
Game and Media Technology Master thesis

ICA-5956439

Local Order Types

Author: Supervisors:

Huck Nuchelmans BSc prof. dr. M. J. van Kreveld
dr. M. Löffler

Presented for the degree of Master of Science at

UTRECHT UNIVERSITY

Department of Information and Computing Sciences

August 31, 2018

ABSTRACT

This thesis considers past research on the order type of point configurations and
introduces a variation on this concept: the local order type. The regular order type is
a mapping that assigns to each ordered triple of points the orientation of these three
points: positive, neutral or negative. The local order type is a similar mapping but
only considers a subset of all triples. In order to decide which triples are included in
the order type, a triple selection method must be chosen. We present six different
methods and some of their properties. For one of these variations, the Delaunay order
type, we give algorithms to compare and enumerate them. For the extended Delaunay
order type we present similar but incomplete algorithms, that can be completed by
solving two open problems.

1

CONTENTS

1 Introduction 3

2 Preliminaries on order types 4
2.1 Definitions . 4
2.2 Geometric sorting . 6
2.3 Comparing randomly numbered configurations 6
2.4 Enumeration of order types . 7
2.5 Geodesic order types . 8
2.6 Cross-sections of line arrangements . 9
2.7 Radial orderings . 9
2.8 Storage of order types and point set representations 9

3 Local order type definitions 10
3.1 Triple selection . 10
3.2 Basic properties of local order type variations 11
3.3 Complexity of local order type variations 14
3.4 Robustness of local order type variations 15
3.5 Local order type encoding . 16
3.6 Comparing the local order type of point sets 16

4 Delaunay-based order types 17
4.1 The Delaunay order type and graph isomorphism 17
4.2 Encoding and comparing the extended Delaunay order type 17
4.3 Enumeration of the Delaunay order type 18
4.4 Enumeration of the extended Delaunay order type 20
4.5 Extending the Delaunay order type . 20

5 Discussion 21

Appendices 23

A Algorithms 23

2

1 INTRODUCTION

The order type of a point configuration is a mapping
that assigns to each ordered triple of points an orienta-
tion: positive, negative or neutral. In the plane a triple is
positive if the points appear in counterclockwise order,
negative if they appear in clockwise order and neutral
if all three points lie on the same line. Instead of the
absolute position of points in the form of coordinates,
the order type describes the relative position and com-
binatorial properties of points in a configuration. While
order types are defined for configurations in any num-
ber of dimensions, most attention goes towards the
order type of point sets in the plane.

For a fixed number of points an infinite number of dif-
ferent point sets exists, but only a finite number of order
types. Every point set has exactly one order type and
many properties are shared between point sets with the
same order type. This has proven to be useful for solving
mathematical problems. Some problems are solved for
every possible point set by solving them for every order
type. Order types can also be applied to content genera-
tion, for example the automatic generation of levels in a
video game. Using a different order type as the base for
every level guarantees that levels are combinatorially
different. If you randomise the coordinates, the values
will be different but you have no control over the actual
structure of the point set. So while two point sets may
be different in their coordinates, a human could look
at them and consider them the same. Order types get
rid of this problem by being rotation, scale and x-scale
invariant. If you rotate a point set, scale it or even scale
it along a single axis, the order type remains the same,
since none of these operations change the orientation
of triples.

Order types as we know them were introduced in 1983
by Goodman and Pollack’s paper on multidimensional
sorting [17]. Later various works on order types have
appeared by Aichholzer et al., most importantly intro-
ducing an algorithm to enumerate all order types for
a given point set size n. As a result of this the order
type database with point set representations of all order
types up to n= 11 [1, 5] was created.

Research in the enumeration of order types has been
motivated by the search of the rectilinear crossing num-
ber [2, 5, 13]. The rectilinear crossing number for a
given n is defined as the minimal number of crossings
in a complete graph with n nodes, where the edges be-
tween nodes are straight line segments. It is a variation
on the crossing number, where edges are not necessarily
straight.

Order types helped push this research forward by pre-
senting a way to get the number of crossings for every
set of a given n. This uses the fact that the order types

group the infinite number of different configurations—
when it comes to coordinate representations—into a
fininite number of classes: the order types of the con-
figurations. Since the crossing properties are the same
between all configurations within this class, the number
of crossings only need to be counted for one represen-
tation of each order type. With the use of order types
Aichholzer et al. found the rectilinear crossing numbers
for n = 11 and n = 12 [2], and later for all n up to
17 [5].

The crossing properties of a point set also give the possi-
ble ways to triangulate this set. This way order types can
help with solving many problems regarding triangula-
tions. An example is the search for an efficient algorithm
to determine the number of triangulations a point set
can have [1].

Puzzle games can use point configurations as a part
of their level generation. An example is a game where
the player is presented with a straight-line drawing
of a graph where some edges intersect. They are then
tasked to untangle it by swapping vertices, until edges
no longer intersect each other. For such games, level
diversity is desirable [20]. Order types can play a role
in ensuring this diversity, by taking a different order
type as the starting point of every level. In order to
get a realisation of every order type, an enumeration
algorithm or database such as the one described in
Section 2.4 is needed. Note that the described algorithm
takes a lot of time, making it unsuitable for online uses
in games, however it can be used to generate levels
offline once, before distribution.

Order types have applications in the field of pattern
recognition too as mentioned by Goodman and Pol-
lack [17]. In some cases it makes sense to reduce an
image to a point configuration. We can then go even
further and encode it as the λ-matrix of that configu-
ration. This representation has the benefit that it can
easily be compared, as described in Section 2.3. Most
importantly, the order type of a point set is rotation and
scale invariant. These properties are often desirable in
the field of pattern recognition.

Some of the earliest applications of order types were in
the field of chemistry, where they are usually referred
to as chirotopes [12]. Order types can be used to com-
pare stereoisomers, which consist of the same number
of atoms, but in different orientations. Order types are
a way to distinguish between right-handed and left-
handed compounds.

An order type includes all triples. For every pair of points
it has information on where they lie relatively to each
other and all other points. For many applications, in-
cluding the ones that were just discussed this is exactly
what we want.

3

But imagine a content generation system that is to pro-
duce a large embedded graph. Do we really care about
all triples? If edges are only ever going to appear be-
tween points that lie close to each other, the relative
position of a point at the other side of the set will most
likely not result in a different graph.

In this situation, when operating on very large point
configurations, a more loose variation of the order type
could be useful, one where not every triple’s orientation
matters. Only a subset of all triples must be taken into
consideration. Which triples these should be, depends
on the application.

This thesis introduces the generic notion of a local order
type, which takes into account a subset of all possible
triples. We introduce different triple selection rules, re-
sulting in six different local order type variations. The
properties and complexity of these variations are stud-
ied and compared to the regular global order type. For
global order types, algorithms exist to encode, compare
and enumerate order types. We aim to give such algo-
rithms for local order types in general and a selection
of specialised algorithms for specific local order type
variations.

Section 2 gives an overview of previous work on or-
der types. Knowledge of this field is necessary to reason
about local order types, as almost any research on global
order types can also be applied to local order types. Sec-
tion 3 defines the local order type and discusses the
properties of six different local order type variations. In
Section 4 we take a close-up look at a selection of varia-
tions, namely the Delaunay-based local order types. One
of the highlights from this section is the enumeration
algorithm for these order type variations.

2 PRELIMINARIES ON ORDER TYPES

2.1 Definitions

Goodman and Pollack (1983) [17] describe order types
as a way to implement multidimensional geometric
sorting. The order type of a point configuration gives
the extreme points of the set, but also describes the
relative position of all the other points. Sorting in a
single dimension is fairly straightforward and only one
order type exists in this case. Given a set of n points on
a line, it is always possible to label these points 1, . . . , n
in such a way that i lies to the left of j for every i ≤ j.
This set always has two extremes—a minimum and a
maximum—and all internal points lie in order. In higher
dimensions a more complex order appears, as points
can not always be labelled to result in the same order
type. Working with order types becomes easier if point
sets are assumed to be in general position. In this case
this means that no three points can lie on the same line.

Definition 2.1. The order type is a description of the
ordering of points {P1, P2, . . . Pn} in Rd . It assigns to every
ordered multiple i1, i2, . . . id+1 the orientation of the point
multiple Pi1 Pi2 . . . Pid+1

. If the points are in general position,
these orientations are limited to positive (+) and negative
(−). Otherwise they can be neutral (0) too.

Instead of order type, this concept is sometimes referred
to as the chirotope or the multiplex [12], and it is a
special case of the n-ordered sets [23].

Sorting in one dimension can be seen in two different
ways. One can find for each point Pi the number λ(i)
of points to its right side, or the set Λ(i) of points on
that side. Knowing one of these is enough to find the
other. The value of λ(i) can be found by counting the
elements in Λ(i), while Λ(i) can be found by looking at
the λ-value for the other points: If λ(i)> λ(j), we can
conclude that Pj lies to the right of Pi , thus Λ(i) must
contain Pj .

In the one-dimensional case, sorting is accomplished by
looking at pairs of points. In general the atoms of the
order pattern of a point configuration in d-dimensional
space consist of d + 1 points each. This means that in
the plane we consider the orientation of triples. Again
this can be thought of in two different ways. For each
pair of points Pi , Pj , one can find the number λ(i, j) of
points Pk lying to the left of the directed line through
Pi and Pj (the triple Pi Pj Pk is counterclockwise), or
the set Λ(i, j) of all points Pk to the left of Pi Pj can be
found. Again, one of these follows from the other as
proven by Goodman and Pollack. Note that Λ(i, j) and
λ(i, j) are undefined if i = j. An undefined result of
Λ is represented by the Ω symbol and an undefinded
result of λ by ω.

