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1 Introduction

Natural language generation is a common term in the field of artificial intelligence. It is ”the
process of producing meaningful phrases and sentences in the form of natural language.” (Ghosh
and Gunning, 2019) and can either be in speech or writing, while it mostly refers to the generation
of printed text by computers. Various types of generators exist; from simple template-based to
”intelligent” generators using machine learning in order to have a better understanding of human-
written texts Perera and Nand (2017).

Within the various formal theories of meaning and language use, a considerable amount of
research has been done to referring expressions (e.g. expressions as ”those girls”). To shine a light
on other theories, recent research has been done on the meaning and use of quantified expressions.
These expressions say something about the number of things having a particular property, such as
”all A are B” or more vague sentences as ”some A are B”. This research by Chen et al. (2019b)
focused on descriptions of simple scenes populated by geometrical figures, and produced a corpus
consisting of human-made quantified descriptions in English. Based on this corpus, two language
generation algorithms were made to mimic these human descriptions and were then evaluated by
three human experts; the experts rated the descriptions generated by both the algorithm and
human speakers in terms of their naturalness, informativity and correctness.

The current project the researchers are working on, asks how useful the descriptions in question
are for human readers. In particular, how well (human) participants are able to reconstruct the
original situations from a description. The experts’ ratings give an indication, but the addition of
a task-based evaluation of the algorithm helps to answer the question with more certainty.

My addition to this project is to perform this task-based evaluation by conducting and analysing
an experiment with twenty human participants, where reconstruction of the original scene is the
task that the participants perform. The analysis focuses on the comparison between the task-
based evaluation and the judgements of the human experts. The question I, therefore, want to
answer with this research is: ”To what degree do the judgements by the experts on the quantified
description making algorithms comply with the results from the task-based evaluation on these
algorithms?”

To answer this question, I will first provide more information about quantified expressions,
the QTUNA corpus, and the original experiments in section 2. In section 3, I will explain the
methodology of the task-based evaluation, and I will then present these results in section 4. Finally,
I will analyze, discuss and draw conclusions from these results in section 5.
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2 Theoretical background

2.1 Quantified expressions

In logical languages, quantified expressions are operators that bind variables to a formula. The
most common logical quantifiers are ∀ (”for all”) and ∃ (”there exists some”). In natural language,
a quantifier is sort of similar; it tells us something about the number of things having a certain
property. Take, for example, the following sentences, in which the italicized words are quantifiers:
”All cups are red”, ”Some people were late”. However, in natural language there are many
more expressions that are considered quantifier expressions; not just all and some, but also few,
most, everything and more (Glanzberg, 2009). On top of that, the grammatical structure can
overshadow the logical structure in a natural language sentence. This makes it much harder to
study the meaning of a quantifier expression can be ambiguous in natural language. For example,
in the sentence ”Someone trips over a banana peel in the supermarket every week” it is not clear
whether it is the same person slipping on the banana peel every week.

2.2 QTUNA corpus

To understand how speakers use quantified expressions, the researchers Chen et al. (2019b) asked
participants to describe a visual scene. Each scene shows a set number of objects, which can either
be a circle or a square and either blue or red. An example of such a scene can be found in figure 1
(Chen et al., 2019b). The participants were instructed to give a description so that a reader would
be able to reconstruct the situation, i.e. tell the number of objects when they are given the domain
size, possible shape and colour (the location was irrelevant in this case). This was then done for
three different domain sizes (n), namely 4, 9, and 20, to determine how the size would influence
the human production of QEs. Every domain size consists of 10 different scenes. Examples of the
descriptions are:

n = 4 There are 4 squares. Every object is blue.

n = 9 Most of the items are red circles, but there are a couple of blue squares.

n = 20 All the objects are blue squares. A few objects are blue circles.

The experiments resulted in the QTUNA corpus, which contains 656, 380, and 378 valid descrip-
tions for every domain size given by students at the Computing department of Utrecht University.

