
Empirical Study of the Vehicle Routing Problem

with Time Windows

Using a Large Neighbourhood Search algorithm for Vehicle Routing Problems with
Time Windows to Show the Importance of Empirical Research in the Operations

Research Field

Jacco van Wijk, 6599435
Supervision: Tomas Klos

Second Reader: Francisca Pessanha

Bachelor Kunstmatige Intelligentie, UU

15 EC

February 5, 2021

Abstract

In this paper, I try to show the value of using empirical research for
problems in the Operations Research field. This is done using the Vehicle
Routing Problem with Time Windows, which consists of finding the best
set of routes past all customers, with the goal to minimise the cost of all
the routes. To find solutions for this problem, the Large Neighbourhood
Search algorithm is used. A characteristic of the algorithm is highlighted,
after which a hypothesis is created. This hypothesis tried to explain the
behaviour of the algorithm in relation to the characteristic. An empirical
study is used to refute this hypothesis and the gained understanding of
the algorithm is highlighted.

Contents

1 Introduction 2

2 Theoretical Background 4
2.1 Vehicle Routing Problem with Time Windows 4
2.2 Large Neighbourhood Search . 5

2.2.1 Relaxation . 6
2.2.2 Reinsertion . 7

3 Methodology 9
3.1 Empirical study of Algorithms 9
3.2 Examples of Empirical Research 9

3.2.1 Empirical Research in Operations Research 9
3.2.2 Empirical Research in Physics 10

4 Experimentation 11
4.1 Experimental setup . 11
4.2 Empirical Study . 12

4.2.1 Observations . 12
4.2.2 Hypothesis and implications 15

5 Results 16

6 Discussion 18

7 Conclusion 19

8 Acknowledegments 19

1

1 Introduction

The COVID-19 crisis has affected a lot of companies in a lot of different branches
worldwide. For instance, 96% of the dutch entrepreneurs in the catering industry
have been affected negatively by the COVID-19 crisis (Dutch Ministry of Social
Affairs & Employment et al., 2020). However, not all companies are affected
negatively. For instance, I have a part-time job as a grocery delivery employee
for a company called Picnic, where I noticed a steady increase in customers and
orders. Because of this increase, I think it has become even more important to
optimise the time I spend delivering the groceries. That way I can deliver more
groceries to meet the high demand even better. In this job, I have control over
where I park my car, minimising the distance to the door to optimise the walking
time to the door. I also have control over the number of products I carry at
once to optimise the delivery time without straining my back too much. What
I do not control, however, is the delivery time and the route I take to deliver
the groceries. The construction of this route with its time windows is done in
advance by an algorithm.

This construction of a route is a typical problem for the Operations Research
(OR) field, which is closely related to the Artificial Intelligence (AI) research
field. Being an AI student myself, and being interested in the optimisation
and construction of my routes when driving for my part-time job, I ended up
contacting a distribution analyst at Picnic. He explained the way they looked at
the problem and the gist of their algorithms for optimising the solutions. This
answered my question of how routes at Picnic are created, but it also created
new questions like “How do you know a solution is well optimised?” or “Why
do some algorithms work better than others?”. The latter question was part of
the inspiration for picking the routing problem and its algorithms as the subject
of my thesis.

To understand how to solve a problem like a routing problem, it is essential
to first understand how AI can solve a problem. Therefore, what the meaning of
AI entails in research needs to be clear before we can use it to solve a problem.
As an AI bachelor student, I have seen multiple approaches to AI pass by. In the
book Artificial Intelligence: A Modern Approach by Russell and Norvig (2010),
some of these approaches are discussed. The four approaches to AI listed are
either thinking or acting in either a human way or a rational way. For this
thesis, thinking rationally is the most suited approach, because the purpose of
the problem is to come close to the ideal solutions, instead of trying to find
solutions as a human would.

One of the most famous variants of a routing problem is the Traveling Sales-
man Problem, which is a problem that tries to find the best single route along
all of the customers. For a company like Picnic, the routing problem is slightly
more complex as the focus is on finding the best set of routes for delivering
to all customers in the promised time windows. So instead of optimising one
route, it is also necessary to optimise the number of routes. The general term
for this problem is the Vehicle Routing Problem (VRP), with this specific case
being the Vehicle Routing Problem with Time Windows (VRPTW). Over the

2

last few decades, there has been a lot of research within the OR field regarding
this problem. Two articles in which this problem has been researched are the
articles of Shaw (1998) and Bent and Van Hentenryck (2004), where the latter
is a variation of the algorithm of the first paper. Shaw mentioned the neces-
sity of a variation that performs better in certain circumstances and Bent and
Van Hentenryck show that it does perform better in these circumstances, but
neither go into detail as to why (This will be further explained in section 4.1).
This creates a lack of understanding as to why the algorithm performs the way
it does.

