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Figure 1: Smooth motion is learned when the target moves overhead.

Abstract

We present a real-time gaze animation system using recurrent neural networks. Both motion capture data and video from a head-

mounted camera are used to train the network to predict the motion of the body and the eyes. The system is trained separately

on different poses, e.g. standing, sitting, and laying down, and is able to learn constraints on movement per pose. A simplified

version of the neural network is presented, for scenarios which allow for lower detail gaze animation. We compare various

neural network architectures and show that our method has the capability to learn realistic gaze motion from the data, while

maintaining performance. Results from a user study conducted among game industry professionals, shows that our method

significantly improves perceived naturalness of the gaze animation, compared to a manually created procedural gaze system.

CCS Concepts

• Computing methodologies → Motion Capture;

1. Introduction

Gaze animations are regarded as a solved problem in the video
game industry, because manual designed gaze animations were suf-
ficient for virtual characters for the past decades. However, creating
robust gaze animations is a time consuming task for animators, be-
cause such a system needs to work in many different scenarios,
leading to complex and messy animation systems that are hard to
maintain. Additionally, on closer inspection these animations are
not as close to realistic behaviour as hoped.

Data-driven animation and machine learning have shown

promising results in improving animation quality, without creating
an explosion in complexity to the animation system, from which
procedural animation systems often suffer. Recently, many promis-
ing results have been presented by applying neural networks in
computer graphics. For example, neural networks have been used
for pose classification and to animate full body locomotion in com-
plex environments, based on a large data set of motion capture
data [FLFM15, HKS17, PBYVDP17, MBR17, ZSKS18, PGA18,
PALvdP18]. Therefore, the main challenge of this thesis is how to
create data-driven gaze animations.
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This poses the following questions:

• How can we teach a computer look-at behaviours?
• What are the requirements on the data to learn look-at be-

haviours?
• Can this approach be fast enough to be used in real-time gaming

environments?

This thesis proposes a machine learning approach for gaze ani-
mation. We train a neural network on multi-modal data from mo-
tion capture and eye tracking from a head-mounted camera. The
neural network predicts the next frame of the gaze animation from
a given look-at target and the current pose of the character. Spe-
cial scenarios were recorded to obtain the right data for such a gaze
model.

2. Related Work

In this section we review previous work that is relevant for our re-
search, starting with the gaze behaviour in humans that we intend
to recreate. Next, an overview of techniques for gaze animation is
given. Finally, we review methods that have used neural networks
for animation.

2.1. Gaze Behaviour

There is a large body of research on gaze behaviour, both phys-
iological and psychological [LZ15]. A key concept here is gaze,
which is the direction of the eyes and head to a specific target.
Gaze shifts are the movements of the eyes and head, and potentially
shoulders, spine and hips, to redirect the gaze to another target.

Saccades are rapid shifts in the eye rotation, making them the
most noticeable eye movements. These movements are performed
very similarly among people. Saccades are very rapid movements,
where even large movements are performed in a tenth of a second.
Large saccades of 30◦ are quite rare, while 5◦ to 10◦ is common,
taking 30 to 40 ms. Saccade latency, i.e. the time it takes to start
moving them, is between 100 and 200 ms. The time between sac-
cades is normally around 150 ms. Most other properties of sac-
cades, including undershooting the target, and small drifts after the
saccade, are often not noticeable in common interactions between
people [RAB∗14].

The Vestibulo Occular Reflex (VOR) is used to stabilise the eyes
during head motion. It is very quick, since it is controlled by the
nearby inner-ear vestibular neurons. Eyes can be rotated faster than
the head, which makes both movements seem to occur almost si-
multaneously. VOR should rotate the eyes to exactly counter the
head movement, although head roll movement (rotating along the
direction of your nose) can be ignored for efficiency [RAB∗14].

Smooth pursuit stabilises the eyes to track a moving object, like
reading the text on the side of a moving bus [RAB∗14]. Smooth
pursuit is used to centre an image on the retina. It has a latency of
80 to 130 ms and breaks down at high velocities. Because smooth
pursuit is only used in quite specific situations (like reading from a
moving surface), it is not often noticed.

Normally, both eyes look in the same direction. The exception
is vergence. Vergence happens when the eyes need to focus on a

nearby object and the eyes need to rotate towards each other to
keep the vision sharp.

Eyelid movement mostly comes in the form of blinks. There are
roughly three kind of blinks: spontaneous, voluntary, and reflex-
ive. Spontaneous blinks are based on cognitive and social activities,
and can vary wildly in timing. Voluntary blinks occur from time to
time to keep the eyes from drying out. Reflexive blinks are a pro-
tective mechanism, when something touches the eye or gets very
close to the eye. Blinking behaviour can be modelled by a Poisson
set, but blinks often co-occur with eye and head movement. Eyelid
displacement especially accompanies vertical saccades, i.e. looking
up or down [RAB∗14].

For larger gaze movements, both the eyes and head are involved.
Normally, eyes move first after 200 ms latency, followed by the
head 20 to 50 ms later. However, when looking towards a pre-
dictable target, the head turns first and the eyes move afterward
[LZ15]. If a person knows beforehand that he will look at a cer-
tain target, this is called a predictable target, e.g. when a person
changes his gaze to another person in a group conversation. An
unpredictable target would mean that the target was not known in
advance and the gaze should move to this target quickly. An ex-
ample of an unpredictable target is a car honking in traffic. How
eye movement and head movement are combined differs between
people [LZ15].

Gaze is often used to communicate the internal state of a person,
like showing interest and one’s emotional state. During conversa-
tion it can help to indicate turn-taking . In turn, emotions can have
an effect on gaze behaviour [LMK04, LM10]. It has been shown
that the meaning of gaze behaviour can change, depending on cul-
tural differences [RAB∗14]. Not following the cultural norm in mu-
tual gaze can affect engagement in conversation. During conversa-
tion gaze, nods, head movements, blinks, and eyebrow gestures can
be used to provide context to speech.

Visual attention is the way people select their gaze targets. It
selects the locations to look at, based on interest and importance
[RAB∗14]. Visual attention, together with visual perception, con-
trols of the visual sensory system to observe the world. People tend
to move their attention to objects that are large, bright, and moving
in the peripheral vision [PVZ08].

2.2. Gaze Animation

Humans use a combination of eye and head movement, and op-
tionally move their shoulders and hips, to look at a target. In ani-
mation, this kind of movement is often explicitly modelled by an
animator. The animator sets the rules which govern the animation.
These manually made gaze animations are often good enough for
the animator’s purpose, but they are labour-intensive and hard to
maintain. Research has focussed on limiting the amount of manual
labour that is required to make these systems. For a more extensive
overview of look-at animation, see the overview written by Ruh-
land et al. [RAB∗14].