Definition 2.2 (Λ andλ). For a point configurationC =
{P1, . . . , Pn} in Rd , Λ(i1, . . . , id) denotes the set of points
on the positive side of the hyperplane affinely spanned by
Pi1 , . . . , Pid . λ(i1, . . . , id) denotes the number of points on
the positive side of that same hyperplane.

If P1, . . . , Pn are affinely independent:

Λ(i1, . . . , id) = {Pj |Pi1 . . .Pid Pj > 0}
λ(i1, . . . , id) = |Λ(i1, . . . , id)|

Otherwise:

Λ(i1, . . . , id) = Ω
λ(i1, . . . , id) =ω

4

1

2

3

45

λi j =

ω 0 1 3 2
3 ω 0 2 1
2 3 ω 0 1
0 1 3 ω 2
1 2 2 1 ω

Figure 2.1: C = {P1, . . . , P5} with its λ-matrix.

Λ and λ both fully encode the order type of a point
configuration.

To find the order type of a point configuration algo-
rithmically, a hyperplane rotation around a face-flag
is performed. A face-flag is a sequence of faces on a
polytope of increasing dimensionality. In algorithms re-
garding order types, this polytope is the convex hull of
the point set. In d-dimensional space, a face-flag con-
sists of a sequence of d−1 faces where every next face’s
dimensionality increases by one, and every face is a
bounding face of the next one. This means that in the
plane a face-flag is merely a point and the hyperplane
rotating through it is a line. In three dimensions it is the
sequence of a point σ0 and a line segment σ1, of which
one endpoint corresponds to σ0. Around this face-flag
a plane is rotated.

Definition 2.3. A face-flag of the polytope Π in Rd is a
sequence σ0, . . . ,σd−2 of faces of Π, where σi is a face of
σi+1 and has dimensionality i.

The order type of a configuration of n points in the
plane can be represented as a λ-matrix with dimensions
n× n. Figure 2.1 shows an example of such a matrix,
along with the point configuration it belongs to. Take
for example the result of λ(1, 5). We can read from the
matrix that λ(1, 5) = 2. If we look at the point set, this
corresponds with the number of points to the left of the
directed line P1P5, these points being P2 and P3.

Multiple λ-matrices can encode the same order type.
This depends on the labelling of points. Additionally,
if all triples are ordered in the opposite direction, the
order type is usually considered to be the same. Depend-
ing on the labelling, different λ-matrices can represent
the same point set, and thus the same order type. This
is inconvenient when comparing order types, as all dif-
ferent labellings would have to be tested. A solution to
this problem will be discussed in Section 2.3.

1

2

3

4

5

5

4

3

2

1

Figure 2.2: Example of a wiring diagram.

In some algorithms, sets of points are imagined in the
projective plane instead of the Euclidean plane. This
can make operations computionally easier. This concept
is used in the process of enumerating order types [1].
In this algorithm, order types are grouped together into
projective classes. The order types in the same class
have the same realisability. For this purpose we need to
distinguish between regular Euclidean order types and
projective order types.

Definition 2.4. A projective order type is the order type
of a point configuration in the projective plane. Euclidean
order types can be grouped together into classes of projec-
tive order types.

Because point configurations are equivalent to line ar-
rangements through duality, line arrangements are also
studied as a part of research related to order types.
More specifically, pseudoline arrangements are used in
the process of enumerating order types [1]. This proce-
dure will be described in detail in the following sections.
Pseudoline arrangements are a more general version
of regular line arrangements. Pseudolines do not need
to be straight, but they preserve topological and combi-
natorial properties of straight lines [16]. A pseudoline
does not cross itself and in a pseudoline arrangement,
every pair intersects exactly once.

Definition 2.5. A pseudoline is a simple closed curve
whose removal does not disconnect the real projective
plane.

Definition 2.6. A pseudoline arrangement is a set of
labelled pseudolines, every pair crossing exactly once.

A common representation of pseudoline arrangements
is the wiring diagram. Lines are all drawn horizontally
except in the locations where they cross and switch
positions.

Not every arrangement of pseudolines is realisable as
an arrangement of straight lines. In this case we say
the arrangement is not stretchable. A λ-matrix can be
constructed from each pseudoline arrangement. How
this is done will be explained in Section 2.4. Not all
of these λ-matrices correspond to a realisable point
configuration. Order types that are realisible are simply
referred to as order types. The complete set of order

5

types, including unrealisible ones are called pseudo
order types.

Definition 2.7. A pseudo order type is the order type
associated with a λ-function that follows from a pseudo-
line arrangement. The collection of pseudo order types is
a superset of the collection of order types. Pseudo order
types that are not an order type can not be realised as a
point set.

Order types are a special case of oriented matroids [24].
The oriented matroid is a widely used representation
that generalises many different geometric objects, such
as point configurations and arrangements of lines (and
hyperplanes in general), but also convex polytopes and
directed graphs. Oriented matroids map elements in
a set to a direction. In the case of order types in the
plane, these elements are triples, and the direction can
be clockwise or counterclockwise.

2.2 Geometric sorting

The algorithm for geometric sorting in the plane is in-
troduced in [17] along with a general algorithm for any
number of dimensions. These algorithms take a labelled
set of points and return the λ-function associated with
it.

Intuitively the algorithm in the plane comes down to
the following. For every ordered pair of points Pi and
Pj a ray from Pi through Pj is cast and then rotated
counterclockwise 180 degrees. During the rotation, the
ray may encounter a number of points. As discussed
before it is unnecessary to know which points they are
as long as we know how many they are. The number of
points encountered by the ray should be the result of
λ(i, j).

See Figure 2.3 for an illustration. As the ray rotates, it
encounters P4, P5 and P7, totalling a number of three
points which lie on the left of directed line P1P2. This
allows us to say λ(1,2) = 3. To get the complete λ-
matrix this is repeated for every pair of points.

Pseudo code for the GEOMETRICSORT2D algorithm can
be found in Appendix A. The algorithm fills the λmatrix
one row at a time. For every Pi it first walks through
all points again and filters out the current point and
other points that might have the same coordinates. All
remaining points are translated in order to get their po-
sition relative to Pi . Additionally each point is mirrored
in Pi and stored as a copy. The original and mirrored
points are then grouped into rays and sorted into coun-
terclockwise order as seen from Pi . Finally, for every j,
we fill out λ(i, j) by summing up the number of original
points in each ray between the ray containing Pj and
the ray containing Pj ’s mirrored copy.

1

2

34

5

6

7

10 9

8

Figure 2.3: The ray originating from P1 going through
P2 and rotating to P10, where P10 is the result of P2
getting mirrored in P1.

The translation of all other points takes linear time. The
sorting can be done in O(n log n) time. If the computa-
tions of each sum is done by reusing the sum for the pre-
vious j and correcting the λ value, it can be done in lin-
ear time. This results in an execution time of O(n log n)
for each i, resulting in a total time of O(n2 log n).

The radial ordering of points can be optimised by per-
forming this task in the dual plane. The ordering can be
derived from the dual line arrangement in linear time,
resulting in a total execution time of O(n2).

An algorithm exists to find the order type of point
configurations in higher dimensions. This algorithm
is described by Goodman and Pollack [17] and takes
O(nd(d!+ log n)/(d − 1)!) time. Given a large value of
n and considering that the number of dimensions is
constant, this simplifies to O(nd log n) time. This is in
correspondence with the execution of the algorithm for
points in the plane.

2.3 Comparing randomly numbered
configurations

For many applications, it is required to compare the
order types of two separate point configurations. Of
course it is possible to compute the λ-matrix of both
sets and compare the result, but it is very unlikely that
the labelling of points is the same in both sets.

In order to solve this problem, Goodman and Pollack [17]
introduce the concept of a canonical ordering. A canon-
ical ordering of a point set in the plane exists for every
point Pi on the convex hull. The ordering is found by
casting a ray from this point, pointing outwards, away

6

from the hull, and then rotating it counterclockwise.
Points are added to the canonical ordering as they are
encountered by the ray. When two points lie on the same
ray, they are handled in the order of increasing distance
to Pi . In higher dimensions the canonical ordering is
found by sweeping a hyperplane around a face-flag.

The algorithm to determine a canonical ordering of a
point set in the plane has some similarity to the geomet-
ric sorting algorithm. To avoid unnecessary repetition,
CANONICALORDERING2D reuses parts of GEOMETRIC-
SORT2D. The algorithm expects a point configuration
and a point on its convex hull as input. This point will
be used as the starting point of the canonical ordering.
It walks through all points and sorts all points into rays
as seen from the starting point. It then walks through
these rays in order to find the points in counterclock-
wise order. For the complete pseudo code refer to the
appendix.

Similarly to the GEOMETRICSORT2D algorithm, the sort-
ing of rays can be done in O(n log n) time. All other
parts take linear time, resulting in an overall execution
time of O(n log n). Goodman and Pollack [17] give an
algorithm for an arbitrary number of dimensions with
the same time-complexity.

In order to confirm that two labelled point configu-
rations C = {P1, . . . , Pn} and C ′ = {P ′1, . . . , P ′n} have
the same order type, a mapping must be found that
matches each point in C to a point in C ′. If every possi-
ble mapping must be tried, this results in n! possibilities.
Luckily there are some restrictions on which points can
be matched. An extreme point can only correspond to
another extreme point. Additionally, if two points are
matched, their canonical orderings should agree on the
labelling of the other points. This means we only need
to try as many possibilites as there are points on the
convex hull of the point sets, giving a maximum of n
possibilities.

For configuration C we pick a random point on the con-
vex hull and determine the canonical ordering induced
by it. We now try to match this point to all the points
on the convex hull of C ′. This is done by permuting
the λ-matrix of C and comparing it to the λ-matrix
of C ′. The algorithm returns a set of mappings that
result in equal λ-matrices. If the set is empty, the point
configurations do not have the same order type. Pseudo
code for COMPARECONFIGURATIONS2D can be found in
the appendix.

