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Abstract 
 

Amyotrophic lateral sclerosis (ALS) is a terminal disease whose onset may largely be 

determine by mutations in the non-coded region of deoxyribose nucleic acid (DNA). These 

mutations disrupt the transcription factors resulting in aberrant regulation of gene expression 

within the motor neurons resulting in neuro muscular degeneration. At the root of such 

mutations in DNA lie motif (Lanchatin, 2017), which are short conserved sub-sequences within 

DNA sequence in which mutations play a key role in regulating transcription. 

 

In this project, we build a box of motifs using deep learning which can identify the active DNA 

sequences that comprise of damage causing mutations. I build two deep learning networks. (1) 

Convolutional Neural Network (CNN) and (2) Hybrid model which is a combination of CNN 

and long short-term memory (LSTM). These architectures are trained on active motif reference 

sequences and inactive reference DNA sequences in the non-coding region of the DNA 

extracted from human reference genome. 

 

To determine the efficiency of the deep learning models in identifying mutations, I train the 

model architectures on blood lymphoblastoid. Mutations in blood lymphoblastoid are known 

to effect transcription. Next, we zoom in on the same region and train the models on regions 

around transcription start sit (TSS). These are regions where the mutations typically have 

strongest effect since these are sites where the process of transcription is initiated. To evaluate 

the model performance, I use a test set that comprises of (1) Genotype tissue expression (GTEx) 

which comprises of some motifs that could effect transcription as observed in people. 

Transcription is a process in which DNA gets converted into protein. Disrupting transcription 

leads to aberrant protein synthesis. These motifs are derived using traditional standard 

framework such as expression quantitative trait loci (eQTL) which comprise a list of effects of 

certain mutations across species which are known to affect a single cell gene expression. (2) 

Project MinE data consists of observed motifs in patients and controls in which some mutations 

may disrupt transcription leading to aberrant protein regulation which ultimately leads to ALS. 

 

Testing both the model architectures on GTEx and MinE shows the reliability of deep neural 

networks in identifying motif mutations which are likely to disrupt transcription. Having 

determined the performance of the deep learning models on lymphoblastoid, we test the 

efficiency of the models in identifying ALS mutations by training them on non-coding DNA 

sequences intrinsic to complex neuropsychiatric diseases from lower motor neuron and test the 

models on Project MinE data. 

 

Although previous deep learning models trained on motifs (Yue & Wang, 2018; Beer & 

Tavazoie, 2004; Alipanahi et al, 2015; Salekin & Zhang, 2017) show some success in 

predicting significant mutations that affect gene expression, we see in this project that both the 

models underperform in predicting significant mutations on the imbalanced GTEx and MinE 

datasets. The CNN model trained on blood has an average area under curve (AUC) of 0.42. 

The average AUC of the hybrid model on blood is 0.41. Similarly, the F1 score of the CNN on 

trained on blood is 0.07 and the F1 score of the hybrid model trained blood is also 0.07. The 

low AUC and F1 values show underperformance by the model. The CNN and hybrid models 

trained on lower motor neuron predict 12.39% and 6.40% of the active mutations in Project 

MinE.  
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1. Introduction 
 

ALS is terminal neurodegenerative disease which is characterized by degeneration of upper 

and lower motor neurons (Hardiman et al, 2017). The upper motor neurons are projected 

from the cortex to the brain stem and spinal cord. The lower motor neurons on the other 

hand are projected from the brain stem or the spinal cord to the muscles. The 

neuropathological hallmark of ALS is protein inclusion (Kierman & Vucic, 2011; 

Hardiman et al, 2017). Protein inclusion is the aggregation of proteins in a cell body. This 

significant hallmark is observed across several neurodegenerative disease.  

 

ALS can either be classified as sporadic or familial. Sporadic ALS (SALS) applies when 

there is no known history of other family members with the disease. In contrast, familial 

ALS (FALS) applies when there is more than one occurrence of disease in the family. Earlier 

research in the field had only suggested 5-10% of ALS cases as familial (Byrne & Walsh, 

2011), meaning it arises in families with a history of ALS.  

 

The primary symptoms observed across ALS patients are associated with motor 

dysfunction which includes muscle weakness, paralysis, and discomfort in swallowing. In 

some patients, the degeneration extends to frontal and anterior temporal lobes, damaging 

the executive network of the brain leading to cognitive impairment as observed in 50%, 

behavioural change and Fronto Temporal Dementia (FTD) as observed in 13% of the 

patients. These general symptoms observed across ALS patients, along with the 

identification of specific rare genetic variants have contributed to re-characterising ALS as 

a progressive neurodegenerative disease. 

 

Each human comprises of a DNA. The basic biological process involved in the survival of 

humans is that a DNA gets converted into a functional product protein (Leavitte, 2004). 

This happens in two steps. A DNA first gets transcribed into intermediate product which 

stores information regarding the amount of protein that needs to be produced. The process 

in which transcription occurs is called gene expression. In the second step, the intermediate 

product is converted into protein. There are two kinds of DNA. First, a coding DNA gets 

transcribed and translated resulting in adequate amount of functional product (protein). 

Second, a non-coding DNA only gets transcribed and not translated. However, some non-

coding DNA sequences disrupt the transcription leading to aberrant protein synthesis in the 

later steps. In our body, 99% of the DNA is non-coding and most of the disease-causing 

mutations occur in the non-coding DNA (Brown, 2017; Hardiman et al, 2017).  

 

How is the transcription process initiated? There are proteins called transcription factors 

(TF) which when bind with the DNA, the process of transcription is initiated. However, 

how does the DNA sequence know that a certain TF is compatible? There are motifs within 

a DNA, which are a single nucleotide subsequence of a DNA sequence. The motif mutation 

determines the affinity with which a certain TF binds with the DNA sequence initiating the 

process of transcription. In coding DNA this further leads to adequate amount of protein 

synthesis. Although some non-coding DNA find their compatible TFs making the sequence 

transcription ready, some motif mutations also disrupt the TF and their corresponding 

transcription factor binding site (TFBS) leading to aberrant protein synthesis in the 

surrounding regions.  

 

This pattern of a motif mutation in non-coding DNA disrupting the TF and their 

corresponding TFBS is seen among ALS patients. This aberrant protein regulation is a 
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hallmark of ALS. Therefore, we build a deep learning tool to identify which motif 

mutations among ALS patients are likely to disrupt the TFBS leading to aberrant protein 

synthesis. Deep learning is a subset of Artificial Intelligence which uses multi-layered 

neural networks which replicates the connections of neurons in the brain. A deep learning 

approach uses a training set to learn the complexities involved. The learning of the model 

is finally tested using a test set. Typically, the train-test split is in a ratio of 70% - 30%. The 

test set comprises of two labels, a true label and a false label which help in evaluating the 

performance of the model on the test set. 

 

In this work, we build two deep learning models based on the successful performance in 

identifying motif mutations of the already existing architectures. We will discuss the model 

architectures in more detail in the upcoming sections. To determine the efficiency of the 

models in the identifying motif mutations, we first train the models on non-coding DNA 

sequences from blood lymphoblastoid. We establish the efficiency of the model by judging 

its ability to classify motif mutations that effect transcription using genotype tissue 

expression (GTEx; Londsale et al, 2013) from the mutations that disrupt the TF and their 

corresponding TFBS using Project MinE (Project MinE ALS Sequencing consortium, 

2018). The MinE data set comprises of mutations as observed in ALS patients. Having 

established the efficiency of the deep learning models in identifying motif mutations in 

blood, we next train our model on non-coding DNA sequences from lower motor neuron 

to identify the likely motif mutations that could disrupt the TF leading to ALS.  

 

2. Background 
 

This section will include some basic biology concepts such as deoxyribonucleic acid 

(DNA), the importance of motifs, transcription factors (TF) and transcription and 

translation process. Further, we will also summarise about some deep learning models that 

have seen some success having trained on active motifs. Lastly based on the background, 

we will present my motivation, research question and the further structure of my thesis. 

 

2.1 Genes 
 

The significant differences between species and within species are a result of inheritance. 

For example, this separates humans from chimps. A ‘gene’ is a section of DNA which 

contains instructions for making a ribonucleic acid (RNA) molecule or a protein (Elseton 

& Satagopan, 2012).  

 

Within humans, inherited genes play a role in determining skin colour, hair length and 

various other characteristics such as intelligence and vision. However, these differences 

can also be caused by environment (Clerget-Darpoux & Elseton, 2013) and gene 

expressions. Gene expression is the process by which information from a gene is used to 

synthesize a functional product which will allow a gene to produce protein as the final 

product. The Gene expression of a cell determines what the cell will do. 

 

In 2003, the completion of the human genome sequencing by the Human Genome Project 

opened wide range of possibilities to study the human reference DNA sequence. The 

reference genomes sequence was obtained through aggregating the genome sequences of 

multiple people (Wheeler et al, 2008). 
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2.2 Deoxyribonucleic Acid (DNA) 
 

DNA is a molecule composed of poly nucleotide chains that coil around each other to form 

double helix and carry a genetic structure for the growth, development, functioning and 

reproduction of an organism (Alberts & Johnson, 2014). The double helix structures that carry 

the genetic information are complementary to each other. The individual building blocks of 

DNA are called nucleotides. There are 4 types of nucleotides: Adenine (A), Cytosine (C), 

Guanine (G) and Thymine (T). The combination of two letters is called a base pair. The whole 

human genome sequence obtained during the human genome project consists of 3 billion of 

these base pairs. The long DNA sequences with which we are made of differs with every 

person. 
 

There are two kinds of DNA. Coding DNA and non-coding DNA. The mutations in coding 

DNA produce adequate amount of protein. The coding DNA are only 1% of the total DNA in 

our body. On the other hand, mutations in the non-coding DNA produces aberrant regulation 

of protein. The non-coding DNA sequences are the remaining 99% sequences. Many studies 

(Brown, 2017; Hardiman et al, 2017; Kiernan et al, 2011) have established that most terminal 

illness such as ALS, Alzheimer’s and Parkinson’s are a result of mutations in the non-coded 

region of the DNA. The evidence of this is that all the above-mentioned terminal illness has a 

common hallmark of aberrant regulation of protein (Hardiman et al, 2017; Kiernan et al, 2011). 
 

2.2.1 Structural complexity of DNA sequences 
 

Linguistic sequence complexity (LC) is a measure of vocabulary richness of a DNA sequence 

(Trifonov M, 1990; Lio et al, 2013). When a DNA sequence is written as a text using four letter 

nucleotides, the repetitiveness of the letters can be calculated as sequences complexity. The 

general idea of LC can be understood better by representing each letter in a DNA sequence 

with a tree structure (Figure 1). Based on this idea, most complex sequences have maximally 

balanced trees while the measure of imbalance serves as a complexity measure. The idea here 

is to understand that DNA sequences from different regions have different proportion of 

nucleotides and therefore the complexity associated with these sequences also differ. For 

example, let us consider two sequences of length 150 from blood and lower motor neuron. Both 

sequences would have different structure if a tree were to be drawn. Therefore, different trees 

have different complexities. 
 

 

 

 

 

 
Figure 1. Trees corresponding to nucleotide bases: Combination of nucleotides in a DNA sequences is represented as a 

tree. The idea is that different set of DNA sequences are represented as different structured trees with a certain overall 

structure leading to certain protein regulation (Trifonov M, 1990). 
 

2.3 Genetic Variants 
 

DNA sequences are unique for every human due to genetic variants (Gibson., 2012). Genetic 

variants are minor changes in the string of A, C, G, T. Varying features, and characteristics 

among people are a result of these variants. A variant (or mutation) is a change to the nucleotide 

sequence at a particular position in the genome as compared to the human reference genome. 

These are also called point mutations. For example, the position of an A might be interchanged 
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by G, meaning it is a significant mutation. Variants can occur in a coding or non-coding regions 

of the DNA. Most of these mutations go unnoticed or could be dangerous or cause other 

disruptions within the body ultimately leading in a terminal illness.  

 

Genetic variance is the contribution of genetic differences among individuals, with variation 

in phenotype (observable characteristics or traits of an individual). There are two types of 

genetic variants. First, common genetic variants include thousands of trait specific genes found 

across a large diverse population. However, common genetic variants do not explain variance 

across population (Wang et.al, 2019). For example, the gene associated with hair colour is 

Melanocortin 1 Receptor (MC1R), which is a common genetic variant found across everybody. 

Although hair colour is determined by a common variant MC1R, the mutations within the gene 

in the body determine the hair colour of the person. Second, the rare genetic variants are 

relatively less in frequency and hold the view that most of the variance for certain complex 

diseases is due to relatively high penetrance of rare genetic variants in the non-coding region 

of the DNA. Higher penetrance might affect the internal molecular composition subsequently 

disrupting other internal functionalities and ultimately causing a disease such as ALS. 

 
Overall, the idea is that psychiatric disorders such as schizophrenia share inherited common 

genetic variants that are involved in the likely precipitation of the disorder (Byrne & Heverin, 

2013). There must be a substantial effect of nature and nurture for these inherited common 

genetic variants to manifest into a serious mental health issue. The rare genetic variants may 

or may not be inherited but are not observed among vast population. There is evidence that 

many serious illnesses such as ALS and Alzheimer’s are identified through analysing in rare 

genetic variants in the non-coding DNA (Hardiman et al, 2017). It is likely that most ALS 

mutations are in fact rare genetic variant mutations occurring in non-coding DNA. Such 

mutations would likely act by disrupting transcription factor binding site. 
 

2.4 From DNA to Protein: Transcription and Translation 
 

Proteins are biomolecules which perform vast variety of functions in an organism. Proteins 

primarily differ from one another in sequence of amino acid which is dictated by the nucleotide 

sequence. The central dogma in biology is that DNA is converted into a functional product 

(Figure 2). This happens in two steps. First, Transcription is a process by which DNA is copied 

(or transcribed) to messenger ribonucleic acid (mRNA). mRNA is single strand molecule that 

carries the message of transcription. Second, Translation is a process in which mRNA is used 

to produce protein. In summary, this process of transcription and translation determines the 

amount of protein that needs to be produced in a coded or non-coded DNA. 

