
Floor Plan Generation as an Optimization

problem

Joel Morisset de Perdigo
ICA-6627803

Department of Information and Computing Sciences
Utrecht University

Supervised by: M.J. van Kreveld & J.L. Vermeulen

January 2021

Abstract

Floor-plan generation is the process of generating room layouts that represent
potential house or building floor-plans. The generation of floor-plans is a topic
that has many publications. Although some papers were designed to assist an
architect in its work, no architectural software currently incorporate procedural
techniques in their workflow. We propose a method that assists architects dur-
ing the early design stages of a residential project, by generating a diverse set of
floor-plans based on the basic requirements of the residence. Our method uses
a plot area and some basic information about the number of rooms and their
connections. These input requirements are then used by a Simulated annealing
(SA) algorithm to explore many possibilities and present them to the architect.
Our method is simple with only three move-types, which makes it easy to in-
corporate and further adjust to a project’s needs. By using SA we allow the
plot area to be fully explored, giving us good diversity but with the drawbacks
of being relatively slow and slightly reducing the resulting quality.

1

1 Introduction

In the last 20 years, there has been an increase in the need for procedural content
generation, simply due to the increase in size and scope of virtual worlds. PCGs
have been applied to a wide range of topics in the creation of virtual worlds
and floor-plans are not an exception. Although most papers started with the
objective of creating tools to help architects in their projects, recently the focus
as mostly been around the creation of virtual worlds.

Research in the generation of floor-plans started around 1970s with the fo-
cus on space allocation [10] where the authors would assign different activities
to specific floors to reduce costs. The focus then changed towards either the
generation of full buildings (specifically facades) or the generation of floor-plans,
sometimes coupled with the generation of 3D models. The facade generation led
to some important tools that can generate procedural cities (Descensor Engine,
City Engine [4] and others) without interiors. More recently papers focused on
the generation of floor-plans, and applied different methods either taken from
other fields or designed for this purpose. Starting with grammars, usually used
for facade generation, a paper published in 2006 [7] generates office buildings
that can be generated and explored in real-time while allowing the users to make
changes to the generation that persisted between loads. Then many methods
use subdivision techniques such as the squarified tree-map algorithm [2] to gen-
erate floor-plan layouts with rooms having a close to 1 height to width ratio
[14]. Other methods started using the idea of growth where rooms would be
initialized as small squares and then grew using different algorithms. The first
of these methods [15] can generate floor-plans for residential houses. Other
methods would start using grids to simplify and reduce the odd placement of
walls and would restrict the method to a predefined outer-shape, which became
a common restriction.

Newer research used more complex methods like genetic algorithms [22] and
agent-based systems [9]. These generations managed to create multiple floor
buildings with decent layouts and made use of some optimization algorithms to
reach their final results.

An early paper [17] used an optimization algorithm, similar to ours, to gen-
erate floor-plans, although, similarly to others would restrict the method to
a predefined rectangular outer-shape making the methods more reliable but
achieving less variability.

Still we noticed that currently, architects do not incorporate procedural gen-
eration in the their day-to-day workflow, possibly due the complexity of some
methods. Although some softwares, like Grasshopper3D [8], and Revit [21] are
starting to propose the use of some PCGs, it is mostly restricted to the gener-
ation of crude shapes for design ideas.

We propose a method that will focus on the delivery of options to an architect
for the early stages of a project. More specifically for the sketching and early
design phase of a residential project, by presenting architects with a diverse
range of design ideas for a floor-plan. Allowing them to easily explore ideas and
interesting layouts from only the core project schematics.

2

By aiming at as much diversity as possible and by keeping the method simple
we easily allow the architects to add further restrictions and considerations that
some specific projects may require. To create this diversity we did not want to
restrict the method to a predefined outer-shape and we decided to use a plot
area instead which would also be more coherent with what an architect usually
has to work with. This would also allow the generation to work for a more
restrictive space, by simply reducing the size of the plot to the desired area.
For this reason we opted to use an optimization algorithm which would work in
a similar manner to growth-based systems but would achieve higher diversity
since it would allow us to easily explore different states while being oblivious
to the amount of space available. And to enhance this we specifically choose
Simulated Annealing (SA) as by allowing worse states makes the exploration
more thorough with its know drawback of being a slow method. We additionally
decided to represent the space in a modular grid which will further simplify the
method and allow us to fully explore the space with only 3 moves types.

