i f r o l l < pc :

# index s e l e c t i o n
tupz = neigh [ z ]
z1 = tupz [ 0 ]
z2 = tupz [ 1 ]

i f k i j [ i , j ] > k i j [ z1 , z2 ] :
c o u n t _ r e j e c t e d [ t t ] += 1
continue

i f k i j [ i , j ] < K i j [ i , j ] and k i j [ z1 , z2 ] < K i j [ z1 , z2 ] :
G. add_edge ( ( i , j ) , ( z1 , z2 ) ) # adds a second l e v e l

connect ion !
k i j [ i , j ]+=1
k i j [ z1 , z2 ]+=1
count_secondary [ t t ] += 1

e l s e :
c o u n t _ r e j e c t e d [ t t ] += 1
continue

# algorithm f o r c r e a t i n g i n t e r p e r s o n a l connect ions
def I n t e r p e r s o n a l ( ) :

f o r i in range ( L ) :
f o r j in range ( L ) :

i f k i j [ i , j ] == K i j [ i , j ] : # checks i f more connect ions are
allowed
c o u n t _ r e j e c t e d [ t t ] += 1
continue

# s e l e c t s the random v a r i a b l e s f o r i n d i c e pa i r ing
l 1 = np . random . randint ( 0 , l c r i t )
l 2 = np . random . randint ( 0 , l c r i t )

# s e l e c t s the i n d i c e s f o r the pa i r ing
n = i +sign ( ) * l 1
m = j +sign ( ) * l 2

# ensures t h a t the index value i s never out of the range [ 0 , L ]
i f n > L−1:

n = n−L
i f m > L−1:

m = m−L
i f n < 0 :
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n = n+L
i f m < 0 :

m = m+L

i f i == n and j == m: # in case i t s e l e c t s the same node ,
skip
continue

# d i s t a n c e between i n d i v i d u a l s
l = np . s q r t ( ( i −n ) * * 2 + ( j −m) * * 2 )

# p r o b a b i l i t y to form a connect ion between i n d i v i d u a l s P ( l )
P = 1/(1+np . exp ( ( l −a ) /b ) ) + 0 . 0 0 1 * ( ( L− l ) /L )

# p r o b a b i l i t y " dice r o l l "
P r o l l = np . random . random ( )

# connect ion generator algorithm now goes through a l l the
c o n d i t i o n a l checks

# f i r s t l e v e l connect ion between ( i , j ) and ( n ,m)
i f P r o l l < P :

i f G. number_of_edges ( ( i , j ) , ( n ,m) ) < 1 :
i f k i j [ i , j ] > k i j [ n ,m] :

c o u n t _ r e j e c t e d [ t t ] += 1
continue

i f k i j [ i , j ] < K i j [ i , j ] and k i j [ n ,m] < K i j [ n ,m] :
G. add_edge ( ( i , j ) , ( n ,m) ) # adds a f i r s t l e v e l

connect ion !
k i j [ i , j ]+=1
k i j [ n ,m]+=1
count_primary [ t t ] += 1

e l s e :
c o u n t _ r e j e c t e d [ t t ] += 1
continue

# second l e v e l connect ions algorithm
i f G. number_of_edges ( ( i , j ) , ( n ,m) ) == 1 :

# secondary connect ions ( n ,m) −−> ( i , j )
second_order ( n ,m, i , j )

# secondary connect ions ( i , j ) −−> ( n ,m)
second_order ( i , j , n ,m)

# runs the network generator i t t imes
f o r t t in range ( i t ) :

I n t e r p e r s o n a l ( )

# c a l c u l a t e s s a t u r a t i o n and c l u s t e r i n g f o r each i t e r a t i o n [ opt iona l ]
# ( computationaly expensive ! )
# s a t u r a t i o n [ t t ] = np . sum( k i j ) /np . sum( K i j )
# a v g _c l u s t e r in g [ t t ] = nx . a v e r a g e _ c l u s t e r i n g (G)

p r i n t ( f ’ Computation time = { datetime . now ( ) − star tTime } ’ )

grad = K i j − k i j # v i s u a l check of the " q u a l i t y " of the network

p r i n t ( f ’ Network s a t u r a t i o n = { np . sum( k i j ) /np . sum( K i j ) } ’ ) # network
s a t u r a t i o n
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p r i n t ( f ’ Network c l u s t e r i n g = { nx . a v e r a g e _ c l u s t e r i n g (G) } ’ ) # network
c l u s t e r i n g

count_accepted = count_primary + count_secondary

## GENERATOR PLOTS [OPTIONAL] ##
# c o l o r map of S i j matrix (1 , −1)
f ig , ax = p l t . subplots ( f i g s i z e = ( 8 , 8 ) )
p l t . t i t l e ( ’ Color map of S i j ’ )
p l t . x t i c k s ( [ ] )
p l t . y t i c k s ( [ ] )
im = p l t . imshow ( S i j , cmap= ’ coolwarm ’ )

d iv ider = make_axes_locatable ( ax )
cax = div ider . new_vert ica l ( s i z e ="5%" , pad = 0 . 5 , p a c k _ s t a r t =True )
f i g . add_axes ( cax )
f i g . co lo rb a r ( im , cax=cax , o r i e n t a t i o n =" h o r i z o n t a l " )

p l t . s a v e f i g ( ’ c o l o r m a p _ S i j _ i n i t . pdf ’ , format= ’ pdf ’ , bbox_inches= ’ t i g h t ’ )
p l t . show ( )
p l t . c l o s e ( )

# c o l o r map of K i j generator matrix ( kmin , kmax)
f ig , ax = p l t . subplots ( f i g s i z e = ( 8 , 8 ) )
p l t . t i t l e ( ’ Color map of K i j ’ )
p l t . x t i c k s ( [ ] )
p l t . y t i c k s ( [ ] )
im = p l t . imshow ( Ki j , cmap= ’ YlOrBr ’ )

d iv ider = make_axes_locatable ( ax )
cax = div ider . new_vert ica l ( s i z e ="5%" , pad = 0 . 5 , p a c k _ s t a r t =True )
f i g . add_axes ( cax )
f i g . co lo rb a r ( im , cax=cax , o r i e n t a t i o n =" h o r i z o n t a l " )

p l t . s a v e f i g ( ’ colormap_Kij_gen . pdf ’ , format= ’ pdf ’ , bbox_inches= ’ t i g h t ’ )
p l t . show ( )
p l t . c l o s e ( )

# c o l o r map of Ai j matrix ( 0 , 1 )
f ig , ax = p l t . subplots ( f i g s i z e = ( 8 , 8 ) )
p l t . t i t l e ( ’ Color map of Ai j ’ )
p l t . x t i c k s ( [ ] )
p l t . y t i c k s ( [ ] )
im = p l t . imshow ( Aij , cmap= ’YlGnBu ’ )

d iv ider = make_axes_locatable ( ax )
cax = div ider . new_vert ica l ( s i z e ="5%" , pad = 0 . 5 , p a c k _ s t a r t =True )
f i g . add_axes ( cax )
f i g . co lo rb a r ( im , cax=cax , o r i e n t a t i o n =" h o r i z o n t a l " )

p l t . s a v e f i g ( ’ colormap_Aij . pdf ’ , format= ’ pdf ’ , bbox_inches= ’ t i g h t ’ )
p l t . show ( )
p l t . c l o s e ( )

#Power law d i s t r i b u t i o n
kx = np . round ( np . l i n s p a c e ( kmin , kmax , kmax−kmin ) )

p l t . f i g u r e ( f i g s i z e = ( 7 , 5 ) )
p l t . t i t l e ( ’ D i s t r i b u t i o n of c o n n e c t i v i t y K i j ’ )
p l t . x l a b e l ( ’ k ’ )
p l t . y l a b e l ( ’P ( k ) ’ )
p l t . y s c a l e ( ’ log ’ )
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p l t . x s c a l e ( ’ log ’ )
p l t . p l o t ( kx , kcount [ kmin : kmax]/N, ’ r * ’ )

p l t . s a v e f i g ( ’ K i j _ d i s t . pdf ’ , format= ’ pdf ’ , bbox_inches= ’ t i g h t ’ )
p l t . show ( )
p l t . c l o s e ( )

xx = np . l i n s p a c e ( 0 , 1 , 1 0 0 )
p l t . f i g u r e ( f i g s i z e = ( 7 , 5 ) )
p l t . t i t l e ( ’ D i s t r i b u t i o n of a u t h o r i t y Ai j ’ )
p l t . x l a b e l ( ’A ’ )
p l t . y l a b e l ( ’P (A) ’ )
p l t . h i s t (A, 20 , dens i ty=True )
p l t . p l o t ( xx , 2/( sigma * np . s q r t (2 * np . pi ) ) *

np . exp ( − ( xx − mu) * * 2 / (2 * sigma * * 2 ) ) ,
l inewidth =1 , c o l o r = ’ r ’ )

p l t . show ( )
p l t . c l o s e ( )