 

 

 

 
 

 

 

 

Figure 2. The central dogma in biology: The central dogma of molecular biology explains the flow of genetic information 

from DNA to RNA to make a functional product, a protein. The central dogma suggests that DNA contains the information 

needed to make all of our proteins and that RNA is a messenger (thus, mRNA) that carries this information to the protein  

(Leavitt, 2004). 
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2.5 Transcription Factor (TF) 
 

A Transcription factor (TF) is a protein that controls the rate of transcription from DNA to 

mRNA (Latchman, 1997). The transcription process is initiated when a TF binding with the 

DNA. The region of the DNA to which TF binds is called transcription factor binding site 

(TFBS). These sites are short segments of DNA that are specifically bound by one or more 

proteins with various functions. This binding process of proteins is stimulated by short 

conserved sequence elements of the DNA sequences called motifs.  

 

The core purpose of a TF is to turn on or turn off the gene to make sure they are expressed in 

the right place at the right time in the right amount throughout the cells in the body. Groups of 

TFs work in coordination to direct cell division, cell growth and cell death of a living organism. 

TFs promote or block the recruitment of components that performs transcription of genetic 

information.  

 

2.6 Motif 
 

A sequence motif is short, conserved sub sequence element (or a nucleotide) (Colbran & Chen, 

2017) in a DNA sequence that plays a key role in biological functions. The key role of a motif 

is to indicate sequence-specific binding sites for proteins such as TF. Other significant 

functions of a motif also include mRNA processing and transcription termination. 

 

Motif in a DNA sequence permits the transcription and translation for a DNA sequence to 

which the motif belongs. Mutation in a motif in turn disrupts the TF to that motif, which 

disrupts the TFBS leading to irregular transcription leading to aberrant amount of protein being 

produced in the nearby. Mutation in a motif which causes disruption of transcription also alters 

gene expression. 

 

ALS is a disease whose onset is attributed to such multiple combination of processes and the 

pathological hall mark of the disease is protein inclusion. However, the root cause for the 

combination of processes to start are the mutations within active motifs, on which we focus in 

this research project. 

 

Understanding the complex biological mechanisms requires characterization of motifs which 

affects the gene expression at the transcription level. This is also one of the greatest challenges 

in molecular biology (Pavesi & Mauri, 2004). Transcription is modulated by the interaction of 

TFs with their corresponding binding sites (TFBS) mostly located near the transcription start 

site (TSS) of the gene.  
 

2.6.1 Traditional approaches to identify motifs. 

 

Conventional motif discovery algorithms use position specific frequency matrix (PSFM) and 

consensus logo. However, the consensus logo is just another way of representing binding sites 

and proves to be a great tool in interpreting the results in an understandable way. 

 

Position specific frequency matrix (PSFM) are the most popular way to represent binding sites 

(Figure 4). These are matrices provide information on the frequency of each base in each 

position of the DNA binding motif (Schneider & Stormo, 1986). PSFM has an implicit 

assumption that different positions at the DNA binding site contributes independently to the 

site function. Ultimately, these PSFM result in a visualization known as the ‘consensus 
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sequence logo’ derived from consensus sequence that can further be easily interpreted. A 

consensus sequence is a calculated order of most frequent residual nucleotides that are found 

at each sequence (Figure 3). It represents the results of multiple sequence alignment in which 

related sequences are compared to each other and similar sequence motifs are subsequently 

calculated. 
 

 

 

 

 

 

 

 

 

 

 

Figure 3. Position specific frequency matrix (PSFM): The top row represents the number of DNA sequence, and each 

with length 56. The Colum comprising of A, C, G, T represent the frequency of each nucleotide in each sequence (Wang & 

Xu, 2016). 

 

DNA binding sites are such sites within DNA sequence where other molecules may bind. DNA 

binding sites are often associated with transcription factors and are this linked to transcription 

regulation. DNA binding sites can be referred as short DNA sequences that are specifically 

bound by one or more protein molecules. A collection of DNA binding sites can also be referred 

to as DNA binding motif. DNA binding motifs can be represented by a consensus sequence 

(Schneider., 2002).  
 

 

 

 

 

 

 

 

 

 
Figure 4. Example consensus logo: A consensus sequence logo is an alternate representation of PSFM. The numbers on the 

x-axis represent teach individual sequence of a specific length (Wang & Xu, 2016). The bits on the y-axis describes the 

importance of nucleotide in a given sequence. For example, the nucleotides in the third sequence is represented as ‘GA’. In 

that specific sequence, there is always a G instead of any other nucleotides. However, if the sequence demands a change (or 

mutates), it can only change with an A in that sequence.  

 

Existing computational approaches such as consensus sequence or position weight matrix were 

used for observing TFBS. But these methodologies are not generally used to predict TFBS or 

to classify sequences using binding sites (or motifs) (Yue & Wang, 2018). In bioinformatics 

one can distinguish between two separate problems regarding DNA binding motifs. One, 

searching for additional members of a known motifs (site search problem). Two, discovering 

novel DNA binding motifs in collection of functionally related sequence (sequence motif 

discovery; Eril & O’Niel, 2009). Many of the methods used rely on PSFM and consensus 

sequence. However, few authors used the deep learning approaches. Deep learning is 

appropriate for sequence motif discovery because it assumes that a set of sequences share a 

binding motif for functional reasons.  

2.6.2 Motif Mining using Deep learning. 
 

In this section, we briefly summarise the existing deep learning models that have been trained 

on active motifs to check the reliability to identify novel motifs.  
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In recent years, deep learning has achieved great success in various application domains in 

identifying spatial features. This makes researchers attempt to identify motifs using deep 

learning methodologies. Deep learning approaches have outperformed other methodologies in 

predicting gene expressions (Yue & Wang, 2018; Beer & Tavazoie, 2004). 

 

There are three main types of deep learning frameworks that are used in motif mining. 

However, we will only discuss two main types that have proven to be successful in novel motif 

identification and the ones that I use in this project. These are Convolutional Neural network 

(CNN) and a Hybrid (CNN + LSTM) model which is a combination of CNN with long-short 

term memory model (LSTM). 

 

In 2015, DeepBind (Alipanahi et al, 2015) is the first attempt to identity DNA binding sites 

(motifs), having been trained on balanced dataset high throughput raw DNA sequences 

comprising of motifs as active and inactive reference sequnces using a CNN. The aim of the 

DeepBind model was to identify damaging mutations in the rare genetic variants. The 

sequences have varying length (14-101 nucleotides) and a binding score are binary class labels. 

The models are trained on a balanced dataset comprising of two classes. The sequences with a 

class label 1 comprise of a TFBS and the sequences with a class label 0 do not have a TFBS. 

The reference sequences extracted specifically belong to a localised region. The DeepBind 

computes the probability if sequences of varying length has a TFBS. In the presence of a TFBS, 

the model predicts the class as 1. The models were evaluated on its ability to characterize DNA-

binding protein.  This model has three layers. A convolutional layer, a pooling layer, and a 

fully connected layer. This model acted like a precedent for deep learning in motif mining and 

provides a basic framework for subsequent models.  

 

In 2017, DeepSNR (Salekin & Zhang, 2017) model was trained on a balanced dataset with 

DNA sequences of length 100 which are known to contain TFBS. The sequences comprising 

of TFBS are labelled as 1 and random DNA sequences with no TFBS as 0. The final output of 

the network is a binary label and the associated probability of whether a given sequences 

comprises of a TFBS (label = 1) or not (label 0). In other words, the model identifies a single 

nucleotide in each sequence that could be a TFBS. The sequences used were fixed length of 

100. The DeepSNR model was able to identify transcription factor binding location at the level 

of a single nucleotide. With the basic structure of DeepBind, DeepSNR includes a 

deconvolution network which reduces the size of the activation. The model performs with a 

precision and recall of 87% and 77%, significantly outperforming motif search-based algorithm 

until then.  

 

2016 was the first time when DanQ (Quang & Xie, 201), a CNN + RNN model was 

implemented in motif mining. The DanQ model attempts to identify presence of a motif that 

affect the regions around a gene. Each input sequence is of length 1000 nucleotides. Although 

the model uses the same architecture from DeepBind, it does not adopt training the model on 

variable length sequences. It uses fixed length sequences of size 1000 and a balanced dataset 

with the sequences comprising of motifs labelled as 1 and sequences with no motifs are labelled 

as 0. This model uses a CNN with bidirectional LSTM. The first layer of the DanQ aimed to 

scan the position of the motif using a convolutional layer, max pooling layer followed by 

LSTM layer. The advantage of this combined model was that it could identify and capture the 

long-term dependencies between sequence features by learning the features extracted from the 

convolutional layer. The training set of the DanQ model is same as the DeepBind model. The 

test set of the DanQ model is the same as the DeepBind model. Statistically comparing both 
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model predictions return a high correlation. The DanQ model achieved around 50% in the area 

under precision-recall curve.  

 

In 2017, BiRen (Yang & Liu, 2017) built a hybrid architecture to predict promotor regions 

using only DNA sequences. The model tries to learn common promotor patterns based on the 

structure of the DNA across species to predict promoter sequences in humans and mouse as a 

binary label. The BiRen model uses high throughput sequences. The high throughout sequences 

enables the TF bind with the sequences. It was observed that hybrid model’s bidirectional RNN 

in this case performs better on longer sequences. The model demonstrates excellent accuracy 

of 95% in predicting promoters in the humans and mouse DNA sequences. 

 

*** 
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3. Research Question 
 

Having established the successful performance of the deep learning models in identifying 

mutations, we set up the research questions.  

 

RQ 1: Determine the efficiency with which active motifs identify active sequences that 

comprise of damage causing mutations. 

 

RQ 2: Are the prediction probability of the damage causing mutations as identified by the deep 

learning model directly proportional to the known effect size of mutations as determined by 

the standard expression quantitative trait loci (eQTL) framework. 

 

To benchmark the model, I use Genotype tissue expression (GTEx) and Project MinE datasets. 

GTEx data consists of mutations that are known to disrupt transcription at the mRNA level. 

These mutations are identified using expression quantitative trait loci (eQTL) framework which 

is used to identify the effect of a mutation at the mRNA level. Similarly, we also test our model 

on the Project MinE that is a genome sequencing data set which consists of all mutations as 

observed in ALS patients and controls regardless of whether they disrupt TSBS or other 

functional motifs. Finally, I compare the model predicted probability with scores that represent 

the known effect of such mutations. 
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4. Structure of thesis 

 
In the upcoming sections, we will first conduct the preliminary study (Section 5). We will 

elaborately discuss the process of preparing the dataset (Section 5.2) that is used to classify 

active and inactive reference sequences based on the contents of nucleotide using a linear 

regression model (Section 5.3). We also implement two machine learning models (Section 5.4) 

to evaluate and compare the performance of machine learning and linear regression model. 

 

Next, in Section 6 I discuss the need for a deep learning model (Section 6.1). In Section 6.2 

‘Models trained on blood’ we discuss the efficiency of deep learning models on blood 

lymphoblastoid. Lymphoblastoid are white blood cells. Mutations in lymphoblastoid are 

known to effect transcription. In Section 6.3, we train the models on a more efficient 

information. We train the models on transcription start site (TSS) in lymphoblastoid. TSS 

regions are where the process of transcription is initiated. Therefore, mutations in the TSS 

regions have the strongest effect and thus should provide robust information for classification. 

We compare the performance of the model in section 6.2 and 6.3. Having determined the 

efficiency of the model in identifying mutations that effect gene expression, we train my model 

on non-coding sequences from the lower motor neuron to predict mutations that cause ALS. 

 

In the Result (Section 7), we compare all the models and infer which of the proposed models 

is better predicting motifs. In Discussion (Section 8), we compare the CNN and hybrid model 

to evaluate their model performance. Towards the end in Further Work (Section 9) we put 

forward a novel expectation pooling framework and other improvements that could be made in 

my model architecture that can be used to improve my model performance and then we 

conclude (Section 10) with the final take away points. 

 

 

 

 

 

 

 

 

 

*** 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



11 | P a g e  
 

5. Preliminary Study 
 

5.1 Introduction 

 

In this section, we will first discuss about preparing the dataset to conduct our preliminary 

study. Next, we will implement a logistic regression model and attempt to classify DNA 

sequences based on the proportion of nucleotides. Finally, we will implement a naïve machine 

learning (ML) model to check its reliability in classifying active and inactive DNA sequences 

based on the content of nucleotide.  

 

5.2 Dataset. 
 

A typical dataset in bioinformatics comprises of a chromosome number (chrom), chromosome 

start position (chromStart), chromosome end position (chromEnd) and the corresponding 

strand information (positive or negative). In our case, this information comprises non-coding 

DNA sequences of active regions in the lymphoblastoid (Figure 5). Lymphoblastoid are 

immature white blood cells in the spinal cord. The R package GenomicRanges (Lawrence et 

al, 2013) helps us extract the fixed size DNA sequences using the chromosome start and end 

position. This gives us our active sequences. Therefore, we label these active sequences as 1.  

 

 

 

 

 

 

 

 

 
Figure 5. The raw file used to extract active reference sequences: Each row consists of a chromosome start and end 

position which comprise sequences of width 1000. Each of the selected regions comprise of active motifs in non-coding 

DNA sequences of the lymphoblastoid.  