Compared to previous methods we manage to get more diversity in our
results while still producing usable floor-plan layouts. The method is easily ad-
justable to different needs which makes it quite versatile and easily expandable.
As of now the method only generates single floor houses and the generation is
decently slow, but we believe that further work could tackle this limitations.

The paper will be structured as follows: section 2 will give an overview of
previous work, section 3 will go over the different input requirements that we set
for our method, section 4 will explain simulated annealing, including the fitness
function and its parameters in the sub-section 4.2, section 5 will explain the
different measures that we use to analyse the results, which are then explained
in section 6, followed by section 7 that concludes the document and goes over
possible future work.

2 Related Work

The generation of layouts has been an important topic in research, with appli-
cations in architecture, video games, and virtual/augmented reality. At first,
the topic was mostly focused on the creation of design for assisting architects.
Starting from space allocation problems for multistory buildings [10] where the
objective was to minimize costs when considering the transportation of resources
between floors and the positioning of airflow, elevators and other such facilities.
Later the focus on floor-plans appeared after a paper on layout optimization of
integrated circuits [11] (see Figure 1).

A few years later a paper was published showing the potential use of graphs
in the representation and design of floor-plans [19]. This was closely followed
by a paper of the organization of data where the authors created the squarified
tree-map algorithm [2]. Years later a paper combined both ideas to generate
floor-plans [14], where they represent a floor-plan with a tree-map and then
use the squarified tree-map algorithm to generate the floor-plan layout. This
method works by first dividing the area in 3 rectangles that represent the social,

3

Figure 1: Layout optimization of integrated circuits in the paper [11].

service and private area, using the squarified treemap algorithm basing their
dimensions on the required size of each room that constitutes each area. These
areas are then subdivided into each room again using the squarified tree-map
algorithm. Finally, if the connectivity is not met, the method finds the edge
path, composed of inner walls excluding the living room, that will connect the
isolated rooms to the living room and pushes the walls creating the corridor.

A few years prior, an overview of potential methods that could be used in
the automation and generation of floor-plans [12], including the use of optimiza-
tion techniques. A paper then was published using optimization techniques for
the generation of layouts of multiple apartments in a rectangular floor space
[17]. In this paper, they use a mixed optimization technique between simulated
annealing and sequential quadratic programming.

Figure 2: Resulting floor layout from the paper [17]

4

A different paper focused on generating deterministic fully traversable build-
ings in real-time [7], uses a method based on shape grammars which is a method
most commonly used for facade generation. This method manages to generate
interesting office-type buildings that are fully traversable, and by using a lazy
generation manage, to make the project run in real-time and be persistent be-
tween runs.

Other papers used growth-based methods. The first of which [15] in 2006
Jess Martin published a paper that from a layout graph and using Monte Carlo
semi-deformable growth generates a floor plan for a residential house. The
method starts by generating an adjacency graph representation, by first adding
the public room nodes, attached to those the private rooms and subsequently
the stick-on-rooms like pantries and closets. From this graph, it places each row
equally spread over the floor area. Then each room is grown using a method
that attractively pushes the walls to achieve their required sizes. By using this
method they managed to generate floor plans that are not bound to a rectan-
gular area and better fit the possible layout of a single floor residential house,
although the rooms themselves are rectangular. Additionally, it is the first
method that explicitly generates the input graph, making it a fully procedural
method. And in terms of variability, it can generate multiple floor plans given
one graph (see Figure 3).

Figure 3: Resulting floor-plan generated by the growth method in the paper
[15]

Similar to the previous method in 2010 a paper titled ”A Constrained
Growth Method for Procedural Floor-plan Generation” [13] uses a grid for the
growth algorithm and fixes the outer-shape of the floor-plan to some predefined
spaces. With the same growth method [3] instead creates the grid based on the
outer-shape making the resulting layouts more logical in respect to the walls
and Windows.

5

Also using a grid [5], and more focused on office buildings, this method first
creates an axis-aligned grid that fits a given plot area. Using the input topology
data and the generated grid, the method creates the building outline choosing
one the following strategies, either subdividing the area into rectangles and
merge them until a user-specified percentage of the total space is covered. Or
additionally, the method can wait until all the departments are placed and form
the building outline from the generated shape. The department placement then
depends on the form strategy followed. Once the departments are placed, the
method subdivides each department to place all the required rooms. Finally, the
circulation is computed and the corridors are generated using the edges between
departments (see Figure 4).

Figure 4: Example generations from the method in [5] with different coverage
values.