To add natural head movement to speaking agents, Brkic et
al. [BSPP08] developed a system that would add nods and head
swings to the facial gestures that were already in the system. The
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facial gestures were based on the English text the agent had to say.
The nods and swing were modelled with sinus functions, based on
analysis of video footage. Although the added head movement was
perceived as more realistic, it is a rather simple approximation that
could be improved upon.

Eye movement for gaze, especially when combined with head
movement for gaze, can be more challenging when animating
stylised characters. Assumptions about eye movement for realistic
characters break when applied to these stylised characters. Various
artifacts can occur when the size, location, and orientation of the
eyes is changed relative to the head, e.g. cross-eyedness, eyes that
move too fast, stuck eyes, and eye divergence. Pesja et al. [PMG13]
improved the gaze animation to solve these artifacts. They also pro-
vided various controls for an animator to adjust the gaze behaviour.

Later, Pesja et al. [PRMG16] developed a system where gaze
targets could be inferred from motion capture data, where such in-
formation was not yet present. These inferred gazes could also be
edited by an animator to change the apparent intention of a char-
acter. By detecting maxima in the head velocity, it is possible to
determine when the gazing events take place. The look-at target is
then selected, based on a combination of the movement, action, and
environment of the character. This is then used as input data, which
could later be edited by an animator. However, the gazes are only
heuristically inferred from motion capture data, instead of based on
captured data.

The selection of the look-at target is an active field of research in
computer animation. Kuhllar and Badler [KB01] developed a sys-
tem based on psychological research. It takes into account the field
of view of the virtual character and different gazing behaviours
for different intentions. Targets are selected based on the task of
the virtual character, as well as the objects surrounding the char-
acter. When no tasks are at hand, spontaneous looking is the de-
fault behaviour and the target alternates between the surrounding
objects. Cafaro et al. [CGV09] captured and analysed videos of
public places to see where people look to develop a base line gaze
behaviour. They created a model that recreated the observations
from their video data, which animated idle gazing. Both works on
look-at targets do not consider the look-at animation and assume
that such a system is already in place.

2.3. Data-Driven Animation

Deep learning for animation has seen a great increase of interest in
the past years. These approaches try to lower the amount of man-
ual editing by an animator and improve realism by learning from
recorded humans. Below, this research has been split in three cat-
egories: learning facial animation, learning locomotion using rein-
forcement learning, and deep neural networks to learn locomotion
from recorded data.

Some gaze systems provide head and eye movement, given
speech audio as input. These models are trained on a combination
of speech and video/motion capture data, to learn to predict the
gaze behaviour based on the speech input. Lee et al. [LBB02] cre-
ated a statistical model from eye tracking data. This model could
enhance existing animations with eye movement for speaking and
listening agents. This was one of the first approaches to make use of

recorded data to create a model for gaze animation. Their focus is
on eye cues during social interaction, where they make a distinction
in eye behaviour between talking or listening. Eye movement was
recorded and a statistical model was fitted to the data. This model
was then used to determine saccade velocities and gaze durations.
However, this model is limited to gaze behaviour during social in-
teractions.

Le et al. [LMD12] developed a hybrid speech-driven system for
head and eye movement. Three separate systems were used for head
motion, eye gaze, and eyelid motion. A Gaussian mixture model is
used for head motion, Nonlinear Dynamic Canonical Correlation
Analysis for eye gaze, and a linear regression model for the eyelids.
The models were trained on a combination of audio, motion cap-
ture, and video data. Although these systems are interconnected,
they do not offer a unified system for gaze, limiting the resulting
behaviour of the system.

Recently, deep learning was used to predict facial animation
from audio input. Taylor et al. [TKY∗17] use a recurrent neural net-
work with a sliding window, which trains on phonemes extracted
from the audio input. The model then learns from video to con-
trol the face of a character based on the phonemes. They showed
that a deep neural network can be trained to perform facial anima-
tion. The network even generalises enough to be applicable to more
stylised characters and extrapolate to handle speech of speakers not
present in the training data. Their current system cannot handle dif-
ferent emotional states for the character out of the box, but the out-
put can be easily edited to add more emotion to the animation.

Laine et al. [LKA∗17] used deep convolutional neural networks
(CNN) to create complete virtual 3D facial performances from
video alone. An actor needs to play out a set of facial motions, from
which the CNN can learn. This data is augmented by distorting it, to
make the network resistant to variations within the input data. Af-
ter training the model, it could recreate a test video convincingly,
which shows the power of CNNs to generalise on a limited set of in-
put data. The authors note that their selected loss function might not
necessarily give low scores to actual natural-looking facial anima-
tion. Also, the neural network can only capture the facial features
of one person and does not generalise well to different faces.

DeepLoco [PBYVDP17] uses Deep Reinforcement Learning to
train a bipedal character to walk a path, dribble a ball, and avoid
moving obstacles. They train two controllers: one for low-level
control and one for high level control. The low-level controller
learns to move the feet, while the high level controller focusses
on learning path finding or ball dribbling. They show that this hi-
erarchical model is capable to learn both the low-level locomotion
and high-level tasks. The trained model is even resilient to minor
perturbations. The hierarchical controllers make their model more
modular and easier to train than one big, deep model. To provide
a phase to the network, a specialied phase selection network has
been added to the model. This was later expanded in [PALvdP18]
to learn various actions, like kicking, throwing a ball, and back
flips. They included motion capture data in the learning pipeline,
to guide the learning process. They also show the adaptiveness to
perturbations after training.

Deep learning has also been employed to recognise body poses
in videos and motion capture data, as well as to predict the
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next pose in a video. The model used by Fragkiadaki et al.
[FLFM15] uses a recurrent neural network (RNN), based on the
Long Short-Term Memory (LSTM) architecture, and is augmented
with encoder-decoder functionality to ensure that the model does
not underfit, coined Encoder-Recurrent-Decoder (ERD). Recogni-
tion of body poses in motion capture data has temporal dependen-
cies, which are captured by the LSTM. Martinez et al. [MBR17]
expanded on the idea of RNNs for animation and added residual
connections (direct connections between the input and output) to
the network. Adding the residual connections changes the learning
problem from predicting the next frame to predicting the change
between the current frame and the next. They show that this change
in the RNN’s architecture removes the need for the encoding and
decoding layers used in the ERD.

In the past few years, there has been an increasing interest in
deep learning full body locomotion. Some state-of-the-art models
are described below. A common problem in learning locomotion
is the phase of the motion, i.e. the fact that one leg is moving at a
time. If no care is taken, a model cannot recognise which foot to
use, resulting in unnatural foot-sliding, i.e. using both feet simulta-
neously. Holden et al. [HSK16] created a deep learning framework
and showed how to train a humanoid character to perform various
tasks, including walking, kicking, and punching. They used data
from various motion capture databases. They show how to apply
motion editing using their deep networks, so that can they com-
bine a regular walking network with a particular walking style of
another network, or add various constraints to a trained model. Dis-
ambiguation of the locomotion is provided by adding the timing of
foot contact with the floor to the training data.