 

A similar approach is used to extract inactive sequences. In my project, the inactive sequences 

are extracted from the human reference genome 

(Homo_sapiens.GRCh37.75.gtf.gz; ftp://ftp.ensembl.org/pub/release-

75/gtf/homo_sapiens/Homo_sapiens.GRCh37.75.gtf.gz). The human reference genome 

consists a record of sequences as observed in an average human. The inactive sequences are 

randomly extracted fixed length DNA sequences from the human reference genome. Thus, I 

label these inactive sequences as 0. Thus, we have a balanced dataset with a total of 500 active 

and inactive reference sequences (Figure 6). 

 

Having extracted out DNA sequences, we check the average proportion of nucleotides A, C, G 

and T in both the active and inactive reference sequences. In Table 1, we see that the proportion 

of CG content is higher in active sequences as compared to the inactive sequences. The higher 

CG content is a characteristic generally observed when sequences are extracted from the active 

regions. However, we expect the binary machine learning model to classify active and inactive 

DNA sequences based on this bias in the CG content. 

 

 

 

ftp://ftp.ensembl.org/pub/release-75/gtf/homo_sapiens/Homo_sapiens.GRCh37.75.gtf.gz
ftp://ftp.ensembl.org/pub/release-75/gtf/homo_sapiens/Homo_sapiens.GRCh37.75.gtf.gz
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 Figure 6. A sample representation of the training set: The training set comprises of active and inactive reference 

sequences extracted from the human reference genome. The active sequences are represented as 1 and some of the active 

sequences comprise of active motifs. 

 

We further also compare the root mean square error (RMSE) to check the discrepancy in the 

data. RMSE is used to find the difference between the actual and predicted value. In our case 

we assume that the actual values are positive reference sequences and the predicted value as 

inactive reference sequences. We find that the base composition of RMSE measured between 

the active and inactive sequences is 0.0727. This means that bias among the active and inactive 

DNA sequences in very high.  

 
Class A C G T 

Active -

Lymphoblastoid 

 

0.2266 

 

0.3466 

 

0.3066 

 

0.1200 

Inactive – Human 

reference genome 

 

0.2715 

 

0.1945 

 

0.1950 

 

0.2725 

  
Table 1: Proportion of nucleotides in active and inactive reference sequences: An imbalance in the proportion of 

nucleotides is seen in active reference sequences. This CG bias is mostly seen in active regions.  
 

5.3 Machine Learning 
 

5.3.1 Encoding sequences 

 

Before we directly feed the raw DNA sequences to the machine learning models, we first 

convert these sequences using encoding to make the data understandable for the model. An 

efficient machine learning models prefers its input variable to be numeric matrix. Therefore, 

the DNA sequences need to be transformed to convert these nucleotides into a matrix.  

 

We choose one-hot encoding which is a representation of categorical variables as a matrix of 

numerical values. Each DNA sequence consists a combination of nucleotides represented as 

A, C, T and G. Each nucleotide is encoded as a vector of binary values [1, 0, 0, 0], [0, 1, 0, 0], 

[0, 0, 1, 0] and [0, 0, 0, 1]. The encoded nucleotides are then stacked to create a matrix (Zhou 

et al., 2019). Thus, each sequence is represented as a combination of these encoded nucleotides. 

For example, a sequence ‘AATGC’ would be encoded as [[1, 0, 0, 0] [0, 1, 0, 0] [0, 0, 1, 0] [0, 

0, 0, 1] [0, 1, 0, 0]]. Like encoding sequences, we one hot encode the labels 0 as [1, 0] and 1 as 

[0, 1]. that differentiate our active and inactive reference sequences. Therefore, all the training 

input sequences are matrix of binary vectors. 

 

Sequences 

 

Label 

TGGTT. . . GCATT 
 

1 

CCCAC. . . ACTTT 
 

1 

CCACT. . . GCCAA 
 

1 

GGTGC. . . CTTTC 
 

0 

ACAAG. . . CCTGC 
 

0 

GAGGT. . .CAGGG 
 

0 
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5.3.2 Model Architectures 

 

Deep learning is a subset of machine learning that comprise of multi-layered deep neural 

networks and rely on large complex datasets. A deep learning model trains on a large dataset 

to find a structure in the given data which is used to make the prediction by the models. The 

models are then validated on known results to check the efficiency of the model. Deep learning 

in motif mining has seen much success in identifying novel motifs as discussed in section 

(Section 2.6.2).  

 

In this section, we build two (CNN, CNN+LSTM) deep learning model architectures and train 

them on active sequences from the lymphoblastoid and inactive sequences which are randomly 

sampled from across the human reference genome. The successful performance of the model 

is established when the model can classify active sequence (labelled as 1) from the inactive 

sequence (labelled as 0). 

 

Convolutional Neural Network (CNN) 

 

The proposed CNN to identify sequences comprising motif is a sequential model that comprises 

of two one-dimensional convolutional, one max-pooling layer followed by two dense layers 

(Figure 7). The CNN layer acts as feature extractor that transforms input DNA sequence into 

multidimensional feature representation. Each CNN layer comprises of 32 filters with kernel 

size of 64 and input dimension of (150, 4). The max pool layer of size 5 aggregates the extracted 

features from the convolutional layers. The aggregated features are flattened and then passed 

to the dense layers which will perform matrix multiplication resulting in weights that can be 

trained and updated.  

 
 

Figure 7. Architecture of convolutional neural network: Block diagram representing the architecture of the CNN. 

 



14 | P a g e  
 

Hybrid (CNN + LSTM) Model 

 
Like CNN, the hybrid model also inputs one hot encoded sequences of length 150 bp and 

consisting of all nucleotides. The CNN layer acts as feature extractor that transforms input 

DNA sequence into multidimensional feature representation (Figure 8). Each CNN layer 

comprises of 32 filters with kernel size of 64 and input dimension of (150, 4). The max pool 

layer with pool size 5 aggregates the extracted features from the convolutional layers. The 

aggregated features are passed to layer with 50 units, a recurrent drop out of 1% and an 

activation function of rectified linear unit (ReLU). ReLU returns 0 if it receives any negative 

input and a positive value greater than 0 for any positive value. On longer sequences, ReLU 

works better because of its linear learning as a part of its function. The derived features are 

further passed to dense layers which return a predicted class label (0= inactive reference 

sequence/ no motif, 1 = active reference sequence/ presence of motif) 

 

 
 

Figure 8. Architecture of the hybrid (CNN + LSTM) model: Block diagram representing architecture of the hybrid (CNN 

+ LSTM) model. 
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Model Compilation 

 

We compile the model with the loss function of binary cross entropy and the optimizer ‘adam’. 

The adaptive movement estimation (adam) computes the adaptive learning rates for each 

parameter. Binary cross entropy is the measure of difference between two probability 

distributions for predicting class 1. A cross entropy value of 0 is a perfect score. 

 

5.3.3 Training model. 

 

Except the differing architecture of the models, the other steps involved remain the same for 

both models. With the balanced dataset of size 500. We now split the data into 70% and 30% 

to train and test out models. We train my model on the 70% of the data for 50 epochs with a 

validation split of 10% to include validation set. The validation set is used to select the best 

performing algorithm. Whereas the 30% test set is used to estimate the generalization error of 

these models. Finally, we use a confusion matrix to assess the model performance.  
 

5.3.4 Model Performance 

 

In the Figure 9 (A) and (B), we see that both the models have a high accuracy in classifying 

sequences with active motifs in lymphoblastoid from the inactive human reference sequences. 

The accuracy of the CNN model on the test set is 92.44% with validation loss of 0.055. 

Validation loss returns a value that determines how poorly or well a model behaves after each 

iteration. Similarly, the accuracy of Hybrid model on test set is 99.16 and a test set loss of 0.02.  

 

Comparing the loss of both models, we can infer that both the models show a learning curve. 

We see that the training and validation loss are like each other with the training loss greater 

than test set loss with reasonable oscillation. The higher accuracy may be because of the bias 

in the CG content which is a characteristic of sequences extracted from active regions.  

 

We evaluate the performance of the models using a confusion matrix to derive the following 

performance metrics: error rate, sensitivity, precision, F1, Mathew correlation coefficient.  The 

error rate is calculated as the number of all incorrect predictions divided by the total number 

of datasets. The closer the value is to 0, the better the model performance. Sensitivity is also 

known as true positive rate which is defined as the number of correct positive predictions 

divided by the total number of positives in the dataset. Precision is defined as the number of 

true positives divided by the number of true positives plus the number of false positive. F1 

score is the harmonic mean of precision and recall.  

 

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 =
False Positive +  False Negative

True +  False
 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
True Positive

True Positive +  False Negative
 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
True Positive

True Positive +  False Positive
 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 (Precision) (Recall)

Precision +  Recall
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Figure 9. Performance of CNN (A) and hybrid (B): Boxes (A) and (B) represent the performance of the CNN and hybrid 

model. Both the models perform efficiently in classifying active and inactive reference sequences based on the contents of 

nucleotide. Each box shows the model accuracy, model loss and the resulting confusion matrix corresponding to each of  

CNN and hybrid. 
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
True Positive

True Positive +  False Negative
 

 

𝑀𝑎𝑡ℎ𝑒𝑤 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
(TP. TN) −  (FP. FN) 

√(TP +  FP) (TP +  FN) (TN + FN)(TN +  FN)
 

 

The CNN model performs with test error rate of 0.08. The sensitivity of the model is 0.395 and 

the precision is 0.888. The error rate of the Hybrid model is 0.05. The sensitivity of the model 

0.94 and a precision of 0.888. These metrics show that the deep learning models are efficient 

in classifying active and inactive reference sequences based on the CG content in the proportion 

of nucleotides. 

 

5.4 Summary 
 

In summary, we attempt to classify the active and inactive reference DNA sequences based on 

the proportion of nucleotides. We implement neural networks that could classify such 

sequences. We see a high-performance accuracy by both the CNN and hybrid. This is because 

of the characteristic associated active DNA sequences extracted from active regions, the CG 

bias. Therefore, any simple deep learning model that attains a high accuracy is because of the 

biased CG content within the active sequences. Thus, to build a more efficient deep learning 

model, we must overcome the CG bias. To do so, we normalize the contents in both active and 

inactive DNA sequences such that the proportion of the nucleotides remain consistent. This is 

a significant step so that we build a model that rather learns the complexity associated with the 

active regions rather than classifying based on disproportional content of nucleotides. 

Therefore, the resulting dataset after normalization should consist of same proportion of 

nucleotides in both the active and inactive reference sequences. 

 

6. Deep Learning 
 

6.1 Introduction 
 

In this section, we build my two (CNN, CNN+LSTM) deep learning model architectures and 

train them on the sequences intrinsic to three different regions (a) Lymphoblastoid, (b) 

Transcription start site and (c) Lower motor neuron. To validate and benchmark my model, I 

test the models on GTEx dataset that comprise of the significant mutations as identified by the 

standard eQTL framework. Similarly, we identify the efficiency of these models to predict ALS 

mutations from the known true positives in the Project MinE dataset. 

 

This section is divided into 2 parts: (a) Blood Data (b) lower motor neuron. In the first part, we 

train our model architectures on the data related to blood. We train our models on DNA 

sequences from the blood lymphoblastoid and regions around transcription start site within the 

lymphoblastoid. We then validate our models on the GTEx and MinE dataset to determine the 

efficiency of the model in identifying mutations. In the second part however, we train my model 

on DNA sequences from an organ, the lower motor neuron. Similarly, we validate the 

performance of the lower motor neuron model only on the MinE validation dataset.  

 

To test the performance of the models trained on blood I use two datasets. First, expression 

quantitative trait loci (eQTL) based Genotype-tissue expression (GTEx; Londsale et al, 2013) 

project. It is a tissue database collected across 1000 individuals to study the relationship 
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between genetic variation and gene expression in human tissue (Lonsdale et al, 2013). The 

eQTL framework offers a powerful approach to explain the genetic components underlying 

altered gene expression. Studies primarily in blood, liver, skin, and brain indicate that eQTLs 

are common in humans. 

 

Second, we use a database collected from ALS patients. Project MinE (Project MinE ALS 

Sequencing consortium, 2018) is a database consisting of single nucleotide motifs as observed 

in ALS patients. Most of the mutations in MinE (Project MinE ALS Sequencing consortium., 

2018) do not cause ALS and a small number result in damaging motif disruptions. This 

database was created to understand the genetic basis of ALS. MinE database aims to analyse 

the DNA of at least 15,000 ALS patients and 7,500 controls.  

 

To benchmark the models, we compare the size of the mutation as predicted by the models 

with Project MinE. We use phred scores from the Combined Annotation -Dependent Depletion 

(CADD; Rentzsch et al, 2019). CADD scores rank single nucleotide mutations throughout the 

human reference genome. Phred scores range from 0 to 50. Phred scores are normalised scores 

which are based on the genome-wide distribution of scores given to ALS mutation across 

species. For example, a phred score of 10 or greater indicates that such a mutation in the top 

10% of all possible mutations reference genome. A score of greater than 20 indicates that such 

a mutation is in the top 1% of all possible mutations in the reference genome. 

 

Similarly, to compare my model performance on GTEx, we use the effect size derived using 

the standard eQTL framework. Effect size is defined as the slope of the linear regression and 

is computed as the effect of the mutating Alt nucleotide relative to Ref nucleotide in the human 

reference genome. Effect size is computed in a normalised space where magnitude has no direct 

biological interpretation. Effect size ranges from -3 to 3. The mutations having an effect size 

greater than -1 and 1 are supposed to have stronger effect. 

 

6.2 Part 1: Models on blood lymphoblastoid 
 

The upcoming deep learning models in Part 1 (Section 6.2) and (Section 6.3) train on non-

coding DNA sequences from white blood cells (lymphoblastoid) and on transcription start site 

region (where mutations have significant effect) in white blood cells. We train the models on 

large dataset comprising of active DNA sequences from active regions (such as 

lymphoblastoid, TSS and lower motor neuron) and inactive reference sequences extracted from 

the human reference genome to check the validity of the model in predicting mutation that 

disrupt transcription thereby altering gene expression using GTEx and its validity in predicting 

mutations that also disrupt transcription leading to disruption of TFBS causing ALS using 

Project MinE. We expect to see that the models trained on blood should be better able to 

classify GTEx mutations than MinE. The objective of the training set for the model is to learn 

what it takes to classify an active sequence from an inactive sequence. Having learnt the 

differences, we check the model if its learning is sufficient to identify active GTEx sequences 

as observed real time. 

