
Utrecht University

Master’s thesis

Driver Handheld Cell Phone Usage
Detection

Jannes W. Elings

supervised by

dr.ir. Ronald Poppe

September, 2018

ICA-4165411

2

Abstract

The usage of cell phones by car drivers leads to a lack of attention to the
road and an increased chance of accidents. The Dutch police is tasked with
fining these drivers. Current fining methods require drivers to be caught
red-handed. In this work, it is demonstrated that application of computer
vision techniques can lead to a massive decrease in man-hours necessary by
automating the phone usage detection process. 2038 images of drivers were
collected and classified into risky (phone usage) and non-risky (no phone
usage) behavior. A straightforward Convolutional Neural Network approach
and a more intricate combination of phone, hand and face detection and
hand classification were compared on this task. The combined approach
performed best, with an accuracy of 86.4% and an F-Score of 0.70 (precision:
0.70, recall: 0.70). The study revealed that it is achievable to detect driver
phone usage using computer vision.

3

Contents

1 Introduction 6
1.1 Goal, requirements and challenges . 7
1.2 Relevance of the thesis . 9

2 Related work 11
2.1 Locating the driver . 11
2.2 Classification-only approach . 12
2.3 Feature extraction and alignment . 12

2.3.1 Object detection . 13
2.3.2 Person detection . 17
2.3.3 Pose estimation . 18

2.4 Computer vision approaches for phone detection 21

3 About the data 25
3.1 Data statistics . 26

4 Research questions 29

5 The pipeline approach 30
5.1 Input . 31
5.2 Hand and phone detection . 31
5.3 Face detection . 32
5.4 Follow-up steps . 32
5.5 Hand classification . 33

6 Experiments 34
6.1 General . 34
6.2 Baseline approach . 34
6.3 Pipeline individual components . 35

6.3.1 Data augmentation . 35
6.3.2 Neural network layout . 35
6.3.3 Data size . 35

7 Results and discussion 37
7.1 Baseline approach . 37
7.2 Pipeline individual components . 40

7.2.1 Data augmentation . 40
7.2.2 Neural network layout . 40
7.2.3 Data size . 41

7.3 Complete pipeline . 42
7.3.1 Quantitative analysis . 43
7.3.2 Qualitative analysis . 44

4

8 Conclusion 48
8.1 Limitations and future work . 48

A Software overview and selection 55

5

1 Introduction

Use of a handheld phone while driving is dangerous and illegal. Research shows that a
driver that uses his phone suffers from reduced peripheral detection abilities (50) and a
slower reaction time (5; 28).

Statistics around the world confirm the danger of using a phone while driving. A US
study (13) estimated that the risk of an accident occurring increases by a factor of 2.2
while handheld calling and a factor of 6.1 while texting. There is no specific data on the
number of traffic accidents involving distraction from mobile phones in The Netherlands.
However, from 2014 to 2016, the number of deaths in traffic involving cars and trucks
have gone up from 202 to 260 per year (7), after years of steady decrease. In a 2016 poll
(8), 98.7% of Dutch drivers said they perceive texting while driving as dangerous. In the
same poll, however, 12% of them said they occasionally text while driving themselves.
The poll also revealed that 10% of people occasionally make handheld calls while driving.
Dutch drivers appear to be aware of the dangers of handheld phone usage, but they seem
to lack self reflection.

The Dutch police force plays a large role in the public road safety in The Netherlands. It
is their task to discourage people from using their phone while driving. They do this by
issuing fines. Currently, drivers using their phone have to be caught red-handed, holding
their phone while driving, to get a fine. This leads to drivers trying to get out of a ticket
by simply putting away their phone temporarily when they see a police vehicle. The
driver avoids the ticket and phone usage is not meaningfully discouraged. Moreover, the
Dutch police force does not have the manpower to enforce this way of fining on a large
scale.

For this reason, there is an interest in a way of detecting phone usage automatically.
A well-functioning automatic system for detecting phone usage of drivers could lead to
more people being caught, and more importantly, more awareness among drivers. The
aim of this thesis project is to develop prototype software that uses computer vision to
automate this detection. The software should be able to classify whether drivers are
holding their cell phone with sufficient accuracy. A human will still need to confirm
if the software was correct by looking at the footage, but the number of drivers that
have to be checked should be significantly reduced when compared to watching the full
footage.

This document introduces the goal, requirements and challenges of the thesis. The
relevancy of the research will be discussed. With these factors in mind, related research
will be discussed, along with the techniques that underlie them. Once these have been
discussed, the data that will be used is reviewed. Then, the research questions are
introduced. An overview is given of the pipeline approach, the main software that
was developed for this thesis. The pipeline approach will be used as a tool for the
experiments, which are described next. The results of the experiments will be laid out
and discussed. Finally, conclusions and suggestions for future work will be given.

6

Figure 1: An example of the data that will be used.

1.1 Goal, requirements and challenges

The goal of the thesis will be to develop software that can detect if a driver is using his
handheld phone using computer vision. The input will consist of videos from a camera
mounted above the highway. The software should output images of drivers of which
there is a high probability that they are using their phone. These images can then be
reviewed by an employee of the Dutch police. Ideally, the number of drivers that have to
be reviewed will only be a fraction of the total number of drivers. The software should
be usable as a tool to answer the research questions provided in Section 4.

Previous research by Groot and Jiang (22) in the same setting showed that detecting
phone usage is not a trivial task. The aim of this project is to build upon their research by
starting with their method as baseline and adding improvements, all the while evaluating
their impact. The end result should be a multi-stage algorithm consisting of techniques
to subtract useful information from the images ended with classification that can detect
phone usage more intelligently. Alternatively, it could end with the result that the
baseline was the best performing method that was tested.

Requirements

The aim is to make use of off-the-shelf algorithms that can be combined to work for
this use case. This approach is chosen because developing custom programs is costly
in terms of time spent. Besides, the focus of the project should not be on writing
code. It should instead be on experimenting with different scientific methods to solve

7

a practical problem. Utilizing publicly available algorithms will increase the amount of
experimenting that can be done.

Algorithms that require large amounts of training data to learn from have been a recent
trend in computer vision. This data is time consuming to gather. When using such
algorithms, the preference will be given to publicly available training data over gathering
custom data. This will not always be possible. For example, the final classification has
to be trained on custom data regardless. Nevertheless, for intermediate algorithms, used
for detection of for instance faces, pre-trained models will be preferred.

The drivers in the video were categorized by hand into a few different classes. The
chosen classes are:

Handheld calling Driver that has his phone in his hand, next to his head.

Handheld phone usage Driver that is holding his phone and is using it for something
other than calling.

Holding something else Driver whose hand or hands are visible and at least one of
his hands holds something that is not a phone.

Hand close to head Driver whose hand or hands are visible and at least one of his
hands is close to his face (hand on chin, cheek, behind head or similar).

Hand off the wheel Driver whose hand or hands are visible and at least one of his
hands is not touching the steering wheel.

Non-risky behavior Driver that has one or both of his hands on the steering wheel
or whose hands are not visible in the image. Notably also includes drivers that are
probably using their phone, but are doing so without it being visible by the camera, by
for example keeping the phone behind the dashboard.

Some classes overlap. In such a case, the one first from the top is chosen. For example,
one could argue that a driver that is handheld calling could be classified as both Handheld
calling as well as Hand close to head or others. In this case, it should be classified as
Handheld calling because it is the first applicable from the top.

When completely finished, the software should be able to distinguish between risky
behavior (a driver visibly using his phone) and non-risky behavior (the rest). The classes
above are only used as input to see where the different types of driver behaviors end up.
This can for example make it possible to determine what behavior often leads to false
positives.

Challenges

The chosen camera position above the highway makes it so that people holding their
phone behind their dashboard will not be detected. There is not much that can be done
about this, but it can be seen as a challenge for this project.

8

Quite a lot of research has been conducted that is focused on detecting handheld calling
while driving. Detecting both calling and texting is a more challenging and less tried
problem. Drivers that are handheld calling will almost always have their phone next to
their head, whereas drivers that are texting do not have a similar distinct pose. The space
of possible different configurations of ‘hand holding phone next to head’ is smaller than
the space for ‘drivers using cell phones in their car’. So to adequately train classifiers for
both sets, the amount of training data needed for the latter is larger than for the former.
Since a very small percentage of collected images actually contain drivers using their
phone, collecting sufficient training data can be a challenge. This will be mitigated by
collecting as much data as possible and by using smart features that reduce the amount
of data that is necessary.

Phones are very small, detecting them is impractical. Therefore it might be necessary to
supplement phone detection by detecting specific poses of the driver or other clues that
imply phone usage. Detecting something that implies phone usage instead of actually
detecting phone usage itself will lead to false positives. By tuning parameters and using
state-of-the-art algorithms, the amount of false positives will be kept to a minimum.

Finally, there is no control over the lighting conditions. Reflections on the windshield
and low brightness during the evening or at night can render the driver almost invisible
to the camera. Bad lighting is a common challenge in computer vision and it can make
it difficult to classify the behaviour of drivers. Usage of a polarizing filter together with
image processing techniques will mitigate as much of the influence of bad lighting as
possible.

1.2 Relevance of the thesis

For society

The impact on society is intended to be sizable. Fully working phone detection software
would lead to a dramatic time reduction for the police force when issuing fines for phone
usage. This leads to more people being fined for their dangerous behavior and hopefully
to more awareness among the Dutch population and safer roads altogether. Society
would thus benefit in the form of more safety and less traffic jams due to a reduction in
car accidents.

For science

A better understanding of phone detection from video would help increase insight in
how to tackle such problems in the future. Because there are many different ways to do
this detection, every research project that attempts this in a different way helps to guide
future research towards higher performing methods. Even if performance turns out to
be lacking, it would help researchers steer away from this method.

9

For technology

The Dutch police force has not found any published software that meets their needs in
this regard. If the project software works well, it could be a stepping stone for other
technology that aims to improve road safety. It could also be shown as a proof of concept
for the development of similar solutions in other countries.

10

Figure 2: Detecting windshields in video frames.

2 Related work

The detection of phone usage in cars can be approached in multiple ways. For this
project, the input will be an image or video and the output will be a classification and a
location. The steps in-between can vary, however. The next sections will give a high-level
overview of the different possible steps in-between and the related research.

2.1 Locating the driver

Since the input is going to be a video or image of the highway, the regions containing
the driver will be small parts of the entire frame. The position of the driver within the
frame is variable in time and there are times when there are no or multiple drivers visible
in the same frame. For these reasons, it is necessary to first find where the drivers are
located.

The task of classifying if an object is present and locating it in an image is called object
detection. The first step of the final software needs to be some form of object detection
to find the driver regions. It could just be person detection, but also a combination of
person, car or windshield detection and image cropping. For example, Artan, Bulan,
Loce and Paul (2) first detect windshields and then detect faces within them. Groot and
Jiang (22) detect cars and then detect the rightmost person in the car. There is not one
best way, the most important aspect here is robustness. Because since the classification
will only be applied to the driver regions, any errors in this step will propagate to the
next steps.