# Color map of S a t u r a t i o n
f ig , ax = p l t . subplots ( f i g s i z e = ( 8 , 8 ) )
p l t . t i t l e ( ’ S a t u r a t i o n Ki j − k i j ’ )
p l t . x t i c k s ( [ ] )
p l t . y t i c k s ( [ ] )
im = p l t . imshow ( grad )

div ider = make_axes_locatable ( ax )
cax = div ider . new_vert ica l ( s i z e ="5%" , pad = 0 . 5 , p a c k _ s t a r t =True )
f i g . add_axes ( cax )
f i g . co lo rb a r ( im , cax=cax , o r i e n t a t i o n =" h o r i z o n t a l " )

p l t . s a v e f i g ( ’ network_saturat ion . pdf ’ , format= ’ pdf ’ , bbox_inches= ’ t i g h t ’ )
p l t . show ( )
p l t . c l o s e ( )

p l t . f i g u r e ( f i g s i z e = ( 8 , 6 ) )
p l t . t i t l e ( ’ Acceptance ’ )
p l t . x l a b e l ( ’ Generator i t e r a t i o n s ’ , f o n t p r o p e r t i e s =font )
p l t . y l a b e l ( ’ Counts ’ , f o n t p r o p e r t i e s =font )
p l t . y s c a l e ( ’ log ’ )
p l t . x s c a l e ( ’ log ’ )
p l t . gr id ( alpha = 0 . 5 )
p l t . p l o t ( count_ i t , count_re jec ted , ’ r − ’ , l a b e l = ’ Re jec ted ’ )
p l t . p l o t ( count_ i t , count_accepted , ’g− ’ , l a b e l = ’ Accepted ( Tota l ) ’ )
p l t . p l o t ( count_ i t , count_primary , ’ c− ’ , l a b e l = ’ Accepted ( Primary ) ’ )
p l t . p l o t ( count_ i t , count_secondary , ’b− ’ , l a b e l = ’ Accepted ( Secondary ) ’ )
p l t . legend ( )

p l t . s a v e f i g ( ’ acceptance . pdf ’ , format= ’ pdf ’ , bbox_inches= ’ t i g h t ’ )

p l t . f i g u r e ( f i g s i z e = ( 8 , 6 ) )
p l t . t i t l e ( ’ S a t u r a t i o n ’ )
p l t . x l a b e l ( ’ Generator i t e r a t i o n s ’ , f o n t p r o p e r t i e s =font )
p l t . y l a b e l ( ’ S a t u r a t i o n ’ , f o n t p r o p e r t i e s =font )
p l t . gr id ( alpha = 0 . 5 )
p l t . p l o t ( count_ i t , s a t u ra t i on , ’b− ’ )

#np . save ( " c o u n t _ i t . npy " , c o u n t _ i t )
#np . save ( " count_accepted . npy " , count_accepted )
#np . save ( " c o u n t _ r e j e c t e d . npy " , c o u n t _ r e j e c t e d )
#np . save ( " count_primary . npy " , count_primary )
#np . save ( " count_secondary . npy " , count_secondary )
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Opinion Dynamics Algorithm

Here, we present a simple version of the Ising-like opinion mechanism.

import random
from pack_unpack import unpack_matrix

T = 0 . 1 5 # network temperature
Iex = 0 # e x t e r n a l s t i m u l a t i o n parameter
s teps = 1000000 # s imulat ion s teps

p r i n t ( f ’ I n i t i a l opinion average = { np . sum( S i j ) /N} ’ )

# l o c a l f i e l d c a l c u l a t i o n s

# breaking the Ai j matrix i n t o l o c a l groups
# ( breaking S i j needs to be done on the go , because i t ’ s c o n s t a n t l y updated

! )
uA = unpack_matrix ( Aij , Lgx , Lgx )

Sp = np . zeros ( s teps )

f o r t t in range ( s teps ) :

i = random . randrange ( 0 , L )
j = random . randrange ( 0 , L )

h i j = 0
iisum = 0
losum = 0

uS = unpack_matrix ( S i j , Lgx , Lgx ) # l o c a l groups of S i j

neigh1 = l i s t (G. neighbors ( ( i , j ) ) )
f o r z in range ( len ( neigh1 ) ) :

# index s e l e c t i o n
tup1 = neigh1 [ z ]
z1 = tup1 [ 0 ]
z2 = tup1 [ 1 ]

# c o n t r i b u t i o n of i n t e r p e r s o n a l connect ions
iisum += Ai j [ z1 , z2 ] * S i j [ z1 , z2 ]

# l o c a l group i d e n t i f i c a t i o n
i x = np . f l o o r ( i /Lg )
j x = np . f l o o r ( j /Lg )

# c o n t r i b u t i o n of l o c a l group
losum = np . sum( uS [ ( ix , j x ) ] *uA[ ( ix , j x ) ] )
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h i j = (1/ k i j [ i , j ] ) * ( iisum +( losum/Ng) ) +Iex

# opinion switch mechanism
i f T == 0 :

i f h i j * S i j [ i , j ] >= 0 :

p i j = 0

e l s e :

p i j = (1 − Ai j [ i , j ] )

# p r o b a b i l i t y " dice r o l l "
P r o l l = np . random . random ( )

i f P r o l l <= p i j :

S i j [ i , j ] = ( −1) * S i j [ i , j ]

e l s e :

i f h i j * S i j [ i , j ] > 0 :

p i j = (1 − Ai j [ i , j ] ) *np . exp (( − h i j * S i j [ i , j ] ) /T )

# p r o b a b i l i t y " dice r o l l "
P r o l l = np . random . random ( )

i f P r o l l <= p i j :

S i j [ i , j ] = ( −1) * S i j [ i , j ]

e l s e :

p i j = (1 − Ai j [ i , j ] ) *(1 −np . exp ( ( h i j * S i j [ i , j ] ) /T ) )

# p r o b a b i l i t y " dice r o l l "
P r o l l = np . random . random ( )

i f P r o l l <= p i j :

S i j [ i , j ] = ( −1) * S i j [ i , j ]

Sp [ t t ] = np . sum( S i j ) /N

# p r i n t ( f ’ Step = { t t } ; <S> = { np . sum( S i j ) /N} ’ )

i f t t % 10000 == 0 :
p l t . f i g u r e ( f i g s i z e = ( 7 , 5 ) )
p l t . imshow ( S i j , cmap= ’ coolwarm ’ )
p l t . a x i s ( ’ o f f ’ )
p l t . s a v e f i g ( ’ frame_%d . png ’ % t t , format= ’png ’ )
p l t . c l o s e ( )

p r i n t ( f ’ F i n a l opinion average ={np . sum( S i j ) /N} ’ )

# −−−−−−−−−−−−−−−−−−−−−−−−−−− a u x i l i a r y f u n c t i o n s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #

def unpack_matrix (m, num_of_rows , num_of_columns ) :
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# s a n i t y checks
n_rows , n_cols = m. shape
i f ( n_rows % num_of_rows != 0 or n_cols % num_of_columns != 0) :

p r i n t ( f ’ cannot unpack {m. shape } with dimensions ( { num_of_rows } ,\
{ num_of_columns } ) without l o s i n g information ’ )

# c a l c u l a t e sub−matr ices s i z e s
sub_matrix_width = n_cols // num_of_columns
sub_matrix_height = n_rows // num_of_rows

unpacked = { }
f o r i in range ( n_rows // sub_matrix_height ) :

f o r j in range ( n_cols // sub_matrix_width ) :
unpacked [ ( i , j ) ] = m[ sub_matrix_height * i : sub_matrix_height * ( i

+1) ,
sub_matrix_width * j : sub_matrix_width * ( j +1) ]

re turn unpacked

def pack_matrix (upm, num_of_rows , num_of_cols ) :
# r e c o n s t r u c t o r i g i n a l shape
sub_matrix_width , sub_matrix_height = upm[ ( 0 , 0 ) ] . shape
ful l_matr ix_width , f u l l _ m a t r i x _ h e i g h t = sub_matrix_width * num_of_rows ,
sub_matrix_height * num_of_cols
f u l l _ m a t r i x = np . zeros ( ( ful l_matr ix_width , f u l l _ m a t r i x _ h e i g h t ) )

# copy submatrices i n s i d e the f u l l matrix a t the r i g h t l o c a t i o n s
f o r i in range ( num_of_rows ) :

f o r j in range ( num_of_cols ) :
f u l l _ m a t r i x [ sub_matrix_height * i : sub_matrix_height * ( i +1) ,
sub_matrix_width * j : sub_matrix_width * ( j +1) ] = upm[ ( j , i ) ]

re turn f u l l _ m a t r i x
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Appendix C

Coupled-DICE Algorithm

Finally, our implementation of DICE-2016 in Python with the coupling equation and
network dynamics. (The optimization function for DICE is built in a similar way
and makes use of a Sequential Least Squares Programming (SLSQP) minimization
function.)