This lack of understanding makes the research fall short on science according
to Hooker (1994, 1995). He proposed to use a way of doing research in OR that
tries to describe the interaction between observations and the algorithm, which
is called empirical research. Even though he proposed this over 25 years ago,
the industry-standard within the OR is still biased to experimental data over
empirical research.

This paper aims to show the benefit of using an empirical study in the
OR field proposed by Hooker. This will be done by trying to gain a better
understanding of why the algorithm proposed by Shaw works the way it does. In
section 2, the foundation of this study will be set with a theoretical background
on the subject. In section 3, the benefits and structure of an empirical study
will be further explained. The empirical study will be applied in sections 4 and
5 and discussed in sections 6 and 7 to show its benefits.

3

2 Theoretical Background

2.1 Vehicle Routing Problem with Time Windows

The VRP is classified as an NP-hard problem (Lenstra and Kan, 1981), which
means we expect no efficient algorithms. This also means there is rarely any
certainty of knowing the best solution, i.e. the time to compute rises exponen-
tially with the problem size. If we would go over every possible solution of a
problem, it would take an unreasonable amount of time. To get to a solution in
a reasonable amount of time, it is possible to use certain priority rules to find
more optimised solutions in less steps. These priority rules are called heuristics,
which are also used for the VRP, and likewise for the VRPTW algorithms.

v1

v2
v3 v4

v5

v6

v7
v8

v9

vD

Figure 1: An example of a list of visits and a depot.

Before looking for a heuristic solution, it is essential to first formally define
the problem and its variables. The algorithm starts with a problem that consists
of a list of N visits {v1, ..., vN} plus a depot vD (as visualised in Figure 1). Each
visit vi consists of its coordinates (xi, yi), a time window [ei, li] with ei being
the earliest allowed arrival time and li the latest, a demand di of the capacity
of the vehicles, and a service time ti which describes the time it takes to do the
delivery at the visit. The travel cost Cij between vi and vj is the straight-line

distance, which is equal to
√

(xi − xj)2 + (yi − yj)2. The normalized travel cost
C ′ij is the Cij divided by the largest distance between two visits in the problem.

A solution or routing plan σ consists of a list of routes {r1, ..., rm}. Each
route rk consists of a list of visits that begins and ends with the depot vD (as
visualized in Figure 2, where every list of colored arrows is a route1). This is
represented by a non-empty list of visits. To check if a route is legal, the sum
of the demands d(rk) =

∑
vi∈rk di has to be lower than the capacity c of each

of the problem’s vehicles. Furthermore, none of the time windows [ei, li] can be
violated. To check if none of the time windows is violated, the departure time
δi for every visit i in rk is calculated. Using vi′ as the visit before vi in rk, δi is
equal to {

δ0 = 0

δi = max(δi′ + Ci′i, ei) + ti

1I would like to apologize to color blind people and people who are reading this in black
and white, because in some places color was used to make routes more distinct.

4

v1

v2

v3 v4
v5

v6

v7
v8

v9

vD

Figure 2: An example of a routing plan.

The earliest service time ai for vi is defined as

ai = max(δi− + Ci′i, ei)

A routing plan σ is only legal if all of its routes rk are legal and all visits vi are
in a route, i.e. a routing plan σ is legal if{

d(rk) ≤ c (1 ≤ k ≤ m)

ai ≤ li (vi ∈ rk, 1 ≤ k ≤ m)

Finally, the total cost of a solution Ctotal is described as

Ctotal =
∑

i,j∈routes
Cij

2.2 Large Neighbourhood Search

The Large Neighbourhood Search (LNS) algorithm proposed by Shaw (1998) is
a variant of a Local Search (LS) algorithm. A LS algorithm operates using a
single current solution and it only moves to neighboring solutions (Russell and
Norvig, 2010, ch 4.1), i.e. a solution that is a single change away from the current
solution. In context of a VRPTW, a LS algorithm looks at a single routing plan
at a time, while only going to new routing plans that have a single visit in
a different route compared to the current routing plan. The LNS algorithm
differs from the LS algorithm in the definition of a neighboring solution, with
LNS being able to change the route of multiple visits at a time.

