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Abstract

Ensuring the privacy of users is a key component in collaborative com-
puter systems, where users can access private information of others. So-
cial networks are a prime example of such systems. Therefore, privacy
has to be ensured not only by the administrators but also by users in
collaboration. The content users choose to share may conflict with the
privacy preferences of their own or those of others, given the context of
the content. Thus, a decision to share or not to share can be seen as
a privacy decision. To manage privacy preferences better, it is impor-
tant to understand how they appear and disappear on social networks.
However, it is also important to understand how the privacy preferences
spread throughout the network. Given this understanding, one can reason
about the implications of the spreading mechanism has on mitigating or
promoting certain privacy preferences.

In this work, the diffusion of infectious privacy preferences (DIPP)
model is proposed to investigate how these privacy preferences spread
on social networks. An epidemic model is used to model the spread of
privacy preferences. Simulations of social network interactions are used to
investigate various circumstances, such as the rarity of a privacy preference
and opposition of a privacy preference, and their effect on the diffusion of
privacy preferences. Furthermore, we investigate the effect of using a trust
model to model trust between agents. The results show that the DIPP
provides a stable foundation to further research the spread of privacy
preferences in online social networks.
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1 Introduction

With the rise of social media and the prevalence of smartphones, humans are
more connected online than they have ever been before. In general, this means
people can easily communicate with each other no matter their location, physical
social circles and so on. People have been able to leverage social media to more
efficiently advertise businesses due to the ease of communication. Governments
can reach their citizens quicker and more directly than before. Furthermore,
many families spread out across the world can stay in touch with ease. This
is only a subset of the positive aspects of social media. For researchers, social
networks provide many opportunities to investigate human behaviour on a large
scale. A negative side, however, is the implications of online social networks
(OSNs) on the privacy of the users.

The content shared by users can reveal a lot about them, either explicitly or
implicitly. In the past decade, governments have used social media to influence
their citizens. Using user data from OSNs, citizens can be targeted for propa-
ganda advertisements. Facebook is an example of a social network that has been
found to sell data without informed consent from users1. This is an example of
a privacy breach by way of the administrator of the social network. In this case,
the administrator was willing to participate in the breach, but hackers can also
breach the administrators’ security to get user data from online platforms.

Different measures have since been put into place to secure user information.
One example is the EU’s general data protection regulation2, which focuses on
anonymization of the user data to mitigate the impact of data breaches on the
privacy of users as well as requiring informed consent to utilize user data.

People can also have their online privacy violated by fellow users. When
people share content that reveals private information about you without your
consent, your privacy is violated. With fellow users, the intent is not always to
harm. It may, however, be difficult for users to know what other users prefer
when it comes to their privacy. Social norms for privacy guide people concerning
this problem, as with much of our social interactions. Social norms can be seen
as rules that coordinate the behaviour of members of a society, as defined by
Young in [34]. Deviating from the social norms, generally, comes with negative
consequences. Yet, these norms may not have the desired precision. A user can,
for example, choose to only share information about others that he or she is
comfortable sharing about themselves. It is evident that one’s level of openness
is not the same for all and violations are likely to occur. Social norms can clash
with personal privacy preferences. The following section will show how more
fine-grained norms can come about. Privacy preferences can be derived from the
privacy decisions users make. The context of content shared by users describes
their privacy preference, as will be elaborated on in the latter sections.

In this work, the main focus is on how the privacy preferences move across
networks. An attempt is made to understand under which circumstances privacy
preferences spread in OSNs.

� How does a privacy preference of posting content that fits in a given con-
text become prevalent?

1https://www.bbc.com/news/technology-45976300
2https://ec.europa.eu/info/law/law-topic/data-protection
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� Who are the most influential figures in the spreading process of the norms?

� What is the influence of trust modelling in the spread of privacy prefer-
ences?

To investigate these questions, knowledge is borrowed from the field of infor-
mation diffusion. This is a field that tries to understand how information spread
through social networks. The field has produced useful applications for the viral
marketing and social network analysis [11, 19]. Viral marketing is a marketing
strategy advertising on a social network in hopes that the advertisement goes
viral positively. This project will contribute to a new field of research alongside
the fields of privacy in multi-agent systems and information diffusion in OSNs.
These contributions will consist, but are not limited to, of the following:

� Investigation of whether epidemic models are accurate models to model
the spread of privacy preferences

� Analysis of the influence of different circumstances in a social network on
this diffusion process

� A simulation of the diffusion of privacy decisions

� A method for users to protect themselves against opposed privacy prefer-
ences, namely using trust modelling.

Research from the field of information diffusion modelling provides a founda-
tion upon which the proposed field of privacy preference diffusion modelling can
be built. The subsequent sections introduce related work on privacy manage-
ment and privacy norms. Secondly, sources from information diffusion research
are laid out to provide the foundation referenced above. Thirdly, a method is
sketched to explain the different variables of the simulations and their moti-
vation. Following the method, the results of the simulations are laid with a
reference to the goals stated here and the results are discussed. Finally, future
work is proposed to continue the application of epidemic models to the domain
of privacy preference diffusion.

2 Related work

In this section, various research projects are explored that have inspired this
work. This exploration starts with some insights into privacy in online social
networks. This is followed by overviews of important work in the field of infor-
mation diffusion, epidemic modelling and trust in multi-agent systems. Finally,
it ends with a look at useful data sets for the modelling of privacy preferences.

2.1 Privacy in online social networks

Privacy in OSNs is an active research field. The problem of privacy preservation
can be viewed from various scientific angles due to its interdisciplinary prop-
erties. Sociologists, computer scientists and psychologist can all have a say on
the matter. This section will lay out some important work done on the topic of
privacy in OSNs.
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2.1.1 How do users behave with regard to privacy in OSNs?

In work by Dupree et al. [7], the researchers investigate privacy personas in
online social networks. The authors try to find an alternative to Westin’s cate-
gories for users concerning their behaviour towards privacy and security. Using
a survey, data are gathered on user behaviour towards privacy and security. A
cluster analysis shows that five categories cover the data; Fundamentalists, Lazy
Experts, Technicians, Amateurs and the Marginally Concerned. The authors
then perform a secondary survey with a larger group to investigate the robust-
ness of the five categories, the results of which show that the clusters indeed
hold. Their research does not only cover interpersonal privacy issues as the work
in this project.

A source of influence in privacy decision-making is an agent’s trust towards
their neighbours. A qualitative study by Lampinen et al. [16] has found that
privacy management in content sharing decisions is mostly based on trust. Users
expect each other to understand the way they want to represent themselves in
OSNs. To ensure this, users are said to utilize mental/behavioural strategies as
well as preventive and corrective strategies. The first dimension includes reci-
procity concerning trusting other users as well as self-censoring and the division
of the social network into different spaces for different types of content. Pre-
ventive and corrective strategies include the negotiation with other agents for
the removal of tags or only allowing certain people to view your shared content.
After the analysis of data, the researchers find there is another dimension to the
strategies, namely individual and collaborative strategies. Although collabora-
tive strategies are found to be more successful than individual ones, the subjects
do not apply them enough.

2.1.2 Privacy preservation and norms

Researchers have investigated the problem of privacy preservation in OSNs using
approaches based on multi-agent systems. As stated, in this work, the focus lies
on privacy norm breaches caused by fellow users on a network. Norms are
known to guide human behaviour and preserving them is often a collaborative
effort. Norms in the context of privacy are characterized by privacy decisions,
decisions to share or not share certain content in a given context. There is
a difference between personal norms as well as social norms. In online social
networks, it is key to understand both social norms and the personal norms
of people you interact with to preserve harmony. It is, however, evident that
with vast connectivity of online social networks personal norms cannot always
be common knowledge. For instance, let’s assume that Jerry and Sandy are
friends on Facebook. Jerry never shares his political preferences online, but
many others do on his network thus it is not frowned upon. When Sandy posts
a photo of Jerry and her at a political rally, she infringes on Jerry’s privacy
without knowing because the social norm and Jerry’s norm do not match.

The example given shows a direct violation of a user’s privacy norm. Some
researchers have pointed out that less direct violations occur after inference. For
example, inferring Jerry’s location from a geo-tagged photo in which Jerry is
tagged, without Jerry wanting the location to be public. To detect both forms
of violation PriGuard has been suggested in work by Kokciyan and Yolum [15],
a framework that uses commitments between user agents and the social network
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administrator to detect privacy violations on Facebook. Agents collaborate by
committing to certain norms. Commitments are captured using description
logic.

To prevent violations from happening privacy auctioning for OSNs (PANO),
by Ulusoy and Yolum [28], has been proposed. Agents, that represent users
involved in a piece of content, bid on whether the content should be shared given
their privacy preferences, using PANO. To achieve this, the authors employ the
Clarke-Tax mechanism. This scheme is truth-dominant, meaning agents have
no incentive to lie about the preferences for the sake of better utility return.
User preferences are captured for different types of content as well as different
audiences. Bidding is limited to group bids, minimum and maximum bids to
mitigate abuse.

In work by Ulusoy and Yolum [29], researchers show that given the ability
of agents to collaborate, personal privacy norms can become social norms over
time. This occurs when a set of agents have similar notions of privacy. In this
work, agents in the simulation start with some personal norms (m-norms) as well
as common-knowledge system-wide norms (s-norms). Agents make decisions
whether to post content that has co-owners given a certain context. A co-owner
is someone whose private information may be revealed if the content were to be
shared. The context is key as it provides users with the ability to be precise
about the preferences. A user may not be opposed to appearing drunk in a photo
at a friend’s party, but opposed to appearing drunk in a photo at an office party.
All s-norms and m-norms can be created, updated and removed from their norm
base. When privacy decisions are made during the simulation, clustering of this
content is used to determine what type of content has become normative. The
results show that over time given this framework the ratio of s-norms and m-
norms move in the favour of s-norms. This is, in turn, presents the novelty of
the work. Agents do not need to agree on every piece of content before sharing
rather they evaluate the s-norms to find the correct decision. There is less direct
collaboration and thus less overhead in the privacy management system given
this framework.

Ulusoy’s and Yolum’s work in [29] is the main inspiration for this research
project as it shows that privacy can be managed more centrally given the emer-
gence of social norms, but it is unclear what underlies this emergence. It is
useful to understand what the circumstances are in which a privacy norm can
emerge as a social norm. Understanding this enables an administrator to take
measures to mitigate privacy norms that they deem undesirable. For example,
in a social network for a high school, posting content in which another student’s
grade can be inferred, can be deemed undesirable. Given an understanding of
the spread of this norm, teachers can prevent privacy violations. The alterna-
tive can be to restrict, in many ways, the type of content that can be shared by
students, but this results in a social network with less rich content.

In this work, we assume that the spread of privacy preferences, just like pieces
of information, can be modelled using information diffusion models. These
models assume that agents in a network can be influenced by their neighbours
to disseminate information or in this case to take certain privacy preferences.
Instead of being moved to share by the semantics of a piece of information, it
can be argued that in this case users are moved by trend following and the need
to stay relevant to take certain privacy preferences. How this manifests itself,
is one of the topics of the project. As specified by the last two project goals,
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a simulation method is proposed that should provide insight into how different
circumstances in a social network influence the diffusion of privacy preferences.

2.2 Information Diffusion

The general goal of information diffusion on OSNs research is to understand the
inner workings of how information spreads in these networks [11]. Information
spread on OSNs has proven influential to everyday life. For example, numerous
protests and revolutions that occurred over the past decade would not have had
the same impact without social media. The spread of information depends on
human behaviour and seems to entice human behaviour. Thus understanding
the spread of information on OSNs can prove useful to fight negative information
or elevate positive messages, depending on the context.

2.2.1 Background

The diffusion of information depends on social influence. Social influence can
be experienced or put forth by members of a society in the form of behaviour,
leading to imitation by other members. In OSNs, imitation can be explicit, for
example, in the form of sharing a post on Facebook. Diffusion can occur in the
form of herd behaviour when a group of people spread information given their
own beliefs as well as under influence from others. Diffusion also occurs as an
information cascade. In this scenario, users sequentially make similar decisions
to others according to their observations [11].

In modelling information diffusion on OSNs, users are often seen as nodes
and interactions between them are represented by edges. These edges may be
weighted depending on the interaction and task at hand. Concerning mod-
els, there is a distinction between two approaches; explanatory and predictive
models as surveyed in work by Li et al. [19]. Explanatory models try to shed
light on the circumstances under which information spreads in OSNs. They can
quantify the influence of individuals nodes as well as groups of nodes. These
models also allow replays of the diffusion process for analysis. On the other
hand, predictive models aim to predict the impact of a piece of information
and where it will spread in a network. Consider the Arab spring revolution of
2011. For many governments involved, it would’ve been useful to be able to
predict how the encouragements to protest would spread across users from their
country on OSNs. This information could’ve prepared them better for what
was coming. However, after the revolution, it is still useful to learn who were
the most influential users that spread information about the revolution online.
This is where explanatory models are useful. They can help identify users that
maximize the spread of information, in other words, the most influential nodes
on the network. Although this distinction exists, it is not the case that the
two types of models are not related. To understand this, a few applications are
discussed in the next sections. These sections also showcase the inspirations
that are the foundation for the method put forth in the latter sections.

2.2.2 Influence models

Influence maximization research seeks to find techniques that can identify k
nodes in a network that maximize the spread of a piece of information. Viral
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marketing is one field that benefits from influence maximization techniques.
Marketing agencies can choose a set of influencers on social media to advertise
their product as to maximize their reach to customers.

The influence maximization is generally formulated as a combinatorial opti-
mization problem, since the inception of the first approach in a study by Kempe
et al. as reviewed in [27]. The base of all approaches in the independent cascade
model (IC). Given a weighted graph G with edges (u, v) ∈ E and nodes v ∈ V ,
the weights represent the probability that one node can affect a directly neigh-
bouring node. Although influence maximization is an explanatory method, the
IC model is predictive. The predictive abilities are used to search for the seed
set S for which the IC model predicts maximum spread.

S ∈ V, ‖V ‖ = k

An exhaustive algorithm would calculate the spread for each subset of nodes.
In Kempe et al. [14], the Greedy algorithm is proposed that starts with an
empty set and nodes are added incrementally if they maximize the increase
of the expected influence of the seed set. Accuracy of the estimation of the
expected influence of a candidate seed set is the computational bottleneck of
the Greedy approach and its successors. In a paper by Tang et al. [27], Two-
phase Influence Maximization (TIM) is presented as a successor of the Greedy
algorithm. TIM also uses sampling to estimate the expected influence of a
candidate seed set. However, TIM’s search is more targeted with two phases:
parameter estimation and node selection. The authors show that TIM achieves
an (1−1/e− ε) accurate solution with a confidence 1−n−`. Furthermore, TIM
runs in

O
(
(k + `)(m+ n) log n/ε2

)
compared to

O (kmnr)

,
where n = ‖V ‖,m = ‖E‖, k = ‖S‖ and r is the number of samples taken

to estimate the increase of expected influence and ε is a constant related to the
graph G and r. With this result, the authors show that influence maximization
can be practical while still providing theoretical guarantees.

Other researchers have proposed the use of evolutionary algorithms to solve
the influence maximization problem. Using a multi-objective evolutionary al-
gorithm, Bucur et al. [5] have been able to find the seed set that not only
maximizes the influence but also is the smallest. The results are promising as
for intermediate values k the algorithm outperforms state-of-art heuristic algo-
rithms, but yields mixed results for more extreme values of k.

The IC model, within the influence maximization domain, shows exactly the
usefulness of a predictive model for information diffusion. Another prominent
predictive model is the game theory model which is discussed next. As stated
earlier, one of the things this project will try to investigate is the most influential
nodes in the diffusion process of privacy norms. This related work will help with
the project.
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2.2.3 Game Theory model

In game theory, rational players play a game to maximize utility. Game theory
is often used to model human behaviour, as is the case in information diffusion.
To predict information diffusion processes, nodes in a social network are seen
as rational agents that try to maximize their utility. There is an evolutionary
component as agents can adjust their strategy over time. The prediction of the
diffusion process is finished when the strategies of the agents reach an equilib-
rium. The environment is self-referential, one agent’s choice to propagate or
to not propagate information influences the other agents and thus the environ-
ment. The reader may recall that this property is essential discussed in the
basics section.

Using the game theory, researchers have investigated the diffusion process
given judgement schemes for users to imitate their neighbours’ strategies, as
documented in a paper by Li et al. [18]. The authors hypothesize that while
imitating a neighbour’s strategy to spread or not to spread information, a user
does not trust everyone equally. Given this, they implement an evolutionary
game that takes into account the strength of ties between different neighbours.
Furthermore, they test the parameters that allow for punishing of agents deemed
to be influential in the diffusion process. The researchers let the software run on
different real-world data sets and find that giving the ability to judge neighbours
to the agents can lead to diffusion processes that are easier to control. For ex-
ample, they find that when an agent imitates exclusively weaker-tied neighbours
or strongly-tied neighbours the spread of information can be limited sooner. On
the other hand, when agents randomly select a neighbour to imitate the spread
of information seems to be promoted. It is also found that punishing a node
with higher degrees is the most effective method to limit the diffusion process.

The game theory model has also been used to predict future links between
users in online microblogs, in this case, Twitter, as described in Liu et al. [20].
The story is one of rumours spreading in a network. The researchers assume
network homophily, namely that nodes with the same attributes are more likely
to become connected. They also assume that the closer two nodes are the
more likely they are to become connected. A distance is defined that takes the
structure of the network into account as well as the interactions between users,
the social distance measure. The framework incorporates a coalition game, a
game in which agents can collaborate to achieve higher payoffs against a possible
competing coalition of agents. The game is played to maximize social-welfare
and the result is a prediction of new links. The results of their experiments show
the superior performance of the social distance measure compared to commonly
used measures that only take the structure of the network into account. This
result suggests that interactions between users may be important features to
consider in prediction future network structure.

Competition between pieces of information is another phenomenon that the
game theory model can make predictions on. In a study by Sun et al. [26], the
authors investigate competitive information diffusion using a framework based
on the coordination game. The game story is one of two companies that want
to advertise for two competing products via viral marketing. The authors vary
the attitude of the agents towards the two products on the network as well as
the different network structures. To capture the attitude of agents towards the
products, the researchers introduce measures for brand loyalty and self-perceived

11



knowledge. These measures are taken as part of the utility function for each
agent along with a third component, namely the popularity of the agent.

Giving each of these three component weights enables the authors to cre-
ate personas: experts, conformists and sworn followers. The agents choose a
neighbour’s strategy to imitate using a probability based on the difference be-
tween two agents utilities in previous rounds. The authors compared diffusion
processes in small-world and scale-free networks. Scale-free networks are charac-
terized by a power law distribution of node degrees, while small-world networks
are characterized by local node clusters with short path lengths between them
[31]. From their results, they conclude that scale-free is the most efficient type
of network for information diffusion. Equilibria are reached earlier in scale-free
networks compared to small-world networks. They also find having a different
ratio of different personalities leads to different diffusion processes. The more
agents with higher self-perceived knowledge, the easier it is for information to
diffuse and defeat competing information. That is to say, the more people on an
OSN that perceive themselves to be knowledgeable about product A, the easier
it is for information about product A to spread on said OSN.

The strength of these game theory models lies in their ability to incorpo-
rate behavioural aspects of users in the diffusion process predictions. In this
work, however, analysis of the diffusion process is the focal point. Simulations
are being run and conclusions are being drawn from the analysis of these sim-
ulations. Since there is no real prior knowledge of privacy preference diffusion
from research, there is no real basis for a predictive model. In this project,
we speculate about and explore diffusion processes. Furthermore, game theory
models assume rationality in agents. There is no basis to say that rationality is
also at the basis of our privacy preferences as these preferences are dynamic and
change. These preferences may change as the network, time, relationships or
various other factors change. It is also not certain that equilibria will be present
i.e. that all agents will agree on strategies for privacy preference diffusion. To
this end, the project focuses on the epidemic models from the information diffu-
sion domain. These are explanatory models and are discussed in the subsequent
sections.

2.3 Epidemic models

As suggested by the name, epidemic models were originally intended to model
the spread of epidemics of infectious diseases. Their application in information
diffusion follows from the analogy that on social networks users can be infected
by the information spread by other users, leading to further spread of this
information. They are seen as explanatory models as surveyed by Li et al. [19],
but we will also see that prediction using epidemic models is not impossible.