import numpy as np
from numba import n j i t
from numba import guvector ize
from numba import f l o a t 6 4

from m a t p l o t l i b import pyplot as p l t
from pack_unpack import unpack_matrix

from DICE_optimizer import DICE_optimizer

from datetime import datetime
star tTime = datetime . now ( )

# * * Set * *
t = np . arange ( 1 , 22)
NT = len ( t )

# * * Parameters * *

f o s s l i m = 6000 # Maximum cumulative e x t r a c t i o n f o s s i l f u e l s ( GtC ) ; CCum
t s t e p = 5 # Years per Period
i f o p t = 0 # I n d i c a t o r where optimized i s 1 and base i s 0

# * * P re fe r en ce s * *

alpha = 1 . 4 5 # E l a s t i c i t y of marginal u t i l i t y of consumption
rho = 0 .015 # I n i t i a l r a t e of s o c i a l time preference per year

# * * Population and technology * *

gamma = 0 .300 # Capi ta l e l a s t i c i t y in production funct ion
/.300/

pop0 = 7403 # I n i t i a l world population 2015 ( m i l l i o n s )
/7403/

popadj = 0 .134 # Growth r a t e to c a l i b r a t e to 2050 pop p r o j e c t i o n
/0.134/

popasym = 11500 # Asymptotic population ( m i l l i o n s )
/11500/

delk = 0 .100 # Deprec iat ion r a t e on c a p i t a l ( per year )
/.100/

q0 = 105 .5 # I n i t i a l world gross output 2015 ( t r i l l 2010 USD)
/105.5/
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k0 = 223 # I n i t i a l c a p i t a l value 2015 ( t r i l l 2010 USD)
/223/

a0 = 5 .115 # I n i t i a l l e v e l of t o t a l f a c t o r p r o d u c t i v i t y
/5.115/

ga0 = 0 .076 # I n i t i a l growth r a t e f o r TFP per 5 years
/0.076/

dela = 0 .005 # Decl ine r a t e of TFP per 5 years
/0.005/

# * * Emissions parameters * *

gsigma1 = −0.0152 # I n i t i a l growth of sigma ( per year )
/ −0.0152/

d e l s i g = −0.001 # Decl ine r a t e of decarbonizat ion ( per period )
/ −0.001/

eland0 = 2 . 6 # Carbon emissions from land 2015 (GtCO2 per year )
/2.6/

deland = 0 .115 # Decl ine r a t e of land emissions ( per period )
/.115/

eind0 = 35 .85 # I n d u s t r i a l emissions 2015 (GtCO2 per year )
/35.85/

miu0 = 0 . 0 3 # I n i t i a l emissions c o n t r o l r a t e f o r base case 2015
/.03/

# * * Carbon c y c l e * *
# * I n i t i a l Conditions *

mat0 = 851 # I n i t i a l Concentrat ion in atmosphere 2015 ( GtC )
/851/

mup0 = 460 # I n i t i a l Concentrat ion in upper s t r a t a 2015 ( GtC )
/460/

mlo0 = 1740 # I n i t i a l Concentrat ion in lower s t r a t a 2015 ( GtC )
/1740/

mateq = 588 # mateq Equil ibrium co nc en t r a t io n atmosphere ( GtC )
/588/

mupeq = 360 # mupeq Equil ibrium co nc en t r a t io n in upper s t r a t a ( GtC )
/360/

mloeq = 1720 # mloeq Equil ibrium co nc en t r a t io n in lower s t r a t a ( GtC )
/1720/

# * Flow parameters , denoted by P h i _ i j in the model *
b12 = 0 . 1 2 # Carbon c y c l e t r a n s i t i o n matrix

/.12/
b23 = 0 .007 # Carbon c y c l e t r a n s i t i o n matrix

/0.007/

# * These are f o r d e c l a r a t i o n and are defined l a t e r *
b11 = None # Carbon c y c l e t r a n s i t i o n matrix
b21 = None # Carbon c y c l e t r a n s i t i o n matrix
b22 = None # Carbon c y c l e t r a n s i t i o n matrix
b32 = None # Carbon c y c l e t r a n s i t i o n matrix
b33 = None # Carbon c y c l e t r a n s i t i o n matrix
s i g0 = None # Carbon i n t e n s i t y 2010 (kgCO2 per output 2005 USD 2010)

# * * Climate model parameters * *

t2xco2 = 3 . 1 # Equil ibrium temp impact (oC per doubling CO2)
/3.1/

fex0 = 0 . 5 # 2015 f o r c i n g s of non−CO2 GHG (Wm−2)
/0.5/

fex1 = 1 . 0 # 2100 f o r c i n g s of non−CO2 GHG (Wm−2)
/1.0/
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tocean0 = 0 .0068 # I n i t i a l lower stratum temp change (C from 1900)
/.0068/

tatm0 = 0 . 8 5 # I n i t i a l atmospheric temp change (C from 1900)
/0.85/

c1 = 0 .1005 # Climate equation c o e f f i c i e n t f o r upper l e v e l
/0.1005/

c3 = 0 .088 # Transfer c o e f f i c i e n t upper to lower stratum
/0.088/

c4 = 0 .025 # Transfer c o e f f i c i e n t f o r lower l e v e l
/0.025/

fco22x = 3 .6813 # e ta : Forc ings of equi l ibr ium CO2 doubling (Wm−2)
/3.6813/

# * * Climate damage parameters * *

a10 = 0 # I n i t i a l damage i n t e r c e p t
/0/

a20 = None # I n i t i a l damage quadrat ic term
a1 = 0 # Damage i n t e r c e p t

/0/
a2 = 0 .00236 # Damage quadrat ic term

/0.00236/
a3 = 2 . 0 0 # Damage exponent

/2.00/

# * * Abatement c o s t * *

expcost2 = 2 . 6 # Theta2 in the model , Eq . 10 Exponent of c o n t r o l c o s t
funct ion /2.6/

pback = 550 # Cost of backstop 2010 $ per tCO2 2015
/550/

gback = 0 .025 # I n i t i a l c o s t d e c l i n e backstop c o s t per period
/.025/

limmiu = 1 . 2 # Upper l i m i t on c o n t r o l r a t e a f t e r 2150
/1.2/

tnopol = 45 # Period before which no emissions c o n t r o l s base
/45/

c p r i c e 0 = 2 # I n i t i a l base carbon p r i c e (2010 $ per tCO2 )
/2/

gcpr i ce = 0 . 0 2 # Growth r a t e of base carbon p r i c e per year
/.02/

# * * S c a l i n g and i n e s s e n t i a l parameters
# * Note t h a t these are unnecessary f o r the c a l c u l a t i o n s
# * They ensure t h a t MU of f i r s t period ’ s consumption =1 and PV cons = PV

u t i l t y
s c a l e 1 = 0.0302455265681763 # M u l t i p l i c a t i v e s c a l i n g c o e f f i c i e n t

/0.0302455265681763/
s c a l e 2 = −10993.704 # Additive s c a l i n g c o e f f i c i e n t

/ −10993.704/;

# * Parameters f o r long −run con s i s ten cy of carbon c y c l e
# ( Question )
b11 = 1 − b12
b21 = b12 * mateq/mupeq
b22 = 1 − b21 − b23
b32 = b23 *mupeq/mloeq
b33 = 1 − b32

# * Further d e f i n i t i o n s of parameters
a20 = a2
s i g0 = eind0 /( q0 *(1 −miu0 ) ) # derived from i n d u s t r i a l emissions equation at

t =0
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lam = fco22x/ t2xco2 # equi l ibr ium cl imate s e n s i t i v i t y ( ? )

# * * I n i t i a l i z a t i o n * *

# Labor/Population
l = np . zeros (NT)
l [ 0 ] = pop0

# Tota l Fac tor P r o d u c t i v i t y ( TFP )
a l = np . zeros (NT)
a l [ 0 ] = a0

# B a s e l i n e carbon i n t e n s i t y growth
gsig = np . zeros (NT)
gsig [ 0 ] = gsigma1

# B a s e l i n e carbon i n t e n s i t y
sigma = np . zeros (NT)
sigma [ 0 ] = s i g 0

# TFP growth r a t e dynamics
ga = ga0 * np . exp( − dela * 5 * ( t −1) )

# Backstop p r i c e
pbacktime = pback * (1 − gback ) * * ( t −1)

# Emissions from d e f o r e s t r a t i o n
e t r e e = eland0 *(1 − deland ) * * ( t −1)

# Discount f a c t o r a r i s i n g from pure time preference (R)
r r = 1/((1+ rho ) * * ( t s t e p * ( t −1) ) )

# Parametr izat ion of exogenous r a d i a t i v e f o r c i n g ( Fex ) ;
f o r c o t h = np . f u l l (NT, fex0 )
f o r c o t h [ 0 : 1 8 ] = f o r c o t h [ 0 : 1 8 ] + (1/17) * ( fex1 −fex0 ) * ( t [ 0 : 1 8 ] − 1 )
f o r c o t h [ 1 8 :NT] = f o r c o t h [ 1 8 :NT] + ( fex1 −fex0 )