Recently, Holden et al. [HKS17] used motion capture data to
train a phase-functioned neural network (PFNN) for walking ani-
mations of a user-controlled character. Motion capture data was an-
notated with terrain height data. The user-input was reconstructed
from the motion capture data and added as input to the training data.
A phase function was added to the neural network, so the network
could train separately for each phase. Without the added phase, the
network could not learn correctly when to use the left foot and
when to use the right foot, resulting in foot-sliding. However, the
phase function makes training significantly harder. The PFNN can
be evaluated fast enough for interactive control by a user. To reach
this performance, high-level details were lost in the network’s rep-
resentation. Like many machine learning models, the PFNN has
trouble extrapolating beyond the presented training data, for exam-
ple in situations which are physically impossible. The PFNN was
later extended to work for quadrupeds [ZSKS18], using a gener-
alised version of PFNN, called the Mode-Adaptive Neural Network
(MANN).

3. Background

In the past, artificial neural networks have been used for animation
generation. In this section, we give an overview on relevant arti-
ficial neural network architectures. We start with an introduction
to neural networks and extend that to deep neural networks. Then,
recurrent neural networks are explained.

3.1. Deep Neural Networks

Artificial neural networks are powerful machine learning tools, that
have become popular over the past years. The technique is inspired
by biological neurons, as in the brain. They are capable of learn-
ing a function from examples, given a set of inputs and respective
outputs of that function. An example can be presented at the in-
put neurons, which are connected to the neurons in the next layer,
which will give off a real valued signal. Each connection between
neurons i and j has a weight wi j, which get multiplied with the sig-
nal from neuron i. The receiving neuron also has a bias bi, which
is added to the incoming signal. An activation function then deter-
mines the final output value of a neuron, given its combined in-
put signal. Moving the signal through the layers is called Forward

Propagation [GBC16].

In a formal way, we can see an input example as a vector x. The
weights between two layers of neurons is matrix W and vector b

are the biases of a layer. The output of a layer l can thus be defined
as:

hl = σ(Wlx+bl)

where σ is a non-linear activation function.

A neural network with only two layers, an input and output layer,
can only approximate linear functions. With one layer between the
input and output layer, called the hidden layer, a neural network can
approximate any function, as proven in the universal approximation
theorem [GBC16]. Such networks are often called multilayer per-

ceptron (MLP). When there is more than one hidden layer, the net-
work is called a deep neural network. Then, forward propagation
for n layers would be:

hl = σ(Wn−1...σ(W1σ(W0x+b0)+b1)...+bn−1)

Neural networks with one hidden layer have no theoretical limit
on the functions they can approximate. However, given enough ca-
pacity, deep neural networks can often obtain better learning results
with less training time and with fewer neurons overall. In deep neu-
ral networks, we can also easily see why a non-linear activation
function is needed. Without it, we could simply multiply and add
the weights and biases together to one matrix again, which is itself
just linear.

Many algorithms have been proposed to train neural networks.
Often, some form of gradient descent is used to gradually improve
the results of the network. First, an input is presented and forward
propagation is used to generate the output. This output is then com-
pared to the expected value. From this, a loss value is computed,
for example the squared error:

εt = (ht − yt)
2

where ht is the output of the neural network and yt the expected
value for time step t. From this loss, a gradient is computed us-
ing backpropagation, and a gradient descent algorithm is used to
change the weights and biases in the network, in order to decrease
the error in the output.

Like many other machine learning techniques, neural networks
have the tendency to overfit on the data. When overfitting occurs,
the model can generate the correct output for the training data, but
has failed to learn the general rule behind the data. Overfitting is
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caused by training models that are too complex for their task and
can use their complexity to memorise the training data, rather than
learn the rule. A plethora of methods has been proposed to help
neural networks generalise better. First, various activation func-
tions have been proposed and compared, e.g. Rectified Linear Units

(ReLU) [GBC16], defined as:

ReLU(x) = max(0,x)

Second, there is the choice of the optimisation algorithms. A pop-
ular algorithm for deep neural networks is Stochastic Gradient De-
scent (SGD) [GBC16]. Later, other algorithms have been proposed
to improve convergence of deep networks, like AdaGrad, AdaDelta
[GBC16], and ADAM [KB14].

Another method to improve generalisation is by regularisation,
which often limits the capacity of the model, to prevent overfitting.
At first overfitting can be limited by a lower number of neurons and
layers for the task at hand, so the neural network will not be over-
complex and be able to just memorise all the training data, without
any need for generalisation. However, if the model is too simple, it
does not have the capacity to capture the rule behind the data, which
is called underfitting. If a model can overfit the data, regularisation
can then improve generalisation.

A recent popular method is Dropout [SHK∗14], which randomly
turns off neurons in the network during training. This ensures that
neurons within a layer cannot co-adapt and become dependent on
each other, which causes them to specialise in one task. Another
form of regularisation is to add noise to the training data, so the neu-
ral network cannot fixate on the training data too much [GBC16].

When using a validation set to check the accuracy of a neural
network, we can also use Early Stopping [GBC16]. While training
the model, the error on both the training and validation set goes
down. However, at some point the model starts to overfit, still min-
imising the error on the training set, but increasing the error on the
validation set. When we detect this moment, we can stop training,
as we do not expect to find a model after overfitting sets in.

3.2. Recurrent Neural Networks

Recurrent neural networks (RNNs) are speciallised network archi-
tectures for sequential data [GBC16, LBH15], e.g. data over time.
RNNs are MLPs with connections going back to the same or pre-
vious layers. Therefore, RNNs do not only consider the current
input, but also past inputs. If the recurrent connections would be
unfolded, the network is an MLP taking inputs from multiple time
steps. Thus, parameters used in one timestep can also be used for
the next timestep and that this will generalise better on sequences
of different lengths. Depending on the architecture of the network,
output can be provided at every timestep or only at the end of a se-
quence. To train an RNN, the network has to be unfolded for some
number of timesteps in order to propagate the error back through
time (see Figure 2). If the network is trained on too few timesteps,
it might not be able to learn dependencies over time.

An RNN is by definition a deep neural network, due to the re-
current connections. Yet, when an RNN has more than one hidden
layer, it is called a deep recurrent neural network [PGCB13]. Simi-
lar to the difference between MLPs with one hidden layers and deep

MLPs, deep RNNs have more than one hidden layer. This can help
the network extract higher level features from the input, improving
the predictive abilities of the network.