In the basic epidemic model for networks, people can be (S)usceptible to
infection or (I)nfected. An infection rate of λ represents the probability that a
random susceptible user can become infected. At each time step t, i(t) and s(t)
represent the infected and susceptible proportions of the population, at each
time step i(t) + s(t) = 1 holds. N is the number of members of the population
and this number does not change during the diffusion process. The diffusion
process is then governed by the different equations of i(t) and s(t) with respect
to t.
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di

dt
= λi(1− i)

i(0) = i0

The basic model is useful but very limited. It assumes that there is no tran-
sition out of the (I)nfected state, which is not realistic. To incorporate this,
researchers introduced the SIS model. The SIS model introduces the possibility
of transitioning from the (I)nfected state back to the (S)usceptible state. This
model adds a cure rate parameter µ that represents the probability that a ran-
dom infected user will be cured at any t. The change in dynamics are as follows;
we now have to subtract, from the growth of the infected proportion, the cured
proportion at each time step.

di

dt
= λi(1− i)− µi

The SIS model does not cover the concept of immunity, thus users can recover
from disease only to be susceptible to the same disease again. This may be true
for some diseases like the flu, but it certainly does not hold for all diseases.
To incorporate the concept of immunity, the SIR model is introduced. The
(R)emoved state represent immunity, there is no transition from this state to S
or I. Now we have that a proportion of the population can be immune it follows
that i(t) + s(t) + r(t) = 1, r(t) represent the proportion of the population that
is immune. Variable µ is now the rate at which infected people can become
immune. The dynamics now also have to cover the increase of the decrease of
susceptible people as s(t) = 1 − i(t) no longer holds. This gives the following
equations.

ds

dt
= −λsi

di

dt
= λi(1− i)− µi

dr

dt
= µi

The R state can also be interpreted as a state in which an agent has recovered
but is not necessarily immune to the infectious disease. This means that there
is a probability α that an agent will move from the (R)ecovered state to the
(S)usceptible state. The differential equations now exhibit the growth of s(t)
given α.

ds

dt
= −λsi+ αr

di

dt
= λi(1− i)− µi

dr

dt
= µi− αr

These four models have been an inspiration for many variations of the epidemic
models for information diffusion. Also, several properties of the epidemic models
are discussed with examples and their relation to this project.
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One example of the power of the SIR model is described in a study by Woo
et al. [32]. In this work, the authors try to predict the spread of different
topics on online for a given data from the earlier stages of the diffusion process.
The researchers make a distinction between chatter and spiky topics. Chatter
topics are topics that are part of the everyday exchange whereas spiky topics
are topics that come about due to some sudden interest in them. The data sets
used are crawled from the Yahoo! Finance Walmart message board and US
Politics Online Breaking News in Politics political forum. The authors identify
topics using a latent Dirichlet allocation model and clustering methods. To
extract only the spiky topics, the researchers analyse the time-series patterns
of their longitudinal data sets. The SIR model parameters are then estimated
using a genetic algorithm. The SIR model is evaluated using the mean squared
error (MSE) and R-square metrics. They find that for major topics the smallest
R-squared value achieved is 0.43. This means that in the worst case, the SIR
model explains 43% in the time series of the test data.

This is an example of a setting where the epidemic model can apply to pre-
diction even with the basic SIR model. The next model discussed also performs
predictions and, more importantly, shows the flexibility of epidemic models.

2.3.1 Flexibility

One such model, that illustrates the flexibility of epidemic models, is the SEIR
model. The (E)exposed state captures agents that are exposed to the infor-
mation diffusion in a diffusion process. From this state, they can go on to the
(I)nfected state, diffuse the information themselves or become immune and not
spread the information, (R)emoved. Researchers have used this model to inves-
tigate the effect of information value on the diffusion process, as documented
by Xu et al. [33]. They introduce the S-SEIR model. The information value
is captured by an audit function that decides on the value of information be-
fore exposure. The researchers also incorporate the ability for users to share
information on different social network leading to increase people exposed to
the information. They find that, in certain circumstances, that the higher the
value of the information, the more people are exposed to it. They also find that
the more people share on other platforms, the more susceptible users there are.
As the researchers also note, their definition of information value needs more
support from empirical research.

A variation on the SIR can be used to model the process of adaptation
and abandonment of a social media platform from a study by Cannarella et al.
[6]. Researchers introduce the notion of infectious recovery with the infectious
recovery model irSIR. This notion is used to describe the downfall of MySpace.
The researchers hypothesize that, in the case of social media platform adaptation
and abandonment, people recovering and leaving a platform can be seen as
influential behaviour on the people that still use the platform, the infected.
This concept is reflected in the equations that describe the different states.

ds

dt
= −λsi

di

dt
= λi(1− i)− µir
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dr

dt
= µir

It is important to note that the infected proportion of the population de-
creases with a factor that depends on the proportion of the population that has
become immune. This means that the higher the number of people that have
left the platform the quicker the number of users on the platform decreases,
thus leaving is now infectious.

To model abandonment, the authors use Google Trend data. They draw
the analogy that the fewer people search for a social media platform on the
Google search engine the less prominence this platform has. Their assumption
is justified by the data found on MySpace searches. The social media platform
died down between 2009 and 2011. They evaluate the irSIR against the original
SIR model. They find a decrease of 75% in the sum of squared error (SSE) when
going from the SIR to the irSIR model. The irSIR provides a better fit under
this metric. The researchers then try to predict the demise of Facebook and
find that the irSIR predicts Facebook will disappear between 2016 and 2020,
most likely in 2017. As of writing, it is 2021 and Facebook is still one of the
most popular social networks. Of course, this can be due to numerous factors.
For example, Facebook is no longer only a single social network but has also
acquired other successful social networks such as WhatsApp and Instagram.
Facebook has also heavily invested in the development of artificial intelligence
applications.

This study shows the malleability of epidemic models. In essence, the au-
thors have adopted an epidemic model to perform time-series fitting and fore-
casting. This ability to adapt and tweak is valuable when entering a completely
new field as is the case with this project.

2.3.2 Resilience of epidemics

Researchers have tried to understand the effect of interventions on the diffusion
process. In a paper by Lu et al. [21], the authors investigate what the effect
of a change in infection rate has on the diffusion process under the SIS model.
To do this, a control stage is applied during the diffusion process with a sec-
ond infection rate, λ1, λ2. The infection rate λ2 is applied during the control
stage before reverting to λ1. The setting, in general, is that of λ2 < λ1. The
network structure, infection rate settings, the start time of the intervention ct
and the duration of the control stage cd are varied. Generated Erdős–Rényi
networks and scale-free networks are used as well as three real-world networks.
An Erdős–Rényi network is a random network that has a binomial degree dis-
tribution.

From the results of various simulations, the authors show that even after
a control stage an epidemic can spread as much as before the control stage,
thus resilience is possible. They show that it is possible to derive the critical
value for the control duration cdmax to ensure the epidemic does not survive.
This critical control duration value is also found to be different for the various
network structures. This indicates to the authors that the network structure
determines cdmax, specifically the authors derive that cdmax is related to the
diameter of the network cdmax ∼ dα. Through analysis, they also define the
probability of resilience given ct and cd as follows.
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P =

{
0, ρ(ct+ cd) ≤ 1

N
1, ρ(ct+ cd) > 1

N

These are the keys findings for this project. As stated before, for system
administrators not all privacy norms are desirable. To mitigate such norms, an
administrator would likely perform an intervention. The administrator’s goal
is to derive the appropriate ct and cd to ensure that P = 0, according to the
formula above. To this end, the administrator needs to find cdmax, since any
cd ≥ cdmax ensures P = 0. This way, in theory, there is no chance for a second
epidemic.

2.3.3 Attention and Competition

Information on a social network comes in vast quantities and vastly different
types. Thus, researchers have argued that the accuracy of epidemic models in
explaining diffusion processes cannot always be guaranteed, as documented by
Feng et al. [8]. The authors find that using a data set from micro-blog site Sina
Weibo, the average number of neighbours infected before a node gets infected
k is less than or equal to 2. This is in contrast to what they find using the
SIR model to model epidemic diseases in scale-free networks. They conclude
that there is a key difference that pertains to the attention of the users on
social networks. They hypothesize that users on social networks pay limited
attention to their neighbours and that the higher the number of neighbours the
less attention a user pays. In other words, the neighbours compete for attention
and the more neighbours the user has, the less attention can be paid to all.

To capture this notion, the authors adopt an infection rate that depends
on the degree of a node, γ/k where γ is the infection rate and k the degree.
The method is called the fractional SIR model, FSIR. FSIR also incorporates
guaranteed immunization after τ time steps. Validation on the Sina Weibo data
set shows the superiority of the FSIR model against the SIR model. They also
define a critical threshold below which information can produce an outbreak but
no epidemic. The authors link this threshold to the value of the information.
Thus, when different pieces of information compete for attention, those with a
high value produces an epidemic while other pieces only get briefly shared in
high volume.

These findings indicate that it is not always the case that nodes with a high
degree have the most impact in all diffusion processes. Of course, when a node
with a high degree shares information they increase the number of susceptible
users significantly. However, the choice to share depends on the value of the
information given competing information as well.

2.3.4 Source Detection

An important part of the analysis of an information diffusion process is the
detection of the source. The importance of source detection is motivated by the
spread of rumours, information that is not strictly true. The rise of fake news
has made it more difficult for people to find the ground truth about several
subjects online. In 2020, during the COVID-19 pandemic, a rumour was spread
about how the existence of the COVID-19 was directly related to the rise of
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5G networking technology in the Netherlands3. This led to several radio towers
being set on fire by people that believed this rumour. Understanding where
the rumour started can provide government officials with a source to validate
information or in the case that the information is false, someone to hold on
accountable for the damages caused by the rumour.

Research around source detection has been covered in a survey by Shelke
and Attar [24]. In information diffusion research, there are general key steps in
the process of source detection.

1. Gathering data on information being shared between users of an OSN

2. Pre-processing the data in question

3. Constructing a network from the data

4. Identifying an appropriate diffusion model and evaluation metrics

5. Applying models and metric to classify sources

6. Validation and post-analysis of results

As we have already discussed some relevant diffusion models, this is not
needed exclusively. The key steps to understand are those about evaluation
metrics and classification. Classification in source detection can have two goals;
identifying one single source or multiple sources. The key feature used in clas-
sification is the centrality of a node on the network. Centrality is one of the
main structural properties of a network that is used to quantify node influence.
Centrality measures come in different flavours: degree centrality, betweenness
centrality, eigenvector centrality, PageRank and so on [19]. To define the per-
formance of a classifier, four main metrics are used: accuracy, rank, distance
error and the time taken to find the sources. The F-score is generally used to
define accuracy.

F-score =
2× precision × recall

precision + recall

The precision measures defines what ratio of the actual sources are in the set of
source found by the classifier over the all classified sources. The recall measure
defines what ratio of the actual sources are in the set of source found by the
classifier over the set of actual sources in the diffusion process.

precision =
|{ classified sources } ∩ { actual sources }|

|{ classified sources }|

recall =
| classified sources } ∩ { actual sources }|

|{ actual sources }|
The rank measure is the index of the actual source(s) in a sorted list of nodes,

that is descending concerning the score of the node. The distance error refers
to the shortest distance between the classified source and the actual source on
the network.

In Shelke and Attar’s survey [24], the techniques used to classify are cate-
gorized by network topology and diffusion model. In the case of this project,

3https://eenvandaag.avrotros.nl/item/extra-bewaking-moet-betreurenswaardige-en-
bizarre-branden-5g-masten-voorkomen/
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the diffusion models are the epidemic and, as we’ll see in the subsequent sec-
tions, the network topology is generic, as it is a graph and not a tree. The
data set used is a snapshot of a social network. For these settings, the existing
approaches use the rumour centrality metric to classify sources. The rumour
centrality is described as the number of diffusion paths starting from the origin
node. The higher the rumour centrality of a node, the more likely it is to be
the source of the information.

All the work presented here shows the maturity of research on informa-
tion diffusion modelling using epidemic models. This is the maturity that also
enables the exploration using these models to model the spread of privacy pref-
erences.

2.4 Data

To guide the simulations in this work, real world data from OSNs is used. For
a data set to be useful for privacy preference diffusion modelling, it should
contain a graph of a real life social network. Furthermore, the data set should
capture user attributes like; age, content preferences among other properties.
Finally, the data set should contain content being shared on the network. No
data set was found that had all these features. The following data sources were
considered for use in privacy preference diffusion modelling.

2.4.1 Semantically Analysed Metadata of Tumblr Posts and Blog-
gers

The Semantically Analysed Metadata of Tumblr Posts and Bloggers [2] data set
is an SQL dump consisting of 6 tables that describe 2224 Tumblr users. The
tables cover features of a blogger such as the number of posts they have liked,
the number of posts made by the blogger, title and description of their blog as
well as if they allow ask interactions on their blog. Information about a blogger’s
posts comes in the form of the number of notes, timestamp of the post, number
of tags, title and more. Using semantic analysis of the posts, the creators of the
data set also provide the tone and topic classification as well as sentiment score
for each post. This data set is rich in information about the content shared
by users. It lacks, however, a social network graph. It is unclear whether the
bloggers are connected. There is a column in the posts table that define where
a post is re-blogged from, but inspection showed that this column was always
empty. If the re-blogged relationship were present, it would be possible to infer
a (partial) network from this data set.

2.4.2 Stack Overflow temporal network

The Stack Overflow temporal network data set is part of the SNAP repository
and features multiple temporal networks that illustrate answer-to-questions,
comment-to-question and comment-to-answer interactions of the question and
answering website Stack Overflow. Programmers can ask other programmers
questions concerning anything to do with programming. This data set could be
useful to model the change in the interaction inside a network over time. This
requirement is, however, secondary to having rich content information. THe
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data set shows the existence of one of three types of interaction at timestamp
but no details of the content being shared at that point.

2.4.3 Interaction-Based Behavioural Analysis in Twitter Social Net-
work

This data set was collected via the Twitter API to use in the classification of
user types in different categories, namely popular-active, observer-passive, and
spam-bot-malicious [1]. It provides content shared by users over time. Using the
data set, a network could be inferred using the retweet and mention interactions
captured in the tweet text. To use this information, the project would have
to include a plan to derive information from these plain text tweets. As an
exploration of a new field of privacy decisions diffusion, this is beyond the scope
of this study.

2.4.4 Stanford Network Analysis Project

The Stanford network analysis project (SNAP) [17] provides various networks
for network analysis purposed. The repository also contains social networks
that were considered for this project. Most of the networks are network graphs
with users as nodes. Edges exist between two users if there is some form of
interaction between them. The interactions range mutual friends and following
relationships to user actions on a massive open online course (MOOC) and
administratorship votes on Wikipedia. A drawback of these data sets is their
lack of node attributes.

2.4.5 Anonymized Instagram network data from Amsterdam and
Copenhagen

Another candidate data set was the Anonymized Instagram network data from
Amsterdam and Copenhagen data set [4]. It captures the mutual liking and
commenting on Instagram among users in Amsterdam and Copenhagen. It
could be argued that mutual likes and comments capture what two users like.
However, in the end, other candidate data sets provided higher resolution data
to derive user information from.

2.4.6 An exploration of the Facebook social networks of smokers and
non-smokers

This data set is from a study by Jacobs et al. [9]. This study examined the
social network of Facebook users that smoke versus social networks of users that
do not smoke. The authors found that the network structures for the two group
differed significantly on various properties. This data set could provide data
about the user’s smoking habit, age, likes count, country, gender and wall post
count. Furthermore, since the study investigated different partial networks for
each (family, groups, photos and friend), the data capture different properties
of these networks such as; modularity, communities, clusters, diameter, isolates,
transitivity and more. The biggest downside to this data set is the lack of a
network and interactions between users with which to derive a network.
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2.4.7 Dynamics of Instagram Users

This data set was originally used to model the dynamic of users on Instagram [1].
It captures several features of approximately 1000 Instagram users. The data
set captures number of posts, number of followers, number of followings, number
of self-presenting posts from nine previous posts and gender. Furthermore, the
number of likes is captured for the tenth, eleventh and twelfth previous posts.
This data set does lack a network and any interactions between users.

2.5 Trust in multi-agent systems

Trust modelling is multi-agent systems is used to model the faith agents have in
other agents’ abilities to complete certain tasks successfully. Trust modelling can
be one-dimensional or multi-dimensional. Both are useful for privacy preference
diffusion. Here, we take a look at two key approaches in multi-dimensional
modelling.

In a study by Griffiths [10], the first description of an experience-based mul-
tidimensional trust model is given. This enables agents in multi-agent systems
to reason more accurately about tasks in delegating trust. For example, imag-
ine an agent delegating a task and receiving feedback upon completion of the
task. It may be the case that although the task was successfully completed it
cost more than expected or took longer than expected to complete. Cost and
duration are dimensions for which the agent might want to model the trust of
agents that have served them.

In a paper by Reece et al. [22], this idea is extended to allow for correla-
tion between the different trust dimension. The authors show that, while using
a separate beta distribution for all dimensions can be useful, information of
the interactions between the dimensions is mostly lost. To mitigate this, they
propose the multi dimensional extension of the beta distribution, Dirichlet dis-
tribution, to model trust. This results in better information capture for the
interactions between the trust dimensions. Furthermore, the authors propose a
method to decentralize the storage of reputation based on trust. This allows for
more accurate sharing of trust information between agents.

In the following sections, the settings of the simulations with the DIPP
model will be made preciser. The choice of an epidemic model and states will
be motivated. Furthermore, the goals of the project are made precise by defining
them in terms of measurable quantities.

3 Modelling privacy preference diffusion as in-
formation diffusion

In order to model the diffusion of privacy preferences, this work models an online
social network (OSN) as a multi-agent system. The agent in this system will
represent users of an OSN. The agents will be able to share content, mimicking
the content sharing by human users on OSNs. On OSNs, content can be defined
by the context it portrays.

When a piece of content on an OSN is observed, us humans can perceive
different properties that describe the content. These properties may describe
something worthy of our public appreciation in the form of a like. However, the
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properties could also describe something we do not like to perceive or do not
care about either way. Imagine a photo of someone taking a self-portrait photo
of a user at the pet zoo with a llama in the morning. The description of the
scene of the photo captures its context. This context defines location (i.e., zoo),
people in the picture (i.e., user), what is happening in the picture (i.e., posing
with a llama) and the time of day (i.e., the morning). For an intelligent agent,
this description can be determined using image caption models that take images
and provide a description with words, e.g. using work by Vinyals et al.[30], or
by user manually documenting the properties. On an OSN, a user can come
across this picture and like it, of course. However, the user could be the lady in
the picture, who didn’t know that this picture was shared without her explicit
consent. Does she approve of this content of hers being shared in this context?
Whether she approves or not, where does her opinion come from? This project
investigates how this opinion can come about as an infection from interacting
with other users in the OSN.

In this work, the context of the content shared by a user on an OSN is
assumed to reveal the privacy preferences of that user on said OSN. This follows
from the assumption that a user only shares content that they want to be seen
by their friends on an OSN. It could be argued that users can be moved to
share content by external factors [3]. However, in the end, it is always the user’s
decision whether to share content.

Definition 3.1 (Privacy preference). A context description that can be ascribed
to the content shared by an agent with the assumption that agents only share
content they do not find to be private.

A difficult point of describing the context of content is resolution, since the
shared content exhibits context describable by various properties. There are
many details that can describe content leading to many fine-grained inferred
privacy preferences. This challenge is beyond the scope of this project. The
focus of this project is to propose a novel framework that can describe the
spread of privacy preferences. Dealing with the resolution of the context in the
content shared on an OSN can happen later and does not limit the DIPP model.
The resolution of the context used to describe content will become clear in the
latter sections.

Example: Alice and Bob are university students and friends on an OSN.
During the Christmas period, Bob shares pictures of his family’s Christ-
mas party while Alice does not. After observing Bob’s Christmas posts,
Alice infers that Bob is comfortable sharing content containing family
members, at family parties. This is one of his privacy preferences, the
combination of the context of the content and the fact that Bob shares
this content.

The problem with context resolution is that one can also ask: should Alice
infer that Bob is particularly comfortable sharing content in the shirt he is
wearing in all the Christmas posts? This detail might matter towards defining
a privacy preference, or it might not. However, answering such questions is not
an imperative for the present project and the framework it proposes.

Given the content shared by a user, we can define the agent’s privacy pref-
erences as the different contexts revealed by the content they have shared. It
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should be clear that this definition might not be exhaustive, as the user could
hold privacy preferences that are hidden to other users on the OSN. It could be
the case that Alice would be willing to share video clips of her dance rehearsals
but has just not had the opportunity. Alice’s friends on an OSN can not infer
that sharing video clips of dance rehearsals is a privacy preference of hers. Fur-
thermore, a user can also hold privacy preferences that represent content that
they believe should never be shared, thus these are opposed privacy preferences.