We know the execution time needed for GEOMETRIC-
SORT2D and CANONICALORDERING2D. Finding the con-
vex hull of a point set can be done in O(n log n) time [10].
At most n comparisons need to be done and every com-
parison takes O(n2) time, resulting in a total execution
time of O(n3).

2.4 Enumeration of order types

An important project regarding order types is the database
of order types in the plane by Aichholzer and Krasser [6].
The database contains realisations of all order types
for points sets with 3 to 10 vertices. To create such a
database, a method is needed to enumerate order types.
This process was initially described by Aichholzer et
al. in 2002 [1]. Additional work has been done to im-
prove this method. Examples include the generalisation
to higher dimensions [15] and complete point exten-
sion [5], adding order types for point sets of size 11 to
the database.

The number of order types quickly increases with in-
creasing n as seen in Table 2.1 and it becomes harder
to find realisations of order types. Certain properties
only hold for an n-point set if it holds for at least one
of its (n − 1)-point sets. This theory can be used to
find new solutions to the rectilinear crossing number
problem. A method called complete point extension is
introduced [5] to generate all order types of size n+ 1
that contain a given n-point order type as a sub-order
type.

n Number of order types

4 2
5 3
6 16
7 135
8 3 315
9 158 817

10 14 309 547
11 2 334 512 907

Table 2.1: Number of different order types for point
sets of size n.

The problem of the rectilinear crossing number of point
sets has been a driving force in making improvements
to the database of order types. Order types have helped
to find the rectilinear crossing number for all n up to
17.

Aichholzer’s order type database and enumeration al-
gorithms are limited to point configurations in general
position in the plane. An alternative method exists with-
out these restrictions. Finschi and Fukuda [15] present
an approach to generate order types, not just in the
plane, but in any number of dimensions. For this they
exploit the similarities of order types and oriented ma-
troids.

The enumeration of order types as described by Aich-
holzer et al. [1] generates point set realisations for all
order types for n = 4, . . . , 10 and can be split into three

7

steps. First the complete set of pseudo order types must
be generated. This means all realisable order types are
also contained once in this set. Wiring diagrams are
used for this purpose. Then these pseudo order types
are grouped together in classes of projective order types.
Order types that belong to the same class are guaran-
teed to have the same realisability. The last step is to
find which order types are realisable and find a realis-
able point set if this is the case. The algorithm is limited
to point configurations in general position in the plane.

In order to generate a candidate list, a collection of λ-
matrices is generated. We learned previously that these
matrices depend on the labelling of the point set and
multiple λ-matrices can represent the same order type.
For this reason, the points are assumed to be in natural
ordering. This is defined as the order that results in the
λ-matrix that is lexicographically the smallest, when
read line by line. This means P1 will always be a point
on the convex hull and all other points will appear in
clockwise order as seen from P1.

The collection of λ-matrices is created by generating
a collection of wiring diagrams. The crossing order of
the pseudolines g1, . . . , gn determine the values in the
matrix, using the following assumptions for wiring dia-
grams. No line intersections lie above g1 and every other
line crosses g1 from top to bottom. The value of λ(i, j)
where 1≤ i < j ≤ n can be read from the arrangement
by counting the number of lines that have the crossing
of gi and g j above them, excluding gi and g j . Note
that the crossing order of g1 will always be 2,3, . . . , n,
making it possible to omit it from the arrangement.
Because the point configuration is in general position
the remaining fields of the matrix can be filled using
the fact that λ(i, j) + λ(j, i) = n − 2. See Figure 2.4
for an illustration of a wiring diagram and the order
type that can be extracted from it. Note that if wire 1
would be omitted from the diagram,the remainder of
the λ-matrix could still be read from it.

Euclidean order types belong to the same projective
class if they can be rotated to each other. Rotating can
be done around any extreme point in the order type
and reverses the orientation of all triples containing that
point. After a rotation the order type must be minimised
again to be lexicographically the smallest representa-
tion. Because order types in the same projective class
share realisability, realisability only needs to be tested
once for every class.

What remains is the final and computationally the most
complex step. The problem of determining realisability
of an order type is NP-hard. Aichholzer et al. use a
collection of heuristics to accomplish it. The number of
projective classes that must be realisable were already
known from literature. A scanning process is started
using an insertion method, building n-point realisations

1

3

2

4 1

2

3

4

λ=

ω 0 1 2
2 ω 1 0
1 1 ω 1
0 2 1 ω

12

3

4

Figure 2.4: A wiring diagram, λ-matrix, and point re-
alisation, all belonging to the same order type.

by adding a point to (n−1)-point realisations. This raises
the problem that the specific geometric realisation of a
set of size n− 1 can limit the number of possible order
types that can be realised by adding a point to it. For
this reason the process was repeated, but with small
random perturbations applied to the (n− 1)-point sets.
These perturbations change the geometry but preserve
the order type.

Once a realisation of one of the order types in a projec-
tive class is found, the class can be marked as realisable.
If the number of realisable classes has reached the ex-
pected number, the final step can be performed. If the
number is not yet reached but the realisability of some
classes remains undetermined, a second method is used
to try realisability. This more exhaustive method aims
to build a realisation from the ground up and was only
used in a few cases and only for n= 10.

The final step is to find realisations for all remaining
order types in realisable projective classes. These are
derived from the existing realisations in that class, by
mapping the points to a sphere, applying rotations and
projecting back to the plane.

2.5 Geodesic order types

Geodesic order types are a variation on order types
where the point configuration is embedded inside a sim-
ple polygon [4]. It is based on the geodesic distance
between two points, which is the length of the short-
est path between two points without moving outside
the simple polygon boundary. In determining the order
type of a point configuration, this boundary influences
the radial ordering of points and thus the direction of
triples.

8

1
2

3

1
2

3

(a)

(b)

Figure 2.5: The difference in radial ordering between
an unconstrained and geodesic setting.

In Figure 2.5 this is clearly visible. In the unconstrained
situation (a) the counterclockwise radial ordering as
seen from P1 is P2, P3. When the boundary is introduced
in (b), this changes to P3, P2 as the polygon pushes and
bends the edges between the points. This also causes the
direction of the triple P1P2P3 to change its orientation
from counterclockwise to clockwise.

Part of the order type in an unconstrained setting is
the convex hull of the point set. The equivalent of the
convex hull in a geodesic setting is the geodesic hull. The
geodesic hull of point set S is the region that contains
the shortest paths in geodesic setting between all pairs
of points in S.

By changing the polygon boundary, the order type of
a point set S can be changed. From this follows that
the subset of points that make up the geodesic hull can
change as well. Aichholzer et al. [4] prove that for any
subset B of at least four points a polygon P can be
found such thatB forms the geodesic hull of S induced
by P.

2.6 Cross-sections of line arrangements

The cross-section of a line arrangement L in general
position in R3 with a plane not parallel with any line
in L results in a point configuration. If we consider
this plane to be horizontal and sweep it vertically with
a constant speed, this models a point configuration
where the points move in the plane with a constant
speed. Research has been done on the number of order
types these sets of moving points can have [8]. The
number of different order types cross-sections of one

line arrangement can have is found to have a tight
bound of O(n9).

2.7 Radial orderings

It is possible to reconstruct the order type of a point
set from partial information on the position of points.
Aichholzer et al. [3] prove that the order type can be
determined when given the radial orderings of other
points as seen from each point in the set. This holds
when the convex hull of the set contains at least four
points. Otherwise, there can be n− 1 candidates, that
could all be the order type of this point set.

The reconstruction algorithm runs in polynomial time
and it works by repeatedly solving the problem for sub-
sets of five points.

An improved version of the algorithm was later intro-
duced [7] that runs in linear time. First the convex hull
of the point set is constructed from the radial orderings.
Then the remaining orientations are found. The nature
of this problem makes it impossible to solve it in less
than linear time, making this algorithm optimal.

2.8 Storage of order types and point set
representations

This section contains some notes on the storage that is
necessary for algorithms and databases regarding order
types. This concerns both the encoding of order types
themselves—for example in the form of a λ-matrix—
and the storage required for coordinate representations
of order type realisations.

For the storage of coordinate representations a grid
of integer values can be used. To be able to differenti-
ate between different order types, a certain grid size is
required. When more points are added to the configura-
tion, one can imagine that it becomes hard to maintain
the general position of the set and prevent any points
from being colinear. Goodman et al. found that a grid to
store coordinate representations of order types of size
n requires exponential storage [18].

Aichholzer et al. [1] note that they aim to present nice
representations of order types. Their coordinate repre-
sentations follow the following rules:

• No x or y coordinate is allowed to be the same.
This makes it easier to sort along one of the axes
and prevents the presence of parallel lines as the
result of a duality transformation.

• There is a minimum distance of 4 between each
pair of points.

9

• The configurations are in very general position.
Besides being non-colinear, there must be a dis-
tance of 1 between every line through two points
and any other point.

• No four points lie on a common circle.

Despite these rules, they manage to store all realisa-
tions for n ≤ 8 with coordinates as one byte integers.
Realisations for n = 9 and n = 10 require two byte
integers.

We are not only interested in storing point representa-
tions but also in storing the order type itself. Since the
λ-matrix is a representation of an order type, storing
this matrix is enough, requiring storage of O(nd) values
for an n-point set in d dimensions, and thus O(n2) in
the plane. However, as n increases, the values that are
being stored also increase in size, requiring more bits
for each value. Felsner [14] found a more efficient way
of storing pseudoline arrangements, where the number
of values is still O(n2) but every value is a single bit.
Because a pseudo order type follows directly from an
arrangement of pseudolines and every order type is also
a pseudo order type, the same method can be applied
to the storage of order types.

A wiring diagram can be encoded as the list of orderings
in which each pseudoline crosses the other lines. Each
ordering σi = (σi

1, . . . ,σi
n−1) is a permutation of the

numbers 1, . . . , n, excluding i. The complete encoding
is then contained in the vector (σi , . . . ,σn).