3.2.1. Long Short Term Memory

A major problem in deep learning and specifically in RNNs, is that
gradients can vanish or explode during training, since they can be
multiplied many times with the same weights during training. This
has been a difficult problem to overcome and made it impossible
to learning long-term dependencies. To solve this problem, a spe-
cial kind of memory cell was proposed by [HS97], called Long

Short-Term Memory (LSTM). These memory cells can hold their
own state over time and control how much the state is affected by
the input, how much of the state should be forgotten, and how much
of the cell content is passed as output. LSTM is able retain the gra-
dient over a longer period of time, because it can control the impact
new inputs have on its memory.

For a more formal description of the LSTM, we will follow the
description given by [CGCB14]. The LSTM has three gates, called
the input gate, the forget gate, and the output gate. The output of
one LSTM cell j at time t is given by:

h
j
t = o

j
t tanh(c j

t )

where o
j
t is the output gate and c

j
t the updated memory. The output

gate is defined as;

o
j
t = σ(Woxt +Uoht−1 +bo)

j

where σ is a logistic sigmoid function, Wo and Uo are weight ma-
trices, bo the output biases. xt is the input at time t and ht−1 the
output from the previous time step.

To update the memory cell c
j
t , the cell uses the forget gate to

remove data from the memory and the input gate to control how
much the new memory (based on the input) will affect the current
memory:

c
j
t = f

j
t c

j
t−1 + i

j
t c̃

j
t

where f
j

t and i
j
t are the forget gate and input gate, respectively,

defined as:

f
j

t = σ(W f xt +U f ht−1 +b f )
j

i
j
t = σ(Wixt +Uiht−1 +bi)

j

and the new memory is defined as:

c̃
j
t = tanh(Wcxt +Ucht−1)

j

This comes to a total of eight weight matrices, four bias vectors,
and one cell state vector.

3.2.2. Gated Recurrent Units

Gated Recurrent Units (GRUs) [CGCB14] are developed as a reac-
tion to LSTMs to investigate which parts of LSTM were necessary
and if memory cells could be made simpler. GRUs are thus simpler
than LSTM and need less data to store, as they cannot control how
much their memory state is affected by the input. Their memory
content is not a special cell state, as it is for LSTM, but the GRU
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uses its own output from the previous time step. They have an up-

date gate zt and a reset gate rt . The update gate decides how much
the memory is updated. The reset gate determines how much of the
memory is forgotten.

The output of the GRU is computed as follows:

zt = σ(Wzxt +Uzht−1 +bz)
rt = σ(Wrxt +Urht−1 +br)

ht = (1− zt)◦ht−1 + zt ◦ tanh(Whxt +Uh(rh ◦ht−1)+bh)

Where ◦ is the element-wise Hadamard product. Thus, GRUs use
six matrices, three bias vectors and one vector for the cell state,
which is two matrices and one vector less than LSTM.

Chung et al. [CGCB14] compared LSTM and GRU, but did not
find any significant benefits to use either memory cell over the
other. It often depends on the problem at hand.

4. System Overview

Our goal is to generate realistic data-driven gaze animation. Gaze
shifts are defined by the motion of the eyes, as well as the central
joints, i.e. hips, spine, chest, neck, and head. Therefore, to record
human gaze behaviour, we use motion capture to track the joints
and eye tracking go gain information about the eyes. With data
based on human gaze behaviour, we can train a model to recre-
ate these behaviours as animations. The aim is to generate gaze
animations close to human gaze behaviour, that looks more natural
than a manually designed procedural animation system. These gaze
animations should be generated in real-time.

To recreate the motion present in the data, we use a recurrent
neural network generate the animations. Our system predicts the
pose of the central joints (hips, spine, neck, head, eyes) in the cur-
rent frame, based on the location of a gaze target and the character’s
previous pose. An RNN is trained on motion capture data and video
of the face, from which we extract the eye data. Data is recorded
for various poses. Separate models are trained for each pose, which
can be selected based on the character’s current pose at run-time.

Initial data is collected from the existing procedural animation
system and later in a motion capture room (see section 5). The
setup of the neural network is covered in section 6. Input and out-
put is defined in section 6.1 and the training procedure is described
in section 6.2. In section 7 we show how to create a simplified ver-
sion of the neural network, which can be evaluated faster, for cases
where the high quality network would not be necessary.

5. Data Acquisition

In this section, we describe the setups used to record the data
to train the neural network. Data was first recorded in Guerrilla
Games’ proprietary game engine Decima, using Guerrilla’s own
look-at animation system. This provided us with virtually unlim-
ited training data, that was simpler compared to motion capture
data. Scenarios that resulted in useful data for the neural network
were later recreated in the motion capture room. Additionally, this
enabled us to do some early experimentation with neural network
architectures and tuning of hyperparameters. The data from the en-
gine is much cleaner, because the procedural animation system uses
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Figure 2: Architecture of the recurrent neural network. On the left
the neural network as used during evaluation in the game engine.
On the right, the unrolled RNN during training.

simple interpolation functions, which can act immediately. Human
gaze behaviour is more complex, due to reaction times and over-
shoots of the targets. If a model cannot learn the data from the
existing animation system, it is not able to learn from the more
complex motion capture data. For example, this set a clear mini-
mum number of neurons in the hidden layer, as well as a starting
point of values for the learning rate.

The setups that worked in the engine were then recreated in a
motion capture room. First, we will describe the incremental pro-
cess of creating the data recording setups in the engine and why
these setups were chosen. This is followed by a detailed descrip-
tion of how the setups were recreated in the motion capture room.
Finally, we discuss the extraction process for the eye data.

5.1. Gaze Following

Often, a character in a virtual world needs to follow the avatar of
the player with their gaze, when the player passes by. We call this
gaze following and this applies to targets that slightly move, but
do not require large saccades. To recreate this kind of behaviour,
we randomly move a target that within a limited space around a
character.

In the engine this is accomplished by randomly placing a look-at
target in a box of 6m wide and deep, and 3m high, such that the
target can move far away enough from the character. Although a
hemisphere around the character would be the ideal shape to sample
target positions, we used a box because they are easier to sample.
A goal is selected randomly in the box and the target is moved
towards the goal over 3.33s, by linearly interpolating between the
original position and the goal. When the target reaches the goal, a
new goal is selected and the target is moved to the new goal. While
the target is being moved, the character is constantly following the
target with its gaze.

We recreate the gaze following setup in motion capture room as
follows. A person is recorded in a motion capture room to create
gaze following training data. We recorded positions and orienta-
tions of all central joints (hips, spine, neck, head), as well as the
limbs (shoulders, elbow, wrist, knee, ankle). In addition, we used
a head mounted camera to record the face. Since we are work-
ing with multi-modal data from two sources (motion capture and
video), they have to be synchronised. A clapper with motion track-
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Figure 3: Gaze following scene in Decima engine, using the manually designed procedural gaze system. The floating mug is the gaze target.

ers is used to indicate the joint start of the recording. The video is
recorded at 60 Hz and is later edited such that the video frame rate
is dropped to match the frequency of the motion capture: 29.97 Hz.