 

The idea of the training set in our case is that not all active reference sequences have motifs 

within them. Some of the active sequences might have motifs and some might not. However, 

the regions used to extract the training active reference sequences are known to comprise of 

motifs. The general idea is that we are trying to implement a model which learns the presence 

of a motif among long sequences (which is usually the case in our bodies). Having learnt the 

presence of a motif based on the structure of sequences, how efficiently can our models identify 
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the real motifs in GTEx and MinE. The objective of the upcoming models is to learn the motifs 

in non-coding DNA sequences in blood. Having learnt the motifs, the efficiency of the models 

will be established on their ability to identify active sequences from GTEx and MinE. We 

expect to see that the models identify more GTEx mutations that MinE mutations. This is 

because, the mutations in blood rather disrupt the process of transcription than break the TF 

and their TFBS. The idea hear for the model is to learn the amount of activation it takes to 

classify active sequences from the inactive sequences in blood. Having learnt the activation 

required, we establish the model efficiency in identifying active sequences from GTEx and 

MinE. However, towards the end of this section we see that the GTEx and MinE sequences 

show some subtle effect due to which my models fail to identify active sequences thereby 

giving us a low model performance on the test set. 

 

6.2.1 Training Set 

 

In Section 2.6.2 we see that the models have high classification accuracy when trained on high 

throughput active reference sequences and random inactive reference sequences from the 

human reference genome. Therefore, the training set that we use also comprises of active and 

inactive reference sequences. The active sequences are high throughput Assay for Transposase-

Accessible Chromatin (ATAC-sez; Buenrostro et al, 2015) sequences from active 

lymphoblastoid. There is a difference between active and inactive reference sequences. The 

active ATAC sequences are loosely bound by DNA. On the other hand, the inactive reference 

sequences are tightly bound by the DNA. The loosely bound active reference sequences let 

large number of TFs bind with DNA. This also means that more motif mutations can be tested. 

On the contrary, the inactive reference sequences allow fewer TFs to bind with DNA and hence 

fewer TFs can bind with DNA allowing fewer motif mutations. In this project we use active 

ATAC sequences corresponding to the active regions (lymphoblastoid, TSS, lower motor 

neuron) and the inactive reference sequences randomly sampled from the human reference 

genome. The active sequences comprise of motifs and the inactive sequences comprise of no 

motifs. The active sequences are labelled 1 and the inactive sequences are labelled 0. 

 
In the section (Section 5.2; Figure 5) we saw a raw file that comprises of regions associated to 

lymphoblastoid. We use a full genome sequencing package such as 

BSGenome.Hsapiens.UCSC.hg19 (Patel & Gorham, 2018) to extract DNA sequences of length 

150. We base the choice of sequence length from section 2.6.3. The successful networks that 

identify motif mutations train their model on sequences of length less than 150. To do so, I use 

an inbuilt function getSeq() from the GenomicRanges (Lawrence et al, 2013) package. The 

getSeq() function extracts the DNA sequence along with the proportion of nucleotide from 

their corresponding start and end position from the raw lymphoblastoid file. This gives us our 

non-coded active DNA sequences. Similarly, we randomly sample inactive reference 

sequences from the human genome ensemble and extract one inactive reference sequence for 

each active reference sequence from the aggregated human reference genome ensemble along 

with their proportion of nucleotides. Doing so gives us our inactive sequences. 

 
Normalising Training Set 

 

I find the mean squared difference among the same nucleotide frequency of the active and 

inactive DNA sequences and subsequently calculate the root of mean square difference. For 

example, I find the mean square difference between the number of nucleotide (A, C, G, T) from 

a single active and inactive reference sequence (Aactive-Ainactive, Cactive-Cinactive, Gactive-Ginactive, 

Tactive-Tinactive). We then find the mean across these differences (error = mean (Adiff, Cdiff, Gdiff, 
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Tdiff) * 2). This will result mean square error. Finally, calculating the root of the mean difference 

(√error) should give us a value that should be less than 0.02. This is an iterative process until 

the RMSE among all pairs of active and inactive DNA sequences is less than 0.02. 

 

 Having such low RMSE ensures that there is no bias among the proportion of nucleotides for 

a pair of active and inactive reference sequence. This means that the number of A, C, G and T 

in both the active and inactive sequences will be the same. This process makes sure that the 

proportion of nucleotides always stay consistent in active and inactive sequence. Therefore, we 

have a balanced dataset in which the RMSE between each pair of active and inactive sequences 

is less than 0.02. This process remains the same for generating sequences for the data set in 

upcoming sections (Section 6.3 and Section 6.4). 

 

As a step for pre-processing data, some of the inactive reference sequences comprise of 

‘NNNNN…’ and these are mainly seen in the human reference genome from which we extract 

normalized inactive reference sequences. In the human reference genome ‘NNNNN…’ 

represents that it is not yet known which combination of nucleotides occur in the area. To 

always maintain a balanced dataset, we remove the inactive reference sequences comprising of 

NNNNN...’s and their corresponding active reference sequence. Therefore, to train my models 

on lymphoblastoid, we have a balanced training set of size 140,865 active and inactive 

reference sequences extracted from the lymphoblastoid. These sequences are further one-hot-

encoded as in Section 5.4.1 to train the model. 

 

6.2.2 Test Set 
 

A raw file with motifs. 

 

A test set with active motifs that destroy the TFBS looks as in Figure 10. A text file with active 

motifs comprises of the chromosome (Chrom) to which the motif belongs, the start position 

(chromStart) and the end position (chromEnd) of the motif. It also consists of a reference (Ref) 

and alternative (Alt) column. The Ref column shows actual motif as generally observed. The 

Alt column shows the mutation leads to destruction of TFBS.  

 

The general concept of testing the model is as follow. For example, in the first row of the Figure 

(10. (B)), we see that the actual motif ‘G’ leads to a normal transcription and translation 

process. Other mutations such as ‘C’ or ‘T’ might not be destructive. However, if the mutations 

cause ‘G’ to be replaced by ‘A’ such a mutation is known disrupt the TF of ‘G’ which disrupts 

the TFBS leading to irregular transcription thereby causing aberrant protein regulation in the 

nearby region leading to the onset of ALS. 

 

 

 

 

 

 

 

 

 
Figure 10. The raw file comprising of active motifs in (A) GTEx and (B) Project MinE: I use these files to generate the 

test set on which I evaluate the performance of the models trained on blood cells. 

 

  (A)   GTEx      (B) Project MinE 
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To check this concept, we need to generate the reference and altered sequences from their 

designated chromosome positions using the motifs from both files GTEx and MinE. Once we 

train and proceed to test the efficiency of our model, we predict the labels and their 

corresponding probabilities for both the reference and the altered sequences. To determine the 

efficiency of the model we look for reference sequence with a prediction 1 and their altered (or 

mutated) sequence with a prediction of 0. Subsequently, finding the absolute difference 

between the probability of prediction determines the size of mutation or the difference in 

change as predicted by the deep learning models (size of mutation = [Preference – Paltered]). We 

hypothesize if the mutations with high effect are directly proportional to the size of mutation. 

The mutations which show such direct proportionality could be disease causing motif 

mutations. 

 

Generate reference and altered test sequences. 

 

To generate the reference and altered test sequences, we only consider single nucleotide 

mutation. First, we delete the rows from both Ref and Alt with more than 1 nucleotide. The 

idea is to first generate reference sequences and then replace the 75th nucleotide (one in the 

centre) with the nucleotide in Alt (Figure 10).  

 

We use the BSGenome.Hsapiens.UCSC.hg19 full genome sequencing package because it 

provides inbuilt functions for DNA sequence manipulation and generating sequences. We use 

start() and end() to generate DNA sequences using the reference nucleotide and their 

corresponding start and end position. Performing start(Ref) – 74’ and ‘end(Ref) + 74 adds 

nucleotides from human reference genome on either side of the reference nucleotide. This gives 

us our active reference sequences. Subsequently from the same package we use the function 

replaceAt(pos, IRanges(75,75), Alt.list) to replace the 75th nucleotide in the reference sequence 

with the nucleotide in Alt.list. Doing this gives us our altered or mutated sequences (Figure 

11).  

 

The objective of the models is to predict the associated class (0= inactive/ 1= active) and the 

probability of the class prediction for both the reference and altered sequences. Since the 

reference sequences comprise of true positives, we look for such sequences in GTEx and MinE 

whose reference class label is predicted as 1 and the altered class label is predicted 0. This will 

lead us to the possible mutating sequences. Subsequently, we find the absolute difference 

between the probabilities of the associated class prediction for reference and altered sequences 

like mentioned in the above section. The resulting difference between the probabilities 

describes the size of mutation (size of mutation = [Preference – Paltered]). Finally, we compare this 

size of mutation with the effect size from GTEx and phred score from MinE to benchmark the 

model predictions. We follow the same steps for both the GTEx and MinE data. This gives us 

a total of 17,879 GTEx sequences and 16,788 project MinE sequences. Thus, the total size of 

the test set comprising of GTEx and MinE data is 34,667. The test set remains the same for the 

models trained on blood data.  

 

Comparing the model performance with existing scores 
 

To derive the scores from the same regions that we derive the test sequences, we use the 

mathematical intersect function. We intersect the raw file comprising of motifs with the text 

file comprising of scores, using bedtools intersect (Quinlan & Hall, 2010). Bedtools is a 

package in Linux to perform terminal command operations involving DNA sequences. Using 

bedtools intersect gives the scores corresponding to the chromosome positions which is used 
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derive the test set comprising of reference and altered sequences. Therefore, I have complete 

test set which involves 34,667 samples involving 17,879 GTEx and 16,788 MinE sequences 

comprising of known active motifs along with their corresponding effect size (for GTEx) and 

phred score (for MinE). The test set remains the same for both the models trained on blood. 

 

 

 

 

 

 

 

 

 
 

Figure 11. Shows the substring of sequence between 70 – 80 from a total size of 150: The above box (A) represents the 

reference (Ref) and altered nucleotide (Alt).  Box (B) represents the reference sub sequence and its mutated sequences.  

 

 

6.2.3 Model Architectures 

 

The average performance of the model is determined using a training set to establish efficiency 

with which the models classify active sequences from the active regions (lymphoblastoid, TSS, 

lower motor neuron) from the inactive human reference sequences. The successful 

performance of the model is evaluated on the test set in which the model can classify active 

GTEx sequence (labelled as 1) from the active MinE sequence (labelled as 0). 

 

Convolutional neural network 

 

The proposed CNN is a sequential model that comprises of two one-dimensional convolutional 

layer that accepts a single encoded sequence of length 150 and a dimension of 4 (Figure 7). 

The CNN layer acts as feature extractor that transforms input DNA sequence into 

multidimensional feature representation. Each CNN layer comprises of 32 filters with kernel 

size of 64 and input dimension of (150, 4). The max pool layer of size 5 aggregates the extracted 

features from the convolutional layers (Luo & Tu, 2020). The max pooling layer picks a single 

feature in each patch of a single encoded sequence. The aggregated features flattened and then 

passed to the dense layers with which perform matrix multiplication resulting in weights that 

can be trained and updated. 

 

We use 5-fold cross validation to evaluate the performance of the model on the complete 

training set. It provides a robust estimate of the performance of a model on unseen data. The 

cross-validation algorithm randomly splits the training data in 5 subsets and takes turns to train 

the model on all subsets except the one which is held out. This process repeats until all subsets 

are given an opportunity to be a held-out validation set. The performance measure is averaged 

across all models that are created. The models are compiled the same way as in section 5.4.2. 

 

I train the CNN model architecture on 140,865 active and inactive reference sequences. The 

RMSE between the active and inactive reference sequences is less than 2%. The average 

accuracy across the 5 folds for the CNN model on the training set is 69.27% with a high loss 

of 0.63. However, the model performs consistently in every fold (Figure 12. (A)). 

 

 

(A) 
Ref          Alt 
G            A  
G         A 
C           T 
G            A 
G            C 
 

(B) 
Reference Sequences: 
"CCGCTGAGAGG" "AAATCGGCCCT" "CGCCGCGCCAC" "GAGGAGGATGG" 
"GGATGGCGGGG"   
 
Mutated Sequences: 
"CCGCTAAGAGG" "AAATCAGCCCT" "CGCCGTGCCAC" "GAGGAAGATGG" 
"GGATGCCGGGG"   
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Hybrid (CNN + LSTM) Model 
 

Like the CNN, the hybrid model also inputs encoded sequences of length 150 and consisting 

of all nucleotides (Figure 8). The two CNN layers act as feature extractor that transforms input 

DNA sequence into multidimensional feature representation. Each CNN layer comprises of 32 

filters with kernel size of 64 and input dimension of (150, 4). The max pool layer of size 5 

aggregates the extracted features from the convolutional layers (Luo & Tu, 2020). The max 

pooling layer of size 5 picks a single feature in each patch of a single encoded sequence. These 

extracted features then move to LSTM layer with 50 units, a recurrent drop out of 1% and an 

activation function of rectified linear unit (ReLU). On longer sequences, ReLU works better 

because of its linear partly linear function. The derived features are further passed to dense 

layers which return a predicted class label (0= inactive reference sequence/ no motif, 1 = active 

reference sequence/ presence of motif). Like the CNN, I use 5-fold cross validation to evaluate 

the model and will use the aggregated model on the test set. Finally, the models compile in the 

same way as in section 5.4.2. 