The analysis was performed based on of three hypotheses that were formed before the experi-
ment. This resulted in the following conclusions:

1. The larger the domain size, the more vague quantifiers were used;

2. For smaller domains, more logically complete descriptions were given / for larger domains,
less logically complete descriptions were given (in proportion);

3. The length of descriptions decreased with domain size (contrary to the hypothesis);

4. Shape occurs more often in the first argument place and colour in the second argument place.

2.3 Quantified Description Generation algorithms

The QTUNA corpus was then used to design two NLG algorithms that generate quantified de-
scriptions and are able to carry out the same task as the human participants in the QTUNA
experiment. However, the algorithms should be able to do this for any (reasonable) domain size
and not just n = 4, 9, and 10. An exception was made for domain sizes smaller than 4 and those
for which it is impossible to count the objects in a few seconds.
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Both algorithms make use of the following general framework. The generator is given a target
scene with its domain knowledge: this is a list of possible attributes (shape/colour) with their
possible values (square, circle / red, blue). The generator then calls the algorithm to construct a
description containing an ordered sequence of QEs in a logical form. It does so by selecting from
a set of candidate patterns, based on how human beings did so in the QTUNA experiment. The
candidate patterns contain a quantified pattern, for example All(·,·), and a property tuple that is
able to fill in the slots of this pattern, for example (blue, square). Lastly, the algorithm calls a
simple template-based surface realiser that maps the description, which is still in logical form, into
natural language text. This would result in, for example, ”Every blue object is square.”.

2.3.1 Incremental Algorithm for Generating Quantified Descriptions

The first algorithm is based on two observations of the QTUNA dataset: some quantifier patterns
are more frequent than others, and some choices of properties to fill a given pattern are more fre-
quent than others. This algorithm, therefore, maintains a sequence of properties and a sequence of
fillers, so that it can mimic the order of different types of statements humans use. The properties
are the features that an object can contain; which are a certain shape and colour. The sequence of
properties is inspired by the fourth conclusion on the QTUNA corpus mentioned in the previous
paragraph: the description of the shape usually comes before the description of the colour, thus the
algorithm should check if it can do this as well. The sequence of quantifiers is based on the finding
that humans incline to start describing the scene as a whole. The algorithm should therefore give
QEs such as all, half and most priority.

The algorithm uses a similar method of generation as the Incremental algorithm by Dale and
Reiter (1995) and is therefore called the Incremental QDG algoritm (qdg-ia). It generates a
description by going through all the QE patterns in the order of the quantifier preference order
described above and considers them one by one in this order. To prevent that certain quantified
patterns with low preference will never be chosen, a probability of 0.1 was added which the al-
gorithm can use to make a single move of a quantified pattern with low preference into a higher
preference order.

2.3.2 Greedy Algorithm for Generating Quantified Descriptions

Another perspective on the generation of quantified descriptions is considering it as the problem
of searching for the best set of QEs. A greedy algorithm can separate the best set of QEs from
the largest number of distractors (poorer sets of QEs) in each iteration. The number of distractors
a set of QEs can eliminate is called the discriminatory power. The second algorithm that was
made does this and is called qdg-greedy. To ensure variation, the sets of QEs with the same
and highest discriminatory power will be randomly selected.

2.3.3 Evaluation by Human Judgements

To further test how informative, correct and humanlike the generated descriptions by the al-
gorithms are, four academics from Utrecht University rated them on these criteria. Instead of
mentioning these criteria by name, the ”judges” were asked the following questions:

• Q1 (Naturalness): On a scale of 1-5, how likely do you think it might be that this
description was uttered by a human? [1=very unlikely, 5=very likely]

• Q2 (Informativity): On a scale of 1-5, do you believe the description is as infor-
mative as it can be expected to be? [1= description isnt even nearly informative
enough, 5= description gives as much information as possible]
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Figure 1: Examples from (a) the n = 4 experiment; (b) the n = 9 experiment (Chen et al., 2019b)

Table 1: Average scores for each algorithm and for human-produced descriptions, by naturalness, informativity, and
correctness as annotated by the four human judges in Chen et al. (2019a)

• Q3 (Correctness): On a scale of 1-5, how correct do you consider this description
to be? [1= the description is not at all correct, 5=everything the description says
is correct.] (Chen et al., 2019a)

These questions were asked for 30 scene-description pairs in total for the original domain sizes n
= 4, 9, and 20. Additionally, a total of 66 scene-description pairs for new domain sizes n = 6, 10,
and 16 were judged. For a more detailed explanation of the experiment, see section 3.1.

