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Abstract
Superoptimization of WebAssembly Process Graphs

by Dennis G. SPROKHOLT

The time needed for program execution is rarely minimal. Often, a faster program
exists that produces the same output. Our superoptimizer aims to reduce the execu-
tion time of WebAssembly programs significantly. We propagate symbolic informa-
tion over control flow, partially evaluate expressions and branch conditions using
the Z3 SMT solver, synthesize alternate fragments for some small loops, and apply
small structural changes to loops with low bounds. In particular, our approach of
propagating symbolic information over control flow and driving loops with symbolic
information is novel for superoptimization. Loop driving and synthesis make small
artificial programs several orders of magnitude faster. On large programs, only partial
evaluation already requires multiple hours of optimization time while finding only
marginal (~1%) improvements. While the complete approach shows some poten-
tial, its application to large programs is currently infeasible, as it may require months
of superoptimization time.
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Chapter 1

Introduction

Programmers describe a series of steps that allow a computer to solve a particular
problem. The used programming language mainly prescribes the granularity of such
steps. About this granularity, Perlis amusingly remarked:

“A programming language is low level when its
programs require attention to the irrelevant.”

—Alan J. Perlis[45]

While many may agree with this statement, it remains debatable what exactly is
irrelevant in its context. For instance, most programmers opt for platform-agnostic
languages1; which indicates that few programmers prefer to write architecture-specific
machine instructions. Similarly, many programs are written in languages with garbage
collection, meaning that many consider manual memory management irrelevant. As
languages become higher-level - together with the programs written with them -
programmers increasingly trust compilers and runtime systems to fill in the gaps;
that is, ensure programs written at a high level of abstraction perform similarly to
those same programs written at a lower level. While compiler technology has im-
proved significantly over the years, none can claim these abstractions come entirely
without cost. To alleviate programmers from focussing on the irrelevant, our su-
peroptimizer aims to reduce the execution time of programs to a minimum so that
programmers no longer have to; or at least, only to a lesser extent.

Every computer program takes time to execute. Yet, often a faster program exists
that performs the same computation. Program optimizers aim to transform a pro-
gram into another which takes less time (or resources) to produce an identical result.
The relevance of program optimization was already understood before computers -
as we know them - existed2:

“In almost every computation a great variety of arrangements for the
succession of the processes is possible, and various considerations must
influence the selection amongst them for the purposes of a Calculating
Engine. One essential object is to choose that arrangement which shall
tend to reduce to a minimum the time necessary for completing the
calculation.”

—Ada Lovelace (Note D)[20]

Unfortunately, program optimizers almost never produce optimal programs. This
is because optimizing compilers apply a finite range of pre-defined transformations[36],

1https://madnight.github.io/githut/ - GitHub language statistics
2Charles Babbage never completed the construction of his Analytical Engine, for which Ada

Lovelace proposed the first algorithm.

https://madnight.github.io/githut/
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which are never exhaustive3. Figure 1.1 depicts the space of all programs, within
which a compiler generates a program.

FIGURE 1.1: Abstract depiction of search space (adapted from [52])

The blue regions depict the set of programs that are correct by the specification.
While an existing compiler may find a reasonably fast program in the space, a non-
trivial transformation leading to the global optimum is out of reach. Think of the left
region - which is out of reach - as the implementation of a wholly different algorithm
that solves the same problem. As existing optimizers are incapable of reaching this
optimum, a superoptimizer can attempt to cross this chasm.

1.1 Superoptimization

In 1987, Massalin created the first superoptimizer[37]. It exhaustively searches through
the set of all programs - in increasing length - until a correct program is found. Mas-
salin’s superoptimizer produces optimal programs in the Motorola 68020 instruction
set. The optimal program computing the signum function is shown in Listing 1.1.

signum(x) =


1 if x > 0
0 if x = 0
−1 if x < 0

LISTING 1.1: Massalin’s optimal signum program[37]

(x in d0)
add.l d0,d0 |add d0 to itself
subx.l d1,d1 |subtract (d1 + Carry) from d1
negx.l d0 |put (0 - d0 - Carry) into d0
addx.l d1,d1 |add (d1 + Carry) to d1
(signum(x) in d1) (4 instructions)

This program - consisting of only 4 instructions - is shorter (and faster) than the
straightforward implementation with conditional branches, which consists of 9 in-
structions.

Unfortunately, this superoptimizer does not solve program optimization. Af-
ter all, the search space of programs scales exponentially with the program length,

3If these transformations were sufficient to obtain optimality, any non-terminating program (without
side-effects) could be optimized to a trivial loop; which solves the halting problem.
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which makes finding larger optimal programs very computationally expensive. Ad-
ditionally, it is generally undecidable to determine the equivalence between two
looping or recursive programs. However, Massalin’s paper sparked much subse-
quent research in the area of superoptimization.

Later superoptimizers built upon this work by providing alternate search strate-
gies for non-looping code fragments (e.g., stochastic[52], symbolic[21], or
enumerative[47]). These approaches have in common that non-looping fragments
are extracted from the programs and independently superoptimizer; after which
these fragments are placed back into the program. As the superoptimization of frag-
ments does not take into account their location and context within the program, some
optimizations may be missed. After all, program fragments need only produce cor-
rect results for the states on which they are executed.

Souper[50] is a recent superoptimizer, which optimizes LLVM[36] IR. Arteaga et
al.[11] included Souper in a pipeline to superoptimize C programs before converting
them to WebAssembly. Souper is particularly effective at synthesizing linear instruc-
tion sequences. However, it only minimally considers the context of these fragments
within the full program.

While superoptimization of loop-free programs is well researched, few superop-
timizers handle loops or recursion. Although the generation of a looping program
is trivial - by generating backward branching statements - their verification is prob-
lematic. One method[53] for verifying equivalence between two looping programs
was added to STOKE[52]’s verifier. It relies upon the notion of cutpoints[62], which
requires one program to simulate the other. Intuitively, a program simulates another
if both encounter the same states at the cutpoints. This relation is only preserved
when both programs have similar loop structures. This requirement inhibits many
improvements from being found.

A full account of previous research on superoptimization is included in sec-
tion 6.1.

1.2 Process Graphs

We apply superoptimization to programs containing arbitrary control flow by ap-
plying simple behavior-preserving structural changes. Our superoptimizer infers
the context of contained program fragments from information propagation over this
control flow. To achieve this, we rely upon the notion of process graphs[61, 19, 28],
which are finite graphs that represents all execution traces of an (imperative) pro-
gram4. An execution trace is the sequence of statements encountered while con-
cretely executing the program. Multiple execution traces can be grouped together,
which are parametric over their input variables; this can be represented through a -
potentially infinite - process tree[19]. Figure 1.2 displays an example partial process
tree.

Every node in the process tree corresponds to a set of program states, each of
which describes a particular concrete assignment to every program variable. This set
of possible states at any node can be perfectly determined from an initial states and
the execution trace reaching it; this is called perfect information propagation[19]. This
information makes process trees particularly useful for program specialization[28], as
redundant statements can be eliminated and infeasible branches omitted. For super-
optimization, this information allows finding better optimizations; after all, an im-
proved instruction sequence need only be correct for the set of states upon which it

4Intuitively, it looks like a control flow graph where the edges contain the instructions
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is executed. For example, any instruction sequence following the node marked with
p in Figure 1.2 can be optimized with the knowledge that x < 2 (until x changes).

FIGURE 1.2: Example Process Tree
(for some imperative pseudo language)

As process trees are potentially infinite, they do not directly correspond to a finite
program. However, process trees can always be converted into an a finite process
graph[19, 61] (which often sacrifices some optimization).

1.3 WebAssembly

WebAssembly[23, 48] is a safe, fast, compact, and portable low-level language. Its
main design goal is to provide near-native performance on the Web, while observ-
ing its security model[2]. Safety is important as code is obtained from untrusted
sources, which should not compromise the executor. WebAssembly is an abstrac-
tion over modern hardware; thus, it can easily be translated into machine code for
common instruction sets (e.g., x86, ARM64). WebAssembly computation is based on
a stack machine; this ensures a compact binary representation[55], while its absence
of register count favors no particular instruction set. While low-level, WebAssembly
enforces structured control flow through its abstract syntax; this ensures by construc-
tion that control flow cannot form irreducible loops or branch into the middle of a
multi-byte instruction.

As WebAssembly is a relatively recent language whose specification is frequently
extended[1], only few tools are available and these are still under active development[66].
As WebAssembly programs often under-perform compared to their native
counterparts[26], better optimization techniques are very beneficial. Thus, our su-
peroptimizer specifically targets WebAssembly programs; however, the proposed
techniques should be applicable to any (imperative) language.
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1.4 Research Questions

Previous superoptimizers are limited by failing to consider the context within which
instruction sequences appear, and fail in superoptimizing program fragments con-
taining loops. Now that the previous sections established the notion of superopti-
mization and process graphs, the research questions - which aim to address these
issues - can be understood.

• RQ1: How can superoptimization be extended to handle statically bounded
loops? Usually, high-level observations can be made over loops which either
allow the loop to be entirely eliminated, or assist in finding improvements in
a fraction of its iterations. In this research, non-terminating loops are of lower
interest, as these occur infrequently in WebAssembly programs5.

– RQ1A: How can superoptimization be applied to a process tree? Process trees
contain non-looping execution traces, whose superoptimization should
be similar to linear execution sequences. The propagation of information
to nodes in this tree, as well as the extension of these trees, should allow
for better optimizations than previously possible.

– RQ1B: How can these optimizations be applied to a finite process graph? Pro-
grams are generally required to have a finite size. The potentially infinite
process trees rarely correspond to a program. Process graphs, however,
are finite structures which similarly capture the execution traces. Apply-
ing the optimizations to a process graph should assist in producing a valid
WebAssembly program.

• RQ2: How effective are these techniques in improving the performance of
WebAssembly functions? The objective of the developed superoptimizer is
to reduce the execution time of WebAssembly programs. So, it is necessary
to systematically determine whether the execution time of any WebAssembly
function decreases after it is superoptimized.

1.5 Structure

Two unrelated concepts are brought together in this thesis; namely superoptimiza-
tion and process graphs. Chapter 2 gives some preliminary definitions. In chapter
chapter 3, superoptimization is explained irrespective of process graphs, but instead
assumes non-looping instruction sequences. Following that, chapter 4 extends su-
peroptimization to process graphs. Chapter 5 describes the empirical evaluation of
the superoptimizer and its generated programs, which is mainly performed through
benchmarking. In chapter 6, related work is given. Chapter 7 answers the research
questions. Finally, chapter 8 describes possibilities for future research.

5Currently, modern web browsers abort programs several dozen seconds after their execution to
avoid resource over-use, which surely happens to non-terminating programs.
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Chapter 2

Preliminaries

This chapter establishes several preliminary definitions and notational conventions.

2.1 Programming Languages

Convention 2.1 (Code Segment Notation). Code fragments which illustrate opti-
mizations are written in either the WebAssembly text format or the Rust[38] pro-
gramming language. While the research pertains to WebAssembly superoptimiza-
tion, its text format is not always intuitive to convey ideas. For those cases, Rust is
used instead. Rust supports primitive types (i32,i64,f32,f64) equal to WebAssem-
bly’s, and its compiler ecosystem targeting WebAssembly is quite mature1.

LISTING 2.1: Sample Rust Function

fn mul2( x: u32 ) -> u32 {
x * 2

}

LISTING 2.2: Sample WebAssembly Function

(func $mul2 (param $x i32) (result i32)
get_local $x
i32.const 2
i32.mul

)

Convention 2.2 (Source Code). The superoptimizer artifact is written in the Haskell
programming language. Occasionally, details on the implementation are easier ex-
plained through its source code.

LISTING 2.3: Sample Haskell Function

mul2 :: Int -> Int
mul2 x = x * 2

1https://rustwasm.github.io/docs/book/

https://rustwasm.github.io/docs/book/


2.2. A WebAssembly Introduction 7

2.2 A WebAssembly Introduction

The superoptimizer aims to superoptimize WebAssembly programs. This procedure
involves transforming WebAssembly programs, checking equivalence between pro-
gram fragments, and generating alternate fragments, to name a few. All those op-
erations rely heavily on the WebAssembly specification[48]. While reiterating the
specification in its entirety is surely futile, delineating some essentials should aid
the understanding of important decisions later on; this explanation is given below.

2.2.1 Stack machine

WebAssembly programs are defined using a structured stack machine. Instructions
interact with the stack by popping its inputs before pushing its outputs. For ex-
ample, the i32.add instruction pops two i32 (32-bit integer) values from the stack,
adds them together (modulo 232), and pushes that result back to the stack. Listing 2.4
displays an example WebAssembly program.

LISTING 2.4: Some function $f

(func $f (result i32)
i32.const 4 ;; push 4
i32.const 5 ;; push 5
i32.add ;; pop 5. pop 4. push 9
i32.const 3 ;; push 3
i32.mul ;; pop 3. pop 9. push 27

)

LISTING 2.5: Sugared $f

(func $f (result i32)
(i32.mul

(i32.add
(i32.const 4)
(i32.const 5)

)
(i32.const 3)

)
)

The function $f starts with an empty stack. Then 4 and 5 are pushed to the stack.
i32.add pops those operands, computes 4 + 5 = 9, and pushes 9 to the stack. Then,
after pushing 3 to the stack, the stack contains [9, 3] (right-most is the top). Finally,
i32.mul pops those values, computes 9 · 3 = 27, which is pushed back to the stack.
The function returns the stack’s top value - being 27 - as its result.

Listing 2.5 shows an alternative notation of the same program as Listing 2.4,
where the program is denoted as an S-expressions. Often, S-expressions are easier
to understand. However, instructions producing multiple results cannot generally
be written in the S-expression format. Either notation may be used throughout this
document.

2.2.2 Structured Programming & Labels

WebAssembly operates as a structured stack machine, which implies programs must
adhere to structured control flow. Intuitively, a structured program may contain in-
struction (1) sequences, and both (2) if-else and (3) loop constructs, but no (arbi-
trary) goto statements. Those three constructs are sufficient to represent any com-
putable function[7]. While structured programming is commonplace in recent high-
level languages, it is less so in low-level languages. For languages written and
read by programmers, (abundant) use of goto statements make programs hard to
understand[16]. For machine languages that problem does not exist, as few pro-
grammers write it directly. WebAssembly, however, is both structured and low-level.
WebAssembly’s program structure eliminates some static errors, such as branches
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into the middle of a multi-byte instruction. Additionally, streaming validation and
compilation become easier[23], which enables web browsers to start compilation to
machine-code before the file is fully downloaded.

Listing 2.6 shows an annotated WebAssembly program containing an if-statement.
Whenever a block (if, block, loop) statement is encountered, a label is pushed to the
stack. The label effectively delineates the block scope; instructions within the block
cannot modify values below the label, as those belong to its outer scope. Upon exit-
ing a scope, the label is popped again. Blocks may have inputs and outputs. Before
entering a block, its parameters are popped from the stack. After pushing the scope
label, those parameters are pushed again. Similarly, upon exiting, the results are
popped before popping the label. After popping the label, those results are pushed
to the stack again.

LISTING 2.6: Function with an if-statement

(func (result i32)
i32.const 9 ;; push 9
i32.const 5 ;; parameter passed to if-statement
i32.const 1 ;; condition (true)
if (param i32) (result i32) ;; pop 1. pop 5. push label. push 5.

i32.const 3 ;; push 3
i32.mul ;; pop 3. pop 5. push 15

end ;; pop 15. pop label. push 15.
i32.add ;; pop 15. pop 9. push 24.

)

Break statements While arbitrary jumps are disallowed, jumps to surrounding scopes
are allowed; This is done through br, br_if, and br_table instructions. Listing 2.7
shows a program with a conditional break (br_if) statement.

LISTING 2.7: Function with conditional break

1 (func (param $x i32) (result i32)
2 block $B0 (result i32)
3 i32.const 20 ;; push 20
4 i32.const 10 ;; push 10
5 get_local $x ;; push the value of $x
6 br_if $B0 ;; break if $x != 0
7 drop ;; drop 10
8 end
9 )

Within the block, 20 and 10 are pushed to the stack. Then the value of local2

variable $x is pushed to the stack; if that value is true ( 6= 0), it breaks, and execution
resumes after the block. As block $B0 must return a i32 value, before breaking, 10
is preserved to the other scope. Any other values remaining on the stack (being 20)
are discarded with the label. However, if $x is false (= 0), the break is not performed
and execution resumes at line 7. There, 10 is explicitly dropped from the stack. Then,
block $B0 naturally exits with 20 as its result.

While labels are typically given identifiers (e.g., $B0) in the text format, in the
binary format, labels are referenced by an index. This index denotes the number of

2Locals are explained in subsection 2.2.3
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labels between the referencing instruction and the referenced label; this is akin to de
Bruijn indices[14]. In the example, $B0 on line 6 may thus be replaced by 0, as there
are no other scopes between the break statement and block $B0.

2.2.3 Locals

Every function has a fixed number of local variables. The function parameters are
also considered local variables, whose value is provided by the function caller. Non-
parameter local variables are initialised to their respective zero values upon function
entry. All local variables are mutable. Consider Listing 2.8 below.

LISTING 2.8: Function with local variables

(func (param $x i32) (param $y i32) (result i32) (local $z i32)
(tee_local $z

(i32.add
(get_local $x)
(get_local $y)

)
)

)

Local variables $x and $y are function parameters, and generally no assumptions
can be made about their values. $z is a non-parameter local variable, and is initial-
ized to 0 upon function entry. In the binary format, variables are referenced by their
index. Indices may also be used in the text format, though names are usually more
readable. $x has index 0, $y has index 1, and $z has index 2.

2.2.4 Globals

A WebAssembly module may contain global variables. Any function may access the
global variables. Global variables are statically determined; that is, no new global
variables can emerge at runtime. Global variables are statically defined as either
mutable or immutable. Consider Listing 2.9.

LISTING 2.9: Program with global variables

(module
(global $p i32 (i32.const 3))
(global $q (mut i32) (i32.const 0))

(func (param $x i32)
(set_global $p

(i32.add
(get_global $q)
(get_local $x)

)
)

)
)

The global variables are $p and $q. Both have type i32, though only $q is muta-
ble. As $p is immutable, its value may never change at runtime. Similarly to locals,
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global variables may also be referenced by their index (in order of definition); $p has
index 0 and $q has index 1.

2.2.5 External Functions

While WebAssembly modules are frequently called programs, these modules cannot
be executed on their own. Instead, WebAssembly modules are always executed in
a host environment. The host may invoke (exported) functions defined within the
module. WebAssembly functions may invoke functions exposed by the host envi-
ronment. Consider Listing 2.10.

LISTING 2.10: Program with global variables

(module
(import "env" "print" (func $print (param i32)))
(func (export "foo")

(call $print
(i32.const 42)

)
)

)

In this module, the host exposes a print function (env.print), which accepts a
single i32 value. It is the host’s responsibility to provide a sensible implementation
for that function; which likely involves printing the value to the console. WebAssem-
bly has no other means of accessing the outside world. This mechanism ideally pro-
vides a perfect sandbox within which the module runs, as any outside access must be
explicitly granted.

Often, a web browser acts as a host, where a WebAssembly module is spawned
by a JavaScript program. This way, websites can spawn performant applications on-
demand. Compilers (e.g., Emscripten[65]) usually generate WebAssembly together
with corresponding JavaScript “glue code”, which web-developers use to interact
with the module.

Though, WebAssembly is not limited to the web, as desktop runtimes3 also exist.
In those cases, a user program encapsulating the runtime acts as the host, which
guards system interaction, such as system calls for file access.

In practice, WebAssembly programs often have several dozens of imported func-
tions; each of which handles a specific interaction with the host. Examples of these
interactions are printing to the user console, writing to a WebSocket network con-
nection, or updating a display component.

3See: https://github.com/bytecodealliance/wasmtime or https://wasmer.io/

https://github.com/bytecodealliance/wasmtime
https://wasmer.io/
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2.2.6 Memory

WebAssembly programs may optionally contain a block of linear memory, as illus-
trated by Listing 2.11. Memory consists of a vector of uninterpreted bytes.

LISTING 2.11: Module with memory

(module
(func $f

(f64.store
(i32.const 99) ;; address
(f64.const 42.0) ;; value

)
)
(memory (export "mem") 128 256)

)

This module has a memory block consisting of at least 128 and at most 256 mem-
ory pages; each of which has a size of 64 KiB. At runtime, the size of memory may
grow upon request through the grow_memory instruction. The function $f writes the
binary representation of the 64-bit float 42.0 to memory at index 99. Memory may
also be read from or written to by the host. Note, though, that this memory is in-
dependent from the host’s memory; meaning a WebAssembly program can never
access the host’s memory.

2.2.7 Uninterpreted Integers

WebAssembly programs operate on variables which are either uninterpreted integers
(i32, i64) or floating-point numbers (f32, f64).

Definition 2.1 (Uninterpreted integer). Uninterpreted integers are integers whose signed-
ness interpretation varies depending on context[48]. For some operations, signed-
ness does not matter; for example, for addition. Whereas for other operations the
signedness is important, in which case it is enforced by the instruction; for example,
i32.lt_u versus i32.lt_s for unsigned and signed variants of the less-than instruc-
tion, respectively.
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2.3 Definitions

In this section, we give definitions for several terms used within this thesis.
Any computer program can eventually be executed on some concrete machine

which exists in our reality. As the program executes, this reality changes. This reality
is modelled as an infinite sequence of worlds.

Definition 2.2 (World). The world is all that is the case[64], which is the totality of
facts. (Except the internal state)

A world thus represents the state of all that is at some specific point in time. The
world that is now is different from the world that was 2 seconds ago. A running
program can observe facts about the world, or transform the world into another. For
convenience, the program’s internal state (e.g., stack and memory) is not considered
part of the world. Observation of the world, as well as transformations of the current
world, are considered side effects of the program.

Definition 2.3 (Side Effect). A side effect is an action that observes or transforms the
world outside the local environment. For WebAssembly, this is performed through
host calls. The host system can explicitly provide access to host functions[48]. The
WebAssembly instance may call these functions to change the system state or inter-
act with peripheral devices.

Examples of side effects are writing to a file, or launching nukes.
The internal state of the program (which is not considered part of the world), is

defined as follows:

Definition 2.4 (Program State). A program state s is defined as a triple (K, M, G). K
represents the program stack. As WebAssembly’s semantics are defined over a stack
machine, this stack contains primitive values (of type i32,i64,f32, or f64), labels,
and activations. Activations are the call frames of active functions. Labels represent
block scopes on the stack. M is the program memory; which is a bounded vector of
bytes whose length is always a multiple of 64 · 1024 (which is the page size). G is the
vector of global variables.

This definition roughly corresponds to its definition in the WebAssembly
specification[48]. WebAssembly implicitly enforces that a memory block cannot be
larger than 233 bytes; as memory is addressed by 32-bit indices added to another
32-bit constant offset. Whenever a stack is explicitly stated, it grows from left to right.