To capture gaze following behaviour, we use the end of a pole
as the target. The pole is tracked in the motion capture, so the tar-
get is a point in the motion capture data. One person will follow
the target with their gaze while the pole is moved around them. In
order to create a more robust gaze model, the target is moved at
various heights and speeds, going behind the person, and overhead.
The scenario was repeated for different poses, including standing,
sitting, walking and laying down (see Table 1). Many of these poses
put additional constraints on the range of movement for gaze, e.g.
being unable to rotate from the hips when sitting down.

Action time (sec) frames ratio (%)
Standing 633.33 19000 31.25
Sitting 633.33 19000 31.25
Laying 280 8400 13.82
Walking 480 14400 23.68
Total 2026.67 60800 100

Table 1: Different modes of data used for training.

5.2. Eye Tracking

During the motion capture sessions, the face was recorded with a
head mounted camera. OpenFace [BRM16] was used to extract the
gaze and blinks from the video footage. Sometimes, OpenFace can
lose track of the face, often due to poor illumination of the face,
resulting in low confidence classification. When confidence is too
low, the data cannot be used for training. A LED light was placed
on the head mount to better illuminate the face, resulting in a high
confidence rate on the eye tracking for every frame. The extrac-
tion process is not precise enough to provide information about the

gaze direction of separate eyes. Due to this limitation, data about
vergence could not be extracted.

6. RNN for Gaze Animation

The neural network to control gaze animations consists of a recur-
rent layer, like LSTM or GRU, followed by a feedforward output
layer. LSTM and GRU are used as defined above. The output layer
has no activation function and is meant to ensure the representation
by the recurrent layer is converted into the correct unit vectors. The
RNN is presented with the pose of the central joints of the character
and a gaze target and it predicts the pose of the character in the next
frame. See Figure 2 for an overview of the architecture.

The recurrent layer allows the network to deal with reaction
times, overshoots of the target, and large time dependent move-
ments, like turning from the far left to the far right, or vice versa.
An RNN is capable of remembering where the motion started and
it can remember that the body should rotate along the long path,
which can take between 1 and 2 seconds. Although a feedforward
network was capable of learning the existing animation system, it
was unable to learn properly from the Decima data, because hu-
mans’ reaction time and overshoots of the target.

6.1. Input and Output

Each frame, the RNN predicts the pose of the character in the cur-
rent frame, provided by the target and the previous pose of the char-
acter. The input vector at frame i is xi = ti, jri−1,e

r
i−1, where ti is the

unit vector from the head to the target, relative to the character’s
root orientation, jri−1 are the joint rotations of the central joints of
the character, i.e. hips, spine, neck, and head, in the current frame.
er

i−1 is the forward vector of the eyes from the current frame. The
eyes can be represented with only one vector, since they have one
less degree of freedom (eyes cannot do a roll rotation). Both for-
ward vector of the eyes and joint orientations are relative to the
character’s root orientation.
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Rotations of joints are represented by six numbers, represent-
ing the up and forward vector of each joint. When the up and for-
ward vectors are known, the rotation is completely set. This rep-
resentation is similar to the work done by Zhang et al. [ZSKS18].
Pavllo et al. [PGA18] use quaternions to represent the rotations,
but this requires an additional layer after the output layer to ensure
normalisation. We found that quaternions without a normalisation
layer during training did not perform well, but using two vectors
for rotations without explicit normalisation did give correct results.
Thus, to maintain efficiency and simplicity of the model, quater-
nions were not used. It is possible that quaternions could improve
run-time performance by decreasing the length of the input and out-
put vectors, due to their more compact representation.

Only the central joints are used as input. Although the arms and
legs could theoretically add more information about the character’s
pose, and thus the constraints on rotations, arms and legs have been
omitted here. In our tests it deteriorated the results, because the
RNN could not generalise correctly over the extra joints and found
correlations between the arms and legs and the central joints. This
led to unpredictable behaviour when running the neural network on
a character which had a pose where the arms and legs were in a con-
figuration that is not present in the training data. The output vector
is defined as yi = jri , which contains the joint rotations of all the
central joints, and is similar to the input vector joint representation.

6.2. Training

The input and output vectors are combined in minibatches of size
64. The RNN is trained on sequences of 120 frames, or four seconds
of data. The dataset is mirrored to double the amount of data. Both
inputs and outputs are then normalised by subtracting the mean and
dividing by the standard deviation.

To predict the next values of rotations of the joints is a regression
task. To compute the error between the prediction and the expected
value, Mean Squared Error was used:

COST (X ,Y,θ) = 1
n ∑

n
i=1(Yi −θ(Xi))

2

where X is the input, Y is the expected output, and θ is a model for
predicting Y from X . The ADAM optimiser [KB14] was used to
train the model, with an initial learning rate set to 0.0001, β1 = 0.9,
and β2 = 0.999. The hidden layer consists of 512 neurons. Training
was done in the deep learning framework TensorFlow [ABC∗16]
and was performed using an Intel Xeon E5-1650 CPU at 3.6 GHz,
an Nvidia GTX 1080 GPU, and 64GB of RAM. The model is
trained for 50 epochs, taking roughly 12.5 hours to train. The val-
ues of the training hyperparameters were selected through a grid
search [GBC16] over potential values and selecting the values that
resulted in the most natural gaze motions.

The neural network is trained using its own outputs as inputs
combined with the target from the captured data, except for the
first frame of a training sequence, which is completely extracted
from the data. Experiments with teacher forcing [GBC16], where
the RNN trains using only the ground truth inputs, shows that it
does not benefit the model, thus slowing down training compared
to training directly with the RNNs own outputs. Dropout [SHK∗14]
could not be used in our RNN, since that would disrupt the in-
formation flow of the RNN during backpropagation through time.

Zaremba et al. [ZSV14] suggests using dropout only on the inputs,
but in our case this would still disrupt the information flow, because
our RNN uses its own outputs as inputs. Martinez et al. [MBR17]
found that an RNN that uses it own output as input results in enough
variation in the input to function as regularisation. However, we
found that this did not provide enough regularisation to prevent
overfitting. When overfitting occurs, the gaze animation appears
to shake and jitter. Too much regularisation makes in the model no
longer capable of learning all motions and appears stiff and unre-
sponsive.

We experimented with weight decay, specifically L1 and L2 reg-

ularisation, also known as LASSO and ridge regression, respec-
tively [GBC16]. These regularisation techniques put a constraint
on the sum of the absolute weight values for L1 and the sum of
squared weights for L2, defined as

L1(θ) = ∑i |wi|
L2(θ) = ∑i w2

i

Then, the cost function gets expanded to

COST (X ,Y,θ) = 1
n ∑

n
i=1(Yi −θ(Xi))

2 +λ∗Ll(θ), for l ∈ {1,2}

where λ is a tunable hyperparameter. In our experiments we found
that both L1 and L2 were able to limit overfitting, eliminating the
jitter in the animation. L1 easily limitted the model too much, caus-
ing the network to become unresponsive. L2 on the other hand was
able to remain responsive, although we found that there is a sharp
drop off point for responsiveness. We used L2 regularisation with
λ= 8∗10−5. Increasing λ to just 1∗10−4 already starts to decrease
responsiveness.