Before the experiment with the judges, the researchers again came up with several hypotheses.
Based on the results, they reached the following conclusions:

1. Humans and qdg-greedy performed similarly at naturalness, qdg-ia did slightly worse;

2. Contrary to expectations, the algorithms did not perform better at informativity, and qdg-
ia did not perform better at correctness than humans. You would expect them to actually
perform better at both these criteria since they are designed to optimise them. However, this
could be due to the fact that the algorithms take both the semantics and pragmatics into
account when judging the logical completeness of the descriptions, which the experts might
disagree with;

3. Both algorithms performed equally as well on naturalness (there was no significant difference
between their performance).

The results of the experiment can be found in Table 1. For my research project, I am mostly
interested in the informativity and correctness scores given by the experts. You would expect the
reconstruction of a scene to be better when these scores are higher. My hypotheses, which are
based on the results of this experiment, will be discussed in section 3.3.
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3 Methodology

3.1 Methodology original experiment

The original experiment by Chen et al. (2019a) was divided into two parts: experiment A and
experiment B. For experiment A, they randomly selected 3 or 4 scenes from a total of 10, from
each of the 3 sub-corpora of QTUNA. This resulted in 30 scene-description pairs in total. The
sub-corpora each contain descriptions for 10 different scenes, each for a different domain size: n=4,
n=9 and n=20. Each scene was then paired with one description by qdg-ia, one by qdg-greedy
and one by a human being (which was randomly selected from the QTUNA corpus).

To test the generality of the algorithms they also carried out experiment B, in which three new
domain sizes were the focal points: n=6, n=10 and n=16. There were 6 scenes sampled for each
domain size n. Since descriptions by humans were not available for these domains, these 6 scenes
were each paired with just two descriptions: one by qdg-ia and one by qdg-greedy.

Four experts (academics from Utrecht University) were asked to participate in both experiments
to gain insight into the quality of the generated descriptions. They had to judge the 3 or 4 scenes
in experiment A and 33 scene-description pairs each (from 66 in total) in experiment B, based on
their naturalness, informativity and correctness.

3.2 Methodology task-based evaluation

To gain more insight into how useful the generated descriptions are for human readers, I designed
a similar experiment in which human participants have to reconstruct the original scenes from
these descriptions. Reconstruct means that the subjects have to state how many of the objects
are either a circle or a square, and how many are either red or blue based on a scene’s description.
The location an object does not matter.

3.2.1 Participants

I recruited 20 students from Utrecht University with different educational backgrounds to partici-
pate in this task-based evaluation of both algorithms; 13 out of these 20 are or were a BSc / MSc
student Artificial Intelligence (more detailed information can be found in subsection 7.1 in the
appendix). The mean age of the participants was 22.6.

3.2.2 Materials

The participants all had to use their computer to do the experiment on. Each participant was
sent a unique online Google spreadsheet which they had to fill in. As the spreadsheets were online
documents, they were automatically saved.

3.2.3 Procedure

As in the original experiment, I divided the experiment into experiment A and B.
For experiment A, the original 30 scene-description pairs were used for the reconstruction.

Every pair was seen by four subjects, by randomly allocating each pair four times to the 20
participants in such a way that a participant did not see the same pair twice. This means that from
each description producer (human, qdg-greedy, or qdg-ia) ten unique pairs were reconstructed,
each four times. The scene-descriptions pairs were given in ascending order of domain size (so n=4,
n=9, n=20 respectively), but in a random order within the domain size. Thus, every participant
saw the pairs in a different order.

For experiment B, the original 66 scene-description pairs were used for the reconstruction.
Every pair was seen twice, by randomly allocating each pair twice to the 20 participants in such

6



a way that a participant did not see the same pair twice. This means that from each description
producer (qdg-greedy or qdg-ia) 33 unique pairs were reconstructed, each two times. The scene-
descriptions pairs were given in ascending order of domain size (so n=6, n=10, n=16 respectively),
but in a random order within the domain size.