The LNS algorithm, as proposed by Shaw, is an algorithm that relaxes (re-
moves) one or more visits from their current route and reinserts those visits in
a route which lowers Ctotal. The relaxation is visualized in Figure 3, where the
algorithm selected v7 to be relaxed. Reinserting v7 is visualized in Figure 4.
The reinsertion is done using a Limited Discrepancy Search (LDS), proposed
by Harvey and Ginsberg (1995), which iteratively searches the space within a
certain limit on the number of discrepancies or changes allowed. Because of the
variability of the discrepancies, the value of this has to be specified as an input
for the algorithm.

5

v1

v2

v3 v4
v5

v6

v7
v8

v9

vD

v1

v2

v3 v4
v5

v6

v7
v8

v9

vD

Figure 3: An example of the relaxation of a visit.

v1

v2

v3 v4
v5

v6

v7
v8

v9

vD

v1

v2

v3 v4
v5

v6

v7
v8

v9

vD

Figure 4: An example of the reinsertion of a visit.

2.2.1 Relaxation

The number of visits that are relaxed by the algorithm are based on the toRemove
variable, which starts at a value of one, and increases every time the solution
is not improved after a certain number of attempts attempts. This variable
attempts is also part of the input of the algorithm. The first visit to be relaxed
is always chosen at random. After that, the relaxation is based on relatedness
R(i, j) to one of the already relaxed visits, which is defined as

R(i, j) =
1

C ′ij + Vij

where Vij is equal to 1 when vi and vj are not in the same route, and is equal
to 0 when vi and vj are in the same route before relaxing the visits. This
means that the closer R(i, j) is to 1, the more related the visits vi and vj are.
This relatedness approaches 1 from above if they were in the same route, and
approaches 1 from below if they were not in the same route (as visualised in
Figure 5). The importance of the relatedness is dependant on the determinism
D, which is also one of the inputs, and a random variable between 0 and 1 rand .
The next visit to relax is chosen out of a list of all the other visits sorted on

6

Figure 5: The relatedness of vi and vj compared to their normalised cost C ′ij if
Vij is either 0 or 1.

relatedness to an already relaxed visit. This is done by calculating the location
l like |visits| · randD rounded down to an integer. The pseudo-code for the
relaxation is given in Figure 6.

RemoveVisits (RoutingPlan plan)

1 Visit v := GetRandomVisit(plan)
2 VisitSet removed := {v}
3 while |removed | < toRemove
4 v := ChooseRandomVisit(removed)
5 VisitSet ranked := RankUsingRelatedness(v, plan)
6 r := Random.NextDouble(0,1)
7 i = |ranked | ∗ rD
8 v := ranked [i]
9 removed + = v

Figure 6: Pseudo-code for the relaxation process.

2.2.2 Reinsertion

The visits are reinserted in the order of distance to the depot vD, starting with
the farthest visit. When a visit is selected to be reinserted, a list of all legal
positions in all routes is generated. The list of positions is sorted by the routing
plan’s total cost Ctotal when a visit is to be placed on that position. Because it
is a variant of the LDS algorithm, the sorted list of positions is only evaluated
until the limit of discrepancies is reached. If the list of visits to reinsert is empty,
the algorithm checks if Ctotal is lowered. The pseudo-code for the reinsertion is

7

given in Figure 7.

Reinsert (RoutingPlan plan, VisitSet toInsert , int discrepancies)

1 if |toInsert | == 0
2 double cost = CalculateCost(plan)
3 if cost < bestCost
4 bestPlan := plan
5 bestCost := cost
6 else
7 Visit v := ChooseFarthest(toInsert)
8 toInsert .Remove(v)
9 int i := 0

10 for p in RankedPositions(v)
11 if i ≤ discrepancies
12 RoutingPlan copy := Copy(plan)
13 PlaceVisit(copy , visit , p)
14 Reinsert(copy , toInsert , discrepancies − i)
15 i += 1
16 else
17 break

Figure 7: Pseudo-code for the reinsertion process.