# Optimal long −run savings r a t e used f o r t r a n s v e r s a l i t y ( Question ) ( ? )
o p t l r s a v = ( delk + . 0 0 4 ) /( delk + . 0 0 4 * alpha + rho ) *gamma

c o s t 1 = np . zeros (NT)
cumetree = np . zeros (NT)
cumetree [ 0 ] = 100
c p r i c e b a s e = c p r i c e 0 *(1+ gcpr i ce ) * * ( 5 * ( t −1) )

@ n j i t ( ’ ( f l o a t 6 4 [ : ] , i n t 3 2 ) ’ )
def I n i t i a l i z e L a b o r ( i l , iNT ) :

f o r i in range ( 1 , iNT ) :
i l [ i ] = i l [ i − 1 ] * ( popasym / i l [ i −1 ] ) * * popadj

@ n j i t ( ’ ( f l o a t 6 4 [ : ] , i n t 3 2 ) ’ )
def I n i t i a l i z e T F P ( i a l , iNT ) :

f o r i in range ( 1 , iNT ) :
i a l [ i ] = i a l [ i −1]/(1 − ga [ i − 1 ] )

@ n j i t ( ’ ( f l o a t 6 4 [ : ] , i n t 3 2 ) ’ )
def Ini t ia l izeGrowthSigma ( i g s i g , iNT ) :

f o r i in range ( 1 , iNT ) :
i g s i g [ i ] = i g s i g [ i − 1 ] * ( ( 1 + d e l s i g ) * * t s t e p )

@ n j i t ( ’ ( f l o a t 6 4 [ : ] , f l o a t 6 4 [ : ] , f l o a t 6 4 [ : ] , i n t 3 2 ) ’ )
def I n i t i a l i z e S i g m a ( isigma , i g s i g , i c o s t 1 , iNT ) :
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f o r i in range ( 1 , iNT ) :
isigma [ i ] = isigma [ i −1] * np . exp ( i g s i g [ i −1] * t s t e p )
i c o s t 1 [ i ] = pbacktime [ i ] * isigma [ i ] / expcost2 /1000

@ n j i t ( ’ ( f l o a t 6 4 [ : ] , i n t 3 2 ) ’ )
def I n i t i a l i z e C a r b o n T r e e ( icumetree , iNT ) :

f o r i in range ( 1 , iNT ) :
icumetree [ i ] = icumetree [ i −1] + e t r e e [ i − 1 ] * ( 5 / 3 . 6 6 6 )

" " "
Functions of the model
" " "

" " "
F i r s t : Functions r e l a t e d to emissions of carbon and weather damages
" " "

# Determines the emission of carbon by industry ;
@ n j i t ( ’ f l o a t 6 4 ( f l o a t 6 4 [ : ] , f l o a t 6 4 [ : ] , f l o a t 6 4 [ : ] , i n t 3 2 ) ’ )
def fEIND ( iYGROSS , iMIU , isigma , index ) :

re turn isigma [ index ] * iYGROSS [ index ] * (1 − iMIU [ index ] )

# Retuns the t o t a l carbon emissions ;
@ n j i t ( ’ f l o a t 6 4 ( f l o a t 6 4 [ : ] , i n t 3 2 ) ’ )
def fE ( iEIND , index ) :

re turn iEIND [ index ] + e t r e e [ index ]

# Cumulative i n d u s t r i a l emission of carbon ;
@ n j i t ( ’ f l o a t 6 4 ( f l o a t 6 4 [ : ] , f l o a t 6 4 [ : ] , i n t 3 2 ) ’ )
def fCCA(iCCA , iEIND , index ) :

re turn iCCA[ index −1] + iEIND [ index −1] * 5 / 3 .666

# Cumulative t o t a l carbon emission ;
@ n j i t ( ’ f l o a t 6 4 ( f l o a t 6 4 [ : ] , f l o a t 6 4 [ : ] , i n t 3 2 ) ’ )
def fCCATOT( iCCA , icumetree , index ) :

re turn iCCA[ index ] + icumetree [ index ]

# Dynamics of the r a d i a t i v e f o r c i n g ;
@ n j i t ( ’ f l o a t 6 4 ( f l o a t 6 4 [ : ] , i n t 3 2 ) ’ )
def fFORC(iMAT, index ) :

re turn fco22x * np . log (iMAT[ index ] / 5 8 8 . 0 0 0 ) /np . log ( 2 ) + f o r c o t h [ index ]

# Dynamics of Omega (Damage funct ion ) ;
@ n j i t ( ’ f l o a t 6 4 ( f l o a t 6 4 [ : ] , i n t 3 2 ) ’ )
def fDAMFRAC(iTATM, index ) :

re turn a1 *iTATM[ index ] + a2 *iTATM[ index ] * * a3

# Ca l c u l a te damages as a funct ion of Gross i n d u s t r i a l production ;
@ n j i t ( ’ f l o a t 6 4 ( f l o a t 6 4 [ : ] , f l o a t 6 4 [ : ] , i n t 3 2 ) ’ )
def fDAMAGES( iYGROSS ,iDAMFRAC, index ) :

re turn iYGROSS [ index ] * iDAMFRAC[ index ]

# Dynamics of Lambda − c o s t of the reduct ion of carbon emission ( Abatement
c o s t ) ;

@ n j i t ( ’ f l o a t 6 4 ( f l o a t 6 4 [ : ] , f l o a t 6 4 [ : ] , f l o a t 6 4 [ : ] , i n t 3 2 ) ’ )
def fABATECOST( iYGROSS , iMIU , i c o s t 1 , index ) :

re turn iYGROSS [ index ] * i c o s t 1 [ index ] * iMIU [ index ] * * expcost2

# Marginal Abatement c o s t ;
@ n j i t ( ’ f l o a t 6 4 ( f l o a t 6 4 [ : ] , i n t 3 2 ) ’ )
def fMCABATE( iMIU , index ) :

re turn pbacktime [ index ] * iMIU [ index ] * * ( expcost2 −1)
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# P r i c e of carbon reduct ion ;
@ n j i t ( ’ f l o a t 6 4 ( f l o a t 6 4 [ : ] , i n t 3 2 ) ’ )
def fCPRICE ( iMIU , index ) :

re turn pbacktime [ index ] * ( iMIU [ index ] ) * * ( expcost2 −1)

# Dynamics of the carbon co nc en t r a t io n in the atmosphere ;
@ n j i t ( ’ f l o a t 6 4 ( f l o a t 6 4 [ : ] , f l o a t 6 4 [ : ] , f l o a t 6 4 [ : ] , i n t 3 2 ) ’ )
def fMAT(iMAT, iMUP, iE , index ) :

i f ( index == 0) :
re turn mat0

e l s e :
re turn iMAT[ index −1]* b11 + iMUP[ index −1]* b21 + iE [ index −1] * 5 /

3 .666

# Dynamics of the carbon co nc en t r a t io n in the ocean LO l e v e l ;
@ n j i t ( ’ f l o a t 6 4 ( f l o a t 6 4 [ : ] , f l o a t 6 4 [ : ] , i n t 3 2 ) ’ )
def fMLO(iMLO, iMUP, index ) :

i f ( index == 0) :
re turn mlo0

e l s e :
re turn iMLO[ index −1] * b33 + iMUP[ index −1] * b23

# Dynamics of the carbon co nc en t r a t io n in the ocean UP l e v e l ;
@ n j i t ( ’ f l o a t 6 4 ( f l o a t 6 4 [ : ] , f l o a t 6 4 [ : ] , f l o a t 6 4 [ : ] , i n t 3 2 ) ’ )
def fMUP(iMAT, iMUP, iMLO, index ) :

i f ( index == 0) :
re turn mup0

e l s e :
re turn iMAT[ index −1]* b12 + iMUP[ index −1]* b22 + iMLO[ index −1]* b32

# Dynamics of the atmospheric temperature ;
@ n j i t ( ’ f l o a t 6 4 ( f l o a t 6 4 [ : ] , f l o a t 6 4 [ : ] , f l o a t 6 4 [ : ] , i n t 3 2 ) ’ )
def fTATM(iTATM, iFORC , iTOCEAN, index ) :

i f ( index == 0) :
re turn tatm0

e l s e :
re turn iTATM[ index −1] + c1 * ( iFORC [ index ] − lam * iTATM[ index −1]

− c3 * (iTATM[ index −1] − iTOCEAN[ index − 1 ] ) )

# Dynamics of the ocean temperature ;
@ n j i t ( ’ f l o a t 6 4 ( f l o a t 6 4 [ : ] , f l o a t 6 4 [ : ] , i n t 3 2 ) ’ )
def fTOCEAN(iTATM, iTOCEAN, index ) :

i f ( index == 0) :
re turn tocean0

e l s e :
re turn iTOCEAN[ index −1] + c4 * (iTATM[ index −1] − iTOCEAN[ index − 1] )

" " "
Second : Function r e l a t e d to economic v a r i a b l e s
" " "