 

The hybrid model performs with an accuracy of 75.25% with a loss of 0.17 on the training set 

(Figure 12. (B)). Although the hybrid model shows high loss for the accuracy, in comparison 

to the CNN however, the hybrid model might be marginally better. However, the high accuracy 

of the hybrid model could be due to the LSTM layer. Overall, the deep learning models perform 

well in classifying active and inactive sequences on the lymphoblastoid training set. However, 

it is yet to be seen if the models learning from lymphoblastoid is sufficient to identify real time 

active sequences from GTEx.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12. Performance of the CNN and Hybrid model on training data: The box (A) represents the performance of the 

CNN model. The CNN attains an average accuracy of 69.27%. The box (B) represents the average performance of the 

hybrid model. The hybrid model attains an average accuracy of 75.25% on the lymphoblastoid test data. 

 

6.2.4 Model performance 

 

In this section, we will first talk about the performance of the models on some ML metrics after 

which we will discuss about their performance on the GTEx and MinE data.  

 

To determine the performance of the models we use the following ML metrics: (1) Error Rate 

is the inaccuracy of predicted output values on a categorical data. It can be understood as the 

proportion of cases where the prediction is wrong. (2) Accuracy is the number of correctly 

predicted data points among all the data points. (3) Sensitivity is a measure of the proportion of 

(A) Convolutional Neural Network 
-------------------------------------------------- 

Score per fold. 
------------------------------------------------------------------------ 

> Fold 1 - Loss: 0.24 - Accuracy: 69.140% 
------------------------------------------------------------------------ 

> Fold 2 - Loss: 0.24- Accuracy: 69.183% 
------------------------------------------------------------------------ 

> Fold 3 - Loss: 0.23 - Accuracy: 70.124% 
------------------------------------------------------------------------ 

> Fold 4 - Loss: 0.24- Accuracy: 68.242% 
------------------------------------------------------------------------ 

> Fold 5 - Loss: 0.23 - Accuracy: 69.708% 
------------------------------------------------------------------------ 

Average scores for all folds: 
> Accuracy: 69.279 (+- 0.631) 

> Loss: 0.24 
------------------------------------------------------------------------ 

(B) Hybrid (CNN + LSTM) model 
------------------------------------------------------------------------ 

Score per fold. 
------------------------------------------------------------------------ 

> Fold 1 - Loss: 0.170 - Accuracy: 75.508% 
------------------------------------------------------------------------ 

> Fold 2 - Loss: 0.173 - Accuracy: 74.983% 
------------------------------------------------------------------------ 

> Fold 3 - Loss: 0.174 - Accuracy: 74.890% 
------------------------------------------------------------------------ 

> Fold 4 - Loss: 0.171 - Accuracy: 75.355% 
------------------------------------------------------------------------ 

> Fold 5 - Loss: 0.170 - Accuracy: 75.547% 
------------------------------------------------------------------------ 

Average scores for all folds: 
> Accuracy: 75.257 (+- 0.270) 

> Loss: 0.172 
------------------------------------------------------------------------ 
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actual positive cases that got predicted as positive (or true positive). Sensitivity is also called 

as recall. Higher the sensitivity, better the performance. (4) Specificity is defined as the 

proportion of actual negatives that got predicted as negative (or true negative). Higher the 

specificity, better the performance. (5) Precision is the fraction of relevant instances that were 

retrieved. Higher scores correspond to better performance.  

 

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 =
False Positive +  False Negative

True +  False
 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
True Posiitive + True Negative

True +  False
 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑅𝑒𝑐𝑎𝑙𝑙) =
True Positive

True Positive +  False Negative
 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
True Negative

True Negative +  False Positive
 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
True Positive

True Positive +  False Positive
 

 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
False Positive

True Negative +  False Positive
 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 (Precision) (Recall)

Precision +  Recall
 

 

𝑀𝑎𝑡ℎ𝑒𝑤 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
(TP. TN) −  (FP. FN) 

√(TP +  FP) (TP +  FN) (TN + FN)(TN +  FN)
 

 

(6) F1 score and Matthew correlation coefficient (MCC) are like accuracy but are supposed to 

be more reliable. F1 score is the mean of the precision and recall whereas MCC is typically 

used in machine learning for bioinformatics (Chicco & Jurman, 2020). F1 score reaches its best 

value at 1 and worst value at 0. MCC is defined as the measure of the quality of binary 

classification. An MCC score of 1 indicates a perfect result. A score of 0 is expected for a 

prediction no better than random guess and a score of -1 indicates a total disagreement between 

prediction and observation. (7) Area under curve (AUC) is a measure of the ability of the 

classifier to distinguish between classes. Higher the AUC, the better the performance of the 

model at distinguishing two classes. (8) Receiver operating characteristic curve (ROC) is a 

graph that illustrates the diagnostic capability of a binary classifier at different discrimination 

thresholds. The diagonal in the ROC plot depicts random guess of the model (50%). The 

accuracy of a model is determined looking at the curve running over the random guess. The 

model is said to perform the opposite of what it should if the curve goes under the random 

guess line. 

 

Performance of deep learning models 

 

We determine the efficiency of the model by its accuracy in identifying mutations on true 

positive GTEx labels. The CNN model correctly predicts a total of 1.82% of the mutations on 

test set (size = 34, 667; (Figure 13. (A)). On the other hand, the hybrid model correctly predicts 
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only 1.39% of the mutations on the test set (Figure 13. (B)). Overall, we can see that although 

the models perform well on the training set in classifying active and inactive reference 

seqeunces, it is unable to identify active sequences form the GTEx and MinE. This may be 

because the subtle effect that the GTEx and MinE does not push them to either active or 

inactive. Therefore, the models are predicting the active sequences as inactive. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 
Figure 13. Confusion matrix of the CNN and Hybrid models trained on Lymphoblastoid and tested on GTEx and 

MinE: Boxes (A) and (B) show the confusion matrix. The CNN model was only able to identify 632 out of 17,879 and 603 

out of 16,788 true labels from MinE. The hybrid model seems to perform worse when compared to the CNN, with 484 out of 

17,879 and 384 out of 16,788 true labels from GTEx. 
 

The CNN trained on active (motif) reference sequences and inactive reference sequences was 

able to predict 3.53% of GTEx mutations correctly among a total of 17,879 total GTEx motif. 

This means that the model correctly predicts 3.53% of the active motifs known to disrupt 

transcription in its TFBS thereby effecting gene expression at the mRNA level. The hybrid 

model trained on active and inactive reference sequences was able to predict 2.71% of GTEx 

mutations correctly.  

 
The CNN model performs with an accuracy of 48.5% and an error rate of 0.515 on the test set 

(Figure 14. (B)). The F1 score of the model is 0.065 and the MCC of the model is 0.001. The 

sensitivity of the model is 0.035 and the specificity is 0.96 with a precision of 0.51. The AUC 

of the CNN is 0.4255 (Figure 14. (D)).  The hybrid model performs with an accuracy of 48.7% 

and a high error rate of 0.513 (Figure 14. (A)). The F1 score of the model is 0.052 and the MCC 

of the model is 0.0132. The MCC of the model suggests that the hybrid model infers a bad 

performance. These metrics of the CNN and hybrid model suggest that the model performed 

was poor than a random guess. The sensitivity of the model is 0.027 and the specificity is 0.97 

with a precision of 0.55. The AUC of the hybrid model is 0.4067 (Figure 14. (C)). Although, 

some of the metrics show slightly higher performance than the CNN, the overall performance 

of the hybrid model is bad as compared to the CNN. Therefore, the ML metrics indicate that 

both the hybrid model and CNN trained on lymphoblastoid have a very poor performance in 

classification. 

 

 

 

 

 

 

 

(A) Confusion Matrix of the CNN 
trained on Lymphoblastoid. 

 ACTUAL 

 
 

 

 

PREDICTED 

 GTEx MinE 

 

GTEx 

 

632 

 

 

603 

 

MinE 

 

17247 

 

16185 

 

(B) Confusion Matrix of the hybrid trained 
on Lymphoblastoid 

 ACTUAL 

 

 

 
PREDICTED 

 GTEx MinE 

 

GTEx 

 

485 

 

 

386 
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17394 

 

16402 
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Figure 14. Performance metric of the CNN and hybrid model trained on Lymphoblastoid and tested on GTEx and 

MinE: Boxes (B) and (D) represent the various performance metrics used along with the confusion matrix to evaluate the 

performance of the CNN model trained on lymphoblastoid. The boxes (A) and (C) represent the performance of the hybrid 

model. The models perform worse that a random guess. In other words, the model quite does the opposite of what it should. 

 

Models on Genotype Tissue Expression (GTEx) 

 

The following Figure 15 shows the size of mutation as predicted by the CNN plotted against 

the effect size of the known GTEx mutations. We look if the size of the mutation is directly 

proportional with the effect size. The effect size is derived using the standard eQTL framework. 

In the following plot I look for changes that are greater than -1, 1 and that have a difference in 

change greater than 0.50. The negative sign indicates directionality which we ignore in this 

project. 

 

The CNN model predicts that there are no mutations with the size of 0.75 and greater than -1 

and 1 (Figure 15. (A)). However, there are few mutations which are greater than -1, 1 and 

mutation size of 0.50. The CNN model infers that the most significant mutations have a 

mutation size less than 0.25 on GTEx test data. Importantly, the ones having the strongest effect 

seem to have size of less than 0.10. Therefore, the CNN on GTEx infers that various types of 

mutations can occur with differing size. But the ones with the strongest effect have a size less 

than 0.50. On the contrary, the hybrid model seems to suggest that all mutations have a small 

size (less than 0.50; Figure 15. (B)). However, like the CNN, all the mutations suggested to 

have a very strong effect have the smallest size of less than 0.10. The hybrid model trained on 

lymphoblastoid infers that all mutations have a small mutation size but the ones with the 

strongest effect have an even smaller mutation size. 

(B)Performance of CNN trained on 
Lymphoblastoid. 

Error Rate 0.515 

Accuracy 0.485 

Sensitivity  0.035 

Specificity  0.964 

Precision 0.512 

False Positive Rate 0.036 

F1 Score 0.0655 

Matthew Correlation Coefficient 0.0015 

 
 
 
 

(D) 

 

(A)Performance of hybrid trained on 
Lymphoblastoid. 

Error Rate 0.513 

Accuracy 0.487 

Sensitivity  0.0271 

Specificity 0.977 

Precision 0.556 

False Positive Rate 0.023 

F1 Score 0.05162 

Matthew Correlation 

Coefficient 

0.0132 

 
(C) 
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Figure 15. Comapring the effect size of the as per GTEx to the size of mutation predicted my the CNN and hybrid 

model: (A) The CNN model suggests that although there are some mutations with higher effect and bigger size. Most of the 

high effect mutations have a very small size. (B) The hybrid model suggest that all mutations occure within the size of 0.50. 

The rare mutations are lesser than 0.25 

             

Models on Project MinE 

 
The Figure 16 represents the prediction of the size of mutation from the CNN model plotted 

against phred scores from the CADD file. As discussed in the Section 6.2.2 the mutations with 

a score greater than 10 represents that such mutations are in the 10% of all mutations possible 

within the human reference genome. Scores greater than 20 belong to the top 1% of the 

mutations possible in the reference genome. There are only few mutations with greater size and 

that lie in the top 10% of the mutations possible in the human reference genome. The model 

infers that most of the mutations that are in the top 1% or even more rare have a size less than 

0.50. However, the CNN predicts that most significant mutation within the range of phred score 

10 to 40 are within the mutation size of less than 0.25. 

 

Unlike the CNN on MinE, the hybrid model seems to suggest that all possible mutations in the 

top 10 % lie in a range of 0.25 – 0.50. The other mutations that lie in the top 1% of all possible 

mutations in the human reference genome have a size of less than 0.25. Therefore, the hybrid 

model trained on lymphoblastoid infers that, all the mutations possible within the human 

reference genome including the ones possibly disrupting the TFBS have a size less than 0.50. 

But the mutations with the strongest effect have a very low size less than 0.25. We see a similar 

phenomenon of hybrid model on MinE data as on GTEx. However, the hybrid model on project 

MinE data suggests some significant mutations in the top 10% and a couple in the top 1% 

having relatively a bigger size of mutations, but less than 0.50. However, the hybrid model 

seems to suggest like CNN that most mutations having the strongest effect have the size of less 

than 0.25 on the MinE test data. 

 

 

 

 

 

 

 

 

 

(A) 

 

(B) 
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Figure 16. Comparing the CADD based phred scores to the size of the mutation as predicted by the CNN and Hybrid 

model. (A) Similar to GTEx the hybrid model suggests that all mutations occur with a size of less than 0.50 with the rare 

mutations less than 0.25. (B) Like on GTEx, the CNN suggests that although there might be some mutations with a bigger 

size and higher effect exist, most of the mutations are less than 0.25   

 

6.2.5 Summary 

 

In this section we train the models on the active motifs and inactive reference sequences from 

lymphoblastoid. we train and test two deep learning models CNN and hybrid (CNN + LSTM).  

  
On GTEx, the deep learning models infer that not all mutations with big effect size have big 

size of mutation. Although there might be some of them, the CNN suggests that most of the 

mutations with higher effect have a very small size of mutation. The hybrid model on the other 

hand infers that all the mutations that happen have small size of mutation and the mutations 

with big effect size have a very small size of mutation. The general inference of both these 

models on GTEx data is that the effect size is inversely proportion to the size of mutation. 

Therefore, based on the performance metrics, we can infer that the deep learning models trained 

on lymphoblastoid does not efficiently identify mutations affecting gene expression due to the 

very low accuracy. 