8

3 Methodology

3.1 Empirical study of Algorithms

The empirical research that Hooker proposed to use in the OR field is a kind of
research that does not solely look at the performance of an algorithm. Finding
an improvement for an algorithm is nice, but understanding why the algorithm
behaves the way it does is even better. This understanding is the figurative
bridge between the observations about the algorithm and the inner workings of
the algorithm itself. This kind of research has three main components which
are also explained by Hooker (1994): a few tests to find observations that raise
questions (noted as O), an informed hunch or hypothesis that tries to explain
the observations (noted as H), and testing the implications that come from the
assumption that the hypothesis is true (noted as I).

Setting up a study with this structure has multiple advantages, with Hooker
mentioning in his paper Needed: An Empirical Science of Algorithms that de-
ductive studies often rely on proving worst and average case theories. These
theories are needed to give context to the results of the study or show how
significant the results are. To construct these theories, the focus is on very
atypical problems that show the worst possible solutions and randomly dis-
tributed problems to generate an average solution. An empirical study focuses
on more directed hypotheses, which means only problems that test this hypoth-
esis directly are needed. Therefore, an empirical study does not have to rely on
the worst and average case theories like the standard deductive study.

To take full advantage of an empirical study, it is best to create a cycle of
hypotheses. This is done with either one of these steps:

• If the implications of the previous hypothesis were proven true, try to
construct new implications in an effort to disprove the hypothesis. Section
3.2.1 is an example of this setup.

• If the implications of the previous hypothesis were proven false, create a
new hypothesis to explain the observation in a different way. Section 3.2.2
is an example of this setup.

The next section describes this cycle process in a few examples from the OR
field, but also from outside of the OR field.

3.2 Examples of Empirical Research

3.2.1 Empirical Research in Operations Research

After Hooker proposed the empirical study as a research method in the OR field,
he and Vinay used this setup for their paper Branching Rules for Satisfiability
where they try to understand the performance of the Jeroslow-Wang rule better
(Hooker and Vinay, 1995). I will not go into detail on what this rule is and how
it works in this paper. In their paper, Hooker and Vinay use an empirical setup
to first refute the common rationale for the rule in question. After this they use

9

an empirical setup to strengthen a different hypothesis on the performance of
the rule in question. So, the experimental setup for their research looked like
this:

O1: Observation: Hooker and Vinay noticed that the Jeroslow-Wang rule and
its variants performed well in recent work.

H1: First hypothesis: They capture the common rationale for this behaviour
in an empirical hypothesis.

I1: Implications: They use this hypothesis to create a new rule, which should
show a similar performance according to the hypothesis. This does not
seem to be the case, which is a reason for them to refute the first hypoth-
esis.

H2: Second hypothesis: They create a new hypothesis, which they feel fits the
performance better.

I2: Implications: They use this hypothesis to create a new rule again, which
should show similar performance according to the hypothesis. This is also
what the results show, which is why the hypothesis is not refuted.

This setup gave Hooker and Vinay a way to refute the common rationale, and
enough of an understanding to find a better hypothesis that is not refuted as
easily. But apart from examples like this, there are a lot of examples within
other research fields that show how strong the evidence of an empirical study
can be.

3.2.2 Empirical Research in Physics

In the research field of physics there is a very rich history of empirical researches.
In 19th and 20th century, physicists were able to refute one of the most famous
theories in history: Newton’s theory of gravity. Observations like an irregularity
in the orbit of Mercury led to the need of a new theory. The physicist Albert
Einstein published a theory called General Relativity. This theory has been
empirically tested by researchers over the past hundred years, with no evidence
to refute the theory as of yet. The structure of this research process looks
something like this:

O1: Observation: The irregularity of Mercury’s orbit, together with all other
knowledge about gravity on earth.

H1: Hypothesis: General relativity by Einstein (1915).

I1.1: An implication: According to general relativity, we should be able to see
stars during a solar eclipse, which are actually directly behind the sun.
This was observed during the solar eclipse of 1919 by Dyson et al. (1920),
which supports the hypothesis.

10

I1.2: Another implication: Another fundamental implication of the general rel-
ativity theory is the existence of black holes, according to Event Horizon
Telescope Collaboration and others (2019) with their paper having the
first photograph of one ever.

The more implications are tested to be true, the more probable the truth of a
hypothesis becomes. For the implications of the General Relativity theory, the
example showed the first and latest notable ones.

4 Experimentation

Before the experimentation with LNS, it is important to look at the specifics of
the experiment itself, i.e. the specific inputs of the algorithm (as mentioned in
section 2.2) and the problems it is tested on.