Each participant thus will see 6 scenes in experiment A and 2 to 3 scenes in experiment B,
which makes it a total of 8 to 9 scenes per participant.

Before the experiment, the subjects were given the following instructions:

In the experiment, you’re going to read a number of descriptions. Each descrip-
tion describes a visual scene containing some simple geometrical objects. For
each description, we’d like you to tell us what scene the description evokes: in
other words, please tell us about a scene that could be described by the descrip-
tion.

Please note:

- Each object is a circle or a square, and is either red or blue;

- For each description, we will tell you how many objects the scene described
by it contains (for instance, the ”size” of the scene may be 4);

- We are not interested in the location of each object. Instead of asking you
to draw the scene, we will therefore only ask you how many objects of each
type it contains (for instance, 3 red circles and 1 blue square); (...)

- We believe that for some descriptions there is more than one ”correct”
answer. In those cases, please choose an answer that you consider to be
consistent with the description (please choose only one answer).

Here are two examples, using B for blue, R for Red, S for square, and C for
circle: (...)

A full version of the instructions can be found in section 7.2. An example of an answering sheet
can be found in section 7.3. The participants had to give their answers online on a spreadsheet,
and each domain size had its descriptions on a separate spreadsheet. Each participant had its
unique spreadsheet, such that solely the descriptions which were assigned to that participant were
included in that person’s spreadsheet.

3.2.4 Pilots

I conducted two pilot experiments and made some minor details to the layout of the instructions:
using the same answering sheet layout in the examples as in the instructions. The examples were
first given by using the abbreviations BS, RS, BC, RC; I changed it to images of the objects in
their corresponding colour. I also made multiple sheets for every domain size instead of having
them all in one; one subject indicated that he had to constantly scroll up and down to see which
column represented what object.

3.3 Hypotheses

Based on the results of the original experiment, I formulated the following hypotheses:

1. The larger the domain size n, the more the reconstructions will diverge. Since for
a larger n, there are often multiple answers correct for that description, but they are not the
”right” answer;

2. The larger the domain size n, the more the reconstructions will diverge from the
real scene. The reasoning for hypothesis 1 can be applied to this as well;
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3. The higher the scores given for informativity and correctness by the experts, the
less the reconstructions will diverge from the real scene. This is because I expect
that the scores given by the experts mostly comply with the results of this experiment;

4. Reconstructions based on both algorithms will be correct more often than the re-
constructions based on the human descriptions, because ”both of them were explicitly
designed to optimise informativity and correctness” (Chen et al., 2019a)

3.4 Analysis of the data

To determine how well a subject reconstructed a scene-description pair, I determined how many
”swaps” a person made in their answer. Since all scenes have a certain size, adding an object in
the reconstruction (to either BS, RS, BC, or RC)1 always causes another object to have one less
to keep the total number of objects equal to the scene size n. This results in a so-called swap. To
calculate the number of swaps, I used the following formula: for each reconstruction calculate the
absolute difference between the ”correct” answer for each type of object and the answer given by
the subject, then add these up and divide by 2. This results in the total number of switches made
by the participant for that scene-description pair. For example, if the correct answer would have
been

BS: 2, RS: 1, BC: 0, RC: 1

and the answer that was given by the subject was

BS: 2, RS: 1, BC: 1, RC: 0

the calculation would be as follows:

(|2− 2| (BS) + |1− 1| (RS) + |0− 1| (BC) + |1− 0| (RC))/2 = 1 swap

In order to compare these scores for the different domain sizes, I then determined the average
number of swaps for every domain size and divided it by the total possible swaps for that domain
size (the total is equal to the domain size itself).

The following calculation was done in order to determine by how much the answers from all
the participants diverge from one another: for each scene-description pair calculate the average
answer for every object (BS, RS, BC, RC) separately, then take the standard deviation for all these
means separately, and finally take the average for the standard deviation per scene. An ANOVA
test with a significance level α = .05 was performed on these standard deviations, to determine
whether their means are different.