# Tota l production without c l imate l o s s e s (YGROSS) ;
@ n j i t ( ’ f l o a t 6 4 ( f l o a t 6 4 [ : ] , f l o a t 6 4 [ : ] , f l o a t 6 4 [ : ] , i n t 3 2 ) ’ )
def fYGROSS( i a l , i l , iK , index ) :

re turn i a l [ index ] * ( ( i l [ index ]/1000) ** (1 −gamma) ) * iK [ index ] * *gamma

# Production under the c l imate damages c o s t ;
@ n j i t ( ’ f l o a t 6 4 ( f l o a t 6 4 [ : ] , f l o a t 6 4 [ : ] , i n t 3 2 ) ’ )
def fYNET( iYGROSS , iDAMFRAC, index ) :

re turn iYGROSS [ index ] * (1 − iDAMFRAC[ index ] )

# Production a f t e r abatement c o s t ;
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@ n j i t ( ’ f l o a t 6 4 ( f l o a t 6 4 [ : ] , f l o a t 6 4 [ : ] , i n t 3 2 ) ’ )
def fY ( iYNET , iABATECOST, index ) :

re turn iYNET [ index ] − iABATECOST[ index ]

# Consumption ;
@ n j i t ( ’ f l o a t 6 4 ( f l o a t 6 4 [ : ] , f l o a t 6 4 [ : ] , i n t 3 2 ) ’ )
def fC ( iY , i I , index ) :

re turn iY [ index ] − i I [ index ]

# Per c a p i t a consumption ;
@ n j i t ( ’ f l o a t 6 4 ( f l o a t 6 4 [ : ] , f l o a t 6 4 [ : ] , i n t 3 2 ) ’ )
def fCPC ( iC , i l , index ) :

re turn 1000 * iC [ index ] / i l [ index ]

# Saving pol i cy : investment
@ n j i t ( ’ f l o a t 6 4 ( f l o a t 6 4 [ : ] , f l o a t 6 4 [ : ] , i n t 3 2 ) ’ )
def f I ( iSAV , iY , index ) :

re turn iSAV [ index ] * iY [ index ]

# Capi ta l dynamics Eq . 13
@ n j i t ( ’ f l o a t 6 4 ( f l o a t 6 4 [ : ] , f l o a t 6 4 [ : ] , i n t 3 2 ) ’ )
def fK ( iK , i I , index ) :

i f ( index == 0) :
re turn k0

e l s e :
re turn (1 − delk ) * * t s t e p * iK [ index −1] + t s t e p * i I [ index −1]

# I n t e r e s t r a t e equation ;
@ n j i t ( ’ f l o a t 6 4 ( f l o a t 6 4 [ : ] , i n t 3 2 ) ’ )
def fRI ( iCPC , index ) :

re turn (1 + rho ) * ( iCPC [ index +1]/iCPC [ index ] ) * * ( alpha/ t s t e p ) − 1

# P e r i o d i c u t i l i t y : A form of Eq . 2
@ n j i t ( ’ f l o a t 6 4 ( f l o a t 6 4 [ : ] , f l o a t 6 4 [ : ] , i n t 3 2 ) ’ )
def fCEMUTOTPER( iPERIODU , i l , index ) :

re turn iPERIODU [ index ] * i l [ index ] * r r [ index ]

# The term between bracke ts in Eq . 2
@ n j i t ( ’ f l o a t 6 4 ( f l o a t 6 4 [ : ] , f l o a t 6 4 [ : ] , i n t 3 2 ) ’ )
def fPERIODU( iC , i l , index ) :

re turn ( ( iC [ index ]*1000/ i l [ index ] ) ** (1 − alpha ) − 1) / (1 − alpha ) − 1

# U t i l i t y funct ion
@guvectorize ( [ ( f l o a t 6 4 [ : ] , f l o a t 6 4 [ : ] ) ] , ’ ( n ) , (m) ’ )
def fUTILITY (iCEMUTOTPER, r e s U t i l i t y ) :

r e s U t i l i t y [ 0 ] = t s t e p * s c a l e 1 * np . sum(iCEMUTOTPER) + s c a l e 2

# I s i n g Opinion Mechanism Function

def I s i n g ( T , Iex , mc_steps ) :

# breaking the Ai j and S i j matr ices i n t o l o c a l groups
uS = unpack_matrix ( S i j , Lgx , Lgx )
uA = unpack_matrix ( Aij , Lgx , Lgx )

f o r t t in range ( mc_steps ) :

# l o c a l f i e l d c o n t r i b u t i o n
f o r i in range ( L ) :

f o r j in range ( L ) :

h i j = 0
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iisum = 0
losum = 0

neigh1 = l i s t (G. neighbors ( ( i , j ) ) )
f o r z in range ( len ( neigh1 ) ) :

# index s e l e c t i o n
tup1 = neigh1 [ z ]
z1 = tup1 [ 0 ]
z2 = tup1 [ 1 ]

# c o n t r i b u t i o n of i n t e r p e r s o n a l connect ions
iisum += Ai j [ z1 , z2 ] * S i j [ z1 , z2 ]

# l o c a l group i d e n t i f i c a t i o n
i x = np . f l o o r ( i /Lg )
j x = np . f l o o r ( j /Lg )

# c o n t r i b u t i o n of l o c a l group
losum = np . sum( uS [ ( ix , j x ) ] *uA[ ( ix , j x ) ] )

h i j = (1/ k i j [ i , j ] ) * ( iisum +( losum/Ng) ) +Iex

# opinion switch mechanism
i f T == 0 :

i f h i j * S i j [ i , j ] >= 0 :

p i j = 0

e l s e :

p i j = (1 − Ai j [ i , j ] )
P r o l l = np . random . random ( )

i f P r o l l <= p i j :

S i j [ i , j ] = ( −1) * S i j [ i , j ]

e l s e :

i f h i j * S i j [ i , j ] > 0 :

p i j = (1 − Ai j [ i , j ] ) *np . exp (( − h i j * S i j [ i , j ] ) /T )
P r o l l = np . random . random ( )

i f P r o l l <= p i j :

S i j [ i , j ] = ( −1) * S i j [ i , j ]

e l s e :

p i j = (1 − Ai j [ i , j ] ) *(1 −np . exp ( ( h i j * S i j [ i , j ] ) /T ) )
P r o l l = np . random . random ( )

i f P r o l l <= p i j :

S i j [ i , j ] = ( −1) * S i j [ i , j ]

re turn np . sum( S i j ) /N
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# Var iable l i s t i n i t i a l i z a t i o n

OPINION = np . zeros (NT) # opinion r e s u l t s of network
COUPLING = np . zeros (NT) # coupling equation

K = np . zeros (NT)
YGROSS = np . zeros (NT)
EIND = np . zeros (NT)
E = np . zeros (NT)
CCA = np . zeros (NT)
CCATOT = np . zeros (NT)
MAT = np . zeros (NT)
MLO = np . zeros (NT)
MUP = np . zeros (NT)
FORC = np . zeros (NT)
TATM = np . zeros (NT)
TOCEAN = np . zeros (NT)
DAMFRAC = np . zeros (NT)
DAMAGES = np . zeros (NT)
ABATECOST = np . zeros (NT)
MCABATE = np . zeros (NT)
CPRICE = np . zeros (NT)
YNET = np . zeros (NT)
Y = np . zeros (NT)
I = np . zeros (NT)
C = np . zeros (NT)
CPC = np . zeros (NT)
RI = np . zeros (NT)
PERIODU = np . zeros (NT)
CEMUTOTPER = np . zeros (NT)

I n i t i a l i z e L a b o r ( l ,NT)
I n i t i a l i z e T F P ( al ,NT)
Ini t ia l izeGrowthSigma ( gsig ,NT)
I n i t i a l i z e S i g m a ( sigma , gsig , cost1 ,NT)
I n i t i a l i z e C a r b o n T r e e ( cumetree ,NT)

#Network parameters

T = 0 . 1 5 # temperature
Iex = 0 . 0 # e x t e r n a l s t i m u l a t i o n
mc_steps = 100 #MC steps

#Model equat ions with f i x e d c o n t r o l v a r i a b l e s

MIU = np . zeros (NT) # abatement array
peak_T = np . zeros (NT) #peak temperature array
SAV = 0 . 2 3 * np . ones (NT) # saving r a t e f i x e d at 0 . 2 3

MIU[ 0 ] = miu0
peak_T [ 0 ] = 2 . 5 # i n i t i a l i z a t i o n peak temperature − P a r i s Agreement

t a r g e t

# Party − s p e c i f i c opt imizat ion t a r g e t v a r i a b l e s
MIU_g = np . zeros (NT) # abatement array f o r Green party
MIU_r = np . zeros (NT) # abatement array f o r Lukewarmer party

peak_T_g = np . zeros (NT) # Green party peak temperature p r o j e c t i o n
peak_T_r = np . zeros (NT) # Lukewarmer party peak temperature

p r o j e c t i o n

MIU_g [ 0 ] = 0
MIU_r [ 0 ] = 0
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peak_T_g [ 0 ] = 0
peak_T_r [ 0 ] = 0

f o r i in range (NT) :