Example 2.1 (Stack). Consider the stack listed below:

(f32.const 42.0) (i32.const 99)

The 32-bit integer 99 is on top of the stack, while the 32-bit float 42.0 is the second
(and bottom) element of the stack.

A program transitions through multiple program states by executing instruc-
tions. Every concrete execution of a program follows an execution trace.

Definition 2.5 (Execution Trace). An execution trace is the sequence of instructions that
is traversed during program execution from a single initial state. This sequence need
not be finite; which is the case for non-terminating programs.
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At any program point there is a limited set of states that can possibly occur. Si-
multaneously, many states cannot occur at that program point; as no execution trace
to that program point exists which produces those states. For example, it may be the
case that variable x always contains an even integer at some program point p. The
knowledge of possible states at a program point is essential for improving perfor-
mance. A set of such states is called a configuration[61] (Jones[28] calls these stores).

Definition 2.6 (Configuration). A configuration C is a set of states that have identical
static structures. Two states s1 and 2 have identical static structures if all the following
conditions hold:

• Their stacks have an identical number of elements and pairwise4 these ele-
ments have the same static structure; which involves:

– For primitive values, both have identical primitive types

– For activations, the number of local variables are identical and their ele-
ments pairwise have identical types.

• Their number of global variables are identical and pairwise these variables
have identical types.

The structural restriction is placed upon configurations as no two states with un-
equal structures can occur at the same program point; this is enforced by validation[48]
of WebAssembly programs.

Every concrete execution of a program transitions through a sequence of pro-
gram states. When considering a process tree - which contains all execution traces -
every node corresponds to a configuration. A program can thus be fully described
through its execution traces between configurations and worlds. This was observed
by Turchin[61], and later adopted by Jones[28] in his formal system of program spe-
cialization. In this context, an abstract program is defined as follows:

Definition 2.7 (Abstract Program). An abstract program[28] is a quintuple
π = (P, S, W,→, p0), where p0 ∈ P and→ ⊆ (P×W × S)× (P×W × S). P is the
set of program points. S is the set of states. W is the set of worlds. → is the translation
relation, which is written in infix notation5. p0 is the initial program point.

Note that this definition differs from Jones’s[28], as it includes the set of worlds.
This opaque model of worlds is used to represent side-effects of abstract programs
(See subsection 3.2.7). The concrete execution of such a program is defined as fol-
lows:

Definition 2.8 (Concrete Execution). An execution exec(π, w0, s0) of some program
π (where π = (P, S, W,→, p0)), for some valid s0 ∈ S and w0 ∈ W corresponds to a
finite or infinite sequence:

(p0, w0, s0)→ (p1, w1, s1)→ (p2, w2, s2)→ . . .

Usually, execution halts in a terminal state; for WebAssembly, this returns control
to the caller together with the produced results.

4pairwise P for vectors A and B of length n:
∧n

i P(Ai, Bi)
5Infix ‘→’: (p0, w0, s0)→ (p1, w1, s1)
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Definition 2.9 (Terminal state). A state pair (p, w, s) is terminal if (p, w, s)→ (p′, w′, s′)
holds for no p′, w′, s′.

Definition 2.10 (Terminal relation). →∗ is the reflexive transitive closure of→. →F

denotes the terminal relation. That is, (p, w, s)→F (p′, w′, s′) iff (p, w, s)→∗ (p′, w′, s′)
and (p′, w′, s′) is terminal.

Alternatively, the following notation may be used for program π = (P, S, W,→
, p): execF(π, w, s), which produces (p′, w′, s′). This denotes the terminal state of
program π when executed in world w from initial state s.

Note that (p, w, s) →F (p′, w′, s′) need not be defined for every (p, w, s); which
happens for non-terminating programs. Furthermore, most programs are determin-
istic; which means:

Definition 2.11 (Determinism). A program is deterministic[28] if for every p ∈ P,
w ∈ W, s ∈ S, it holds that (p, w, s) → (p′, w′, s′) and (p, w, s) → (p′′, w′′, s′′) always
means that (p′, w′, s′) = (p′′, w′′, s′′).

Whenever the program is deterministic, the terminal state (p′, w′, s′) is unique for
(p, w, s) in (p, w, s)→F (p′, w′, s′).

In superoptimization, program fragments are replaced by faster program frag-
ments. Clearly, this new fragment must “behave identically” to the original. For-
mally, this means the program fragments must be extensionally equivalent within a
particular context. Typically, extensional equivalence is distinguished from intensional
equivalence, which Example 2.2 illustrates.

Example 2.2 (Extensional vs Intensional equivalence).
Consider the two functions below:

f (x) = (x + 2) ∗ 3
g(x) = x ∗ 3 + 6

The functions f and g have a different internal structures, as the order of oper-
ations and the used constant values differ; as their definitions are not syntactically
equal, the functions f and g are not intensionally equal.

However, both f and g map values in their domain to identical values in their
co-domain (So, ∀x. f (x) = g(x)); as their external properties match, f and g are ex-
tensionally equal.

Program fragments need only be extensionally equivalent for the set of states
upon which the fragment is executed. For mathematical functions, extensional equiv-
alence over some domain is defined as follows:

Definition 2.12 (Extensional Function Equivalence over Domain). Two functions f
and g are extensionally equivalent over some domain D if f and g map every input
value x ∈ D to identical output values. That means:

f ≡D g ⇐⇒ ∀x ∈ D.( f (x) = g(x) )

An example of this equivalence is as follows:
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Example 2.3 (Extensional Function Equivalence over Domain). Consider the func-
tions:

f (x) = x2

g(x) = x + 2

The functions f and g are extensionally equivalent over the domain D = {−1, 2}:
f ≡D g. This is because f (−1) = g(−1) = 1 and f (2) = g(2) = 4. Note that the
output values for any other input x /∈ D do not affect this extensional equivalence
over D.

Convention 2.3 (Extensional Function). Functions with a finite domain may be writ-
ten extensionally. The function f = {3 7→ 4, 5 7→ 6} is a function with domain {3, 5},
where f (3) = 4 and f (5) = 6.

Much of program equivalence checking involves logic formulas, which are mainly
stated in first-order logic with equality. Below, conventional terminology for this do-
main is stated:

Definition 2.13 (Interpretation). An interpretation is a mapping that assigns values
to all free variables in a formula. This may also be referred to as a model.

Example 2.4 (Interpretation). Consider the formula:

a < b ∧ b < c

One interpretation function is u = {a 7→ 2, b 7→ 1, c 7→ 4}, as it assigns a sort-
correct value to each variable. Note, though, that the formula is not true under this
interpretation.

Definition 2.14 (Satisfiable). A formula is satisfiable iff there exists at least one inter-
pretation under which the formula is true.

Its inverse is:

Definition 2.15 (Unsatisfiable). A formula is unsatisfiable iff there exists no interpre-
tation under which the formula is true.

Definition 2.16 (Valid). A formula is valid iff it is true under every interpretation.

Note that iff a formula A is unsatisfiable, its negation ¬A is valid. As A is false
under every interpretation, ¬A is true under every interpretation.



16

Chapter 3

Program Synthesis

Superoptimization is a special case of program synthesis. Program synthesis in-
volves the construction of a program satisfying some specification. For superopti-
mization, the source program embodies this specification.

This chapter elaborates on the main concepts and challenges within this synthe-
sis process. Mainly, loop-free program fragments are considered for superoptimiza-
tion, while chapter 4 applies these techniques to cyclic process graphs.

3.1 CounterExample-Guided Inductive Synthesis

Programs synthesis aims to find a program π for some given specification πspec over
some (large) set of input states C and a common set of worlds W, which satisfies:

∀w ∈W.∀s ∈ C.(execF(π, w, s) = execF(πspec, w, s))

Assume only terminating programs without side-effects are considered1. The
specification can be entirely described by a (possibly infinite2) set of input/output
pairs which is the test set, that is obtained as:

TC = {(s, execF(πspec, w, s)) | s ∈ C}

Finding a program π that is consistent with all these pairs is computationally ex-
pensive; as it requires execution of every candidate program π′ on this set, which is
likely already infeasible for a single candidate π′. To resolve this, the program can
be made consistent with an iteratively growing set of input/output pairs. This cor-
responds to the prevalent synthesis technique: CounterExample-Guided Inductive
Synthesis (CEGIS)[59, 58]. Figure 3.1 depicts its structure.

FIGURE 3.1: CounterExample-Guided Inductive Synthesis

1Side-effects are separately described in subsection 3.2.7
2For WebAssembly, this set is finite, but usually humongous.
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Denote Tn
C as some particular set of test cases Tn

C ⊆ TC where |Tn
C | = n, for any

n ≤ |TC |. Starting at n = 1, a candidate program π′ is synthesised that is consistent
with all test cases in Tn

C . Their correctness can be determined by executing π′ on each
test input. Once π′ is consistent with all test cases in Tn

C , π′ is given to a verification
oracle. This oracle determines whether π′ corresponds to the specification (i.e., it
satisfies all test cases in TC), or finds another test case t with which it is inconsistent.
This produces another test set Tn+1

C = Tn
C ∪ {t}, upon which the algorithm repeats.

This continues until a correct program is found3. Note that n never exceeds |TC |, as
πspec and π′ match on all inputs when n = |TC |.

The produced program becomes gradually consistent with an increasing num-
ber of counter examples. As it “learns” from these examples, the synthesis may be
considered inductive.

3.1.1 Program Equivalence

This synthesis procedure relies upon some verification oracle to determine equiva-
lence of two programs. Below, we define program equivalence. This definition re-
lates to extensional function equivalence (Definition 2.12 on page 14). However, con-
trary to mathematical functions, programs may produce side-effects or run indefi-
nitely. Thus, extensional equivalence of program fragments requires a more elaborate
definition, which is given below:

Definition 3.1 (Extensional Program Equivalence over Configuration). Two pro-
gram fragments π1 and π2 are extensionally equivalent over a configuration C when
both the following conditions hold for every state s ∈ C and every initial world w:

• Either both exec(π1, w, s) and exec(π2, w, s) terminate in the same state, or both
run indefinitely.

• The sequence of worlds observed by exec(π1, w, s) and exec(π2, w, s) must be
identical; this ensures both programs have identical side-effects.

WebAssembly programs can also trap. Trapping immediately aborts execution[48].
This happens, for instance, upon division by zero. Whether an execution trapped,
must thus be included in the state representation. For the purpose of extensional
equivalence, trapping is no different from successful program termination. The en-
forced equality between the sequences of observed worlds is stricter than it need be.
However, as no knowledge about the behavior of side-effects is assumed, this is a
safe assumption. (This is further elaborated in subsection 3.2.7)

3.2 Program Equivalence Checking

Now remains the checking of this equivalence. For the program fragments consid-
ered in the superoptimizer, bounded symbolic execution[32] is used to determine their
equivalence. Both programs are symbolically executed, which produces a symbolic
representation of their respective final program state. Effectively, every variable
is assigned a formula (which is parametric over the input variables). Every such
symbolic representation completely describes the input/output relation of the cor-
responding program. Equality between such states can be described through a logic

3Synthesis is undecidable; if no such program exists, it searches forever.
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formula, equating the symbolic states. The Z3[15] SMT solver determines validity of
such formulas, which means the programs are equal.

Intuitively, symbolic execution differs from concrete execution as follows: When
a program is concretely executed, its input variables have concrete values (e.g., the
value 42 for a i32 variable). When a program is symbolically executed, its input
variables are assigned symbolic values. A symbolic value can be considered to repre-
sent any particular value in a set of possible values. Through symbolic execution, a
program can be executed for multiple inputs simultaneously. While this is similar to
the previously-seen execution over configurations, it differs subtly yet crucially. The
full process of symbolic execution and equivalence checking is elaborated below.

3.2.1 Symbolic State

While we previously used configurations to describe the possible states at program
points, these are unsuitable for checking program equivalence. This is partially be-
cause configurations do not include information about the encountered worlds; but
mainly because configurations disregard the dependency between a program’s input
and output. This issue is explained through the following example:

Example 3.1 (Symbolic State Rationale). Consider symbolic execution of the two
programs below, starting with the configuration CI where x is represented by a sym-
bolic value a, where a ∈ {5, 10}.

LISTING 3.1: Program π1

// { Pre: x = a ∧ ( a = 5 ∨ a = 10 ) }
x = 10 - x;
// { Post: x = 10 - a ∧ ( a = 5 ∨ a = 10 ) }

LISTING 3.2: Program π2

// { Pre: x = a ∧ ( a = 5 ∨ a = 10 ) }
x = x - 5;
// { Post: x = a - 5 ∧ ( a = 5 ∨ a = 10 ) }

After executing both programs on the same configuration CI , their final configu-
ration CO (containing two states) can be described as: {{x 7→ 0}, {x 7→ 5}}.

While both programs terminate in the same configuration CO, these two pro-
grams are not equal. With configurations, the relation to the program input is lost. After
all, the input/output relation of variable x in π1 is characterised by {5 7→ 5, 10 7→ 0},
while in π2 it is characterised by {5 7→ 0, 10 7→ 5}.

Only checking for the equivalence of configurations is insufficient to determine
program equivalence. Instead, through symbolic execution, programs are deter-
mined equal iff their outputs are equal for every input value. While a configuration
may also be symbolically represented, it fundamentally differs from a symbolic state.
A configuration simultaneous represents all contained states, while a symbolic state
symbolically represents a single state which is parametric over its symbolic inputs
(in this case a).

Symbolic states are defined similarly to concrete states (as defined in Defini-
tion 2.4).

Definition 3.2 (Symbolic State). A symbolic program state Y is defined as a quadru-
ple (K, Md, Ms, G, W, T) over some environment EC . K is a symbolic representation
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of the stack, containing primitive values and activations. Md is a symbolic repre-
sentation memory block, while Ms symbolically represents its size. G is the vector
of symbolic global variables. W is the symbolic representation of the world. T is a
symbolic boolean indicating whether the execution has trapped.

The static structure of the stack K is concretely defined (i.e., it is not parametric
over any program inputs), whereas its contained primitive values and local variables
are represented by symbolic values. This is similar for global variables, where only
their values are symbolically represented.

The memory block is described with the two variables Md and Ms. The reason
for this dual description is quite subtle. In the logic, Md is an uninterpreted function
of type:

Md : [[33]]→ [[8]]

[[33]] and [[8]] are bitvectors of size 33 and size 8, respectively. This function is de-
fined over its entire domain, which corresponds to 233 memory addresses. How-
ever, a program’s memory is bounded by its number of assigned memory pages.
This bound on the domain of Md is externally enforced by Ms, which symbolically
represents the memory’s size. Any memory access at some address a is bounds-
checked:

0 ≤ a < Ms

When this check fails, program execution traps. So, together, Md and Ms are suffi-
cient to represent program memory.

Implementation of Symbolic States

The symbolic state (inside a function activation) from our superoptimizer’s imple-
mentation in Haskell is listed in Listing 3.3.

LISTING 3.3: Symbolic State Implementation (in Haskell)

data SymbolicProgramState env =
SymbolicProgramState {

localState :: Maybe (SymbolicLocalState env)
, globals :: [SymbolicGlobal env]
, mem :: Maybe (SymbolicMem env)
, world :: Symbolic env World
}

data SymbolicLocalState env =
SymbolicLocalState {

isTrapped :: Symbolic env Bool
, activation :: SymbolicActivation env
, stack :: SymbolicStack env
}

The localState field reflects an important detail; namely, that the SymbolicLocalState
is absent (Nothing) on paths that are unconditionally trapped upon encountering an
unreachable statement. Consider the program below, in Listing 3.4 and Listing 3.5.
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LISTING 3.4: Checked 0 division πA

if x == 0 {
memory[42] = 3;
unreachable!( );

}
return 10 / x;

LISTING 3.5: Unchecked 0 division. πB

return 10 / x;

These programs are subtly unequal. Surely, both programs trap whenever x has
the value 0. However, πA modifies memory before doing so. As memory updates
are externally observable - even on trapped execution - it must be represented within
the state. However, after trapping (unconditionally), execution halts and the stack
values are dropped. Other execution paths (when x 6= 0) do continue execution. A
symbolic representation is required that characterizes the full input/output relation
of the program (over some C). So, all final symbolic states at the end of execution
paths must be merged under their respective (mutually exclusive) path conditions.
For trapped executions the non-stack components (i.e., globals, memory, and world)
are preserved. Figure 3.2 aims to illustrate this. Note that two states A and B are
equal (over some C) whenever:

globalsA = globalsB

∧memA = memB

∧ worldA = worldB

∧ trappedA = trappedB

∧ ¬ trappedA → (activationA = activationB ∧ stackA = stackB)

So, when both programs trapped for a particular execution, the stack and activa-
tion may be considered vacuously equal. As Figure 3.2 illustrates, the path conditions
of unconditionally trapped branches are included in the merged final state. After
all, in the merged state that path (when α = 0) is no longer unconditionally trapped,
but conditionally trapped under its path condition (being α = 0). Merging states
is further elaborated in subsection 3.2.3, after symbolic execution is established (in
subsection 3.2.2).

The reason for keeping the local state absent, is because branches that trap uncon-
ditionally provide no guarantee on their stack state. Consider Listing 3.6.

LISTING 3.6: Branches with unequal stacks

if (result i32)
(i32.const 3)
(i32.const 2)
unreachable ;; traps

else
(i32.const 1)

end

While type-checking demands that the if-block produces a i32 value, the unreachable
instruction has any type, as it aborts execution. The branches have unequal stacks;
in the if-case there are two i32 values on the stack, while in the else-case there is
only one. Still, this program is type-correct, as stacks are discarded upon trapping.
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Merging stacks with unequal static structures is impossible. However, as the stack
for the trapped execution is irrelevant anyway, it may be modeled by Nothing.

Memory is wrapped inside a Maybe for a much simpler reason: Not all programs
have a memory block.

FIGURE 3.2: Symbolic Execution and Equivalence Checking example (Not strictly Haskell)

Symbolic Environments

The symbolic values within the symbolic state are defined with logical predicates,
which constrain the possible assignments to the values; for instance, by stating ‘a <
b ∧ b + 1 < c’. As every symbolic state is composed of such values, these predicates
also constrain symbolic states. Consider a symbolic state with the following stack:

K (i32.const a) (i32.const b) (i32.const c)

The predicates ensure that the following interpretation is not valid (as a < b does not
hold):

K (i32.const 100) (i32.const 75) (i32.const 50)

As the symbolic execution concerns WebAssembly programs, the majority of the
operators correspond directly to WebAssembly’s. These predicates are included in
the environment EC over which the program state Y is defined. The input config-
uration C - which is associated with the fragment’s initial program point - already
constrains the values. Hence, these constraints are adopted by the symbolic state.
The environment is defined as follows:
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Definition 3.3 (Symbolic Variable Environment). A symbolic variable environment
EC is defined as a tuple (V, R). V is the set of symbolic values available in the envi-
ronment. R is the set of constraints placed upon these symbolic values; these con-
straints are usually relational between several values.

The possible constraints within R correspond roughly to the relational instruc-
tions in WebAssembly specification[48]. These operators are defined as follows:

• Numeric Operators - These operators define relations between numeric sym-
bolic values. This includes equating a symbolic value to a constant value
(which roughly corresponds to an equality with a ‘t.const c’ instruction).

• Select Operator - This operator performs as an if-then-else construct. For exam-
ple, select(0, 42, 99) = 42 and select(1, 42, 99) = 99.

• Memory instructions - As the memory block is also a symbolic value (of type
byte-vector), it must be included in the environment, as memory changes dur-
ing symbolic execution. An example constraint is: Md1 = store(Md0, i, v),
which states the contents of memory block Md1 are identical to those of Md0,
except it contains value v at location i.

• Extra Conversion Operators - The WebAssembly specification only includes con-
version between its primitive types. Additional conversion operators are de-
fined for extra uninterpreted integer types (i8 and i33). A example conversion
constraint is a = i32.convert_i8(b).

An example environment is described below:

Example 3.2 (Environment). Consider a WebAssembly function with 2 parameters
p0 and p1 of type i32. Assume the initial configuration C - as obtained from the
fragment’s context - exclusively contains those states where p0 < p1.

An environment EC = (V, R) is derived from C. A fresh symbolic value a is
introduced, which is used as the symbolic value for parameter p0. Similarly, fresh
symbolic value b is assigned to parameter p1. Another two fresh symbolic value
md and ms are introduced to symbolically represent program memory. w is a fresh
symbolic value representing the world. Then V = {a, b, md, ms, w}.

As C was constrained, its constraints are extracted to the environment; which is
included in R = {i32.le_u(a, b)}. i32.le_u defines the less-than operator for 32-bit
unsigned integers.

The obtained symbolic state is given as Y0 = (K, md, ms, ∅, w). The stack K con-
tains a single activation for the function, where the parameters are assigned symbolic
values a and b.

Note that all satisfying interpretations to the symbolic values in a symbolic state
Y over EC exactly describe all states contained in C.

3.2.2 Symbolic Execution

The extensional equivalence of two loop-free program fragments π1 and π2 over an
initial configuration C is determined through symbolic execution[32]. Assume that π1
and π2 have no side-effects (side-effects are described in subsection 3.2.7). As both
π1 and π2 are loop-free, both programs terminate. Then π1 and π2 are equivalent iff:
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∀s ∈ C.(execF(π1, w, s) = execF(π2, w, s))

Clearly, it is computationally infeasible to iterate over all initial states s ∈ C.
Instead, π1 and π2 are symbolically executed starting at the same symbolic state Y in
some environment EC . Both programs π1 and π2 are executed, and terminate in
their own symbolic states Y1 and Y2, respectively. So:

(pf1, w f ,Y1) = execF(π1, w, Y)
(pf2, w f ,Y2) = execF(π2, w, Y)

When programs π1 and π2 are not intensionally equivalent, the symbolic repre-
sentations of Y1 and Y2 are likely4 different. However, π1 and π2 may be extension-
ally equivalent over C, which is the case when their symbolic final states are:

π1 ≡C π2 ⇐⇒ EC ` Y1 = Y2

The equivalence of Y1 and Y2 is determined by the Z3 SMT solver. SMT solvers -
like SAT solvers - can only find satisfying assignments. A single satisfying assignment
for Y1 = Y2 demonstrates equality for a single concrete execution trace. Clearly,
satisfiability is insufficient, as equality for all executions traces (starting at any s ∈ C)
is required. Y1 and Y2 are equal when their equality is valid. Luckily, this problem is
representable as a satisfiability problem. Y1 and Y2 are equivalent if there exists no
satisfying assignment for:

EC ` Y1 6= Y2

The equality between two symbolic states relies upon the equality between their
components; which are their stacks, memory blocks, and global variables. There
are some considerations for determining this equivalence, which are described in
subsection 3.2.6 and subsection 3.2.7.