More similar to our method [22] use a mix of genetic algorithms with a hill-
climbing optimization. This method uses a very complex data representation
and has different possible mutations depending on the type of room.

Other methods used genetic algorithms to optimize floor-plan layouts. The
first of which [6] uses a genetics algorithm where each genotype is a tree-like
graph where each node represent either a vertical or a horizontal subdivision,
and the resulting leafs (end nodes) are the different rooms (see Figure 5). These
graph are then mutated and crossed, and selected using a weighted sum of
different measure for each objective. A crossover is made by selecting a random
node used as a brake point from two parents and swapping their sub-trees. And
a mutations is a regeneration of a sub-tree from a randomly selected break point.
This method manages to generate multifloor buildings. The generation works
with rectangular rooms, but can modify the end result to add diagonal walls.
Many buildings can be generated from the same data. The quality of the layout
is difficult to asses since all images represent the whole building.

Only one paper published in 2016 [9] uses agent-based algorithms to generate
floor plans. This papers method generates multi-floor buildings with complex
room layout. It allows the generation of double ceiling rooms, elevator shaft,
stairwells and other complex room types. The agent-based algorithm works by
assigning to each room to an agent, that can either be a sphere or a capsule-like
shape, where capsule-like agents are used to model stairwells, elevator shafts and
double ceiling rooms if placed vertically, or corridors and wide rooms if placed
horizontally. At the start of the simulation, the agents are placed randomly in
space, and rooms that have to be adjacent have their agent connected. Then

6

Figure 5: Example of graph representation of a layout used in the paper [6].

during the simulation the agent move towards a preferred location using different
measure and once the simulation ends the agents are translated to a voxel space
to which they apply an optimization algorithm that mutates the rooms until
some constraints are satisfied (see Figure 6).

Figure 6: This figure shows how the different steps in the method from [9]
.

Also using an optimization approach [16] first uses a Bayesian network to
generate an adjacency graph. And then optimizes the layout using a metropolis
algorithm. Two moves were implemented, Sliding wall, where they adjust a wall
position, and swapping rooms, where the labels of two rooms a interchanged.
The optimization attempts to minimize a cost function that takes into account
accessibility, dimensions, floors area, and shapes (preference towards convex
rooms). From the few examples that they show, the method seems to work
pretty well and produce some interesting floor-plans.

Additionally many search algorithms exist (see [1], [20] and [18]) and could
be interesting to analyse and compare. We chose to use simulated annealing
since it should, in theory, allow to more easily reach a higher optimum.

7

3 Requirements

The requirements for our method will be quite similar to previous works with a
connectivity graph, some room requirements and an available space to form the
floor-plan in. But in contrast to most methods, our space will be a plot space
and not a fixed outer-shape which will allow more freedom to the generation
while restricting the available space with a more realistic constraint.

3.1 Connectivity Graph

The connectivity graph is a tree-like undirected graph where the nodes repre-
sent the rooms and the edges represent the desired connections between rooms
(accessible through a door). Each room can be connected to as many other
rooms as desired. These connections will work as objective connections but our
method will not force it to happen.

Figure 7: An example of a connectivity graph. This is also the connectivity
graph used in most tests referred to a house type 1.

3.2 Room Parameters

All rooms will have a specified desired size and ratio. Represented as a minimum
size, a maximum size (presented in cell units) and only a maximum ratio as this
value will be calculated to always result in a ratio greater or equal to 1. The
method will be drawn towards being in between those values but they are not
mandatory restrictions.

MinSize MaxSize MaxRatio

LivingRoom 50 60 1.5

Table 1: Example of room parameters. In this case these are the parameters
used for the living room of the house seen in Figure 7.

8

3.3 Plot Space

The plot is a convex polygon represented by an ordered list of points. A grid
will then be fitted to the space by reducing the amount of outside space, by
moving the plot on the X and Y axis towards (0,0) in intervals of 5 units until
the lowest X values are between 0 and 5 and the lowest Y is also between 0 and
5. Following this the grid is given an offset on the X and Y axis between 0 and
1 to maximize the number of of cells inside the plot (see Figure 8) and this way
increase the available grid space that the method will have to explore.

A cell is counted as inside if it is at least one unit away from the plot borders
counted from the centre of the cells.

Figure 8: A grid fitting example. A shows the initial position of the plot. B
shows the space after moving the plot towards the point (0,0) for this example
we move the points between 0 and 2. C shows the counted inner cells. And
D show the increase in inner cells (from 13 to 14) by offsetting the grid by 0.5
units in the Y axis.