For the example in Figure 2.4 this would result in the
vector

((2, 3,4), (1,4, 3), (1, 4,2), (1,3, 2)).

Felsner states that the storage of this arrangement can
be reduced by defining

τi
j =

¨

1 if σi
j > i

0 otherwise

τi = (τ
i
1, . . . ,τi

n−1).

Then the vector (τi , . . . ,τn) can also serve as a complete
encoding of the arrangement. In our case this would
reduce to

((1, 1,1), (0,1, 1), (0, 1,0), (0,0, 0)).

Note that a one also corresponds to an upwards cross-
ing and a zero to a downwards crossing in the wiring

diagram. We now have a representation of an order type
that has the same number of values as the λ-matrix,
but where every value is either one or zero, requiring a
single bit per value.

3 LOCAL ORDER TYPE DEFINITIONS

For the order type of a point configuration the orienta-
tion of every triple of points matters. We introduce the
local order type, a variation on the order type that only
takes into account a subset of all triples. We define the
local order type for an arbitrary number of dimensions
but in the following we will only consider the case of
points in the plane.

Definition 3.1. The local order type is a description of
the ordering of points {P1, P2 . . . , Pn} in Rd . To a subset of
all ordered tuples i1, i2, . . . id+1 it assigns the orientation
of the point tuples Pi1 Pi2 . . . Pid+1

: positive, negative or neu-
tral. Which tuples are included in the subset is determined
by the specified tuple selection method.

The aim of the local order type is to create classes of
order types that more closely resemble the human per-
ception of similarity of point configurations. Note that
the similarity of point sets depends on how that point
set is used. For example, is it used to create a graph or
is it presented as just a point set?

3.1 Triple selection

There are countless ways to determine which triples
must be included. We introduce the following specifica-
tions of local order types:

1. The Delaunay order type includes a triple only if
the circle through the three points contains no
other points.

2. The extended Delaunay order type includes a triple
if at least one point is connected to the other two
through a line segment of the Delaunay triangu-
lation of the point configuration.

3. The k-nearest order type. Every point wants to
form triples with its k nearest points. For each
point, the order type includes every combination
of that point and any two of its k nearest points.

4. The maximum distance order type. Every point
wants to form a triple with all other points that
are within a given distance. For each point, the
order type includes every combination of that
point and any two of its candidate points.

5a. The maximum angle order type. We consider the

10

triangle formed by the three points. A triple is
included if the angle opposite to the longest side
of the triangle does not exceed a maximum angle.

5b. The nonobtuse order type includes a triple only if
the three points form a nonobtuse triangle: every
angle of the triangle is at most ninety degrees.

6. The circumscribed circle order type includes a triple
if the circle through the three points has a radius
that does not exceed a given value.

Some relations between these different order types are
immediately clear. The nonobtuse order type is a case
of the maximum angle order type where the maximum
is set to ninety degrees. The circumscribed circle or-
der type combines the maximum angle and maximum
distance order type, as both the distance and the an-
gle between points influence its triple selection. The
k-nearest and maximum distance order type have a sim-
ilar process of creating triples: every point nominates
candidate points. The extended Delaunay order type
contains at least the triples that the regular Delaunay
order type includes.

It is possible to have two point sets with a different
global order type, but the same local order type, but it
also works the other way around. Because of the use of
a triple selection procedure, point sets with the same
global order type can have a different local order type by
including different subsets of triples. Figure 3.1 and 3.2
show examples of both cases.

For the k-nearest order type points are considered in
general position when the distance between each pair

Figure 3.1: Two point sets and their Delaunay triangu-
lation. The point sets have a different global order type
but the same Delaunay order type.

Figure 3.2: Two point sets and their Delaunay triangu-
lation. The point sets have the same global order type
but a different Delaunay order type.

of points is unique in addition to no three points being
colinear. The Delaunay-based order types expect point
configurations where no four points lie on the same
empty circle.

3.2 Basic properties of local order type
variations

We start by looking at basic properties of the defined
local order types.

• First we want to know if the selection of triples
takes into account only the relations between the
three considered points or if it also takes into
account other points in the configuration. We will
call this property context dependence. If a local
order type is context independent, this means a
repetition of the same triple in a different location
will always be included as well. This is not true for
context dependent order types as the surrounding
points need to be taken into account as well.

• Additionally, the local order type can be scale in-
variant. This is the case if the order type stays the
same when the entire set is scaled up or down.
A variation on scale invariance is x-scale invari-
ance. In this case the order type remains the same
even if the set is scaled along one axis. The global
order type of a point set is x-scale invariant and,
naturally following from this, scale invariant. We
exclude x-scale invariance from our list, because
none of the presented local order types are x-scale
invariant.

• Do all points participate in the order type? A
point participates if it is part of at least one triple
that is included by the order type variation.

• Is the point selection for triple forming symmet-
rical? This is only relevant for variations where
each point selects a set of other points that it
wants to form triples with. These are the extended
Delaunay, k-nearest and the maximum distance
order types. The selection process is considered
symmetrical if the following holds: point Pi se-
lects Pj as a candidate, if and only if Pj selects Pi
as a candidate.

• Finally, we want to know if a point configura-
tion with a different number of extreme points
always results in a different order type. For the
global order type this is the case, but not neces-
sarily for all local order type variations, as not all
triples are considered.

11

Question 1 2 3 4 5 6

Context dependence yes yes yes no no no
Scale invariance yes yes yes no yes no

Participation yes yes yes no no no
Symmetry yes yes no yes yes yes

Extreme points yes yes no no no no

Table 3.1: Basic properties of local order type variations. Refer to Section 3.1 for the order type descriptions.

Figure 3.3: Nearby points affect the inclusion of triples
in the Delaunay triangulation.

Table 3.1 contains the answers to these questions for
all local order types that were defined in the previous
section.

In distance- and angle-based order types the selection
of triples only depends on the relative position of the
points that would make up the triple. In Delaunay based
and k-nearest order types, the addition or removal of
other points can change the participation of a triple. For
this reason repeated triples are included in the former,
but not necessarily in the latter.

If a point is placed inside the circle through the points of
an included triple, that triple will no longer be included
by the Delaunay order type. Figure 3.3 shows two ex-
amples of such points. Both are added inside the circle,
but one is outside the triangle and the other inside.

Figure 3.4 shows how the addition of a point can change
the selection of the k nearest points of point P0. If we
consider the circle with P0 as its center, going through
its k-th nearest point, any point added inside this circle
becomes one of the k nearest points. The point that was
previously the k-th nearest will no longer be selected.

The only local order types that are not scale invariant
are the ones that have explicitely encoded distances.
These are the maximum distance and the circumscribed
circle order types. For the maximum distance order type,
a value is chosen for the maximum distance. For the cir-

1

0
2

3

0

2

1 3

Figure 3.4: Adding a point changes the selection of k-
nearest points. Selected points are labelled in ascending
order regarding their distance to P0 with k = 3.

cumscribed circle order type the diameter of the circle
must be fixed. We can construct a point set where a pair
of points has exactly the maximum distance between
them. If this point set is now scaled up, their distance
will exceed the maximum and they will no longer be
included as a pair. Similarly, we can construct a triple
with a circumscribed circle that has exactly the maxi-
mum radius. If this triple is scaled up, so is the radius
of the circle and the triple will no longer qualify.

In Delaunay-based order types and the k-nearest order
type, all points contribute to at least one triple. For the
k-nearest order type every point selects k points and
thus participates in at least

�k
2

�

triples. Distance- and
angle-based order types do not have any guarantee on
participation. If a point is too far away from all other
points, or if all angles are too big, it can be left out. It
is even possible to construct a point set such that not a
single triple is included.

The selection process of the maximum distance order
type is symmetrical, because it is based on the absolute
distance between two points. It is impossible for the
two points to disagree on this. For the k-nearest order
type, the selection is influenced by other nearby points,
making it asymmetrical. An example of this can be seen
in Figure 3.5. The extended Delaunay order type can
also be seen as having a symmetrical selection process,
because a point selects another point if the two share an
edge in the Delaunay graph. All other variations, while
not having a clear per point selection strategy, could
also be considered symmetrical.

Only for Delaunay-based order types there exists a guar-
antee that a different number of points on the convex

12

1 2

Figure 3.5: Point p2 selects p1, but not the other way
around.

hull of the point set results in a different order type.
The number of points on the convex hull determines the
number of triangles in the Delaunay triangulation and
thus the number of triples in the Delaunay order type.
Two order types with a different number of triples can
never be the same. For the extended Delaunay order
type, we will show in Section 4.2 that the convex hull
can be reconstructed from the order type, even if the co-
ordinates of the points are not known. Since the convex
hull follows from the order type, a different number of
points on the hull must also result in a different order
type.

For the other order types this is not the case. For distance-
and angle-based order types, we can construct a point
set such that zero triples are selected. This can be done
for any number of points on the convex hull. More on
the number of selected triples for each order type varia-
tion can be read in the next section.

We cover another property of local order types. For some
order type variations, we can make a statement about
the points in the area of a given triple. In particular,
we will consider the points that lie inside the triangle
formed by the points of a triple. The distance between
a point inside a triple and the line through two of the
points forming the triple is smaller than the distance
between this line and the third point. A desirable prop-
erty of a local order type could be that these points also
form a triple with each pair.

For the Delauny order type, such points do not exist by
definition. For the extended Delaunay order type, the
only guarantee is that at least one of the points inside
the triple has an edge connecting to the middle point of
the triple. The middle point is the point that has edges
to both of the other points forming the triple. We cannot
make a generic statement on all points inside the triple.

For the k-nearest order type we can state that points
inside a triangle must be a candidate point of at least
one of the points that forms the triangle. This is the
point that formed the triangle with two of its candidate
points. Any point inside the triangle is closer to this
point than the farthest of its two candidates, so it must
be a candidate point as well. Similarly, for the maximum
distance order type this means that a point inside a
triangle forms triples with all possible pairs of the points
that form the triangle.