The DIPP model takes into account the opposed privacy preferences in two
ways. In one setting, it is assumed that the opposed privacy preferences spread
similarly to the supported privacy preferences. In a second setting, the opposed
privacy preferences are assumed to be static over time. It is highly probable
that both these assumptions are inaccurate, however, as the opposed privacy
preferences are not derivable from content, we opt for these two. The first setting
captures the fact that there is a dynamic to the opposed privacy preferences
and the second one captures makes no assumption on the dynamic covering
the hidden feature of the preferences. Although this project does not aim to
contribute to the accurate modelling of opposed privacy preferences, they are
paramount in capturing privacy violations.

Privacy violations in OSNs occur when content reveals information about a
user that the user would want to keep private. Opposed privacy preferences can
be deemed to describe content that a user believes should be private. Privacy
violations can occur when a user shares content that is co-owned by another
user and, in doing so, reveals private information of said user. Content is co-
owned when it contains information that can be traced back to more than one
person. For example, a group picture is co-owned by everyone in the group in
the picture, even though one person takes and stores the picture. The sharing
of such a picture, we theorize, makes the co-owners more likely to be infected
with privacy preference exhibited by the piece of content. This could be the
case if a co-owner has never considered sharing such content and does not mind
it being shared. Furthermore, it could be the case that a co-owner notices other
users engaging in more positive interactions with their content of the same type.
This may cause the co-owner to go along with a similar privacy preference even
if they originally opposed it.

Using privacy violations, we can model trust between agents on an OSN.
When Alice’s privacy is violated by Bob on an OSN, this should affect the
relationship between the two agents, at least concerning the OSN. This could
manifest itself as Alice becoming less likely to agree to share co-owned content
with Bob. Alice could even decide to not make content with Bob in the future
altogether. All this could happen because Bob has damaged the trust between
Alice and him. The notion of trust will be part of the model created in this
project. Using the model, we will investigate if the use of trust values can help
agents protect themselves from opposed privacy preferences.

These are the underpinning of this research; privacy preferences are infec-
tious via the medium of the content sharing habits of friends. Users perceive
friends sharing certain content and are deemed more likely to adapt the same
habits. In this section we have outlined the global theories on how these infec-
tions come about and how they could be influenced.
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Example: Alice shares a selfie of Bob and her after a night out without
consulting Bob. Bob, however, prefers to keep his party life away from
social media, thus Alice has violated Bob’s privacy. In the future, Bob
might trust Alice less with content they both own.

Definition 3.2 (Co-owned content). Content is co-owned when it represents
more than one user. Representation could be by appearance in a picture, sound
of a voice in a video or audio recording, explicit tagging of users and more.

Definition 3.3 (Privacy violation). A privacy violation in an OSN is an in-
stance in which content is shared without the explicit consent of a user. Fur-
thermore, this content is in a context that the user opposes sharing content
of.

The next sections present a model that simulates the spread of privacy pref-
erences and the varying factors that are believed to affect this dynamic in OSNs.
Opposed privacy preferences, co-ownership, privacy violations and trust are be-
lieved to impact the diffusion of privacy preferences in reality. The model pre-
sented will incorporate these factors. As previously stated, epidemic models will
be used to model privacy preference diffusion. In original epidemic models, an
infectious disease is the infectious entity spreading in a network. In the case of
this research, the infectious disease is substituted for a privacy preference. This
substitution comes about after the review of various epidemic models used for
modelling information diffusion. In line with information diffusion models, we
believe privacy preferences can be infectious. Users are exposed to the infectious
entities through observing content. Users can become infected due to various
factors. In this work, we consider opposed privacy preferences, co-ownership,
privacy violations and trust as factors. The following sections will elaborate on
the different circumstances under which the diffusion processes will be investi-
gated.

3.1 Context of content shared

Context, in this study, is described using three locations and four times of day.
The four times of day are morning, afternoon, evening and night. The three
locations are at work, the beach and the mall. The contexts are represented as
2-tuples with 12 possible combinations, for example: < night, work >. Given
these definitions, a user has a certain privacy preference if they are infected with
the content described by these tuples. A privacy decision is then a binary de-
cision representing whether to share or not to share content that is represented
by the context tuple. In reality, a privacy preference is often unknown to fellow
social network users and only sometimes known to the social network admin-
istrator. Privacy preferences are often private, thus users’ friends rarely know
them. Some OSNs provide users with tools to protect their privacy on OSN that
involve the user providing some description of their privacy preferences. One
of the few ways for users to have a sense of the privacy preferences of others is
through perception of the privacy decisions others make.

It should be noted that these 12 variable values are easily interchangeable as
the semantics they carry are of no relevance in the model developed here. These
12 values were chosen as they provide clear descriptions of contexts in two clear
dimensions, location and time of day. There was no need to add more values.
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Furthermore, concerns about the computational performance of the model made
us choose not to include more values. One could consider a model for diffusion
of privacy preferences in which the semantics of these values are part of the
equation, but that is beyond the scope of this project.

Definition 3.4 (Privacy decision). A binary decision representing whether to
share or not to share content that is represented by a context description.

3.2 SIR model for privacy preference diffusion

The SIR model is an epidemic model that is governed by an infection rate
and a recovery rate. The agents, part of the model, can be in three states;
(S)usceptible, (I)nfected and (R)ecovered. When an agent is in the susceptible
state, it is susceptible to the infectious entity that is spreading. When the
infectious entity infects an agent, the agent moves to the infected state. If and
when an agent recovers from this infectious entity, the agent is in the recovered
state. Being in the recovered state is synonymous with being immune to the
infectious entity as there is no state transition out of the recovered state. The
state dynamics of the SIR model are governed by an infection rate i and recovery
rate r. The dynamics are visualized in Figure 1.

The infectious entity in the SIR model was originally any disease that would
spread among humans. However, researchers noted that information could be
seen as infectious as well. Thus, the SIR model was adopted to model informa-
tion diffusion [19]. In work by John and Joshua [6], the researchers even model
adoption and abandonment of OSNs using the SIR model.

To model privacy preference diffusion, we will use the SIR model. The
motivation behind this is best explained looking at the different states of the
SIR model. Concerning the (S)usceptible state, agents are deemed susceptible
to imitate certain behaviour if they witness it from their neighbours. In this
work, we assume that the same holds in the context of privacy preferences. Users
on OSNs sees other users share content that depict certain privacy preferences.
They can then be infected if they have never thought of sharing such content
and willing to do so, thus adopting the privacy preference. They could also
be infected because their friends start adopting certain privacy preferences that
they do not hold.

If an agent observes another agent, to whom they are connected, take a
certain privacy decision within a context, they will be susceptible to become
(I)nfected by that behaviour and thus imitating it and adapting that privacy
preference. This will be reflected by an infection rate for that privacy preference.

S I R

1− i 1− r

i r

Figure 1: State transitions in the SIR model, governed by the infection rate i
and recovery rate r

The last state of the SIR model is the (R)esistant state. Agents in this
state have recovered from an infection and are immune to a privacy preference,
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thus they will not share content aligned with said privacy decision. From these
models, the key measurements are population proportions for each state. This
is common practice in diffusion modelling as these measurements allow for a
relatively complete analysis of the diffusion process. The willingness of an agent
to share content that represents a certain context is depicted in Table 3.2. The
state determines the willingness of an agent to share content described by a
certain context. Note that the states are in line with the SIR epidemic model,
the infectious entity is the willingness of an agent to share certain content.
An agent is considered infected when they are willing to share content in that
context. In the susceptible state, an agent can become willing to share that
type of content as they are vulnerable for infection. The resistant state has no
agents that are willing to share content represented by that type of context.
These state transitions are governed, mainly, by the infected rate i and recovery
rate r and can be seen in Figure 1.

This initial description of the epidemic model used is similar to epidemic
models used previously in information diffusion research. The main difference is
that this model carries multiple infectious entities rather than the common one
or two. To make the model more accurate, in terms of modelling the spread of
privacy decisions, concepts such as opposing infectious entities and co-ownership
of content are added.

Context State
<Morning, Work> INFECTED
<Morning, Mall> SUSCEPTIBLE
<Morning, Beach> INFECTED
<Afternoon, Work> INFECTED
<Afternoon, Mall> SUSCEPTIBLE
<Afternoon, Beach> SUSCEPTIBLE
<Evening, Work> INFECTED
<Evening, Mall> SUSCEPTIBLE
<Evening, Beach> INFECTED
<Night, Work> INFECTED
<Night, Mall> SUSCEPTIBLE
<Night, Beach> INFECTED

Table 1: State representation of an agent’s willingness to share content that
represents a certain context

3.3 Opposing privacy preferences

The model described above carries information on an agent’s willingness to
share content that describes a certain context. However, one can imagine social
network users having personal convictions regarding, not only what constitutes
a right privacy preference, but also what constitutes a wrong one. Thus, the
DIPP model also carries information on an agent’s opposition towards certain
privacy preferences. The representation is the same as in Table 3.2. It follows
that, instead of 12 infectious entities, an agent keeps track of 24 simultaneous
ones. Consequently, there are co-occurring states, pro and opposing. This can
lead to issues when, for example, an agent is infected in both the pro and
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opposing settings of a context. However, in reality, a social network user can
only be in favour of one of the two settings. If Bob believes photos taken at
the beach should stay private, he cannot share photos of himself at the beach.
Since, otherwise, that would be contradicting. Furthermore, it would also be
impossible for Bob to note privacy violations if he supports and opposes this
privacy preference at the same time.

Definition 3.5 (Pro side). The epidemic of privacy preferences that are sup-
ported by agents. These are the privacy preferences that underlie the infected
agents’ content sharing habits.

Definition 3.6 (Anti side). The epidemic of privacy preferences that are op-
posed by agents. Infected agents on this side believe that the content, described
by the privacy preference they are infected with, should not be shared.

Table 2 shows how the two sides’ states can co-occur in the DIPP model.
The only combined state that is impossible is one where an agent is infected on
both the pro and opposing sides. The rest of the combined states are deemed
possible because of the following explanations.

� Infected and Susceptible An agent can be infected on one side and
susceptible on the other because it is not impossible for someone to oppose
content sharing behaviour and slowly gravitate to it to the point of crossing
over and sharing the type of content themselves. For example, with the
rise of selfies in the early 2010s, there are bound to be people who found
this type of content to be inappropriate, but as the masses continued
sharing said content the opposing opinions dwindled resulting in (even)
more selfies being shared.

How an agent can come to such a crossover point is an interesting question.
In this work, we investigate trust as a contributing factor.

� Infected and Resistant In this combined state, the agent has become
immune to one side and is infected by the other side. This is a plau-
sible state as one can imagine a social network user so convinced that
sharing pictures of exam results is not appropriate that they would never
even consider the possibility of sharing such content despite their peers
sharing their results on the social network. One could also consider the
possibility of immune agents becoming susceptible once again with a small
probability, but this first iteration of the DIPP model does not cover this
factor.

� Susceptible and Resistant In this combined state, the agent has be-
come immune to one side and is susceptible on the other side. This is
a plausible state as an agent could be totally opposed to sharing a type
of content and thus be in the resistant state on the pro side. However,
this opposition means the agent is also susceptible to becoming an ac-
tively opposing agent by becoming infected on the opposing side. One can
imagine someone never sharing revenge pornography on a social network
who, as time goes by, might actively oppose such content and advocate
for measures to be taken when such content shared.
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� Susceptible and Susceptible In this combined state, the agent has
no opinion on this specific type of content. This state could represent a
person that has never encountered the type of content before. Thus, when
they perceive the content, there is a possibility they might agree with the
sharing or disagree.

� Resistant and Resistant In this combined state, the agent is immune
to both side of the type of content being shared. This means there are
indifferent to this type of content, but will also never share such content.

� Influence on state dynamics The combined states should clearly have
influence on the way agents change states. It should be harder to infect
someone if their infected with the opposite opinion towards a type of
content. To capture this, the infection rate i is multiplied by a random
number

0.5 > h > 0.1

that represents an agent’s resilience to someone trying to change their
opinion. From this it follows that the infection rate i = i ∗ h when the
agent we are trying to infect is infected by the opposing opinion. Firstly,
h is a random number to capture the fact that not all agents in a social
network have the same resilience in terms of changing their opinion and
this resilience is also not static over time. Secondly, the choice for the
range captures, in this scenario, that the infectious agent is only half as
potent at most and one-tenth times as potent at least. The state dynamics
given opposing privacy preferences are visualized in Figure 2.

The other combined states have no influence on the state dynamics in
the DIPP model. There are probably ways in which these states could
influence the dynamics, but those are beyond the scope of this work. In
the next section, trust in this agent-based model is discussed.

Pro state Opposing state Possibility
INFECTED INFECTED Impossible
INFECTED SUSCEPTIBLE Possible
INFECTED RESISTANT Possible
SUSCEPTIBLE INFECTED Possible
SUSCEPTIBLE SUSCEPTIBLE Possible
SUSCEPTIBLE RESISTANT Possible
RESISTANT INFECTED Possible
RESISTANT SUSCEPTIBLE Possible
RESISTANT RESISTANT Possible

Table 2: Possible states for agents to be in with regard to being for or against
sharing content described by context

3.4 Trust

In multi-agent systems, trust is used as a way for agents to quantify the faith
they have in the fact that other agents can successfully complete a certain task.
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1− i× h 1− r

i× h r

Figure 2: State transitions in the SIR model, governed by the infection rate i
and recovery rate r with h in the case of trying to change agent’s established
opinion

When Alice takes the bus to go to campus, she trusts the bus driver to take her
to her destination safely and timely. A model that simulates whatever aspects
of using public transport, could incorporate trust between passengers and the
people that steer the vehicles they travel with. Trust can be one dimensional,
but that is not necessary. Consider bus driver John. Alice knows that John
drives her 8 am bus to campus on Mondays and Thursday. Alice always gets
to campus safely on Mondays and Thursdays, thus she trusts John to take her
safely to her destination. However, John enjoys speaking with passengers a lot
which, in turn, means that Alice is always 5 minutes late to campus even though
she caught the bus at the right time. So, Alice does not trust John as much
when it comes to taking her to her destination in a timely manner.

Trust is a part of the DIPP model because it has been found to be an
important factor in making privacy decisions. Research by Lampinen et al. [16],
shows that privacy management in content sharing on online social networks is
mostly based on trust of neighbours inside the network.

The DIPP model implements one-dimensional trust modelling. One-dimensional
trust refers to an agent’s faith in another agent to complete a task with one
measurement of success [22]. In a one-dimensional trust model on public trans-
port safety, Alice would trust John as her experiences with John have always
been safe. However, if we make the model two-dimensional by adding the mea-
surement of success lateness, Alice would not trust John as much as in the
one-dimensional model before.

In the DIPP model, trust is based on interactions between agents of which
they are two: perceiving another agent’s shared content and being a co-owner of
the content shared by another agent. These two interactions can lead to privacy
violations that negatively influence the trust value one agent has towards an-
other agent. Firstly, when an agent perceives a neighbour exhibiting behaviour
consistent with a privacy preference they are opposed to, that should cause that
agent to negatively update their trust towards said neighbour. In other words,
the agent trusts their neighbour less because they do not agree with the privacy
preference the neighbour exhibits. For example, let us think of two university
students, Alice and Bob, who are friends on Facebook. Alice sees Bob posting
a photo in which he is pictured kissing Angela at a party. Alice would never
post a picture of herself kissing someone at a party. This leads Alice to distrust
Bob’s privacy management, unbeknown to Bob.

A second interaction, which causes an agent to trust a friend less, is when the
agent’s friend decides to share content with a context that the agent opposes.
For example, imagine that Alice also believes that content captured at the beach
should stay private. If Bob decides to share last June’s photo of Alice and him
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at the beach then Alice will not only be upset, but she will also trust Bob less.
The reader should also notice that there seems to be a clear difference of the

severity between the two negative interactions. When Bob shares the picture of
Alice and him at the beach, Alice is affected directly. In the first interaction,
however, Angela is the one directly affected, whether the effect is negative or
positive depends on Angela’s privacy preferences. The severity of the two types
of privacy violations will be considered in the DIPP model.

To model trust, the beta distribution is used. This probability distribution
is governed by two variables α, β. Given that the outcome of each interaction
can only be one without a privacy violation or one with a privacy violation,
we have binary outcomes. The beta distribution is well suited to model the
uncertainty over

pmr(o = 1)

, where o represents a positive outcome, which is the probability Alice holds for
a positive interaction with Bob. The actual distribution can never be known,
thus Alice has to estimate

p̂mr(o = 1)

, given the finite experience she has in interacting with Bob on the social net-
work. The two parameters of the beta distribution a, b can be used to represent
positive outcomes and negative outcomes respectively. The expectation of the
beta distribution

E[X] =
α

α+ β
= p̂mr(o = 1)

then provides Alice with an estimate of the likelihood of positive interaction
with Bob or, in other words, of her trust in Bob not to violate her privacy. In
practice, this amounts to

p̂(o = 1) =
n+ 1

N + 2

[22] being the trust value every agent holds for each of their neighbours. In
this formula, n represents the number of interactions without privacy violation
and N the total number of interactions. We will see that N amounts to the
current number of steps in a simulation as each agent shares content at each
step and every friend of an agent perceives said content. As previously stated,
the severity of a violation differs between the two possible types. To account for
this, the violations are assigned levels. Level 1 is the violation where an agent
perceives behaviour they do not agree with and level 2 is the direct violation
of an agent’s trust by sharing co-owned content. Given this, the trust value
formula for level 1 violation comes to be

tr1 =
n+ 2

N − n2 + 2

, where n2 is the number of level 2 violations, conversely this means

tr2 =
n+ 2

N − n1 + 2

where n1 is the number of level 1 violations and n = N −n1−n2. Finally, these
two trust values are integrated into one with weights agent uses to express what
they see as more severe

tr = s1 × tr1 + s2 × tr2
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with s1 + s2 = 1.

Definition 3.7 (Level 1 privacy violation). A level 1 violation occurs when an
agent perceives another agent sharing content that portrays a privacy preference
that they oppose.

Definition 3.8 (Level 2 privacy violation). A level 2 violation occurs when, for
example, Bob shares content that is co-owned by Alice without Alice’s consent.

The trust value directly influences the infection rate as can be seen in Figure
3. In this project, the severity values are static over all simulations.

S I R

1− i× tr 1− r

i× tr r

Figure 3: State transitions in the SIR model, governed by the infection rate i
and recovery rate r with tr representing the trust in the neighbour trying to
infect the agent

It can be noted that trust is modelled, in the DIPP model, with a keen focus
on its negative effect on interactions between agents. This is because of the
focus on investigating whether agents can protect themselves against opposing
privacy preferences using trust modelling. In multi-agent systems, trust is a
factor that can also strengthen relationships between agents, as is true for the
trust model above as well. However, this aspect is not the focus here and is,
thus, no investigated.

3.5 Co-ownership

To add more realism, the concept of co-ownership is also incorporated. Co-
ownership is the ideal that content is sometimes owned by multiple people even
though only one person makes the choice to share the content. A group photo
is a form of content with co-ownership. All the people in the photo stand to
gain or lose, with regard to privacy, whenever the content is shared by one of
them. In the DIPP model, co-owners are assigned at random with at most 5
co-owners for each piece of content shared.

It is clear that an agent should be affected differently when they are co-
owners of the content being shared by a neighbour than when they are passively
witnessing the content. This concept manifests itself in the model as another
factor that alters the infection rate. In this case,

1.5 > co > 1.1

is a random number that represents how impressionable an agent is, with regard
to sharing content they have doubts over. As with h, co is a random number
to capture the fact that not all agents in a social network can be persuaded on
the same level and this resilience is also not static over time. Furthermore, the
choice for the range captures, in this scenario, the fact that the infectious agent
is 50% more potent at most and 10% more potent at least. The state dynamics
given content co-ownership are visualized in Figure 4.
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1− i× co 1− r

i× co r

Figure 4: State transitions in the SIR model, governed by the infection rate i
and recovery rate r with co in the case of an infection attempt via co-ownership

4 Agent-based modelling of privacy preference
diffusion

In this section, DIPP, the agent-based model is formally defined. Firstly, we
consider the agents, the various decisions they can take and how these decisions
come about. Secondly, the aspects of the model that do not concern the agent
are described. The entire model is written on top of the Mesa library for Python
34. The time steps are discrete.

4.1 Agent

In the DIPP model, an agent represents a user on an online social network
that shares content from which other agents can derive said agent’s privacy
preferences. To this end, each agent must have the ability to share content and
all their friends should be able to perceive the content. This section covers the
details of how these actions are taken by agents. A schematic view of an agent
in the DIPP model can be seen in Figure 5.

4.1.1 Agent initialization

At the time of instantiating the simulation, each agent is assigned privacy prefer-
ences on the pro and anti sides. As stated previously, for each privacy preference,
an agent can be in three states: susceptible, infected and resistant. In the DIPP
model, that states are randomly generated. For each privacy context, the agent
is randomly assigned either the state susceptible or infected, with a probability
of 0.5 of both, as can be seen in the loop from line 5 in code block 1. The state
resistant is ignored here as it is a final state and would thus limit the dynamic
in the experiments set out. If an agent starts out in recovered, then the agent
is effectively removed from the experiment. Since the aim is to investigate the
state dynamics, it makes no sense to limit these dynamics beforehand.