4.1 Experimental setup

The implementation of the LNS algorithm was done in C# and can be seen on
github (van Wijk, 2021a). A visual representation was also implemented and
can also be seen on github (van Wijk, 2021b). Every outcome is an average over
ten separate runs. The inputs for the algorithm Shaw himself proposed and
used are discrepancies discrep of 5, number of attempts attempts of 250, and
a determinism D of 10. A sensitivity test was done by changing a single input
at a time to see how much the performance of the algorithm changed based
on the inputs. Figure 8 shows the difference in average performance with each
of the input changes. This shows very minimal difference between each of the
input changes, i.e. the algorithm is very insensitive to changes in the inputs.
Therefore, the inputs Shaw proposed will be used from here on.

Figure 8: Difference in total cost Ctotal at each iteration with different inputs.

11

Researchers in the OR tend to use a lot of the same problem sets. Shaw
also used one of these sets, specifically the benchmark problems introduced by
Solomon (1987). The problems of this benchmark all have 100 visits and are
divided into two main classes: S1 being a class with a smaller capacity and
scheduling horizon, and S2 being a class with a larger capacity and scheduling
horizon. For these classes, the average number of routes found by Shaw in
the ending solution for S1 is around 12, and for S2 around 3. Within each of
these classes there are multiple subclasses: the subclass R which has randomly
generated coordinates for its visits, the subclass C for which the coordinates
are clustered, and the RC subclass which is a combination of the two. Within
each of the R and RC subclasses, all problems have their visits on the same
coordinates. Within each of the subclasses there are also correlated problems.
The two types of correlation that Solomon used are a deletion of time windows
and the broadening of time windows. For the deletion correlation, each problem
differs in 25 of its visits. For the broadening there is no real systematic change
between all the problems using this correlation.

As mentioned in section 1, Shaw stated that his algorithm still needed im-
provement. This was due to the algorithm being unable to optimise the insertion
procedure for a large number of visits, which is needed to find optimised solu-
tions for the S2 class. Bent and Van Hentenryck improved this using a two-stage
hybrid between a simulated annealing algorithm that focuses on lowering the
number of routes and the LNS algorithm, but they do not explain why this im-
proves the LNS algorithm on S2 problems and only state it is due to their belief
that “LNS is particularly effective in minimising total travel cost when given
a solution that minimises the number of routes.” (Bent and Van Hentenryck
(2004, pg. 2)). The experimentation done in the next section had this belief in
mind to try and find out why LNS has a hard time optimising the reinsertion
of a large number of visits.

4.2 Empirical Study

The experimentation will use a structure like the examples we saw in section 3.2,
which used an observation, a hypothesis which tries to explain the observation,
and the implications that the hypothesis has. The observations will be stated in
section 4.2.1 and the hypothesis and implications will be stated in section 4.2.2.

4.2.1 Observations

For this experimentation, only the Solomon benchmark problems from the sub-
classes R and RC with the deletion correlation were used. This is due to the
irregularity of differences between the C subclass for its S1 and S2 variants and
the irregular broadening of the correlation.

Table 1 shows the Cbest for all used problems as stated by Solomon. The
Cbest of the S2 problems are lower than their S1 problem counterparts for all
problems. To analyse the performance of the algorithm, the difference between
the current total cost Ctotal and the best known cost Cbest by Solomon himself is

12

Figure 9: The average difference in cost of each iteration of all used problems
with their best known solution.

calculated. The average difference over all used problems can be seen in Figure
9 for S1 problems and S2 problems. This figure shows that the difference with
their Cbest is lower for the S1 problems in the beginning iterations, and they
end up being similar from a thousand iterations on out. This tells us that LNS
needs more iterations to optimise the S2 problems compared to the S1 problems.

Problem Best Known Ctotal Problem Best Known Ctotal

R101 1645.79 R201 1252.37
R102 1486.12 R202 1191.70
R103 1292.68 R203 939.54
R104 1007.24 R204 825.52
R105 1377.11 R205 994.42
R106 1251.98 R206 906.14
R107 1104.66 R207 893.33
R108 960.88 R208 726.75
RC101 1696.94 RC201 1406.91
RC102 1554.75 RC202 1367.09
RC103 1261.67 RC203 1049.62
RC104 1135.48 RC204 798.41

Table 1: Table of the Ctotal for the best known solutions.