1BS = blue square, RS = red square, BC = blue circle, RC = red circle
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4 Results

4.1 Swaps

Table 2 shows the average percentage of swaps of the total number of possible swaps for qdg-ia,
qdg-greedy, and human-produced descriptions for each domain size in experiment A. It also
shows the total average percentages per model, and for each domain size separately.

Table 3 is a similar table, but for experiment B: it shows the average percentage of swaps of
the total number of possible swaps for the qdg-ia and qdg-greedy descriptions for each domain
size.

The percentages are somewhat higher for the qdg-ia descriptions than for the qdg-greedy,
for domain sizes 10 and 16. When looking at the total average number of swaps for each domain
size, the value again rises as the domain size increases from n=6 to n=10. However, there is a
slight decrease when going from n=10 to n=16. This seems to be caused by the decrease in qdg-
greedy; for qdg-ia the percentages do increase together with the domain size.
However, a t-test with α = .5 resulted in p=

Model n=4 n=9 n=20

Experiment A
Human 8.33% 6.25% 15%
qdg-ia 0% 11.81% 18.33%

qdg-greedy 2.08% 8.33% 15%

Total 3.47% 8.8% 16.11%

Table 2: Average swap percentages of the total possible swaps for each algorithm and for human-produced descriptions,
and the average swap percentages for n=4, n=9, and n=20. The total average swap percentages for every model and every
domain size is also included.

Model n=6 n=10 n=16

Experiment B
qdg-ia 1.39% 10% 10.42%

qdg-greedy 1.39% 8.33% 7.81%

Total 1.39% 9.17% 9.11%

Table 3: Average swap percentages of the total possible swaps for each algorithm, and the average swap percentages for
n=6, n=10, and n=16. The total average swap percentages for every model and every domain size is also included.

4.2 Variance in answers

Table 4 presents the average standard deviation in the answers for every scene per domain size in
experiment A. Every scene-description pair was seen by four subjects. The p-value (2.2167e-06)
from the ANOVA test (significance level α = .05) suggested that one or more of the values in table
4 are significantly different. The posthoc Tukey test was applied to these values, and this resulted
in a significant difference between pairs n=4 and n=20 (p=0.001), and n=9 and n=20 (p=0.001).
The difference between n=4 and n=9 turned out to be insignificant (p=0.458).
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Avg. σ Avg. σ Avg. σ
n=6 n=10 n=16

Experiment A

01 110 6.53222

02 011 323

03 1.91512 4.43524

04 013 225

05 014 2.91526

06 215 227

07 2.58216 9.22928

08 2.30917 4.81729

19 118 8.63930

019

120

021

Avg. all scenes 0.111 0.984 4.841

Table 4: Average standard deviation in the answers for each domain size, by taking the average number of standard
deviation for BS, RS, BC, RC in every scene. The scene ID’s are noted as superscript.

Table 5 presents the average standard deviation in the answers for every scene per domain size.
Every scene-description pair was seen by two subjects. The p-value (0.0008) from the ANOVA
test (significance level α = .05) suggested that one or more of the values in table 5 are significantly
different. The posthoc Tukey test was applied to these values, and this resulted in a significant
difference between pairs n=6 and n=16 (p=0.002), and n=10 and n=16 (p=0.004). The difference
between n=6 and n=10 turned out to be insignificant (p=0.900).

Avg. σ Avg. σ Avg. σ
n=6 n=10 n=16

Experiment B

1.41431 043 055

032 044 056

033 045 057

034 046 2.82858

035 2.82847 2.82859

1.41436 048 2.82860

037 1.41449 1.41461

038 050 2.82862

039 051 1.41463

040 052 4.24364

041 053 1.41465

042 054 1.41466

Avg. all scenes 0.236 0.354 1.768

Table 5: Average standard deviation in the answers for each domain size, by taking the average number of standard
deviation for BS, RS, BC, RC in every scene. The scene ID’s are noted as superscript.

4.3 Correlation experts’ scores and reconstructions

Figure 2 shows all the informativity (a) and correctness (b) scores combined with the swap per-
centages for experiment A, figure 3 shows this for experiment B. In experiment A, informativity
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has a standard error of 0.0739 and R2=0.3032. Correctness has a standard error of 0.0772 and
R2=0.1391. In experiment B, informativity has a standard error of 0.0809 and R2=0.4384. Cor-
rectness has a standard error of 0.0923 and R2=0.2690.