For the epidemic dynamic to work, infection rates and recovery rates have
to also be assigned for each of the privacy preferences. These can be single
numeric values that hold for either pro or anti side. However, the rates can also
be defined as a mapping between a context and a numeric value, allowing for
precise custom assignment of rates for any experimental setting. Furthermore,
assigning the infection and recovery rates at the level of an agent means that
a researcher can predefine different rates for different agents if an experimental
setting requires this. An impression of this assignment process can be seen in
code block 2.

4https://mesa.readthedocs.io/en/master/overview.html
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Algorithm 1 Assigning states for privacy preferences of an agent

1: procedure (l, t) . locations and times of day
2: proStateStore← {}
3: antiStateStore← {}
4: c← product(l, t) . c represents the context tuples
5: for lc, tc ∈ c do
6: s← randomChoice(S, I) . (S)usceptible, (I)nfected
7: proStateStore[(lc, tc)]← s
8: if s = S then
9: antiStateStore[(lc, tc)]← I

10: else
11: antiStateStore[(lc, tc)]← S
12: end if
13: end for
14: end procedure

Figure 5: Schematic view of the components of an agent in the SIR model for
privacy preference diffusion.
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Algorithm 2 Assigning infection and recovery rates for privacy preferences of
an agent

function setRates(agentRates, contextTuples, rate)
2: for lc, tc ∈ contextTuples do

agentRates[(lc, tc)]← rate
4: end for

return agentRates
6: end function

8: procedure (l, t, iPro, rPro) . locations, times of day, infection rates,
recovery rates

iProAgent← {}
10: rProAgent← {}

c← product(l, t) . c represents the context tuples
12: if isType(iPro,Mapping) then

iProAgent← iPro
14: else

iProAgent← setRates(iProAgent, c, iPro)
16: end if

if isType(rPro,Mapping) then
18: rProAgent← rPro

else
20: rProAgent← setRates(rProAgent, c, rPro)

end if
22: end procedure
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4.1.2 Agent Actions

In the DIPP model, an agent can try to infect other agents, with which they
are in a friendship relationship, with their privacy preferences by sharing. An
agent can also recover from an infection at any point. These key actions are
described in detail here.

Every time an agent takes a step in this model, they do at least three things:
share content if possible on pro side, share content if possible of anti side and
try to recover from an infection. An agent shares content by first checking their
state store. The agent lists every context tuple for which they are infected and
choose randomly from this list a context tuple. The content shared by the agent
is then represented by this context tuple and other agents can perceive this. The
step function can be seen in code block 3.

Algorithm 3 Actions an agent takes at each step

function step()
allInfectedProContexts← findInfections(self.proStateStore)

3: contentToSharePro← randomChoice(allInfectedContexts)
tryToInfectNeighbours(contentToSharePro)

6: allInfectedProContexts← findInfections(self.proStateStore)
contentToSharePro← randomChoice(allInfectedContexts)
tryToInfectNeighbours(contentToSharePro)

9: tryToRemoveInfection(anti = False)
tryToRemoveInfection(anti = True)

end function

To infect neighbours, an agent firsts lists neighbours that are susceptible
for the content it wants to share. To capture the concept of co-ownership, a
random number of neighbours, from zero to five, is randomly chosen to represent
co-owners. Note that this means more often than not that the content shared in
this model is owned by more than one person. As explained in Section 3.5, the
infection rates of chosen neighbours are affected in a way of making them more
likely to be infected. Subsequently, an attempt is made to infect each susceptible
neighbour with heightened infection rates for co-owners. The infection rates of
susceptible neighbours that are infected with the opposing privacy preference
are lowered, as detailed in Section 3.3. Finally, the trust value changes the
infection rate once again, as explained in Section 3.4 The resulting infection
rate is then the probability that the neighbour will get infected. The infection
action is captured in code block 4 from line 7 to 29.

After the agent has attempted to infect all susceptible neighbours, all neigh-
bours, that are not susceptible get to perceive the shared content and register
a positive or negative experience according to their preferences, from line 29 of
code block 4.

The final part of a step is the attempt to recover from an infection. In this
part, a context tuple is chosen randomly from all the context tuple for which
the agent is infected. The context tuple’s recovery rate is the probability that
the agent will recover in this step, see code block 5.
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Algorithm 4 Infecting neighbours

function tryToInfectNeighbours(contextTuple)
susceptibleNeighbours← getSusceptibleNeighbours(contextTuple)
nonSusceptibleNeighbours← getNonSusceptibleNeighbours(contextTuple)
nCoOwners← randomFloat(0, 5)

5: coOwners = randomSample(susceptibleNeighbours, nCoOwners)

criticalV alue← randomFloat(0, 1)
for neighbour ∈ susceptibleNeighbours do

iPro← neighbour.getInfectionRate(contextTuple)
10: if neighbour ∈ coOwners then

iPro← iPro× randomFloat(1.1, 1.5)
end if
if neighbour.getState(contextTuple, anti = True) = I then

iPro← iPro× randomFloat(0.1, 0.5)
15: end if

iPro← iPro× neighghbor.getTrustValue(self)
if criticalV alue < iPro then

neighbour.setState(contextTuple, I)
if neighbour.getState(contextTuple, anti = True) = I then

20: neighbour.setState(contextTuple, S, anti = True)
end if
neighbour.registerPositiveExperience()

else
if neighbour.getState(contextTuple, anti = True) = I then

25: neighbour.registerViolation(level = 2)
end if

end if
end for
for neighbour ∈ susceptibleNeighbours do

30: if neighbour.getState(contextTuple, anti = True) = I then
neighbour.registerViolation(level = 2)

else
neighbour.registerPositiveExperience()

end if
35: end for

end function

Algorithm 5 Recovery from an infection

function tryToRemoveInfection()
allInfectedProContexts← findInfections(self.proStateStore)
contextToRecoverFrom← randomChoice(allInfectedContexts)

4: criticalV alue← randomFloat(0, 1)
rPro← self.getInfectionRate(contextToRecoverFrom)
if criticalV alue < rPro then

self.setState(contextToRecoverFrom,R)
8: end if

end function
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4.2 Model

The DIPP model simulates the spread of privacy preferences on a OSNs using
real-world OSN data. In essence, it is the environment that facilitates the agent
described in the previous section and collects data on the interactions that occur
in a simulation. This section discusses a few key components. A schematic view
of the DIPP model can be seen in Figure 6.
Role in simulations
For a researcher, the model is the interface to interact with to run any sim-
ulations. It creates agents for each node on the social network provided to
it. Furthermore, it handles the stepping mechanism. Specifically, the DIPP
model makes sure that the step execution is random every time. This way the
order in which agents take a step is random each time and not the same se-
quence repeatedly. The model collects for each context tuple the number of
agents in each of the three states. This allows for a clear picture of the SIR
model dynamic. It also collects data on the number of state changes per step.
Finally, the model also keeps track of the infection chains for each context tuple.

Customization
The model also provides an interface to customize the initial outbreak of privacy
preferences. If a rare privacy preference is useful in an experiment, this can be
defined with a mapping from context tuple to fractions representing a fraction
of the population that should be infected with regard to the defined context
tuples. The interface also provides the ability to specify the state of a specific
agent regarding a specific context tuple.

Stopping criteria
It is possible to run the model for any number of steps. However, there is also
an option to run the model until the state dynamics have reached a stable con-
dition. Stability is reached when a predefined number of steps has passed and
there have been fewer state changes than a predefined fraction of the popula-
tion. For example, if one defines a network of 300 agents, the look back steps
to be 10 and the fraction of the population to be 0.1, then the model will stop
taking steps when it finds that the total number of changes in the last 10 steps
has been less than 30.

Network
In the next section, the different simulations with the model are discussed.
It is important to note that there is a basic model that does not have the
concept of trust implemented. As such, this model uses an undirected network
to represent the social network. In the settings with trust, a model that requires
a directional graph is used, as the edges in this graph also carry information
of the positive and negative experiences agents have with each other. This
information is needed to derive the trust values between agents.

This specification of an epidemic model is believed to be suited to model
the spread of privacy preferences through privacy decisions. In the next sec-
tion, the measurable factors are explored and the suitability clam is tested with
simulations of varying settings.
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Figure 6: Schematic view of the components of the SIR model for privacy prefer-
ence diffusion. It shows the main functions and their relationship to the agents.

5 Experiments

In this section, the inner workings of all the experiments are covered and all
measurement are outlined.

5.1 Measurements

As stated in the previous section, the DIPP model keeps track of infection chains
across all privacy preferences as well as agent count for each state of each privacy
preference. It is clear that agent counts are useful to understand the dynamic of
the SIR model in this state. The infection chains are used to derive an influence
rating for each agent for each privacy preference. The influence rating is one of
the main measured factors. Infection endings and number of crossovers are also
part of this group of factors. This section delves into these measurable factors
and defines the specific questions for the simulations.

5.1.1 Influence

In information diffusion modelling, influence has always been important. Some-
times influential users in a network are sought after for different reasons. It
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might be because they could be used to promote information on the network.
In other cases, they might be deemed bad influences.

Definition 5.1 (Influence rating). The influence rating of an agent is the count
of each descendant proportional to the length of the shortest path between the
agent and the descendant in the infection chain.

In this work, we propose a metric to measure the influence of agent in the
spread of privacy preferences using infection chains. For each privacy preference,
an infected chain is created. This infection chain is defined as a directed graph
G = (V,E) with a set of nodes V and a set of edges E.

E ⊆ V × V

(ai, aj) ∈ E

{ai, aj} ⊆ V

Any agent on the social network could be a member of the set V for any privacy
preference. The set of edges describes the occurrence of one agent infecting
another agent.

To derive the influence of an agent, all the shortest paths between node pairs
in G are calculated. This provides the shortest path length for each node to a
node that they have directly or indirectly infected,

d(am, ar)

for agents Alice and Bob. If we were to count the number of descendants Bob
has in the infection chain, we would get a measure for influence that assumes
that each descendant Bob in the infection chain is directly infected by Bob,
which may well not be the case. Thus, Bob’s influence rating is defined as∑

∀ai∈V,ai 6=ar

0.5d(am,ar)

, in which we count each descendant proportional to the length of the shortest
path between the agent and the descendant in the infection chain.

5.1.2 Epidemic endings

One of the goals of this project is to explore whether trust values can be used by
agents to protect themselves against opposed privacy preference. To this end,
the epidemic endings are measured. An epidemic ending of a privacy preference
is the step at which no agent on the network is infected with said privacy
preference. If, at step 31, no more agents are infected the privacy preference
to share content from a night at the beach, then that is the epidemic ending of
< mall, night >.

5.1.3 Epidemic peaks

A subsequent goal of this project is to explore whether trust values can be used
by agents to protect themselves against infections of opposed privacy prefer-
ences. To this end, the epidemic peaks are measured. An epidemic peak of a
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privacy preference is the maximum number of infected agents, infected with that
privacy preference. If, at some step of the simulation, the number of infected
agents with privacy preference of < mall, night > is 600 and the epidemic never
reaches a higher number of infected agents at one time, then 600 is the epidemic
peak of the privacy preference < mall, night >+.

5.2 Simulations

For the purposes of answering the research questions of this project, simulations
are run with the model described in the previous section. Some settings or setups
are constant across all simulations. These setting will be explained first. After
this, the specific simulations are put forth. Finally, the expectations from these
experiments are discussed.

5.2.1 Basic settings

All the simulations use flat infection rates and recovery rates. This means that
all the privacy preferences have the same rates on both pro and opposing sides.
Three rates are chosen, {0.25, 0.50, 0.75}. These three values are varied over the
four variables: pro infection rate, pro recovery rate, anti infection rate and anti
recovery rate. These lead to a total of 34 = 81 combinations of rates to run.
Every simulation is executed 100 times to account for the stochastic nature of the
model’s dynamic. 100 repetitions is deemed to be the right compromise between
correctness of the results and the run time of the experiments. This means
that one experimental setting amounts to 8100 simulation runs. A simulation
is run until a stable condition is reached. Stability is defined using a look
back of 20 steps and a fraction of the population of 0.05. This means that a
simulation ends when in the last 20 steps there have been fewer state changes
than 0.05× 800 = 40, as is summarized in Table 3.

In the case of disregarding the opposing preference dynamic, there is no
need to include the anti infection and recovery rates. Consequently, there are
32 = 9 combinations of rates to run. The number of repetitions stays 100 in this
case as well as the stability criteria. These basic settings are used to run the
baseline simulation setting. The following sections describe simulation settings
that incorporate different factors previously discussed. The baseline will be used
to compare and recognize any impact of said factors.

There are few general characteristics that are expected to be present in the
results of simulations with basic settings. It is expected that:

� 1a a privacy preference epidemic will last longer when the infection rate
of said privacy preference is higher than its recovery rate,

� 1b this setting will show a positive correlation between the degree of an
agent on the network and its influence on the spread of privacy preference.

These assertions need to hold for the model to, at least, be a valid epidemic
model. Thus, they are the foundations of the DIPP model.

A node’s degree has been shown previously to correlate with the influence
of that node in information diffusion [19]. That feature is expected to stay the
same in the context of privacy preference diffusion as modelled here.
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The following sections will elaborate on the rest of the simulation settings
used to investigate the dynamic of privacy preference epidemics, as summarized
in Table 4.

Parameter Values
Pro infection rate ∈ {0.25, 0.50, 0.75}
Pro recovery rate ∈ {0.25, 0.50, 0.75}
Anti infection rate ∈ {0.25, 0.50, 0.75}
Anti recovery rate ∈ {0.25, 0.50, 0.75}
Iterations 100
Look back 20 steps
Population fraction 0.05

Table 3: Basic settings of each simulation. Note that given the varying rates,
each experiment has a total of 81 settings.

5.2.2 Rare privacy preference with high degree influencers

Experiments in this setting are performed to investigate the ability of a few of
the most influential users to spread privacy preferences that are rare.

The privacy preferences that are set to be rare are represented by the content
tuples < night, work > on the pro side and < afternoon, beach >. Rarity is
defined as 0.2% of the network having the privacy preference. In other words,
0.2% of the agents will be infected for the context tuples above. Furthermore,
the top 1% of the agents, with regard to degree, are assigned the rare pri-
vacy preference. This setting emulates the common phenomenon of commercial
companies recruiting users on social media with a high number of followers to
promote their product. The product, in this case, is a privacy preference.

With this setting, it is hypothesized that:

� 2a the influence of the top 1% of agents on the spread of the rare pri-
vacy preference will be significantly higher than in the baseline simulation
setting.

In the baseline setting, anyone can be an influencer, as everyone has an equal
probability of starting the simulation infected with any privacy preference. The
agents of the top 1% are expected to still have a high influence in the baseline
setting due to their degree. In this setting, however, it is hypothesized that their
influence will increase, because they have fewer agents competing for influence
in the spreading of the rare privacy preference.

5.2.3 No Trust

Experiments in this setting are performed to investigate what happens when
social network users don’t trust each when it comes to privacy preferences.
This setting incorporates a static trust value for each agent towards each of their
friends on the network. The trust value is always 0. This setting is mostly used
to prove that the workings of the mechanism. In this setting, it is hypothesized
that:

� 3a no infections are expected to take place in this setting as all infection
rates will be 0 given the trust values of 0.
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5.2.4 Static Trust

Experiments in this setting are performed to investigate how privacy preferences
spread when agents trust each other to some degree and this level of trust also
remains static throughout an experiment.

This setting is an extension of the no trust setting. This setting incorporates
a static trust value for each agent towards each of their friends on the network.
The trust value is a random number between 0 and 1. This setting portrays a
scenario in which OSN users could assign a trust value to each of their friends
once. It is expected that:

� 4a the epidemics will last shorter than in the baseline simulations as the
inclusion of trust negatively influences the infection rate,

� 4b agents’ influence on the spread of privacy preferences will be diminished
compared to the baseline simulations, since how much an agent is trusted
by their neighbours now becomes a factor as well,

� 4c epidemic peaks will be lower than in the baseline simulations.

It should be noted that trust values are only presented on the pro side of the
epidemic. This is the side where content is actually shared and can be perceived
by users of the OSN. This applies to all simulation settings that incorporate
trust.

The hypotheses also show the fact that agents would be able to protect
themselves from opposed privacy preferences by limiting the impact of the epi-
demics.

Experiment Key properties
Baseline Basic settings
Rare privacy preference with high degree influencers Rare privacy preference
Static Trust Trust
No Trust Trust always zero
Dynamic Trust Updated Trust
Dynamic Trust with different violation levels Levels, Updated Trust

Table 4: All the experimental settings of this work

5.2.5 Dynamic Trust

Experiments in this setting are performed to investigate how privacy prefer-
ences spread when agents trust each other to some degree and this level of trust
changes over time. When an agent’s privacy is violated, they trust the perpetra-
tor less than before. Each type of violation leads to the same decrease of trust.
When Alice perceives Bob sharing content that represents a privacy preference
that she opposes, Alice will register a violation. Furthermore, when Bob shares
content that is co-owned by Alice without Alice’s consent, Alice also registers a
privacy violation. Alice will then trust less in the future and be less influenced
by Bob’s content sharing habits.

This setting is an extension of the static trust setting. This is the first setting
that incorporates privacy violations. At each time step, an agent can perceive

41



the two above-mentioned types of privacy violations. However, in this setting,
there is no distinction between the two types. This means the trust value is
equal to

tr =
n+ 2

N + 2

, where n is the number of interactions without privacy violations and N the
number of interactions between two agents. In contrast to static trust setting,
this setting starts off with a trust value of 1, as

tr =
0 + 2

0 + 2
= 1

.
The hypotheses for this setting are similar to the other settings with trust

modelling, namely that:

1. 5a the epidemics will last shorter than in the baseline simulations as the
inclusion of trust negatively influences the infection rate,

2. 5b agents’ influence on the spread of privacy preferences will be diminished
compared to the baseline simulations, since how much an agent is trusted
by their neighbours now becomes a factor as well,

3. 5c epidemic peaks will be lower than in the baseline simulations.

5.2.6 Dynamic trust with two levels of privacy violations

Experiments in this setting are performed to investigate how privacy preferences
spread when agent model trust based on violations with different levels of sever-
ity. This setting is similar to the dynamic trust setting. Agents can adjust their
trust value based on experiences they have with their friends, either positive or
negative experiences. However, in this setting the agents calculate trust value
based on the severity they assign to the two levels of privacy violations.

The severity weights are set to be s1 = 0.2 and s2 = 0.8. This makes
that a level 2 violation is much more severe than level 1 version. This means
that every agent feels that level 2 violations bear more weight. These values
are also intuitive, because with a level 2 privacy violation, private information
is actually revealed to other friends inside the OSN. This is more severe than
perceiving privacy preferences that are not in line with agents. There is no
investigation in the influence on the epidemic dynamic of the severity values,
given the assumption mentioned.

The hypotheses for this setting are similar to the other settings with trust
modelling, namely that:

� 6a the epidemics will last shorter than in the baseline simulations as the
inclusion of trust negatively influences the infection rate,

� 6b agents’ influence on the spread of privacy preferences will be diminished
compared to the baseline simulations, since how much an agent is trusted
by their neighbours now becomes a factor as well,

� 6c epidemic peaks will be lower than in the baseline simulations.
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5.2.7 Opposing privacy preference dynamic

At the beginning of this section, it was explained that opposing privacy prefer-
ences have to be present in any model for privacy preference diffusion as a way
of modelling the users’ beliefs regarding what should stay private. However, as
stated, it is also the case that this work does not investigate the dynamics of
opposing privacy preference epidemics. The dynamics are not perceivable in an
OSN. That is why the aforementioned experiments were run twice.

In the first instance, the experiments are run with the assumption that the
dynamic of the spread of opposing privacy preferences is the same as that of
their counterparts on the pro side. The second situation assumes that the anti
side is static. Agents in this instance have opposing privacy preferences, but
they do not change over time. In both instances, trust is only a factor on the
pro side of the privacy preference diffusion.

5.3 Social Network Data

The experiments outlined here are done on a real online social network. Re-
searchers from the Technical University of Denmark have created the Copen-
hagen Networks Study interaction data set. This data set represents a multi-
layer temporal network. The data were collected at the Technical University
of Denmark and subjects are freshmen at the same university, as documented
by Sapiezynski et al. [23]. The data set captures four networks covering the
subjects; a Facebook friendship network, an SMS text message network, a call
network and a Bluetooth proximity network. The Facebook friendship network
is an adjacency list in which each element represents a friendship relationship
that lasts during the whole experiment during which the data were collected.
The SMS text message network is an adjacency list in which each element rep-
resents an instance of an agent sending a text message to another agent. These
data also capture the timestamp of each text message. The timestamp defines
the number of seconds since the start of the experiment.