 

On project MinE, we also see a similar inference as on GTEx. The CNN model infers that 

mutations happen in all sizes, but the most significant ones (1% or rare) have the smallest size 

of less than 0.25. However, the hybrid model seems to suggest that all the likely ALS mutations 

have a small less of less than 0.50. The ones having the highest effect size (or the mutations 

known to lead to an aberrant regulation of protein) have the lowest size of mutations less than 

0.10. Therefore, the CNN and hybrid model having trained 140,865 and tested on 34,667 active 

and inactive reference sequences in the lymphoblastoid infer than bigger effect of the mutation 

is inversely proportional to the size of mutation. In view with the performance metrics both the 

model architectures trained on lymphoblastoid do not do a good job in identifying mutations 

in GTEx and MinE. 

 

 

 

 

 

 

(B) 

 

(A) 
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6.3 Regions around the transcription start site in lymphoblastoid. 

 
In this section, we zoom in and check if the performance of the models changes if we train the 

models on the regions around the transcription start site within the lymphoblastoid. My idea in 

this section is to train the models on regions where it is known that mutations have the strongest 

effect. These regions are the transcription start site (TSS). Transcription start site regions are 

where the process of transcription is initiated when a certain TF binds with the DNA. Therefore, 

mutations in this region have the strongest effect. Training the deep learning models on the 

DNA sequences from TSS should improve the ability of the model to clearly distinguish the 

GTEx mutations from MinE since the training set comprises of motifs that can effect 

transcription. The test used in the section is the same as in Section (6.2).  

 

6.3.1 Training Set 

 

The raw file TSS_GRCh37.75.10kb.bed.gz comprises of all possible mutations in transcription 

start site throughout the human reference genome. We need to train the model on TSS regions 

in the lymphoblastoid. To do so, we first intersect TSS raw file with the lymphoblastoid raw 

file from the above section using bedtools intersect. Similar as in the above section 6.2.1, we 

use the same process to generate active and inactive reference sequences length 150. RMSE 

between a pair of active and inactive reference sequences is less than 2%. Therefore, to train 

the models on regions around TSS, we have a balanced data set of size of 189,791 active and 

inactive reference sequences extracted from the regions around TSS within the lymphoblastoid. 

These sequences are further one-hot-encoded as in Section 5.4.1 to train the model. 

 

6.3.2 Test Set 

 

The test set is same as the test set for the lymphoblastoid models (Section 6.2.2). The complete 

test set involves 34,667 samples including 17,879 GTEx and 16,788 MinE sequences along 

with their corresponding effect size (for GTEx) and phred score (for MinE). 

 

6.3.3 Model architecture 

 

The model architecture is the same as above (Section 6.2.3; Figure 7). I train both my model 

architectures on 1,89,791 active and inactive reference sequences. The average accuracy across 

the 5 folds for the CNN model is 69.57% with a validation loss of 0.22 on the training set. The 

CNN model performs consistently in every fold (Figure 17. (A)). Similarly, the hybrid model 

also performs with an average accuracy of 75.02% with a validation loss of 0.17 on the training 

set (Figure 17. (B)). Like in lymphoblastoid model, the hybrid model (Figure 8) trained on TSS 

has higher accuracy in the classification than the CNN. However, having trained on TSS both 

the models exhibit high loss in comparison to the model accuracy.  

 

6.3.4 Model performance 

 

The CNN model predicts 920 GTEx true positives on a test set of size 34,667. This means that 

the CNN model correctly identifies 2.65% of the mutations effecting gene expression on the 

complete test set (Figure 18. (B)). The CNN trained on active motif reference sequences and 

inactive reference sequences was able to predict 5.14% of GTEx mutations correctly (Figure 

22. (A)). On the other hand, the hybrid model correctly identifies 1.35% of the mutations 

effecting gene expression (Figure 18. (A)) on the test set. The hybrid model trained on active 



30 | P a g e  
 

motif reference sequences and inactive reference sequences was able to predict 2.63% of GTEx 

mutations correctly within known GTEx motifs in the GTEx file.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 17. Performance of the CNN and Hybrid model on trained on TSS: The box (A) represents the performance of 

the CNN model. The CNN attains an average accuracy of 69.56%. The box (B) represents the average performance of the 

hybrid model. The hybrid model attains an average accuracy of 75.02% on the lymphoblastoid test data. 

 

The CNN model performs with an accuracy of 48.8% and an error rate of 0.511 (Figure 19. 

(B)). The F1 score of the model is 0.093 and the MCC of the model is 0.001. These metrics 

indicate that the CNN model trained on TSS performs very poorly. The sensitivity of the model 

is 0.051 and the specificity is 0.95 with a precision of 0.54. The AUC of the CNN is 0.4226 

(Figure 19. (D)), which is the same as the CNN trained on lymphoblastoid (Figure 14. (D)). 

The hybrid model on the other hand performs with an accuracy of 48.7% and an error rate of 

0.512 (Figure 19. (A)) on the test set. The F1 score of the hybrid model is 0.093 and the MCC 

of the model is 0.019. The sensitivity of the model is 0.026 and the specificity is 0.979 with a 

precision of 0.57. The AUC of the CNN is 0.423 (Figure 19. (C)). These metrics of the CNN 

and hybrid models suggest that my models underperform in predicting mutations that effect 

gene expression.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 18. Performance of the CNN model trained on TSS within Lymphoblastoid and tested on GTEx and MinE: 

Boxes (A) and (B) represent the various performance metrics used along with the confusion matrix to evaluate the 

performance of the CNN model trained on TSS within lymphoblastoid. 

 

 

 

 

 

(A) Convolutional Neural Network 
------------------------------------------------------------------------ 

Score per fold 
------------------------------------------------------------------------ 

> Fold 1 - Loss: 0.227 - Accuracy: 69.469% 
------------------------------------------------------------------------ 

> Fold 2 - Loss: 0.226 - Accuracy: 69.458% 
------------------------------------------------------------------------ 

> Fold 3 - Loss: 0.227 - Accuracy: 69.790% 
------------------------------------------------------------------------ 

> Fold 4 - Loss: 0.227 - Accuracy: 69.756% 
------------------------------------------------------------------------ 

> Fold 5 - Loss: 0.228 - Accuracy: 69.374% 
------------------------------------------------------------------------ 

Average scores for all folds: 
> Accuracy: 69.569 (+- 0.169) 

> Loss: 0.227 

------------------------------------------------------------------------ 

(B) Hybrid (CNN + LSTM) model 
------------------------------------------------------------------------ 

Score per fold 
------------------------------------------------------------------------ 

> Fold 1 - Loss: 0.171 - Accuracy: 75.091% 
------------------------------------------------------------------------ 

> Fold 2 - Loss: 0.174- Accuracy: 75.001% 
------------------------------------------------------------------------ 

> Fold 3 - Loss: 0.172- Accuracy: 75.217% 
------------------------------------------------------------------------ 

> Fold 4 - Loss: 0.171 - Accuracy: 75.175% 
------------------------------------------------------------------------ 

> Fold 5 - Loss: 0.176 - Accuracy: 74.619% 
------------------------------------------------------------------------ 

Average scores for all folds: 
> Accuracy: 75.020 (+- 0.214) 

> Loss: 0.173 
------------------------------------------------------------------------ 

(B) Confusion Matrix of the CNN trained 
on TSS within Lymphoblastoid 
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(B) Confusion Matrix of the hybrid model 
trained on TSS within Lymphoblastoid 
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Models on Genotype Tissue Expression (GTEx)  

 

These results are like the CNN trained on lymphoblastoid (Part A). The CNN model predicts 

that there are no mutations with the size of 0.75 and greater than -1, 1. Unlike the CNN trained 

on lymphoblastoid, there are few mutations which are greater than -1, 1 between the mutation 

size of 0.50 – 0.75 (Figure 20. (B)). This could mean that the newer TSS data provided in some 

ways is improving the model performance. However, the ML metrics say otherwise. The CNN 

model trained on TSS infers that the most significant mutations (greater than -1 and 1) have a 

mutation size less than 0.50 and some mutations with a mutation size less than 0.75 on GTEx 

test data. The ones having strong effect vary in different sizes. But the most significant ones 

are still less than 0.25. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 19.  Performance metric of the CNN and hybrid model trained on Lymphoblastoid and tested on GTEx and 

MinE: Boxes (B) and (D) represent the various performance metrics used along with the confusion matrix to evaluate the 

performance of the CNN model trained on lymphoblastoid. The boxes (A) and (C) represent the performance of the hybrid 

model. The models perform worse that a random guess. In other words, the model does the opposite of what it should. 

 

The (Figure 20. (A)) shows the size of mutation as predicted by the hybrid model plotted 

against the effect size of the known GTEx mutations in the training set. These results are like 

the hybrid trained on lymphoblastoid (Part 1). The hybrid model predicts that all mutations 

have a small size of mutation. But the ones with strongest effect are less than or equal to 0.25. 

There are no mutations with the size of 0.75 and greater than -1 and 1. The hybrid model trained 

on TSS infers that the most significant mutations (greater than -1 and 1) have a mutation size 

less than 0.25 and mostly less than 0.10 on GTEx test data. However, based on the performance 

(B)Performance of CNN trained on TSS within 
Lymphoblastoid. 

Error Rate 0.511 

Accuracy 0.488 

Sensitivity  0.051 

Specificity  0.953 

Precision 0.54 

False Positive Rate 0.047 

F1 Score 0.0931 

Matthew Correlation Coefficient 0.0110 

 
(D) 

 

(A)Performance of hybrid trained on TSS 
within Lymphoblastoid. 

Error Rate 0.512 

Accuracy 0.487 

Sensitivity 0.026 

Specificity  0.979 

Precision 0.578 

False Positive Rate 0.047 

F1 Score 0.0937 

Matthew Correlation 

Coefficient 

0.0197 

 
(C) 
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metrics I can conclude that the model does not perform efficiently in identifying mutations by 

disrupting TF’s and affecting gene expression. 

 

 

 

 

 

 

 

 

 

 

 

 
     

 

Figure 20. Figure 16. Comparing the GTEx effect size with the size of the mutation as predicted by the CNN and 

Hybrid model. (A) Similar to section 6.2 the hybrid model suggests that all mutations occur with a size of less than 0.50 

with the rare mutations less than 0.25. (B) The CNN suggests that although there might be some mutations with a bigger size  

and higher effect exist, most of the mutations are less than 0.25   

 

Models on Project MinE 

 
The Figure 21 represents the prediction of the size of mutation predicted by deep learning 

models plotted against phred scores from the CADD file. CADD consist of scores that are 

assigned to the mutations observed in ALS patients. Mutations with a score greater than 10 

represents that they are in the 10% of all mutations possible in the human reference genome. 

Scores greater than 20 belong to the top 1% of the mutations possible in the reference genome.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 21. Comparing the CADD based phred scores to the size of the mutation as predicted by the CNN and Hybrid 

model. (A) Similar to GTEx the hybrid model suggests that all mutations occur with a size of less than 0.50 with the rare 

mutations less than 0.25. (B) Like on GTEx, the CNN suggests that although there might be some mutations with a bigger 

size and higher effect exist, most of the mutations are less than 0.25   

 

There are only few mutations as predicted by CNN with greater size and that lie in the top 10% 

of the mutations possible in the human reference genome (Figure 21. (B)). Unlike the CNN 

trained on lymphoblastoid, we see quite some mutations with a size of less than 0.75. As the 

size of the mutation decreases, the effect of it seems to increase. However, like the CNN trained 

on lymphoblastoid, most significant mutations causing the highest effect are still less than 0.25.  

 

(B) 

 

(B) 

 
 

(A) 

 

(A) 
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We see no difference in performance of the hybrid model trained on TSS as compared to the 

hybrid model trained on lymphoblastoid (Figure 21. (A)). Like the hybrid model trained on 

lymphoblastoid, the hybrid model trained on TSS predicts that all possible ALS mutations have 

a small size and the ones with higher effect have an even smaller mutation size. Therefore, 

trained on the non-coding DNA sequence comprising of motifs from TSS in lymphoblastoid, 

the hybrid model infers that the most significant and the most insignificant mutations all have 

a size of less than 0.25. Therefore, both models infers that most of the mutations that are rare 

and have highest effect in the human reference genome have a mutation size less than 0.25. 

Overall, like the models on GTEx the performance metrics suggests that my deep learning 

models do not do an efficient job in identifying mutations that destroy TFBS thereby leading 

to ALS. 
 

6.3.5 Summary 

 

In this section we train my model on the active motifs and inactive reference sequences from 

the regions around TSS within the lymphoblastoid. We do this to check if the model improves 

its efficiency in identifying active sequences from GTEx if we provide the DNA sequences 

which comprise of regions where the transcription is initiated. We see a change in performance 

among the models trained on lymphoblastoid and TSS. We see that, on the test set the model 

is now better to classify active GTEx mutations from the MinE mutations. However, this is no 

significant change.  

 

On GTEx, the models suggest that there are no significant mutations and although there might 

be some of them, the CNN suggests that most of the mutations with higher effect have a very 

small size of mutation. Just like in Part (A), The hybrid model infers that all the mutations that 

occur have small size of mutation and the mutations with big effect size have a very small size 

of mutation. The general inference of both these models on GTEx data is that the effect size is 

inversely proportion to the size of mutation. However, the performance metrics of the models 

show that both the hybrid and CNN model underperform in identifying significant mutations 

that destroy gene expression. 

 

On the project MinE data however, CNN suggests that some significant mutations having 

higher effect have a big size of mutation. On the contrary, the hybrid model infers that all the 

ALS motifs mutate with a small size. However, both models are similar in a way that they 

suggest that mutations causing the most significant effect have a size less than or equal to 0.25. 

Like on GTEx, the deep learning models underperform in identifying mutations disruption the 

TFBS.  

 

Having observed the performance of both the models on blood and their performance of GTEx 

and MinE test data, we can determine up to a large extent that the deep learning models would 

also underperform in identifying MinE mutations when trained on the lower motor neuron data. 

This is because of the underlying biological complexity associated with the organ.  