Figure 2: The informativity (a) and correctness (b) scores from the original experiments by Chen et al. (2019a) on the y
axis, and my swap percentages on the x axis, along with a linear regression line.

Figure 3: Combined results of the informativity and correctness scores from the original experiments by Chen et al. (2019a)
on the y axis, and my swap percentages on the x axis, along with a linear regression line.
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5 Discussion and conclusion

5.1 Evaluation of hypotheses

First I am going to look at the hypotheses I formed in section 3 to discuss the data even further,
draw conclusions from it, and give an answer to my research question: ”To what degree do the
judgements by the experts on the quantified description making algorithms comply with the results
from the task-based evaluation on these algorithms?”. The first two hypotheses mainly serve as
”sanity checks” for the experiment. The last two hypotheses are the main focus when answering
the research question.

The first hypothesis states:

1. The larger the domain size n, the more the reconstructions will diverge.

Table 4 shows the standard deviation of the answers for every domain size in experiment A. Since
the difference between n=4 and n=16 is not significant, I cannot say anything about these numbers.
The difference between the significant domain sizes show that the hypothesis holds for experiment
A: as the domain size increases, the answers deviate more.

Table 5 shows the standard deviation of the answers for every domain size in experiment B.
Since the difference between n=6 and n=10 is not significant, I cannot say anything about these
numbers. The difference between the significant domain sizes show that the hypothesis holds for
experiment B: as the domain size increases, the answers deviate more.

In both experiments A and B, the difference between the two smaller domain sizes are those
that are not significant. This could perhaps be because the difference in the maximum number of
swaps is lower between these domain sizes (9-4=5 for A, and 10-6=4 for B) than for the others
(20-9=11, 20-4=16 for A, and 16-10=6, 16-6=10 for B).

I am not able to accept this hypothesis completely, because I was not able to use all the data
I acquired in its evaluation. However, with the useful data, the hypothesis can be accepted.

The second hypothesis to check the experiment states:

2. The larger the domain size n, the more the reconstructions will diverge from the real scene.

This hypothesis is supported by both experiments; the number of swaps increases when the domain
size increases as well when looking at experiment A and B separately. When combining the results
of both experiments, as shown in table 6, the hypothesis does not always hold. However, this is
probably caused by the fact that in experiment A, a scene-description pair was viewed by twice as
many subjects as in experiment B (four versus two). This means that the experiments cannot be
compared this way unless these values were equal.

Model n=4 n=6 n=9 n=10 n=16 n=20

Experiment A & B
qdg-ia 0% 1.39% 11.81% 10% 10.42% 18.33%
greedy 2.08% 1.39% 8.33% 8.33% 7.81% 15%

Total 3.47% 1.39% 8.8% 9.17% 9.11% 16.11%

Table 6: Average percentage of swaps for each algorithm and for human-produced descriptions, and the average number
of swaps for n=4, n=6, n=9, n=10, n=16, and n=20. The total average percentage of swaps for every domain size is also
included.

This means that the hypotheses that served mainly as sanity checks still hold, and the results of
the task-based evaluation are reliable.

The conclusions based on the following two hypotheses will tell us more about the experts’
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rating compared to my experiments:

3. The higher the scores given for informativity and correctness by the experts, the less the

reconstructions will diverge from the real scene.

This hypothesis can be divided up into two sub-hypotheses, namely: (a) The higher the scores
given for informativity, the less the reconstructions will diverge from the real scene, and (b) The
higher the scores given for correctness, the less the reconstructions will diverge from the real scene.

To be able to accept or reject the hypotheses, I performed a linear regression analysis of the
data for both. The results are in figures 2 and 3. All R2 values indicate that there is some
relationship between the experts’ scores and the percentages of swaps, more precisely; when the
correctness/informativity scores are higher, the percentages of swaps are lower. To evaluate the
relationship, I use the interpretation grid by Cohen (1988): R2 = 0 - 0.02: Very weak, R2 =
0.02 - 0.16: Weak, R2 = 0.16 - 0.26: Moderate, and R2 > 0.26: Substantial. This means that
in experiment A the relationship between swaps and informativity is substantial, as well as the
relationships between swaps and informativity, and swaps and correctness in experiment B. The
relationship between swaps and correctness in experiment A is considered weak. This means
that the hypothesis can be accepted, though not with complete confidence due to the one weak
relationship.