4 Simulated Annealing

Simulated annealing is a probabilistic optimization technique designed to reach
global optimums. It has become a popular tool for tackling both discrete and

9

continuous problems across a broad range of application areas. Is often regarded
as an improved version of the older techniques of local search. Broadly, its
process has an initial solution that is gradually improved by considering small
perturbations or changes, for example, changing the value of a single variable,
or swapping the values of two variables.

Since our objective is to generate a variety of floor-plans it seemed adequate
to use an optimization algorithm to search the problem space and reach opti-
mums. We then opted for simulated annealing since it should more easily reach
better maximums, and by having a random chance of accepting worse results
it will manage a better exploration of the space, which will allow to method
to reach different local maximums therefore improving the potential diversity,
even with the known drawback of this method being slow.

Simulated annealing works by modifying the current state with some ran-
domly selected moves, creating a new state that is then measured by the fitness
function also called the energy function. Based on this score we apply a formula
that has a chance of accepting a worse state that scales with distance from the
previous score (a worse score by 100 will be less likely to be accepted than a
worse score by 10). This formula also has the parameter T called temperature
which is slowly cooled/reduced over time reducing the chance of accepting worse
scored states. The method then ends when it performs a number of iterations
without modifying the state (for more information of Simulated Annealing see
[23]).

In our method each state is a grid with each cell assigned to a room, the bor-
der of the plot or the outside area. These states are then modified by changing
the room assignments with the 3 move-types presented in section 4.1.

P (Snew) = e(−|new Score−Current Score|)/T

This formula will give the probability (P) of accepting a worse state (Snew), by
returning a value from 0 to 1, which will be compared to a random value also
from 0 to 1 and if said result is bigger, then the worse state is accepted.

As for the cooling parameters used in this method, they were selected by
trial and error (see Table 2). The cooling is applied by multiplying a factor by
the current temperature at the end of each iteration.

Initial Temperature Cooling Factor Number of Iterations to stop

40 0.9999995 2000

Table 2: These are the selected values for the SA parameters.

To simplify the search space and the implementation of the moves we base
the generation on a modular grid that can be easily adjusted. For the experi-
ments we performed, we opted to make the cells 40cm wide, which is why we
then consider that 2 cells are required to possibly have a door, and to fulfil a
connection. This value could easily be adjusted to be smaller or larger to fit the
desired complexity.

10

Additionally it is important to mention that all weights, function parameters
and the SA values were selected by trial and error and further improvements
and refinements can always be made.

4.1 Created Moves

To allow the system to fully explore the space we created 3 moves.

• Add Cell: which for a room takes a random bordering cell and expands in
the direction of the contained wall (see figure 9). When performing this
move the method makes sure that the selected cell is inside the plot and
does not belong to any other room.

• Remove Cell: which for a room takes a random bordering cell removes it
(see figure 10). When performing this move the method makes sure that
removing this cell will not split the room, and that the room has more
than one cell.

• Steal Cell: whenever two rooms are adjacent a room may steal a border-
ing cell from a different room making it its own (see figure 11). When
performing this move the method makes sure that the cell it is stealing
will not split the room and that the room it is stealing from has more than
one cell.

Figure 9: An example of the Add Cell move type. A shows initial state with
the selected cell. B shows the direction chosen for the growth. And C shows
the new resulting room.

4.2 Fitness Function

The fitness function (also called energy function in SA) is composed of multiple
parameters each with their own weight. The weighted sum of these represents
the overall fitness of a state.

These parameters where created to attempt to cover the basic aspects of a
correct floor-plan. Further parameters could be added and refined to improve
or modify the results.

11

Figure 10: An example of the Remove Cell move type. A shows initial state
with the selected cell. B shows the direction chosen for the shrink. And C
shows the new resulting room.

Figure 11: An example of the add Steal Cell move type. A shows initial state
of both rooms with the selected cell. B shows the direction chosen direction for
the stealing. And C shows the new resulting rooms where the cell is removed
from the blue room and added to the red room.

1. Minimum size and Maximum size: based on the desired maximum and
minimum size, this parameter adds points when the room’s size is in the
accepted range and subtracts points if it is below its minimum size or
above its maximum size. The value is calculated based on the difference
between the current size and the closest desired value.

Below the minimum:

MinimumSize += (size−minSize) ∗ 1.5

Resulting in a negative value.