The starting point for this project is the Facebook friendship network, but
the other networks can help to derive similarities between different members of
the social network for extensions of the project in the future.

The Facebook friendship network has a total of 800 subjects whose friend-
ships are represented in a static manner. The degree distribution of this network
can be seen in Figure 7. The average degree in this network is 16.07 while the
minimum and maximum degrees are 1 and 101 respectively. Every user in this
network is an agent in the forthcoming experiments. This network is small,
compared to the size of the entire Facebook social network, but, because of the
realism of the network and the promise of the accompanying networks, it is the
best option for this research.

6 Results

This section provides a review of the experiments that were run. As previously
stated, each parameter setting is run 100 times to account for the stochastic
nature of the state dynamics in the DIPP model. The goal of the simulations
is to capture data of the metrics: influence rating of agents, infection endings
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Figure 7: Network of Facebook friendships from The Copenhagen Networks
Study interaction data set [23]

and infection peaks. These data will help in testing the hypotheses set out for
the various simulations settings. Ultimately, an attempt is made to understand
the influences of various circumstances on the diffusion of privacy preferences.
Furthermore, it is investigated whether the introduction of trust modelling limits
the impact of privacy preference epidemics.

The software, created to run the simulations, is written in Python, version
3.8.3. The Mesa library is used as the backbone of the simulations. It provides
customizable agent-model dynamic, random activations mechanisms and data
collection. These properties can also be seen in Table 5.

Software Properties
Programming Language Python 3.8.3
Notables Libraries Mesa
State Stores Python Dictionaries
Data Collector Python Dictionary

Table 5: Software Properties of the DIPP model

The review of the results will build up from the most basic simulation set-
tings to the most elaborate settings, as previously in the method section. Each
experimental setting has been run with the opposing preference dynamic and
without. The experiments were run with flat rates for all privacy preferences for
each agent. The epidemics are also randomly spread throughout the network, as
previously stated. Thus, the results will be discussed with focus on the privacy
preference < night, work >. This is the only privacy preference that has an
alternative initial spread, namely in the setting of rare privacy preferences with
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high degree influencers. We will first explore the results from the experiments in
which the opposing privacy preferences are not static before following up with
the results of the experiments where the opposing preferences are static over all
steps. In the following sections, there will be references to a digital appendix
here.

6.1 Including opposing preference dynamics

In this section, the results are presented for the simulations in which the oppos-
ing privacy preferences states are assumed to follow the same dynamic as the
privacy preferences on the pro side.

6.1.1 Baseline simulations

In the baseline simulations, all parameters settings are as defined in the basic
settings. These simulations are performed to record a baseline impression of the
DIPP model with the basic settings. This baseline is later used for comparison
when experiments are performed with more elaborated versions of the DIPP
model. These comparisons will, in turn, show the effect of including different
factors in the DIPP model. Flat infection and recovery rates are used for both
the pro and the anti side. Agents hold opposing privacy preferences and can
share co-owned content. Trust is not a factor in these simulations.

In Figures 9 and 8, the dynamics of the < night, work > privacy preference
are shown. For each state, the box plot of the number of agents is plotted against
the step in the simulation. In Figure 8, it shows the rapid rise of immune agents
from step 0 while infected and susceptible agents decrease in number from the
same step.

In the extremes of the box plot for the susceptible state, the effect of the
pro side can be observed. It shows that in some experiments the number of
agents susceptible to the < night, work > opposing privacy preference increase
shortly from step 0 before starting to decrease around step 6. This happens as
agents are being infected by the pro side privacy preference and thus becoming
susceptible to this anti side preference. This can be seen in Figure 9, where in
the same region of the graph as in Figure 8. The number of infected agents rises
up until around step 5 of the simulation before decreasing to zero.

More contrasting dynamics can be seen in Figures 10 and 12. This figure
visualizes the aggregated dynamic of the < night, work > privacy preference
when the pro infection rate is 0.75 and the anti recovery rate is 0.75. The
privacy preference is more infectious on the pro side while agents are more
likely to recover from it on the anti side. In this setting, it can be noted the
number of infected agents on the pro side increases more dramatically at the
start of the simulation and the epidemic seems to end at around the same step as
in the previous parameter setting. Due to the rapid increase of infected agents,
there is also a dramatic decrease of susceptible agent on the pro side in the first
20 steps.

On the anti side, the number of susceptible agents increase rapidly in the first
5 steps or so only to later decrease and stabilize at a median value of roughly 300
agents. The spread of this stabilization number is wider than in the dynamic
where all rates were 0.25. The number of resistant agents increases quickly at
the start of the simulation only to stabilize at a median value of roughly 500
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Figure 8: Dynamic of the anti side < night, work > privacy preference with pro
infection rate 0.25, pro recovery rate 0.25, anti infection rate 0.25, anti recovery
rate 0.25

Figure 9: Dynamic of the pro side < night, work > privacy preference with pro
infection rate 0.25, pro recovery rate 0.25, anti infection rate 0.25, anti recovery
rate 0.25
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agents. However, once again, the spread of this stability value seems much wider
than in the dynamic where all rates were 0.25. After this general overview of the
dynamic, with an illustration of the effect of the parameter setting, the focus
switches to the hypotheses for this setting in the next sections.

On the pro side, Figures 10 and 11 depict the two most extremes. Figure
10 displays data from simulations with most favourable parameter settings for
a privacy preference on the pro. The recovery rate is the lowest and infection
rate the highest. Furthermore, in 11 the least favourable parameter settings
is depicted, the infection rate of the opposing privacy preference is lowest and
the recovery rate of said preference is highest. This can be seen in the results
as the peak number of infected in Figure 11 is lower than in Figure 10. The
peak in question is also at step 0 and has a median value of 400.5. This means
this peak stems from the initial infection spread only. It is also noticeable that
the number of recovered agents in the least favourable setting never reaches the
same heights as in the most favourable setting. This seems a manifestation of
the strength of the opposing privacy preference dynamic. When an agent gets
infected with a privacy preference for which the agent is already infected on the
opposing side, the agent become susceptible on this opposing side. This effect
is clearly visible in Figure 11 as at the beginning of the simulation the number
of susceptible agents shortly and sharply increases before dropping to a stable
number.

These observations follow intuitively from the theory behind the DIPP model
and experimental setting. This is a positive point as the baseline seems, from
observations only, to provide a stable base for the latter experiments.

Figure 10: Dynamic of the pro side < night, work > privacy preference with pro
infection rate 0.75, pro recovery rate 0.25, anti infection rate 0.25, anti recovery
rate 0.75
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Figure 11: Dynamic of the pro side < night, work > privacy preference with pro
infection rate 0.25, pro recovery rate 0.75, anti infection rate 0.75, anti recovery
rate 0.25

Figure 12: Dynamic of the pro side < night, work > privacy preference with pro
infection rate 0.75, pro recovery rate 0.25, anti infection rate 0.25, anti recovery
rate 0.75
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6.1.1.1 Infection Rate vs. Recovery Rate

Claim 1a for the baseline simulations was that a privacy preference epidemic
will last longer when the infection rate of this privacy preference is higher than
its recovery rate. To this end, data were collected on when epidemics end.
For each parameter setting, there are 100 repetitions. It follows that for each
privacy preference, there are 100, possibly different, steps at which its epidemic
endings. The data collected are then segregated in data from the pro side and
anti side. For each side, there are three groups; one group where the infection
rate is higher than the recovery. The second group contains data from parameter
settings in which the infection rate is the same as the recovery rate. Finally,
the final group contains data from settings in which the infection rate is lower
than the recovery rate. Using the paired Wilcoxon signed rank test, it is then
tested whether the steps, at which infections end, in group 1 are significantly
later than those in the latter two groups.

The paired Wilcoxon signed rank test is a non-parametric statistical test.
The main idea of the test is to calculate the sign and the absolute difference
between two paired values. The absolute differences are ranked and the rank
is multiplied by the previously calculated sign of the difference. The statistic
calculated is the sum of the ranks of the differences between two data samples.
The sum of the signed ranks is then used to infer whether hypothesis H0 can
be rejected or not given a p value. This test is appropriate, because it is a non-
parametric test. This means there is no need to check whether the collected
data are normally distributed.

The results of these tests can be seen in tables 6 and 7. The results show
that for every privacy preference and side it holds that an epidemic ends later
when the infection rate is higher than the recovery rate as the p-values are all
well below 0.05.
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Scenario Privacy Preference p-value Statistic
1 Afternoon-Beach 0.0000 1268113.5
2 Afternoon-Beach 0.0000 1183497.0
1 Afternoon-Mall 0.0000 1316022.5
2 Afternoon-Mall 0.0000 1117460.5
1 Afternoon-Work 0.0000 1304395.5
2 Afternoon-Work 0.0000 1125978.5
1 Evening-Beach 0.0000 1206737.0
2 Evening-Beach 0.0000 1032806.0
1 Evening-Mall 0.0000 1291506.5
2 Evening-Mall 0.0000 1114230.5
1 Evening-Work 0.0000 1260973.5
2 Evening-Work 0.0000 1117252.5
1 Morning-Beach 0.0000 1314371.0
2 Morning-Beach 0.0000 1144354.0
1 Morning-Mall 0.0000 1295205.5
2 Morning-Mall 0.0000 1084476.5
1 Morning-Work 0.0000 1267104.0
2 Morning-Work 0.0000 1150338.5
1 Night-Beach 0.0000 1243992.0
2 Night-Beach 0.0000 1162820.5
1 Night-Mall 0.0000 1293419.0
2 Night-Mall 0.0000 1179924.5
1 Night-Work 0.0000 1277388.0
2 Night-Work 0.0000 1058577.0

Table 6: Results of paired Wilcoxon signed rank tests that test whether an
infection, on the pro side, ends later when the infection rate is higher than the
recovery rate of privacy preferences. The alternatives tested against are when
the infection rate is the same as the recovery rate (scenario 1) and when the
infection rate is lower than the recovery rate (scenario 2)
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Scenario Privacy Preference p-value Statistic
1 Afternoon-Beach 0.0000 3041008.5
2 Afternoon-Beach 0.0000 3478445.5
1 Afternoon-Mall 0.0000 3037178.0
2 Afternoon-Mall 0.0000 3476607.5
1 Afternoon-Work 0.0000 3036123.5
2 Afternoon-Work 0.0000 3466150.0
1 Evening-Beach 0.0000 3021424.0
2 Evening-Beach 0.0000 3471660.5
1 Evening-Mall 0.0000 3059523.5
2 Evening-Mall 0.0000 3488633.0
1 Evening-Work 0.0000 3037852.5
2 Evening-Work 0.0000 3465699.0
1 Morning-Beach 0.0000 3004843.5
2 Morning-Beach 0.0000 3470422.0
1 Morning-Mall 0.0000 3034753.5
2 Morning-Mall 0.0000 3475077.5
1 Morning-Work 0.0000 3006659.0
2 Morning-Work 0.0000 3466522.0
1 Night-Beach 0.0000 3046827.0
2 Night-Beach 0.0000 3468488.0
1 Night-Mall 0.0000 3025085.0
2 Night-Mall 0.0000 3461368.5
1 Night-Work 0.0000 3023021.0
2 Night-Work 0.0000 3460549.0

Table 7: Results of paired Wilcoxon signed rank tests that test whether an
epidemic, on the anti side, ends later when the infection rate is higher than the
recovery rate of privacy preferences. The alternatives tested against are when
the infection rate is the same as the recovery rate (scenario 1) and when the
infection rate is lower than the recovery rate (scenario 2)

6.1.1.2 Agent Influence

The influence rating measure, previously defined, is used to measure an agent’s
influence on the spread of privacy preference. After each simulation, the influ-
ence ratings of each agent on each privacy preference on each side are calculated
and the 100 ratings are averaged for each setting. In Figures 13 and 14, the
influence ratings are plotted against the node degree of an agent on the social
network. The graph suggests the existence of the aforementioned positive cor-
relation between an agent’s degree in a social network and its influence on the
spread of a privacy preference.‘

To find evidence for this, hypothesis 1b, the Pearson correlation coefficient is
calculated between the influence ratings and the corresponding agent’s degree
on the social network. The results can be seen in Table 8. All correlation
coefficients were found to be significant with p ≤ 0.05. This shows that there
is a positive correlation between an agent’s degree in the network and their
influence in the spreading of privacy preferences.
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Figure 13: Average agent influence on the spread of the pro side< night, work >
privacy preference with pro infection rate 0.75, pro recovery rate 0.25, anti
infection rate 0.25, anti recovery rate 0.75. Captured from results of the baseline
simulations. Plotted against the degree of the agent on the social network

Figure 14: Average agent influence on the spread of the pro side< night, work >
privacy preference with pro infection rate 0.25, pro recovery rate 0.75, anti
infection rate 0.75, anti recovery rate 0.25. Captured from results of the baseline
simulations. Plotted against the degree of the agent on the social network
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Median r 0.48
Mean r 0.48
Maximum r 0.62
Minimum r 0.49

Table 8: Summary of the Pearson correlation coefficients between the influence
rating of an agent and the degree of said agent on the social network

6.1.2 Rare privacy preference with high degree influencers

Experiments in this setting are performed to investigate the ability of a few of the
most influential users to spread privacy preferences that are rare. Specifically,
the top 1% of agents, with regard to degree, are assigned privacy preference
infections of a privacy preference with an initial spread of 0.2% of the agents in
the network. The influence ratings of these agents are analysed to see whether
they are more influential in this setting that in the baseline simulations.

The < night, work > pro privacy preference is the rare privacy preference
in this experimental setting. In Figures 15 and 16, the aggregates of the state
dynamics of the < night, work > pro privacy preference are shown, for the most
favourable and least favourable parameter settings.

In Figure 15, one can see that the peak in the number of infected agents
seems to be later than in the baseline simulations in Figure 10. Furthermore, it is
noticeable that there are a lot more outliers in the box plots of this experimental
setting compared to the baseline setting.

Figure 15: Dynamic of the pro side < night, work > privacy preference with pro
infection rate 0.75, pro recovery rate 0.25, anti infection rate 0.25, anti recovery
rate 0.75

53



Figure 16: Dynamic of the pro side < night, work > privacy preference with pro
infection rate 0.25, pro recovery rate 0.75, anti infection rate 0.75, anti recovery
rate 0.25

In Figure 16, once again, there are more outliers than observed in the previ-
ous setting. The number of infection rates peeks lower due to the lower infection
rate. It can also be noted that the number of recovered agents peaks lower than
when infection rate is 0.75 in Figure 15. This is most likely due to the high
infection rate of the opposing privacy preference. This effect is similar to that
seen in Figure 11. However, compared to Figure 11, in Figure 16 there is still a
peak to be seen in the number of infected agents between step 10 and 20 of the
simulations. This likely shows the power the small number of well-connected
influencers, that try to spread this rare privacy preference, have.

In previous sections, the claim (2a) was made that the influence of the top
1% of agents on the social network, with regard to degree, increases when they
are the only ones spreading a rare privacy preference. To prove this claim, data
are collected on the influence of each agent on the spread of a privacy preference.
In Figures 17 and 18, the average influence, on the spread of the night, work
privacy preference pro side, of an agent is plotted against the agent’s degree on
the social network. All agents in these figures are the top 1% of agents, with
regard to degree. These influence figures can be compared to the figures of agent
influence spreading the same privacy preference in the basic setting, as seen in
Figures 14 and 13. It is noticeable that the average influence of the top 1% of
agents rises when the privacy preference is rare. This suggests that these agents
become more influential when they spread rare privacy preferences.

To find evidence for this claim, the paired Wilcoxon signed rank test is once
again used to test whether the influence of the top 1% of agents, for the privacy
preference night, work on the pro side, is higher when the privacy preference is
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Figure 17: Average agent influence on the spread of the pro side< night, work >
privacy preference with pro infection rate 0.75, pro recovery rate 0.25, anti infec-
tion rate 0.25, anti recovery rate 0.75. night, work is a rare privacy preference
in this setting. Plotted against the degree of the agent on the social network

Figure 18: Average agent influence on the spread of the pro side< night, work >
privacy preference with pro infection rate 0.25, pro recovery rate 0.75, anti infec-
tion rate 0.75, anti recovery rate 0.25. night, work is a rare privacy preference
in this setting. Plotted against the degree of the agent on the social network
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Figure 19: Average agent influence on the spread of the pro side< night, work >
privacy preference with pro infection rate 0.75, pro recovery rate 0.25, anti
infection rate 0.25, anti recovery rate 0.75. Captured from baseline simulations.
Plotted against the degree of the agent on the social network

Figure 20: Top 1% of agents, with regard to degree, and their average agent
influence on the spread of the pro side < night, work > privacy preference with
pro infection rate 0.25, pro recovery rate 0.75, anti infection rate 0.75, anti
recovery rate 0.25. Captured from baseline simulations. Plotted against the
degree of the agent on the social network
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rare. Since the test is done per parameters setting, it seems tedious to display
results from all 81 parameter settings. Thus, in Figure 9, the parameter settings
are shown for which the claim does not hold, p ≥ 0.5 for these settings. This
means that the influence rating of the top 1% of agents does not increase in
all parameters settings when the privacy preference they spread is rare. Thus,
Claim 2a does not hold in all parameter settings. All parameters settings for
which the claim does not hold have a pro side infection rate of 0.75. This is the
maximum possible infection rate. This suggests that when the infection rate is
at its highest there is no increase in top 1% of agents’ influence ratings when
spreading rare privacy preferences. However, there is still evidence that, in 76
out of 81 parameter settings the influence rating of the best-connected agents
in the social network increases when they share content that represents a rare
privacy preference.

Anti Recovery Rate Anti Infection Rate Pro Recovery Rate Pro Infection Rate Statistic p-value
0.5 0.25 0.25 0.75 530258.5 0.244110
0.5 0.50 0.25 0.75 543861.0 0.239291
0.75 0.50 0.25 0.75 466986.0 0.093379
0.5 0.75 0.25 0.75 550419.5 0.221511
0.5 0.50 0.50 0.75 512343.5 0.226137

Table 9: Parameter settings for which the influence of the top 1% of agents,
with regard to degree, is not higher when the privacy preference night, work
becomes rare.

6.1.3 No Trust

In this setting, the infection rate of privacy preference is proportional to the trust
between two agents with a static trust value of 0. The data on the epidemics
in this simulation setting show no rise in infection on the pro side, as expected.
This phenomenon can be seen in Figures 21 and 22, with data collected from
the two most extreme setting once again.

It is noticeable from the graphs that the number of infected agent only
decrease after step 0. In the least favourable settings for the pro side norms, the
number of infected agent declines even faster as more agents are likely to adapt
the opposing privacy preference due to its high infection rate. These results are
in line with Claim 3a, namely that no infections were expected to take place in
this setting.
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Figure 21: Dynamic of the pro side < night, work > privacy preference with pro
infection rate 0.75, pro recovery rate 0.25, anti infection rate 0.25, anti recovery
rate 0.75

Figure 22: Dynamic of the pro side < night, work > privacy preference with pro
infection rate 0.25, pro recovery rate 0.75, anti infection rate 0.75, anti recovery
rate 0.25
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6.1.4 Static Trust

The simulations of this setting reflects a situation in which an agent can specify
trust values to other agents they are connected to in a social network. In
contrast to the no trust setting, agents in these simulations are assigned random
static trust values at the start of each simulation. The purpose is to find out if
epidemics are less impactful when static trust is introduced.

In Figures 23 and 24, the state dynamics of the two most extreme settings
are displayed once again. It can be noted that in the most favourable setting for
the pro side, Figure 23, the number of infected agents always peak below 600
agents while in the baseline simulations the peak at times is even higher than
500. This is in line with the expectations for this setting. It was also expected
that the epidemics would last shorter in this setting, however, there is no clear
indication of that in these figures.

Figure 23: Dynamic of the pro side < night, work > privacy preference with pro
infection rate 0.75, pro recovery rate 0.25, anti infection rate 0.25, anti recovery
rate 0.75. Taken from simulations in which agent holds static trust values.

In Figures 13 and 26, the average influence of agents is plotted against the
degree of the agents on the social network. Although there still seems to be a
correlation between the degree of an agent and its influence in the spread of a
network, the influence seems to be lower compared to the baseline simulation
results in Figures 25 and 26. Using the paired Wilcoxon signed rank test, the
hypothesis (4b) that are agents’ influences are diminished in the presence of
static trust values is tested. The results of these tests can be found in the
appendix. The results show that for each parameter setting there is significant
evidence that the influence of agents is diminished when static trust values are
introduced compared to the baseline simulations.
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Figure 24: Dynamic of the pro side < night, work > privacy preference with pro
infection rate 0.25, pro recovery rate 0.75, anti infection rate 0.75, anti recovery
rate 0.25. Taken from simulations in which agent holds static trust values.