There are many object detection algorithms that achieve high accuracy on simple objects
like cars and windshields. The Dutch police has already developed a simple tool based
on Local Binary Patterns (36), a method that can determine the similarity of patterns.
Their tool can detect windshields based on number plates. It works by looking for
number plates in a set region of the video frame. When a number plate is detected in
this region, the windshield of the corresponding car is detected and saved, together with

11

the number plate number and a timestamp. The tool works with reasonable accuracy.

The project will not be focused on this part of the complete handheld phone usage
detection pipeline. Since the tool developed by the police works reasonably well, it will
be used for this purpose.

2.2 Classification-only approach

Once the driver region has been located, the next procedure could be to classify imme-
diately. By simply taking all of the pixels of the driver region, generating image features
from them (using for example a Convolutional Neural Network or a Deformable Part
Model as discussed in Section 2.3.1) and classifying them using any classification algo-
rithm (using for example a Support Vector Machine or a MultiLayer Perceptron). This
way, no prior knowledge about the contents of the images is used and no assumptions
are made.

A positive aspect of just generating features and classifying is that it is relatively simple.
The algorithms mentioned above are algorithms with open-source implementations that
can do this quick and robust. Not having to develop a custom algorithm also saves time
developing, testing and debugging, which is especially important when research time is
limited.

The simplicity also leads to the biggest drawback of this way of handling things. The
context contains much information that the algorithm could benefit from that is not
used optimally. For example, a human would know that the images will always feature
drivers, and that drivers have a face and hands. If one locates the hands of the driver,
it is possible to see if they are both on the steering wheel. Knowing if the hands of
the driver are on the steering wheel is very informative for classification. Humans can
immediately grasp this, but the classification algorithm would have to learn this on its
own. By adding positions of meaningful object parts (such as hands) as features, the
classification could be steered in the right direction. If the notion of meaningful object
parts is missing, like in these algorithms, this information is lacking and classification is
thus solely dependent on the raw pixel values.

A consequence of letting the algorithm figure it out is that more training data is necessary
than if it were given additional contextual information. It simply needs more examples
for it to learn the desired relationships on its own. Like mentioned in Section 1.1, getting
enough training data is already a challenge for this project. Requiring more training data
is therefore a significant drawback of this approach.

2.3 Feature extraction and alignment

From the straightforward approach it becomes clear that looking at contextual informa-
tion and meaningful object parts could be beneficial for the accuracy of the classifier.

12

Aside from adding information to the classifier, having as little variation in the data
as possible can also benefit classification accuracy. In the perfect scenario, the only
variation is the exact difference in classes that is being captured. To reduce the variation
in unwanted areas, the data can be aligned.

This section will focus on possibilities and accompanying research for these two proce-
dures.

2.3.1 Object detection

Many alignment approaches require getting object position information from the image.
Important objects in the driver region could for instance be the drivers’ face, the drivers’
hands or the steering wheel.

In this section, the general methods for detecting objects will be discussed. There are
more specialized algorithms for person, face and pose detection, which will be discussed
in upcoming sections.

Custom features

Object detection algorithms make use of features. Features are numerical values that
are extracted from an image and contain information that describes the image or parts
of it. Feature values can be used to analyze the image and decide what is on it. Since
pixel values are numerical, features are often (small) images themselves. These image
features can for example be edges, points, shapes or textures. Although features can be
regular numbers or vectors as well. An example of this would be the positions of the
different body parts of the driver.

Creating features by hand can be beneficial as a starting point. Algorithms that generate
their own features often do so in an incremental way. By starting with handcrafted
features, these algorithms get a head start and will therefore converge more quickly.
Alternatively, additional hand crafted features can be added to an algorithm just before
the classification step to improve accuracy.

Convolutional Neural Networks

An example of an algorithm that generates its own features from pixels is a Convolutional
Neural Network (CNN) (31), a biologically inspired type of Artificial Neural Network
(ANN). Where hand crafted features are limited by human imagination, features created
by CNNs can be of arbitrary patterns and are therefore more flexible. CNNs have gained
a lot of popularity in the field of Computer Vision in the past years due to their excellent
performance on various visual classification tasks (37). A CNN consists of multiple
convolution layers, alternated with pooling (sometimes called sub-sampling) layers.

The first layer of a CNN is a convolution layer. In a convolution layer, a matrix called a

13

kernel (also called filter) is applied to the input pixels using a sliding window approach.
The output becomes a transformed and slightly smaller version of the input image,
called an activation map. In image processing, kernels are often used for edge detection,
blurring or sharpening. That is when they are manually created. The CNN learns them
through back-propagation. So it creates kernels that capture a pattern, but do not have
to be understandable by humans.

Pooling means combining groups of input values into a single output value. The activa-
tion maps that are outputted by the previous layer are split into rectangular groups of
values. The pooling layer combines the groups, leading to a smaller output activation
map. Note that pooling works on values, not on pixels. So for instance pixels repre-
sented as RGB values will just be treated as if they are an activation map with a depth
of three. The main goal of pooling is to help achieve local and spatial invariance. There
are different types of pooling layers. Most common is the max pooling layer, where the
max of the input values is used as output values.

The convolutional neural network consists of combinations of convolution and pooling
(and sometimes other types of) layers, repeated multiple times at different scales. The
kernels in the lower level layers measure more generic features, like edges and patterns.
The kernels in the higher level layers combine the lower level features into larger, more
specific structures, like parts of objects or even complete objects.

The activation maps that are outputted by the last convolution or pooling layer are then
often fed as input into one or more fully connected layers to do the actual classification.
The fully connected layers are like a regular Multi-Layered Perceptron (MLP). The
convolution and pooling layers can also be used without the fully connected layers for
just feature generation and combined with other classifiers like an SVM.

Instead of training a CNN from scratch, which requires vast amounts of time and com-
puting power, CNNs are usually trained with the use of transfer learning: using the
information from a different trained network to give the new network a head start. By
acquiring a CNN pretrained on a different dataset and substituting the fully connected
layers with new ones, the features are reused and only the classification has to be trained
for the new dataset. Alternatively, while training the classifier, the non-fully connected
layers can also be tuned to the new dataset by continuing the back propagation. This
can be done for all layers or just for the higher level ones by keeping the lower levels
fixed.

The fact that the CNN generates its own features is a major advantage, as it reduces the
amount of manual preprocessing needed to use it. On top of this, the CNN learns which
of the features are most important so there cannot be any human bias in this regard.

A disadvantage of the CNN is that its size and complexity make it difficult to customize
and interpret the model.

CNNs work on the entire input given. So without modification, a CNN works on the
entire image. This is fine for classification. For object detection, however, localization

14

is necessary. Therefore, regions of the image have to be selected to use the CNN on.
Deciding on regions to apply and at what stage in the algorithm has been a hot topic
in object detection. Many variants have been proposed. Some of the ones that are
discussed in papers about driver phone recognition include:

Regions with CNN features (R-CNN) Originally proposed by Girshick, Donahue,
Darrell and Malik (20), the R-CNN was designed specifically for object detection. The
main improvement of R-CNN over regular CNNs is the use of region proposals. Regions
within the image are proposed based on similar texture, color or intensity. Intuitively,
this can be seen as trying to find objects first and recognizing them second. After the
regions are proposed, a regular CNN tries to classify the object in the region. The found
regions are then turned into bounding boxes. Finally, the locations and sizes of the
bounding boxes are tuned using a class-specific bounding box regressor.

The regular R-CNN proved to be quite slow due to it requiring many passes through the
CNN per image and because it requires training three different models simultaneously
(the CNN, the classifier and the regression model). These drawbacks are addressed in
the next proposed version, called Fast R-CNN, which was proposed by Girshick (19).
The region proposal step is moved to after the feature extraction step, leading to one
pass through the CNN per image instead of thousands. The other improvement is the
replacement of the classifier and the bounding box regressor with their corresponding
ANN layer counterparts, essentially integrating the two other models into the CNN.

Because the region proposal step is after the feature extraction step in Fast R-CNN,
the extracted features can be used to generate the region proposals. This was the key
insight of the third R-CNN version, Faster R-CNN, proposed by Ren, He, Girshick and
Sun (42). By doing it this way, the region proposal is almost free in terms of computing
time, leading to an even faster algorithm.

Single Shot Detector (SSD) The region proposal step of Faster R-CNN mentioned
above proposes class-agnostic regions. In the next stage, these proposals are classified by
a CNN. Instead of classifying in the second stage, a network could propose class-specific
regions immediately: a single shot detector. The term SSD was coined by Liu et al.
in regards to the object detection method they proposed (34). However, the method
of directly predicting classes without requiring a second stage classification operation is
not new. In this work, all methods that handle detection in this fashion are meant when
talking about SSDs. Using this definition, DSSD (18), YOLO (39; 40; 41), Overfeat (44)
and RetinaNet (32) can also be classified as such. Compared to Faster R-CNN, SSDs
appear to be slightly faster and slightly less accurate in object detection tasks. Their
speed can be attributed to the absence of the second stage classification. Although
the RetinaNet paper claims to achieve comparable results to Faster R-CNN without
sacrificing on speed.

Region-based Fully Convolutional Networks (R-FCN) Another method that tries
to do what Faster R-CNN does, but faster, is called R-FCN. Proposed by Dai, Li, He
and Sun (11), R-FCN is built on the insight that Faster R-CNN calculates features for

15

every bounding box proposal in an image to be able to classify that region. It does so
by cropping the features from the output of a layer in the middle of the CNN. There are
typically hundreds of these proposals per image. R-FCN moves the cropping of these
features to the last layer before classification. So the box proposals do not have to go
through a part of the network, leading to a speedup of the algorithm.

The above discussed CNN meta-architectures are examined further in an overview paper
by Huang et al. (25). The trade-off between accuracy and speed for different parameter
settings and feature extractors are also discussed. From their work, Faster R-CNN can
be concluded to be the most accurate overall.

There are some things that have to be done before a CNN like Faster R-CNN can
be incorporated into the project pipeline. The network has to be trained to detect
the specific object of interest. Training is very computationally intensive and therefore
requires a computer with a high-end graphics card to do somewhat quickly. Not only
that, large amounts of annotated training data needs to be collected to get the highest
performing detector.

Deformable Part Models

Another major group of object detection algorithms are based on Deformable Part Mod-
els (DPM), as introduced by Felzenszwalb, Girshick, McAllester and Ramanan (17).
DPMs are a way to model objects as a combination of parts. They can also be used
for object detection. Working with parts can lead to more robust classifiers than when
working with one complete object because when the object is in different configurations,
the classifier can still detect the individual parts. To give an example, a person detector
trained on standing people will have problems detecting a sitting person, as it looks like
a different object. This is because a human, as opposed to a rigid object, is deformable.
The different body parts can occur at varying positions and still be part of the person. A
parts-based detector that can handle deformation can detect that the body parts of the
sitting person are the same as those of the standing person, except rearranged. Therefore
it will have less trouble detecting it as a person. Aside from generalizing well to unseen
configurations of parts, the algorithm can deal with partial obstructions of the object
by hallucinating the invisible parts.