When looking into the worse performance of LNS on the S2 problems, some-
thing stood out. The visual representation of the solution produced by the
algorithm showed that some visits had the tendency to be split up, even though
they would end up in the same route together. After looking into this, it seemed
to be happening frequently enough for it to have a possible impact on perfor-

13

mance of the algorthm.
The splitting of visits that would end up together can be explained by the

example route from Figure 2. Figure 10 shows the first iteration, where each of
the visits start with their own route. In this example v4 is relaxed and reinserted.
The relatedness R(4, 5) is the highest for v4, because v5 is the closest visit. This
means that the probability of v4 being placed in the route of v5 is the highest.
Figure 11 shows the second iteration, where v5 is selected to be relaxed and
reinserted. Because v5 is even closer to v6, R(5, 6) is the better than R(5, 4).
This means that the probability of v5 being placed in the route of v6 is the
highest. Looking back at Figure 2, v4 and v5 do end up together in a route.
Therefore, there seems to be a loss of important information when v5 is deleted
in the second iteration and split up from v4.

v1

v2

v3 v4
v5

v6

v7
v8

v9

vD

v1

v2

v3 v4
v5

v6

v7
v8

v9

vD

Figure 10: Relaxation and reinsertion of v4.

v1

v2

v3 v4
v5

v6

v7
v8

v9

vD

v1

v2

v3 v4
v5

v6

v7
v8

v9

vD

Figure 11: Relaxation and reinsertion of v5.

To quantify the information loss, the number of times two visits got split up
was counted. For example, say there is a route called r1 with visits {v1, v5, v8}.
If v5 were to be placed in a different route, the combinations (v5, v1) and (v5, v8)
would be increased by one. When the algorithm is finished, the total number of
split-ups for each visit with the visits in its final route is calculated, i.e. the sum
of all the split-ups for all visit combinations that ended up in the same route.

14

The average sum of all visits is displayed in Table 2 for all Solomon problems,
which shows that each S2 problem has a higher average of split-ups for the visits
in their ending route in comparison to their S1 counterparts. This could indicate
that there is a negative relationship between the average number of split-ups for
each visit and the Ctotal at the end of the algorithm, i.e. a negative relationship
between the average number of split-ups and the performance of the algorithm.
This would indicate that the higher the average number of split-ups, the worse
the performance of LNS.

Problem Average Split-ups Problem Average Split-ups
R101 2.615 R201 5.397
R102 3.317 R202 6.207
R103 4.874 R203 7.598
R104 6.203 R204 9.342
R105 3.774 R205 7.106
R106 4.479 R206 7.488
R107 5.659 R207 7.884
R108 6.836 R208 9.064

RC101 3.853 RC201 5.787
RC102 4.576 RC202 6.755
RC103 5.563 RC203 6.864
RC104 6.350 RC204 8.647

Table 2: Average number of split-ups for all used Solomon benchmark problems.

4.2.2 Hypothesis and implications

The observation of a possible negative relationship between the average number
of split-ups and the performance of the LNS algorithm can be captured in a
hypothesis to fit an empirical study.

Hypothesis: Lowering the loss of information, which is a result of two visits
being split up even though they end up in the same route together, has a positive
influence on the performance of the LNS algorithm.

If this hypothesis were to be true, an increase of the average number of
split-up visits that end up together would result in a worse performance of the
LNS algorithm. This is in line with the higher averages and worse performances
of the S2 problems compared to their S1 counterparts. If this average were
to be lowered, it would result in a better performance of the LNS algorithm.
Following this, if a problem is constructed that is very similar to the Solomon
benchmark problems, but has a lower average number of split-ups, the perfor-
mance of the LNS algorithm should improve. Likewise, if a comparable problem
is constructed that has a higher average number of split-ups, the performance
of the LNS algorithm should worsen.

15

Implications: When testing the LNS algorithm on a slightly different prob-
lem set, if the average number of split-ups for visits that end up in the same
route is lowered, the performance of the algorithm should improve. Likewise,
if the average number of split-ups for visits which end up in the same route is
higher, the performance of the algorithm should worsen.

5 Results

v1

v2

v3 v4
v5

v6

v7
v8

v9

vD

Figure 12: Example of a split problem.

A set of split problems was constructed, where each of the Solomon Benchmark
problems was split in four as visualized in Figure 12. All visits had new time
windows assigned dependent on the part they were in. This was done by mul-
tiplying the total service time by four, adding the old total service time to the
time windows of all visits in the top left part, adding two times the old total
service time to the time windows of all visits in the bottom right part, and
adding three times the old total service time to the top right part. This way
there is less incentive for the algorithm to construct routes that pass through
more than one part of the problem.