7. Level of Detail

In many areas of computer graphics, adaptively controlling the
level of detail (LOD) is commonplace to keep a steady frame rate.
For example, trees or characters far away are rendered with a lower
polygon counts and lower resolution textures. As the camera gets
farther away from the objects, fewer details are rendered. A similar
approach can be taken for animation. Very nuanced motions will
not be noticed from afar and can be left out when the camera is far
away. For look-at animations, the eyes become too small at a dis-
tance for the irises and pupils to be noticed. Controlling the eyes
beyond such a distance is unnecessary and can be left out. Some
details in the motion of the central joint can also be simplified. The
motion capture data shows that there is a specific coupling in the
joints between the hips and the chest, and between the neck joints.
This makes it possible to remove some details, by only predicting
the hips, the chest, and the head, and interpolating the joints in be-
tween. This will make the approximation by the neural network less
precise, but faster to evaluate.

For the LOD version of the gaze network, the eyes are omitted,
as well as seven out of the ten central joints, see Figure 4. Only
the hips, chest, and head will be used for the input and output. This
means that the input changes from 66 tot 21 and the output from
63 to 18. The number of neurons of the recurrent layer can also be
decreased, since less information need to be processed and stored.
This decrease in model size decreases training time and evaluation
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time. The LOD network is trained separately, with all other hyper-
parameter the same.

The seven joints that are not predicted by the LOD network are
set by interpolating between the hips and chest or chest and head,
for the spine and neck, respectively. This is done using a slerp
(spherical linear interpolation) operation on the quaternions obtain
from the rotation matrices of the predicted joints. These rotation
matrices are defined by the predicted forward and up vectors.

The LOD network is trained with 96 hidden units and a learn-
ing rate of 0.001. The regularisation coefficient λ = 0.0001, which
is slightly higher than for the complete network, because the num-
ber of weights grow quadratically with the number of hidden units.
This means that a larger model requires a lower regularisation co-
efficient. Similar to the complete model, the hyperparameters were
selected through a grid search of potential hyperparameters values.
Other than that, all other hyperparameters are unchanged for the
LOD network compared to the complete network.
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Figure 4: Architecture of the LOD network.

8. Results

After training, the neural network is exported from TensorFlow as
a text file, then parsed and loaded into the game engine and eval-
uated using our own implementation of forward propagation. The
recurrent layer stores its memory, along with the weight matrices
and bias vectors, and can update it each frame. The gaze animation
is applied after all other animations and it keeps track of its previ-
ous output, which is to be used as input in the next frame. A gaze
target is provided from game code and is converted to a unit vec-
tor, that starts at the character’s head, and is rotated relative to the
character’s root orientation.

8.1. Evaluation

The neural network is capable of more realistic movement than the
manually designed animation system for gaze, especially in more
extreme gaze directions, like looking directly behind or above the
character (see Figure 5 and 1). The RNN can also adopt more con-
strained poses, like sitting or laying down (see Figure 6 and 7),
which can be difficult to create a robust procedural system for. If
the model is not complex enough, it will start to underfit. This re-
sults in the head rotating beyond its limits and shaking movements,
because the approximation of the motion is too coarse to move

smoothly. Underfitting also happens when the training sequences
were not long enough. Four seconds seem to be the minimum du-
ration, such that the largest motion can be correctly learned. When
trained on sequences of 1 or 2 seconds the head would rotate back-
wards in some situations, because the RNN had never seen the com-
plete motion of reaching the rotation constraint on the far left and
then moving all the way to the utmost constraint on the right. With
sufficiently long training sequences, these issues do not occur.

Models can be trained to learn various poses and if a new pose
needs to be added, that situation can be recreated in a motion cap-
ture room for additional data, and a new model can be trained for
that new situation. This is easier than extending an existing proce-
dural system, where internal dependencies can make the system in-
creasingly complex to maintain and extend. Compared to the exist-
ing procedural animation system, the neural network is capable of
more variety in its motions. This is seen in slight delays, due to re-
action time, overshoots of the target if the target suddenly changes
direction, because the network has also learned to make predictions
about the target.

Between LSTM and GRU we could not find one that performed
notably better visually. They were both able to approximate the
data, but the GRU gets the preference here, because it uses two
fewer matrices. Thus, GRU has fewer variables to train, resulting
in lower training times, as well as faster evaluation of the model.

Compared to the motion capture, there are still some differences.
This is largely due to the fact that the neural network can only con-
trol the central joints of the skeleton. When people stand in a re-
laxed pose and follow the target with their gaze, they will displace
their weight depending on their gaze direction: if one is looking to
the left, they tend to lean to the left, unless the target is close by, in
which case people try to keep their distance by leaning in the op-
posite direction. Because the neural network can only control the
central joint and not the legs, this behaviour cannot be mimicked
by the system. It is possible that the complete skeleton can be suc-
cessfully controlled if enough data is present, but we did not have
enough data to test this hypothesis (see section 6.1).

The RNN can be evaluated in 0.585ms and requires 3.52MB of
memory, making it suitable for real-time animation. The LOD net-
work runs in 60µs and requires 0.20MB, which would enable this
technique to be used for a large number of characters in a scene.

8.2. Comparison

Selecting a neural network architecture for animation is a non-
trivial task. For locomotion there have been several papers, each
using a different architecture [FLFM15, ?, HKS17, ZSKS18]. We
compare our architecture with two of these approaches that also
use RNNs and show why our method is preferred to the neural ar-
chitectures used for locomotion. We also compare our method to a
feedforward network and a stacked RNN, to show that the recur-
rent layer is necessary and that adding more recurrent layers does
not improve performance over a single recurrent layer.

In total, we compare five different neural architectures: a feed-
forward network, our RNN with one recurrent layer, a stacked
RNN with two layers, a RNN with residual connections proposed



A. Klein / Data-Driven Gaze Animation using Recurrent Neural Networks

Figure 5: Constraints are learned. Here, the target moves behind the back of the character, which requires a rotation from the far right to the
far left.

Figure 6: The RNN can also perform gaze while sitting, adding constraints to the hips, limiting the reach of the gaze animation.