Figure 3.6: Examples of triangles and added points that
result in 0, 1 and 2 better triangles. Filled triangles are
better triangles.

When selecting a point inside a triangle to form a new
triangle with, the angle in that point will be larger than
the angle in the point that is being replaced. Depending
on the point that is being replaced this can make the new
triangle either more or less suitable for the maximum
angle order type. If it replaces the point that already
had the largest angle, the new triangle is guaranteed
to have a larger maximum angle. Figure 3.6 shows that
there are cases where zero, one or two of the newly
formed triangles are more suitable. No case exists where
all three triangles are better. This follows from the fact
that at least one of the triangles is formed by replacing
the angle that was already the largest, making it even
larger.

For the circumscribed circle order type, we can reason
about the radius of the circumscribed circle when taking
a point inside the triangle. The radius r of the circum-
scribed circle of a triangle ABC with angles α,β ,γ and
opposite edges a, b, c can be found using the following
formula.

2r =
a

sinα
=

b
sinβ

=
c

sinγ

When forming a triangle with a point inside the triangle,
the length of one of the sides a, b, c remains the same,
but the angle α,β or γ opposite to that side is replaced
by a larger angle. The angles are always somewhere
between 0 andπ radians. sinα returns the highest value
at α = π/2 and becomes smaller as α gets bigger or
smaller. This means that the circumscribed circle gets
larger as α moves away from π/2 radians and gets
smaller as it moves towards it.

13

3.3 Complexity of local order type
variations

We aim to give upper and lower bounds for the number
of triples that an order type can include. We also look at
the complexity of the graph that is formed by drawing
an edge between every pair of points that participates
in the same triple. The values given are bounds on the
number of edges. Finally, we give bounds on the number
of order types that can belong to the same local order
type. We will call these local order types order type
classes and list the maximum known class size.

For some local order type variations we need to give
bounds for both the best and worst case. The best case
is defined as the minimal case and the worst case as the
maximal case. The results are shown in Table 3.2, where
n is the number of points in the point configuration and
h represents the number of points on the convex hull.
For the class size, we define a function f (x) that returns
the number of global order types that exist for point
configurations of size x .

The exact number of triangles in a Delaunay triangu-
lation, or any point set triangulation, is known to be
2n−2−h [10]. The number of edges is equal to 3n−3−h,
as follows from the Euler characteristic. It can be derived
from the number of triangles given that each triangle
has three edges and every edge is shared by two trian-
gles, except for those edges that make up the convex
hull.

For the extended Delaunay order type it is possible
to have a point with a linear degree, resulting in a
quadratic number of triples. An example is the situation
where n − 1 points lie on a circle and the remaining
point lies in the middle of this circle with an edge to
every other point. The middle point then initiates triples
with all possible combinations of other points. For the
order type graph we now add edges between all these
combinations too, resulting in the complete graph. The
upper bound on the number of triples is also quadratic,
since the Delaunay graph has O(n) edges, resulting in
O(n2) pairs of edges. Triples in the extended Delaunay
order type are formed by pairs of edges, resulting in
O(n2) triples.

For the k-nearest order type all of the n points select
exactly k points. An edge will appear in the graph for
each of these k points and

�k
2

�

triples can be formed.
Overall this results in Θ(nk) edges and Θ(nk2) triples.
Note that if k = n (or n− 1 to be exact) this will result
in the complete graph and the inclusion of all possible
triples. This is reflected by the resulting bounds ofΘ(n3)
and Θ(n2).

For all distance- and angle-based order type variations,
the minimal case occurs when all distances or angles ex-

Figure 3.7: Two points are added to a point configura-
tion such that all triangles of the Delaunay triangulation
include one of these points.

ceed the allowed value. For distance based order types
such a configuration can be obtained by scaling up any
configuration until all distances are too large. For angle-
based order types an example is a point set where all
points lie (almost) on the same line. This can be accom-
plished by scaling any configuration along a single axis.
The maximal case occurs when all points form triples
with every other point.

For the Delaunay order type, we have a construction
that shows a large number of different global order
types that can map to the same local order type. Take
a point configuration of n points with any global order
type and scale it down along one axis until the points
almost lie on a line. Now add two points, one on either
side of this line. Refer to Figure 3.7.

It is always possible to add these two points, such that
the Delaunay triangulation of the n+ 2 point configura-
tion has the same topology regardless of the order types
of the initial n points. This is the case because the point
set can always be scaled down further along one axis,
increasing the diameters of the circumscribed circles of
any three points until one of the two added points lies
inside this circle.

For a point configuration of n points with a fixed De-
launay order type, the number of different global order
types that can be formed is the same as the number of
global order types that can be formed by n− 2 points.

This construction cannot be reused for extended Delau-
nay order type as is, since triples consisting of three
points of the original set are still included, possibly re-
sulting in a smaller class size. It could be possible that
the n− 2 points in the middle can be transformed such
that they always lie in the same pattern, but this is still
an open problem. For now all we can say is that the
class size of the extended Delaunay order type cannot
be greater than the class size of the Delaunay order
type.

To determine a possible class size for the k-nearest order

14

Metric 1 2 3 4, 5, 6

Triples 2n− 2− h O(n2) Θ(nk2) 0, Θ(n3)
Graph 3n− 3− h O(n2) Θ(nk) 0, Θ(n2)

Class size f (n− 2) ? f (n/(k+ 1)) f (n)

Table 3.2: Complexity of local order type variations. Refer to Section 3.1 for the order type descriptions.

Figure 3.8: Points are replaced by clusters of points.

type, we can also create a construction. This works by
taking any point set and replacing each point by a cluster
of k+ 1 points. The distance between any two clusters
must exceed the diameter of each cluster to make sure
that no point selects a point from another cluster as one
of its k nearest neighbours. Additionally the clusters
must be in general position. Any line through two points
from different clusters should never cross a third cluster.

The clusters can be arranged in any way without chang-
ing the local order type. The number of different global
order types that can be formed depends on the num-
ber of clusters. For a point configuration of n points,
the number of different order types that can be formed
is the same as the number of order types that can be
formed by n/(k+ 1) points.

For distance- and angle-based local order types, point
sets for all regular order types exists that all have the
same local order type. This occurs for the local order
type that includes no triples at all, for which point sets
are described above. Any point set and thus any order
type can be transformed into such a set by scaling along
both axes or a single axis. Both of these transformations
maintain the global order type.

3.4 Robustness of local order type
variations

Finally, we will assess the robustness of local order types,
by looking at the number of changes to the order type
that happen as a result of the addition or removal of
a point to or from the point configuration. In order
to count the number of changes, a clear definition of
a change is necessary. We define it as the addition or
deletion of an included triple. Inclusion of triples is the
only aspect of the local order type that can change as
the result of insertion or deletion of points. The ori-

entation of existing triples always remains the same.
Table 3.3 shows the results for all of our local order
type variations.

The minimal case for the Delaunay and extended De-
launay order type occurs when a point is added without
causing any edge flips. For points that are added out-
side the convex hull it is possible to only form one new
triangle. For a point inside the convex hull, one triangle
is removed and three new ones are added. These are
two cases where a constant number of changes occur.

The maximal case happens when linearly many edge
flips are performed. For example by adding a point
inside a point configuration where every point lies on
the convex hull. The new point can be placed such
that all existing triangles are removed and new ones
are added. Since the number of triangles in Delaunay
triangulation is linear, the change is also linear. For the
extended Delaunay order type this results in a quadratic
change to the number of triples.

When a point is added to a set, for the k-nearest order
type it selects exactly k candidate points to form

�k
2

�

new triples with. All these triples are guaranteed to be
new, since they contain the point that was previously
not in the set. In addition to this, a number of existing
points can swap out one of their candidate points for
the new point. If this happens, k triples are deleted and
k new ones are added. The number of points for which
this can happen is O(k), as follows from Lemma 3.1,
keeping the number of changes at Θ(k2).

Lemma 3.1. A point can be one of the k-nearest points
of at most 6k other points.

Proof. Consider the nearest point graph, a directed
graph where there is a connection from every point
to its k nearest points. The outdegree of each point is
exactly k. We are looking for the maximum indegree
of a point, which is equal to the number of points that
select this point as one of their k nearest neighbours.

Now imagine a point p that has an indegree> 6k. There
will always be a wedge with p as its apex with an angle
< 60 degrees that contains > k points that selected
p as one if their neighbours. Let q be the farthest of
these points. All other points (≥ k) lie closer to q than p
does. Since p is one of the nearest points of q, these ≥ k

15

Action 1 2 3 4, 5, 6

Add/remove O(1), O(n) O(1), O(n2) Θ(k2) 0, Θ(n2)

Table 3.3: Robustness of local order type variations. Refer to Section 3.1 for the order type descriptions.

points must be as well. This results in a contradiction
where q has marked > k points as its nearest points.
This means the indegree cannot exceed 6k. �

Note that a deleted triple can still be in the order type
because another point still forms that triple with its
candidate points and an added triple could previously
be formed by the new point and its candidate points.

For distance- and angle-based local order types, adding
or removing a point only creates or destroys triples
that contain the point in question. As discussed in the
previous section, it is possible for a point to form triples
with all other pairs of points, while it is also possible
that the point does not participate in any triples. In the
maximal case, adding a point creates Θ(n2) new points.
In the minimal case, no new triples are formed.

3.5 Local order type encoding

For order types, both global and local, there are count-
less ways to represent them. It is a hard requirement
for an encoding to be specific, in that it represents ex-
actly one order type. Ideally an encoding would also
be unique and easy to compare. If the representation
is unique, the represented order type can only be en-
coded by that single representation. Having a unique
representation makes comparing the order type of two
point sets a trivial task.