3.2.3 Merging States

As execution paths may diverge under branch conditions, (when assuming deter-
minism) all terminal states are reached under mutually-exclusive branch conditions.
Once all paths are fully explored5, the pairs of symbolic states are merged under
the branch condition that caused them to diverge. In practice, states are merged
bottom-up over the execution tree. Each path after a conditional branch - under
some branch-condition ϕ - can be described by a symbolic state describing the in-
put/output relation of that particular branch. Note that any conditional branch,
with branch condition ϕ, spawns two new paths A and B. In path A (the if-case)
ϕ holds, while in B (the else-case) ¬ϕ holds. Let YA be the symbolic state describ-
ing the input/output relation of path A, and YB that same state for path B. Then,
intuitively, their combined state can be given as:

EC ` Y = (YA ‖ϕ YB)

4Potentially, syntactically distinct programs may produce identical symbolic states; for instance,
when the application of common sub-expression elimination to π1 produces π2.

5Or a bound is reached, and symbolic execution aborts
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Within an environment EC , this procedure traverses upward in the execution
tree, until a single symbolic state is obtained. This “all-encompasing” symbolic state
captures the full input/output relation of the program. The rule below states how
two symbolic values are merged under a path condition.

EC ` ϕ : SymbolicBool, a : τ, b : τ, c fresh in EC , c : τ
Merge

EC{c 7→ select(ϕ, a, b)} ` a ‖ϕ b ⇒ c

Note that a and b are any two values (of the same type) contained in the sym-
bolic environment. In practice, these may be (symbolic variations) of types i32,
i64, f32, f64, memory block (uninterpreted function), or world. Then, two states
of equal static structures are pairwise merged with the branch condition ϕ. This
procedure merges elements (pairwise) over the full structure, being the local state,
globals, memory, and the world. These are rather straightforward, except perhaps
for merging the symbolic local state, as those are contained in a Maybe.

When both paths trap unconditionally, then their combination also traps uncon-
ditionally.

EC ` ϕ : SymbolicBool
MergeLocalNeither

EC ` Nothing ‖ϕ Nothing ⇒ Nothing

When only the left path (if-case) traps unconditionally, their combination traps
when the path condition ϕ of the if-path holds. The trapping-behaviour of the right
path (when b holds) is also preserved.

EC ` ϕ, b : SymbolicBool c fresh in EC
s {isTrapped 7→ b} : SymbolicLocalState env

MergeLocalRight
EC{c 7→ (ϕ ∨ b)} ` Nothing ‖ϕ Just ( s {isTrapped 7→ b} )

⇒ Just ( s {isTrapped 7→ c} )

Similarly, when only the right path (else-case) traps unconditionally, the combined
paths trap when the path condition¬ϕ of the else-path holds. The trapping-behaviour
of the left path (when a holds) is also preserved.

EC ` ϕ, a : SymbolicBool c fresh in EC
s {isTrapped 7→ a} : SymbolicLocalState env

MergeLocalLeft
EC{c 7→ (a ∨ ¬ϕ)} ` Just ( s {isTrapped 7→ a} ) ‖ϕ Nothing

⇒ Just ( s {isTrapped 7→ c} )

When neither path traps unconditionally, their combination does not do so either.
The trapping condition from both paths (a and b) are preserved. (s1 ‖ϕ s2) refers
(somewhat informally) to the pairwise application of the above Merge rule to the
remaining elements in both s1 and s2.

EC ` ϕ, a, b : SymbolicBool c fresh in EC
s1 {isTrapped 7→ a} : SymbolicLocalState env

s2 {isTrapped 7→ b} : SymbolicLocalState env
MergeLocalBoth

EC{c 7→ (a ∨ b)} `
Just ( s1 {isTrapped 7→ a} ) ‖ϕ Just ( s2 {isTrapped 7→ b} )

⇒ Just ( (s1 ‖ϕ s2) {isTrapped 7→ c} )
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3.2.4 SMT solver

The superoptimizer uses the Z3[15] SMT solver to determine the equivalence of for-
mulas obtained through symbolic execution. While a SAT solver can determine the
satisfiability of a formula in propositional logic, an SMT solver extends this to (quanti-
fied) First-Order logic which may contain terms in a background theory (e.g. theory
of integers).

Example 3.3 (SMT solver steps). Consider the formula over integers x and y:

x > y ∧ (x < 10 ∨ y > 42)

This formula is abstracted to an propositional logic formula:

A ∧ (B ∨ C)

Note that A corresponds to x > y, B corresponds to x < 10, and C corresponds to
y > 42. The SAT solver can, for example, find the satisfying interpretation
{A 7→ >, B 7→ >, C 7→ >}. The integer solver is then given the set of terms {x >
y, x < 10, y > 42}. Clearly, no satisfying assignment exists for x and y. Thus, the
propositional formula is extended:

(A ∧ (B ∨ C)) ∧ ¬(A ∧ B ∧ C)

Another satisfying SAT interpretation {A 7→ >, B 7→ >, C 7→ ⊥} is found. The
integer solver is given the corresponding set of terms {x > y, x < 10, ¬(y > 42)};
for which a satisfying model is found where {x 7→ 5, y 7→ 4}, which satisfies the
original formula.

If no satisfying model exists, this is discovered once no satisfying formula ex-
ists for the corresponding propositional formula. Note that this example illustrates
a high-level (and only conceptually accurate) depiction of a SMT solver. For the re-
mainder of this thesis, the internals of the SMT solver are regarded as a black-box.

3.2.5 Empty Theory

SMT solvers often support a wide range of built-in theories; for example, Z3 sup-
ports linear integer arithmetic, bitvector arithmetic, and array operations, among
others[15, 6]. However, many (uncommon or domain-specific) theories may still be
missing. To still determine satisfiability of formulas relying upon such theories, the
new theory can be described (either precisely or approximately) within the empty
theory. This theory corresponds to the theory of Equality logic and Uninterpreted Func-
tions (EUF)[35]. This theory is called empty, as its set of sentences is empty.

Example 3.4 (Model with uninterpreted functions). Consider the following formula:

f (x) = y ∧ x < y ∧ f (y) = 6

Note that f is an uninterpreted function, which means it has no semantics at all. Note,
though, that it is pure, which means that repeated application of this function to the
same argument must produce the same result. One satisfying interpretation for this
formula is:

{ f 7→ {3 7→ 4, 4 7→ 6}, x 7→ 3, y 7→ 4}

Note that the function f is now given a (partial) interpretation.
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A satisfying model is usually found through syntactic unification. Terms within
the language (of this logic) are partitioned into different congruence classes by a con-
gruence relation[6, 17].

Definition 3.4 (Functional Congruence). For every (uninterpreted) function f with
arity n > 0:

∀x1, . . . , xn, y1, . . . , yn.

[(
n∧

i=1

xi = yi

)
→ f (x1, . . . , xn) = f (y1, . . . , yn)

]

Congruence builds on the equalities that are already present within the universe
(e.g., as obtained from other theories). Congruence is an equivalence relation, which
means it is reflexive, symmetric, and transitive.

3.2.6 Equivalence Checking of Unknown Operators

WebAssembly programs operate on variables that are either uninterpreted integers
(i32 and i64) or IEEE 754-2019[3] Floating-Point numbers (f32 and f64). The satis-
fiability (or unsatisfiability) of an expression consisting of values of these types can
be determined. Z3 has good support for bitvector arithmetic. However, WebAssem-
bly’s floating-point qualification requirements (e.g., signaling NaNs)[48] are difficult
to represent in Z3[49]. Also, if representing floats were easy, satisfiability checking is
computationally expensive[9]. To work around this, symbolic execution of floating-
point arithmetic is defined stricter6. That is, floating point operations are represented
by another sort within Z3. This is described below.

The sort of these abstract 32-bit floating points is denoted F32. For abstract 64-
bit floating points this is F64. These two sorts are uninterpreted, which means no
concrete value assignment exists for values of this type. Z3 assigns abstract values to
elements of these sorts. Conceptually, one may regard the set of abstract inhabitants
of these sorts as isomorphic to N. Within a program, floating points are represented
as bitvectors, which are given specific sorts. bvf32 denotes the sort of floating-point
bitvectors of size 32. bvf64 denotes the sort of floating-point bitvectors of size 64.
The sorts of (integer) bitvectors of size 32 and 64 are denoted by [[32]] and [[64]],
respectively[27].

FIGURE 3.3: Typical interpretation of a bvf32[3]

The floating-point bitvectors are precisely that, bit vectors. Most inhabitants of
bvf32s could be interpreted as real numbers7; Figure 3.3 depicts this correspondence.
However, our verifier does not consider this interpretation, and treats values of sort
bvf32 and bvf64 as typical bitvectors (which do not have the same operators as [[32]]
and [[64]]).

6It corresponds to an Herbrand interpretation for floating-point operations
7This is roughly what happens during concrete execution
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While we introduce no formal SMT theory for floating-point bitvectors, we de-
scribe this new system through axioms over the empty theory. The set of functions
is defined as Σ f

F = F ∪ P. F is the set of functions defined as:

F = {nF32 | n ∈N}
∪ {nF64 | n ∈N}
∪ {0bvf32, . . . , (232 − 1)bvf32}
∪ {0bvf64, . . . , (264 − 1)bvf64}

. . .

The remaining elements of F are functions which are evident from Table 3.1.
The set P denotes the predicates (which are functions that map to booleans):

P = {f32.relop, f64.relop}

τF ( f ) denotes the sorts of symbols, as defined in Table 3.1.

Symbol Sort τF ( f ) Intended meaning
nF32 F32 abstract 32-bit float
F32.to bvf32→ F32 conversion
F32.from F32→ bvf32 conversion
i32.reinterpret_f32 bvf32→ [[32]] reinterprets bitvector
f32.reinterpret_i32 [[32]]→ bvf32 reinterprets bitvector
F32.unop N→ F32→ F32 unary f32 operator
F32.binop N→ F32→ F32→ F32 binary f32 operator
F32.relop N→ F32→ F32→ Bool f32 comparison

nF64 F64 abstract 64-bit float
F64.to bvf64→ F64 conversion
F64.from F64→ bvf64 conversion
i64.reinterpret_f64 bvf64→ [[64]] reinterprets bitvector
f64.reinterpret_i64 [[64]]→ bvf64 reinterprets bitvector
F64.unop N→ F64→ F64 unary f64 operator
F64.binop N→ F64→ F64→ F64 binary f64 operator
F64.relop N→ F64→ F64→ Bool f64 comparison

i32.trunc_F32 Sx→ Bool → F32→ [[32]] truncate to i32
i32.trunc_F64 Sx→ Bool → F64→ [[32]] truncate to i32
i64.trunc_F32 Sx→ Bool → F32→ [[64]] truncate to i64
i64.trunc_F64 Sx→ Bool → F64→ [[64]] truncate to i64
promote F32→ F64 promotes precision
demote F64→ F32 demotes precision

TABLE 3.1: Abstract floats and their operations

For notational simplicity, the operators are grouped by sort. For each group, a
natural number corresponds to a particular member of the group (e.g., for unary op-
erators: add, sub, etc.), which are ordered as in the WASM specification[48]. The ‘Sx’
type marks the signedness of the result[48]. The truncation functions are provided
with a boolean which identifies whether it performs saturating conversion.
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The intended meaning for these functions is stated, which relates them to their
corresponding WASM instructions. These functions are, however, all uninterpreted.
The SMT solver is responsible for assigning a valid (but arbitrary) satisfying inter-
pretation. Intuitively, when determining equality over uninterpreted functions - or
inhabitants of uninterpreted sorts - the values must be equal under any interpretation.

Two symbolic states Y1 and Y2 are equal if their inequality is unsatisfiable:

EC 6|= Y1 6= Y2 ⇒ EC |= Y1 = Y2

The inequality is determined through the disjunction over the pairwise inequal-
ity between their components. Also, note that the other way around is not gener-
ally true. Subterms within the components (stack, memory, globals) of Y1 and Y2
may contain expressions of sort F32. When two expressions a and b of sort F32
are unequal, it is sound to assume F32.from(a) and F32.from(b) are also unequal
(for our purposes). However, as bvf32 has a bounded number of inhabitants (232),
F32.from(a) and F32.from(b) could be equal. So, this assumption may cause some
equal symbolic states to be marked as unequal. This is illustrated in Example 3.5. In
practice this causes some optimizations to be missed, but no incorrect optimizations
are ever accepted.

The SMT solver only marks an inequality as unsatisfiable if no interpretation
exists for any of the used functions or symbolic values; this implies that programs
which contain unknown functions are only equal if they are equal under every inter-
pretation of those functions. As the universe of elements for F32 and F64 is infinite,
a satisfying interpretation for any of these functions - which map to either of those
domains - can often be found. One scenario where the inequality is unsatisfiable, is
when the program π2 is obtained by performing common subexpressions elimination
upon π1; as formulas obtained from their symbolic execution can be syntactically
unified.

Example 3.5 (Missed equal float programs). Consider the programs below.

LISTING 3.7: Program 1

x = 2.0 * 4.0
// { Post: x = F32.from(F32.mul(F32.to(2.0bvf32), F32.to(4.0bvf32))) }

LISTING 3.8: Program 2

x = 4.0 * 2.0
// { Post: x = F32.from(F32.mul(F32.to(4.0bvf32), F32.to(2.0bvf32))) }

The two expressions are not equal under functional congruence:

• F32.from( F32.mul( F32.to( 2.0bvf32 ), F32.to( 4.0bvf32 ) ) )

• F32.from( F32.mul( F32.to( 4.0bvf32 ), F32.to( 2.0bvf32 ) ) )

However, the floating point expressions are equal: 2.0 ∗ 4.0 = 4.0 ∗ 2.0. Floating-
point multiplication is notoriously not commutative, in general. It is safe to err on
the side of caution, and assume multiplication is never commutative.
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3.2.7 Equivalence Checking of Side Effects

Many practical WebAssembly programs produce side-effects; usually, these side-
effects involve interaction with the user. While the superoptimizer assumes no
knowledge about external functions, it is beneficial when it can reason about pro-
gram fragments containing unknown functions; otherwise programs with side-effects
must be avoided altogether.

As no knowledge about specific side-effects is assumed, verification must remain
sound in a “worst case scenario”; which is defined as follows:

Definition 3.5 (Diverging Worlds Assumption). Under this assumption, no two dis-
tinct side effects can ever produce the same world.

So, if one execution externally calls bar(3), while another calls bar(5), then the
executions will not ever traverse a common world in the future.

An abstract depiction of example diverging world transitions by functions that
produce side-effects is depicted in Figure 3.4.

FIGURE 3.4: Example abstract depiction of diverging world transitions

Note that this is a very strict assumption; because in reality, bar(3) and bar(5)
may actually have the same effect on the world. However, as the behavior of side-
effects is unknown, assuming divergence is the only sound approach. Yet, some-
times equality of side effects can be proven (e.g., two executions both calling foo(42)
in the same world), which enables some optimization opportunities. This is elabo-
rated below.

Example 3.6 (Side-effects). Consider the two programs below, where the functions
foo and bar produce unknown side effects.

LISTING 3.9: Program 1

// { Pre: a = 0 ∨ a = 1 }
if a == 0 {

c = foo(0, 5);
} else {

c = foo(a, b);
}
d = bar();

LISTING 3.10: Program 2

// { Pre: a = 0 ∨ a = 1 }
b = if a == 0 { 5 } else { b };
c = foo(a,b)
d = bar();
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Both programs produce identical side effects; this is regardless of the value of b.
Namely:

• When a = 0, first foo(0,5) is called, followed by bar().

• When a = 1, first foo(1,b) is called, followed by bar().

The produced side-effects are also independent from the implementations of foo
and bar.

WebAssembly modules import external functions, which are assumed to always
produce side-effects. All imported functions - as well as their type signatures - are
statically included in a WebAssembly module. This allows all these functions to
be assigned a corresponding uninterpreted function in the logic. WebAssembly’s
syntax requires functions to have a type signature as follows:

vec(valtype)→ vec(valtype)

However, these type signatures do not consider the side effects of functions. In-
tuitively, their corresponding uninterpreted functions are given the following type
signature (or rather, sort signature):

W × (Md × [[32]])× vec(valtype)→W × (Md × [[32]])× vec(valtype)

Here, W is the set of worlds. The tuple (Md, [[32]]) describes the program memory;
Md is an array whose values are bitvectors of size 8, while the value of sort [[32]]
is the memory’s size. The signature includes memories, because external function
have the opportunity to modify the memory. While the worlds abstractly repre-
sent the state of reality, these are modelled as an uninterpreted sort, whose opaque
elements can be considered isomorphic to N. Similarly to the equivalence check-
ing over unknown operators, modifying the type signature as such is sufficient to
soundly determine equivalence between two programs. After all, programs whose
execution traces invoke different external functions produce distinct output worlds
(by Definition 3.5). An example of proving inequality in the presence of side effects
is given below.

Example 3.7 (Determining unequality). Consider the following programs:

LISTING 3.11: Program π1

x = foo(x + x);

LISTING 3.12: Program π2

x = foo(3 * x);

The function foo is assumed to produce unknown side-effects. Under the sound
assumption of diverging worlds, both programs surely end up in different worlds;
which makes the program unequal. The operations that establish this are described
below.

First, both programs are symbolically executed on the same symbolic state -
which, for this example is s0 = {x 7→ a}; x is the program variable x, and a is a
symbolic value. Both executions start in the initial world w0. Executing both pro-
grams gives the following final states:

execF(π1, w0, s0) = (pfinal, foow(w0, a + a), {x 7→ foo(w0, a + a)}))
execF(π2, w0, s0) = (pfinal, foow(w0, 3 · a), {x 7→ foo(w0, 3 · a)}))
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The procedure foo produces two values: its output and the modified world. The
function foow uniquely tracks its modifications to the world. So, the world produced
by ‘foow(w0, a + a)’ is different from w0.

The programs π1 and π2 are only equal iff all program variables map to the
same values and both final worlds are equal, for any assignment of a and w0. This
corresponds to the following inequality being unsatisfiable:

foo(w0, a + a) 6= foo(w0, 3 · a) ∨ foow(w0, a + a) 6= foow(w0, 3 · a)

However, one particular satisfying assignment is:

{a 7→ 1, foo 7→ {(w0, 2) 7→ 0, (w0, 3) 7→ 1}, foow 7→ {∗ 7→ w1}}

As a satisfying assignment exists, π1 and π2 are unequal.

While the previous example demonstrated the discovery of inequality, Exam-
ple 3.8 demonstrates that equality may be determined in the presence of side-effects.

Example 3.8 (Proving equality). Consider the following programs:

LISTING 3.13: Program π1

x = foo(x + x);

LISTING 3.14: Program π2

x = foo(2 * x);

These programs are surely extensionally equal, which is elaborated below.
Both programs are executed on the initial symbolic state s0 = {x 7→ a}; x is the

program variable x, and a is a symbolic value. Both executions start in the initial
world w0. Executing both programs gives the following final states:

execF(π1, w0, s0) = (pfinal, foow(w0, a + a), {x 7→ foo(w0, a + a)})
execF(π2, w0, s0) = (pfinal, foow(w0, 2 · a), {x 7→ foo(w0, 2 · a)})

The programs π1 and π2 are only equals iff all program variables map to the
same values and both final worlds are equal, for any assignment of a and w0. This
corresponds to the following inequality being unsatisfiable:

foo(w0, a + a) 6= foo(w0, 2 · a) ∨ foow(w0, a + a) 6= foow(w0, 3 · a)

However, no interpretation of a, w0, ‘foo’, and ‘foow’ exists such that this expression
is true. Thus, it is unsatisfiable; which means programs π1 and π2 are equal.

The inverse of the diverging world assumption states: When the output worlds
of two terminating programs are equal, both programs also encountered an equal
sequence of worlds during their execution. This is a crucial observation, as it im-
plies that program fragments can be freely replaced by other program fragments
that equally affect the internal state and the world. When a fragment is replaced
by another extensionally-equal fragment, in a non-terminating program, then the
sequence of worlds observed by that non-terminating program remains unchanged.

Similarly to the programs over floating points, inequality between programs can-
not be soundly determined; this is illustrated below. This inherently means the veri-
fier errs on the side of caution.



32 Chapter 3. Program Synthesis

Example 3.9 (Missed equal programs with side-effects). Consider the two programs
below. As a side-effect, the function writeFile writes a string to a file.

LISTING 3.15: Program 1

writeFile("hello.txt", "hello");
writeFile("world.txt", "world");

LISTING 3.16: Program 2

writeFile("world.txt", "world");
writeFile("hello.txt", "hello");

As both commands write to different files, these commands are probably commu-
tative. This means the programs - in reality - produce identical side effects. How-
ever, the verifier assumes no knowledge of side-effect produced by functions. Thus
it determines these programs as unequal.

Side-Effects of Memory

WebAssembly has one built-in instruction that is non-deterministic, namely
memory.grow. This instruction either increases the size of the memory block by the
requested amount (multiplied by the pagesize) and returns the previous size, or fails
and returns −1. The success of this operations depends mainly on resources avail-
able to the host system. Luckily, W models a world that includes the host system. So
the type signature of the instruction becomes:

memory.grow : W × [[32]]→W × [[32]]

This function is given the current world and the memory size. Remarkably, this
function does not require knowledge of the memory data (Md). The memory data
is merely an uninterpreted function which maps addresses to values. The bound
on these addresses is externally enforced. As growing memory does not change the
contents of memory, it is not included in the signature of memory.grow.
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3.3 Program Search

Now the synthesis of program fragments remains. For this process, our superop-
timizer uses a simple enumerative algorithm that is adapted to WebAssembly. This
algorithm is very simple in comparison to synthesis algorithms used by existing su-
peroptimizers (as discussed in section 6.1). However, the synthesizer applies sev-
eral WebAssembly-specific pruning rules, which is sufficient to produce small in-
struction sequences. The synthesis algorithm is basically an instance of Dijkstra’s
algorithm, where edges correspond to instructions. First, the used cost function is
described below.

3.3.1 Cost function

Instructions are assigned an execution cost. As the purpose of optimization is to re-
duce execution time, the cost of an instruction is often represented by its latency in
clock cycles on a specific CPU. WebAssembly instruction do not have an associated
latency, as WebAssembly is defined over an abstraction of modern hardware. How-
ever, some reasonable approximations can be made. The full table of instruction
costs is not given here; instead, a few instruction costs are listed in Table 3.2. Most
costs roughly correspond to the costs associated with recent Intel instruction sets8,
with some arbitrary multiplication factor.

Instruction Cost
c.const 5
in.add 5
in.mul 15
in.div 80
in.shr 3
fn.abs 10
fn.add 20
fn.div 80
· · ·

TABLE 3.2: Sample of the cost function
(n ∈ {32, 64}; c ∈ {i32, i64, f32, f64})

While this list is not exhaustive, it displays relations between instruction costs
that reflect those on modern CPUs. For instance, integer multiplication is more ex-
pensive than addition, which is more expensive than logical operators. By modelling
the costs after common CPUs, it should reasonably reflect the execution times.