Finally, I will have a look at the fourth hypothesis:

4. Reconstructions based on both algorithms will be correct more often than the

reconstructions based on the human descriptions.

If I apply this hypothesis to acquired data, it means that: the percentages of swaps have to be
lower for the reconstructions based on both algorithms than for reconstructions based on the human
descriptions. This can only be applied to experiment A since there was no data available for human
descriptions in experiment B. An ANOVA test (with α = .05) resulted in no significant difference
between the results from both algorithms and the human descriptions: for qdg-ia p=0.760, and for
qdg-greedy p=0.665. based on these results, the hypothesis should be rejected. In the original
experiment by Chen et al. (2019a) there was a similar hypothesis, which was also rejected: ”(...)
both algorithms perform better at informativity and correctness than humans, (...)”. What is
interesting about this is that it means that the scores by the experts do somewhat comply with
the reconstruction scores (swap percentages).

5.2 Research question

The third hypothesis is the most important hypothesis to answer my research question since it
addresses the relationship between the experts’ scores and the results from my experiments. Despite
the one case in which the relationship is weak, for the most part, it is true that: the higher the
experts rated the description models on informativity and correctness, the less the reconstructions
will diverge from the real scene. Let us go back to the research question: ”To what degree do
the judgements by the experts on the quantified description making algorithms comply with the
results from the task-based evaluation on these algorithms?”. I can thus say that the judgements
mostly comply with the experiments’ results.

5.3 Further research and limitations

Given the rather positive outcome on my research question and the methodology of my experiments
(hypothesis 1 and 2), it would be interesting to look further into this type of task-based evaluation
of quantified description generating algorithms. This form of evaluation could also be performed
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once more when, for example, the algorithms have been perfected. Additionally, it might also be
wise to use more participants in that case or do this exact experiment again for many more subjects.
This could give more reliable results and hopefully, a significant difference between the values for
smaller domain sizes. If this were to be done, it would perhaps help to do more pilot experiments
to filter out potential misunderstandings or be present when conducting the experiment to check
if the subject is doing what is expected. Since I had to send everyone the experiment online (due
to the coronavirus), I was not present when the participants did the experiment. One participant
did not understand the instructions completely; he or she did not know that there was a scene
size. Some subjects miscalculated when giving the answers, and as a result, their total number of
objects did not match the scene size. This meant that a few participants had to redo some or all
tasks.

I also noticed I got asked a few similar questions by different participants regarding certain
descriptions. They, for example, asked what was meant by a phrase as ”All objects are shown”;
does it mean circles and squares, or circles and squares in all possible colours? (I did not give
an answer of course). It might be useful for the improvement of the algorithms if participants
were able to comment on a description, or indicate that they did not quite understand what a
description meant.
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7 Appendices

7.1 Appendix A: Participants

Participant Age Educational background

1 23 BSc Artificial Intelligence
2 23 BSc Artificial Intelligence
3 22 BSc Artificial Intelligence
4 21 BSc Artificial Intelligence
5 22 BSc Psychology
6 22 BSc Artificial Intelligence
7 22 BSc Philosophy
8 22 BSc Artificial Intelligence & BSc Social Sciences
9 25 MSc Artificial Intelligence
10 22 BSc Artificial Intelligence
11 23 BSc Artificial Intelligence
12 21 BSc Artificial Intelligence
13 21 BSc History
14 25 BSc Computing Science
15 20 BSc Artificial Intelligence
16 21 BSc Medicine
17 25 BSc Earth Science
18 23 BSc Artificial Intelligence
19 23 BSc Human Geography and Spatial Planning
20 25 BSc Artificial Intelligence
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7.2 Appendix B: Instructions
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7.3 Appendix C: Answering sheet

This is an example of an answering sheet for n = 4.
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