It is always possible to represent an order type by sim-
ply listing the coordinates of a point set representation,
requiring linear storage in the number of points. A point
set only has one order type, so it is a correct represen-
tation of the order type. However, it contains much
more information beyond the combinatorial properties
of the point set, making it a non-unique representation.
This encoding takes up little storage but requires much
computation in order to be compared.

The other extreme approach is to list the orientation of
all ordered triples, requiring O(n3) storage for a point
set of n points. Equivalent to storing a list of triples is
storing the Λ function, containing the set of points on
the positive side of each ordered pair of points.

For the global order type the λ matrix can be derived
from this representation, requiring only quadratic stor-
age. As described in Section 2.1 the λ matrix only en-
codes one order type because not only does the number

of points on the positive side of a pair follow from the
set, but also the other way around. This only works
because the global order type includes all triples, so for
local order types the λ function is no longer a correct
representation.

For local order types, the most straight-forward ap-
proach is to list all ordered triples and mark them clock-
wise, counterclockwise, neutral—if non-general posi-
tion is allowed—or omitted. All triples occur three times
this way. If we only consider point configurations in gen-
eral position, some storage can be saved by listing every
included triple once in some clockwise order. Triples
that are not included by the local order type are not
stored.

A more familiar way to do roughly the same thing is
through an altered version of the Λ function. For every
ordered pair Pi , Pj of points, a point is included in Λ(i, j)
if it forms a triple with Pi and Pj and lies to the left of the
directed line Pi Pj . Note that this is again only sufficient
for point sets in general position. If a triple Pi Pj Pk is
omitted or neutral, both scenarios result in Pk not being
included in Λ(Pi , Pj).

3.6 Comparing the local order type of
point sets

In order to compare local order types of configurations,
the lists of triples or Λ functions must be compared. Just
like with global order types, the problem arises that the
labelling of points can be different. Sadly we cannot
reuse the properties of canonical orderings of points
since for local order types there is no guarantee that
a point on the convex hull in configuration C always
maps to a point on the convex hull in configuration C ′.

Any optimisations we can make, depend on the triple
selection method that is used. If the triple selection
method is unknown, many different mappings of points
must be considered. Not all possible mappings need to
be checked though, as a point can only be matched to
a point that occurs in the same number of triples.

In Section 3.2 we saw that the convex hull does have a
direct impact on the Delaunay-based order types. This
allows us to create optimised comparison algorithms for
these variations. More on these algorithms will appear
in the next section.

16

4 DELAUNAY-BASED ORDER TYPES

The previous section contained some information on
local order types in general but also highlighted the dif-
ference between triple selection methods. This section
focuses on the two Delaunay-based local order types
and aims to present encodings and algorithms tailored
to these variations. This includes algorithms for com-
paring the order types of two point sets and a way to
enumerate all order types for any set of a given size n.

We selected the Delaunay-based order types because as
seen in the previous section they are scale invariant and
context dependent. These are properties that would be
suitable for the application of content generation. Addi-
tionally, Delaunay triangulations have been researched
extensively in the past.

In the following we will only consider point sets in
general position. In addition to no three points being
colinear, we require that no four points lie on the same
circle. This ensures a point set only has a single Delau-
nay triangulation.

4.1 The Delaunay order type and graph
isomorphism

For the Delaunay order type, the topology of the Delau-
nay triangulation that resulted in that order type can
serve as an encoding for the order type. This follows
from the fact that the triples follow directly from the
triangles of the triangulation and that the triangula-
tion can be reconstructed from the list of triples. The
triples provide a list of triangles that can only be glued
together in one way. Knowing that all inner faces must
be triangles, it is even sufficient if only the edges are
known, except for the case when the configuration has
a convex hull of size three. In this case the outer face
is also a triangle, making it impossible to recognise it
from a list of edges.

For configurations with more than three points on the
convex hull, this means that their Delaunay order types
can be compared by creating Delaunay triangulations
for both configurations and checking them for edge iso-
morphism. For configurations with exactly three points
on the convex hull, this is insufficient. Additionally,
given the mapping that results from the isomorphism
check, we must verify that the outer face is formed using
the same three vertices.

Checking for isomorphism of two triangulations T and
T ′, both of n points, can be done by taking any edge
on the convex hull in T and fitting it on every edge on
the convex hull in set T ′. Matching one pair of edges
uniquely maps the remaining edges. In linear time we
check if the mapping is complete. Doing this for each

0

1

2

3

4

Figure 4.1: One vertex of a Delaunay triangulation with
its incident edges and mirrored versions of those edges.

edge in the convex hull of set T ′ means that it requires
O(n2) time to check isomorphism of two triangulations.

Since the Delaunay triangulation of a point configu-
ration can also be computed in O(n2) time [21], the
overall time required to compare the Delaunay order
type of two configurations is O(n2).

4.2 Encoding and comparing the
extended Delaunay order type

For the extended Delaunay order type, an alternative
encoding exists too. Every vertex Pi of the Delaunay
graph of n points forms triples with the adjacent vertices.
The orientation of these triples depends on where Pk lies
relative to the directed line Pj Pi . This information can
be stored for triples with Pi at their center by creating
a radial ordering of points. Let Pn+k be the result of
mirroring Pk in Pi . The radial ordering must include all
adjacent vertices plus the mirrored versions of these
points.

Take the example in Figure 4.1. The points are not
shown as their distance is not important, so the labels
appear at the edges incident to each point. Dashed edges
go towards mirrored points. Let n = 5. A radial ordering
for P0 is 1, 2, 9, 3, 6, 7, 4, 8. To determine the direction of
a triple Pj P0Pk, start at j in the radial ordering and walk
through it in clockwise order. If k appears before n+ j
the triple is counterclockwise. If it appears after n+ j,
the triple is in clockwise orientation. Creating a radial
ordering for every Pi fully encodes the orientation of
every triple in the extended Delaunay order type and
requires O(n) storage. This is the case because for every
point we store a list of its neighbours and the sum of
the degrees of all points is O(n). Whether it is also a
unique encoding remains to be answered.

This encoding can only be used for comparing the ex-
tended Delaunay order type of two configurations if
each extended Delaunay order type can only appear on
a single unlabeled Delaunay triangulation topology. In
this case the Delaunay triangulations of two configu-

17

1

2

4

5

6
3

Figure 4.2: A Delaunay triangulation where P1, P2, P4
and P6 consistently appear in triples of the extended De-
launay order type with each other and P5 even though
there is no edge between P2 and P5.

rations must first be checked for isomorphism. If this
check succeeds, proceed by comparing the radial order-
ings of matched points. No counterexample is known
and there are steps that suggest that the following con-
jecture holds but no definite proof has been found.

Conjecture 4.1. The topology of the Delaunay triangu-
lation of a point configuration follows directly from its
extended Delaunay order type.

One of the steps towards proving this conjecture is that
the convex hull of the triangulation follows directly
from the extended Delaunay order type. If Λ(i, j) = ;
then edge Pi Pj is part of the clockwise convex hull or it
does not exist at all. Given that consecutive edges on
the convex hull share a point and that three consecutive
points on the hull form a clockwise triple, only one
possible convex hull arises from these pairs. This could
lead to an incremental approach where one point on
the hull is removed along with its edges and triples and
the new convex hull is detected. However this does not
work in its current state as the removal leaves it unclear
how the point was connected to the inner points and
the remaining graph is not guaranteed to be a valid
Delaunay triangulation with a convex hull anymore.

Another approach can involve finding neighbouring
points of each point through the list of triples or Λ func-
tion. For a point Pi and every other point Pj compute
M(i, j) = Λ(i, j)∪Λ(j, i). This set contains every point
Pk for which a triple exists consisting of Pi , Pj and Pk.

By comparing these sets, we can find the subset of points
that consistently appear in triples with each other and
Pi , suggesting that these could be the neighbours of Pi .
A counterexample exist, shown in Figure 4.2, where P2
appears in this subset for i = 5 even though there is no
edge between P2 and P5. However it is still possible to
find that there is no edge between P2 and P5 by looking
at Λ(3,2) which is guaranteed to contain every point
that shares an edge with P2 or P3 since P2P3 is an edge
on the convex hull. P5 is not in Λ(3,2) guaranteeing
that edge P2P5 does not exist.

Additionally, taking i = 2 for the triangulation in Fig-
ure 4.2 and comparing M(2, j) for each j 6= 2, results in
two possible solutions. P1, P4 and P6 appear in all other
M values, but P3 in all others except M(2,5) and P5
appears in all others except M(2, 3). This results in two
sets of points that consistently appear in triples with
each other and P2: {P1, P3, P4, P6} and {P1, P4, P5, P6}.
Only the former corresponds to the neighbours of P2.

So far these steps are insufficient to prove Conjecture 4.1,
but they seem like a step in the right direction. As long
as the conjecture is unproven, the slower generic algo-
rithm for comparing local order types can be used. If
the conjecture holds, we can make the following anal-
ysis of the runtime of the algorithm to compare the
extended Delaunay order type of two point sets. First,
the Delaunay order types of both sets are compared by
checking their Delaunay triangulations for isomorphism
in O(n2) time. If they do not match, it is guaranteed the
extended Delaunay order types also do not match. If
they do, we continue by checking the radial orderings
for each point. For each point, the equivalent point is
found in the other configuration, the neighbours are
mirrored and the radial orderings are compared, all in
linear time. Doing this for every point takes O(n2) time,
which is also the runtime of all steps combined.

4.3 Enumeration of the Delaunay order
type

In general there are two possible approaches to enu-
merate a set of order types for a given point set size
n. For the global order types we saw that the possible
permutations of the λ-matrix were generated, before
checking if this resulted in realisable point sets. For lo-
cal order types this is not as feasible, as the encodings
discussed in the previous sections are less suitable for
direct enumeration. Instead we will present a method
that uses point sets as a starting point and then finds an
encoding of the local order type based on each point set.
Theoretically this method works for any value of n, but
we are limited by the size of the order type database,
which only contains order type realisations for n≤ 11.