 

We can say so because throughout this section, we train our model architectures on specific 

cell data in blood (lymphoblastoid and TSS). We see that my model architectures do not 

perform well in identifying mutations when trained on such data. The lower motor neuron is a 

combination of motor neurons made up of millions of cells and therefore leads to more 

complexity associated with it. So, we can expect the model to perform with a very low accuracy 

on the training set and the test dataset comprising of ALS mutations from Project MinE.  
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Therefore, in the next section Part 2, I train my model architectures on the DNA sequences 

from the lower motor neuron. I test up to what extent can both the architectures having trained 

on lower motor neuron can predict active motifs in the promotor region of ALS patients. 

Promotor regions comprise of short DNA sequences to which proteins bind and initiate the 

transcription. This will let us know about the accuracy with which our models perform to 

determine motifs that might lead to the aberrant protein regulation subsequently leading to 

ALS. I test if we can determine the genes involved within which these mutations lead to drastic 

effect. 

 

6.4 Part 2: Models on lower motor neuron 
 

6.4.1 Training set 

 
The raw file Song_Regnetwork_astro.bed (Song et al, 2019; Figure (22)) consists of active 

regions in the lower motor neuron. The author of the paper annotates relationship between and 

regulatory elements in cell types that are relavant to complex neuropsychiatric disorders.  

 

The raw file comprises of the chromosome number, its start and end position. It also consists 

of the gene corresponding to start and end positions and its type if it is a promotor or an 

enhancer. A promotor is a DNA sequence which turns a gene on or off. The process of 

transcription is initiated at the promoter. Typically found at the beginning of the gene, the 

promoter has a binding site for the enzyme used to make a messenger RNA (mRNA) molecule. 

An enhancer on the other hand is a short (50 – 1500 base pair) region of DNA that can be bound 

by proteins to increase the likelihood of transcription in the gene. These are also sometimes 

referred to as transcription factors (TF). 

 

We generate a normalised training set as in section 6.2.1 of size 240,000, half of which 

comprise of motifs in non-coded DNA sequences and the RMSE between a pair of active and 

inactive sequence is less than 2%. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 22. Raw file Song_Regnetwork_astro.bed: These comprise of chromosome start and end position, the 

corresponding gene and its information if it is a promoter or an enhancer. These regions comprise of motifs among the 

sequences associated with complex neuropsychiatric diseases. I use this file to extract the training set for the model.  

 

6.4.2 Test Set 

 

To compare the performance of the model, we use CADD scores. We use the same procedure 

as in 6.2.2 to generate a test set comprising of 50,000 mutations in the promoter regions of ALS 
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in project MinE data (Project MinE ALS Sequencing consortium, 2018) and their 

corresponding phred scores (Figure 23). Because we train the model on non-coded DNA 

sequences from the lower motor neuron intrinsic to complex metrocentric diseases, we only 

attempt to identify up to what extent is training the deep learning model on this kind of data set 

able to identify mutations known to cause ALS. We do not have other true positive label such 

as GTEx to evaluate the reliability of the model. Thereby this section will not comprise of other 

ML metrics. 

 

 

 

 

 

 

 

 

 

 
Figure 23. Combined Annotation -Dependent Depletion (CADD; Rentzsch et al, 2019): The CADD file comprises of 

the reference and altered nucleotide along with their corresponding chromosome start and end position. The file comprises of 

two rows phred and raw scores. The last column corresponds to the phred scores. The phred scores are log transformed raw 

scores. 

 

6.4.3 Model architecture 

 

The model architecture is the same as above (Section 6.2.3). I train both my model architectures 

on 240,000 active and inactive reference sequences. The RMSE between the active and inactive 

reference sequences is less than 2%. The average accuracy across the 5 folds for the CNN 

model is 56.67% with a validation loss of 0.34 on the training set (Figure 24. (A)). Similarly, 

the hybrid model performs with an average accuracy of 60.87% with a validation loss of 0.23 

on the training set (Figure 24. (B)). There is not much significant difference between the CNN 

and the hybrid modem based on the performance on the training set and both the models have 

a high loss compared to the accuracy of the model. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 24. Performance of the CNN and Hybrid model on trained on promoters and enhancers in lower motor 

neuron: The box (A) represents the performance of the CNN model. The CNN attains an average accuracy of 56.67% and a 

high loss of 0.34. The box (B) represents the average performance of the hybrid model. The hybrid model attains an average 

accuracy of 60.86% and high loss of 0.24 on the lymphoblastoid test data. 

 

 

 

 

------------------------------------------------------------------------ 
(A)Score per fold of the Convolutional Neural Network 
------------------------------------------------------------------------ 

> Fold 1 - Loss: 0.340 - Accuracy: 57.278% 
------------------------------------------------------------------------ 

> Fold 2 - Loss: 0.359 - Accuracy: 55.377% 
------------------------------------------------------------------------ 

> Fold 3 - Loss: 0.355- Accuracy: 56.442% 
------------------------------------------------------------------------ 

> Fold 4 - Loss: 0.347- Accuracy: 57.092% 
------------------------------------------------------------------------ 

> Fold 5 - Loss: 0.346 - Accuracy: 57.192% 
------------------------------------------------------------------------ 

Average scores for all folds: 
> Accuracy: 56.676 (+- 0.713) 

> Loss: 0.349 
------------------------------------------------------------------------ 

------------------------------------------------------------------------ 
(B)Score per fold of the Hybrid Model 

------------------------------------------------------------------------ 
> Fold 1 - Loss: 0.239 - Accuracy: 60.405% 

------------------------------------------------------------------------ 
> Fold 2 - Loss: 0.236 - Accuracy: 60.105% 

------------------------------------------------------------------------ 
> Fold 3 - Loss: 0.237 - Accuracy: 60.920% 

------------------------------------------------------------------------ 
> Fold 4 - Loss: 0.233 - Accuracy: 62.321% 

------------------------------------------------------------------------ 
> Fold 5 - Loss: 0.242- Accuracy: 60.595% 

------------------------------------------------------------------------ 
Average scores for all folds: 

> Accuracy: 60.869 (+- 0.772) 
> Loss: 0.23 

------------------------------------------------------------------------ 
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6.4.4 Model performance  

 

Models on Project MinE 

 

Unlike the CNN models trained on blood we see a different result. In the previous sections, the 

CNN models trained on blood seem to suggest that only few mutations have a mutations size 

greater than 0.50 and as the size of the mutation decreases its effect size increases both in GTEx 

and MinE data. In both the plots (Figure 25) we see that no two mutations within a single gene 

have the same size of mutation or even the same effect of mutation.  

 

However, the CNN model trained on promoters and enhancers in the lower motor neuron seems 

to suggest that mutations come in all sizes and effects. In the Figure 25. (A), we see diverse 

size of mutations compared against the significance of the mutation. This phenomenon could 

however be explained. This performance of the CNN could be attributed to the training set. We 

train the model on active and inactive reference sequences that are related to complex 

neuropsychiatric disorders. Therefore, the comorbidities among these neuropsychiatric 

diseases could be a reason for the CNNs prediction for the size of ALS mutations in the 

promoter regions.  

 

The hybrid model seems to be consistent in its performance on predicting the size the mutations 

throughout all datasets (Figure 25. (B)). Having trained on complex data related to 

neuropsychiatric disorders the model seems to suggest that all ALS mutations across species 

have a very small size of mutation and the rare mutations have an even smaller size of less than 

0.25. Although we see contrasting results by comparing both the models, the general inference 

to a large extent is that most mutations likely to cause ALS are of size less than 0.25 irrespective 

of familial or sporadic ALS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 25. (A) and (B) show the CADD based phred scores compared to the size of the mutation as predicted by the 

CNN trained on lower motor neuron: (A) The CNN model trained on non-coding sequences in LMN suggests that ALS 

mutations may occurs in all the sizes. (B) The hybrid model suggests that all mutations are less than 0.25. However, the most 

important mutations are less than 0.25.  

 

6.4.5 Summary 
 

Having trained both the deep learning architectures on the active promoter and enhancer 

sequences within the lower motor neuron, we see similar results as in the above sections for 

(B) 

 

(A) 
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the hybrid and a different phenomenon compared to CNN. However, both the CNN and hybrid 

underperform. 

 

On Project MinE data, both the models perform differently. The CNN model infers that all the 

mutations in active motifs associated with ALS come in different sizes and effects. We see 

high effect and rarest mutations ranging between 0 to 1. However, most mutations that have 

the highest effect still lie in the range of 0 to 0.50. The CNN model was able to predict 12.39% 

of the MinE mutations correctly that that disrupt the TFBS. In contrast, the hybrid model shows 

us a similar inference like seen on blood cells. The hybrid model infers that all the mutations 

that occur in the body have a small size of mutation. However, the mutations with the highest 

effect are less than 0.25. The hybrid model correctly classifies only 6.40% of project MinE 

motifs known to disrupt the TFBS that lead to aberrant protein regulation.  

 

However, both the models CNN and hybrid do not perform well provided the test set size of 

50,000. Therefore, models trained on lower motor neuron cannot efficiently identify ALS 

mutations due to the biological complexity involved, inefficiency of my deep learning models 

to identify mutations disrupting TFBS and most probably in the training procedure. 

 

7. Result 
 
In this project we attempt to identify mutations disrupting TFBS thereby leading to ALS using 

deep learning. To do so, I first establish the efficiency of the deep learning models in identifying 

mutations that disrupt the transcription process. We use GTEx as the true label to test my 

models to identify mutations that disrupt transcription which effects gene expression. We also 

use the Project MinE (Project MinE ALS Sequencing consortium, 2018) data as false labels to 

identify mutations that disrupt the transcription that leads to disruption of TFBS ultimately 

leading to aberrant protein synthesis. We see that both the model architectures underperform 

in identifying mutations and show different kinds of predictions on the GTEx and MinE data. 

 

The CNN trained on lymphoblastoid identifies 3.59% of the MinE mutations and 3.53% of the 

mutations effecting gene expression (GTEx). Similarly, the CNN trained on TSS identifies 

4.67% of the MinE mutations (Project MinE ALS Sequencing consortium, 2018) and 2.63% 

of the GTEx mutations. Finally, the CNN trained on lower motor neuron predicts only 4.18% 

percent of the MinE mutations. These scores and ML metrics taken together suggest that the 

CNN model underperforms in the classification task. Overall, all the CNN models on MinE 

data infer that in ALS, mutations have different sizes with varying effects. But the mutations 

having the highest effect have the lowest size of mutation. However, this cannot be concluded 

due to the underperformance as shown by the ML metrics. 

 

Similarly, the hybrid model trained on lymphoblastoid identifies only 2.29% of the MinE 

mutations and 2.71% of the mutations affecting gene expression. Similarly, the hybrid model 

trained on TSS identifies 2.04% of the MinE mutations and 4.38% of the GTEx mutations. 

Finally, the hybrid model trained on lower motor neuron predicts only 4.18% percent of the 

MinE mutations. These scores and ML metrics taken together suggest that the hybrid model 

underperforms in the classification task. The hybrid models consistently infers that any 

mutation GTEx or MinE have a low size of mutation and the ones with lower than a size of 

0.25 have a very high effect size. 

 

Both the CNN and Hybrid models suggest that although there might be very few of such 

mutations with big size of mutation proportional to the effect of mutation, most of the mutations 
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with a high effect have a very low size of mutations. However, this cannot be concluded 

because as per the performance metrics of deep learning the models is poor.  In this project, 

the proposed deep learning architectures fail to identify mutations. This could mean: (1) the 

model must have missed learning something crucial in the training dataset. (2) The model 

architectures itself might not be deep enough to learn the complexity associated with the 

training set.  

 

8. Discussion 
 

There are two main reasons for the underperformance of my models. (1) Most successful deep 

learning models adopt two different approaches in the training procedure. (1.1) Using variable 

length sequences increases the reliability of the deep learning models instead of fixed length 

sequences. Using variable length sequences replicates the structure of DNA sequences in our 

body as DNA sequences in different chromosomes have different length (Zhou & Troyanskaya, 

2015). (1.2) k-mer sequences are substring of a DNA sequence of length k. For example, a 

sequence ‘ATGG’ comprises of two k-mers ‘ATG’ and ‘TGG’. However, all the models that 

perform well use one-hot encoding to encode the sequences. (1.3) In addition, it is also 

important to acknowledge the complexity associated with fixed length training sequences. The 

training sequences we use are high throughput sequences that try combinations of TFs to bind 

with them. This lets a deep learning model understand the complexity involved provided there 

are sufficient layers for the model to help learn.  However, other type of sequences which are 

generally used by simpler models are only capable of binding to a couple TFs among the large 

of available TFs. 

 

(2) The simpler networks observe high performance accuracy when trained on sequences 

bound by a single TF to identify a single motif mutation. For example, the DeepBind (Alipanahi 

et al, 2015) architecture is very much like mine. It uses sequences of variable length which pass 

through a single layer of convolutional layer that acts like a motif detector, a max-pool 

computes the maximum and average of each motif detectors response and a dense layer. This 

gives DeepBind an AUC greater than 70. On the other hand, the more complex models such as 

DeepSEA (Zhou & Troyanskaya, 2015) use 8 convolutional layers and it trains on 17% of high 

throughput active sequences from the human reference genome. The test comprises of large 

number of DNA sequences that can bind with any or all the approximately 1500 TFs in the 

human reference genome. This along with deeper layers lets DeepSEA identify large number 

of motif mutations within the human reference genome.  

 

My models have relatively a simple network like DeepBind and it might do the job if we train 

the models on sequences that can be bound by a single TF resulting in very few motif mutations. 

However, the sequences used to train my model can bind by any or all the TFs available in the 

human reference genome. Thus, my simple networks find it difficult to capture the complexity 

associated with the training set due the shallow structure. Therefore, my models do not perform 

well in identifying motif mutations effecting gene expression or evening mutations disruption 

the TFBS. However, increasing the number of layers for the CNN along with novel expectation 

pooling (Luo et al, 2020) to pool the extracted features using expectation maximization. 