A DPM object model consists of a root filter, part filters and deformation models.
The root filter is a Histogram of Oriented Gradients (HOG) of the entire object. The
part filters are higher resolution HOGs of parts of the object. Each part filter has a
deformation model: a function that represents the cost of placing the corresponding
part filter relative to the root template.

When training, the DPM requires only bounding boxes of the complete object, not of
the individual parts. The DPM can create the root filter, part filters and deformation
models by using something called Latent SVM. The Latent SVM is a variation on the
regular SVM. The difference is that the Latent SVM is specifically designed for DPM.
It considers the DPM parts and deformation models as hidden variables that it tries to

16

optimize. Its aim is to find the parts that are most informative during object detection.

When detecting an object, the DPM will calculate a detection score, based on the po-
sition of the root filter, the part filters and the relative position of the part filters. The
score that a relative position gets is dependent on the deformation models. To calculate
this score, given an input image, the DPM creates a pyramid of HOG features of the
image. It will then place the root filter in a HOG image of low resolution and the part
filters at a higher resolution at their relative positions. The total detection score of the
model at this position is the sum of all filter scores minus the displacement of the parts
with respect to the root model. This means that if the parts look different, the score goes
down. If the parts are in an uncommon position, the spatial deformation (displacement)
goes up and the score goes down as well.

Interestingly, in a technical report, Girshick, Iandola, Darrell and Malik (21) show that
DPMs and CNNs are not two completely distinct methods. A DPM can be formulated
as a CNN by mapping each DPM step to an equivalent CNN layer. By showing that this
CNN version achieves higher scores on the Pascal 2010 (16) object detection dataset than
a regular HOG-based DPM, they claim that it learns better features. Savalle, Tsogkas,
Papandreou and Kokkinos (43) have constructed models using a DPM combined with the
features of a CNN, also leading to higher object detection (on the Pascal 2007 dataset
(15)) performance than when using just a DPM. Yet it should be noted that regular
CNN performed even better.

In general, CNNs appear to perform better than DPMs. However, there is an upside to
using DPMs. Whereas CNNs are very dependent on large amounts of training data to
learn meaningful features and not overfit, DPMs perform well using a relatively small
amount. This is due to the explicit modelling of the parts based structure, which elimi-
nates the need for the algorithm to learn it on its own.

2.3.2 Person detection

Using person detection is very similar to using object detection. Almost all algorithms
capable of person detection are also usable for regular object detection. Which seems
sensible, because a person can be seen as just another object. So the object detection
algorithms discussed above are also viable person detectors. However, there have been
some methods developed specifically for person detection.

Bourdev and Malik (4) proposed to detect people using poselets: ‘Poselets are tightly
clustered in both appearance space (and thus are easy to detect) as well as in config-
uration space (and thus are helpful for localization and segmentation).’ Poselets are
similar to the part filters in a DPM, they describe a small part of the object that is
being detected, encoded in a HOG feature. A face looking forward could be a poselet,
but crossed legs could also be a poselet. In the case of this project, one could imagine a
hand next to a head as a poselet that could be interesting. The difference with a DPM
is that the parts are not deformable. They have a fixed structure instead.

17

A regular person detector can be created by classifying poselet activations and positions.
Poselets can also be utilized for pose estimation. A pose is a particular configuration of
the body parts of a person. Each poselet can be labeled with its corresponding action.
Detected poselets can then function as features of a classifier of the action or pose that
is portrayed.

2.3.3 Pose estimation

Aside from poselets, there are other pose estimation algorithms that could be useful for
this project. Estimating the pose of the driver can give a great amount of additional
information. For example, when handheld calling, many drivers will keep the phone
close to their head. Knowing that the driver is in a pose where the hands are close to
the head will provide the software with more information to base its classification on.
It will most likely not classify this as a driver with both hands on the wheel. So just
knowing the pose can eliminate some classes as viable options.

The pose of the driver is very informative when classifying. Since phones are small and
not always visible due to occlusion and other factors, adding driver pose information can
benefit classification of phone usage.

A disadvantage of estimating poses is that it adds another computing step between input
and output, meaning errors in this step will propagate to the classification step. Besides
errors propagating, the resulting software becomes slower and more reliant on different
applications.

Complete pose estimation

Following is a quick dive into research on detecting human poses.

Based on DPM, the flexible mixtures of parts method was proposed by Yang and Ra-
manan (56) as a method to estimate human poses. Parts are smaller and more in number
than those of a regular DPM. The parts also have a fixed orientation. In regular part
based models, the parts would be stretched and rotated to fit. In this model, a different
part is taken altogether. The reasoning is that a part can look different at different
locations. They claim that due to these properties, the dependency of global geometry
on local appearance is better captured.

A method proposed by Chen and Yuille (9) stands out because of its high performance
on upper body pose recognition. Since the images used in this project show only the
upper body, this method might be interesting to experiment with. It approaches object
detection similar to a DPM in that it sees the human body as a graph with body parts
as nodes. In this case, the nodes are at the joints of the body. The first difference with
DPM is that parts are not modelled using HOG descriptors, instead they opt to use CNN
features. Another difference is that the image patches around the found joints are put
through a CNN that predicts the spatial relationship with the joints that are connected

18

to it. The idea is that from an image of, for example, a bend elbow, the shoulder and
wrist positions can be deducted. So the method combines a graph representation with
a CNN.

Face detection

Instead of detecting the complete pose, specific body parts can be detected, like faces.
Knowing where the face of the driver is can benefit the algorithm. For example, some of
the phone detection research uses face detection to search for phones near the drivers’
ears.

For the thesis project, the faces that would be detected are almost always going to be
looking straight ahead at the road in front of them. This is fortunate, because under
these conditions all capable face detection algorithms should work relatively well.

In 2004, Paul Viola and Michael J. Jones (53) proposed a real-time face detection method
using Haar-like features (52). Nowadays, the Viola-Jones face detector is a proven
method of detecting faces. It can be used for detecting other objects, but is mostly
used for faces. The main idea comes from the insight that faces almost always have
darker and lighter colors in the same regions. For example, the eyes of a person are
almost always darker in color than the cheeks. When using Haar-like features, relations
between darker and lighter regions like these are saved in the form of a feature.

The training of this detector starts by constructing features in all possible positions and
scales of rectangles consisting of a darker and a lighter area. These features are then
placed on the training images and a threshold is calculated for the feature that results in
the best classification of faces and non-faces. All features are then applied to all images.
Misclassified images are given a higher weight and all features are again applied to all
images. This procedure is repeated until a chosen accuracy or other stopping condition
is met.

The Viola-Jones detector is most often combined with Adaboost, a method of creating
a strong classifier based on weak classifiers. The weak classifiers are the features in this
case. During the detection phase, selected features are placed on the image using a
sliding window approach. the best performing features are applied first. If they fail, the
window is discarded. Otherwise, the next few features are tried. If all features succeed,
the window is classified as a face.

A Viola-Jones detector works well with frontal faces, but not as well with rotated faces.
The light and dark areas in a face can be completely different when the face is rotated.
There are extensions that can do this, however.

Zhu and Ramanan (58) propose a DPM based method to localize faces. The method
is specifically geared towards use ’in the wild’, meaning it also works on rotated faces
and under differing lighting conditions. An important aspect of this algorithm is that it
arranges the parts in a tree structure, which leads to increased computing speed. This
method is used by Artan et al. (2) in their phone detection research for both windshield

19

and face detection. From small tests, it appears to achieve higher accuracy scores than
Viola-Jones, but it executes slower. This is what was expected, looking at the complexity
of the two models.

A few of the found methods for phone detection use MTCNN of Zhang, K., Zhang, Z., Li
and Qiao (57). Their approach consists of a series of steps. First, the image gets resized
multiple times at multiple scales. Then, a CNN (called P-Net) is used to obtain proposal
bounding boxes. The bounding boxes go through two more CNNs (R-Net and O-Net)
in succession to remove false positives and detect landmarks. This algorithm achieves
state-of-the-art performance on face detection datasets FDDB (26) and WIDER FACE
(55).

Hand detection

Other very informative parts of the driver pose are the positions of his hands. All but
one of the chosen categories for classification are based on hand visibility. As mentioned
before, hands can be seen as just another object and thus they can be detected by object
detection algorithms. There are also specific hand detection algorithms that claim to be
better suited to the variable shapes of hands.

One of these algorithms was proposed by Mittal, Zisserman and Torr (35). They combine
three different hand detectors, each proposing hand bounding boxes. The hand detectors
are each based on a different detection aspect, one for hand shape, one for context and
one for skin color. Then, the final confidence of the bounding boxes is decided by an
SVM classifier. The best performing hand detector scores a precision of 48.2% and a
recall of 85.3%. The researchers also published an annotated hand dataset that could
be useful for this project.

Another method of hand detection specifically tested on drivers was proposed by Sid-
dharth, Rangesh, Ohn-Bar and Trivedi (46). Their method relies on YOLO (39) pre-
trained on the Pascal VOC dataset (14) and then trained on the VIVA dataset (12),
which is a dataset consisting of videos taken from inside the car with the drivers’ hands
annotated. YOLO proposes hand regions of which HSV histograms are generated. The
histograms are then clustered and later classified using a random forest classifier. This
procedure helps remove false positives. From the remaining bounding boxes, masks of
only the hands are created using the HSV histograms. Both the bounding boxes and the
masked images are used to generate HOG and VGG (a type of CNN) features. The hand
detection accuracy is not reported, but the precision and recall are 74.1 and 47.2 for the
part of the dataset with hands larger than 70 pixels and from only a single view. Inter-
esting about this research is that they also try to detect phones in the hands. Their best
performing phone detector achieves an accuracy of only 53%, showing the difficulty of
this task. They also find that masking the hand significantly improves the classification
accuracy.

20

2.4 Computer vision approaches for phone detection

Now that most of the underlying methods have been introduced, the research that is
focused specifically on using computer vision to detect phone usage of car drivers can be
discussed. Now following is an overview of recent vision based research with this goal.

Berri, Silva, Parpinelli, Girardi and Arthur (3) propose an SVM-based model to detect
drivers using their cellphone to make calls. They use Haar-like features and Adaboost as
a classifier to detect faces. Once the drivers’ face is detected, the skin pixels are isolated
and a region around the face is checked for skin colored pixels that could be the driver’s
hand and arm. The percentage of skin pixels found, combined with Hu’s Moments (24)
are used as features. An SVM is used for classification. Over five videos they seem to
reach reasonable accuracy, especially in the detection of non-risky behaviour. However,
they removed some data of videos taken on very sunny days to get these results. The rel-
ative simple approach of this paper shows that under the right circumstances, detecting
handheld calling is possible with decent accuracy. The difference in performance when
the sun is shining or not appears to be a significant drawback, however.