K[ i ] = fK (K, I , i )
YGROSS[ i ] = fYGROSS( al , l , K, i )
EIND[ i ] = fEIND (YGROSS, MIU, sigma , i )
E [ i ] = fE (EIND, i )
CCA[ i ] = fCCA(CCA, EIND, i )
CCATOT[ i ] = fCCATOT(CCA, cumetree , i )
MAT[ i ] = fMAT(MAT,MUP, E , i )
MLO[ i ] = fMLO(MLO,MUP, i )
MUP[ i ] = fMUP(MAT,MUP,MLO, i )
FORC[ i ] = fFORC(MAT, i )
TATM[ i ] = fTATM(TATM,FORC,TOCEAN, i )
TOCEAN[ i ] = fTOCEAN(TATM,TOCEAN, i )
DAMFRAC[ i ] = fDAMFRAC(TATM, i )
DAMAGES[ i ] = fDAMAGES(YGROSS,DAMFRAC, i )
ABATECOST[ i ] = fABATECOST(YGROSS,MIU, cost1 , i )
MCABATE[ i ] = fMCABATE(MIU, i )
CPRICE [ i ] = fCPRICE (MIU, i )
YNET[ i ] = fYNET(YGROSS,DAMFRAC, i )
Y[ i ] = fY (YNET,ABATECOST, i )
I [ i ] = f I (SAV, Y , i )
C[ i ] = fC (Y , I , i )
CPC[ i ] = fCPC (C, l , i )
PERIODU[ i ] = fPERIODU(C, l , i )
CEMUTOTPER[ i ] = fCEMUTOTPER(PERIODU, l , i )
RI [ i ] = fRI (CPC, i )

#Coupling Equation

t a x _ t = (MCABATE[ i ] * E [ i ]/ l [ i ] ) * (1/1000) # USD per person
dam_t = DAMAGES[ i ]/ l [ i ] * ( 1 / 1 0 0 0 0 0 0 ) # USD per person

COUPLING[ i ] = ( 1 ) * dam_t − t a x _ t + ( 0 . 0 0 1 ) *np . s q r t ( peak_T [ i ] )

Iex = 100*COUPLING[ i ] # f ree , unca l ibra ted e x t e r n a l i n f l u e n c e
parameter coupling

#Network Opinion Check
OPINION[ i ] = I s i n g ( T , Iex , mc_steps )

i f i == NT−1:
break

e l s e :

# Optimization Schemes ( f o r both p a r t i e s )

#GREENS
MIU_g[ i +1] , peak_T_g [ i +1] = DICE_optimizer ( i , 5 . 0 , l [ i ] , a l [ i ] ,

gs ig [ i ] , sigma [ i ] ,
cumetree [ i ] ,MIU[ i ] ,K[ i ] ,YGROSS[ i ] ,EIND[ i ] , E [ i ] ,CCA[ i ] ,

CCATOT[ i ] ,MAT[ i ] ,
MLO[ i ] ,MUP[ i ] ,FORC[ i ] ,TATM[ i ] ,TOCEAN[ i ] ,DAMFRAC[ i ] ,DAMAGES

[ i ] ,ABATECOST[ i ] ,
MCABATE[ i ] , CPRICE [ i ] ,YNET[ i ] ,Y[ i ] , I [ i ] ,C[ i ] ,CPC[ i ] , RI [ i ] ,

PERIODU[ i ] ,CEMUTOTPER[ i ] )

#LUKEWARMERS
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MIU_r [ i +1] , peak_T_r [ i +1] = DICE_optimizer ( i , 2 . 0 , l [ i ] , a l [ i ] ,
gs ig [ i ] , sigma [ i ] ,
cumetree [ i ] ,MIU[ i ] ,K[ i ] ,YGROSS[ i ] ,EIND[ i ] , E [ i ] ,CCA[ i ] ,

CCATOT[ i ] ,MAT[ i ] ,
MLO[ i ] ,MUP[ i ] ,FORC[ i ] ,TATM[ i ] ,TOCEAN[ i ] ,DAMFRAC[ i ] ,DAMAGES

[ i ] ,ABATECOST[ i ] ,
MCABATE[ i ] , CPRICE [ i ] ,YNET[ i ] ,Y[ i ] , I [ i ] ,C[ i ] ,CPC[ i ] , RI [ i ] ,

PERIODU[ i ] ,CEMUTOTPER[ i ] )

#Peak temperature p r o j e c t i o n

peak_T [ i +1] = 0 . 5 * peak_T_g [ i +1 ]+0 .5* peak_T_r [ i +1]

# P o l i t i c a l party s e l e c t i o n ( parameters )
i f OPINION[ i ] > 0 :

MIU[ i +1] = MIU_g[ i +1]

e l s e :

MIU[ i +1] = MIU_r [ i +1]

TT = np . l i n s p a c e ( 2 0 1 5 , 2115 , 21 , dtype = np . i n t 3 2 )

def P l o t F i g u r e s ( ) :

pos_OPINION = OPINION . copy ( )
neg_OPINION = OPINION . copy ( )

pos_OPINION [ pos_OPINION <= 0] = np . nan
neg_OPINION [ neg_OPINION > 0] = np . nan

figOPINION = p l t . f i g u r e ( f i g s i z e = ( 8 , 6 ) )
p l t . p l o t ( TT , OPINION, ’k−− ’ , alpha = 0 . 5 )
p l t . p l o t ( TT , pos_OPINION , ’ g . ’ )
p l t . p l o t ( TT , neg_OPINION , ’ r . ’ )
figOPINION . s u p t i t l e ( ’ Opinion average ’ , f o n t s i z e =14)
p l t . gr id ( alpha = 0 . 5 )
p l t . x l a b e l ( ’ Years ’ , f o n t s i z e =12)
p l t . y l a b e l ( ’ $<S>$ ’ , f o n t s i z e =12)

figTATM = p l t . f i g u r e ( f i g s i z e = ( 8 , 6 ) )
p l t . p l o t ( TT ,TATM, ’ b . ’ )
p l t . p l o t ( TT ,TATM, ’b− ’ , alpha = 0 . 5 )
figTATM . s u p t i t l e ( ’ I n c r e a s e temperature of the atmosphere (TATM) ’ ,

f o n t s i z e =14)
p l t . gr id ( alpha = 0 . 5 )
p l t . x l a b e l ( ’ Years ’ , f o n t s i z e =12)
p l t . y l a b e l ( ’ Degrees C from 1900 ’ , f o n t s i z e =12)

figTOCEAN = p l t . f i g u r e ( f i g s i z e = ( 8 , 6 ) )
p l t . p l o t ( TT ,TOCEAN, ’ b . ’ )
p l t . p l o t ( TT ,TOCEAN, ’b− ’ , alpha = 0 . 5 )
figTOCEAN . s u p t i t l e ( ’ I n c r e a s e temperature of the ocean (TOCEAN) ’ ,

f o n t s i z e =14)
p l t . gr id ( alpha = 0 . 5 )
p l t . x l a b e l ( ’ Years ’ , f o n t s i z e =12)
p l t . y l a b e l ( ’ Degrees C from 1900 ’ , f o n t s i z e =12)

figMU = p l t . f i g u r e ( f i g s i z e = ( 8 , 6 ) )
p l t . p l o t ( TT ,MUP, ’ b . ’ )
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p l t . p l o t ( TT ,MUP, ’b− ’ , alpha = 0 . 5 )
figMU . s u p t i t l e ( ’ Carbon co nc en t ra t i on i n c r e a s e in shallow oceans (MU) ’ ,

f o n t s i z e =14)
p l t . gr id ( alpha = 0 . 5 )
p l t . x l a b e l ( ’ Years ’ , f o n t s i z e =12)
p l t . y l a b e l ( ’GtC from 1750 ’ , f o n t s i z e =12)

figML = p l t . f i g u r e ( f i g s i z e = ( 8 , 6 ) )
p l t . p l o t ( TT ,MLO, ’ b . ’ )
p l t . p l o t ( TT ,MLO, ’b− ’ , alpha = 0 . 5 )
figML . s u p t i t l e ( ’ Carbon co nc en t ra t i on i n c r e a s e in lower oceans (ML) ’ ,

f o n t s i z e =14)
p l t . gr id ( alpha = 0 . 5 )
p l t . x l a b e l ( ’ Years ’ , f o n t s i z e =12)
p l t . y l a b e l ( ’GtC from 1750 ’ , f o n t s i z e =12)

figDAM = p l t . f i g u r e ( f i g s i z e = ( 8 , 6 ) )
p l t . p l o t ( TT ,DAMAGES, ’ b . ’ )
p l t . p l o t ( TT ,DAMAGES, ’b− ’ , alpha = 0 . 5 )
figDAM . s u p t i t l e ( ’Damages ’ , f o n t s i z e =14)
p l t . gr id ( alpha = 0 . 5 )
p l t . x l a b e l ( ’ Years ’ , f o n t s i z e =12)
p l t . y l a b e l ( ’ t r i l l i o n s 2010 USD per year ’ , f o n t s i z e =12)

figDAMFRAC = p l t . f i g u r e ( f i g s i z e = ( 8 , 6 ) )
p l t . p l o t ( TT ,DAMFRAC, ’ b . ’ )
p l t . p l o t ( TT ,DAMFRAC, ’b− ’ , alpha = 0 . 5 )
figDAMFRAC . s u p t i t l e ( ’Damages as f r a c t i o n of gross output ’ , f o n t s i z e