3.3.2 Dijkstra’s algorithm

The synthesis is roughly an instance of Dijkstra’s algorithm. Nodes correspond
to configurations, while edges correspond to instructions. The algorithm expands
nodes with the lowest cost first; expanding nodes continues until a state is reached
whose static structure corresponds to that of the final state.

Consider the WebAssembly program in Listing 3.17, which multiplies its input
by 4.

LISTING 3.17: Program 2

8https://www.agner.org/optimize/instruction_tables.pdf

https://www.agner.org/optimize/instruction_tables.pdf
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(func (param $x i32) (result i32)
(i32.mul

(get_local $x)
(i32.const 4)

)
)

Figure 3.5 displays the (partial) search graph for the program. While travers-
ing, instructions are (concretely) executed on the elements in the test set. All paths
which reach the same state are extensionally equivalent under the current test set,
causing their nodes to be merged. Merging their nodes ensures similar paths are not
traversed separately, which reduces the search space.

The nodes in the search graph are traversed in increasing cost order (as per Dijk-
stra’s algorithm). The first node matching the outputs of the test set corresponds to
a potentially correct program. In the example, when $x = 2, then $x · 4 = 8. Follow-
ing symbolic execution, the SMT solver determines whether $x · 4 equals 8 for every
value of $x; which it does not. In particular, $x · 4 6= 8 when $x = 5, which is used
as a new test case. All paths within the graph are (concretely) executed for this test
case, causing some previous equivalence classes to be split. The search procedure
resumes, until another candidate is found; namely, the program performing a left-
shift by 2. Finally, the SMT solver determines $x · 4 equals ‘$x� 2’ for any value of
$x.

FIGURE 3.5: CEGIS Search Graph for $x ∗ 4 (partial & simplified)
(The tuple contains the stack and local variables; the stack grows to the right)

In practice, nodes also store global variables and memory. The advantage of this
(CEGIS) search is that the SMT solver need only be invoked sparingly, as program
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inequality can often be determined over a limited set of test cases. Unfortunately, this
procedure cannot generate programs containing floating-point arithmetic or func-
tion calls. After all, floating-point values and side-effects have no representation in
the test set; nor is concrete execution possible for side-effects. For those programs,
the CEGIS aspect is omitted; which means the synthesis uses plain brute-force. Of-
ten, issues arise when the program state contains floating-point values - even when
they reside lower on the stack and are not accessed by the fragment; the solver still
attempts to find a satisfying assignment (representing a counter-example) for all
symbolic values in the state. A possible solution is to omit parts of the state that
are unused by the current fragment; our superoptimizer does not currently do this.

3.3.3 Pruning

The program search may be optimized by using information from the original pro-
gram, which effectively prunes the search space. Some pruning strategies are:

• Use instructions similar to the original program. For example, if the input
program only operates on i32 values, generating programs which perform
i64 arithmetic may be omitted. The following properties are extracted from
the input program:

– Whether it uses any i32 arithmetic operations

– Whether it uses any i64 arithmetic operations

– Whether it uses any f32 arithmetic operations

– Whether it uses any f64 arithmetic operations

– The identifiers (= indices) of read global variables

– The identifiers (= indices) of modified global variables

– The identifiers (= indices) of read local variables

– The identifiers (= indices) of modified local variables

– The identifiers (= indices) of called functions

The synthesizer only generates programs with instructions corresponding to
those sets. Technically, this strategy may inhibit the discovery of an optimum.
After all, non-obvious bit-twiddling hacks may emerge between - for example
- i32-i64 conversion. In practice, those are unlikely and do not (currently)
warrant the increase in computation time.

• Limit generating (i32 & i64) constants. As there are a total of 232 unique in-
habitants for the type i32, generating every single constant takes too long. In
practice, the following sets - or combinations thereof - work well (for i32), de-
pending on the program:

– {2i | i ∈ [0, 31]} - All powers of 2.

– {2i − 1 | i ∈ [1, 32]} - Any number of trailing one-bits.

– Prime numbers

• Eliminate “stupid” programs; meaning any program containing fragments which
are surely non-optimal. For example, any (pure) operation executed on con-
stant inputs may be omitted, as it could be replaced by another constant. Surely,
an infinite set of qualifying “stupid” fragments exists; we experimentally se-
lected some simple patterns for our superoptimizer.
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• When the original program has multiple (feasible) branches with unique side
effects (e.g., one branch calls a function, while the other does not), then surely
no linear program sequence exists that replaces it. (So synthesis aborts)

• When considering side-effects, the generated program must surely call the
same functions as the original program, in the same order.

Further improvements to this synthesis can be achieved by considering the con-
text of the fragment within the program; this is explained in chapter 4.
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Chapter 4

Process Graphs

Chapter 3 established the synthesising and verification of loop-free programs. This
chapter elaborates on their application to process graphs. Section 4.1 gives an overview
of our approach.

FIGURE 4.1: Superoptimization Procedure Overview
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4.1 Superoptimizer Overview

Consider Figure 4.1; it depicts the general approach as applied by our superopti-
mizer. While the stages are numbered, it does not imply their order; those are merely
for easy reference. The arrows convey the order between the stages, on which we
elaborate below.

Stage 1. The procedure starts with a process graph of a single WebAssembly func-
tion. If a module contains multiple functions1, we apply this procedure to every
function. We discuss the representation of process graphs in section 4.4. Every node
is assigned an (imprecise) configuration and variable liveness information; this is
discussed in section 4.5.

Stage 2. At this point, the nodes contain an imprecise (but still useful) configu-
ration. Ideally, optimization continues at stage 6, where a fragment is extracted,
optimized, and placed back; in practice, that proves difficult. For most programs, it
is easier (and computationally feasible) to continue to stage 3. While we do demon-
strate the effectiveness from stage 6 onward, its application within larger graphs
is subject to further research (as later discussed in section 8.1). Partial evaluation,
which occurs when going to stage 3, is discussed in subsection 4.5.4.

Stage 3. After partial evaluation, some instructions are replaced by constants and
branches eliminated. While non-optimal, this operation gives us insight in the ex-
pected computation cost of superoptimization on process graphs (as discussed later
in subsection 5.4.1). From stage 3, the procedure continues to stage 4, where tran-
sition chains are compressed. Transition chain compression eliminates redundant
instructions from the graph, which we discuss in subsection 4.6.4.

Stage 4/5. Finally, after eliminating redundant instructions, the (slightly) faster
function is placed back into the module. Once all functions are optimized like this,
the module is written back to a WebAssembly file. These programs are later evalu-
ated in section 5.2.

Stage 6. This stage commences with some small WebAssembly graph fragment.
In the subsequent stages, the fragment is optimized. We later evaluate the success
of these stages in section 5.1. To go to stage 7, the fragment is driven. We give
the theoretical basis for driving in section 4.2. In subsection 4.6.2 its application
to WebAssembly is discussed. Note that driving subsumes partial evaluation (as
discussed in subsection 4.5.4).

Stage 7. Given some imprecise initial configuration (as obtained by symbolic dataflow),
the fragment is driven into a finite process tree. Within this tree, every node is asso-
ciated with a perfect2 configuration. From this tree, either transition chain compression
or synthesis may be applied. Synthesis was previous discussed in chapter 3. We
discuss transition chain compression in subsection 4.6.4.

1Modules often contain hundreds (if not thousands) of functions.
2These configuration contain as much information as possible, given the imprecise initial configuration.

Surely, improving the initial configuration will further increase precision at nodes.
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Stage 8/9/10/11. Finally, the optimized fragment is placed back into the graph.
Only synthesised fragments are optimal; compressed driven fragments are merely
faster (and often much larger). As we do not currently extract fragments from the
graph (see stage 2), we do not actually put them back. The overview merely illus-
trates their envisioned place within the procedure. We perform stage 6, 7, 8, and 9 in
isolation, and evaluate their effectiveness in section 5.1.

Final notes Note that only the synthesis step (between stage 7 and 9) currently uses
symbolic states. Symbolic states very precisely capture an input/output relation, which
is necessary when checking program equivalence (as discussed in chapter 3). Inside
the graph, we maintain configurations, which are also symbolically represented; those
are much less precise3 than symbolic states. The representation of configurations is
further discussed in section 4.3.

The stages above give a top-down overview of the graph optimization proce-
dure. Section 4.2 elaborates on the background theory. From section 4.3 and onward,
we discuss its application to WebAssembly.

4.2 Perfect Process Tree

Turchin introduced the notion of process trees[61] for his supercompiler (not to be
confused with a superoptimizer). Intuitively, a supercompiler simulates program exe-
cution with partial knowledge of the input, with the purpose of constructing a faster
program; this is further discussed in section 6.3. Turchin theorised that a super-
compiler relates to the way humans think. Humans observe phenomena, generalize
observations, and construct mental models from these observations. For computer
programs, this gives rise to the notion of driving:

Definition 4.1 (Driving). Driving transforms a program π into another program πd
that is equivalent to π for any valid initial state[28]. Effectively, driving simulates
program execution with knowledge of those initial states.

Through driving, the aim is to make observations about the program’s execution.
Mostly, these “observations” correspond to partial evaluation of program fragments.
For example, an (sub-)expression may be replaced by a constant, or a conditional
branch may be eliminated after its branch condition is evaluated. In the context of
abstract programs (see Definition 2.7 on page 13), program transitions are special-
ized to their context. The transitions of the original program are defined as follows:

(p, w, s)→ (p′, w′, s′)→ · · · → (p′′, w′′, s′′)

In its driven form, every program point in the process tree is associated with
a configuration for which it is specialized. Driving thus transforms the transition
chains4 into:

((p, C), w, s)→ ((p′, C ′), w′, s′)→ · · · → ((p′′, C ′′), w′′, s′′)

A perfect process tree[19] is a process tree which contains exactly the set of execu-
tion traces that can occur during concrete execution. This means that any unfeasible

3A configuration may over-approximate the states reaching a program point.
4Effectively, a transition chain is a linear instruction sequence within the tree.
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branches are entirely eliminated. Perfect information propagation5 may be used to at-
tain this result. The propagated must also be “perfect” to eliminate all branches.
Effectively, every node in the tree must know precisely the set of states that can pos-
sibly reach it. In practice, though, finding perfect configurations is very difficult.
Instead, sound over-approximations of configurations are often used.

When propagating insufficient information, driving cannot evaluate expressions
that could be partially evaluated when sufficient information had been available. Pre-
vious research illustrated over-approximation by propagating only constants[19], or
equality/inequality constraints[28]. Propagating more extensive (symbolic) infor-
mation over control flow may enable better partial evaluation using an SMT solver.
Generally, driving does not fundamentally change transition chains. As transition
chains are effectively linear instruction sequences, a superoptimizer could aim to do
so. Entire subtrees may be replaced, as long as the input/output relation remains
unchanged. This means - when assuming termination - a set of execution traces
(characterised by →) at some program point (p, C) may be safely replaced by an-
other set of execution traces (characterised by→2); if for every state s ∈ C:

((p, C), w, s)→F ((p′, C ′), w′, s′)

((p, C), w, s)→F
2 ((p′, C ′), w′, s′)

Note that driving enforces that C is chosen such that s ∈ C. At any time, it is safe
to loosen the requirement on C; instead choosing a CG ⊃ C. After all, the invariant
that s ∈ CG at its program point p, is preserved. (s ∈ C ∧ C ⊂ CG ⇒ s ∈ CG).

4.2.1 Generalization

A common issue with driving is that it may run indefinitely, which produces an
infinite tree. Some specialized program points may be generalized[61] again, which
weakens the associated configuration C into another CG where C ⊂ CG. Clearly,
doing so arbitrarily makes little sense. However, this is a good idea when two spe-
cialized program points (p, C) and (p, C ′) are generalized to the same program point
(p, CG), where C, C ′ ⊆ CG. This operation converges two independent execution
traces into a single new one. Additionally, program points may be combined with
parents, which forms a cycle. If it is guaranteed that every infinite chain eventually
generalizes with a parent node, a finite process graph is obtained.

Our configurations may contain “perfect” information, as a set of states can
be precisely described through symbolic expressions; there is no “need” for over-
approximating. However, at the same time, it implies that generalization is next to
impossible. Generalization could be applied by picking CG as:

CG = C ∪ C ′

However, when generalizing a program point (p, C) with a parent program point6

(p, C ′) - when assuming C 6⊆ C ′ - then (p, C ′) is replaced by (p, CG), which requires
that it is driven again. (p, C ′) is only correct for any s ∈ C ′. It is not generally correct
for any s ∈ (CG \ C ′). Hence, it must be driving again from (p, CG).

Surely, it is possible to drive (p, CG) again. Though, at some point, one of its child
nodes (p, C ′′) needs to be generalized with this parent yet again. While the ∪ and

5It turn out this means perfect ‘information propagation’, and not ‘perfect information’ propagation
6Both must share the same p; as obtained from the original program. These represent different

specialization of the same program point. Distinct program points cannot (in general) be combined to
begin with.



4.3. Configuration Representation 41

⊆ can be implemented for symbolically represented configurations (as discussed in
subsection 4.3.3 and subsection 4.3.2), this entire process gets very computationally
expensive. While an argument may be made for its termination7, it may take a num-
ber of iterations that is exponential in the size of the state8.

4.3 Configuration Representation

We defined configurations in Definition 2.6 (on page 13) as sets of states with identi-
cal structures. While that description is accurate, it is not how we represent configura-
tions. A configuration is usually a humongous set. For instance, a configuration with
five unconstrained i32 value on its stack has 232·5 members. Likely, no machines can
keep these concretely in memory. Instead, configurations are - like symbolic states -
symbolically represented. Conceptually, configurations differ from symbolic states
(as indicated by Example 3.1 on page 18); a symbolic state is parametric over some
input, which allows it to characterize an input/output relation. A configuration is a
set of states.

A configuration has no knowledge of the world which holds at a program point,
as the set of worlds is infinite (and opaque). Neither does a configuration have a
notion of whether a “program point is trapped” - there is no such thing.

Example 4.1 (Configuration vs Symbolic State). Consider a simple program comput-
ing 10/x. During (concrete) execution, that program traps whenever x = 0. So, for
equivalence checking, trapping behaviour must be preserved and is thus included
a the symbolic state (as described in subsection 3.2.1). Though, as far as config-
urations are concerned, the final program point corresponds to the configuration
{{x 7→ i} | i 6= 0}; as that is the set of states reaching it.

As we represent configurations symbolically, operations on configurations re-
quire an SMT solver. These operations are performed similarly to those on symbolic
states, albeit with different regards. For instance, a symbolic state may be unsatis-
fiable, indicating it represents no particular concrete state. When a configuration is
unsatisfiable, the configuration is empty, indicating it contains no concrete states.

4.3.1 Configuration Implementation

Listing 4.1 shows our implementation of configurations; it resembles the implemen-
tation of symbolic states (as included in Listing 3.3 on page 19) - which is reasonable
as both are modeled over WebAssembly states. However, it differs crucially.

7Through set union, the configuration can only grow. In the worst case, the “unconstrained” con-
figuration is reached.

8Note that state structures - and thus their size - are statically known for any program point.
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LISTING 4.1: Configuration Implementation (in Haskell)

data Configuration env =
Configuration {

activation :: Activation env
, stack :: Stack env
, globals :: [Global env]
, mem :: Maybe (SymbolicMem env)
, constraint :: Symbolic env Bool
, symbolics :: Symbolics env
}

A configuration contains its own symbolic environment (field symbolics)9, as it
makes no sense to define a configuration over some external environment; the con-
figuration represents the environment10 with its constraints. Configurations also do
not include the world, nor contain a trapping condition. Additionally, configurations
do not contain floating point values; meaning that values contained (deeper) inside
this data structure are represented as shown in Listing 4.2.

LISTING 4.2: Configuration Value Implementation (in Haskell)

data Val env
= VI32 (Symbolic env TI32)
| VI64 (Symbolic env TI64)
| VF32 ()
| VF64 ()

-- The components in a Configuration are as follows (simplified)
data Activation env = Activation [Val env] [Val env] -- params, locals
type ScopeStack env = [Val env]
type Stack env = NonEmpty (ScopeStack env)
data Global env = Global Mut (Val env)

So, configurations do not actually represent sets of program states perfectly. In-
stead, the set of values assignable to a floating point variable is grossly over-approximated.
Implicitly - as configurations represent sets - a floating-point values may be any
value in its domain11. This over-approximation may cause some optimizations to
be missed, as expressions containing floating-points can never be partially evalu-
ated. As evaluation of floating-point expressions is difficult anyway (as discussed in
subsection 3.2.6 on page 26), this is perfectly acceptable.

9env is not the environment; it is effectively a phantom parameter. Bottled all the way down, it
occurs nowhere on the right-hand side. This trick assists in ensuring variables from different environ-
ments don’t accidentally get mixed up.

10Remember, symbolic states are defined over an external shared environment, within which they are
proven equivalent. (See subsection 3.2.2)

11While over-approximating is fine for configurations, it is incorrect for symbolic states, as discussed
in subsection 3.2.6.
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4.3.2 Configuration Subset

For generalization, it is necessary to decide whether one configuration is a subset of
another. This problem can be translated into a logic formula using the definition of
the subset relation; for any A,B:

A ⊆ B ≡ ∀x.( x ∈ A→ x ∈ B ) ≡ ¬∃x.( x ∈ A ∧ x 6∈ B )

The right-most formula is akin to any other satisfiability problem, where unsatis-
fiability of x ∈ A∧ x 6∈ B proves the subset relation; this is illustrated by Example 4.2.

Example 4.2 (Subset as Satisfiability Problem). Consider the following two sets:

A = {(x, y) | 2 ≤ x ≤ 7, 4 ≤ y ≤ 5}
B = {(x, y) | 0 ≤ x ≤ 10, 4 ≤ y ≤ 7}

For these sets, A ⊆ B holds, which means:

A ⊆ B ≡ ¬∃x.( x ∈ A ∧ x 6∈ B )

The question of whether A ⊆ B holds can thus be formulated as a satisfiability
problem. Namely, A ⊆ B holds iff the following formula is unsatisfiable:

(2 ≤ x ≤ 7 ∧ 4 ≤ y ≤ 5) ∧ ¬(0 ≤ x ≤ 10 ∧ 4 ≤ y ≤ 7)

In practice, such a formula is obtained by pairwise equating values between two
configurations with equal static structures. While we found generalization with par-
ent nodes to be unfeasible (see subsection 4.2.1), generalization with adjacent paths
(i.e., multiple if-branches) is likely feasible. Additionally:

A ⊆ B ⇒ A ∪ B = B

Whenever some configuration A is a subset of some configuration B, then their
union need not be computed, as it is just B. While this seems useless in theory,
our configurations often contain thousands of terms. Computing one less union op-
eration may significantly reduce these representations; see also subsection 8.2.4.

4.3.3 Configuration Union

Finding the union over two symbolically represented sets gets a bit trickier. First,
recall the definition of set union:

x ∈ (A ∪ B) ≡ x ∈ A ∨ x ∈ B

Example 4.3 (Union of Symbolic Representations). Consider the following two sets:

A = {2 · x | x < 4}
B = {y | y > 1}

The union of these sets is given as:

A ∪ B = { select( x < 4, 2 · x, y ) | x < 4 ∨ y > 1}
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Here, ‘select’ refers to the if-then-else operations in the logic (ite in Z3). Note
that, intuitively:

v ∈ {2 · x | x < 4} ⇒ v ∈ { select( x < 4, 2 · x, ?1 ) | x < 4 ∨ ?2}
v ∈ {y | y > 1} ⇒ v ∈ { select( ?3, ?4, y ) | ?3 ∨ y > 1}

Here, ?1 and ?2 are unknown expressions that do not reference x, and ?3 and ?4
are unknown values that do not reference y.

That example should illustrate how the union over configurations may be imple-
mented. Given two configurations C1 and C2 with equal static structure, their dis-
joint symbolic environments (field symbolics) are combined. The disjunction over
their constraint (field constraint) is taken as the new constraint. Finally, the ‘select’
operator - with the constraint of C1 as conditional - is pairwise applied to all fields
inside the configurations.
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4.4 Graph Representation

In the sections below, the data structures we use to represent process graphs are
discussed.

4.4.1 The Bad Graph

The theory demands[28] that transitions in process graphs represent “clean” tran-
sitions between configurations. For example, unconditional break (br) instructions
are implicit within such graphs, as jumps are no different from regular instruction
traversal; that is, considering a process graph contains execution traces. While it is
surely possible to define such a graph for WebAssembly, after superoptimization,
a program must be re-obtained from that graph. As the WebAssembly syntax de-
mands structured control flow, it is surely non-trivial to find such a program. In
theory, any computable function can be represented using structured control flow.

Definition 4.2 (Structured Program Theorem). Any computable function can be rep-
resented with a control flow graph consisting of only sequence, selection (if-else), and
iteration (loops)[7].

However, this definition makes no claims on whether program reconstruction is
easy; in practice, program reconstruction may require the introduction of arbitrary
control flow structures. Consider Figure 4.2 and its corresponding reconstructed
program in Listing 4.312.

FIGURE 4.2: Some process graph
(pseudo-language) LISTING 4.3: Loop and switch (Rust)

let mut label = 0;
loop {

match label {
0 => { A( ); label = 1; },
1 => if B( ) { label = 0; }

else { label = 2; },
2 => break,
_ => unreachable!( )

}
}

The reconstructed program contains the notorious loop-and-switch anti-pattern. A
seemingly simple control-flow structure reconstructs into a complicated structured
program, where a label variable tracks which branch to take next. Surely, this kind
of overhead is very costly during execution; if arbitrary overhead is introduced dur-
ing program reconstruction, many performance improvements from superoptimiza-
tion may be lost altogether. Note, however, that often a good program with few
loop-and-switch statements may still be found; for instance, when using the preva-
lent Relooper[65] algorithm. Relooper is a great algorithm that can transform many
arbitrary control flow graphs into rather good structured programs. Occasionally,
however, the loop-and-switch structure remains necessary. Within our superopti-
mizer, we avoid this issue altogether by preserving the control structures from the
original program.

12Example adapted from [25]
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4.4.2 The Good Graph

The data type for the process graphs is given in Listing 4.4; effectively, this data
type is isomorphic to the WebAssembly AST[48]. While it does not strictly represent
a process graph, the main benefits of a process graph are preserved; namely, that
every program point may be associated with a configuration. Additionally, process
trees may be defined over a subset of this representation, which preserves the ability
to drive (as later discussed in subsection 4.6.1). A reasonable case can be made for
claiming that this structure is a process graph as defined over structured control
flow. After all, a “true” process graph from which no program can be reconstructed
serves little purpose anyway.