For the Delaunay-based order types, it makes sense to
generate all possible Delaunay triangulations. This is
possible with the use of the order type database, trian-
gulation enumeration and Delaunay realisability algo-
rithms. The following steps must be followed to enu-
merate all Delaunay order types for n points for a given
value of n. Let h be the number of points in the triangu-
lation that lie on the convex hull.

1. Use the order type database to get a point set for
every order type with n points. For each of these
point sets, enumerate all possible triangulations.

18

2. When triangulations are equivalent through iso-
morphism, discard all except one of them. For
configurations with h= 3, it is necessary to also
check if the outer face matches, as described in
Section 4.1.

3. Check the Delaunay realisability of the remain-
ing triangulations and discard those that are not
realisable as a Delaunay triangulation.

Taking the triangles of the remaining triangulation as
the triples of their Delaunay order type results in a
different Delaunay order type for every triangulation
and the set includes all possible Delaunay order types.
The inclusion of all Delaunay order types is proven by
the fact that the ways to triangulate a point set fol-
low from its global order type and we enumerated all
triangulations for each order type. While these three
steps are sufficient to enumerate the order types, note
that they do not yield realising point sets. The result-
ing configurations are not yet accurate realisations of
their associated Delaunay order types. To accomplish
this, their points must be repositioned such that the
triangulation becomes a valid Delaunay triangulation.

For the first step, we need to enumerate all possible
triangulations of a given point configuration. Let k be
the number of possible triangulations of a configura-
tion, then all these triangulations can be found in O(nk)
time using a reverse search algorithm [9]. A more ef-
ficient version of this algorithm was later found by us-
ing a search tree, to solve the problem in O(k log log n)
time [11].

For step two we must efficiently check isomorphism of
two triangulations. This can be done using the algo-
rithm described earlier. Note that it is only necessary to
check for isomorphism of triangulations that have the
same h, as the number of edges and triangles fully de-
pends on this number. This allows us to apply the entire
algorithm in batches by first splitting up the order type
database into collections of point sets with the same h
and running the algorithm separately on each batch.

Step three requires us to check the Delaunay realisabil-
ity of a triangulation graph. Determining realisability
can be done by solving a linear system in polynomial
time [19]. Actually finding the solution requires extra
steps. For certain classes of triangulations this still takes
polynomial time [22]. A Delaunay realisation must sat-
isfy the following five constraints.

(C1) For each inner face, the sum of the three angle
variables associated with it equals 180 degrees.

(C2) For each inner vertex, the sum of all angle vari-
ables associated with it equals 360 degrees.

Figure 4.3: A result of constraints (C1)–(C5) that is not
a valid Delaunay triangulation.

(C3) For each outer vertex, the sum of all angle vari-
ables associated with it is less than or equal to
180 degrees.

(C4) For each inner edge, the sum of both its facing
angle variables is less than or equal to 180 degrees.
A facing angle of an edge is the angle between
the other two edges incident to the same face.

(C5) Each angle variable is positive.

Using linear programming to find valid angle variables is
not sufficient yet to find a proper Delaunay realisation
because the triangles might not be able to be glued
together correctly as seen in Figure 4.3. But if a solution
is found, a realisation is guaranteed to exist.

A sixth constraint (C6) exists, which is defined as fol-
lows. Let v be an inner vertex of the triangulation and
w1, w2 . . . , wk its neighbours in counterclockwise order.
The counterclockwise angles φ1,φ2, . . .φk around v are
defined as

(v, w1, w2), (v, w2, w3), . . . , (v, wk, w1)

and the clockwise angles θ1,θ2, . . . ,θk around v as

(v, w2, w1), (v, w3, w2), . . . , (v, w1, wk).

Now if we define for a given vertex v

F(v) =
sin(φ1) sin(φ2) · · · sin(φk)
sin(θ1) sin(θ2) · · · sin(θk)

then as defined by [19] the sixth constraint is

(C6) For each inner vertex v, F(v) = 1.

Solving system (C1)–(C6) is sufficient to create a Delau-
nay realisation of a triangulation. However no efficient
algorithm is known to solve this system. An alternative
algorithm is presented in [22], which reuses the system
(C1)–(C5). Note again that this system is already suffi-
cient for determining whether a Delaunay realisation
exists, without yielding a valid realisation.

19

4.4 Enumeration of the extended
Delaunay order type

For the enumeration of extended Delaunay order types
we might be able to use a similar method. This method
depends on Conjecture 4.1. In this case the second step
must be extended so it also compares the radial order-
ings of adjacent vertices and mirrored adjacent vertices.
This difference arises from the fact that the extended
Delaunay order type not only depends on the topol-
ogy of the triangulation but also on the orientation of
points that are connected to the same point, without
taking part in the same triangle. Because the order type
database is used as a starting point, we do have the
guarantee that all possible orientations of such triples
are included.

The first and third steps are identical to the ones de-
scribed in the previous section. The second step uses the
comparison algorithm described in Section 4.2. For the
extended order type we cannot use the algorithm de-
scribed in [22] to create a point set representation. This
algorithm does not respect the global order type and
thus the extended triples do not necessarily have the
same orientation. This makes the algorithm insufficient.

It is also possible that the result of step three might
contain some false positives. When we check Delaunay
realisability of a triangulation it does not mean the re-
alisation has the same order type. This could mean that
some of the enumerated order types are actually not
realisable. The algorithm only works if it can be proven
that whenever a triangulation is Delaunay realisable,
there also exists a realisation that maintains the radial
orderings of the triangulations. So far we have found no
proof in favour or against this statement. If this is not
the case, instead of checking for Delaunay realisability,
the step must be replaced and specifically test if the tri-
angulation can be realised as a Delaunay triangulation
without changing the orientation of triples that would
be selected by the extended Delaunay order type. Such
an algorithm is thus far unknown.

4.5 Extending the Delaunay order type

The extended Delaunay order type is an extension of the
Delaunay order type by containing at least the triples
of the Delaunay order type plus additional triples. This
means that multiple extended Delaunay order types
belong to the same Delaunay order type.

One step towards creating point set realisations for ex-
tended Delaunay order types would be to take a De-
launay triangulation as the starting point and move a
vertex to create all possible orientations of the extended
triples through that vertex.

v

e1

e2

c1

c2

Figure 4.4: Partial construction to determine the safe
area of v. For edges e1 and e2, respectively circles c1
and c2 denote areas that v must stay outside or inside
of.

Consider a point configuration. It has a Delaunay order
type and an extended Delaunay order type. It is possible
to move a single point around and keep the Delaunay
order type the same while changing the extended De-
launay order type, as long as this alteration does not
change the Delaunay triangulation by making any edge
invalid.

The vertex v has an area around it where it can move
freely without altering the Delaunay triangulation. This
area can be constructed using a set of circles through
nearby points. Edge flips must be prevented for every
triangle v is a part of. These flips can happen in two
ways, resulting in two rules for constructing the safe
area.

1. For each edge (v, w) incident to v, if the two faces
it is associated with together form a convex shape,
a circle must be drawn through the points on the
corners of this quadrangle, excluding v. Vertex v
needs to stay inside this circle to prevent the edge
from flipping.

2. For each edge (w1, w2) of which v is a facing angle,
if the two faces it is associated with together form
a convex shape, draw the triangle through w1, w2
and the other facing angle of the edge. Vertex v
must stay outside this circle to prevent the edge
from flipping.

Refer to Figure 4.4 for an example of both rules. Fig-
ure 4.5 shows the end result of applying both rules.

In Figure 4.5 we can already see that v is not allowed
to create all possible orientations for all of its extended
triples. There are two triples that will never change their

20

vw1

w2

w3

w4

Figure 4.5: Vertex v in a Delaunay triangulation and
its safe area.

orientation. Triple w1vw2 will always be counterclock-
wise. It might still be possible to change its orientation
by moving other vertices. Triple w3vw4 is guaranteed
to always be counterclockwise, because it is impossible
to change the orientation of w3w2w4 without changing
the triangulation and w3vw4 must always match that
orientation.

This method of finding the area in which a point can
move freely, could be a part of an alternative enumera-
tion algorithm, may the one described in the previous
section be proven to be insufficient.

5 DISCUSSION

We defined the local order type and found a suitable
encoding in the form of a modified version of the Λ func-
tion. Several triple selection methods and their proper-
ties were presented. Of these the Delaunay-based varia-
tions showed favourable characteristics. We discussed
the possibilities to encode, compare and enumerate
these order type variations.

We presented a collection of properties of six different
triple selection methods, which served as a first step
towards selecting a suitable method. Keep in mind that
while some variations may exhibit properties that seem
favourable, the final choice will always depend on the
application. For the Delaunay order type, we success-
fully found algorithms for comparing and enumerating
the different ones for a given number of points. Past
research on global order types proved to be useful as
we were able to use the original order type database in
the enumeration process of Delaunay order types.

We presented a possible encoding and enumeration
algorithm for the extended Delaunay order types, but
there are still two open problems that must be solved
before we can conclude if these algorithms are valid.

This includes Conjecture 4.1 and the question whether
we can find a Delaunay realisation of a triangulation
that leaves the extended Delaunay order type of the
underlying point configuration unchanged.

So far we have not looked at how the local order types
hold up in different applications. We have shown through
small examples that point sets with the same global or-
der type can have a different local order type and vice
versa, but we have not performed any research into the
human perception of point sets and how well local order
types represent the differences humans spot between
point sets.

Since the algorithms for the extended Delaunay order
type are incomplete, further research in this area is
necessary. Conjecture 4.1 must be proven or shown
to be false and based on this the presented algorithm
must be finished or discarded. In addition to that all
presented algorithms are as of yet unimplemented. The
steps we took for Delaunay-based order types can also
be repeated for the remaining triple selection methods,
possibly resulting in algorithms for these cases.