Table 3 shows the average number of split-ups between visits that end up
in the same route for the split Solomon Benchmark problems. This shows that
the number of split-ups increases for all split S1 problems, and decreases for all
split S2 problems. According to the implications of the hypothesis, this would
indicate that the LNS algorithm would perform less optimised on the split S1

problems and more optimised on the split S2 problems compared to the their
non-split variants. In a figure that shows the difference between the cost Ctotal of
the normal problems and the split problems for each iterations, the expectation
is that the S1 difference is a negative number, and the S2 difference is a positive
number. However, Figure 13 shows a different result, with the difference of S2

being negative and the difference of S1 being positive. This means that the

16

Problem Average Split-ups Problem Average Split-ups
R101Split 4.156 R201Split 5.363
R102Split 4.758 R202Split 5.591
R103Split 5.938 R203Split 7.054
R104Split 6.757 R204Split 8.518
R105Split 4.741 R205Split 6.788
R106Split 5.519 R206Split 7.188
R107Split 6.612 R207Split 7.639
R108Split 7.491 R208Split 8.126
RC101Split 4.642 RC201Split 5.242
RC102Split 5.626 RC202Split 6.395
RC103Split 6.961 RC203Split 6.681
RC104Split 7.186 RC204Split 7.660

Table 3: Percentages of visits split up from other visits in their ending route for
split problems.

increase in split-ups for the split S1 problems was paired with a more optimised
performance, and the decrease in split-ups for the split S2 problems was paired
with a less optimised performance. This is a direct contradiction with the
implications of the hypothesis, which means the hypothesis has to be rejected,
i.e. the loss of information from two visits splitting up before ending up in the
same route together does not have a direct negative effect on the performance
of the algorithm.

Figure 13: Average difference between each normal and split variant.

17

6 Discussion

The refuting of the hypothesis in section 5 can be a result of multiple factors.
Either the hypothesis is (partly) wrong or the hypothesis is right and the way
of testing was (partly) wrong.

For the first factor, I can think of a few reasons as to why the hypothesis
could be wrong. Firstly, the information loss could be very minimal. Also,
if two routes can be combined, and the toRemove is lower than the length of
each of the routes, there is no way to combine the routes without splitting up
at least two visits that end up in the later route. Finally, it could also mean
that the split-ups are defined in a wrong way. A different way to test a similar
loss of information is to look at the average relatedness between visits in the
ending route, and checking how often visits with a similar relatedness are deleted
from each other. If these three points would be researched further, this could
strengthen or weaken the hypothesis.

For the second factor, the main reason I can think of is the split Solomon
problems being an uncontrolled environment. When testing the influence of
the average number of split-ups on the performance of the algorithm, it is best
to change as little as possible apart from the average number of split-ups. It
is also still possible for routes to go between different parts of the used split
problems. Furthermore, relatively related visits that end up in different parts of
the split problem could also cause a big reduction in the performance. Creating
a problem set which influences the LNS algorithm so it will lower its average
number of split ups would be a way to do further research into this. It is also
important to note that the algorithm must not be changed, because that makes
it even harder to control the environment. Also, researching the LNS algorithm
is more accurate when you are using the LNS algorithm instead of a variant of
it.

The fact that the hypothesis was refuted in section 5 does not mean it is a
bad result. Negative results are often overlooked in the OR field, but can give
a better understanding of an algorithm, just like positive results. Because the
characteristic of the number of split-ups is very specific, the importance of the
empirical study is highlighted. It is harder in a standard deductive science to
explain an observation with a single characteristic, as was tried in this paper.
But as stated in section 3.1, this process is a never ending cycle and is far from
done. The more these cycle tests are done, the stronger the result from an
empirical study is. This is what gives an empirical study a noticeable edge over
a standard deductive study in the OR field.

A possible next test could be looking deeper into the split Solomon prob-
lem set. For this research, only the performance of the LNS algorithm and
the average number of split-ups were taken into account. This leaves a lot of
variables to be further explored. If the downgrade in performance on the split
problems were to be explained by a different factor, there is still a possibility
of the hypothesis from this paper holding some truth. This research would first
have a hypothesis discrediting the split problems as a problem set which tests
the effect of the split-ups. After this, a new problem set needs to be created

18

which is more fitting to test the effect of the split-ups on the performance of the
algorithm.