Figure 7: When laying down, most joints are constrained except for the head. The target cannot be completely followed anymore.
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by Martinez et al. [MBR17], and an Encoder-Recurrent-Decoder
(ERD) proposed by Fragkiadaki et al. [FLFM15]. Their architec-
tural designs can be seen in Figure 8. The ERD uses a feedforward
encoding layer before and a feedforward decoding layer after the
recurrent layer. These encoding layers enables the ERD to map the
input into an encoded state that is better suited for the recurrent
layer and the decoder can map it out of the encoded state. Both
layers have half the number of neurons compared to the recurrent
layer and both use ReLU activations, similar to the setup used by
Fragkiadaki et al. for pose prediction. Residual connections, some-
times also called skip connections, link the input directly to the
output. In our case, they add the input pose to the predicted pose,
which changes the learning problem from learning complete poses
to learning the differences in poses. The feedforward network has
two feedforward layers with ReLU activation, followed by a linear
output layer. All architectures are created to have the same mem-
ory footprint as our proposed method. Each network is trained for
50 epochs, with a batch size of 32, and a sequence length of 120
frames, except for the feedforward network, which can only train
on single frames. The results of the comparison can be found in
Table 2.

The feedforward network is not able to learn properly from the
motion capture data, which can be seen from its error rate. Due to
its lack of temporal information, the feedforward network generates
rather static animations that looks robotic. Experiments by adding
the angular velocities of each joint did not show any significant im-
provements. The model is capable of gaze following for some time,
but cannot correct its own mistakes like the RNNs can. Eventually,
it generates too extreme values, exploding the joint rotations until
numerical errors puts it in a unresolvable state (see appendix).

The RNN with residual connections [MBR17] was not able to
get the same level of accuracy as the other RNN models. Learning
the difference between poses does not improve learning results in
gaze animation. The residual network quickly looses track of the
adjustments it has to make to the pose. This in turn places the char-
acter in poses the network has never seen before, which it has never
learned to recover from. Soon after initialisation, the character is
twisted in impossible poses, making this approach too unstable.

The ERD [FLFM15] give similar results to our method, but does
not improve on them. However, the added encoder and decoder lay-
ers do increase training time, evaluation time, and the number of
hyperparameters. Since there is no improvement in animation qual-
ity, there is no benefit in adding the encoder and decoder layers.
Because our goal is to create a model in real-time virtual environ-
ments, the run-time performance of our method is preferred. The
same arguments used for the ERD are applicable to the stacked
RNN. Adding a recurrent layer to the network does not improve
animation quality, but does increase training time and evaluation
time.

8.3. User Study

To evaluate the perceived naturalness [VWVBE∗10] of the gaze an-
imation produced by the neural network, we conducted a user study.
We compared our proposed model and its LOD version against the
procedural approach in Decima and the ground-truth motion cap-

Model Layer size
Error
score

Training
time
(50 epochs)

Run
time
(us)

Feedforward 896, 896 5.4499 10 min 500
RNN 512 0.1264 1:10 h 585
Stacked 312, 312 0.1373 1:30 h 658
Residual 512 0.1824 1:15 h 580
ERD 212, 424, 212 0.1162 2:15 h 700

Table 2: Training results of the comparison.

ture data. The motion capture data was recorded specifically for the
user study and was not used to train the model.

8.3.1. Survey Setup

Our hypothesis was that (1) the LOD network would be preferred
to the procedural system, (2) the complete neural network would be
preferred to the LOD network, (3) the ground truth motion capture
would preferred to the neural network. More formally,

procedural < LOD RNN < complete RNN < motion capture

The users were shown 18 videos in total. Per video, two out of
the four techniques were shown side-by-side, resulting in 6 videos
per pose. The user is asked to select the video that they perceive
as most natural. Each video is roughly 10s long. The comparison
videos were grouped by pose (so the participants could easily de-
termine how far they were) and were presented in a random order
per pose.

The survey was send out to game industry professionals within
Guerrilla Games. First, the participants were asked which depart-
ment they belonged to, e.g. art, animation, programming, etc. We
were particularly interested in differences in answers between ani-
mators and non-animators, since we expected animators to have a
more critical eye on this topic. A total of 73 people participated. 16
of them were animators.

8.3.2. Results

The results of the user study can be found in Figure 9. For the val-
ues of the statistical analysis, see the appendix. In all cases, there is
a significant preference over all other techniques compared to the
old procedural system, which is in line with our hypothesis. The
original motion capture (mocap in Figure 9) was not significantly
preferred to the complete RNN, when sitting. For the sitting pose,
the motion capture is often perceived as less natural than the com-
plete RNN and LOD network, which can be attributed to a differ-
ence in poses between the motion capture and the other techniques.
When laying down, the motion capture is significantly preferred
over all other techniques. This can be contributed to the motion of
the arm the character is resting on. This arm is still on the ground
in the motion capture, while it can still move a little bit in the other
techniques. The arm movement makes the other techniques seem
less natural.

Surprisingly, the LOD network was preferred to the complete
RNN, in all poses except the sitting. When sitting, the results were
split down the middle. The motions generated by the LOD network
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Figure 8: The various architectures used for our comparison: (a) feedforward network, (b) GRU with output layer, (c) stacked GRU with
output layer, (d) GRU with residual connections, (e) ERD network.

could appear smoother, because it is trained on a simpler task, i.e.
it can predict more precisely. Together with the quaternion interpo-
lation, jitter can be smoothed away, which might still occur on the
complete RNN, which predicts seven more joints. Not only is the
LOD network simpler and faster, it also is perceived as more natu-
ral. Animators’ responses were in all cases in line with the results
from all participants.
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Figure 9: Results of the user study. Participant were asked for each
pair of techniques which one they preferred.

9. Limitations and Future Work

It is possible to find undesired motions when the neural network
is confronted with targets that are not present in the training data.
This occurs for example when the target moves past the head very
closely, which can result in a high angular velocity on the target
vector. Although this could be improved by more training data
which capture these scenarios, the issue can also be alleviated by
preventing the gaze target to move that close to the character.

This research has focussed on gaze following behaviour, but the
model struggles with large saccades, since that was not present in
the training data. It would not be difficult to train the model with
such data, but we did have difficulty recording such behaviour reli-
ably. We have tried one setup for large saccades, where gaze targets
were placed in a dome around the gazing person. Each target was a
LED light and a buzzer, which could be controlled through an Ar-
duino, as well as a motion capture tracker, so each target was also
present in the motion capture data. A script in the Arduino would
turn on the targets one by one in a randomised order. Unfortunately,
people could not effectively determine where the sound was com-
ing from, which turned the gaze behaviour into search behaviour.
This made for very noisy data, that was not useful for training. If
large saccadic data could be obtained, we do expect that this could
be learned, as this was the case for the data from the procedural
animation system.

The neural network can control the eyes, although results on the
eyes were inadequate. This is mostly due to the quality of the eye
data in the training data. The consistency of the gaze direction ex-
traction (and blink detection) of OpenFace is not good enough for
the purpose of this research. However, as the technique to extract
these features from video becomes better, the quality for prediction
by a neural network also improves.