Seshadri, Juefei-Xu, Pal, Savvides and Thor (45) make use of the space next to detected
faces to look for hands and cell phones. The input videos come from the Strategic
Highway Research Program (SHRP-2) dataset, a dataset that is used in other related
research as well. The dataset features drivers driving and performing a series of tasks,
like making a phone call, reporting the vehicle’s speed and turning the radio on and
off. It is filmed by multiple cameras at various positions in the car. It has recordings
of a face view, lap view, hand view and a forward view. Their approach is to first
detect the drivers’ face using Supervised Descent Method (54). Then, two regions on
either side of the detected face is extracted. These regions are used to create two feature
representations, one using the raw pixels and one using HOG descriptors. The features
are then classified using Real Adaboost, an SVM and a random forest classifier. The
highest accuracy feature-classifier combination turned out to be HOG-Adaboost. The
highest AUC of the ROC curve was achieved by the HOG-SVM combination. The
researchers note that they did filter harsh lighting conditions, large face occlusions and
face pose variatons from the data. Interesting about this research is that the different
classification techniques do not differ a lot in performance, when measured in AUC of
the ROC curve. A big difference between this research and the project is that only
handheld calling is detected in this research, whereas for the project, texting also has
to be detected. The regions of interest can thus simply be cropped from around the
detected face. On the one hand, this makes the research less useful for the current use-
case. On the other hand, the research shows that if the hand regions can be detected
consistently, high performing classifiers can be trained.

A method that boasts higher accuracy on the SHRP-2 dataset is proposed by Le, Zheng,
Zhu, Luu and Savvides (29). They claim that regular Faster R-CNN has trouble with
detecting small objects like hands and faces in this dataset. For this reason, they use a
method they call Multiple Scale Faster R-CNN (MS-FRCNN). MS-FRCNN is a different

21

layout of the neural network that trains object proposals at various scales. It is shown
that this network achieves slightly higher accuracy than regular Faster R-CNN. The
network is used to detect steering wheels, hands and faces. When the hands are close to
the face, the driver is classified as using his phone. In the paper it is mentioned that their
method is faster than the one by Seshadri et al. (45), because it does not do the costly
facial landmarking step. The tables in their paper display a different result, however.
In Table 1, the FPS of Seshadri et al. is higher than that of Le et al. themselves.
It is unclear what causes this discrepancy. The achieved phone detection accuracy is
very decent. The precision and recall (or similar measures) are not mentioned and it is
therefore unknown whether the results could be skewed in either direction. From this
paper, the MS-FRCNN algorithm could be quite interesting for this project, because it
will feature small objects as well. The only issue is that from the results in this paper it
can be concluded that it performs only very slightly better than regular Faster R-CNN.
Therefore, it does not warrant the time that would be invested in implementing it and it
will not be used. Detecting whether the drivers’ hand(s) are close to his/her face could
be interesting to implement in this project.

In another paper, published a year later, Le, Zhu, Zheng, Luu and Savvides (30) propose
a framework that detects unsafe driving behaviour in general. Part of the framework
is a hand on phone detector. The first step of their approach is to train a CNN on
driver body parts (face, torso and seat belt). The CNN features are used to create a
probability map that contains the confidence score of a pixel belonging to the object
of interest. These maps are used as initial seeds for a Semi-Supervised Normalized
Cuts segmentation algorithm (10) that creates object proposals. Then, R-CNN extracts
features from the bounding box of the region and from the foreground at different scales.
An SVM gives a score for each class to each candidate. Finally, Pictorial Structures (PS)
(1), a technique similar to DPM, is used to decide the final candidates. By using CNN
features, as opposed to HOG or SIFT features that are commonly used with PS, they
claim to have better performance than other research that uses PS. This seems like a
reasonable claim because other research (21; 43) has shown that CNN features work
better in combination with DPMs as well. The method is tested on the VIVA (12)
dataset mentioned before in Section 2.3.3. Their achieved performance is quite high,
although it should be noted that the phone detection receives already detected hands
as input. And the hand detection error is not given. Nevertheless, the techniques used
seem promising and they could be interesting to try out during this project.

Where all of the above research focuses on videos taken by cameras from inside the car,
Artan et al. (2) have used video from a near infrared (NIR) camera hanging above the
road. This adds the challenge of having to find the position of the driver in a larger than
usual search space behind a windshield that could be reflective. They solve this by first
finding the location of the windshield using a DPM based method proposed by Zhu et
al. (58) (see Section 2.3.3 for more on this method). This not only reduces the search
space, it also guarantees that there is a face in that region. The face detection algorithm
can therefore assume that the region that is most face-like is a face. Even when a face
is partially occluded, it can still be found this way. This is essential because many of

22

the faces are occluded by sun visors. The faces are detected using the same method as
the windshield detection. The found face region is combined with regions to the left
and right of it and this region is fed into the classification pipeline. First, SIFT features
are generated. Then, three vector signatures are created for each image using Bag of
Visual Words (BoVW), Vector of Locally Aggregated Descriptors (VLAD) and Fisher
Vectors (FV). The resulting vectors are classified using an SVM. Their results improve
when classifying the right and left side of the head separately instead of classifying the
head as a whole. The FV image signatures were classified with the highest accuracy.
Interesting for this project is the use of vector signatures. This could be something to
experiment with. The insight that only the most face-like region has to be found from
the right side of windshields could also prove useful. Use of a NIR camera is something
that could be considered by the Dutch police in a later stage of the development of this
technology.

Groot and Jiang have worked on this phone detection task in the same setting (22).
They have used the same videos as the ones that will be used in this project with the
same intended outcome. Therefore their work is very informative for this project. They
approach the problem in the straightforward way (as described in Section 2.2). YOLO
is first used to detect cars. The driver is subsequently detected by taking the person
detections from YOLO and choosing the bounding boxes with their center to the right
of the center of the detected cars. From these bounding boxes, the one with the highest
certainty is chosen. This driver bounding box is cut out of the image and the cutout is
classified as risky or non-risky using a CNN. Notable here is that all drivers with one or
both hands visibly off the wheel are classified as risky. The CNN has been trained on
the right side of windscreen images taken from videos from a different video set. Due to
the low number of risky training images, combined with an apparent focus on accuracy
over other measures that balance precision and recall, leads them to preferring models
with high accuracy, but low recall. Even though they did find a model with high recall
in their parameter optimization searches. This might be the largest drawback of this
research. The parameter tuning of the CNN has been mostly focused on achieving a
low Mean Squared Error (MSE). Whereas it could have been focused on maximizing a
measure like F-score or area under the ROC-curve. Parameters leading to a high F-score
would probably include more false positives than a low MSE counterpart, but it would
find more drivers that are actually behaving risky. Besides, since all risky classifications
will be checked by a human to filter out false positives, they are less of a problem. From
this paper, the idea of classifying hands off the wheel as risky might be useful for this
project. If the amount of training data is too small, this could boost the number of
positive samples. Another important lesson from this paper is that accuracy should not
be considered as the be-all and end-all metric to optimize.

23

Authors Camera positioning Objects that are detected Features Classification

Artan et al. (2) Outside of vehicle Windshields, faces SIFT (BoW, VLAD, FV) SVM

Berri et al. (3) Inside of vehicle Faces Haar + adaboost SVM

Groot and Jiang (22) Outside of vehicle Vehicles, people CNN CNN

Le et al. (29) Inside of vehicle Faces, hands and steering wheel CNN CNN

Le et al. (30) Inside of vehicle
Faces, facial components, hands,
seatbelts and upper bodies

CNN SVM

Seshadri et al. (45) Inside of vehicle Faces Haar + SDM SVM

Table 1: Overview of other research

24

3 About the data

The data that will be used consists of videos of cars driving on the highway. The videos
have a resolution of 3840×2160 pixels. The frame shows two lanes of traffic. See Figure
1 for an example of a video frame.

From the videos, images of the windshields of the cars are extracted using the tool
developed by the Dutch police, as mentioned in Section 2.1. The right side of these
images (where the driver is located) is cropped. Our dataset consists of 2038 of these
images of driver regions. The average size of a driver region is 370×296 pixels.

The 2038 images were taken from a set containing 61391 windshield images, see Figure
3. The 61391 images were manually categorized into the input classes mentioned in
Section 1.1 by a few members of the IT department of the Dutch police using an in-
house developed tool. The distribution among the different input classes can be found in
Table 2. From the resulting classified images all phone usage images were taken for the
new dataset. With 206 Handheld calling and 232 Handheld phone usage images, these
input classes had the fewest items. The other input classes each had 400 images taken
from them at random. More would lead to a large class imbalance, which makes training
CNNs more difficult. Fewer would lead to an even smaller dataset and therefore worse
expected results.

The original data was collected during 38 hours of filming above the same highway, near
Utrecht, The Netherlands. Although it cannot be assumed that other roads will have the
same percentage of drivers using their phones, the ratio can be expected to be very much
skewed towards more Non-risky behavior on other roads as well. This is important to
note, as the dataset consisting of 2038 images has a different class balance. This means
that any images in the Non-risky behavior class, that are wrongly classified as phone
usage in the dataset consisting of 2038 images, will lead to a larger amount of wrongly
classified phone usage in real-life data.

Class type Input class Total nr of images Train images (75%) Validation images (15%) Test images (10%)

Risky classes
Handheld calling 206 154 30 22

Handheld phone usage 232 174 34 24

Non-risky classes

Holding something else 400 300 60 40

Hand close to head 400 300 60 40

Hand off the wheel 400 300 60 40

Non-risky behavior 400 300 60 40

Total 2038 1528 304 206

Table 2: Overview of the dataset.

25

Nr of images
Percentage
of total

Non-risky behavior 55457 90.33%
Hand off the wheel 4131 6.73%
Hand close to head 600 0.98%
Holding something else 765 1.25%
Handheld phone usage 232 0.38%
Handheld calling 206 0.34%

Total 61391 100%

Table 3: The original dataset that the images were taken from. Note the skewed ratio
between Non-risky behavior and the two risky classes.

3.1 Data statistics

The next section will discuss the possibilities of using off-the-shelf applications for pose
estimation and face detection as these could be informative when determining driver
behavior.

The pose and face applications were tested on the 438 images of drivers using their
phone. The reason for choosing these classes is that the techniques have to work on
images from these classes to work well when determining risky behavior.

Pose

To see if pose estimation would work with the input that will be used, OpenPose: a pose
estimation library that produces state-of-the-art real time pose estimations for multiple
persons was tried. OpenPose is based on a paper by Cao et al.(6). The videos they
provide show impressive results. However, one cannot assume that the technique works
as well in this setting, as the data that is used is quite different. The thesis dataset
consists of images of relatively low quality, showing only the upper body of the driver
and the drivers are partly occluded by the steering wheel. A quick test with the 438
images of drivers using their phone did not work very well. See Figures 3a and 3b. Even
when it estimated correctly, it often did not find the lower-arm holding the cell phone.
Of course this was just a quick look without own training and even without parameter
tuning. Nevertheless, it is indicative of the difficulty of pose estimation on this dataset.

Face

Two face detection algorithms were tested to see how they perform on the data. The
algorithms are the last ones discussed in Section 2.3.3, Face detection in the wild (58)
and MTCNN (57). Both were tested on the 438 images of phone usage in the dataset.