LISTING 4.4: Graph Data Structures

data Node
= Node Edge -- ^ graph inner node
| NodeEnd -- ^ terminal node in a scope
| NodeReturn -- ^ explicit function return
| NodeTrapped -- ^ unconditionally trapped

data Edge
= EdgeInstr SimpleInstr NodeId
| EdgeIf FuncType SubGraph SubGraph NodeId
| EdgeBlock FuncType SubGraph NodeId
| EdgeLoop FuncType SubGraph NodeId
| EdgeBr LabelIdx
| EdgeBrIf LabelIdx NodeId
| EdgeBrTable [LabelIdx] LabelIdx
| EdgeCall FuncIdx NodeId
| EdgeCallIndirect FuncType NodeId

type NodeId = Int

data Graph =
Graph {

rootI :: NodeId
, nodes :: IntMap Node
, terminalI :: NodeId
}

A graph is represented as an IntMap. This representation allows every node -
which corresponds to a program point - to be individually addressed. Most oper-
ations and modifications are defined over this graph structure. Note that all edges
correspond exactly to instructions in the WebAssembly AST[48]. For some entities,
it is debatable whether they should be an edge or a node. For instance, EdgeBr has
no (explicit) target, but returns control to a parent scope. As a rule of thumb: If an
entity needs to be individually addressable as a program point, it is a node. The
node type is reused by the tree representation, which also has some bearing on the
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choice of representation (not the edges, though, as discussed in subsection 4.6.1)13.
Additionally, some “edges” contain entire sub-graphs; Surely that is strange, but it is
necessary to guarantee program reconstruction. Some constructors are briefly dis-
cussed below.

• NodeEnd - The final node in any scope; execution resumes in the surrounding
scope. If it occurs in the outer-most scope, it represents the graph’s terminal
node.

• NodeReturn - Corresponds to the return instruction. It explicitly returns from
the function; effectively, this causes execution to “resume” at the graph’s ter-
minal node, where execution halts.

• EdgeBr, EdgeBrIf, EdgeBrTable - These corresponds to the br,br_if,br_table
instructions, which break to a surrounding scope. (See also subsection 2.2.2)

• EdgeCallIndirect - Corresponds to the call_indirect instruction, which calls
a function in the function table. Intuitively, it calls a function referenced by a
pointer.

13The presented structures vary slightly from the actual implementation; particularly in their type-
parameters and strictness annotations. Node and Tree are identical in the implementation, except for
their (parametric) edges; this is irrelevant for discussion here.
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4.5 Dataflow Analysis

Dataflow analysis[31, 43] is a method for finding information about variables at pro-
gram points. This information propagates over flow edges, which represent transi-
tions. These transitions correspond roughly to those on process graphs. Dataflow
analysis aims to find consistent information over larger control flow structures; this
varies somewhat from the established configurations. For instance, constant propaga-
tion propagates known constants through variables at program points in the graph.
Zero analysis keeps track of which variables are surely zero, non-zero, or neither.
Within our context, those analysis values may be considered abstractions or over-
approximations of perfect configurations at program points. Though, these analyses
are commonplace because of their (relatively) low computation cost.

4.5.1 Lattices

The information stored at a program point by a dataflow analysis corresponds (of-
ten) to an element in some lattice. A lattice is a partially ordered set, where every two
elements have a join ∨ (least upper bound) and a meet ∧ (greatest lower bound). Sim-
ilarly to how configurations may be generalized, the join over information obtained
from multiple incoming edges can be taken, which causes the value to “ascend” in
the traversed lattice. Every finite14 lattice has a > value.

Definition 4.3 (Lattice Top). The top> value in a finite lattice L satisfies for any value
a ∈ L:

> = a ∨> = >∨ a

Dataflow analysis aims to find a fixpoint[43].

Definition 4.4 (Fixpoint). In general, a fixpoint of some function f is obtained at
some value x when f (x) = x. For any dataflow analysis (on process graphs), a
fixpoint is reached whenever for all nodes A with flow edge E to some node B satisfy:

transfer(vA, E) ∨ vB = vB

Here, vA and vB are the values stored at nodes A and B, respectively.

Whenever a fixpoint is reached, the system is stable; this means the information
stored at each node is consistent with information observed during any concrete ex-
ecution. In practice, a least fixpoint has the most value. After all, storing > at every
node constitutes as a fixpoint, but conveys no information. Instead, values residing
lower in the lattice correspond15 to smaller configurations, which are surely more
descriptive than >. The application of dataflow to our process graphs is discussed
below.

14Dataflow analysis is possible for some infinite lattices. In this work, only finite lattices are of inter-
est.

15Formally, the connection between configurations and lattice elements is established through ab-
stract interpretation; for instance, as discussed by Jones[28]. We don’t elaborate on this relation further.
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4.5.2 Flow Edges

Listing 4.5 displays the flow edges as implemented in our superoptimizer.

LISTING 4.5: Flow Data Structures (Haskell)

type Flow = NodeId -> [(FlowEdge, NodeId)]

data FlowEdge
= FlowInstr SimpleInstr
| FlowCall FuncIdx
| FlowCallIndirect FuncType
| FlowIfTrue KeptVals -- ^ enters an if-block
| FlowIfFalse KeptVals -- ^ enters an else-block
| FlowEnter KeptVals -- ^ enters a block/loop
| FlowBr KeptVals (NonEmpty DroppedVals) IsLoopLabel
| FlowBrIf KeptVals (NonEmpty DroppedVals) IsLoopLabel
| FlowBrElse
| FlowBrTable JmpTableIdx KeptVals (NonEmpty DroppedVals) IsLoopLabel
| FlowMagic [ValType] (NonEmpty DroppedVals)

data JmpTableIdx
= JmpTableIdx Word32
| JmpTableGeq Word32

type DroppedVals = [ValType]
type KeptVals = [ValType]
type IsLoopLabel = Bool

Most of these constructors correspond to those of the process graph (as discussed
in subsection 4.4.2). Though, these edges are represented closer to the transitions
as (implicitly) evident in the WebAssembly specification. While the process graph
ensures by construction that every transition is deterministic - for instance, EdgeIf
contains both mutually-exclusive branches - this information is implicit in the flow
edges. Every branch represents an individual transition. Some notes on these con-
structors are given below:

• FlowEnter - This edge is encountered upon block scope entry (e.g., block,
loop). It pushes a new label to the stack, and appropriately transfers its pa-
rameters from the parent scope to the new scope. (As illustrated in subsec-
tion 2.2.2)

• FlowBrIf, FlowBrTable - These edges represent a conditional jump to an outer
scope. Upon leaving a scope, some values from the local scope are transferred
to the outer scope, while explicitly dropping other scope stacks (As illustrated
in subsection 2.2.2). Note particularly for FlowBrTable: The br_table instruc-
tion may contain an arbitrary number of jump targets, where a popped in-
dex determines the target at runtime. Each of these targets is individually
represented as a flow edge, which contains its specific branch condition (i.e.,
JmpTableIdx).
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• FlowMagic - The transfer function for this edge introduces values of the given
types, while dropping some scope stacks; this ensures type-correct stacks are
produced during backward analysis over unreachable instructions.

• IsLoopLabel - While not a constructor, its presence relates to a subtle property
in WebAssembly. When jumping to some label n, out of a block or if state-
ment, then n labels are popped and execution resumes n + 1 scopes upward.
However, when that label corresponds to a loop, then n labels are popped,
the loop’s label is pushed again and execution resumes within the loop body.
IsLoopLabel distinguishes those cases.

• KeptVals / DroppedVals - Flow edges that relate to control instructions (e.g.,
br) may discard entire scope stacks upon traversing to a parent scope. Dur-
ing backward analysis, these scope stacks must be reconstructed, and are thus
explicitly included in the flow edges.

We implement dataflow analysis parametrically over the WebAssembly seman-
tics, which ensures some common behaviour is shared. This shared behavior mainly
consists of pushing and popping type-correct values from the stack for each instruc-
tion. The superoptimizer instantiates (parts16 of) this framework for different anal-
yses and executions, such as liveness analysis, symbolic information propagation,
concrete execution, symbolic execution, and type-checking. To increase confidence
toward correctness of this framework, we implemented both forward and backward
type-checking over the graph flow. As WebAssembly validation ensures the struc-
ture of states at program points is statically known, type-checking aims to find con-
sistent structures17 for every program point. The instantiation of this framework
for symbolic information propagation and liveness analysis is discussed in the sections
below.

4.5.3 Symbolic Information Propagation

In this subsection, we discuss the propagation of symbolic information (configura-
tions) over non-looping control flow.

Transfer function

Configurations represent sets of states. The WebAssembly specification[48] elabo-
rates on the concrete semantics, which represent the transitions corresponding to
instructions. These semantics are not reiterated here. Intuitively, consider the trans-
fer function - where E is the edge - as:

transfer(E, C) = {step(E, s) | s ∈ C, step(E, s) not trapped}

Here, the ‘step’ function references the concrete behaviour of the edge; for in-
structions these correspond directly to the small-step operational semantics[48]. Flow
edges that do not directly correspond to instructions can be trivially inferred from
it (and some are discussed in subsection 4.5.2). One thing that is important to note,
though, is that on function calls no assumptions are made. A function call may pro-
duce any output values in the domain of its output type (e.g., any i ∈ [0, 232) for

16Symbolic execution and concrete execution are not implemented over flow; they do share a lot of
the parametric type-correct pushing/popping implementation, though.

17Type-checking determines types for stack values, local variables, and global variables at every
program point. We implemented this over both forward and backward flow.
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i32). Additionally, the analysis assumes that function calls may modify memory
and modify mutable global variables. As the implementation of functions is un-
known, their behaviour must be over-approximated; meaning this is the only sound
approach.

Strategy

Propagating configurations over control flow entails some subtleties in the imple-
mentation. After all, the analysis should terminate, be consistent, and preferably be
fast. A naive iterative dataflow solver will likely not suffice, as it surely takes too
long; for similar reasons as for generalization (as discussed in subsection 4.2.1). In-
stead, we use a single pass solver to reach a fixpoint. The general approach is as
follows:

1. The graph root is initialised to the initial configuration. Function parameters,
memory, and global variables may have any value; as these are unknown.
Non-parameter local variables are initialized to their respective zero values.

2. Loop entries are initialised to their respective > values. Effectively, these con-
figurations are entirely unconstrained; no assumptions are made about its con-
tained values.

3. Every node is assigned a configuration by traversing the forward edges in
reverse postorder. Configurations obtained from multiple incoming edges are
combined through set-union (∪ - see subsection 4.3.3).

This approach reaches a fixpoint. While this fixpoint is not generally a least fix-
point, it is consistent; meaning all states observed at runtime at some program point
p are contained in the configuration C stored at the program point. Though, these
configurations may grossly over-approximate the actual set of observed states. The
approach is further elaborated below.

Note that our process graphs corresponds to a reducible graph, which means every
edge is unambiguously a backward or forward edge.

Definition 4.5 (Reducible Graph). The edges of a reducible graph can be partitioned
in two sets[24]:

• Forward edges (forming a Directed Acyclic Graph)

• Backward edges (a, b), where b dominates a

When a graph is irreducible, a loop body may be entered through multiple edges.
In that case, it is ambiguous for some edges whether they are forward or backward
edges. Our process graph is a reducible graph, as it consists of structured control
flow (see also Definition 4.2 on page 45). The DAG of forward edges may thus be
traversed in reverse postorder.

Definition 4.6 (Reverse postorder). Reverse postorder is a linear order on nodes in
a DAG where every node is visited before its children.

As nodes are traversed in reverse postorder, every node and edge is traversed
only once. Thus, the system terminates in O(n + e); where n is the number of nodes
and e is the number of edges. As it may be non-obvious that the obtained solution is
a fixpoint, that is explained in Proof 4.1.
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Proof 4.1 (Fixpoint). Assume the system has not reached a fixpoint. That means
there exists some flow edge E from some node A with configuration CA to a node B
with configuration CB such that:

transfer(CA, E) ∪ CB 6= CB

Node B is either a loop entry, or it is not. These cases are handled separately:

• Node B is a loop entry. Loop entries are assigned configuration >, so CB = >.
When taking the definition of > into account:

transfer(CA, E) ∪ CB = transfer(CA, E) ∪> = > = CB

Hence, B cannot be a loop entry.

• Node B is not a loop entry. Then, as the graph (within which nodes A and
B are defined) is reducible, edge E must be a forward edge. Hence, node A
occurs before node B in the reverse postorder (of the forward edges). CA at A is
obtained before its outgoing edge E is traversed. Node B is visited after all its
parents (in the forward DAG) are visited, which means:

CB =
⋃
{ transfer(CX, EX) | (CX, EX) ∈ in(B)}

Here, in(B) represents the set of B’s incoming edges (in the forward DAG)
with the configurations stored at those parent nodes. As A is a parent of B,
(CA, E) ∈ in(B). Then:

(CA, E) ∈ in(B)

⇒ transfer(CA, E) ⊆
⋃
{ transfer(CX, EX) | (CX, EX) ∈ in(B)}

⇒ transfer(CA, E) ⊆ CB

⇒ transfer(CA, E) ∪ CB = CB

Hence, B cannot be a regular node either.

As B can be neither of these node types, B cannot exist. Hence, the system has
reached a fixpoint.

Speedup While this algorithm already throws away lots of information (by set-
ting loop entries to >), computing a single forward pass is often still too expen-
sive. A lot of the computation cost is incurred by taking the union over configura-
tions on converging flow, as terms from multiple incoming edges are combined into
a new configuration (See subsection 4.3.3). For larger programs, a single configura-
tion may contain environments with multiple thousands of symbolic terms. Storing
that many terms for every node causes significant memory use18; additionally, pass-
ing these large environments to Z3 introduces quite some overhead. To eliminate
this overhead, a configuration may be replaced by > if its term count exceeds some
parametric value (e.g., 3, 000); this is not a problem, as it over-approximates the con-
figuration. Realistically, some information is thrown away and some optimization
opportunity is lost.

18While value/memory sharing is sometimes possible, every environment contains its own set of
terms and (unknown) values, which (currently) requires terms to be copied between environments.
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4.5.4 Partial Evaluation

We propagate configurations to nodes in the process graph with the hopes that their
information enables optimization opportunities. A simple optimization is to per-
form partial evaluation on terms in the program. Consider Listing 4.6.

LISTING 4.6: Comparison transitivity (Rust)

1 if a > b {
2 if b > c {
3 if a <= c { // Never true
4 ...
5 }
6 }
7 }

There exists no concrete execution where the boolean conditional on line 3 (a ≤ c)
is true. Hence, the expression may be safely replaced by false, which enables elim-
ination of that entire if-block. For every (integer) expression, the superoptimizer
asks Z3 whether a constant replacement exists. This constant replacement for some
expression is found as follows:

Algorithm 4.1 (Partial Evaluation). Given some expression that is represented by a
symbolic value q in some configuration C, partial evaluation aims to find a constant
replacement. The configuration C is passed to Z3, and Z3 finds a satisfying model
for q.

• If no model exists, the configuration is empty; this means the branch is un-
reachable.

• If a model with some constant c1 exists, a possible replacement exists. Now, the
configuration is passed to Z3 again, with the additional constraint q 6= c1.

– If another satisfying constant c2 exists for q, then no unique constant re-
placement exists for q. (This must also be assumed when Z3 times out)

– If no other satisfying constant exists for q, then q may be safely replaced
by c1.

It is crucial that the replacement constant is unique. Whenever multiple satisfying
models are found, no unique constant exists. Example 4.4 illustrates this issue.

Example 4.4 (Constant Replacement). Consider Listing 4.7.

LISTING 4.7: Invalid Constant Replacement (Rust)

// { pre: z > 3 }
y = 4 * z

Whenever Z3 is requested to provide a satisfying model for y, Z3 may provide
{y 7→ 16}. After all, z = 4 satisfies the precondition, and then y evaluates to 16.
However, when Z3 is asked for a different model, {y 7→ 20} may be given. That
model also satisfies the precondition (z = 5), and is thus a valid assignment for y.

The crucial observation is that SMT solvers find satisfying models; of which there
may be many. Only when the model value is unique may that value be used as a
valid replacement.
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At any node, when the stack’s top value can be provably replaced by a constant,
our superoptimizer introduces a in.const instruction, preceded by a drop instruc-
tion. The drop instruction drops the computed value, while the constant instruction
pushes the value it always produces (without computing it). Later, during transition
chain compression (discussed in subsection 4.6.4), the drop instructions are eliminated
with their corresponding computations.

4.5.5 Liveness Analysis

A final important prerequisite for synthesis of fragments in the graph is liveness anal-
ysis (also called live variable analysis). This analysis finds which variables are live at
each program point. A variable is live at some program point p if its value is pos-
sibly read before it is written to again. Listing 4.8 displays an example of liveness
analysis.

LISTING 4.8: Live Variables (Rust)

let x = 4;
// Live: {x}; x is live because y needs it
let y = 2 * x;
// Live: {y}; y is live because it is returned;
// x is dead because it is not needed
return y;

Variables that affect a function’s result or the external state are live. Any variables
that contribute to those live variables are also live. For WebAssembly, the function’s
result and global variables are live at the end of a function. Inputs to functions
and inputs to memory operations are also live. Note that it is safe to assume all
variables are live (>), though that provides no information whatsoever. Knowing
which variables are not live is useful. Liveness analysis is performed as an instance
of backward dataflow analysis.

Except for the terminal program point, all variables in the other program points
are initialised as dead. As liveness analysis is backwards, the live variables at every
program points depends on the liveness of variables in the next state and the (back-
ward) transfer function for the corresponding edge. The transfer function is related
to the edge’s operations. The analysis is performed by repeatedly updating the live-
ness state at every program point. Formally, this ascends a lattice for every variable,
which is given as:

live = > = >∨> = >∨⊥ = ⊥∨>
dead = ⊥ = ⊥∨⊥

The ∨ (join / confluence)19 operator denotes the lowest upper bound of its ar-
guments. The confluence over two vectors A and B of length n produces another
vector of length n with:

∀i ∈ [0..n) . (A ∨ B)i = Ai ∨ Bi

We implemented this backward analysis within our dataflow framework, where
a transfer function is associated with every flow edge. Consider the rules below;

19In general, the combination operator in dataflow analysis is refered to as the confluence operator.
In this specific instance, it corresponds to the join operator on the lattice.
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where L represents the local variables and K is the stack (globals and memory are
omitted here). n is the previous node of i in regular execution; it is the next node in
backward flow.

If the output of a binary operator is live, then both its inputs are also live. Con-
versely, if its output is dead, then so are its inputs. Note that binop∗ represents the
group of all binary operators.

i→flow (FlowInstr binop∗, n)
binop∗

L, K a ⇒transfer(i,n) L, K a a

If the value taken from a local is live (on the stack), then that local was surely live
before. If that stack value is not live, then the liveness of the local depends on other
reads of that local (Hence, the a ∨ b).

i→flow (FlowInstr (local_get v), n)
local_get

L[v 7→ a], K b ⇒transfer(i,n) L[v 7→ a ∨ b], K

Whenever a value is written to a local, that local was surely dead before. How-
ever, the written value (as taken from the stack) is only life if the local’s value is live
afterwards.

i→flow (FlowInstr (local_set v), n)
local_set

L[v 7→ a], K ⇒transfer(i,n) L[v 7→ ⊥], K a

"Tee’ing" a local is the operation where a value is written to it, but the value
remains on the stack afterward. Like with set_local, the local is dead before the
write. However, the liveness of the stack value beforehand depends on both the
liveness of the local and that value afterwards.

i→flow (FlowInstr (local_tee v), n)
local_tee

L[v 7→ a], K b ⇒transfer(i,n) L[v 7→ ⊥], K (a ∨ b)

This list is not exhaustive, but shows the essential rules to convey the essence
of the analysis. Further rules are not given, as they are similar those stated above.
Appendix A depicts the application of this analysis to an actual program.

Dataflow Speedup The liveness analysis is solved with an iterative algorithm[5,
Chapter 17.4] which finds the least-fixed point. The algorithm visits nodes only
after they have been updated by changes to previous nodes (being the next nodes in
forward execution). Additionally, nodes are prioritized by their location in a (quasi-
)postorder, which (roughly20) causes any node to be visited before its dependents.
Only after a node’s parents have converged, is the child updated again. If this child
loops back to the parent, the parent may require re-visiting later. In practice, this
traversal strategy shows a 8x speedup over non-ordered traversal for larger graphs.

20As the graph is cyclic, not every node may be visited before all its dependants. Choosing a “wrong”
priority order does not affect the correctness of the result, only the time taken for convergence.[5]
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Application to Synthesis The liveness analysis provides another degree of context
to the fragments in the graph, which is particularly useful during synthesis and ver-
ification. Variables which are dead at the end of a fragment do not affect the be-
haviour of the program afterwards. Thus, dead variables may be ignored during
equivalence checking (i.e., they are vacuously equal). As fewer equivalences be-
tween variables need to be verified, the verification may go quicker. Listing 4.9 and
Listing 4.10 illustrates the irrelevance of dead variables.

LISTING 4.9: Program πA

(func (param $x i32) (result i32)
(local $y i32)

(get_local $x)
)

LISTING 4.10: Program πB

(func (param $x i32) (result i32)
(local $y i32)

(tee_local $y
(get_local $x)

)
)

The program states at the end of the functions are not generally equal. In program
πA, $y contains 0 at the end. In program πB, $y contains the function’s output value.
Yet, clearly both functions return the same value; local values are dropped upon
function exit.

The liveness information lowers the constraints placed on replacements; a larger
set of programs may satisfy the specification. Thus, hopefully the synthesizer finds
a faster program. That is, assuming that programs actually contain dead variables.
Appendix C shows the proportion of live variables for programs used in the bench-
marks. On average, about 40% of the variables available at any program point are
dead.

WebAssembly The benefit of liveness information is somewhat WebAssembly-
specific. Other superoptimizers[52, 47] optimize programs for CPU architectures
with about a dozen registers. WebAssembly functions, on the other hand, may con-
tain hundreds of variables. Often, a program fragment uses several variables to store
intermediate values, while other variables contain the fragment’s “output”. The inter-
mediate values are dead after contributing to that output; this allows many variables
to be ignored during equivalence checking (and synthesis). Typical compilers apply
register allocation before generating machine code; intermediate registers are often
reused. Though, liveness analysis could still be beneficial for (some) other superop-
timizers.
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4.6 Graph Superoptimization

Now that symbolic configuration and liveness information is available in for all
nodes in our graphs, further transformations can be applied. After all, the configu-
rations may enable the discovery of better optimizations on the graph.

4.6.1 Tree Conversion

A simple structural transformation of control flow follows from driving, which we
previously discussed for abstract programs (in Definition 4.1 on page 39). As driving
simulates program execution with partial knowledge of program input, the super-
optimizer requires another data structure to represent these execution traces. This
data structure is included in Listing 4.11. In practice, its edges are (roughly) a subset
of those defined for process graphs.