Above the maximum:

MaximumSize += (maxSize− size) ∗ 1.5

Resulting in a negative value.

Between the accepted range:

MinimumSize += (size−minSize)

12

MaximumSize += (maxSize− size)

Resulting in positive values.

The multiplication by 1.5 is done to increase the impact of the value since
in such cases it will only be using only one of the size functions. This also
accentuates wrong sizes and further penalizes far-off values.

Maximum and minimum size each have their own separate weight when
calculating to overall fitness.

The hallway is not affected by this, and instead only has a penalty that
increases with its size.

HallSize −= size1.2

The exponent of 1.2 is added similarly to the added multiplication of the
previous formulas to increase the negative impact of bad values and further
accentuate it the bigger it becomes.

2. Ratio: The ratio of the maximum length and width of a room will always
be above 1, therefore only a maximum ratio is needed. When the current
ratio is below its maximum we give it 1.5 points and when the current
ratio is above its maximum we use the following formula:

Ratio += (maximumRatio− ratio)3

This will result in a negative value. Again, an exponent is added to further
penalize bad values.

3. Average Distance: This parameter is a weighted average of the distance
between all rooms. The value is calculated by getting the distance from
a room to all other rooms (using their centre point) minus the room’s
square root of the current room maximum size (This prevents rooms from
attempting to reduce their size to increase the distance parameter). When
the distance calculated is part of the desired connection its value is mul-
tiplied by 1.5. Once all distance values are added they are divided by the
total number of distances calculated to get the average.

4. Rectangularity: This parameter will penalize rooms simply based on their
number of corners:

Rectangularity −= (corners− 4)2

By subtracting 4 we only penalize rooms that are not rectangular. In the
case of hallways, the power is 1.2 instead of 2 since it is more common for
corridors to have corners.

13

5. Connectivity: The connectivity parameter is the most complex. For each
wall on an outer cell of a room we check whether it is connected to a
room, the value of it will then depend on whether it is or not connected to
a room and if that room is in its desired connections. The values are then
divided by a factor that increases each time a connection is counted, to
avoid having room surround others to maximise the connectivity points.

When the room is a desired connection:

Connectivity += 2.5/ConnectedFactor

When is adjacent to a non desired room:

Connectivity += 1/ConnectedFactor

And when it is not adjacent to anything:

Connectivity −= 1/NonConnectedFactor

The connected factor starts at 0.25 and also increases by 0.25 each con-
nection, while the non-connected factor starts at 0.5 and increases by 0.75.
This is done to reduce the impact of outside walls. Additionally each wall
direction has its own factors.

When a connection is fulfilled an additional 10 points are awarded, mean-
ing that two or more cells have a wall adjacent to the desired room (only
awarded once per connection).

6. Bounding Box: For this parameter, we find the current bounding box of
the floor plan and calculate its size, then this value is compared to the
sum of maximum sizes of all rooms.

When the current bounding box size is above the floor plan calculated
maximum:

Bounding = 25 − (Size− FloorplanMaximum)

If bellow:

Bounding = 25 + (FloorplanMaximum− Size)

We use a value of 25 chosen by trial and error that is the granted score if
the bounding box size equals the floor-plans maximum values.

7. One cell-wide: This parameter was added to penalize one wide corridor
or room ”arms”. And it is calculated by adding -1 for each cell that
has walls on opposite sides. This penalization is added for accessibility
purposes because of the chosen cell width of 0.4m.

14

8. Holes: To penalize holes inside the floor plan, we explore the outside area
contained inside the bounding box of the floor-plan and subtract the sum
of current room sizes, the resulting value gives us the total size of holes.

Holes −= (BoundingBoxSize) − (OusideArea +
∑

CurrentRoomSizes)

9. One wide hole: Holes penalization only takes into account holes contained
inside the layout, this means that as long as an empty cell space opens
the area to the exploration it will not be considered as a hole. Therefore
to reduce the impact of potential cases where holes are maintained open
to increase the fitness score we added an extra penalization. This looks
at outer room cells and at two subsequent cells in the direction where the
wall is and if it finds that there is an empty cell followed by an occupied
cell it gives a penalty of -0.2 which is added for each occurrence.

Each of these parameters are added together in a weighted sum each with
their own multiplayer, again selected by trial and error.