26

(a) Correct estimation example (b) Incorrect estimation example

Figure 3: Pose estimation using OpenPose.

MTCNN turned out to be both faster and more accurate and is therefore an interesting
option for face detection.

Face, hand and phone position distributions

To learn more about the data and to see if there was any truth to the idea that the
pose of the drivers can indicate phone usage, the faces, hands and phone positions of the
images in the dataset have been annotated. This was done by the author of this paper
using the application LabelImg (49).

See Figures 4 and 5 for the results. Analyzing these distributions lead to a few insights:

• Phones are somewhat common in non-risky classes. These are phones inside a
mount. Just detecting a phone would therefore not be enough to determine risky
behavior. It does appear that mounts are positioned primarily near the center of
the windshield.

• There is a lot of variation in phone positioning for drivers that have their phone
in their hand, but not close to their ear. Although there appears to be a slight
bias towards right-handed phone usage, the overall distribution is fairly even. This
contradicts the idea that there is a single pose or a few poses that are indicative
of phone usage.

• Drivers that are handheld calling do show a distinct pattern in hand position.
However, as expected, hand positions of the Hand close to head and Handheld
calling classes are very similar. Distinguishing between the two solely based on
hand positions is not going to be possible.

• The non-risky class has far fewer visible hands than any other. All hands in this
class were resting on the steering wheel.

From these diagrams it appears that there are some patterns, but due to the variation in
the dataset there is no clear-cut pattern that enables distinguishing between risky and
non-risky behavior based on position of hands and faces alone.

27

Figure 4: The distribution of the positions of hands and phones, relative to the position
of the face of the driver. The face position is (0, 0) in all figures. The center of
the windshield is on the left and the side of the car is on the right. The hand
and phone positions are normalized for image size. When there were one or
two hands not visible they were plotted at (0, -1) to make the average hand
position more insightful. Phones in classes that are not the ‘risky’ classes are
in a phone mount.

Figure 5: The average number of hands that were visible in the images for each class.

28

4 Research questions

First of all, the main goal of the thesis project will be to develop software that adequately
classifies whether drivers are using their handheld phone or not. The developed software
will be used as a tool to answer the questions presented below.

1. Does a pipeline based algorithm outperform a straightforward single
CNN based method?
The straightforward method was experimented with by researchers before (22).
They concluded that there was room for improvement. It would be interesting to
find out if a more intricate pipeline of detectors and classifiers for different objects
in the image could outperform it.

2. Does data augmentation improve classification scores?
Augmenting the data can improve performance of classification. Especially in
settings with small amounts of data. The augmentation steps that will be imple-
mented are:

• Random rotations between (-6, 6) degrees.

• Random shearing with a shearing angle between (-6, 6) degrees.

• Random translations between (-0.1, 0.1) times the image size in both x and
y directions.

• Random zooming between (0.9, 1.1) times the image size.

• Horizontal flipping with a probability of 50%.

3. What input class can be classified the best?
There are a few different types of driver behavior that have been categorized into
input classes. It would be interesting to see what class could be classified the best
when evaluating the algorithm. The input classes can be found in Section 1.1.

Performance of methods will be measured by comparing their highest found F-scores.

29

5 The pipeline approach

This section will outline the design of the main software used to answer the research
questions. The software is based on a pipeline of different detection and classification
algorithms combined, and will be called the pipeline approach. For a complete visual
overview, see Figure 6.

Figure 6: An overview of the pipeline.

30

An issue that a straightforward classification approach might suffer from is a lack of
focus for the neural network. The network receives the full driver region image as input,
but the relevant pattern (phone usage) is only visible in a small part. The poor signal-
to-noise ratio, combined with the small amount of data makes for an environment where
classification is difficult. The aim of the pipeline approach is to be less affected by the
issues.

5.1 Input

As discussed before, the developed software will not concern itself with the detection of
the driver region. It instead relies on images of driver regions as input. These images
have the right side of the windscreen of a car on them. For training, as well as validation
and testing, these are one image per driver (as opposed to sequences of multiple images
per driver).

The experiments will thus be working with images instead of video. The reason for this
is that the expected performance gain from better frame classification is a lot higher than
that of adding video. Besides, adding support for sequences of frames later is relatively
trivial.

Before using the driver region images, contrast limited adaptive histogram equalization
is applied to improve contrast. For the experiments with augmented images, the images
were augmented using the augmentations found in Section 4.

5.2 Hand and phone detection

The first step of the pipeline approach is detecting the hands and phones of the driver
using RetinaNet (32). This algorithm was briefly discussed in Section 2.3.1 and chosen
because of its impressive performance on the COCO dataset (33). The backbone used
with RetinaNet is ResNet50 (23). ResNet50 was chosen here based on research by Huang
et al. (25). According to their experiments, a ResNet50 layout strikes a nice balance
between accuracy and speed. To train the model, the hands and phones in the dataset
of 2038 images were annotated. The images were resized to have the shortest side be
800 pixels while keeping the aspect ratio. This is done to match the RetinaNet paper.
The hand detection works quite well, with AP scores of around 90, whereas the phone
detection, with APs of around 50, does not. From a look at the classified images, a lot
of phones are not detected, but among the detected phones are few false positives.

Analyzing the output revealed that clearly visible phones that were oriented with their
back towards the camera were most often found. False negatives seemed to mostly occur
when the phone was occluded by a hand. See Figure 7 for two examples.

31

Figure 7: On the left a situation in which the phone and hand detector works well.
Everything is correctly detected. On the right only a hand is detected, but the
partly occluded phone is not.

5.3 Face detection

Next, the drivers’ faces are located using an existing (trained) MTCNN (57) solution,
called FaceNet. FaceNet is a face recognition suite, of which only the face alignment code
is integrated into the pipeline. MTCNN was chosen because of its use in other research,
because of its good performance and because a trained model was readily available. The
face detection algorithm was not customized aside from picking only the highest scoring
detection per image. This way, it is certain that there is going to be one and only one
face detection in the driver region. This is done to simplify the next steps. A drawback
of doing it this way could be that the algorithm detects faces of people in the back seat.
In practice, this happened only very rarely.

5.4 Follow-up steps

As shown in Figure 6, based on whether a phone is detected, an image goes through
different follow-up steps. If a phone is detected, the class can be determined by looking
at the positioning of the different objects. If the phone is near the head, it is classified
as Handheld calling, if it is near a hand, it is classified as Handheld phone usage, if it
is nowhere near either a hand or face, it is classified as being in a Phone mount. This
was done because of the findings documented in Section 3.1. It was found that there
are a number of phones in phone mounts in input classes different from the handheld
phone usage classes. To keep these from becoming false positives, the phones far away
from both hands and faces are not classified as one of the handheld phone usage classes.
A detected phone is deemed to be too far away from a hand or a face if its center is
0.2 times the image size away from the center of the hand or the head. This value was
empirically chosen.

32

5.5 Hand classification

Since the phone detector has a low recall, often phones are not detected by it. From
looking at the false negatives, it was determined to mostly be the case when the phone
was occluded by a hand. Therefore, by looking at just the hand and learning the way
a hand looks when it holds a phone without seeing the phone clearly could result in
finding more of these partly occluded phones.

Based on this realization, if no phone is found, the hands that were found in the hand
and phone detection step will be classified by a trained CNN. The CNN is trained using
images that were acquired by cropping the images according to the bounding boxes
attained from the hand detector, with an added margin of 20 pixels in all directions.
The resulting images were resized to be of size 100 × 100 pixels. From a few quick
experiments, larger images lead to a worse performing algorithm. The on Imagenet
trained ResNet50 CNN layout is only compatible with images of size 197×197 and up.
It was therefore replaced with VGG-16 (47).

The classes of hands are:

• Hand holding phone.

• Hand holding steering wheel.

• Hand holding something else.

• Hand not holding anything.

Any images with hands that are classified as Hand holding a phone will be classified as
either Handheld calling if it is near a head, or Handheld phone usage otherwise.

Images with hands that were classified as any of the other classes are classified to be
Non-risky behavior. The same goes for images where no hands or phones are found at
all.

33

6 Experiments

This section discusses the setup of the different experiments.

6.1 General

All networks used in these experiments were instantiated with Imagenet trained weights
and trained for 25 epochs on the training data. The learning rate used was 0.00001.
This was done for the RetinaNet implementation, which was reported to be less stable
at higher learning rates. The other models also use this learning rate for consistency.
Unless otherwise noted, data augmentation was used, using the settings mentioned in
Section 4. Regular CNN classifiers like the baseline approach and the pipeline hand
classifier were trained 10 times per experiment. The hand and phone detector was
trained 5 times per experiment. It would have been preferable to train 10 networks so
that it is more in line with the classifiers, however training this network is very time
consuming, therefore training was repeated fewer times. The best performing network,
based on F-Score (for classifiers) or mAP (for the detector) on the validation set, is
chosen and its value on the test set is reported. This is done to negate overfitting. All
experiments were implemented in Keras and OpenCV and executed on an Nvidia GTX
1060 6Gb GPU.

6.2 Baseline approach

From the images, a CNN is trained to immediately classify them, like described in Section
2.2. It is expected that this straightforward model will still have room for improvement,
as Groot and Jiang (22) have shown in their work. However, the resulting model would
lead to a fitting baseline model with which others can be compared.

The size of the images used to train the baseline approach was decided by looking at
the average width:height ratio. The average image size of an image in the dataset was
calculated to be 370×296 pixels, which is a ratio of about 1.25:1. Therefore, the input
size used was sized to be that ratio as well, at 250×200 pixels.

Class distribution

Multiple variations of the baseline model are implemented, to see which performs best:

• A multiple class version that classifies all classes.

• A binary version with the classes Binary risky and Binary non-risky.

• A second binary version with different classes that may be easier to distinguish
between.

34

For the first binary CNN, the dataset was split into two classes: the Binary risky class,
which consists of all Handheld calling and Handheld phone usage images, and the Binary
non-risky class, which consists of the other images.

For the second binary CNN, the Binary non-risky class only contains images from the
original Non-risky behavior class and the Binary risky class contains all the other images.
This was done based on the experiments documented in Section 3. The hand counts
and the distributions of hand positions illustrated that the Non-risky behavior class was
different than the other classes in this regard. The class distribution of the second CNN
was chosen to capitalize on this.

6.3 Pipeline individual components

Before looking at the pipeline as a whole, the individual components will be evaluated.
The performances of the components are measured with different configurations based on
smaller data sizes, data augmentation on or off, and different neural network structures.

6.3.1 Data augmentation

The detector and classifier of the pipeline approach were trained with and without data
augmentation.

6.3.2 Neural network layout

Hand and phone detection

For the hand and phone detection, RetinaNet was used in combination with a ResNet50
neural network layout. A VGG-16 layout is also tested to see if it will perform better.