LISTING 4.11: Process Tree Implementation (in Haskell)

-- Similar to graph nodes
data Tree a

= Tree a (TreeEdge a) -- ^ tree inner node
| TreeEnd a -- ^ terminal node in a scope
| TreeReturn a -- ^ explicit function return
| TreeTrapped a -- ^ unconditionally trapped

-- A subset of the constructors for graph edges (except keep/drop)
data TreeEdge a

= TreeEdgeInstr SimpleInstr (Tree a)
| TreeEdgeIf FuncType (Tree a) (Tree a)
| TreeEdgeCall FuncIdx (Tree a)
| TreeEdgeCallIndirect FuncType (Tree a)
| TreeEdgeKeepDrop KeptVals DroppedValsNE (Tree a)

type DroppedValsNE = NonEmpty ValType

One crucial difference is in the representation of break statements, which are en-
tirely absent in the tree. To illustrate the necessity for this change, consider Exam-
ple 4.5.
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Example 4.5 (Flattened Block). Consider Listing 4.12 with its corresponding process
tree in Figure 4.3.

LISTING 4.12: Program with br_if

1 (func (param $x i32) (result i32)
2 (block $b (result i32)
3 (i32.const 20)
4 (i32.const 10)
5 (get_local $x)
6 (br_if $b)
7 drop
8 )
9 )

FIGURE 4.3: Execution traces
(Stack grows to the right)

Whenever $x is true the br_if on line 6 breaks out of the block, while passing 10
to the outer scope; 20 is discarded from the stack inside the block scope. If $x is false,
10 is explicitly dropped, while 20 is passed to the outer scope.

While these transitions are somewhat implicit in the WebAssembly semantics,
this transition must be explicitly represented in the tree edges. Figure 4.3 illustrates
that behaviour for the example, where the “keep 1 / drop 1” edge (TreeEdgeKeepDrop)
represents behaviour associated with breaking from a block.

All br instructions are eliminated, and directly connected to the trees correspond-
ing to their targets. All br_if instructions are replaced by TreeEdgeIf conditional
statements. Currently, br_table instructions cannot be represented in the tree. The
entire scope stack is passed as parameters to sub-scopes. Values that would have
been dropped by explicit breaks (in the graph), are represented by TreeEdgeKeepDrop
edges.

Note that the tree edges are a subset of those in the process graph. This property
enables easy conversion back into the graph, provided that the tree is finite. The
exception to this rule is the TreeEdgeKeepDrop edge, which corresponds to an empty
block (in the AST) as follows:

TreeEdgeKeepDrop x y ⇒toAST block ((y ++ x)→ x) (br 0) end

Note that “(y ++ x) → x” is the block’s type signature. Arguably, this approach
is a bit of a cheat; though, it is the only way to discard values that reside lower on
the stack. The entire stack (containing values with types y ++ x) enters the block’s
scope stack. Upon explicitly breaking from the block, only the kept values (of types
x) are passed to the parent scope, while the remaining values (of types y) on the
scope stack are discarded.
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4.6.2 Driving

While we previously defined driving in Definition 4.1 (on page 39), this section elab-
orates on its application to WebAssembly process trees.

Cyclic graphs may be converted to infinite trees. For the implementation, that is
no problem, as Haskell expressions are evaluated lazily. However, process graphs
(and their resulting programs) are finite, and only finite trees may be converted back
into a graph. In practice, trees are driven up to a bound (e.g., 10, 000 edges deep).
Upon exceeding this bound, the tree is assumed to be infinite and discarded. The
driving procedure attempts to evaluate symbolic values to constants, which includes
branch conditions (akin to partial evaluation on graphs in subsection 4.5.4). When
a branch condition is proven, it means every concrete execution - that reaches its
program point - will take that branch; the other branch is never taken, and may be
cut off. When all infinite branches are provably discarded, the tree is surely finite.
Consider Listing 4.13 and its corresponding process tree in Figure 4.4.

LISTING 4.13: Bubble Sort (Rust)

static mut arr: [u32; 3] = [ 0, 0, 0 ]; // externally modifiable

unsafe fn bubble_sort( ) {
for i in 0..arr.len() {

for j in 0..arr.len() - 1 - i {
if arr[j] > arr[j + 1] {

arr.swap(j, j + 1);
}

}
}

}

FIGURE 4.4: Bubblesort of three elements (pseudo-language)

The outer loop body is executed 3 times; the inner loop body is also executed a
total of 3 times (2, 1, and 0 times, respectively). The process tree contains no edges
that traverse the inner-most body more than thrice. All contained execution traces
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are finite. Additionally, infeasible branches are marked with a red ‘X’. In the actual
driven tree, those branches are absent altogether (but are included in the figure for
illustrative purposes). Note also that the indices are replaced by their respective con-
stants. Effectively, driving makes those two modifications: Constants are replaced
and branches are eliminates.

Likely, the driven bubblesort is faster than the original. Though, if the number
of array elements were any larger than four, this transformation may not be so ap-
pealing; after all, the code size likely increases by quite a bit. Nonetheless, for small
loops with low bounds, this transformation provides an interesting improvement.

4.6.3 Synthesis

Some program fragments may be replaced in their entirety by a linear sequence of
instructions. Surely, this is the case whenever the original fragment is also a lin-
ear sequence of instructions. For some programs, branching or looping structures
may be replaced by a linear instruction sequence in their entirety; one example is
the computation of a population count as included in Listing 4.14, which counts the
number of one-bits in a 32-bit integer.

LISTING 4.14: Population Count (Rust)

fn popcount( mut x: u32 ) -> u32 {
let mut count = 0;
while x != 0 {

if ( x & 1 ) != 0 {
count += 1;

}
x >>= 1;

}
count

}

While this program does loop, it never loops indefinitely; a 32-bit integer con-
tains at most 32 one-bits. This entire loop can be replaced by a single i32.popcnt
instruction, together with a get_local on the argument. By applying the synthesis
procedure on this fragment, a large speedup may be achieved.

More often, though, a fragment cannot be entirely replaced by a linear sequence.
Whenever a tree cannot be entirely replaced by a linear sequence, a subtree could still
be replaceable by a linear sequence. In practice, it is difficult to find a replaceable
subtree. A naive approach is to try replacing every subtree, until an appropriate
replacement is found. The synthesis pruning rules (in subsection 3.3.3) can assist
with eliminating trees (and their parents) for replacement. Still, in practice this is
currently too expensive (as later discussed in subsection 5.4.1).
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4.6.4 Transition Chain Compression

After fully driving a fragment, redundant instruction sequences may remain in the
tree. For instance, the instructions computing an eliminated branch condition may
remain, which are followed by a drop instruction (as produced by partial evalua-
tion, as discussed in subsection 4.5.4). After driving terminates, the superoptimizer
repeatedly applies the following compression rules to the transition chains:

(in.const c) drop ⇒compress ε

(get_local v) drop ⇒compress ε

(tee_local v) drop ⇒compress (set_local v)
unop∗ drop ⇒compress drop

binop∗ drop ⇒compress drop drop

ternop∗ drop ⇒compress drop drop drop

in.load∗ drop ⇒compress drop

Dropped constants may be omitted entirely; similarly for dropped variable fetches.
Whenever the result of an operator is dropped, the compressor eliminates the oper-
ator, and its inputs are dropped instead. Whenever the result of a memory load
operation is dropped, the compressor eliminates the load operation, and drops its
input (memory address) instead.

Note that these rules are not sufficient to remove all drops introduced by driv-
ing. In pathological cases, drop instructions would have to be propagated into block
statements, or over larger sequences. As those cases are rare, we do not currently
perform those “advanced” compressions. Ideally, synthesis (and/or verification)
may be used to provably eliminate drop instructions in more complicated constructs.
Synthesis may also reduce transition chains further, by synthesising alternate tran-
sitions chains. Sadly, synthesis is currently too costly to apply crudely in large pro-
grams (as further discussed in section 5.4).

Driving Heuristic Currently, we enforce a user-determined bound and timeout on
the driving procedure. Ideally, driving should not expand “very large” process trees
(e.g., like bubblesort on larger arrays - Figure 4.4). Sometimes, however, an opti-
mization is only discovered after many expansions. For instance, for the popcount
program (Listing 4.14 on page 60), the optimization is only possible after traversing
the loop body 32 times. Consider also Listing 4.15.

LISTING 4.15: babbage (Rust)

fn run( ) -> u32 {
let mut i = 0;
while ( i * i ) % 1_000_000 != 269_696 {

i += 1;
}
i

}

For this babbage program, the body must be traversed 25, 264 times to estab-
lish the loop bound. While driving produces a very long transition chain, transition
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chain compression eliminates it almost entirely. In general, it is difficult to infer be-
forehand how large the resulting program becomes after synthesis (for popcount) or
transition chain compression (for babbage). Yet, both driving and synthesis require
many Z3 invocations. Applying some heuristic to limit time spent on unprofitable
expansions would be very beneficial. For this research, no heuristics have been dis-
covered.

Instead, the superoptimizer enforces timeouts on distinct optimization tasks. Ad-
ditionally, the superoptimizer enforces (user-specified) bounds on the driving depth.
At least, these measures ensure that the superoptimizer eventually terminates; in the
worst case, without producing any optimizations.
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Chapter 5

Evaluation

We evaluate the superoptimizer by benchmarking optimized programs - whose per-
formance is compared to the original program - and by manual inspection of per-
formed modification. This evaluation consists of two parts:

• Small artificial programs - We constructed several small artificial programs.
These programs contain several remaining optimization opportunities, which
we expect our superoptimizer to find.

• Large realistic programs - The techniques applied to the smaller programs are
not quite feasible for larger programs. Instead, we apply only partial evalua-
tion to these larger programs. This category includes some projects that triv-
ially compile to WebAssembly, such as the Lua interpreter. Additionally, pro-
grams from the Rosetta Code Corpus are included; another superoptimizer[11]
used Souper[50] to optimize these same programs.

5.1 Small Artificial Programs

While these small programs offer obvious opportunity for optimization, it is surely
useful to quantify the degree of achievable speed-up. Below, we describe the evalu-
ation setup for small programs.

Benchmarking of compiler optimizations notoriously introduces measurement bias[42];
seemingly innocuous factors may significantly affect performance analysis. Exam-
ples of these factors are the link order of object files, and the length of the environ-
ment variable strings1. While our benchmarking setup may not entirely eliminate
variation, caution is taken through the following methods:

• All programs are executed in three different runtimes; namely the Chrome web-
browser, the Firefox webbrowser, and the Wasmer2 desktop runtime.

• Within each runtime, every program is executed a 1000 times, whose average
is used.

Note that executing a WebAssembly function has some overhead cost by mar-
shalling a value from the host environment into WebAssembly’s environment. For
example, all JavaScript numbers are stored as 64-bit floating points; when calling
a WebAssembly function which accepts a i32 argument, this value needs to be
converted. Additional overhead may be present, depending on the runtime. This
means, plainly measuring the speed-up of a single function call gives:

1Amusingly, running a program as Bob performs differently from running it as Alexander, as the
environment variables include the username.

2https://github.com/wasmerio/wasmer

https://github.com/wasmerio/wasmer
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call-overhead + time(πopt)

call-overhead + time(π)

While this poses no issue whenever time(πopt) dominates call-overhead, the minute-
ness of the benchmarked programs may cause this overhead to dominate the ex-
ecution time. To improve the accuracy of the measurements, we inserted another
runall function into the WebAssembly modules (after superoptimization) that ex-
ecutes the function-under-measurement n times. Here, n represents the number of
invocations of the measured function by WebAssembly itself. n is experimentally
chosen depending on the program. Intuitively, think of the programs as illustrated
in Listing 5.1.

LISTING 5.1: Measured program with runall (Rust)

fn run( arg: u32 /* other args here */ ) -> u32 {
... /* Measured function body */

}

fn runall( n: u32, arg: u32 /* other args here */ ) -> u32 {
let mut res = 0;
for i in 0..n {

res = run( arg /* other args */ );
}
res

}

This approach ensures the measurements are closer to:

speedup ≈
call-overhead + n · time(πopt)

call-overhead + n · time(π)

With a large enough value of n this approximates the intended measurement:

speedup =
time(πopt)

time(π)

While this runall function may also introduce overhead, it is reasonable to as-
sume that it is similar between runtimes; whereas for the call overhead that is less
likely to be the case.

The benchmarked programs have between 0 and 3 i32 inputs and produce 1 out-
put; except for bubblesort4, which takes four i32 values as input, produces no out-
put, but modifies memory instead. The benchmarking programs sample uniformly
over all possible inputs; this should produce an accurate portrayal of the program’s
“true” performance.
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5.1.1 Results

The relative execution time of superoptimized programs is depicted in Figure 5.1.
While some of these results seem impressive, keep in mind these programs were
specifically selected because of optimizations missed by regular compilers, and a
specific superoptimization was targeted at these problems. Nonetheless, these pro-
grams are illustrative of how a superoptimizer may go about optimizing them.

FIGURE 5.1: Execution time of optimized programs proportional to original programs
(lower is better)

Table 5.1 contains the actual numbers associated with Figure 5.1. To produce the
relative execution times, a Student’s t-test with α = 0.05 is performed, which pro-
duces a 95% confidence interval. Samples may vary slightly between executions, as
caused by system interference (e.g., context switching). Reasonably, the interference
should follow a normal distribution with mean 0. From the confidence interval, the
least optimistic bound is taken; this means, for idgcd in Wasmer, the resulting ex-
ecution time is 0.352 times the original time, or less, with 95% confidence. Surely,
the performance of some programs increased much more than others; this variation
depends largely on the non-optimality of the original programs. In the following
sections, these results are analysed and discussed.
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TABLE 5.1: Optimization times and proportional execution times of programs

File Optimization Execution Time Proportion
Time Wasmer Chrome Firefox

idgcd 563ms 0.352 0.438 0.367
bubblesort4 12,474ms 0.666 0.453 0.349
popcount 3,145ms 0.138 0.062 0.035
babbage 67,191ms 0.002 0.007 0.006
transitive 31ms 0.755 0.894 0.695

5.1.2 Runtime variation

An obvious observation is that the speedups vary wildly between runtime environ-
ments for the same program. While the execution time of bubblesort4 decreased to
only 66.6% of its original execution time in Wasmer, it decreased to 34.9% in Firefox.
A reasonable explanation for these disparities is that these runtimes utilise different
mechanisms for converting WebAssembly to machine code3, or that the call over-
head still dominates execution. In any case, all three WebAssembly runtimes display
performance improvements for the listed programs.

3Admittedly, both Wasmer and Firefox seemingly use Cranelift for code generation.
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5.1.3 Program: idgcd

Consider the function in Listing 5.2. The function returns the Greatest Common
Divisor of x and “2 · x”, which is surely x itself (after eliminating the possibility of
integer overflow). While a human may trivially observe this input/output relation,
these higher level observations may be non-trivial for a machine. Especially so when
considering that the bound on the loop is non-obvious; that is, it does not iterate over
a finite range. In reality, though, no concrete execution exists that traverses the loop
body more than twice; Figure B.1 in Appendix B illustrates this.

After expanding the corresponding tree, the synthesizer observes only i32-arithmetic
instructions are performed and some local variables ($x, $b, $c) are read and written
to (see the full WebAssembly code in Listing B.1). The synthesizer aims to find a pro-
gram with only those instructions, while also using the information that $b and $c
are dead at the end. Finally, the synthesizer finds the simple replacement program
as listed in Listing 5.3. Note, though, that unused locals are not currently removed.

LISTING 5.2: idgcd (Rust)

fn run( x: u32 ) -> u32 {
if ( x <= 0x7FFFFFFF ) {

// gcd( x, 2 * x )
let mut a = x;
let mut b = 2 * x;

while b != 0 {
let c = b;
b = a % b;
a = c;

}
a

} else { // u32 overflow
x

}
}

LISTING 5.3: idgcd optimum (Wasm)

(func $run
(param $x i32) (result i32)
(local $b i32) (local $c i32)

get_local $x
)
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5.1.4 Program: bubblesort4

The bubblesort4 program contains an application of the bubblesort algorithm, which
is specialized to an array of length four; its implementation in Rust is included in
Listing 5.4. The main observation in this optimization is that infeasible branches
are eliminated. Figure 5.2 depicts the tree of bubblesort applied to three elements
(the tree for four elements is too large to display). The original implementation will
always perform six conditional checks with corresponding branch. After elimination
of infeasible branches, between three and six conditional breaks may be performed,
depending on the input array. Surprisingly, this transformation makes the resulting
program resemble an expansion of insertion sort. This optimization may shave off
up to 75% of the execution time, depending on runtime and input, at an 774 byte
increase in code size. Nonetheless, this optimization is surely interesting and - to the
best of our knowledge - not found by other superoptimizers.

LISTING 5.4: Bubble Sort (Rust)

static mut arr: [u32; 4] = [ 0, 0, 0, 0 ]; // externally modifiable

unsafe fn bubble_sort( ) {
for i in 0..arr.len() {

for j in 0..arr.len() - 1 - i {
if arr[j] > arr[j + 1] {

arr.swap(j, j + 1);
}

}
}

}

FIGURE 5.2: Process Tree for Bubblesort on three elements (Pseudo-language - copy of
Figure 4.4)
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5.1.5 Program: babbage

The babbage program answers Babbage’s question:

“What is the smallest positive integer whose square
ends in the digits 269,696?”

—Charles Babbage

The program is given in Listing 5.5. Our superoptimizer finds the optimization
in Listing 5.6 by driving the loop for 25,264 iterations, after which the superoptimizer
finds it to terminate. The transition chains reaching the final state are statically elim-
inated. While driving is implemented with symbolically represented configurations
- surprisingly - Z3 is never invoked for this problem. As values for all variables are
statically known, the "symbolic expressions" can always be simplified to constants
at any point in the transition chains. Nevertheless, finding this optimization still
takes about 67 seconds, which indicates there exists quite some overhead in driving
for 25,264 loop iterations. Reportedly[11], the Souper[50] superoptimizer also finds
this optimization; Souper uses an advanced CEGIS synthesizer to find the satisfying
constant.

LISTING 5.5: babbage (Rust)

fn run( ) -> u32 {
let mut i = 0;
while ( i * i ) % 1_000_000 != 269_696 {

i += 1;
}
i

}

LISTING 5.6: babbage opti-
mum (Wasm)

(func $run (result i32)
(local $l0 i32)

i32.const 25264
)

5.1.6 Program: popcount

The popcount program counts the number of 1 bits in a 32-bit word; it is included
in Listing 5.7. The loop iterates for no more than 32 iterations, as there are never
more than 32 bits in a 32-bit word. The applied strategy is similar to the strategy
of idgcd (see subsection 5.1.3). This entire body is replaced by a single i32.popcnt
instruction with local variable fetch.

LISTING 5.7: popcount (Rust)

fn popcount( mut x: u32 ) -> u32 {
let mut count = 0;
while x != 0 {

if ( x & 1 ) != 0 {
count += 1;

}
x >>= 1;

}
count

}

LISTING 5.8: popcount optimum (Wasm)

(func $run
(param $x i32) (result i32)

get_local $x
i32.popcnt

)
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5.1.7 Program: transitive

transitive is a simple demonstration of how outputs from infeasible branches are
not considered during equivalence checking. After driving, the synthesis procedure
promptly finds the constant 1 as a replacement. Note, however, that if the original
function returned 49 instead of 1, finding this replacement would be considerably
harder; considering that only a select set of constants can currently be synthesized
(See also subsection 3.3.2). However, in that case, the optimum could still be found
by merging all equivalent feasible branches (which then all return 49).

LISTING 5.9: transitive (Rust)

fn run(a: u32, b: u32, c: u32) -> u32 {
if a > b {

if b > c {
if a <= c { // Never true

return 2;
}

}
}
return 1;

}

LISTING 5.10: transitive
optimum (Wasm)

(func $run
(param $a i32)
(param $b i32)
(param $c i32)
(result i32)

i32.const 1
)
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5.2 Large Realistic Programs

On the large programs, we evaluate the usefulness of symbolic information - in the
form of configurations - propagated over control flow. That is, some instructions
are replaced by constants and branches are eliminated if their branch-condition is
provable. Currently, applicability of the (superior) techniques as used on the smaller
programs is infeasible for larger programs, as indicated by the superoptimization
time measurements listed below.

While we could benchmark these programs, this is not done for the following
reasons:

• WebAssembly modules are not programs. Instead, these modules depend on a
large amount of host glue code (e.g., in JavaScript - See also subsection 2.2.5).
Placing optimized WebAssembly modules back into their JavaScript context is
surely useful to roughly test their correctness. However, manually augmenting
(compiler-generated) JavaScript glue code to include performance measure-
ments is error-prone.

• The improvements are sadly not expected to provide speed-ups larger than
1%, as indicated by results below. Going through the trouble of benchmarking
these programs is thus rather futile.

For these programs, we run the superoptimizer on a Google Cloud Compute En-
gine N2D instance - running a 2nd Gen AMD EPYC CPU - with 256 GB of RAM.
Realistically, 64GB of RAM should be sufficient to reproduce these results, though
256GB is used to avoid the occasional out-of-memory error after 5+ hours of exe-
cution (depending on parameters). While superoptimization should be inherently
parallelizable, all programs are generated using a single CPU; this is currently neces-
sary to avoid the occasional segmentation fault4. The results are listed in Table 5.2.

File Timeout Constants Branches Time Relative
Replaced Eliminated Taken Output

File Size
? bitwise_IO 1000ms 5/394 1/43 2,970 ms 99.56%
? lua_mini 1000ms 6/1,280 0/78 168,392 ms 99.76%
sha256 1000ms 0/580 0/17 14,065 ms 99.91%
raytracer 200ms N/A 29/2,277 137,784 ms 99.48%
raytracer 200ms 115/27,682 30/2,277 1,811,354 ms 99.35%
lua 200ms N/A 15/5,125 234,514 ms 99.78%
lua 200ms 47/48,383 15/5,125 2,672,929 ms 99.75%
z3 200ms N/A 803/487,686 35,171,365 ms 99.06%
z3† 50ms 807/2,086,551 437/262,036 ~20hr N/A

TABLE 5.2: Results of Constant Replacement and Branch Elimination
(More replacements is better)

4By some speculation, the segmentation fault seems to originate in either Z3 or its bindings with
Haskell. As it often occurs only after many hours, it is hard to debug. It does not occur in single-
threaded mode.
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While all these programs are considered larger, their respective sizes vary wildly.
The first three programs are small enough to assign a timeout of one second per con-
stant. The programs below those are much larger, and are given a lower timeout of
only 200ms. Also, measurements are included for either only branch elimination, or
both branch elimination and constant replacement. While no performance improve-
ments are listed, it stands to reason that not computing a value at runtime is surely
faster than having to compute it.

In particular, the Z3 program (compiled to WebAssembly) is very large, at a file
size of 17.4 MiB. It took almost 10 hours to eliminate a mere 803 branches. Con-
stant replacement on Z3 (marked with †) was aborted after 20 hours, as it exceeded
our willingness to wait. The entries marked with ? were priorly optimized with
Souper[50], on which some optimizations were still found. Below, the results are
discussed.