=14)
p l t . gr id ( alpha = 0 . 5 )
p l t . x l a b e l ( ’ Years ’ , f o n t s i z e =12)
p l t . y l a b e l ( ’ ’ , f o n t s i z e =12)

figCOSTRED = p l t . f i g u r e ( f i g s i z e = ( 8 , 6 ) )
p l t . p l o t ( TT ,ABATECOST, ’ b . ’ )
p l t . p l o t ( TT ,ABATECOST, ’b− ’ , alpha = 0 . 5 )
figCOSTRED . s u p t i t l e ( ’ Cost of emissions reduct ions ’ , f o n t s i z e =14)
p l t . gr id ( alpha = 0 . 5 )
p l t . x l a b e l ( ’ Years ’ , f o n t s i z e =12)
p l t . y l a b e l ( ’ t r i l l i o n s 2010 USD per year ’ , f o n t s i z e =12)

figMarg = p l t . f i g u r e ( f i g s i z e = ( 8 , 6 ) )
p l t . p l o t ( TT ,MCABATE, ’ b . ’ )
p l t . p l o t ( TT ,MCABATE, ’b− ’ , alpha = 0 . 5 )
figMarg . s u p t i t l e ( ’ Marginal abatement c o s t ’ , f o n t s i z e =14)
p l t . gr id ( alpha = 0 . 5 )
p l t . x l a b e l ( ’ Years ’ , f o n t s i z e =12)
p l t . y l a b e l ( ’ 2010 USD per ton CO2 ’ , f o n t s i z e =12)

figMIU = p l t . f i g u r e ( f i g s i z e = ( 8 , 6 ) )
p l t . p l o t ( TT ,MIU, ’ b . ’ )
p l t . p l o t ( TT ,MIU, ’b− ’ , alpha = 0 . 5 )
figMIU . s u p t i t l e ( ’ Carbon emission c o n t r o l r a t e ’ , f o n t s i z e =14)
p l t . gr id ( alpha = 0 . 5 )
p l t . x l a b e l ( ’ Years ’ , f o n t s i z e =12)
p l t . y l a b e l ( ’ Rate ’ , f o n t s i z e =12)

f igE = p l t . f i g u r e ( f i g s i z e = ( 8 , 6 ) )
p l t . p l o t ( TT , E , ’ b . ’ )
p l t . p l o t ( TT , E , ’b− ’ , alpha = 0 . 5 )
f igE . s u p t i t l e ( ’ Tota l CO2 emission ’ , f o n t s i z e =14)
p l t . gr id ( alpha = 0 . 5 )
p l t . x l a b e l ( ’ Years ’ , f o n t s i z e =12)
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p l t . y l a b e l ( ’GtCO2 per year ’ , f o n t s i z e =12)

figMAT = p l t . f i g u r e ( f i g s i z e = ( 8 , 6 ) )
p l t . p l o t ( TT ,MAT, ’ b . ’ )
p l t . p l o t ( TT ,MAT, ’b− ’ , alpha = 0 . 5 )
figMAT . s u p t i t l e ( ’ Carbon c on ce nt ra t i on i n c r e a s e in the atmosphere ’ ,

f o n t s i z e =14)
p l t . gr id ( alpha = 0 . 5 )
p l t . x l a b e l ( ’ Years ’ , f o n t s i z e =12)
p l t . y l a b e l ( ’GtC from 1750 ’ , f o n t s i z e =12)

figFORC = p l t . f i g u r e ( f i g s i z e = ( 8 , 6 ) )
p l t . p l o t ( TT ,FORC, ’ b . ’ )
p l t . p l o t ( TT ,FORC, ’b− ’ , alpha = 0 . 5 )
figFORC . s u p t i t l e ( ’ I n c r e a s e in r a d i a t i v e f o r c i n g ’ , f o n t s i z e =14)
p l t . gr id ( alpha = 0 . 5 )
p l t . x l a b e l ( ’ Years ’ , f o n t s i z e =12)
p l t . y l a b e l ( ’ watts per m2 from 1900 ’ , f o n t s i z e =12)

f igC = p l t . f i g u r e ( f i g s i z e = ( 8 , 6 ) )
p l t . p l o t ( TT , C, ’ b . ’ )
p l t . p l o t ( TT , C, ’b− ’ , alpha = 0 . 5 )
f igC . s u p t i t l e ( ’ Consumption ’ , f o n t s i z e =14)
p l t . gr id ( alpha = 0 . 5 )
p l t . x l a b e l ( ’ Years ’ , f o n t s i z e =12)
p l t . y l a b e l ( ’ t r i l l i o n s 2010 USD per year ’ , f o n t s i z e =12)

f igY = p l t . f i g u r e ( f i g s i z e = ( 8 , 6 ) )
p l t . p l o t ( TT , Y , ’ b . ’ )
p l t . p l o t ( TT , Y , ’b− ’ , alpha = 0 . 5 )
f igY . s u p t i t l e ( ’ Gross product net of abatement and damages ’ , f o n t s i z e

=14)
p l t . gr id ( alpha = 0 . 5 )
p l t . x l a b e l ( ’ Years ’ , f o n t s i z e =12)
p l t . y l a b e l ( ’ t r i l l i o n s 2010 USD per year ’ , f o n t s i z e =12)

figYGROSS = p l t . f i g u r e ( f i g s i z e = ( 8 , 6 ) )
p l t . p l o t ( TT , YGROSS, ’ b . ’ )
p l t . p l o t ( TT , YGROSS, ’b− ’ , alpha = 0 . 5 )
figYGROSS . s u p t i t l e ( ’ World gross product ’ , f o n t s i z e =14)
p l t . gr id ( alpha = 0 . 5 )
p l t . x l a b e l ( ’ Years ’ , f o n t s i z e =12)
p l t . y l a b e l ( ’ t r i l l i o n s 2010 USD per year ’ , f o n t s i z e =12)

figYGROSSbyY = p l t . f i g u r e ( f i g s i z e = ( 8 , 6 ) )
p l t . p l o t ( TT , YGROSS−Y , ’ b . ’ )
p l t . p l o t ( TT , YGROSS−Y , ’b− ’ , alpha = 0 . 5 )
figYGROSSbyY . s u p t i t l e ( ’ Abatement and damages c o s t s ’ , f o n t s i z e =14)
p l t . gr id ( alpha = 0 . 5 )
p l t . x l a b e l ( ’ Years ’ , f o n t s i z e =12)
p l t . y l a b e l ( ’ t r i l l i o n s 2010 USD per year ’ , f o n t s i z e =12)

figSAV = p l t . f i g u r e ( f i g s i z e = ( 8 , 6 ) )
p l t . p l o t ( TT , SAV, ’ b . ’ )
p l t . p l o t ( TT , SAV, ’b− ’ , alpha = 0 . 5 )
figSAV . s u p t i t l e ( ’ Saving r a t e ’ , f o n t s i z e =14)
p l t . gr id ( alpha = 0 . 5 )
p l t . x l a b e l ( ’ Years ’ , f o n t s i z e =12)
p l t . y l a b e l ( ’ r a t e ’ , f o n t s i z e =12)

f i g I = p l t . f i g u r e ( f i g s i z e = ( 8 , 6 ) )
p l t . p l o t ( TT , I , ’ b . ’ )
p l t . p l o t ( TT , I , ’b− ’ , alpha = 0 . 5 )
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f i g I . s u p t i t l e ( ’ Investment ( I ) ’ , f o n t s i z e =14)
p l t . gr id ( alpha = 0 . 5 )
p l t . x l a b e l ( ’ Years ’ , f o n t s i z e =12)
p l t . y l a b e l ( ’ t r i l l i o n s 2010 USD per year ’ , f o n t s i z e =12)

f igpT = p l t . f i g u r e ( f i g s i z e = ( 8 , 6 ) )
p l t . p l o t ( TT , peak_T , ’ b . ’ )
p l t . p l o t ( TT , peak_T , ’b− ’ , alpha = 0 . 5 )
f igpT . s u p t i t l e ( ’ Peak Temperature P r o j e c t i o n ’ , f o n t s i z e =14)
p l t . gr id ( alpha = 0 . 5 )
p l t . x l a b e l ( ’ Years ’ , f o n t s i z e =12)
p l t . y l a b e l ( ’ Degrees C from 1900 ’ , f o n t s i z e =12)

p l t . show ( )

def DataSave ( ) :