We presented the theory around local order types, but
its applications must still be explored and compared to
human perception. This can also give a better insight
into the possible applications of each individual triple
selection method.

REFERENCES

[1] Oswin Aichholzer, Franz Aurenhammer, and
Hannes Krasser. “Enumerating order types for
small point sets with applications”. In: Order
19.3 (2002), pp. 265–281.

[2] Oswin Aichholzer, Franz Aurenhammer, and
Hannes Krasser. “On the crossing number of
complete graphs”. In: Proceedings of the eigh-
teenth annual symposium on Computational
geometry. ACM. 2002, pp. 19–24.

[3] Oswin Aichholzer, Jean Cardinal, Vincent Kusters,
Stefan Langerman, and Pavel Valtr. “Reconstruct-
ing Point Set Order Typesfrom Radial Orderings”.
In: International Symposium on Algorithms and
Computation. Springer. 2014, pp. 15–26.

[4] Oswin Aichholzer, Matias Korman, Alexander
Pilz, and Birgit Vogtenhuber. “Geodesic order
types”. In: Algorithmica 70.1 (2014), pp. 112–
128.

[5] Oswin Aichholzer and Hannes Krasser. “Abstract
order type extension and new results on the rec-
tilinear crossing number”. In: Computational Ge-
ometry 36.1 (2007), pp. 2–15.

[6] Oswin Aichholzer and Hannes Krasser. “The
point set order type data base: A collection of

21

applications and results.” In: CCCG. Vol. 1. 2001,
pp. 17–20.

[7] Oswin Aichholzer, Vincent Kusters, Wolfgang
Mulzer, Alexander Pilz, and Manuel Wettstein.
“An optimal algorithm for reconstructing point
set order types from radial orderings”. In: Inter-
national Symposium on Algorithms and Compu-
tation. Springer. 2015, pp. 505–516.

[8] Oswin Aichholzer, Ruy Fabila Monroy, Ferran
Hurtado, Pablo Pérez-Lantero, Andres J Ruiz-
Vargas, Jorge Urrutia, and Birgit Vogtenhuber.
“Order types and cross-sections of line arrange-
ments in R3.” In: CCCG. 2014.

[9] David Avis and Komei Fukuda. “Reverse search
for enumeration”. In: Discrete Applied Mathemat-
ics 65.1-3 (1996), pp. 21–46.

[10] Mark de Berg, Otfried Cheong, Marc van Kreveld,
and Mark Overmars. Computational Geometry.
Springer, 2008.

[11] Sergei Bespamyatnikh. “An efficient algorithm
for enumeration of triangulations”. In: Computa-
tional Geometry 23.3 (2002), pp. 271–279.

[12] A Dreiding and Karl Wirth. “The multiplex. A
classification of finite ordered point sets in ori-
ented d-dimensional space, Math”. In: Chemistry
8 (1980), pp. 341–352.

[13] Paul Erdös and Richard K Guy. “Crossing num-
ber problems”. In: The American Mathematical
Monthly 80.1 (1973), pp. 52–58.

[14] Stefan Felsner. “On the number of arrangements
of pseudolines”. In: Proceedings of the twelfth
annual Symposium on Computational Geometry.
ACM. 1996, pp. 30–37.

[15] Lukas Finschi and Komei Fukuda. “Combina-
torial generation of small point configurations
and hyperplane arrangements”. In: Discrete and
Computational Geometry–The Goodman-Pollack
Festschrift 25 (2003), pp. 425–440.

[16] Jacob E Goodman. “Pseudoline arrangements”.
In: Handbook of Discrete and Computational Ge-
ometry. CRC Press, Inc. 1997, pp. 83–109.

[17] Jacob E Goodman and Richard Pollack. “Multi-
dimensional sorting”. In: SIAM Journal on Com-
puting 12.3 (1983), pp. 484–507.

[18] Jacob E Goodman, Richard Pollack, and Bernd
Sturmfels. “Coordinate representation of order
types requires exponential storage”. In: Proceed-
ings of the twenty-first annual ACM Symposium
on Theory of Computing. ACM. 1989, pp. 405–
410.

[19] Tetsuya Hiroshima, Yuichiro Miyamoto, and Ko-
kichi Sugihara. “Another proof of polynomial-
time recognizability of Delaunay graphs”. In:
IEICE Transactions on Fundamentals of Electron-
ics, Communications and Computer Sciences 83.4
(2000), pp. 627–638.

[20] Rutger Kraaijer, Marc van Kreveld, Wouter Meule-
mans, and André van Renssen. “Geometry and

generation of a new graph planarity game”. In:
Proceedings of the IEEE Conference on Computa-
tional Intelligence and Games. 2018.

[21] Der-Tsai Lee and Bruce J Schachter. “Two al-
gorithms for constructing a Delaunay triangu-
lation”. In: International Journal of Computer &
Information Sciences 9.3 (1980), pp. 219–242.

[22] Kevin M Lillis and Sriram V Pemmaraju. “On
the efficiency of a local iterative algorithm to
compute Delaunay realizations”. In: Interna-
tional Workshop on Experimental and Efficient
Algorithms. Springer. 2008, pp. 69–86.

[23] L Novoa. “On n-ordered sets and order complete-
ness”. In: Pacific Journal of Mathematics 15.4
(1965), pp. 1337–1345.

[24] Jürgen Richter-Gebert and Günter M Ziegler.
“Oriented matroids”. In: Handbook of Discrete and
Computational Geometry. CRC Press, Inc., 1997,
pp. 111–132.

22

Appendices

A ALGORITHMS

Algorithm 1: GEOMETRICSORT2D
Input. (Pi = (x i , yi)), 1≤ i ≤ n.
Output. (λ(i, j)), 1≤ i ≤ n, 1≤ j ≤ n.
1. for i = 1 to n do
2. for j = 1 to n do
3. u j ← x j − x i; v j ← y j − yi .
4. if (u j , v j) = (0,0) then
5. λ(i, j)←ω
6. else
7. Call j good.
8. un+ j ←−u j;vn+ j ←−v j .
9. m j ← mn+ j ← v j/u j if u j 6= 0

10. end if
11. end for
12. Sort the indices { j| j is good}∪ {n+ j| j is good} into subsets (rays) in counter-

clockwise order, as follows:
a) first those for which u j > 0, using m j as key;
b) next those for which u j = 0 and v j > 0;
c) next those for which u j < 0, using m j as key;
d) finally those for which u j = 0 and v j = 0; Let the indices be represented as

J11, . . . , J1s1
, · · · , Jr1, . . . Jrsr

where Jk1, . . . Jksk
belong to the same ray.

(Note: if the point set is in general position, this results in sk = 1 and every
subset will contain only one point.)

13. for k = 1 to r do
14. nk ← |{m|1≤ m≤ sk, Jm ≤ n}|
15. end for
16. for all good j = 1, . . . , n do
17. (Note: k(j) is the number of the subset that holds j.)
18. if k(j + n)> k(j) then

19. λ(i, j)←
k(j+n)−1
∑

k=k(j)+1
nk

20. else

21. λ(i, j)←
r
∑

k=k(j)+1
nk +

k=k(j)−1
∑

k=1
nk

22. end if
23. end for
24. end for
25. return λ.

23

Algorithm 2: CANONICALORDERING2D
Input. (Pi = (x i , yi)), 1≤ i ≤ n and j ∈ {1, . . . , n} and Ph, a point on the convex hull

of {P1, . . . , Pn}.
Output. π(1), . . . ,π(n), the canonical ordering associated with Ph.
1. Perform step 2 to 12 of GEOMETRICSORT2D with i← h. This results in a sorted

list of all points around Ph. If a subset of rays contains multiple points, these
must be sorted by their distance to Ph. Let Ji , . . . , Jn be a flat list of indices.

2. Find the point Pi that should come first in the canonical ordering. This is the
neighbouring point of Pi on the convex hull that the sweep will meet first.

3. π(1)← h.
4. for j← 1 to n− 1 do
5. (Note: l(i) is the index of i in J .)
6. if l(i) + j ≤ n then
7. π(j + 1)← Jl(i)+ j
8. else
9. π(j + 1)← Jl(i)+ j−n

10. end if
11. end for
12. return π.

Algorithm 3: COMPARECONFIGURATIONS2D
Input. C = (Pi(x i , yi)), 1≤ i ≤ n and
C ′ = (P ′i (x

′
i , y ′i)), 1≤ i ≤ n′.

Output. {π ∈ Sn|C (π) ∼C ′}.
1. λC ← GEOMETRICSORT2D(C).
2. λC ′ ← GEOMETRICSORT2D(C ′).
3. Pick a point σ on the convex hull of C .
4. π← CANONICALORDERING2D(C ,σ).
5. for all points σ′ on the convex hull of C ′ do
6. π′← CANONICALORDERING2D(C ′,σ′).
7. π′′← π−1π′.
8. for i← 1 to n do
9. for j← 1 to n do

10. Compare λC (i, j) and λC ′(π′′(i),π′′(j))
11. end for
12. end for
13. if all entries matched, record π′′.
14. end for
15. return all recorded instances of π′′.

24

	Introduction
	Preliminaries on order types
	Definitions
	Geometric sorting
	Comparing randomly numbered configurations
	Enumeration of order types
	Geodesic order types
	Cross-sections of line arrangements
	Radial orderings
	Storage of order types and point set representations

	Local order type definitions
	Triple selection
	Basic properties of local order type variations
	Complexity of local order type variations
	Robustness of local order type variations
	Local order type encoding
	Comparing the local order type of point sets

	Delaunay-based order types
	The Delaunay order type and graph isomorphism
	Encoding and comparing the extended Delaunay order type
	Enumeration of the Delaunay order type
	Enumeration of the extended Delaunay order type
	Extending the Delaunay order type

	Discussion
	Appendices
	Algorithms