Maximization helps the models learn motifs on long sequences (greater than 100bp). Similarly, 

increasing the number of LSTM layers in proportion with the CNN with an increase in the 

recurrent dropout rate may lead to significant improvement in the model performance (Zhou & 

Troyanskaya, 2015). 
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9. Further work 
 

On March 2020, Xio and Xinming introduced a novel pooling method named ‘expectation 

pooling’ (Luo et al, 2020) within the deep learning framework rather than a maxpooling layer 

for predicting DNA-protein binding.Expectation pooling is divided into two sublayers, a local 

maxpooling layer and a desnse layer without additional hyperparameters. Their method 

improves the performance of the CNN when compared to using global maxpooling.  

 

For the CNN, we could use six stacked convolutional layers with increased dialation and 

padding. To train the model on motifs in the non-coding sequences we will use k-mers along 

with including the expectation pooling instead of global max-pooling without. Using a large 

data set of k-mers and deep stacked networks with a dropout of 20% after every two layers 

should increase the performance of the models. Similarly, for the hybrid model we would use 

4 stacked convolutional layers along with 3 LSTM layers. The combination of CNN+LSTM 

has been proven to work on long seqeunces instead of k-mers. Unlike my model, I would 

increase the recurrent dropout to upto 15% in every layer along with the number of units to 

upto 100. Making the mentioned upgrades should provide a deeper insight into the disease 

mechanism of ALS. With this architecture, the traing set we use which comprises of active 

DNA reference sqeunces that can bind with any or all the TFs is a good fit to train the improved 

model. 

 

However, from an other perspective, the proposed simple model might work to identify small 

number of motifs if we train the models on specific sequences that can only bind with a single 

TF. This will enable us to identify context specific motif in a certain region. However, it is 

more significant to identify more number of motifs that can disrupt the TFBS. Therefore, 

probably an improved model is better to train on large number of squences.  
 

10. Conclusion 
 

In this project, we attempt to indentify such motif mutations which dirsrupt the TFBS leading 

protein aggregation in the surrounding regions and ultimately ALS. We build two deep learning 

models that can classify active and inactive reference DNA seqeunces. I then train the models 

on lymphoblastoid. Mutations in lymphoblastoid are known to effect transcription. We 

subseqeuntly train my model on such regions (TSS) in lymphoblastoid in which mutations have 

strongest effect because that is where the transcription process is initiated. This is  to give the 

models a robust data to train on. We test my models on (1) GTEx which comprises of some 

motif mutations which may effect transcription. (2) Project MinE (Project MinE ALS 

Sequencing consortium, 2018) comprises of mutations as observed in ALS patients. Evaluating 

the models on the test set shows that both the CNN and hybrid model underperform in 

predicting mutations in GTEx and MinE that disrupt transcription. To benchmark the models, 

we use scores that determine effect size of a mutation compare it with the size of mutation as 

predicted by the model. This shows that a large part of the damage causing mutations that 

desrupt transcription have a very small size of mutation. However, this cannot be concluded 

because of the low performace of my models. 

 

Finally, we train the models on non-coding DNA sequenes comprising of motifs in lower motor 

neuron correspondig to complex neuropsychiatric diseases. We do so to test the efficiency of 

the model in recognizing mutations that desrupt TFBS thereby leading to ALS. If the models 

performed better than it did, we could have used the models to predic mutations that cause 
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alzheimers or parkinsons since their pathological hallmark is also protein aggregation. 

However, these models infer that although some ALS causing mutations vary in size, a large 

part of damage causing mutations have a very low size of mutation. However, this cannot be 

concluded because of the inefficient model architecture and the training procedure which 

resulted in low performance metrics of the models.   

 

The low performance of my model is mainly because of the model architectures and the training 

methodoloy. Humans comprise of thousands of motifs. The more rescent succesful models 

adopt complex deep neural netoworks (Zhou & Transkei, 2015) and train on large number of 

active sequences that can bind with any or all of the thousands of TFs in the human genome to 

identify large number of  motif mutations that disrupt TF’s. On the contrary, the simpler models 

train on sequences which are bound by a single TF to identify a small number motif mutations 

that disrupt the TF (Alipanahi et al, 2015). However the draw back of my model is that the 

model architecturs and the training procedure. Although a simpler network such as mine might 

do fine in identifying a single motif, the sequences that I train on are too complex for my simple 

model to absorb therefor underperforming on the test set. Improving the model architecture as 

proposed in section 8 will enable the enhanced model provided we use the same training set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



41 | P a g e  
 

References 

 
1. Aaron R. Quinlan, Ira M. Hall, BEDTools: a flexible suite of utilities for comparing genomic 

features, Bioinformatics, Volume 26, Issue 6, 15 March 2010, Pages 841–

842, https://doi.org/10.1093/bioinformatics/btq033. 

 

2. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2014). DNA, 

chromosomes, and genomes. Molecular biology of the cell, 184-185. 

 

3. Alipanahi, B., Delong, A., Weirauch, M. T., & Frey, B. J. (2015). Predicting the sequence 

specificities of DNA-and RNA-binding proteins by deep learning. Nature 

biotechnology, 33(8), 831-838. 

 

4. Beer, M. A., & Tavazoie, S. (2004). Predicting gene expression from sequence. Cell, 117(2), 

185-198. 

 

5. Brown RH, Al-Chalabi A. Amyotrophic lateral sclerosis. Prog Med Chem. 2017;58:63–117. 

 

6. Buenrostro, J. D., Wu, B., Chang, H. Y., & Greenleaf, W. J. (2015). ATAC‐seq: a method for 

assaying chromatin accessibility genome‐wide. Current protocols in molecular 

biology, 109(1), 21-29. 

 

7. Byrne, S., Walsh, C., Lynch, C., Bede, P., Elamin, M., Kenna, K., ... & Hardiman, O. (2011). 

Rate of familial amyotrophic lateral sclerosis: a systematic review and meta-analysis. Journal 

of Neurology, Neurosurgery & Psychiatry, 82(6), 623-627. 

 

8. Chicco, D., & Jurman, G. (2020). The advantages of the Matthews correlation coefficient 

(MCC) over F1 score and accuracy in binary classification evaluation. BMC genomics, 21(1), 

1-13. 

 

9. Choong, A. C. H., & Lee, N. K. (2017, November). Evaluation of convolutionary neural 

networks modeling of DNA sequences using ordinal versus one-hot encoding method. 

In 2017 International Conference on Computer and Drone Applications (IConDA) (pp. 60-

65). IEEE. 

 

10. Clerget-Darpoux, F., & Elston, R. C. (2013). Will formal genetics become dispensable?. 

Human heredity, 76(2), 47-52. 

 

11. Colbran, L. L., Chen, L., & Capra, J. A. (2017). Short DNA sequence patterns accurately 

identify broadly active human enhancers. BMC genomics, 18(1), 1-11. 

 

12. Elston, R. C., Satagopan, J. M., & Sun, S. (2012). Genetic terminology. In Statistical Human 

Genetics (pp. 1-9). Humana Press. 

 

13. Erill, I., & O'Neill, M. C. (2009). A reexamination of information theory-based methods for 

DNA-binding site identification. BMC bioinformatics, 10(1), 1-22. 

 

14. Gibson, G. (2012). Rare and common variants: twenty arguments. Nature Reviews Genetics, 

13(2), 135-145. 

 

15. Hardiman, O., Al-Chalabi, A., Chio, A., Corr, E. M., Logroscino, G., Robberecht, W., ... & 

Van Den Berg, L. H. (2017). Amyotrophic lateral sclerosis. Nature Reviews Disease Primers, 

3(1), 1-19. 

 

https://doi.org/10.1093/bioinformatics/btq033


42 | P a g e  
 

16. Kiernan, M. C., Vucic, S., Cheah, B. C., Turner, M. R., Eisen, A., Hardiman, O., ... & Zoing, 

M. C. (2011). Amyotrophic lateral sclerosis. The lancet, 377(9769), 942-955. 

 

17. Lanchantin, J. (2017). Deep Motif: Visualizing and Understanding Genomic Sequences Using 

Deep Neural Networks (Doctoral dissertation, University of Virginia). 

 

18. Latchman, David S. "Transcription factors: an overview." The international journal of 

biochemistry & cell biology 29.12 (1997): 1305-1312. 

 

19. Lawrence, M., Huber, W., Pages, H., Aboyoun, P., Carlson, M., Gentleman, R., ... & Carey, 

V. J. (2013). Software for computing and annotating genomic ranges. PLoS Comput 

Biol, 9(8), e1003118. 

 

20. Leavitt, S. (2004). Deciphering the genetic code: Marshall Nirenberg. Office of NIH History. 

 

21. Lehmann, E. L., & Casella, G. (2006). Theory of point estimation. Springer Science & 

Business Media. 

 

22. Liou, C. Y., Tseng, S. H., Cheng, W. C., & Tsai, H. Y. (2013). Structural complexity of DNA 

sequence. Computational and mathematical methods in medicine, 2013. 

 

23. Lonsdale, J., Thomas, J., Salvatore, M., Phillips, R., Lo, E., Shad, S., ... & Moore, H. F. 

(2013). The genotype-tissue expression (GTEx) project. Nature genetics, 45(6), 580-585. 

 

24. Luo, X., Tu, X., Ding, Y., Gao, G., & Deng, M. (2020). Expectation pooling: an effective and 

interpretable pooling method for predicting DNA–protein binding. Bioinformatics, 36(5), 

1405-1412. 

 

25. Manu Setty and Christina S Leslie. Seqgl identifies context-dependent binding signalsin 

genome-wide regulatory element maps. PLoS computational biology, 11(5):e1004271, 2015. 

 

26. Pansarasa, O., Bordoni, M., Drufuca, L., Diamanti, L., Sproviero, D., Trotti, R., ... & Cereda, 

C. (2018). Lymphoblastoid cell lines as a model to understand amyotrophic lateral sclerosis 

disease mechanisms. Disease models & mechanisms, 11(3). 

 

27. Pavesi, G., Mauri, G., & Pesole, G. (2004). In silico representation and discovery of 

transcription factor binding sites. Briefings in bioinformatics, 5(3), 217-236. 

 

28. Patel, P. N., Gorham, J. M., Ito, K., & Seidman, C. E. (2018). In vivo and In vitro methods to 

identify DNA sequence variants that alter RNA Splicing. Current protocols in human 

genetics, 97(1), e60. 

 

29. Project MinE ALS Sequencing Consortium. (2018). Project MinE: study design and pilot analyses of a 

large-scale whole-genome sequencing study in amyotrophic lateral sclerosis. European Journal of 

Human Genetics, 26(10), 1537. 
 

30. Quang, D., & Xie, X. (2016). DanQ: a hybrid convolutional and recurrent deep neural 

network for quantifying the function of DNA sequences. Nucleic acids research, 44(11), 

e107-e107. 

 

31. Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J., & Kircher, M. (2019). CADD: 

predicting the deleteriousness of variants throughout the human genome. Nucleic acids 

research, 47(D1), D886-D894.  

 



43 | P a g e  
 

32. Salekin, S., Zhang, J. M., & Huang, Y. (2017, February). A deep learning model for 

predicting transcription factor binding location at single nucleotide resolution. In 2017 IEEE 

EMBS International Conference on Biomedical & Health Informatics (BHI) (pp. 57-60). 

IEEE. 

 

33. Schneider, T. D., Stormo, G. D., Gold, L., & Ehrenfeucht, A. (1986). Information content of 

binding sites on nucleotide sequences. Journal of molecular biology, 188(3), 415-431. 

 

34. Schneider, T. D. (2002). Consensus sequence zen. Applied bioinformatics, 1(3), 111. 

 

35. Song, M., Yang, X., Ren, X., Maliskova, L., Li, B., Jones, I. R., ... & Shen, Y. (2019). 

Mapping cis-regulatory chromatin contacts in neural cells links neuropsychiatric disorder risk 

variants to target genes. Nature genetics, 51(8), 1252-1262. 

 

36. Trifonov, E. N. (1990). In Sarma, RH and Sarma, MH (eds), Structure and Methods, Vol. 1, 

Human Genome Initiative and DNA Recombination. 

 

37. Wang, M. H., Cordell, H. J., & Van Steen, K. (2019, April). Statistical methods for genome-

wide association studies. In Seminars in cancer biology (Vol. 55, pp. 53-60). Academic Press. 

 

38. Wang, T. Q., & Xu, Y. (2016, January). Analysis of Effect of the Position on Weighted 

Degree Kernel for Splice Site Prediction. In The International Conference on Biological 

Sciences and Technology. Atlantis Press. 
 

39. Wheeler, D. A., Srinivasan, M., Egholm, M., Shen, Y., Chen, L., McGuire, A., ... & 

Rothberg, J. M. (2008). The complete genome of an individual by massively parallel DNA 

sequencing. nature, 452(7189), 872-876. 

 

40. Yue, T., & Wang, H. (2018). Deep learning for genomics: A concise overview. arXiv preprint 

arXiv:1802.00810 

 

41. Yang, B., Liu, F., Ren, C., Ouyang, Z., Xie, Z., Bo, X., & Shu, W. (2017). BiRen: predicting 

enhancers with a deep-learning-based model using the DNA sequence 

alone. Bioinformatics, 33(13), 1930-1936. 

 

42. Zou, J., Huss, M., Abid, A., Mohammadi, P., Torkamani, A., & Telenti, A. (2019). A primer 

on deep learning in genomics. Nature genetics, 51(1), 12-18. 

 

43. Zhou, J., & Troyanskaya, O. G. (2015). Predicting effects of noncoding variants with deep 

learning–based sequence model. Nature methods, 12(10), 931-934 
 

 

 

 

 

 

 

 

 

 

 

 