Using the empirical setup for this research has shown how big of a gap in
understanding there is between the paper of Shaw and its improvement by Bent
and Van Hentenryck. The change made to the Solomon problem set to make
the split variants was quite a minimal change, but the difference in performance
was very noticeable. Together with the refuting of the hypothesis, this shows
that just stating the improvement without knowing why it improved, lacks a
lot of the understanding as to why the LNS algorithm even performs the way it
does.

7 Conclusion

The goal of this paper was to show the value of doing empirical research in
the Operations Research field. This was done using the Large Neighbourhood
Search algorithm proposed by Shaw. Experimental results show that the LNS
algorithm performs better in optimising the Ctotal for Solomon benchmark prob-
lems with smaller capacities (S1 problems) compared to problems with bigger
capacities (S2 problems). Because of the higher number of split-ups between
visits that end up together in a route for the S2 problems, the split-ups were
identified as a possible factor in the difference in performance between the S1

and S2 problems. However, the research of this paper indicates that the split-
ups are not a direct factor. This would mean that the relationship between
the performance of the algorithm and the average number of split-ups is more
complex than a simple negative relationship. This needs to be tested further
for a more concrete relationship to be defined, according to the empirical cycle
that was highlighted in this paper.

8 Acknowledegments

I would like to thanks my thesis supervisor Tomas Klos for all his effort in
helping me. He has helped me give shape to this thesis in a way I could not
have done myself. The video calls always were a good time and useful at the
same time. Furthermore, I would like to thank my second reader Francisca
Pessanha.

I would also like to thank Peter Bijl from Picnic for taking time to explain
the basics of vehicle routing problems to me. He had no need to help me that
much, but in doing so he enlarged my interest in the topic which was a big help.

Finally, I would like to thank Bruce Harrems, Sarah Angenent, Minke van
Wijk and Iris Reitsma for proofreading the thesis, helping me find spelling
mistakes and unclear writing.

19

References

Bent, R. and Van Hentenryck, P. (2004). A two-stage hybrid local search
for the vehicle routing problem with time windows. Transportation Science,
38(4):515–530.

Dutch Ministry of Social Affairs & Employment, Dutch Ministry of Economic
Affairs & Climate Policy, and Ministry of Finance (2020). Ondernemers en
corona: Resultaten per branche en grootteklasse.

Dyson, F. W., Eddington, A. S., and Davidson, C. (1920). Ix. a determination
of the deflection of light by the sun’s gravitational field, from observations
made at the total eclipse of may 29, 1919. Philosophical Transactions of the
Royal Society of London. Series A, Containing Papers of a Mathematical or
Physical Character, 220(571-581):291–333.

Einstein, A. (1915). Erklarung der perihelionbewegung der merkur aus der
allgemeinen relativitatstheorie. Sitzungsber. preuss. Akad. Wiss, 47:831–839.

Event Horizon Telescope Collaboration and others (2019). First m87 event
horizon telescope results. i. the shadow of the supermassive black hole. arXiv
preprint arXiv:1906.11238.

Harvey, W. D. and Ginsberg, M. L. (1995). Limited discrepancy search. In
IJCAI (1), pages 607–615.

Hooker, J. N. (1994). Needed: An empirical science of algorithms. Operations
research, 42(2):201–212.

Hooker, J. N. (1995). Testing heuristics: We have it all wrong. Journal of
heuristics, 1(1):33–42.

Hooker, J. N. and Vinay, V. (1995). Branching rules for satisfiability. Journal
of Automated Reasoning, 15(3):359–383.

Lenstra, J. K. and Kan, A. R. (1981). Complexity of vehicle routing and schedul-
ing problems. Networks, 11(2):221–227.

Russell, S. J. and Norvig, P. (2010). Artificial intelligence: A modern approach.

Shaw, P. (1998). Using constraint programming and local search methods to
solve vehicle routing problems. In International conference on principles and
practice of constraint programming, pages 417–431. Springer.

Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling
problems with time window constraints. Operations research, 35(2):254–265.

van Wijk, J. (2021a). Large neighbourhood search. https://github.com/

JaccovanWijk/LargeNeighbourhoodSearch.

van Wijk, J. (2021b). Large neighbourhood search framework. https://

github.com/JaccovanWijk/LNSFramework.

20