Hand classification

For the hand classification, a VGG-16 network was utilized. This was because the
minimum size of images used in an Imagenet trained ResNet50 was 197×197 pixels,
whereas the minimum size for VGG-16 was 48×48 pixels. When testing the VGG-16
network, image sizes of around 100×100 pixels empirically performed the best. However,
since ResNet50 performed better in the detection step of the pipeline, it was also tested
for the hand classification step. To do this, the images were scaled up to the 197×197
pixels necessary. All other factors were kept the same.

6.3.3 Data size

It is common knowledge that training using a larger dataset in general leads to a better
performing neural network. Also, the performance gain for extra data is expected to

35

gradually decrease, the more data is added. For the final software resulting from this
thesis, it would be useful to get a sense of how much the performance would improve
when training with more data. To analyze this, the pipeline approach hand and phone
detector and hand classifier were retrained using smaller portions of the dataset. The
portions are subsets of each other with 75%, 50% and 25% of all images respectively. The
dataset of 75% of images was created by random sampling without replacement from
each input class of the dataset. That way, the ratios of images between the different
input classes stays the same. The 50% dataset images are taken from the set of 75% to
make it a strict subset. The same goes for the 25% set with respect to the 50% set. The
hand and phone detector was trained only once per smaller dataset for this experiment,
because of the time necessary and because the other experiments were given priority.

36

7 Results and discussion

7.1 Baseline approach

The results of application of this baseline model on the test set can be found in Table 4.
The method appears to perform poorly. This was to be expected, as a method like this
is usually trained on images which feature the object very prominently, which is not the
case here. This, combined with the relatively small dataset, makes for an environment
where learning the relevant pattern is difficult.

A note about the F-Score: The F-Score can be defined in multiple ways for multi-
class problems. To keep the comparison of this metric fair with respect to the other
experiments, the multi-class results were converted and used to calculate a binary F-
Score. This was done by combining the two risky input classes into one risky class and
the four non-risky input classes into one non-risky class. The F-Score is then calculated
with the risky class as the primary class. Unless otherwise noted, future experiments
will use the same technique to calculate the F-Score.

Run 1 2 3 4 5 6 7 8 9 10

Accuracy (%) 44.66 42.23 40.29 39.32 39.81 42.72 43.2 42.23 38.83 41.75
F-Score 0.451 0.405 0.339 0.418 0.371 0.222 0.512 0.387 0.593 0.355

Table 4: Results of the baseline multi-class approach.

Run 1 2 3 4 5 6 7 8 9 10

Accuracy (%) 59.71 56.8 35.44 74.76 48.06 71.84 78.16 55.83 39.81 74.76
F-Score 0.385 0.360 0.387 0.333 0.352 0.293 0.286 0.372 0.386 0.257

Table 6: Results of the first binary CNN.

At first glance, looking at Table 6, the binary CNN might appear to perform better than
the multi-class CNN, boasting higher accuracies. However, looking at the F-Scores shows
that the multi-class CNN actually performs better than the binary CNN at differentiating
between the risky classes and the non-risky classes.

Another disadvantage of the binary CNN is that it is less specific than its multi-class
counterpart. It is unable to classify the image into the classes that have been chosen.
All in all, the multi-class CNN should be preferred over the binary CNN.

The second binary neural network performs better than the first one. The improved
performance is expected to be the result of the larger differences between the two classes
compared to the previous two classes. All in all, it still does not perform very well.

37

G
ro

u
n

d
tr

u
th

Prediction

Handheld
calling

Handheld
phone
usage

Holding
something

else

Hand
close to

head

Hand off
the wheel

Non-risky
behavior

Handheld calling 2 5 1 3 11 0

Handheld phone usage 0 17 1 0 3 3

Holding something
else

0 5 8 0 22 5

Hand close to head 0 3 1 1 29 6

Hand off the wheel 0 1 2 1 30 6

Non-risky behavior 0 2 0 0 16 22

Table 5: Confusion matrix of the best performing baseline multi-class CNN model, based
on F-Score (run 9).

Note that the change in class contents means that the images that are outputted as risky
will often not be risky, but simply drivers with their hands off the steering wheel. This
is acceptable because when looking at all the video footage, around 90% of all drivers
show Non-risky behavior. So if those can be automatically detected and ignored, that
would already lead to a huge reduction in the time necessary to check for actual phone
usage by a human.

Another result of the changed class contents is that the F-Score is higher than it would
be in the other experiments. This is because the (binary) F-Score depends on the true
positives, false positives and false negatives, but not the true negatives. When the ratio
between true positives and true negatives changes, the F-Score changes. For example, it
could also be looked at from the reverse perspective, with the non-risky class as positive.
So the Non-risky behavior that is detected as such would be a true positive. The resulting
ratio between positive and negative images (40:166) would be more in line with the other
experiments (46:160). The F-Score would then be 0.513, only very slightly better than
the F-Score of the multiple classes CNN. For this reason, the F-Score of this CNN cannot
really be compared to the F-Scores of the other experiments.

38

G
ro

u
n

d
tr

u
th

Prediction

Binary risky
Binary

non-risky

Binary
risky

42 4

Binary
non-risky

129 31

Table 7: Confusion matrix of the best performing first binary CNN model (run 3), based
on F-Score.

Run 1 2 3 4 5 6 7 8 9 10

Accuracy (%) 73.30 81.55 73.79 76.21 80.58 66.50 73.79 80.10 65.53 62.14
F-Score 0.816 0.886 0.819 0.844 0.874 0.760 0.812 0.869 0.746 0.702

Table 8: Results of the second binary CNN.

G
ro

u
n

d
tr

u
th

Prediction

Binary risky
Binary

non-risky

Binary
risky

148 18

Binary
non-risky

20 20

Table 9: Confusion matrix of the best performing second binary CNN model (run 2),
based on F-Score. Note that the number of images per class have shifted due
to the new class contents. This also heavily influences the F-Score.

39

7.2 Pipeline individual components

7.2.1 Data augmentation

The results of the networks that performed best can be found in Table 10.

DA No DA

Hand AP 0.910 0.908
Phone AP 0.505 0.585
mAP 0.707 0.746

DA No DA

Accuracy 75.00% 69.74%
F-Score 0.652 0.578

Table 10: The results of the hand and phone detector (left) and the hand classifier (right)
with and without data augmentation (DA).

The results show that the data augmentation step has a different influence on the perfor-
mance of detector than it has on the performance of the classifier. The detector becomes
worse whereas the classifier improves. This could be explained by the difference in types
of images. The hand classifier improves because rotating hands, flipping them, etc. cre-
ates a new image of a hand that could exist in real life. It is still representative of the
population of hand images. The phone and hand detector works with images of right
sides of windshields. Rotating, flipping and other transformation methods change these
images into new images that would never occur in real life. They become unrepresenta-
tive of the entire population of right sides of windshields.

7.2.2 Neural network layout

Hand and phone detection

The results of the best performing networks can be found in Table 11.

ResNet50 VGG-16

Hand AP 0.910 0.912
Phone AP 0.505 0.490
mAP 0.707 0.701

Table 11: The AP scores of the two detectors for a ResNet50 and a VGG-16 neural
network backbone.

The VGG-16 layout performs very similar to the ResNet50 layout and thus no change
to the pipeline seems necessary, the ResNet50 layout is kept.

40

Hand classification

The results of the best performing networks are shown in Table 12.

ResNet50197×197 VGG-16100×100

Accuracy 54.39% 75.00%
F-Score 0.395 0.652

Table 12: The results of the two hand classifiers with different neural network structures.

These results show a clear superior performance of the VGG-16 classifier. This is prob-
ably due to an image size of 197×197 being too large and the network overfitting on
small patterns in the image where the 100×100 images appear to be a more ideal size
for the current patterns.

7.2.3 Data size

The results can be found in Figure 8.

25% 50% 75% 100%

Hand AP 0.868 0.875 0.924 0.910
Phone AP 0.437 0.506 0.492 0.505
mAP 0.653 0.690 0.708 0.707

25% 50% 75% 100%

Accuracy 65.35% 68.42% 66.23% 75.00%
F-Score 0.505 0.494 0.505 0.652

Figure 8: The results of the hand and phone detector (left) and the hand classifier (right)
when using smaller datasets. The values are those of the best performing
network.

The performance of the CNNs trained on less data degrades, but not very much.

Since these were all trained using data augmentation, this could be a reason that a

41

network trained on a smaller dataset could rival that of a network trained on a larger
dataset. Yet, this was unexpected. Overall, this indicates that it might be wise to not
put too many resources into collecting more data.

7.3 Complete pipeline

So far, the individual components have been evaluated. The next section will concern
the complete pipeline.

See Figure 13 for the confusion matrix of the pipeline approach.

The precision, recall and F-Score of the pipeline approach are all 0.696. These results
are very positive. It is a significant improvement over the baseline model.

One of the research questions can now be answered. The confusion matrix reveals that
the Non-risky behavior input class can be classified the best, with 1 classification error
for 39 correct classifications. This was somewhat expected, based on the analysis of the
difference between input classes in Section 3.1.

Real life data

G
ro

u
n

d
tr

u
th

Prediction

Risky Non-risky

Risky 16 4

Non-risky 243 4118

Table 14: Confusion matrix of the Pipeline approach on real data. The phone usage
classes have been combined into the risky class. The Phone mount and Non-
risky behavior classes have been combined into the non-risky class.

Table 14 shows how the pipeline performs on real life data. This was a dataset of 4381
windshields, collected after the original dataset. The pipeline performs well: 16 out of 20
(80%) drivers using their phone are detected. The set of images that has to be checked
by a human (the true and false positives) consists of 259 images, 1/17th of the original
set. A significant reduction in manual time necessary to detect phone usage.

42

7.3.1 Quantitative analysis

Figure 9: An alluvial diagram representing the paths the images took through the
pipeline. Thickness of the strokes stands for the number of images. The non-
risky input classes have been combined to better observe the behavior of the
risky images. The two risky classes are orange and yellow and the non-risky
classes are green.

The above alluvial diagram (Figure 9) illustrates the flow of images through the pipeline
algorithms and highlights the risky input classes. The figure illustrates that phones in
the Handheld calling input class are more difficult for the phone detector to detect than
phones from the Handheld phone usage class. A significant part of the missed phones
are subsequently identified in the classification step.

One could imagine that the hand classifier would classify hands holding phones as hands
holding something other than phones quite often. This does not appear to be the case.
It more often classifies them as not holding anything.

The other way around, where non-risky hands are classified as holding phones happens
quite often. Over half of the hands that were classified as holding a phone were false
positives. The question becomes if the hand classifier is really necessary, since it leads
to this relatively large number of errors. Removing the entire classifier from the pipeline
would reduce the number of false positives, but it would also reduce percentage of risky
behavior detected in the Handheld calling input class significantly (from 63.6% to 31.8%).
Therefore, instead of abolishing this classifier altogether, tuning the classifier’s threshold
might be a better solution to decrease the number of false positives.

43

Figure 10: An alluvial diagram representing the paths the images took through the
pipeline. The risky input classes have been combined to better observe the
behavior of the non-risky images. True negatives are colored green, false
positives are shades of red, true positives and false negatives are greyed out.