Figure 25: Average agent influence on the spread of the pro side< night, work >
privacy preference with pro infection rate 0.75, pro recovery rate 0.25, anti infec-
tion rate 0.25, anti recovery rate 0.75. Captured from results of the simulations
in which trust is a static random value. Plotted against the degree of the agent
on the social network
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Figure 26: Average agent influence on the spread of the pro side< night, work >
privacy preference with pro infection rate 0.25, pro recovery rate 0.75, anti infec-
tion rate 0.75, anti recovery rate 0.25. Captured from results of the simulations
in which trust is a static random value. Plotted against the degree of the agent
on the social network

The same statistical test is used to determine whether a privacy preference
epidemic endings sooner when static trust is introduced, Claim 4b. The epi-
demic endings are the step at which a privacy preference is no longer present
on the network as the number of agents infected by it is 0. Including all 81
parameter settings would be tedious and, thus, only the significant results are
shown in Table 10. All test results that are not significant will be included in the
appendix. There are 30 out of 81 parameter settings for which the claim holds.
Thus, in 30 out of 81 parameter settings, the epidemics end sooner when agents
hold static trust values towards each other compared to the baseline simulations
in which trust is not a factor.

Finally, Claim 4c, it was expected that the peak in the number of infected
agents would be lower in this setting compared to the baseline. To investigate
this, all epidemic peaks are collected over all parameter settings for all privacy
preferences. Using a paired Wilcoxon signed rank test, it is tested whether the
epidemic peak is, in fact, lower when static trust values are introduced. The
results of these tests are shown in Table 11. It shows that there are 53 parameter
settings for which the claim holds. Thus, in 53 out of 81 parameters settings
the peak in the number of infected agents during a privacy preference epidemic
is lower when agents hold static trust values towards each other compared to
the baseline simulations in which trust is not a factor.

For the claims 4a, 4b and 4c, mixed results appear. While there is over-
whelming proof for Claim 4b, the other two claims only holds in some of the 81
parameters settings.
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Pro Infection Rate Pro Recovery Rate Anti Infection Rate Anti Recovery Rate p-value Statistic
0.25 0.50 0.25 0.25 0.0014 1375145.5
0.25 0.50 0.25 0.75 0.0000 1316763.0
0.25 0.50 0.50 0.75 0.0063 1129559.5
0.25 0.75 0.25 0.25 0.0000 1522890.5
0.25 0.75 0.25 0.75 0.0005 1074578.0
0.25 0.75 0.50 0.25 0.0000 1652887.0
0.25 0.75 0.75 0.25 0.0000 1711084.5
0.50 0.25 0.25 0.25 0.0008 1411722.5
0.50 0.25 0.25 0.50 0.0013 1357900.5
0.50 0.50 0.25 0.25 0.0057 1292855.0
0.50 0.50 0.25 0.50 0.0000 1327058.5
0.50 0.50 0.25 0.75 0.0000 1459217.5
0.50 0.50 0.50 0.75 0.0018 1171178.5
0.50 0.50 0.75 0.75 0.0047 1116017.5
0.50 0.75 0.25 0.25 0.0073 1254611.5
0.50 0.75 0.25 0.50 0.0004 1193142.5
0.50 0.75 0.25 0.75 0.0000 1163499.0
0.50 0.75 0.50 0.25 0.0018 1289181.0
0.75 0.25 0.25 0.25 0.0000 1415608.0
0.75 0.25 0.25 0.50 0.0000 1538447.0
0.75 0.25 0.50 0.25 0.0160 1404503.0
0.75 0.25 0.50 0.50 0.0401 1323529.5
0.75 0.50 0.25 0.25 0.0239 1294681.5
0.75 0.50 0.25 0.50 0.0009 1290205.0
0.75 0.50 0.25 0.75 0.0000 1539400.0
0.75 0.50 0.50 0.75 0.0000 1246636.0
0.75 0.75 0.25 0.25 0.0049 1174675.5
0.75 0.75 0.25 0.50 0.0002 1160257.5
0.75 0.75 0.25 0.75 0.0000 1254801.0
0.75 0.75 0.50 0.75 0.0148 995425.0

Table 10: Significant (p < 0.05) results of paired Wilcoxon signed rank tests
that test whether an epidemic, on the pro side, ends sooner when agents hold
static trust values towards instead of no inclusion of trust at all in the baseline.
All parameter settings that are not included returned insignificant results.
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Pro Infection Rate Pro Recovery Rate Anti Infection Rate Anti Recovery p-value Statistic
0.25 0.25 0.25 0.25 0.0000 389536.0
0.25 0.25 0.25 0.50 0.0000 614583.5
0.25 0.25 0.25 0.75 0.0000 720597.0
0.25 0.25 0.50 0.75 0.0000 670555.5
0.25 0.25 0.75 0.75 0.0000 568809.0
0.25 0.75 0.25 0.75 0.0401 362132.5
0.50 0.25 0.25 0.25 0.0000 719361.5
0.50 0.25 0.25 0.50 0.0000 720600.0
0.50 0.25 0.25 0.75 0.0000 720600.0
0.50 0.25 0.50 0.25 0.0000 576418.5
0.50 0.25 0.50 0.50 0.0000 716883.5
0.50 0.25 0.50 0.75 0.0000 720600.0
0.50 0.25 0.75 0.25 0.0058 377975.5
0.50 0.25 0.75 0.50 0.0000 599863.5
0.50 0.25 0.75 0.75 0.0000 720600.0
0.50 0.50 0.25 0.25 0.0000 614542.5
0.50 0.50 0.25 0.50 0.0000 676682.0
0.50 0.50 0.25 0.75 0.0000 716045.5
0.50 0.50 0.50 0.25 0.0069 378482.0
0.50 0.50 0.50 0.50 0.0000 415646.5
0.50 0.50 0.50 0.75 0.0000 477696.0
0.50 0.50 0.75 0.75 0.0041 376865.5
0.50 0.75 0.25 0.25 0.0000 416714.0
0.50 0.75 0.25 0.50 0.0000 462744.5
0.50 0.75 0.25 0.75 0.0000 500557.5
0.50 0.75 0.75 0.50 0.0307 362922.5
0.75 0.25 0.25 0.25 0.0000 720581.0
0.75 0.25 0.25 0.50 0.0000 720600.0
0.75 0.25 0.25 0.75 0.0000 720600.0
0.75 0.25 0.50 0.25 0.0000 718979.5
0.75 0.25 0.50 0.50 0.0000 720598.5
0.75 0.25 0.50 0.75 0.0000 720599.0
0.75 0.25 0.75 0.25 0.0000 662259.5
0.75 0.25 0.75 0.50 0.0000 720572.0
0.75 0.25 0.75 0.75 0.0000 720599.0
0.75 0.50 0.25 0.25 0.0000 719168.0
0.75 0.50 0.25 0.50 0.0000 720578.0
0.75 0.50 0.25 0.75 0.0000 720600.0
0.75 0.50 0.50 0.25 0.0000 606398.0
0.75 0.50 0.50 0.50 0.0000 669907.5
0.75 0.50 0.50 0.75 0.0000 712045.5
0.75 0.50 0.75 0.25 0.0000 456615.5
0.75 0.50 0.75 0.50 0.0000 505900.0
0.75 0.50 0.75 0.75 0.0000 609258.0
0.75 0.75 0.25 0.25 0.0000 667746.5
0.75 0.75 0.25 0.50 0.0000 700142.5
0.75 0.75 0.25 0.75 0.0000 713277.5
0.75 0.75 0.50 0.25 0.0000 478361.5
0.75 0.75 0.50 0.50 0.0000 529129.0
0.75 0.75 0.50 0.75 0.0000 570944.5
0.75 0.75 0.75 0.25 0.0001 387697.5
0.75 0.75 0.75 0.50 0.0003 390430.0
0.75 0.75 0.75 0.75 0.0000 403065.5

Table 11: Significant (p < 0.05) results of paired Wilcoxon signed rank tests
that test whether an epidemic, on the pro side, peaks lower when agents hold
static trust values towards instead of no inclusion of trust at all in the baseline.
All parameter settings that are not included returned insignificant results.
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6.1.5 Dynamic Trust

In this simulation setting, the agents keep track of privacy violations during
simulations and use these records to calculate trust values they have towards
other agents they are connected to. The two different types of privacy viola-
tions, described previously, hold the same weight in this setting. The impact
of epidemics is expected to be reduced with the introduction of dynamic trust
values.

Figures 27 and 28, show the aggregated state dynamics of the simulations
from this setting in the most favourable and least favourable setting respectively.
In the most favourable setting, it is noticeable that the rise of infected agents is
less steep than in the same graph from the baseline simulations. This is likely
due to the fact that infection rates are limited by the introduction of trust.
Similarly to the static trust setting, it is noticeable that in the least favourable
setting the number of recovered agent never reaches the same height as the same
graph from the baseline simulations. This is likely due to the fact that infection
are so limited and the number of infected only really decreases over time and
so there are no agents that need to recover.

Figure 27: Dynamic of the pro side < night, work > privacy preference with pro
infection rate 0.75, pro recovery rate 0.25, anti infection rate 0.25, anti recovery
rate 0.75. Taken from simulations in which agent holds dynamic trust values
derived from single level privacy violations.

In terms of influence, Claim 5b, the agents in these simulations were expected
to have less influence on the spread of privacy preferences. Using a paired
Wilcoxon signed rank test, this claim is tested for each parameter setting. The
results show that this claim holds for all but one parameter setting. When the
pro infection rate, pro recovery rate, anti infection rate and anti recovery rate
are 0.75, 0.25, 0.25 and 0.75, respectively, the influence of agents on the spread
privacy preferences is not greater in the baseline setting than in this setting
dynamic trust values with single level privacy violations. This setting is once
again the most favourable setting for the pro side epidemics. Thus, in 80 out of
81 parameters settings the influence ratings of agents in the spread of privacy
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Figure 28: Dynamic of the pro side < night, work > privacy preference with pro
infection rate 0.75, pro recovery rate 0.25, anti infection rate 0.25, anti recovery
rate 0.75. Taken from simulations in which agent holds dynamic trust values
derived from single level privacy violations.

preferences are lower when agents hold dynamic trust values towards each other
compared to the baseline simulations in which trust is not a factor at all.

With regard to epidemic endings and peaks, claims 5a and 5c, these were
expected to earlier and lower, respectively, compared to the baseline setting.
Using a paired Wilcoxon signed rank test, this claim is tested for each parameter
setting. The significant results of these tests can be seen in tables 12 and 13.
All test results that are not significant will be included in the appendix. In
the tables, we can observe that claims 5a and 5c do not hold in all parameter
settings. Claim 5a holds in 20 out of 81 parameter settings. Claim 5c holds in
45 out of 81 parameter settings.

Thus, in 20 out of 81 parameters settings the privacy preference epidemics
end sooner when agents hold dynamic trust values towards each other compared
to the baseline simulations in which trust is not a factor at all. Furthermore,
in 45 out of 81 parameters settings the peak in the number of infected agents
during a privacy preference epidemic is lower when agents hold dynamic trust
values towards each other compared to the baseline simulations in which trust
is not a factor at all. It follows that these two hypothesis cannot be accepted
for all parameter settings and more investigation is needed to find what the
relationship is between the parameters settings and whether these claims hold.

65



Pro Infection Rate Pro Recovery Rate Anti Infection Rate Anti Recovery Rate p-value Statistic
0.25 0.50 0.25 0.25 0.0000 1429791.0
0.25 0.75 0.25 0.25 0.0000 1465631.0
0.50 0.25 0.25 0.25 0.0016 1411103.0
0.75 0.25 0.25 0.25 0.0332 1373228.5
0.75 0.25 0.25 0.50 0.0012 1383678.0
0.50 0.50 0.25 0.75 0.0002 1275602.5
0.75 0.50 0.25 0.75 0.0169 1279388.0
0.25 0.50 0.50 0.25 0.0000 1428274.5
0.25 0.75 0.50 0.25 0.0000 1729185.0
0.50 0.75 0.50 0.25 0.0000 1311028.5
0.75 0.25 0.50 0.25 0.0421 1397084.5
0.75 0.75 0.50 0.25 0.0036 1211893.0
0.25 0.75 0.50 0.50 0.0000 1322085.5
0.50 0.50 0.50 0.75 0.0043 1146188.5
0.75 0.25 0.50 0.75 0.0023 1289108.0
0.75 0.50 0.50 0.75 0.0007 1220783.5
0.25 0.50 0.75 0.25 0.0000 1549867.5
0.25 0.75 0.75 0.25 0.0000 1882449.5
0.50 0.75 0.75 0.25 0.0000 1363735.5
0.25 0.75 0.75 0.50 0.0000 1396217.5

Table 12: Significant (p < 0.05) results of paired Wilcoxon signed rank tests
that test whether an epidemic, on the pro side, ends sooner when agents keep
track of privacy violations to derive dynamic trust values towards instead of
no inclusion of trust at all in the baseline. All parameter settings that are not
included returned insignificant results.

Pro Infection Rate Pro Recovery Rate Anti Infection Rate Anti Recovery Rate p-value Statistic
0.25 0.25 0.25 0.25 0.0026 379229.0
0.25 0.25 0.25 0.50 0.0000 584633.0
0.25 0.25 0.25 0.75 0.0000 716551.5
0.25 0.25 0.50 0.75 0.0000 673631.0
0.25 0.25 0.75 0.75 0.0000 555729.5
0.25 0.75 0.50 0.50 0.0401 367650.0
0.50 0.25 0.25 0.25 0.0000 620028.0
0.50 0.25 0.25 0.50 0.0000 688641.0
0.50 0.25 0.25 0.75 0.0000 696939.5
0.50 0.25 0.50 0.25 0.0000 491182.5
0.50 0.25 0.50 0.50 0.0000 688366.5
0.50 0.25 0.50 0.75 0.0000 698815.0
0.50 0.25 0.75 0.50 0.0000 560635.5
0.50 0.25 0.75 0.75 0.0000 707288.5
0.50 0.50 0.25 0.25 0.0000 430332.0
0.50 0.50 0.25 0.50 0.0000 508052.5
0.50 0.50 0.25 0.75 0.0000 606747.5
0.50 0.50 0.50 0.50 0.0159 374779.5
0.50 0.50 0.50 0.75 0.0000 431475.5
0.50 0.75 0.25 0.50 0.0197 373143.0
0.50 0.75 0.25 0.75 0.0010 380889.0
0.75 0.25 0.25 0.25 0.0000 598686.5
0.75 0.25 0.25 0.50 0.0000 634084.0
0.75 0.25 0.25 0.75 0.0000 623018.0
0.75 0.25 0.50 0.25 0.0000 583421.5
0.75 0.25 0.50 0.50 0.0000 656580.5
0.75 0.25 0.50 0.75 0.0000 650906.5
0.75 0.25 0.75 0.25 0.0000 515754.0
0.75 0.25 0.75 0.50 0.0000 657032.0
0.75 0.25 0.75 0.75 0.0000 670303.0
0.75 0.50 0.25 0.25 0.0000 486273.0
0.75 0.50 0.25 0.50 0.0000 534984.0
0.75 0.50 0.25 0.75 0.0000 583811.5
0.75 0.50 0.50 0.25 0.0000 412814.0
0.75 0.50 0.50 0.50 0.0000 470826.5
0.75 0.50 0.50 0.75 0.0000 547485.5
0.75 0.50 0.75 0.25 0.0171 368852.0
0.75 0.50 0.75 0.50 0.0000 397294.5
0.75 0.50 0.75 0.75 0.0000 482050.5
0.75 0.75 0.25 0.25 0.0000 411639.5
0.75 0.75 0.25 0.50 0.0000 442081.0
0.75 0.75 0.25 0.75 0.0000 469817.0
0.75 0.75 0.50 0.50 0.0223 370046.0
0.75 0.75 0.50 0.75 0.0000 417810.5
0.75 0.75 0.75 0.75 0.0020 378351.5

Table 13: Significant (p < 0.05) results of paired Wilcoxon signed rank tests
that test whether an epidemic, on the pro side, peaks lower when agents keep
track of privacy violations to derive dynamic trust values towards instead of
no inclusion of trust at all in the baseline. All parameter settings that are not
included returned insignificant results.
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6.1.6 Dynamic trust with two levels of privacy violations

In this simulation setting, the agents keep track of privacy violations during
simulations and use these records to calculate trust values they have towards
other agents they are connected to. The two different types of privacy viola-
tions, described previously, hold different weights in this setting. The impact
of epidemics is expected to be reduced with the introduction of dynamic trust
values.

Figures 29 and 30, show the aggregated state dynamics of the simulations
from this setting in the most favourable and least favourable setting respectively.
In the most favourable setting, it is noticeable that the rise of infected agents is
less steep than in the same graph from the baseline simulations. This is likely
due to the fact that infection rates are limited by the introduction of trust.
When the pro infection rate is 0.75, it is noticeable that the epidemic peak
is lower than in the setting where there was only one severity for all privacy
violations.

Figure 29: Dynamic of the pro side < night, work > privacy preference with pro
infection rate 0.75, pro recovery rate 0.25, anti infection rate 0.25, anti recovery
rate 0.75. Taken from simulations in which agent holds dynamic trust values
derived from two level privacy violations.

In terms of influence, Claim 6b, the agents in these simulations were expected
to have less influence on the spread of privacy preferences. Using a paired
Wilcoxon signed rank test, this claim is tested for each parameter setting. The
results show that this claim holds for all parameters. Thus, all agents have less
influence when dynamic trust values are used that are derived from two levels
of privacy violations compared to the baseline simulations in which trust is not
a factor at all.