Sometimes the naturalness of the gaze animation is decreased by
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movement in joints not directly controlled by the neural network.
For example, the shoulders move along with the gaze animations
when the character is laying down, which also moves the support-
ing arm. Similar artifacts in the kinematic linking can be found in
the feet when the hips makes a roll rotation. This could be solved in
other part of the animation system, e.g. extended foot locking, but
this is beyond the scope of this thesis.

The proposed gaze network is trained to provide gaze behaviour
in situations where characters are not particularly interacting with
other characters. Gaze behaviour changes when people are in a con-
versation with each other. We do consider this another problem and
beyond the scope of this research, but it would be interesting to see
the performance of the proposed method on conversational gaze
scenarios.

10. Conclusion

We propose a data-driven method for creating gaze animations by
using a recurrent neural network (RNN). Our method is capable of
learning gaze animations in various poses from multi-modal data
from motion capture and a head-mounted camera. We describe how
the training data was recorded in the motion capture room. The
RNN is fast enough for real-time virtual environments. To make
our method applicable to even large groups of virtual characters, we
also designed an RNN on a lower level of detail (LOD), for charac-
ters that are further away from the view point. We have performed
a user study among game industry professionals, which shows that
both the complete RNN and LOD network improve naturalness of
the gaze animations, compare to the procedural gaze animation.
The LOD network is perceived as more natural than the complete
model, making the LOD network a great approach for real-time
gaming, even in scenarios with many characters.
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Appendix A: Motion Capture

Figure 10: Images of the motion capture recording in a standing pose, with the head-mounted camera footage in the top-right corner.

Figure 11: Images of the motion capture recording in a sitting pose, with the head-mounted camera footage in the top-right corner.
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Appendix B: User Study Survey

Figure 12: Introduction page to the survey.
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Figure 13: Part of the questions on the sitting pose.
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Figure 14: Part of the questions on the laying pose.
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Results User Study - All

* marks significant results.

Standing Left Right χ2 p-value
Mocap, RNN 40 33 0.67 0.4795
Mocap, LOD 26 47 6.04 0.0192*
Mocap, Procedural 72 1 69.05 <0.0001*
RNN, LOD 15 58 25.33 <0.0001*
RNN, Procedural 51 22 11.52 0.001*
LOD, Procedural 68 5 54.37 <0.0001*

Table 3: All preference values for the standing pose, with χ2 and p-values.

Sitting Left Right χ2 p-value
Mocap, RNN 8 64 43.56 <0.0001*
Mocap, LOD 28 45 3.96 0.0614
Mocap, Procedural 50 22 10.12 0.0015*
RNN, LOD 36 36 0 1
RNN, Procedural 65 7 46.72 <0.0001*
LOD, Procedural 63 9 40.5 <0.0001*

Table 4: All preference values for the sitting pose, with χ2 and p-values.

Laying Left Right χ2 p-value
Mocap, RNN 65 7 46.72 <0.0001*
Mocap, LOD 67 6 50.97 <0.0001*
Mocap, Procedural 68 4 56.89 <0.0001*
RNN, LOD 17 56 20.84 <0.0001*
RNN, Procedural 64 8 43.56 <0.0001*
LOD, Procedural 70 2 62.34 <0.0001*

Table 5: All preference values for the laying pose, with χ2 and p-values.

All Poses Left Right χ2 p-value
Mocap, RNN 113 104 0.3 0.5839
Mocap, LOD 121 98 2.42 0.1362
Mocap, Procedural 190 27 122.44 <0.0001*
RNN, LOD 68 150 30.84 <0.0001*
RNN, Procedural 180 37 94.24 <0.0001*
LOD, Procedural 201 16 156.02 <0.0001*

Table 6: All preference values for all poses combined, with χ2 and p-values.
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Results User Study - Animators

* marks significant results.

Standing Left Right χ2 p-value
Mocap, RNN 11 5 2.25 0.2117
Mocap, LOD 7 9 0.25 0.8065
Mocap, Procedural 0 16 16 0.0002*
RNN, LOD 7 9 0.25 0.8065
RNN, Procedural 11 5 2.25 0.2117
LOD, Procedural 16 0 16 0.0002*

Table 7: Animators’ preference values for the standing pose, with χ2 and p-values.

Sitting Left Right χ2 p-value
Mocap, RNN 1 15 12.25 0.0012*
Mocap, LOD 4 12 4 0.0802
Mocap, Procedural 4 12 4 0.0802
RNN, LOD 8 8 0 1
RNN, Procedural 16 0 16 0.0002*
LOD, Procedural 15 1 12.25 0.0012

Table 8: Animators’ preference values for the sitting pose, with χ2 and p-values.

Laying Left Right χ2 p-value
Mocap, RNN 15 1 12.25 0.0012*
Mocap, LOD 14 2 9 0.006
Mocap, Procedural 15 1 12.25 0.0012*
RNN, LOD 3 13 6.25 0.0245*
RNN, Procedural 14 2 9 0.006
LOD, Procedural 15 1 12.25 0.0012*

Table 9: Animators’ preference values for the laying pose, with χ2 and p-values.

All Poses Left Right χ2 p-value
Mocap, RNN 27 21 0.75 0.4708
Mocap, LOD 25 23 0.08 0.8875
Mocap, Procedural 19 29 2.08 0.1949
RNN, LOD 18 30 3 0.1124
RNN, Procedural 41 7 24.08 <0.0001*
LOD, Procedural 46 2 40.33 <0.0001*

Table 10: Animators’ preference values for all poses, with χ2 and p-values.
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Appendix C: Comparison

Figure 15: The feedforward network’s generated motion is stale and eventually breaks down.

Figure 16: The stacked RNN works as smooth as our method, but is more expensive to train and evaluate.
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Figure 17: The residual network has stability issues.

Figure 18: The ERD works as smooth as our method, but is more expensive to train and evaluate.
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Appendix D: Complete Network Examples

Figure 19: Occasionally, the complete RNN overgeneralises and tries to rotate the head backwards. Other poses do not suffer from this
artifact, because the head cannot rotate to 180 degrees left and right in other poses. Since the joint rotations are predicted in character space,
there is no difference between a 180 degree left rotation and a 180 degree right rotation.

Figure 20
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Figure 21: The supporting arm still slightly moves, due to the kinematic linking. This lowers the perceived naturalness of the animation,
compared to the motion capture.

Appendix E: LOD Network Examples

Figure 22: The LOD network is trained on a simpler task than the complete RNN. Only the hips, chest, and head are predicted, while the
spine and neck are interpolated. The LOD network has learned that it cannot turn the backwards and needs to turn forwards to follow a target
moving behind the character.
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Figure 23: When sitting, the hips can no longer rotate. The LOD network has learned this constraint from the data.

Figure 24: The LOD network mostly turns from the head when laying down, as hips to chest are mostly constraint.