The above alluvial diagram (Figure 10) highlights the non-risky input classes. In partic-
ular, the false positives. The main takeaway from this diagram is that false positives are
mostly introduced in the hand classification step and they originate from all non-risky
input classes.

A positive aspect of the pipeline that can be seen here is that the fewest false positives
come from the Non-risky behavior class. Since this is by far the largest class in a realistic
dataset (around 90% of drivers), this is promising for performance ‘in the wild’.

7.3.2 Qualitative analysis

From the quantitative analysis, the hand classification step seemed somewhat effective.
This step was introduced after a qualitative analysis of the images featuring phones that
were not detected by the phone detector. These were mostly phones that were partly
occluded by hands. This is also why the detector finds a lot more phones in the Handheld
phone usage class than the Handheld calling class. Because that class has more phones
that are directly facing the camera, clearly visible or only partly occluded by a hand.

Looking at the mistakes the algorithm makes, it becomes clear that the false negatives
mostly consist of two varieties.

44

Firstly, there are drivers that are handheld calling and holding their phone in slightly
abnormal ways, while partially occluding the phone. They should be picked up by the
hand classifier, but that appears to be too difficult. For an example, see Figure 11a.

Secondly, there are phones in the Handheld phone usage class that are very close to the
dashboard, where sometimes only a very small part of the hand holding the phone is
visible and sometimes the hand is not visible at all. This makes it so the hand may not
be detected and thus the hand classification step is not utilized. In such a situation,
most often no phone is detected and the image is classified as Non-risky behavior. But
even when the phone is detected, the phone is far away from the face and the image will
be wrongly classified as featuring a phone in a phone mount.

(a) The first type of false negative. The phone
is a small part of the image, due to its ori-
entation. It is also partly occluded and the
hand holding the phone is positioned and
oriented slightly nonstandard.

(b) The second type of false negative. The
phone is clearly visible, but the hand
holding it is only very slightly visible. If
no hand is detected in this image, the
phone will be classified as being in a
phone mount due to its distance from
hands or faces.

Figure 11: The two types of false negatives that are most common.

The false positives come mostly from the hand classifier misclassifying. Although the
patterns in the false positives are less obvious than the patterns in the false negatives,
a grasping pose of the hand seems to be the most common false positive. See Figure 12
below.

45

(a) The hand in a grasping pose, together
with the rectangular shape of the cup is
probably why this was misclassified as a
hand holding a phone.

(b) The hand of this driver is also in a pose
that looks similar to a hand holding a
phone. The hand being close to the side
of the head might also add to this.

Figure 12: The types of false positives that seem the most common.

46

G
ro

u
n

d
tr

u
th

Prediction

Handheld
calling

Handheld
phone usage

Phone
mount

Non-risky
behavior

Handheld
calling

10 4 0 8

Handheld
phone
usage

5 13 2 4

Holding
something

else

2 3 3 32

Hand
close to

head

6 0 1 33

Hand off
the wheel

1 1 1 37

Non-risky
behavior

0 1 0 39

Table 13: Confusion matrix of the pipeline approach. Note that the output classes are
split into Handheld calling and Handheld phone usage instead of combining
them into Risky behavior, to aid the evaluation, because it allows for better
tracking of where false positives end up.

47

8 Conclusion

A software solution was built to detect handheld cell phone usage among drivers using
computer vision. The software can dramatically decrease the manual time necessary to
detect phone usage by filtering out a large portion of non-risky behaving drivers.

The created pipeline approach achieved an F-Score of 0.70. It outperforms the best
baseline CNN classification approach, which reaches an F-Score of 0.59. This could be
because it is more focused on the important parts of the image instead of looking at the
image as a whole.

The weakest part of the software appears to be the hand classifier, which introduces
relatively many false positives compared to the detector part of the pipeline.

Data augmentation appeared to work well for the classifier that was used in the pipeline,
but it led to worse performance for the detector. This might be due to the augmentations
being too disruptive to the images for the windshields leading them to be unrepresenta-
tive of regular windshields seen in real life.

The input class that ended up being classified the best was the Non-risky behavior class.
From analyzing the images it became clear that images in this class had far fewer hands
on them than images in any of the other classes. By utilizing a hand detector as a central
part of the pipeline, this fact was taken advantage of. This could be the reason why this
class ended up being classified the best.

8.1 Limitations and future work

The software was not tested with video taken from different viewpoints. This is a
limitation because a suspected large number of drivers is using their phone behind the
dashboard, out of view of the current camera. One of the potential ways of detecting
more phone usage would be to use a camera at a steeper angle. That way, phones cannot
be hidden behind the dashboard anymore. A camera with a high frame rate would be
necessary, but this could potentially increase the number of detected phones significantly.

The software is dependent on the police developed windshield detector. The windshield
detector currently only works for Dutch cars, since it first recognizes the license plate and
only when it is a valid Dutch license plate will it look for a windshield. This limitation
is propagated to the pipeline software. In the future, this could be solved using different
windshield detection software.

The hand classifier used in the pipeline approach appeared to introduce unwanted false
positives. Removing the hand classifier altogether would reduce the number of detected
phones by a large margin. The solution could be to tune the classifier’s threshold.
Increasing the amount of data could also work. These options could be explored in
future research.

48

Some Handheld phone usage was classified as a Phone mount because the hand holding
the phone was not detected. Looking at it the other way around might be interesting as
well, by using a detection algorithm to detect the presence of a phone mount instead of
the absence of a hand. This might reduce the number of false negatives.

The current pipeline approach uses images of windshields as input. Since the original
data is in video format, part of the information is unused. Further research could be
done to see how much impact using video has. For example, multiple frames of the same
driver could be classified and aggregated into a single classification.

For the data augmentation experiments that were done in this work, the augmentations
were either all on or all off. It would be interesting to see a more thorough analysis of
the individual data augmentation types and their effects on performance.

Considering that there is quite a bit of work put into acquiring windshield images to
detect phone usage of drivers, the other uses of these images could also be investigated.
For example, the images could be used to detect if the driver is wearing a seat belt. Or
they could be used to detect when drivers are distracted for other reasons than phone
usage.

49

References

[1] Andriluka, M., Roth, S., and Schiele, B. Pictorial structures revisited: Peo-
ple detection and articulated pose estimation. In Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on (2009), IEEE, pp. 1014–1021.

[2] Artan, Y., Bulan, O., Loce, R. P., and Paul, P. Driver cell phone usage
detection from hov/hot nir images. In 2014 IEEE Conference on Computer Vision
and Pattern Recognition Workshops (June 2014), pp. 225–230.

[3] Berri, R., Silva, A., Parpinelli, R., Girardi, E., and Arthur, R. A pattern
recognition system for detecting use of mobile phones while driving. In VISAPP
2014 - Proceedings of the 9th International Conference on Computer Vision Theory
and Applications (08 2014), vol. 2.

[4] Bourdev, L., and Malik, J. Poselets: Body part detectors trained using 3d
human pose annotations. In International Conference on Computer Vision (ICCV)
(2009).

[5] Caird, J. K., Willness, C. R., Steel, P., and Scialfa, C. A meta-analysis
of the effects of cell phones on driver performance. Accident Analysis Prevention
40, 4 (2008), 1282 – 1293.

[6] Cao, Z., Simon, T., Wei, S., and Sheikh, Y. Realtime multi-person 2d pose
estimation using part affinity fields. CoRR abs/1611.08050 (2016).

[7] CBS. Overledenen; doden door verkeersongeval in nederland, wijze van deelname.
http://statline.cbs.nl/Statweb/publication/?DM=SLNL&PA=71936NED, 2006-
2016. Accessed: 2018-02-06.

[8] CBS. Maatwerk - verkeersveiligheid. https://www.cbs.nl/nl-nl/maatwerk/

2017/20/1-op-de-8-bestuurders-chat-wel-eens-tijdens-het-rijden, 2016.
Accessed: 2018-03-06.

[9] Chen, X., and Yuille, A. L. Articulated pose estimation by a graphical model
with image dependent pairwise relations. In Advances in Neural Information Pro-
cessing Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and
K. Q. Weinberger, Eds. Curran Associates, Inc., 2014, pp. 1736–1744.

[10] Chew, S. E., and Cahill, N. D. Semi-supervised normalized cuts for image seg-
mentation. In Proceedings of the 2015 IEEE International Conference on Computer
Vision (ICCV) (Washington, DC, USA, 2015), ICCV ’15, IEEE Computer Society,
pp. 1716–1723.

[11] Dai, J., Li, Y., He, K., and Sun, J. R-fcn: Object detection via region-based
fully convolutional networks. In Advances in Neural Information Processing Systems
29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, Eds. Curran
Associates, Inc., 2016, pp. 379–387.

50

http://statline.cbs.nl/Statweb/publication/?DM=SLNL&PA=71936NED
https://www.cbs.nl/nl-nl/maatwerk/2017/20/1-op-de-8-bestuurders-chat-wel-eens-tijdens-het-rijden
https://www.cbs.nl/nl-nl/maatwerk/2017/20/1-op-de-8-bestuurders-chat-wel-eens-tijdens-het-rijden

[12] Das, N., Ohn-Bar, E., and Trivedi, M. M. On performance evaluation of
driver hand detection algorithms: Challenges, dataset, and metrics. In 2015 IEEE
18th International Conference on Intelligent Transportation Systems. Sept 2015,
pp. 2953–2958.

[13] Dingus, T. A., Guo, F., Lee, S., Antin, J. F., Perez, M., Buchanan-King,
M., and Hankey, J. Driver crash risk factors and prevalence evaluation using
naturalistic driving data. Proceedings of the National Academy of Sciences 113, 10
(2016), 2636–2641.

[14] Everingham, M., Eslami, S. M. A., Van Gool, L., Williams, C. K. I.,
Winn, J., and Zisserman, A. The pascal visual object classes challenge: A
retrospective. International Journal of Computer Vision 111, 1 (Jan 2015), 98–136.

[15] Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., and Zisser-
man, A. The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results.
http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html.

[16] Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., and Zisser-
man, A. The PASCAL Visual Object Classes Challenge 2010 (VOC2010) Results.
http://www.pascal-network.org/challenges/VOC/voc2010/workshop/index.html.

[17] Felzenszwalb, P. F., Girshick, R. B., McAllester, D., and Ramanan, D.
Object detection with discriminatively trained part-based models. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 32, 9 (Sept 2010), 1627–1645.

[18] Fu, C., Liu, W., Ranga, A., Tyagi, A., and Berg, A. C. DSSD : Deconvolu-
tional single shot detector. CoRR abs/1701.06659 (2017).

[19] Girshick, R. Fast r-cnn. In 2015 IEEE International Conference on Computer
Vision (ICCV) (Dec 2015), pp. 1440–1448.

[20] Girshick, R., Donahue, J., Darrell, T., and Malik, J. Rich feature hierar-
chies for accurate object detection and semantic segmentation. In Proceedings of the
IEEE conference on computer vision and pattern recognition (2014), pp. 580–587.