With regard to epidemic endings and peaks, claims 6a and 6c, these were
expected to earlier and lower, respectively, compared to the baseline setting.
Using a paired Wilcoxon signed rank test, this claim is tested for each parameter
setting. The significant results of these tests can be seen in tables 14 and 15.
All test results that are not significant will be included in the appendix. In
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Figure 30: Dynamic of the pro side < night, work > privacy preference with pro
infection rate 0.75, pro recovery rate 0.25, anti infection rate 0.25, anti recovery
rate 0.75. Taken from simulations in which agent holds dynamic trust values
derived from two level privacy violations.

these tables, we can observe that claims 6a and 6c do not hold in all parameter
settings. Claim 6a holds in 34 out of 81 parameter settings. Claim 6c holds
in 53 out of 81 parameter settings. Thus, in 34 out of 81 parameters settings
the privacy preference epidemics end sooner when agents hold dynamic trust
values towards each other compared to the baseline simulations in which trust
is not a factor at all. Furthermore, in 53 out of 81 parameters settings the
peak in the number of infected agents during a privacy preference epidemic is
lower when agents hold dynamic trust values, that are derived from two levels
of privacy violation, towards each other compared to the baseline simulations in
which trust is not a factor at all. It follows that these two hypothesis cannot be
accepted for all parameter settings and more investigation is needed to find what
the relationship is between the parameters settings and whether these claims
hold.
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Pro Infection Rate Pro Recovery Rate Anti Infection Rate Anti Recovery Rate p-value Statistic
0.25 0.50 0.25 0.25 0.0000 1748632.5
0.25 0.50 0.25 0.75 0.0000 1301283.5
0.25 0.50 0.50 0.25 0.0000 1858450.5
0.25 0.50 0.75 0.25 0.0000 2062514.0
0.25 0.75 0.25 0.25 0.0000 1828664.0
0.25 0.75 0.25 0.50 0.0000 1633911.0
0.25 0.75 0.25 0.75 0.0000 1196497.5
0.25 0.75 0.50 0.25 0.0000 1986458.0
0.25 0.75 0.50 0.50 0.0000 1888760.5
0.25 0.75 0.75 0.25 0.0000 2063965.5
0.25 0.75 0.75 0.50 0.0000 2089486.0
0.50 0.25 0.25 0.25 0.0065 1398616.5
0.50 0.25 0.25 0.50 0.0001 1377698.0
0.50 0.50 0.25 0.25 0.0000 1409139.0
0.50 0.50 0.25 0.50 0.0000 1329216.0
0.50 0.50 0.25 0.75 0.0000 1455341.5
0.50 0.75 0.25 0.25 0.0000 1407603.0
0.50 0.75 0.25 0.50 0.0242 1165258.5
0.50 0.75 0.25 0.75 0.0000 1069027.5
0.50 0.75 0.50 0.25 0.0000 1622416.5
0.50 0.75 0.75 0.25 0.0000 1686290.5
0.75 0.25 0.25 0.25 0.0083 1382614.0
0.75 0.25 0.25 0.50 0.0000 1579416.0
0.75 0.25 0.25 0.75 0.0047 1322711.5
0.75 0.50 0.25 0.50 0.0000 1270375.0
0.75 0.50 0.25 0.75 0.0000 1601083.0
0.75 0.50 0.50 0.50 0.0212 1215522.0
0.75 0.50 0.50 0.75 0.0000 1291858.5
0.75 0.50 0.75 0.75 0.0197 1119988.0
0.75 0.75 0.25 0.25 0.0000 1317299.0
0.75 0.75 0.25 0.50 0.0404 1116817.0
0.75 0.75 0.25 0.75 0.0000 1238330.5
0.75 0.75 0.50 0.25 0.0000 1330048.0
0.75 0.75 0.75 0.25 0.0000 1408565.5

Table 14: Significant (p < 0.05) results of paired Wilcoxon signed rank tests
that test whether an epidemic, on the pro side, ends sooner when agents keep
track of two levels of privacy violations to derive dynamic trust values towards
instead of no inclusion of trust at all in the baseline. All parameter settings
that are not included returned insignificant results.
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Pro Infection Rate Pro Recovery Rate Anti Infection Rate Anti Recovery Rate p-value Statistic
0.25 0.25 0.25 0.25 0.0000 403785.0
0.25 0.25 0.25 0.50 0.0000 612682.5
0.25 0.25 0.25 0.75 0.0000 720599.0
0.25 0.25 0.50 0.75 0.0000 672473.5
0.25 0.25 0.75 0.75 0.0000 565549.0
0.25 0.75 0.75 0.50 0.0293 371148.5
0.50 0.25 0.25 0.25 0.0000 719339.0
0.50 0.25 0.25 0.50 0.0000 720600.0
0.50 0.25 0.25 0.75 0.0000 720600.0
0.50 0.25 0.50 0.25 0.0000 586555.0
0.50 0.25 0.50 0.50 0.0000 716854.0
0.50 0.25 0.50 0.75 0.0000 720600.0
0.50 0.25 0.75 0.25 0.0000 397227.0
0.50 0.25 0.75 0.50 0.0000 592471.5
0.50 0.25 0.75 0.75 0.0000 720600.0
0.50 0.50 0.25 0.25 0.0000 617399.5
0.50 0.50 0.25 0.50 0.0000 681034.0
0.50 0.50 0.25 0.75 0.0000 715144.5
0.50 0.50 0.50 0.25 0.0020 378337.0
0.50 0.50 0.50 0.50 0.0000 417980.0
0.50 0.50 0.50 0.75 0.0000 463582.0
0.50 0.75 0.25 0.25 0.0000 412355.5
0.50 0.75 0.25 0.50 0.0000 454664.0
0.50 0.75 0.25 0.75 0.0000 523773.5
0.50 0.75 0.50 0.25 0.0496 363411.5
0.50 0.75 0.75 0.75 0.0219 372623.0
0.75 0.25 0.25 0.25 0.0000 720600.0
0.75 0.25 0.25 0.50 0.0000 720600.0
0.75 0.25 0.25 0.75 0.0000 720600.0
0.75 0.25 0.50 0.25 0.0000 717325.0
0.75 0.25 0.50 0.50 0.0000 720600.0
0.75 0.25 0.50 0.75 0.0000 720600.0
0.75 0.25 0.75 0.25 0.0000 668418.5
0.75 0.25 0.75 0.50 0.0000 720544.0
0.75 0.25 0.75 0.75 0.0000 720600.0
0.75 0.50 0.25 0.25 0.0000 719020.0
0.75 0.50 0.25 0.50 0.0000 720593.5
0.75 0.50 0.25 0.75 0.0000 720600.0
0.75 0.50 0.50 0.25 0.0000 612469.0
0.75 0.50 0.50 0.50 0.0000 676432.5
0.75 0.50 0.50 0.75 0.0000 715463.5
0.75 0.50 0.75 0.25 0.0000 451849.0
0.75 0.50 0.75 0.50 0.0000 509765.5
0.75 0.50 0.75 0.75 0.0000 609984.5
0.75 0.75 0.25 0.25 0.0000 680696.5
0.75 0.75 0.25 0.50 0.0000 702383.0
0.75 0.75 0.25 0.75 0.0000 712960.0
0.75 0.75 0.50 0.25 0.0000 453909.5
0.75 0.75 0.50 0.50 0.0000 517608.5
0.75 0.75 0.50 0.75 0.0000 563601.5
0.75 0.75 0.75 0.25 0.0000 400012.0
0.75 0.75 0.75 0.50 0.0000 409119.0
0.75 0.75 0.75 0.75 0.0000 416155.0

Table 15: Significant (p < 0.05) results of paired Wilcoxon signed rank tests
that test whether an epidemic, on the pro side, peaks lower when agents keep
track of two levels of privacy violations to derive dynamic trust values towards
instead of no inclusion of trust at all in the baseline. All parameter settings
that are not included returned insignificant results.

6.2 Pro privacy preference dynamics only

In this section, the results are presented for the simulations in which the oppos-
ing privacy preferences states are assumed to only change given infections on
the pro side.

70



6.2.1 Baseline simulations

Similar to before, box plots are utilized to illustrate the state dynamics of each
privacy preference. In Figures 31 and 32, the state dynamics of the privacy
preference night, work are displayed for a pro infection rate of 0.25 and pro
recovery rate of 0.25. Comparing the pro side dynamics between this setting
and the baseline simulations with fully dynamic privacy preferences in Figure
9, one can see that in this setting the epidemic grows strongly before declining
and this is not the case in the previous baseline simulations.

In terms of the anti side, it is noticeable that the dynamic involves no recov-
eries only agents becoming infected with the pro preference and thus becoming
susceptible to the opposing privacy preference. This can be seen in the fact the
dynamic is solely the decline of the number of infected agents mirrored the rise
of susceptible agents.

Figure 31: Dynamic of the pro side < night, work > privacy preference with pro
infection rate 0.25, pro recovery rate 0.25, anti infection rate 0.25, anti recovery
rate 0.25. Taken from simulations in which the opposing privacy preferences
states are assumed to only change given infections on the pro side.

In terms of the most favourable setting for the pro side, in Figure 33, it
is noticeable that the rise of the number of infected agents is more rapid that
when both the infection rate and recovery rate are 0.75. Conversely, the decline
of the number of susceptible agents is also more steep. On the contrary in the
least favourable setting, in Figure 34, the number of susceptible agents does
not reach the same heights as in the baseline simulations with fully dynamic
opposing privacy preferences in Figure 11. Furthermore, the epidemic seems to
also last longer.

After these initials observations, the hypotheses for these simulations were
tested.

71



Figure 32: Dynamic of the anti side < night, work > privacy preference with pro
infection rate 0.25, pro recovery rate 0.25. Taken from simulations in which the
opposing privacy preferences states are assumed to only change given infections
on the pro side.

Figure 33: Dynamic of the pro side < night, work > privacy preference with pro
infection rate 0.75, pro recovery rate 0.25. Taken from simulations in which the
opposing privacy preferences states are assumed to only change given infections
on the pro side.
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Figure 34: Dynamic of the pro side < night, work > privacy preference with pro
infection rate 0.25, pro recovery rate 0.75. Taken from simulations in which the
opposing privacy preferences states are assumed to only change given infections
on the pro side.

6.2.1.1 Infection rate vs. Recovery rate

It is expected that privacy preference epidemics last longer when the infection
rate of a privacy preference is higher than the recovery rate of said privacy
preference. To test this Claim 1a, once again, all epidemic endings are recorded
and using a paired Wilcoxon signed rank test. The results of these tests can be
seen in Table 16. For all privacy preferences, it is found that their epidemics
end sooner when the infection rate is higher than the recovery rate.
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Scenario Privacy Preference Statistic p-value
1 Afternoon-Beach 34662.5 0.0000
2 Afternoon-Beach 41586.0 0.0000
2 Afternoon-Mall 42437.5 0.0000
1 Afternoon-Mall 36873.5 0.0000
1 Afternoon-Work 38506.5 0.0000
2 Afternoon-Work 43430.0 0.0000
1 Evening-Beach 37018.5 0.0000
2 Evening-Beach 42240.0 0.0000
2 Evening-Mall 42785.0 0.0000
1 Evening-Mall 37459.5 0.0000
1 Evening-Work 36771.0 0.0000
2 Evening-Work 42673.0 0.0000
1 Morning-Beach 36854.0 0.0000
2 Morning-Beach 42763.0 0.0000
1 Morning-Mall 37863.5 0.0000
2 Morning-Mall 42984.5 0.0000
1 Morning-Work 36470.0 0.0000
2 Morning-Work 42010.5 0.0000
1 Night-Beach 36433.5 0.0000
2 Night-Beach 41933.0 0.0000
1 Night-Mall 39337.5 0.0000
2 Night-Mall 43736.0 0.0000
1 Night-Work 37007.0 0.0000
2 Night-Work 42107.5 0.0000

Table 16: Results of paired Wilcoxon signed rank tests that test whether an
infection, on the pro side, ends later when the infection rate is higher than the
recovery rate of privacy preferences. The alternatives tested against are when
the infection rate is the same as the recovery rate (scenario 1) and when the
infection rate is lower than the recovery rate (scenario 2)

6.2.1.2 Agent Influence

To investigate Claim 1b, the influence rating measure, previously defined, is
used. In Figures 35 and 36, the influence ratings are plotted against the node
degree of an agent on the social network. The graphs suggest the existence of
the aforementioned positive correlation between an agent’s degree in a social
network and its influence on the spread of a privacy preference.

Using the captured, the Pearson correlation coefficient is calculated along
with the p-value. For all parameter settings, a positive correlation coefficient is
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Figure 35: Average agent influence on the spread of the pro side< night, work >
privacy preference with pro infection rate 0.75, pro recovery rate 0.25. Captured
from results of the baseline simulations in which the opposing privacy preferences
states are assumed to only change given infections on the pro side. Plotted
against the degree of the agent on the social network

Figure 36: Average agent influence on the spread of the pro side< night, work >
privacy preference with pro infection rate 0.25, pro recovery rate 0.75. Captured
from results of the baseline simulations in which the opposing privacy preferences
states are assumed to only change given infections on the pro side. Plotted
against the degree of the agent on the social network
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found. Furthermore, all correlation coefficients come with p < 0.05. Thus, it is
once again the case that there is a positive correlation between the degree of an
agent in a social network and their influence in the spread of privacy preferences
in the DIPP model. The results can be found in Table 17.

Pro Infection Rate Pro Recovery Rate r p-value
0.25 0.25 0.3402 0.0
0.25 0.05 0.3334 0.0
0.25 0.75 0.3234 0.0
0.05 0.25 0.3112 0.0
0.05 0.05 0.3115 0.0
0.05 0.75 0.3057 0.0
0.75 0.25 0.2899 0.0
0.75 0.05 0.2893 0.0
0.75 0.75 0.2876 0.0

Table 17: Pearson correlation coefficients between the influence rating of an
agent and the degree of said agent on the social network.

6.2.2 Rare privacy preference with high degree influencers

Experiments in this setting are performed to investigate the ability of a few of
the most influential users to spread privacy preferences that are rare. Specif-
ically, the top 1% of agents, with regard to degree, are assigned privacy pref-
erence infections of a privacy preferences with an initial spread of 0.2% of the
agents in the network. The influence ratings of these agents are analysed to see
whether they are more influential in this setting that in the baseline simulations.
However, now this happens with fully dynamic opposing privacy preferences.

The < night, work > pro privacy preference is the rare privacy preference in
this experimental setting. In Figures 37 and 38, the aggregates of the state dy-
namics of the < night, work > pro privacy preference in the most two infection
and recovery settings extreme settings. Compared to the baseline simulations,
it is noticeable that the peak in the number of infected agents happens later in
the most favourable setting. Furthermore, in the least favourable setting, there
is a rise in the epidemic before dying out, something that is not the case in the
baseline results.

With regard to Claim 2a, the question is whether these top 1% of agents
are more influential in this setting than in the baseline simulations. In Figures
39 and 42, the comparison between the average influence figures between the
two settings show that the top 1% of agents seem to enjoy more influence when
the night, work privacy preference is rare. For further proof, a paired Wilcoxon
signed rank test is used to test whether the claim that the influence of the most
influential agents rises when the privacy preference is rare. The results of the
statistical tests are shown in Table 18. It is clear that for all parameter settings
it is found that the influence of the top 1% of agents, with regard to degree,
rises when the privacy preference they hold becomes rare.
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Figure 37: Dynamic of the pro side < night, work > privacy preference with pro
infection rate 0.75, pro recovery rate 0.25. Taken from simulations in which the
opposing privacy preferences states are assumed to only change given infections
on the pro side.

Figure 38: Dynamic of the pro side < night, work > privacy preference with pro
infection rate 0.25, pro recovery rate 0.75. Taken from simulations in which the
opposing privacy preferences states are assumed to only change given infections
on the pro side.
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Figure 39: Average agent influence on the spread of the pro side< night, work >
privacy preference with pro infection rate 0.75, pro recovery rate 0.25.
night, work is a rare privacy preference in this setting. Plotted against the
degree of the agent on the social network.

Figure 40: Average agent influence on the spread of the pro side< night, work >
privacy preference with pro infection rate 0.25, pro recovery rate 0.75.
night, work is a rare privacy preference in this setting. Plotted against the
degree of the agent on the social network.
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Figure 41: Average agent influence on the spread of the pro side< night, work >
privacy preference with pro infection rate 0.75, pro recovery rate 0.25. Captured
from baseline simulations. Plotted against the degree of the agent on the social
network.

Figure 42: Top 1% of agents, with regard to degree, and their average agent
influence on the spread of the pro side < night, work > privacy preference
with pro infection rate 0.25, pro recovery rate 0.75. Captured from baseline
simulations. Plotted against the degree of the agent on the social network.
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Pro Infection Rate Pro Recovery Rate p-value Statistic
0.25 0.25 0.0000 25284.5
0.25 0.50 0.0000 27863.5
0.25 0.75 0.0000 23778.5
0.50 0.25 0.0000 32823.0
0.50 0.50 0.0000 33731.0
0.50 0.75 0.0000 28941.5
0.75 0.25 0.0000 32851.0
0.75 0.50 0.0000 43561.5
0.75 0.75 0.0000 39626.5

Table 18: Results for the tests whether the influence of the top 1% agents, with
regard to degree, is higher when the privacy preference night, work becomes
rare

6.2.3 No Trust

In this no trust setting, the agents hold a static trust value of tr = 0 towards
each other. No new infections are expected in this setting. In Figures 43 and
44, we can see this expectation come true. After step 0, agents only become
immune to the privacy preference night, work and none of the susceptible agents
get infected.

Figure 43: Dynamic of the pro side < night, work > privacy preference with pro
infection rate 0.75, pro recovery rate 0.25. Taken from simulations in which the
opposing privacy preferences states are assumed to only change given infections
on the pro side.
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Figure 44: Dynamic of the pro side < night, work > privacy preference with pro
infection rate 0.25, pro recovery rate 0.75. Taken from simulations in which the
opposing privacy preferences states are assumed to only change given infections
on the pro side.

6.2.4 Static Trust

While in the no trust setting agents do not trust each other at all, in this setting
agents a static randomly chosen trust value to each of their friends on the social
network. In the Figures 45 and 46, the aggregated state dynamics for privacy
preference night, work are shown, for the most favourable and least favourable
parameter settings.

Figure 45: Dynamic of the pro side < night, work > privacy preference with pro
infection rate 0.75, pro recovery rate 0.25. Taken from simulations in which the
opposing privacy preferences states are assumed to only change given infections
on the pro side.
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Figure 46: Dynamic of the pro side < night, work > privacy preference with pro
infection rate 0.25, pro recovery rate 0.75. Taken from simulations in which the
opposing privacy preferences states are assumed to only change given infections
on the pro side.

It was expected that the epidemics in this setting would end sooner than
those in the baseline simulations, Claim 4a. To test this claim, the steps, at
which epidemics end, are compared using a paired Wilcoxon signed rank test.
The results of these tests can be seen in Table 19. For all settings, there is a
statistically significant result to the query whether epidemics end sooner when
static trust is included in the simulation. Thus, the epidemics ends sooner than
in the baseline simulations.

Pro Infection Rate Pro Recovery Rate p-value Statistic
0.25 0.25 0.0000 387432.00
0.25 0.50 0.0000 428161.00
0.25 0.75 0.0000 423688.00
0.50 0.25 0.0000 373025.50
0.50 0.50 0.0000 371188.50
0.50 0.75 0.0000 319764.00
0.75 0.25 0.0267 341279.50
0.75 0.50 0.0010 319342.00
0.75 0.75 0.0000 278089.00

Table 19: Significant (p < 0.05) results of paired Wilcoxon signed rank tests
that test whether an epidemic, on the pro side, ends sooner when agents hold
random static trust values towards instead of no inclusion of trust at all in the
baseline.

With regard to Claim 4b, it was also expected that in this setting the in-
fluence of each agent on the spread of privacy preferences would be diminished
compared to the baseline simulations. The influence ratings were compared to
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the ones from the baseline simulations using paired Wilcoxon signed rank tests.
The results of these tests can be seen in Table 20. Only in the most favourable
setting is there no significant evidence that agents have diminished influence.
Thus all agents have a lower influence ratings when they hold static trust values
towards their friends compared to the baseline simulations in which trust is not
a factor.

Pro Infection Rate Pro Recovery Rate p-value Statistic
0.25 0.25 0.0000 47373126169.50
0.25 0.50 0.0000 36823532911.00
0.25 0.75 0.0000 28252727929.00
0.50 0.25 0.0000 48414344123.00
0.50 0.50 0.0000 43168048322.50
0.50 0.75 0.0000 38068307484.00
0.75 0.25 0.8100 46117640955.00
0.75 0.50 0.0000 42882639707.00
0.75 0.75 0.0000 39561364297.50

Table 20: Significant (p < 0.05) results of paired Wilcoxon signed rank tests that
test whether agents’ influence on the spread of privacy preference is diminished
when agents hold random static trust values towards instead of no inclusion of
trust at all in the baseline.

Finally, testing Claim 4c, epidemics were also expected to peak lower in this
setting than in the baseline simulations. The epidemic peaks were compared to
the ones from the baseline simulations using paired Wilcoxon signed rank tests.
The results of these tests can be seen in Table 21. Only in the least favourable
parameter setting do we find that there is no significant evidence for epidemics
peaking lower when agents hold static random trust values.

Pro Infection Rate Pro Recovery Rate p-value Statistic
0.25 0.25 0.0000 720594.5
0.25 0.50 0.0000 573665.5
0.25 0.75 0.0539 364153.5
0.50 0.25 0.0000 720600.0
0.50 0.50 0.0000 719353.0
0.50 0.75 0.0000 697995.0
0.75 0.25 0.0000 720598.0
0.75 0.50 0.0000 720597.5
0.75 0.75 0.0000 719166.0

Table 21: Significant (p < 0.05) results of paired Wilcoxon signed rank tests
that test whether an epidemic, on the pro side, peaks lower when agents hold
static trust values towards instead of no inclusion of trust at all in the baseline.
All parameter settings that are not included returned insignificant results.
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6.2.5 Dynamic Trust

In this simulation setting, the agents keep track of privacy violations during
simulations and use these records to calculate trust values they have towards
other agents they are connected to. Privacy violations of all types have the same
weights when calculation trust. Figures 47 and 48, show the aggregated state
dynamics of the simulations from this setting in the most favourable and least
favourable setting respectively. In the most favourable setting, it is noticeable
that the rise of infected agents is less steep than in the same graph from the
baseline simulations. This is likely due to the fact that infection rates are limited
by the introduction of trust.

Figure 47: Dynamic of the pro side < night, work > privacy preference with pro
infection rate 0.75, pro recovery rate 0.25. Taken from simulations in which the
opposing privacy preferences states are assumed to only change given infections
on the pro side.

It was expected that the epidemics in this setting would end sooner than
those in the baseline simulations, Claim 5a. To test this claim, the steps, at
which epidemics end, are compared using a paired Wilcoxon signed rank test.
The results of these tests can be seen in Table 22. The table shows that, in 5 out
of 9 parameter settings, the epidemics end sooner in when trust is included and
is dynamic compared to the baseline simulations in which trust is not factor.

Another hypothesis for the simulations was that the epidemics would peak
lower, when dynamic trust is introduced than in the baseline simulations, Claim
5c. Using a paired Wilcoxon signed rank test, the relevant from the two simu-
lation settings was compared to see if the claim stated above holds. The results
of these tests can be seen in Table 23. Only the parameter setting in which the
infection rate and recovery rate are both 0.5 is missing and thus shows no proof
for the hypothesis.