np . save ( "OPINION . npy " , OPINION)
np . save ( " l . npy " , l )
np . save ( " a l . npy " , a l )
np . save ( " gs ig . npy " , gs ig )
np . save ( "TATM. npy " , TATM)
np . save ( "TOCEAN. npy " , TOCEAN)
np . save ( "MUP. npy " , MUP)
np . save ( "MLO. npy " , MLO)
np . save ( "DAMAGES. npy " , DAMAGES)
np . save ( "DAMFRAC. npy " , DAMFRAC)
np . save ( "ABATECOST. npy " , ABATECOST)
np . save ( "MCABATE. npy " , MCABATE)
np . save ( "MIU. npy " , MIU)
np . save ( "E . npy " , E )
np . save ( "MAT. npy " , MAT)
np . save ( "FORC. npy " , FORC)
np . save ( "C. npy " , C)
np . save ( "Y . npy " , Y)
np . save ( "YGROSS . npy " , YGROSS)
np . save ( "SAV. npy " , SAV)
np . save ( " I . npy " , I )
np . save ( "COUPLING. npy " , COUPLING)
np . save ( "MIU_g . npy " , MIU_g)
np . save ( "MIU_r . npy " , MIU_r )
np . save ( " peak_T_g . npy " , peak_T_g )
np . save ( " peak_T_r . npy " , peak_T_r )

figLAB = p l t . f i g u r e ( f i g s i z e = ( 8 , 6 ) )
p l t . p l o t ( TT , l , ’ b . ’ )
p l t . p l o t ( TT , l , ’b− ’ , alpha = 0 . 5 )
figLAB . s u p t i t l e ( ’ Population growth over time ( $L$ ) ’ , f o n t s i z e =14)
p l t . gr id ( alpha = 0 . 5 )
p l t . x l a b e l ( ’ Years ’ , f o n t s i z e =12)
p l t . y l a b e l ( ’ Population ( m i l l i o n ) ’ , f o n t s i z e =12)

figTFP = p l t . f i g u r e ( f i g s i z e = ( 8 , 6 ) )
p l t . p l o t ( TT , al , ’ b . ’ )
p l t . p l o t ( TT , al , ’b− ’ , alpha = 0 . 5 )
figTFP . s u p t i t l e ( ’ Tota l f a c t o r p r o d u c t i v i t y ( $A$ ) ’ , f o n t s i z e =14)
p l t . gr id ( alpha = 0 . 5 )
p l t . x l a b e l ( ’ Years ’ , f o n t s i z e =12)
p l t . y l a b e l ( ’TFP ’ , f o n t s i z e =12)

figGSIG = p l t . f i g u r e ( f i g s i z e = ( 8 , 6 ) )
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p l t . p l o t ( TT , gsig , ’ b . ’ )
p l t . p l o t ( TT , gsig , ’b− ’ , alpha = 0 . 5 )
figGSIG . s u p t i t l e ( ’ Growth of sigma ’ , f o n t s i z e =14)
p l t . gr id ( alpha = 0 . 5 )
p l t . x l a b e l ( ’ Years ’ , f o n t s i z e =12)
p l t . y l a b e l ( ’ $g_sigma$ ’ , f o n t s i z e =12)

P l o t F i g u r e s ( )
#DataSave ( )

p r i n t ( f ’ Computation time = { datetime . now ( ) − star tTime } ’ )
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[33] Andrzej Grabowski and R.A. Kosiński. “Ising-based model of opinion forma-
tion in a complex network of interpersonal interactions”. In: Physica A: Statis-
tical Mechanics and its Applications 361 (Mar. 2006), 651–664.

[34] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. “Gephi: An Open
Source Software for Exploring and Manipulating Networks”. In: (2009). URL:
https://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154.

[35] William Nordhaus. “The ’DICE’ Model: Background and Structure of a Dy-
namic Integrated Climate-Economy Model of the Economics of Global Warm-
ing”. In: (Mar. 1992).

https://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154


Bibliography 89

[36] William Nordhaus and Joseph Boyer. Warming the World: Economic Models of
Global Warming. Jan. 2000.

[37] William Nordhaus. “Revisiting the social cost of carbon”. In: Proceedings of the
National Academy of Sciences 114 (Jan. 2017).

[38] Robert Solow. Growth Theory: An Exposition. Vol. 22. Jan. 1971.

[39] Claudia Wieners. God does not play DICE – but Bill Nordhaus does! What can
models tell us about the economics of climate change? Dec. 2018. URL: https://
blogs.egu.eu/divisions/cl/2018/12/03/god-does-not-play-dice-but-

bill-nordhaus-does-what-can-models-tell-us-about-the-economics-

of-climate-change/.

[40] L.G. Epstein and S.E. Zin. “Substitution, risk aversion, and the intertempo-
ral behavior of consumption and asset returns: a theoretical framework”. In:
Econometrica 57 (Jan. 1989), pp. 937–969.

[41] Larry Epstein and Stanley Zin. “Substitution, Risk Aversion, and the Tempo-
ral Behavior of Consumption and Asset Returns: An Empirical Analysis”. In:
Journal of Political Economy 99 (Feb. 1991), pp. 263–86.

[42] United Nations, Department Affairs, and Population Division. World Popula-
tion Prospects 2019. 2019.

[43] Richard Tol. “The Economic Effects of Climate Change”. In: Journal of Economic
Perspectives 23 (Apr. 2009), pp. 29–51.

[44] Richard Tol. “The Economic Effects of Climate Change”. In: The Journal of Eco-
nomic Perspectives 28 (May 2014).

[45] IPCC. “Climate Change 2014: Synthesis Report. Contribution of Working Groups
I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change”. In: IPCC, Geneva, Switzerland (2014), p. 151. URL: https :
//www.ipcc.ch/report/ar5/syr/.

[46] Reto Knutti and Gabriele Hegerl. “The Equilibrium Sensitivity of the Earth’s
Temperature to Radiation Changes.” In: Nature Geoscience 1 (Oct. 2008), pp. 735–
743.

[47] Nicholas Stern. The Economics of Climate Change: The Stern Review. Cambridge
University Press, 2007.

[48] Cara A. Horowitz. “Paris Agreement”. In: International Legal Materials 55.4
(2016), 740–755.

[49] Sylvie Geisendorf. “Evolutionary Climate-Change Modelling: A Multi-Agent
Climate-Economic Model”. In: Computational Economics 52 (Sept. 2017).

[50] Martin Weitzman. “What is the “Damages Function” for Global Warming –
and What Difference Might It Make?” In: Climate Change Economics (CCE) 01
(May 2010), pp. 57–69.

[51] Jeroen van den Bergh. “How sensitive is Nordhaus to Weitzman? Climate pol-
icy in DICE with an alternative damage function”. In: Economics Letters 117
(Oct. 2012), pp. 372–374.

[52] Antonin Pottier et al. “The Comparative Impact of Integrated Assessment Mod-
els’ Structures on Optimal Mitigation Policies”. In: Environmental Modeling and
Assessment (Feb. 2015).

[53] Tarek Hassan et al. “The Global Impact of Brexit Uncertainty”. In: Institute for
New Economic Thinking Working Paper Series (Dec. 2019), pp. 1–60.

https://blogs.egu.eu/divisions/cl/2018/12/03/god-does-not-play-dice-but-bill-nordhaus-does-what-can-models-tell-us-about-the-economics-of-climate-change/
https://blogs.egu.eu/divisions/cl/2018/12/03/god-does-not-play-dice-but-bill-nordhaus-does-what-can-models-tell-us-about-the-economics-of-climate-change/
https://blogs.egu.eu/divisions/cl/2018/12/03/god-does-not-play-dice-but-bill-nordhaus-does-what-can-models-tell-us-about-the-economics-of-climate-change/
https://blogs.egu.eu/divisions/cl/2018/12/03/god-does-not-play-dice-but-bill-nordhaus-does-what-can-models-tell-us-about-the-economics-of-climate-change/
https://www.ipcc.ch/report/ar5/syr/
https://www.ipcc.ch/report/ar5/syr/

	Abstract
	Acknowledgements
	Introduction
	Theoretical Background
	The Ising Model
	Estimation of Expected Values

	Markov Process and Selection Probabilities
	Markov Chain
	Acceptance Ratio and Selection Probabilities

	Graph Theory

	Opinion Dynamics
	Opinion Formation in a Social Network
	Network Structure
	Network Properties
	Opinion-Switch Mechanism
	Simulation Results
	Acceptance Rates
	Network Saturation
	Network Clustering
	External Stimulation


	The DICE model
	Model Equations
	Welfare Function and Discounting
	Population Growth
	Investment and Economic Output
	Carbon Emissions
	Geophysical Equations

	Model Scenarios

	DICE-Voter Coupling
	Political Parties
	The Coupling Equation
	Coupling Regimes
	Scale Factor
	Awareness Parameter
	Peak Temperature and Worry Parameter
	Network Temperature
	Authority

	Atmospheric Temperature Homeostasis

	Conclusion
	Network Generator Algorithm
	Opinion Dynamics Algorithm
	Coupled-DICE Algorithm
	Bibliography