5.2.1 Program: bitwise_IO

We took the bitwise_IO program from another superoptimizer[11], which com-
piled this same program to WebAssembly using Souper[50]. Our superoptimizer
still found optimizations after Souper optimized it, which are shown in Listing 5.11
and Listing 5.12. Listing 5.13 shows the fragment before applying transition chain
compression.

LISTING 5.11: input fragment

...
get_local $p0
i32.const 8
i32.add
tee_local $l0
i32.eqz
br_if $B4
...

LISTING 5.12: output fragment

...
i32.const 8
set_local $l0
...

LISTING 5.13: intermediate fragment

...
get_local $p0 ;; $p0 is proven to be always 0
drop
i32.const 0 ;; replace $p0 by constant 0
i32.const 8
i32.add
drop
i32.const 8 ;; ($p0 + 8) is proven to be always 8
tee_local $l0
i32.eqz
drop
i32.const 0 ;; (8 == 0) is proven to be always False
drop ;; discard the `br_if`, because it never jumps
...

This optimization is not particularly profound. What is interesting, though, is
that Souper did not find it. Further inspection indicates that between the assignment
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of 0 to $p0 and the value retrieval, an external function is called. Souper aborts the
collection of path conditions upon encountering a function call[50]; even when the
call has no opportunity to modify the variable. Our superoptimizer does not have
that limitation.

Souper Comparison We emphasize that Souper first optimized the program; then
we fed the (WebAssembly) program produced by Souper into our superoptimizer.
Indubitably, Souper finds many great optimizations, for which our superoptimizer
pales in comparison, in particular because Souper has a vastly superior fragment syn-
thesizer. Nonetheless, it is interesting to see that opportunities for optimization re-
main for an alternate approach.

5.2.2 Program: lua_mini

Another program priorly superoptimized by Souper is lua_mini. This program is a
Lua interpreter which does not include Lua’s standard libraries (and is thus called
“mini”). An interesting fragment is listed in Listing 5.14, while the corresponding
optimized fragment is listed in Listing 5.15. The optimization is rather straightfor-
ward; a value written to memory is immediately read back again (and added to 1).
Surely, that memory access operation can be eliminated. Souper missed this opti-
mization as it lacks a model for memory[50].

LISTING 5.14: original fragment

...
get_local $l0
i32.const 1336
i32.store offset=4
get_local $l0
get_local $l0
i32.load offset=4
i32.const 1
i32.add
...

LISTING 5.15: optimized fragment

...
get_local $l0
i32.const 1336
i32.store offset=4
get_local $l0
i32.const 1337
...

5.2.3 Program: sha256

While no replacements are applied to sha256, its file size is reduced by 2 bytes. This
reduction is caused by a post-processing step where a write to a dead variable ($g0)
is eliminated, as illustrated by Listing 5.16 and Listing 5.17.

LISTING 5.16: original fragment

...
tee_local $l0
set_global $g0
...

LISTING 5.17: optimized fragment

...
set_local $l0
...
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5.2.4 Program: raytracer

The raytracer program generates images by tracing light rays into a 3D scene; it
contains mostly floating-point arithmetic. This program I wrote myself priorly and
spent considerable time manually optimizing it. It is surprising to see still more than
1% of the branches could be eliminated using the superoptimizer. The difference
between 29 and 30 eliminated branches in the two runs can be explained by noise
(e.g., OS-level context switching) interfering with Z3’s ability to prove the branch
condition within the alloted 200 milliseconds.

29 branches were eliminated in 2:17 minutes. Also replacing 115 constants took
an additional 18 minutes. While these optimizations surely exceed those of plain
LLVM5, it is debatable whether these marginal gains are worth the required time.

5raytracer is written in Rust. The Rust compiler uses LLVM as backend.
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5.2.5 Program: lua

The lua program is the full Lua interpreter compiled to WebAssembly. As it in-
cludes the standard libraries, it is remarkably larger than lua_mini. Relatively few
improvements were found. Though, one interesting optimization is shown in List-
ing 5.18 and Listing 5.19. Two replacements are performed:

• First, $l1 is provably 0 on line 13, as it is zero whenever $p2 is zero. $p2 is zero
because it is used as the branch condition (and the else-case is considered). A
simple dataflow zero analysis is incapable of determining $l1 to be 0, as it is
conditional on $p2 being zero, which is yet unknown when $l1 is set on line 6.
The symbolic dataflow thus gives an interesting advantage.

• Finally, because $l1 is dead after the if-block (as determined by liveness anal-
ysis) it is now also dead before line 8. Hence, the assignment to $l1 on line 6
can be safely eliminated.

In principle, the subsequent set_local and get_local statements to $p2 (in List-
ing 5.19) could be replaced by a tee_local, though this is not currently performed
by the superoptimizer. Also, on line 14, $p2 is already 0; yet it is assigned 0 again.
Reassignments of previous values are not currently considered; though, doing so (in
general) requires another Z3 call per assignment.

LISTING 5.18: original fragment

1 ...
2 i32.load8_s
3 tee_local $p2
4 i32.const 255
5 i32.and
6 set_local $l1
7 get_local $p2
8 if $I15
9 i32.const 0

10 set_local $l1
11 ...
12 else
13 get_local $l1
14 set_local $p2
15 end
16 ... ;; $l1 dead

LISTING 5.19: optimized fragment

...
i32.load8_s
set_local $p2
get_local $p2
if $I15

i32.const 0
set_local $l1
...

else
i32.const 0
set_local $p2

end
... ;; $l1 dead

5.2.6 Program: z3

The z3 program is the Z3 SMT solver compiled to WebAssembly. The replacements
are akin to those observed on previous programs. What makes z3 unique is its enor-
mous size, at 17.4MiB; it contains over 8 million instructions. Yet, at the same time,
it represents the kind of realistic performance-intensive programs that would par-
ticularly benefit from superoptimization. It took roughly 10 hours to attempt elim-
ination of almost a half million branches; these computation times are indicative of
expected costs of superoptimization. While a single branch elimination is relatively
cheap in computation time, the cumulative time amasses quickly to many hours.
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These timings may also aid speculation on economical feasibility of superoptimiza-
tion.

Only 0.16% of all branches were eliminated within 10 hours. Yet, the file size
reduced by 0.94%. As WebAssembly contains if-blocks, whenever a branch condi-
tion is proven, either the entire if or else body may be eliminated. While only few
branches are eliminated, increasing timeouts likely improves this a bit, at the cost
of greater computation time. Additionally, note that Z3 was invoked for 487, 686
branch conditions at 200ms each; this would equal a total time of 97, 537, 200ms (~27
hours). In practice, “only” 10 hours were spent, which happens - in many cases - be-
cause Z3 can prove no replacement is possible before the 200ms timeout is exceeded.

5.3 Synthesis and Verification

In this section the effectiveness of synthesis and verification is evaluated. We evalu-
ate the enumerative synthesis (i.e., no CEGIS). Table 5.3 displays the synthesis times
for some small programs.

Programs Liveness No Liveness Equal Proof
Time Candidates Time Candidates Time

popcount 3,145ms 80 timeout (120s) 348 499ms
idgcd 563ms 15 timeout (120s) 587 482ms
popcount64 45,519ms 142 segfault N/A 5,624ms
mulshlε 1,202ms 57 1,258ms 57 2ms
leqandε 87ms 10 83ms 10 2ms
memarray N/A N/A N/A N/A 21,746ms

TABLE 5.3: Some synthesis timings

The ‘Candidates’ columns display the number of programs verified by Z3 before
finding a correct program or synthesis timed out after 2 minutes. Programs marked
with ε contain no dead variables.

One observation is that proving equality is generally more expensive than elim-
inating incorrect candidates. For popcount, 16% of the total time was taken to prove
correctness. The 79 incorrect candidates were eliminated in the remaining 2,646ms
(84%) of the time. On average, eliminating an incorrect candidate took only 1% of
the time. For idgcd this disparity is even larger, where proving equality takes 85%
of the time. Eliminating an incorrect candidate takes (on average) 1% of the time.
Surely, when more candidates are considered, most of total time is likely spent on
eliminating them. Generally, though, it seems that proving equality is more expen-
sive than eliminating an unequal program.

The popcount64 program is the 64-bit version of the popcount program. It has
to consider a much larger set of instructions, namely those for i32-arithmetic (i32s
are used as booleans) and i64-arithmetic. Its loop is driven for 64 iterations, which
results in a large symbolic state. While otherwise similar to popcount, it takes almost
15 times as long to find a replacement. Verifying the correct program for popcount64
takes 11 times the time taken by popcount. These examples indicate a large differ-
ence in computation cost may exist between seemingly similar programs.
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5.3.1 Effects of Liveness Analysis

When variable liveness is not considered during synthesis, the synthesizer has to
generate significantly more programs. As the liveness information lowers the re-
quirement on equality - by considering dead variables as vacuously equal - more
candidates satisfy the specification. When liveness information is considered, the
synthesizer finds a replacement for popcount after eliminating 79 incorrect candi-
dates within ~3 seconds. Without liveness information, no replacement is found
after considering 348 candidates in 2 minutes. Similar behaviour can be observed
for the idgcd program.

For the programs (mulshl & leqand) that contain no dead variables, liveness
analysis has clearly no effect.

5.3.2 Memory

This section elaborates on the verification cost of programs containing memory.

Program: memarray

Consider the programs in Listing 5.20 and Listing 5.21. The left program traverses all
four array elements twice, while the second only traverses them once. Both programs
surely return the same output. When their corresponding WebAssembly programs
are passed to our verifier, it takes over 20 seconds to prove their equivalence. Cur-
rently, synthesizing programs with memory operations is likely too costly for our
superoptimizer.

LISTING 5.20: memarray1 (Rust)

;; DATA has fixed length 4

let mut sum = 0;
for x in &DATA {

sum += x;
}
for x in &DATA {

sum += x;
}
return sum;

LISTING 5.21: memarray2 (Rust)

;; DATA has fixed length 4

let mut sum = 0;
for x in &DATA {

sum += x;
}
return 2 * sum;
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Program: mem_le

Another program that operates on memory is me_le (LE stands for Little Endian).
Consider two programs in Listing 5.22 and Listing 5.23. The former extracts the
lowest 8 bits of $a, and stores the (zero-padded) 32-bit integer to memory address 0.
The latter program stores the lower 8 bits of $a at this same address. These programs
are subtly unequal.

LISTING 5.22: mem_le 1

i32.const 0
get_local $a
i32.const 255
i32.and
i32.store

LISTING 5.23: mem_le 2

i32.const 0
get_local $a
i32.store8

While both store the lower 8 bits of $a to address 0, the left program also stores 0
bytes at addresses 1, 2, and 3. Our verifier finds this error in 7ms with the following
counterexample:

model = {params = {$a 7→ 0}, mem = {2 7→ 32}, ...}

It is remarkable to observe that subtle differences over memory are caught by the
verifier (and Z3) within very little time.

5.4 Discussion

Below, we discuss the results and their applicability to practical programs.

5.4.1 Generalizability of small optimizations

The optimizations on the smaller programs are usually timed out at 10 minutes.
Within that time limit, significant improvements are found on specific (artificial) con-
trol flow structures, on a very small scale. The minuscule timeouts (of one second or
less) set for very simple improvements on larger realistic programs still causes colos-
sal overall superoptimization times of up to 10 hours. If those individual timeouts
were set to 10 minutes to apply better optimizations, the total time would (naively)
extrapolate to roughly 6000 hours; which is 250 days.

Surely, the small programs are often optimized in about 1 minute; that is already
difficult and costly. Yet, that is whenever it is known that the opportunity is present.
Finding these opportunities in larger programs is much more difficult. Any program
contains a number of sub-fragments that is exponential in the program size. After
extracting an arbitrary fragment, there is little guarantee that - after driving and/or
synthesis - it results in an improvement. So, even when one of our small programs
occurs exactly inside a larger program, it requires significant brute-force effort to find
and optimize them. Surely, that issue delineates the essence of superoptimization:
Finding non-obvious improvements. While we currently limit search by timeouts, a
better solution would be to (also) find and apply sensible heuristics. For instance,
by using properties observed in the original fragments or by targeting the search to
performance sensitive regions. These possibilities are further discussed in chapter 8.
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5.4.2 Synthesis Limitations

Our synthesis algorithm is vastly inferior to those of many other superoptimizers
(as discussed in chapter 6). Effectively, it is an enumerative brute-force synthesizer
which uses some domain-specific pruning rules. Currently, this simple synthesizer is
sufficient to find some simple improvements. Most of our approach side-steps syn-
thesis by propagating symbolic information, applying partial evaluation, and driv-
ing loops. This approach enables the discovery of some unique optimizations. Par-
ticularly, driving naturally finds the babbage and bubblesort4 replacements. How-
ever, the application of a better synthesis algorithm - which considers the propagated
symbolic information - will likely find much better fragment replacements; this is
also further discussed in chapter 8.
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Chapter 6

Related Work

In this chapter, we elaborate on previous research on superoptimization, program
synthesis, and supercompilation.

6.1 Superoptimizers

Massalin[37] coined the term superoptimization in 1987, as discussed in section 1.1.
Later superoptimization research focused on achieving either or both of the follow-
ing:

• Generate Larger Programs - Generate larger instruction sequences in reasonable
time. Often this includes generating sequences containing forward-branches
and sometimes backward-branches (i.e., loops).

• Generate Compiler Optimizations - Optimizations for a particular instruction set
are discovered by traversing its program search space. These obtained opti-
mizations are then implemented as peephole optimizations in an existing com-
piler; this reduces manual labor when constructing optimizing compilers for
unknown CPU architectures.

Most unique contributions in previous research relate to obtaining (near-)optimal
programs faster, through sophisticated search techniques and equivalence checks.
Several of these are elaborated on below.

6.1.1 STOKE

As the program search space scales exponentially in the length of the program, there
exists a limit on the number of states that can be considered in reasonable time.
STOKE[52] instead traverses the high-dimensional irregular search space stochasti-
cally using Markov Chain Monte Carlo (MCMC). While this method is not guaranteed
to find an optimal program, it can obtain significant improvements for much larger
programs than otherwise possible. The optimization task is formulated as a cost
minimization problem. The cost captures both competing requirements of speed
and correctness.



6.1. Superoptimizers 81

Figure 6.1 abstractly depicts the search
space. Correctness is captured by the bit-
difference between the actual output and ex-
pected output when running the program
on a set of input vectors. Correct and near-
correct programs are very likely to be vis-
ited early because of their low cost. With
MCMC sampling, a program transforms into
an “adjacent” one in the search space. A sin-
gle transformation is either of the following:

• Replace an opcode by a random opcode.

• Replace an operand by a random operand
with equivalent type.

• Interchange two randomly selected in-
structions.

• Insert a random instruction.

• Remove a random instruction.

FIGURE 6.1: Abstract depiction of
stochastic search space

Transformations that lower the cost are typically preferred, while deteriorations are
occasionally allowed to avoid local minima. Repeated application of these last two
rules (insertion and deletion) can transform any program into any other. Thus all
programs in the search space can be encountered while likely encountering improve-
ments quickly. Absolute correctness of a candidate solution is determined using an
SMT solver.

Floating Points

FIGURE 6.2: Abstract depiction of
search space allowing errors

An addition to STOKE enables superop-
timization of programs with floating-point
calculations[51]. Notably, this technique al-
lows errors, within reason. The error in the
Units-in-the-Last-Place (ULPs) typically deter-
mines the accuracy of floating-point compu-
tations. Minor deviations in floating-point
computations are usually acceptable, espe-
cially when performance significantly im-
proves. Figure 6.2 abstractly depicts this
search space. When allowing greater error, the
global optimum differs. The programmer typ-
ically configures the allowed error margin.

So, STOKE traverses the high-dimensional irregular search space of loop-free
programs quickly and is capable of finding (near-)correct near-optimal solutions.
Correctness requirements are configurable by the programmer. When STOKE is run
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for a sufficient amount of time, it finds an actually optimal program, because any
program can transform into any other.

Conditionally Correct Superoptimization

Later, STOKE was extended with Conditionally Correct Superoptimization[54]. That
work relies largely on an assumption we made as well: Program fragments need
only be correct for the inputs upon which they are executed. While we aimed to
establish fragment inputs through configurations tracked through our program, in
that work, fragment preconditions are guessed from test cases. STOKE largely relies
upon user-specified test cases to determine initial correctness. After synthesizing
a fragment that is consistent with those test cases, formal verification would oth-
erwise commence. In that work, however, the verifier also produces a precondition
under which the fragments are correct. If the user is convinced that the precondition
captures the set of realistic inputs, the program is accepted. Otherwise, the user pro-
vides additional test cases that are inconsistent with that precondition, and another
fragment is synthesized. This process continues until STOKE finds a fragment with
acceptable precondition.

Loops & Cutpoints

Churchill et al.[13] attempted to extend STOKE’s stochastic search to loops. Program
equivalence is initially determined by a bounded verifier. The bounded verifier de-
termines the equivalence of all output for paths that traverse no single basic block
more than k times in either the source or target program, where the user provides k.
This method handles memory read/write operations. It is computationally expen-
sive to determine the equivalence of memory layouts in the presence of pointers, as
pointers may partially reference (alias) the same memory location. This may gen-
erate SMT terms that are exponentially large in the number of memory operations.
To avoid this, the authors apply alias relationship mining, which attempts to place
symbolic pointers in fixed-offset equivalence classes. Absolute equivalence is deter-
mined by a “sound verifier”. This extends previous work[53], where a simulation
relation is maintained while executing both programs. This simulation relation con-
sists of cutpoints[62] and invariants. Each cutpoint λ corresponds to a location in
both the source and target program, while an invariant ψλ describes their relation-
ship. Upon execution of the instructions following λ in both the source and target
program, both executions reach another cutpoint λ′ where the obtained states sat-
isfy ψλ′ . Every loop has at least one cutpoint, and the source and target program
must agree on the heap state at every cutpoint. As both programs must reach all
cutpoints in the same order, it intuitively means both programs progress together on
state changes. The invariants are obtained by looking for patterns between the pro-
grams’ configurations when executed on test cases; a SMT solver formally verifies
these. The observed relations are limited to register equalities and null checks, thus
not all invariants are found. While not all program equivalences are discovered, no
invalid program is ever produced.

Machine Learning

Another work[10] extends STOKE with reinforcement learning. The stochastic trans-
formations applied by STOKE do not depend on the semantics of the considered
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program, nor depend on past behavior. When the input program uses mainly bit-
wise operations, the optimal program does likely not rely on floating point opera-
tions. Bunel et al.[10] use a neural network to learn a better sampling distribution
for the random transformations applied by STOKE. This approach ensures a more
goal-directed stochastic traversal of the search space.

6.1.2 Denali

The Denali[30] superoptimizer relies on techniques otherwise used in SMT solvers,
as the authors observed[30]:

A refutation-based automatic theorem-prover is in fact a general-purpose
goal-directed search engine, which can perform a goaldirected search for
anything that can be specified in its declarative input language. Success-
ful proofs correspond to unsuccessful searches, and viceversa.

Denali converts its input programs (written in a C-like language) into sets of
Guarded Multi-Assignments (GMAs). An example GMA is as follows:

p < r → (M[p], p, q) := (M[q], p+8, q+8)

The values on the right-hand side are assigned to the variables on the left-hand
side, but only if the condition (p < r) is true. Note that M represents program mem-
ory.

These GMAs are then converted into an E-graph, which is a DAG augmented
with an equivalence relation on its nodes. Two nodes are equivalent when their
terms represent identical values. Figure 6.3 represents such a graph. The equiva-
lences are determined by encoded mathematical axioms, such as:

∀x : 2 ∗ x = x << 1

This process (called matching) builds a large E-graph representing all possible ways
to compute the expressions in a GMA expression. An E-graph of size O(n) can
represent Θ(2n) ways of computing an expression of size n. As these cannot all be
enumerated in reasonable time, an SMT solver is used to find the shortest expression.

FIGURE 6.3: An example E-graph for ‘reg6*4+1’. Dashed arcs represent equivalences.
(Adapted from Denali paper[30])

The SMT solver is repeatedly asked (for different values K) whether a valid pro-
gram of length K exists, while no program of length K − 1 exists. Eventually, an
optimal program is found while no faster program exists.
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This technique can handle conditional forward-branches and memory access.
However, the resulting program is not strictly optimal, but only “mathematically
optimal” instead; that is, it is only optimal when considering the defined axioms,
which are rarely comprehensive. Thus, the non-obvious bit-twiddling machine-
specific programs are likely never found. Also, the size of the E-graph can scale
exponentially with the input expressions, which causes Denali to perform poorly
for larger programs; for example, consider ‘a+b+c+d‘ with commutativity and asso-
ciativity axioms on ‘+’.

Equality Saturation

A line of research that was partially inspired by Denali is Equality Saturation[60],
which is a general-purpose compilation paradigm. While it is not strictly considered
superoptimization, we include it here because of its similarity to Denali. While De-
nali uses E-graphs, this technique represent entire programs in Program Expression
Graphs (PEGs). These PEGs are referentially transparent, similar to gated SSA repre-
sentations. A PEG completely represents a program. A Saturation Engine repeatedly
applies a set of transformation axioms to saturate an E-PEG. This E-PEG simulta-
neously represents multiple versions of the input program; which is similar to - but
more general - than an E-graph. This approach enables non-destructive application
of optimizing transformations. As all optimizations are simultaneously applied to
a program, it solves the prevalent phase-ordering problem for compilers (at the cost
of increased compilation time). E-PEGs may also be used for translation validation;
when two programs have equal saturated E-PEGs, then those programs are equal.

Typical compilers combine the decision of an optimization’s applicability with
the profitability of the optimization. This causes profitability of optimizations to be
determined very locally; namely, potential future optimizations are not considered.
Equality saturation allows the utilization of a global profitability heuristic, which picks
the lowest-cost program from a saturated E-PEG.

A recent paper[63] describes egg (e-graphs good), which is a Rust implementa-
tion of extensible E-graphs, specialized for performant equality saturation. The au-
thors evaluated egg against an existing expression simplifier, which it outperformed
by 3000×.

6.1.3 Souper

Souper[50] is a recent superoptimizer that operates on a purely functional directed
acyclic dataflow graph resembling those in the LLVM IR. Notably, Souper stores op-
timizations in a Redis cache, which is a networked key-value store. Their entry in
the cache replaces subsequent encounters of a previously superoptimized sequence;
this allows superoptimization to be used similarly to incremental compilation, mak-
ing it more suitable for practical development. Additionally, Souper obtains both
static and dynamic profile counts. A static count is the number of times an instruc-
tion sequence is present in the input file, while the dynamic count is the number of
times it is executed (which differ for instructions inside a loop). These counts can
advise compiler developers on useful (peephole) optimizations on common cases
that are currently missing. In the case of Souper, this resulted in the implementa-
tion of several optimizations in LLVM. In particular, Souper can quickly synthesize
program fragments using its symbolic CEGIS synthesizer. This synthesis algorithm
was inspired by the Brahma[22] tool, which we discuss in subsection 6.2.1. A recent
extension[41] made Souper 2.32× faster by considering dataflow facts; these facts are
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obtained from the original fragment. From the original fragment it observes, for in-
stance, which bits are constant in the output (known bits analysis), or which input
bits may affect the output (required bits).