Finally, the last hypothesis stated that agents would enjoy less influence on
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Figure 48: Dynamic of the pro side < night, work > privacy preference with pro
infection rate 0.25, pro recovery rate 0.75. Taken from simulations in which the
opposing privacy preferences states are assumed to only change given infections
on the pro side.

Pro Infection Rate Pro Recovery Rate p-value Statistic
0.25 0.25 0.0064 356502.50
0.25 0.50 0.0023 326049.50
0.25 0.75 0.0000 317403.00
0.50 0.25 0.0011 354350.00
0.50 0.75 0.0015 270638.50

Table 22: Significant (p < 0.05) results of paired Wilcoxon signed rank tests
that test whether an epidemic, on the pro side, ends sooner when agents keep
track of privacy violations to derive dynamic trust values towards instead of
no inclusion of trust at all in the baseline. All parameter settings that are not
included returned insignificant results.
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Pro Infection Rate Pro Recovery Rate p-value Statistic
0.25 0.25 0.0000 659925.5
0.25 0.50 0.0000 413352.0
0.50 0.25 0.0000 664161.0
0.50 0.50 0.0000 563700.0
0.50 0.75 0.0000 410693.5
0.75 0.25 0.0000 631538.0
0.75 0.50 0.0000 544983.0
0.75 0.75 0.0000 458303.5

Table 23: Significant (p < 0.05) results of paired Wilcoxon signed rank tests
that test whether an epidemic, on the pro side, peaks lower when agents keep
track of privacy violations to derive dynamic trust values towards instead of
no inclusion of trust at all in the baseline. All parameter settings that are not
included returned insignificant results.

the spread privacy preferences in this setting, Claim 5b. To test this, influence
ratings from this setting and the baseline simulations are compared using a
paired Wilcoxon signed rank test to see if the influence ratings are higher in the
baseline simulations. The results of these test can be seen in Table 24. Only the
parameter setting, in which the infection rate and recovery rate are 0.75 and
0.25 respectively, is missing and thus shows no proof for the hypothesis. Thus,
in eight parameter of setting, the influence ratings of agents in the spread of
privacy preferences is lower when agents hold dynamic trust values compared
to the baseline simulations in which trust is not a factor.

Pro Infection Rate Pro Recovery Rate p-value Statistic
0.25 0.25 0.0000 47366650025.00
0.25 0.50 0.0000 37140037497.00
0.25 0.75 0.0000 28874302970.00
0.50 0.25 0.0000 47861636185.00
0.50 0.50 0.0000 42931336440.50
0.50 0.75 0.0000 38143577174.00
0.75 0.50 0.0000 42097857349.00
0.75 0.75 0.0000 38799968462.00

Table 24: Significant (p < 0.05) results of paired Wilcoxon signed rank tests that
test whether agents’ influence on the spread of privacy preference is diminished
when agents keep track of privacy violations to derive dynamic trust values
towards instead of no inclusion of trust at all in the baseline. All parameter
settings that are not included returned insignificant results.

6.2.6 Dynamic trust with two levels of privacy violations

In this simulation setting, the agents keep track of privacy violations during
simulations and use these records to calculate trust values they have towards

86



other agents they are connected to. The two different types of privacy violations,
described previously, hold different weights in this setting.

Figures 49 and 50, show the aggregated state dynamics of the simulations
from this setting in the most favourable and least favourable setting respectively.
In the most favourable setting, it is noticeable that the rise of infected agents is
less steep than in the same graph from the baseline simulations. This is likely
due to the fact that infection rates are limited by the introduction of trust.

Figure 49: Dynamic of the pro side < night, work > privacy preference with pro
infection rate 0.75, pro recovery rate 0.25. Taken from simulations in which the
opposing privacy preferences states are assumed to only change given infections
on the pro side.

Once again, Claim 6a, that epidemics ends sooner in this setting compared
to the baseline, is tested using a paired Wilcoxon signed rank test. The results
of these tests can be seen in Table 25. Epidemics end sooner than the baseline
epidemics in all parameters settings.

The peaks of the epidemics are then compared to see if the peaks in this
setting are lower than the peaks in the baseline simulations, Claim 6c. These
tests are performed using the paired Wilcoxon signed rank test. The results
of these test can be seen in Table 26. Epidemics peak lower than the baseline
epidemics in all parameters settings.

Finally, it was expected that the influence of agents would be diminished
in this setting compared to the baseline, Claim 6b. Using all influence ratings
from the two simulation settings, this claim is tested using a paired Wilcoxon
signed rank test. The results of these tests can be seen in Table 27. Agents have
lower influence ratings compared to the baseline simulations in all parameters
settings.
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Figure 50: Dynamic of the pro side < night, work > privacy preference with pro
infection rate 0.25, pro recovery rate 0.75. Taken from simulations in which the
opposing privacy preferences states are assumed to only change given infections
on the pro side.

Pro Infection Rate Pro Recovery Rate p-value Statistic
0.25 0.25 0.0000 47261132239.00
0.25 0.50 0.0000 36256319076.50
0.25 0.75 0.0000 27621709459.50
0.50 0.25 0.0000 48597725915.50
0.50 0.50 0.0000 43060275850.50
0.50 0.75 0.0000 37820937324.00
0.75 0.25 0.0000 46383402040.00
0.75 0.50 0.0000 43034315683.50
0.75 0.75 0.0000 39455031935.50

Table 25: Significant (p < 0.05) results of paired Wilcoxon signed rank tests
that test whether an epidemic, on the pro side, ends sooner when agents keep
track of two levels of privacy violations to derive dynamic trust values towards
instead of no inclusion of trust at all in the baseline. All parameter settings
that are not included returned insignificant results.
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Pro Infection Rate Pro Recovery Rate p-value Statistic
0.25 0.25 0.0000 720599.0
0.25 0.50 0.0000 572043.5
0.25 0.75 0.0440 362236.5
0.50 0.25 0.0000 720600.0
0.50 0.50 0.0000 719389.5
0.50 0.75 0.0000 695915.0
0.75 0.25 0.0000 720600.0
0.75 0.50 0.0000 720600.0
0.75 0.75 0.0000 719323.0

Table 26: Significant (p < 0.05) results of paired Wilcoxon signed rank tests
that test whether an epidemic, on the pro side, peaks lower when agents keep
track of two levels of privacy violations to derive dynamic trust values towards
instead of no inclusion of trust at all in the baseline. All parameter settings
that are not included returned insignificant results.

6.3 Summary

The baseline simulations exhibit the expected behaviour consistent with previ-
ous work with epidemic models in the information diffusion domain. An epi-
demic lasts longer when the infection is higher than the recovery[19]. The con-
nectivity of an agent correlates positively with their ability to spread a privacy
influence. These results provided the initial foundation for the DIPP model.
These results are also intuitive, as we would expect well-connected agents to
spread information diffusion easily due to their reach and this property also
should hold in privacy preference diffusion. Furthermore, it is intuitive that
when people are more likely to be infected by an infectious entity than they are
to recover from said entity. Thus, the epidemic caused by the infectious entity
will last longer.

The results also show that when the best-connected agents are tasked with
spreading a rare privacy preference, the influence rating measure captures their
increased influence in the spread of this privacy preference due to its rarity. This
does not hold in every parameter setting when the opposing privacy preferences
are fully dynamic. This is in line with the common methods of viral marketing on
OSNs in which influential users are chosen to market a product to their current
audience and a possible new audience. These influencers can be perceived as
pioneers of the use of the product they are advertising. Even if other influential
users catch on to the trend, the fact that the pioneers started the trend attributes
to them more influence.

Overall, it is found that the introduction of trust limits the spread of privacy
preferences albeit not in all parameters settings. Furthermore, the experiments,
in which opposing privacy preferences are static, show more consistent ability
for agents to protect themselves against privacy preference epidemics than the
experiments in which the dynamics of the pro and anti side are modelled the
same way. This result implies that the DIPP shows an ability to model the fact
that trust is at the heart of privacy decisions, as seen in Lampinen et al. [16].
The influence agents have, on the spread of a privacy preference, is also limited
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when trust is introduced. This claim seems to hold in almost all parameter
settings, except when dealing with a high infection rate, relative to the other
rates. This foundation is useful to be build upon, as the way trust is modelled
can obviously be varied in future work.

Finally, we have seen that privacy preferences can become prevalent in social
networks under epidemic models due to their infection and recovery rates. The
best-connected agents are the most influential in the spread of privacy prefer-
ences. However, agents can employ a trust model to limit the impact of privacy
preference epidemics.

Pro Infection Rate Pro Recovery Rate p-value Statistic
0.25 0.25 0.0000 47261132239.00
0.25 0.50 0.0000 36256319076.50
0.25 0.75 0.0000 27621709459.50
0.50 0.25 0.0000 48597725915.50
0.50 0.50 0.0000 43060275850.50
0.50 0.75 0.0000 37820937324.00
0.75 0.25 0.0000 46383402040.00
0.75 0.50 0.0000 43034315683.50
0.75 0.75 0.0000 39455031935.50

Table 27: Significant (p < 0.05) results of paired Wilcoxon signed rank tests that
test whether agents’ influence on the spread of privacy preference is diminished
when agents keep track of two levels of privacy violations to derive dynamic
trust values towards instead of no inclusion of trust at all in the baseline. All
parameter settings that are not included returned insignificant results.

7 Discussion

The results provide a lot of material to unpack. In this section, the results are
discussed along with their implications.

7.1 Main properties of the state dynamics

The data from all experiments show that the foundation of the DIPP model for
privacy preference diffusion is stable. The infection and recovery rates govern
the state dynamics as expected. Epidemics last shorter when the recovery rate is
higher than the infection rate. There are also noticeable influences from the anti
side dynamic, whether the dynamic is static or not. This is a solid foundation
for the purpose at hand. The most influential agents in the diffusion process
are, as expected, the agents with the highest degree on the social network. This
is in line with previous research results from information diffusion models. In
most parameter settings over all experiments, trust modelling gives agents the
ability to limit the spread of privacy preferences.
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7.1.1 Rooted in information diffusion

As the proposed method is heavily influenced by theory from information dif-
fusion. It was expected that this would be reflected in the results. We saw
that when the infection rate is higher than recovery rate a privacy preference
epidemic lasts longer. This is intuitive and provides a stable foundation. The
same goes for the property that there is a positive correlation between an agent’s
degree and their influence rating in the spread of privacy preferences.

7.1.2 Privacy preferences that sell themselves

In the setting with rare privacy preferences and high degree influecers, we saw
that the influence rating of the influecers does not always increase when the
privacy preference they spread is rare. This is notably the case in the parameter
settings that have the highest possible infection rate. This seems to suggest that
in these setting the privacy preference is so infectious that is spread as easily as
in the baseline simulations.

7.1.3 What to trust?

The results of the experiments are mostly as expected when it comes to limiting
the impact of epidemics using trust models. This is apart from the experimental
settings in which in the introduction of trust modelling did not allow the agents
to limit the impact of a privacy preference epidemic. It is important to explore
where this difference of results comes from. On the other hand, all results from
the experiments, in which the anti side privacy preferences are mostly static,
are very conclusive.

The obvious point to make is that in the experiments, in which the anti side
privacy preferences are fully dynamic, the anti side influences the pro side by
design. If anti side privacy preference has a high recovery rate, this is more ben-
eficial to its pro side counterpart. In this case, the pro side privacy preference
endures less resistance as fewer people stay infected with the opposing privacy
preference over time. The opposite holds for those cases in which the infection
rate of anti side privacy preference is high. The number of infected agents can
even rise in this case, leading to more resistance for the pro side privacy pref-
erence. This dynamic does not take place in the experiments without dynamic
anti side privacy preferences. The pro side epidemics can proceed with only
limited resistance from the anti side, as agents still hold opposing norms.

7.1.4 Influencers beware!

In all experiments, it was found that the influence of agents on the spread of
privacy preferences is diminished when agents employ a trust model in all but
the most favourable setting for the privacy preference epidemics. This exception
was also only found in the experiments in which the opposing privacy preference
dynamics were fully dynamic. While this was mostly expected, it is still a
surprising result. It was expected that influence would be reduced mostly due
to the accompanied lowering of the epidemic peaks and earlier epidemic endings.
Because the higher the number of agents infected, directly and indirectly, the
higher an agent’s influence rating. But as we have seen in the previous section,
lower the epidemic peaks and earlier epidemic endings were only present in a
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limited number of parameter settings in the experiments in which the opposing
privacy preference dynamics were fully dynamic. But even in these settings, the
influence ratings of agents were reduced.

7.1.5 Opposing privacy preferences: static or dynamic

The conducted experiments were never meant to help in choosing between op-
posing privacy preferences that mostly static and dynamic ones, in modelling
privacy preference diffusion. But the differences we have seen in the results from
experiments from the two conditions only further raise the question as to which
one of the two is the most accurate. The truth mostly lies between the two
assumed approaches.

7.2 Validity of methodology

The methodology, put forth in this document, is meant to be a starting point
for a new field of research. This section explores the validity of the method.
Validation on real life data is regrettably impossible as a data set with spreading
privacy preferences has not been found, The points in this section are focus
around the topic of realism, because the perfect simulation of privacy preference
diffusion would be as close to a theorized reality as possible. As a starting point,
the DIPP model, inevitably, lacks some aspects of realism. While this is not
ideal, the framework is also modular enough to allow for improvements without
the need to start afresh.

7.2.1 Trust only as a shield?

One of the main goals of this project is to investigate whether trust modelling
can ensure that agents can limit the impact of privacy preference epidemics.
Since trust is based on positive and negative (i.e. privacy violations) experiences,
the higher the number of negative experiences with a certain, the less said
agent will be trusted. The results show that the introduction of trust modelling
does limit the impact of privacy preference epidemics. However, trust should
also enhance the relationship between two agents when their interactions have
been positive. This side of the trust coin has not been explored. Does trust
modelling provide the agents with the ability to strengthen relationships as well
diminishing them? Answering this question would, in turn, provide more explicit
evidence for the idea that privacy preference epidemics are less impactful due
to the negative experiences agents have with opposed privacy preferences.

7.2.2 Protection against influencers

The results show that the influence an agent has in the spread of privacy prefer-
ences is reduced when agents employ a trust model for privacy violations. While
this is a good result, it may not imply that agents can protect themselves from
highly influential figures (i.e. agents with a high degree in the OSN). It may
be the case, that since everybody employs a trust model in the simulations,
the overall influence is diminished since all agents are less likely to be infected.
It would be good to identify agents that are vulnerable to the most influen-
tial agents and quantify the difference in influence exerted on these vulnerable
agents.
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7.2.3 Actions per step

In the current model, an agent share content and tries to recover from an infec-
tion at each step in the simulation. But this may not be realistic. A study of
Facebook user sharing habits5 finds that 16% of Facebook users use Facebook
at most a few times a week, while 58% of users use the OSN multiple times
a day. Women are found 5% more likely to share content at least once a day.
Of the 2000 surveyed Facebook users, 9% shares no content on Facebook regu-
larly. These statistics shows that the implicitly assumed uniformity in sharing
behaviour of all agents is not realistic. One could imagine a sharing behaviour
parameter that, for example, dictates the probability at each step that an agent
shares content. If the agent does not share content, they have the ability to
recover from privacy preferences they are infected with.

7.2.4 Definition of time

The steps in the simulation are abstract as put forth here. It is unclear whether
a step is an hour, a day or a month. The definition of this resolution could
provide the method with more external validity. The steps, at this moment, do
not translate to any definition of time in real life.

7.2.5 Initial spread of privacy preferences

In real life social networks, the initial spread of privacy preferences could be
argued to be focused around a small group of people that had adopted/been
infected with a privacy preference. In the experimental setup, however, the
initial spread of privacy preference infections would be around half of the social
network. It is unlikely for half of all user on an OSN to start sharing video
clips of the birth of their children without such content being perceived on the
network before. The initial spread in the current experimental setup is only
realistic if the scenario is that data recording start in the midst of an ongoing
epidemic.

7.2.6 Customization

The previous points on initial spread of infections, the nature of the anti side
dynamics and sharing behaviour of users on the social network, are important
points to address in future work. The power of the method lies in the ease
with which new ideas can be adopted in the DIPP model. For example, given
statistics on how to initially spread privacy preference on the social network, a
researcher can easier specify these using a Python Dictionary with the privacy
preferences as keys and the proportion of the population to infect with the
privacy preference. Furthermore, the model allows for the manual changing of
states of each agent for each privacy preference.

8 Future Work

There are various research avenues that can follow from the DIPP model. This
section delves into the possible research angles to explore in order to improve

5https://www.frac.tl/work/marketing-research/facebook-user-sharing-habits-study/
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the DIPP model.

8.1 Opposing privacy preference dynamics

As previously mention, the DIPP model allows for assumptions of the oppos-
ing privacy preference state dynamics, fully dynamic and static. The truth is
somewhere in the middle. Research into how opposing privacy preference come
about can make the DIPP model a more accurate model. For example, this
research might be a qualitative study into what offline discussions on privacy
on OSNs contain.

8.2 Different epidemic models

As we have seen in the related work section, epidemic models have shown flex-
ibility to model infection in different contexts. The DIPP model is based on
the SIR epidemic model. However, other epidemic models can be considered.
One could imagine a situation in which recovered users become susceptible once
again due to some phenomenon in the OSN, the SIRS model [13]. For example,
if Alice decides to stop sharing her political opinion anymore and content of
political opinions only become more popular, will she stand by her decision or
come back on it? There is clearly a chance that Alice might come back on her
decision. This could be taken into account in further iterations of the DIPP
model.

Peer pressure exists in social networks, as modelled Hui and Buchegger in
[12]. Using epidemic models, it can be modelled in privacy preference diffusion
research as well. As John and Joshua’s work in [6], shows the concept of infec-
tious recovery. They set the recovery rate to be proportional to the number of
agents that have already recovered divided by the total number of agents. This
means that the higher the number of agents that have recovered, the more likely
other agents are to recover as well. Peer pressure could be introduced by, for
example, setting the infection rate to the number of friends that have already
been infected with a privacy preference divided by the total number of friends.
Thus, the higher the number of friends that have been infected, the more likely
an agent becomes to be infected.

8.3 Allowing more interactions

The DIPP allows two types of interactions at the moment; observing shared
content and sharing content. However, social networks allow for many more
types of interactions. Users can often like or dislike content. Users can block
users they would not like to content from. They can also directly re-share the
content shared by others. These are all interactions that can affect the spread
of privacy preferences.

While the DIPP model is tested with flat infection rates, these can be made
dynamic. The first step has already been done, with the inclusion of trust
values to make infection rates dynamic. Infection rates define how likely users
are to get infected. It can be argued that content that is liked more, is also more
infectious. Research by Sherman et al. [25] finds that like interactions (receiving
and giving likes) leads to brain activity in regions of the brain associated with
rewards among other regions.
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The ability to block users ensures that a user can not see content from a
user they have blocked. The blocked user can also not perceive content from
the user that has blocked them. Since we hypothesize that privacy preferences
spread through shared content, providing the ability to block users that share
content that is opposed seems an important next step in the evolution of the
DIPP model.

8.4 Not all friends are equal

In OSNs, users maybe connected to users as friends. But not every friend holds
the same type of relationship with the user offline. And it is intuitive that a
close friend’s influence on a user is different to the influence of a distant relative
they are friends with on an OSN. This difference in relationship strength can
provide a different view on how privacy preferences spread than what we now
hold.

To explore the strength of relationships, the Copenhagen Networks Study
interaction data data set can be used. As previously stated, the data set con-
tains data depicting the offline calls and text messages sent between students.
These data could provide researchers with a measure of relationship strength.
Furthermore, the similarity of users can also be considered as a factor in the
strength of their relationship.

9 Conclusion

This project aims to propose a new framework to model the spread of privacy
preferences using an epidemic model. The DIPP model uses the SIR model
to model diffusion of privacy preferences. Simulations are run using the DIPP
model and data from an actual OSN. Under this model, we observe the expected
properties that are consistent with the models from information diffusion DIPP’s
creation is inspired by. It is also found that how well an agent’s degree in the
OSN, determines, at least partly, their influence in the spread of a privacy
preference.

Agent can also employ a trust model to limit the impact of privacy prefer-
ence epidemics. The introduction of trust modelling ensures that in all cases
the influence rating of agents is diminished, in most cases the epidemics end
sooner and in most cases the peak number of infections is lower, compared to
simulations without trust models.

These results can be strengthened with the exploration of relationship strength
based on trust as the goal of trust modelling is not only to destroy relationships
between agents, but, also to strengthen them.

Future work can improve the realism of the DIPP model by considering more
interaction, more dimensions to relationship strength and different epidemic
model variations. Finally, there is a need for a more accurate model for opposing
privacy preferences and their dynamics.
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