[21] Girshick, R. B., Iandola, F. N., Darrell, T., and Malik, J. Deformable
part models are convolutional neural networks. CoRR abs/1409.5403 (2014).

[22] Groot, R., and Jiang, S. C. Small Project Report - Detecting phone usage in
cars using traffic cams, January 2018.

[23] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image
recognition. CoRR abs/1512.03385 (2015).

[24] Hu, M.-K. Visual pattern recognition by moment invariants. IRE Transactions on
Information Theory 8, 2 (February 1962), 179–187.

51

[25] Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A.,
Fischer, I., Wojna, Z., Song, Y., Guadarrama, S., et al. Speed/accuracy
trade-offs for modern convolutional object detectors. In IEEE CVPR (2017).

[26] Jain, V., and Learned-Miller, E. Fddb: A benchmark for face detection in
unconstrained settings. Tech. Rep. UM-CS-2010-009, University of Massachusetts,
Amherst, 2010.

[27] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.,
Guadarrama, S., and Darrell, T. Caffe: Convolutional architecture for fast
feature embedding. arXiv preprint arXiv:1408.5093 (2014).

[28] Lamble, D., Kauranen, T., Laakso, M., and Summala, H. Cognitive load
and detection thresholds in car following situations: safety implications for using
mobile (cellular) telephones while driving. Accident Analysis Prevention 31, 6
(1999), 617 – 623.

[29] Le, T. H. N., Zheng, Y., Zhu, C., Luu, K., and Savvides, M. Multiple
scale faster-rcnn approach to driver’s cell-phone usage and hands on steering wheel
detection. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW) (June 2016), pp. 46–53.

[30] Le, T. H. N., Zhu, C., Zheng, Y., Luu, K., and Savvides, M. Deepsafedrive:
A grammar-aware driver parsing approach to driver behavioral situational awareness
(db-saw). Pattern Recognition 66 (2017), 229 – 238.

[31] LeCun, Y., and Bengio, Y. Convolutional networks for images, speech, and time
series. The handbook of brain theory and neural networks 3361, 10 (1995), 1995.

[32] Lin, T., Goyal, P., Girshick, R. B., He, K., and Dollár, P. Focal loss for
dense object detection. CoRR abs/1708.02002 (2017).

[33] Lin, T., Maire, M., Belongie, S. J., Bourdev, L. D., Girshick, R. B.,
Hays, J., Perona, P., Ramanan, D., Dollár, P., and Zitnick, C. L. Mi-
crosoft COCO: common objects in context. CoRR abs/1405.0312 (2014).

[34] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., and
Berg, A. C. Ssd: Single shot multibox detector. In Computer Vision – ECCV
2016 (Cham, 2016), B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds., Springer
International Publishing, pp. 21–37.

[35] Mittal, A., Zisserman, A., and Torr, P. H. Hand detection using multiple
proposals. In BMVC (2011), Citeseer, pp. 1–11.

[36] Ojala, T., Pietikainen, M., and Maenpaa, T. Multiresolution gray-scale and
rotation invariant texture classification with local binary patterns. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 24, 7 (Jul 2002), 971–987.

52

[37] Razavian, A. S., Azizpour, H., Sullivan, J., and Carlsson, S. Cnn features
off-the-shelf: an astounding baseline for recognition. In Computer Vision and Pat-
tern Recognition Workshops (CVPRW), 2014 IEEE Conference on (2014), IEEE,
pp. 512–519.

[38] Redmon, J. Darknet: Open source neural networks in c. http://pjreddie.com/
darknet/, 2013–2016.

[39] Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. You only look
once: Unified, real-time object detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition (2016), pp. 779–788.

[40] Redmon, J., and Farhadi, A. Yolo9000: Better, faster, stronger. arXiv preprint
arXiv:1612.08242 (2017).

[41] Redmon, J., and Farhadi, A. Yolov3: An incremental improvement. arXiv
(2018).

[42] Ren, S., He, K., Girshick, R., and Sun, J. Faster r-cnn: Towards real-time
object detection with region proposal networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence 39, 6 (June 2017), 1137–1149.

[43] Savalle, P.-A., Tsogkas, S., Papandreou, G., and Kokkinos, I. Deformable
Part Models with CNN Features. In European Conference on Computer Vision,
Parts and Attributes Workshop (Zurich, Switzerland, Sept. 2014).

[44] Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., and Le-
Cun, Y. Overfeat: Integrated recognition, localization and detection using convo-
lutional networks. CoRR abs/1312.6229 (2013).

[45] Seshadri, K., Juefei-Xu, F., Pal, D. K., Savvides, M., and Thor, C. P.
Driver cell phone usage detection on strategic highway research program (shrp2) face
view videos. In 2015 IEEE Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW) (June 2015), pp. 35–43.

[46] Siddharth, Rangesh, A., Ohn-Bar, E., and Trivedi, M. M. Driver hand
localization and grasp analysis: A vision-based real-time approach. In 2016 IEEE
19th International Conference on Intelligent Transportation Systems (ITSC) (Nov
2016), pp. 2545–2550.

[47] Simonyan, K., and Zisserman, A. Very deep convolutional networks for large-
scale image recognition. CoRR abs/1409.1556 (2014).

[48] Theano Development Team. Theano: A Python framework for fast computa-
tion of mathematical expressions. arXiv e-prints abs/1605.02688 (May 2016).

[49] Tzutalin. Labelimg. git code (2015. https://github.com/tzutalin/labelImg.

53

http://pjreddie.com/darknet/
http://pjreddie.com/darknet/

[50] Törnros, J., and Bolling, A. Mobile phone use – effects of conversation on
mental workload and driving speed in rural and urban environments. Transportation
Research Part F: Traffic Psychology and Behaviour 9, 4 (2006), 298 – 306.

[51] Vedaldi, A., and Fulkerson, B. VLFeat: An open and portable library of
computer vision algorithms. http://www.vlfeat.org/, 2008.

[52] Viola, P., and Jones, M. Rapid object detection using a boosted cascade of
simple features. In Proceedings of the 2001 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. CVPR 2001 (2001), vol. 1, pp. I–511–
I–518 vol.1.

[53] Viola, P., and Jones, M. J. Robust real-time face detection. International
journal of computer vision 57, 2 (2004), 137–154.

[54] Xiong, X., and De la Torre, F. Supervised descent method and its applica-
tions to face alignment. In Proceedings of the 2013 IEEE Conference on Computer
Vision and Pattern Recognition (Washington, DC, USA, 2013), CVPR ’13, IEEE
Computer Society, pp. 532–539.

[55] Yang, S., Luo, P., Loy, C. C., and Tang, X. Wider face: A face detection
benchmark. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2016).

[56] Yang, Y., and Ramanan, D. Articulated human detection with flexible mixtures
of parts. IEEE Transactions on Pattern Analysis and Machine Intelligence 35, 12
(Dec 2013), 2878–2890.

[57] Zhang, K., Zhang, Z., Li, Z., and Qiao, Y. Joint face detection and alignment
using multitask cascaded convolutional networks. IEEE Signal Processing Letters
23, 10 (Oct 2016), 1499–1503.

[58] Zhu, X., and Ramanan, D. Face detection, pose estimation, and landmark
localization in the wild. In 2012 IEEE Conference on Computer Vision and Pattern
Recognition (June 2012), pp. 2879–2886.

54

http://www.vlfeat.org/

A Software overview and selection

Some of the papers mentioned in this document use techniques that have not been
implemented into any software library. These researchers have often published their
own code, which will be used for this project if the license permits it. For most other
techniques, it will be beneficial to use one or multiple software libraries, as it will greatly
reduce the amount of time spent on coding general algorithms, leading to more time
that can be spend on problem specific work. Luckily, most of the discussed techniques
have been compiled into software libraries.

OpenCV With an estimated 14 million downloads, OpenCV is a computer vision library
with a very large community. OpenCV is written in C and C++, with interfaces for
Python and Java. It is the most extensive library in this list. It includes modules ranging
from image processing, video I/O and a DPM module. As of recently, it also features
its own deep neural network module, that can create neural networks from scratch, or
import them from Caffe, Darknet and Tensorflow.

VLFeat (51) A computer vision library with a focus on visual features and clustering.
Notably has built-in support for VLAD and FV (as used in the discussed paper by Artan
et al. (2)). VLFeat can be used with MATLAB, Octave, C++ and from the command
line. Development on VLFeat has been inconsistent. The most recent update is not from
long ago, but the update before that was from three years ago.

BoofCV BoofCV is a computer vision library written with ease of use and high perfor-
mance in mind. It is developed in Java, which is why it is expected to be slower than
C/C++ libraries, at least on lower level computations.

Since the rise of deep neural networks, there have been many libraries developed specif-
ically for the creation of neural networks.

Darknet (38) A framework for neural networks, written in C and CUDA. Interfacing is
done using the command line. Also includes You Only Look Once (YOLO (39; 40; 41)),
a real-time object detection system. The creator claims that Darknet is fast.

Tensorflow Mostly used for machine learning, but also capable of other numerical
computations using data flow graphs, Tensorflow is a software library developed by
Google. It can be interfaced with using Python, C++, Java and Go. Tensorflow is used
a lot in academia. As of October 2017, it has the most citations on arXive out of all the
neural network libraries.

Caffe (27) A framework specifically for deep learning, claims to be expressive, extensible
and fast. Caffe is written in C++ and has command line, Python, and MATLAB
interfaces.

Theano (48) Like Tensorflow, Theano is a software library that is described as a nu-
merical computation library, but mainly used for neural networks. Written in Python.

55

Main developer MILA has stopped actively developing Theano as of the 15th of Novem-
ber 2017 because of the strong competition in this field.

Microsoft Cognitive Toolkit (CNTK) The Microsoft Cognitive Toolkit is also sim-
ilar to Tensorflow and Theano. The toolkit can be developed with using Python, C++,
C# and BrainScript.

Keras Keras offers a layer on top of other libraries like Tensorflow, Theano and CNTK.
Its main feature is the ease of use for developers. Programming with Keras is done using
Python.

All of the above libraries are open-source and they all have GPU implementations. To
make a decision on what libraries will be used for the thesis project there are multiple
factors to take into consideration. In order of importance: feature set, ease of use,
previous experience, robustness and support. Based on these criteria Keras was chosen
for neural networks and OpenCV for general image processing.

56

	Introduction
	Goal, requirements and challenges
	Relevance of the thesis

	Related work
	Locating the driver
	Classification-only approach
	Feature extraction and alignment
	Object detection
	Person detection
	Pose estimation

	Computer vision approaches for phone detection

	About the data
	Data statistics

	Research questions
	The pipeline approach
	Input
	Hand and phone detection
	Face detection
	Follow-up steps
	Hand classification

	Experiments
	General
	Baseline approach
	Pipeline individual components
	Data augmentation
	Neural network layout
	Data size

	Results and discussion
	Baseline approach
	Pipeline individual components
	Data augmentation
	Neural network layout
	Data size

	Complete pipeline
	Quantitative analysis
	Qualitative analysis

	Conclusion
	Limitations and future work

	Software overview and selection