Arteaga et al.[11] applied Souper to WebAssembly, where C/C++ is compiled
to WebAssembly through LLVM with Souper. Their objective was reducing binary
size instead of execution time. We use their pipeline to evaluate our superoptimizer
against (as discussed in chapter 5).

6.1.4 Lens

Lens[47] performs an enumerative bidirectional search while invalid candidates are
pruned; this makes lens about 11 times faster than naive exhaustive search tech-
niques. Figure 6.4 depicts an example search tree. The nodes represent configura-
tions. Two paths are considered (preliminarily) equivalent if their value assignments
match when executed on a test set. As paths may no longer be equivalent under
different test cases, Lens continuously generates new test cases to refine the search
space.

The backward search generates instructions at the end of the program, while
“executing” the program in reverse on the test output. Equivalent states in either
direction are easily identified through their variable-assignments for each test case.

FIGURE 6.4: Bidirectional search graph. Highlighted paths pass test cases
(Taken from [47])

Once a seemingly correct program is obtained, a constraint solver determines ab-
solute equivalence. Otherwise, a counterexample is obtained, which acts as another
test case to refine the search space; this repeats until it finds a correct program.

The authors of Lens also experimented with a cooperative search technique, where
multiple search instances (enumerative, stochastic, and symbolic) run simultane-
ously while sharing their current best solutions to aid the other instances. This tech-
nique allows Lens to outperform other superoptimizers (such as STOKE[52]) while
generating truly optimal program fragments.

Note that executing instructions backward maps states one-to-many. Consider
‘x + y = A’ where x and y are variable, while A is a known constant; in 32-bit
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arithmetic there are 232 distinct assignments to x and y summing to A. To make
the backward search realistically tractable, Lens operates on a 4-bit instruction set
instead. In the end, the obtained program is converted to its 32-bit equivalent.

6.2 Program Synthesis

Alonzo Church[12] performed early work on program synthesis, who aimed to gen-
erate a circuit from mathematical requirements. Later synthesizers attempt to gen-
erate a program satisfying some formal specification. We do not give a full account
of synthesis research, but mention some interesting approaches.

6.2.1 Brahma

Brahma[22] is a component-based symbolic synthesizer, which Souper[50] also adapted
to superoptimization (as discussed in subsection 6.1.3). Components available in the
language (i.e., instructions) are described by a logical relation between input and
output. Every such component is modeled as a resource, where the programmer is
responsible for providing an upper-bound on the number of times each component
is used. For instance, that the add instruction may be used at most twice; this ensures
the set of resources is finite. A synthesis constraint describes the (large) set of programs
that can be constructed from those resources. A verification constraint describes the
correctness of such programs. This technique heavily relies on an SMT solver to
propose candidate programs that are consistent with the synthesis constraint. A pro-
posed candidate is verified using the SMT solver with the verification constraint.
If incorrect, a test case is obtained and used to prune the set of candidates; this is
thus an application of CEGIS. The synthesis-verification loop repeats until a correct
program is found; in practice, 2 to 14 iterations were often sufficient.

Interestingly, during the ICFP 2013 contest, team Unagi[4] outperformed the
Brahma approach when applied to an artificial1 functional language. Within 72
hours - which was the time alloted to the contest - they wrote a brute-force enumera-
tive synthesizer that distributed over 32 cores; domain-specific rules were applied to
prune the search space. Their approach indicates that the application of large-scale
computing resources can be surprisingly effective for superoptimization.

6.2.2 Functional Languages

Synthesis of functional languages is also extensively researched. These synthesizers
leverage type information to prune the search space; after all, only constructors satis-
fying a term’s expected type need to be generated. One approach[44] can generate
programs satisfying user-provided input-output examples and (first order) type sig-
natures. Later work[34] performed CEGIS synthesis on a functional language for a
given refinement type. We do not elaborate on the synthesis of functional programs
further, as it only minimally relates to our work.

1A simple functional language specifically constructed for the contest.
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6.2.3 Automatic Program Repair

A related line of research aims to automatically repair bugs in programs. Repairing
a program often involves modifying it such that it satisfies a test set. Angelix[39]
performs symbolic execution on programs to extract angelic paths, which are exe-
cution traces that violate a test case. After finding multiple such paths (an angelic
forest), their synthesiser aims to find a patch; this patch modifies an expression in the
program such that those paths satisfy the test cases.

Genetic Improvement[46] (GI) improves programs for some given cost function.
GI modifies programs through Genetic Programming (GP), where program fragments
are moved within and between programs. GP can lead to improvements to execu-
tion time, energy and memory consumption, but also to the introduction of entirely
new functionality. Especially when introducing new functionality, the output pro-
gram is not identical in behaviour to the improved one; thus GI programs are often
exclusively determined equal over a particular set of test cases. Though, in practice,
a small amount of test cases is often sufficient to infer invariants for a program[18].
Often, accuracy can be sacrificed for greater performance (e.g., in video encoders or
machine learning algorithms), which GI can automatically achieve[56, 57].

6.3 Supercompilation

Turchin[61] introduced supercompilation for this REFAL language (recursive func-
tions algorithmic language). Turchin noted[61]:

[Supercompilation] traces the possible generalized histories of compu-
tation by the original program, and compiles an equivalent program, re-
ducing in the process the redundancy that could be present in the original
program.

A program corresponds to a machine. A machine computing g(x) = f (x, Y)
where Y is constant can typically be more rigorously optimized than the machine
computing f (x, y) where x and y are variable. Even when x and y are variable, re-
dundancies can often be eliminated in practice. While our work aligns with Turchin’s
view of programs and processes in spirit, Turchin’s supercompiler is defined over
his REFAL language, which is (more-or-less) a functional language. So, our imple-
mentation does not correspond directly with his theory (our application to process
graphs was discussed in chapter 4).

6.3.1 Purely Functional Supercompilation

Supercompilation is particularly useful for purely functional languages, where research
is (arguably) most mature. Considerable optimization may be achieved; such as de-
forestation where intermediate data structures are entirely removed. One applica-
tion of supercompilation to Haskell is by Bolingbroke[8], which extends techniques
developed in preceding work[40]. An example optimization that can be achieved is
as follows:

let ones = 1 : ones ; map = ...
in map (λx . x + 1) ones =⇒ let xs = 2 : xs in xs
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Though this is a simple example, existing compilers do not typically perform this
optimization as it applies a function to an infinite list. In supercompilation (on func-
tional languages), optimization is achieved through reducing, splitting, and matching;
Figure 6.5 depicts an example of this.

FIGURE 6.5: Haskell supercompilation

In this example, regard map and ones as
defined within the context. Supercompi-
lation starts at term 1, which is in Head
Normal Form (HNF). It reduces to the
definition of map in term 2. Then the
definition of ones is required, which is
substituted. In term 3 the case is known,
thus it reduces to term 4. At that point
no further reduction are applicable, so it
splits on the cons constructor (:) where
both subexpressions are independently
supercompiled. 1+1 trivially reduces to
2. However, the tail matches a previously
encountered expression which is still
being supercompiled. It is replaced by the
result of supercompiling term 1 (which,
by recursion, is the result of term 4). This
process thus obtains the final expression
as listed above.

Note that the number of encountered sub-terms is finite, as all sub-terms originate
from the source programs. When expanding the process tree, a history of encoun-
tered states is maintained. When a well-quasi-order on the history is observed, expan-
sion terminates. Conceptually, it terminates when no new expressions are encoun-
tered along the expanding tree. This termination ensures that diverging fragments
are not expanded forever; which, for example, happens when recursing with an ac-
cumulator.

Supercompilation is notorious for its explosion of code size, as all operations are
specialised to their context; this effectively inlines them. While execution speedups
of a 100% are occasionally observed, the binary size can be 10 times larger for practi-
cal projects. One way[29] of avoiding this explosion is through speculative supercom-
pilation, where terms that grow too big are discarded and thus not supercompiled.
Many small functions - with few syntactic nodes each - account for most execution
time; supercompiling these improves performance a lot, while binary size increases
only slightly.

6.3.2 Imperative Supercompilation

The application of supercompilation to imperative languages has been sparse. In one
approach[33], supercompilation is applied to Java. Java operates - like WebAssem-
bly - as a stack based machine. The evaluation stack is explicitly included in their
configurations when driving. Within their configurations, only simple constraints
are placed on values: v ≥ c, where v is a variable and c is a constant. While these
constraints are simple, it allows for easy generalization. The author defines an home-
omorphic embedding on their configurations, which is used to determine when to ter-
minate driving. A homeomorphic embedding is one specific well-quasi order (as
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described in Haskell supercompilation). In this application to Java, the obtained
process graph is not used for optimization; instead, it is used for sound verification.
It determines whether some condition holds at any terminal configuration following
every valid process in the graph.
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Chapter 7

Conclusion

In this work we consider superoptimization as finding non-obvious program opti-
mizations with little regard for time taken by the optimizer. The targeted programs
are more complicated than linear instruction sequences; in particular, they contain-
ing statically bounded loop. Concretely, we aim to answer the following questions:

• How can superoptimization be extended to handle statically bounded loops?

– How can superoptimization be applied to a process tree?

– How can these optimizations be applied to a finite process graph?

• How effective are these techniques in improving the performance of WebAssem-
bly functions?

RQ1A: How can superoptimization be applied to a process tree? In chapter 4, we
describe how our superoptimizer expands (small) graphs into finite process trees.
Our approach of driving process trees with an SMT solver (Z3) is novel. Through
driving, our superoptimizer removes infeasible branches; eliminating all infinite branches
produces a finite tree. Sometimes, our synthesizer can replace a finite tree by a linear
instruction sequence; it prunes the search space using static information extracted
from the tree. Chapter 3 elaborates on that approach.

RQ1B: How can these optimizations be applied to a finite process graph? In
chapter 4 we discussed the correspondence between process graphs and trees. Small
graphs can sometimes be converted into trees and optimized as such. For larger
programs, we propagate symbolic information as dataflow over control flow struc-
tures, but not into loops. We use this information to partially-evaluate expressions
and eliminate branches. Brute-force partial evaluation of expression with contextual
symbolic information is also novel.

RQ1: How can superoptimization be extended to handle statically bounded loops?
Programs containing loops may be superoptimized by converting them into process
graphs and applying our techniques as discussed in RQ1A and RQ1B.

RQ2: How effective are these techniques in improving the performance of We-
bAssembly functions? In chapter 5, we evaluate the performance of discovered
optimizations, and the time taken by our superoptimizer. While the execution time
of small artificial programs is reduced by several orders of magnitude, the used tech-
niques are currently infeasible for larger programs. On larger programs, simple im-
provements such as branch elimination and constant substitution already take mul-
tiple hours but improve programs by no more than 1%.
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Chapter 8

Future Work

During our research, we discovered problems that we were unable to solve; these are
delineated below. Additionally, we elaborate on potential for research opportunities
that are similar to our approach.

8.1 Fragment Search

We were unable to apply the techniques used on small programs to larger programs.
A large limiting factor is the inability to discover were to look for opportunities. Ex-
tracting arbitrary fragments through brute-force proves infeasible. Two approaches
could assist in resolving this (either independently or together); these are discussed
below.

8.1.1 Heuristic

Ideally, the superoptimizer would predict where optimization opportunities reside.
Though, by definition, superoptimization involves finding non-obvious optimiza-
tions; this implies that prediction is likely hard. In practice, we observe that some
optimization opportunities only emerge after driving a loop for many iterations. For
instance, the tree for the popcount program (in subsection 5.1.6) traverses the loop
body 32 times and has 32 leaves. The driven tree of the babbage program (in sub-
section 5.1.5) consists of a single linear chain with over 50,000 transitions (which are
later eliminated). Yet, perhaps some observations may be made about their common
behaviour that allows the superoptimizer to make an informed guess about optimiza-
tion opportunities. Effectively, this would establish a heuristic to guide the search for
profitable fragments. One (rough) heuristic could be:

• If the original fragment does access memory in more than one path, then do not
spend time on it.

• Otherwise, fully drive it and attempt synthesis.

The issue remains on where to start looking. After all, any program point may be
selected as the root of some fragment. Similarly, any (dominated & post-dominating)
descendant may be selected as the fragment’s terminal node. The heuristic above
could possibly be used to select such a fragment. Likely, some better heuristic is
necessary to find fragments.
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8.1.2 Profiling

Another potential solution is to target the search effort at performance-critical sec-
tions. Instead of attempting superoptimization for every fragment, it may only be at-
tempted for, say, 5% of the most performance-critical regions. Surely, this approach
requires knowledge of where those regions are. Possibly, those regions could be iden-
tified through profiling; which involves observing realistic program executions and
reporting on often-visited program points. As web browsers contain extensive CPU
profiling tools, this should be achievable. Though, those tools seemingly measure
the time spent on WebAssembly function calls, and may - to no surprise - identify
that most time is spent on the 1, 000+ instruction-long main functions. With some
manual effort and inspection, smaller critical WebAssembly functions could be dis-
covered. Finally, this profiling data must be communicated to the superoptimizer.

Whenever an application developer knows where the performance-critical re-
gions in a program are (possibly also through profiling), then superoptimization
could be manually targeted to some regions. A caveat is that developers likely iden-
tify performance-critical sections in the source code. Finding the corresponding frag-
ments in the compiled WebAssembly program remains non-trivial.

8.2 Symbolic Dataflow Analysis

Through the propagation of symbolic configuration over (forward) dataflow analy-
sis, we discovered (in section 5.2) that programs often contain expressions that may
be replaced by constants; particularly, regular compilers missed those optimizations.
While our gains were marginal, future techniques could benefit.

8.2.1 Abstract Interpretation

With abstract interpretation, program points are assigned elements obtained from a
lattice of reasonable size; for instance, the constant propagation lattice. While less
powerful than symbolic information, its computation is relatively cheap; even into
loops (depending on the lattice). We envision a system where abstract interpretation
is combined with forward symbolic information propagation. For instance, from the
fixpoint value at loop entries, a symbolic configuration may be constructed. In turn,
from the propagated symbolic information, lattice values may increase (using Z3).
Consider Listing 8.1. Constant propagation fails to observe that the expression on
line 3 always evaluates to false. Using Z3, that may be proven with symbolic infor-
mation and used to improve the corresponding value in the constant propagation
lattice.

LISTING 8.1: False by transitivity

1 if a > b {
2 if b > c {
3 let x = ( a <= c ); // Always false. Tell constant propagation
4 ...
5 }
6 }
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Generalization

We failed to appropriately generalize program points during driving (see subsec-
tion 4.2.1); this was particularly so because our symbolic representation is effec-
tively an element in a humongous (but finite) lattice. Driving and generalization is
quite effective[28] when using a smaller (but imprecise) lattice. Similar to the pre-
vious point, a smaller lattice may be used to generalize program points, while using
symbolic information to provably eliminate branches. In our view, that approach
inherits the best of both worlds.

8.2.2 Simple Changes

Currently, our superoptimizer only uses symbolic information to replace constant
expressions in larger programs. A simple extension is to provably eliminate value
reassignments. That is, if variable x already contains some value a, then another as-
signment of that same value ‘x := a’ is surely futile. Those imperfections do exist in
programs (see subsection 5.2.4); though, it is unknown how often. Similarly, memory
re-access may be avoided. If an existing variable y already contains the value read
from mem[i], then an assignment z := mem[i] may be replaced by z := y. Again,
it is unknown how often those imperfections occur or what their performance gain
is. On the other hand, these checks should be relatively cheap in the context of su-
peroptimization.

8.2.3 Larger Observations

Our superoptimizer may propagate symbolic information out of loops. Yet, we over-
approximate significantly, which could be improved. Consider Listing 8.2 and List-
ing 8.3. While the branch condition on line 4 is always true - as it follows from
the postcondition of sort - it is very hard (and very undecidable) to prove this in
general. However, when xs is known to be sufficiently short, this optimization can
be found. Proving this requires propagating a configuration into the sort function,
fully drive its body, combine the configurations at the tree leaves, and return the
combined configuration to the caller.

LISTING 8.2: Suboptimal f

1 pub fn f( xs: &mut [u32] ) {
2 // assume: xs.len( ) >= 2
3 sort( &mut xs );
4 if xs[ 0 ] <= xs[ 1 ] {
5 foo( );
6 } else {
7 bar( );
8 }
9 }

LISTING 8.3: Optimal f

pub fn f( xs: &mut [u32] ) {
// assume: xs.len( ) >= 2
sort( &mut xs );
foo( );

}
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8.2.4 Configuration Reductions

Our configurations are represented symbolically, which means their representation
is much smaller than concretely enumerated sets. Still, their expression count often
ranges into the multiple thousands (see subsection 4.5.3), which incurs a high memory
cost; and their size likely also incurs a cost on the verification time spent in Z3. While
we apply some expression simplification rules, it could be useful to expend some Z3
calls toward simplifying the configurations. Probably, the necessity for exploring
this idea is predicated on the success of the previous points.

8.3 Larger Superoptimizer

Most existing superoptimizers have been research projects, while widespread indus-
try adoption has been minimal. Yet, we argue that implementing a superoptimizer -
like many compilers - is more a software engineering challenge than a research one.
In particular, distributing the search over multiple machines may be necessary to
obtain good results. As program fragments may be independently superoptimized,
this should pose little conceptual problems; only an implementation one. During the
ICFP 2013 programming contest, team Unagi[4] showed the surprising effectiveness
of distributed brute-force enumerative synthesis. Additionally, many great synthe-
sis algorithms[50, 47, 52] exist, which are time-consuming to reproduce, but are very
useful when implementing a superoptimizer. Particularly, we envision a better syn-
thesizer may leverage the symbolic information we propagate over control flow to
find better replacements.

In any case, to effectively research superoptimization, the existence of a solid
superoptimizer framework implementation would be very beneficial. This is, arguably,
why recent research[11, 41] builds on Souper[50].

8.3.1 Side-effects

While we propose a way of proving equivalence over side-effects (in subsection 3.2.7),
it does not quite contribute to our results. We expect its application together with a
better synthesis algorithm may be very profitable.

8.4 High-level Language

Supercompilation[61] (not superoptimization), from which we took process graphs,
was largely established to translate between languages. We see potential in a high-
level language, whose execution is simulated with a process graph. Through syn-
thesis, the represented process may be projected as an efficient program in some
low-level language.

When a regular compiler transforms a program – written in a high-level language
– to machine code, that compiler already makes many decisions. For instance, on the
chosen memory layout, or by deciding how undefined behaviour (at the high level)
translates to machine code. Simultaneously, a lot of the high-level information is
lost during conversion. When synthesis is applied during supercompilation from a
high-level language, the restrictions on synthesis are lowered as few decisions are
yet made. Success in this direction may produce programs that are faster than are
possible with superoptimization alone.
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Appendix A

GCD Liveness Analysis

Figure A.1 shows the application of liveness analysis to a GCD (Greatest Common
Divisor) function. The annotations consist of a tuple representing the local variables
($a, $b, $c) and the program stacks. Every entered scope adds another scope stack.
The analysis starts at the terminal node, where only the stack value is live.

FIGURE A.1: GCD Liveness Annotations
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Appendix B

Expanded GCD tree

The code in Listing 5.2 (in subsection 5.1.3) shows a strange identity function, which
is computed using the Greatest Common Divisor. The (static) bound on its execution
is non-obvious. However, no concrete execution will execute the loop body more
than twice; Figure B.1 illustrates this.

FIGURE B.1: Fully expanded idgcd
(without overflow check - pseudo language)
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The compiled WebAssembly version of the full program is included in List-
ing B.1.

LISTING B.1: Strange identity function (WebAssembly)

(func $run (export "run") (type $t0) (param $x i32) (result i32)
(local $b i32) (local $c i32)
block $B0

get_local $x
i32.const 0
i32.lt_s
br_if $B0
get_local $x
i32.const 1
i32.shl
tee_local $b
i32.eqz
br_if $B0
loop $L1

get_local $x
get_local $b
tee_local $c
i32.rem_u
set_local $b
get_local $c
set_local $x
get_local $b
br_if $L1

end
get_local $c
return

end
get_local $x

)
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Appendix C

Liveness Proportions

Below, the proportion of dead variables over all program points in the benchmark
programs are listed. Variables which are dead at the end of a program fragment need
not be considered during equivalence checking. See subsection 4.5.5 for further elab-
oration. Some programs contain no global variables.

Do keep in mind that a local variable is dead at the program point preceding a
write instruction. So, a program with a single local, that consists only of alternating
read (get_local) and write (set_local) instructions, has 50% dead locals. Realisti-
cally, programs contain longer chains where a variable remains dead (or alive).

Program Stack Locals Globals Total
idgcd 0.000 0.593 N/A 0.471
bubblesort4 0.000 0.542 N/A 0.481
popcount 0.000 0.535 N/A 0.430
babbage 0.000 0.476 N/A 0.250
transitive 0.000 0.667 N/A 0.522
bitwise_IO 0.009 0.292 0.003 0.235
lua_mini 0.012 0.604 0.041 0.230
sha256 0.002 0.557 0.109 0.434
raytracer 0.001 0.582 0.116 0.539
lua 0.005 0.417 0.004 0.207
z3 0.002 0.466 0.025 0.335

TABLE C.1: Proportion of dead variables over all program points
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Appendix D

Unpredictability of Z3

Both SAT and SMT solving are computationally expensive (NP-complete1). It is
surely impressive that Z3 (v4.8.8) finds satisfying assignments to large formulas in
little time. Occasionally, however, Z3 has trouble finding a model at all. Consider
the polynomial (a + 1)4 with its expanded form, where a is a 32-bit bitvector:

(a + 1)4 ≡ a4 + 4 ∗ a3 + 6 ∗ a2 + 4 ∗ a + 1

Also consider the following axiom on bitvectors, where� denotes the left-shift
operator:

4 ∗ a ≡ (a� 2)

Z3 can prove the respective equality of the following two expressions almost
instantaneously:

4 ∗ a ≡ (a� 2) (D.1)

(a + 1)4 ≡ a4 + (a3 � 2) + 6 ∗ a2 + 4 ∗ a + 1 (D.2)

Yet, proving the equality of the following expression takes near-infinite time:

(a + 1)4 ≡ a4 + (a3 � 2) + 6 ∗ a2 + (a� 2) + 1 (D.3)

This disparity in time is interesting, as Equation D.1 is substituted in Equa-
tion D.2 to produce Equation D.3. Apparently, some axioms are not applied in a
larger context. In general, it is hard to reason about the expected time it takes for Z3
to prove no satisfying assignment exists (which we need to determine equality). In
practise, we found that enforcing a timeout while accepting missed optimizations is
the only way around this issue.

1SMT solving is undecidable in general. On quantifier-free formulas with bitvectors, bitvector arrays,
and uninterpreted functions, it is NP-complete.
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