Fitness =
∑

(ParameterX ∗WeightX)

MinSize MaxSize Ratio AverageDistance Rectangularity
3.5 2.4 1.5 12.4 2.5

Connectivity Bounding OneCellWide Holes OneWideHoles
1.4 0.25 8.2 3.0 1.0

Table 3: Weights used for each parameter.

In the figures 12, 13, 14 and 15, you can see resulting floor-plans each with
a missing parameter with the exception of the no sizes where both the mini-
mum and the maximum size parameters where removed, and the addition of an
example with all parameters seen in figure 15.

4.3 Initialization

Our system starts by taking the input requirements and the plot and creates
the data structures that will be used during the optimization process. Then
sets the plot and grid as explained in Section 3.3. Once this is done the system
selects a number of cells contained in the inner region of the plot that will be
used as potential starting locations for each room. These cells are all cells that
lie inside the plot at a distance higher than the width of the plot divided by 5.

Once this setup is done we add each room to the grid. Their starting location
is fully random with the only restriction that a room cannot be placed in between
two rooms that are supposed to be connected. This is done by verifying every
connection and checking the distance between the connected rooms and the

15

(a) No min size (b) No max size (c) No ratio

Figure 12: Results without the specified fitness parameter.

(a) No distance (b) No rectangularity (c) No connections

Figure 13: Results without the specified fitness parameter.

distance between the first room of the connection and a third room. If this
distance is lower, then we check if the angle of the vector between the two
connected rooms and the vector with the third room is lower than 20°. If this
happens the rooms are removed and randomly placed again (see Figure 16).

Once all the rooms are placed we start the optimization process with SA as
previously explained. Where each iteration the method applies a random move
to a room. The rooms are selected by cycling through them in order.

5 Evaluation Method

For the evaluation instead of only analysing the generated floor-plans qualita-
tively, and since we are not performing a user study, we designed some measures
to evaluate the quality and the diversity of the results.

5.1 Requirement Score

The Requirement score was designed to give a score based on how well the
method achieved what was specified and this way give somewhat of a quality

16

(a) No bounding box (b) No one cell wide (c) No holes

Figure 14: Results without the specified fitness parameter.

(a) No one wide holes (b) No sizes (c) All parameters

Figure 15: Results without the specified fitness parameter and finally a result
with all parameters.

score. Although one could think that the fitness function would be enough, its
values vary greatly based on the number of rooms and other factors. Therefore
we created this measure that calculates a value based on how well the resulting
floor-plan has met its input parameters.

The Requirement function looks at 7 parameters, based on the input speci-
fications:

• The connectivity, is each room connected to the rooms specified by the
connectivity graph (we count a valid connection when the room is adjacent
to it by at least two cells)

• The size, counted when its value is between the minimum and maximum
specified size.

• The ratio, as for the size counted when in between the minimum and
maximum specified ratio.

• The adjacency, where it makes sure that rooms are not disconnected.

17

Figure 16: Room placement examples, showing an accepted positioning (Left)
and a positioning requiring to remove and replace room C (Right).

• The bounding area, which has to be under the sum of all maximum sizes
of all rooms.

Additionally we penalize corridors or areas that are one cell wide.
All of these parameters are either met or not met, which means that we

know for each floor-plan the maximum possible value, therefore to be easily
comparable between all types of houses we can scale it to give a score up to 100.
Where 100 would mean that all requirements are met and no penalization has
been added by one cell wide areas.

5.2 Distance Function

To measure the diversity we created a distance measure that compares two
floor-plans and returns a value of 0 when both floor-plans are the same or are a
simple rotation of the same floor-plan, and give higher values the more different
they are.

For this function, we compare 5 parameters from the two resulting floor-plan
layouts:

• Adjacency, where we compare each pair of analogue rooms and take the
differences in their adjacent rooms.

• The size, where for each pair of rooms we take the difference the room’s
sizes.

• The ratio, where we take the difference between each room’s ratios.

• The shape, where for each pair of analogue rooms we compare the number
of corners.

• The bounding box ratio, where we compare the overall difference between
each floor-plan bounding box ratio.

18

5.3 Qualitative Scoring

To be able to verify the effectiveness of the Requirement and the Distance mea-
sures, we also gave a qualitative score based on our perception of the generated
floor-plan layouts.

For the quality, we gave a score from 0 to 4 where 0 is a very bad layout and
4 is a very good layout. When choosing these values we followed some simple
rules of thumb:

• A score of VG very good(4) was given if no changes had to be made to
the layout in order for it to be logical.

• A score of G good(3) was given if only a small adaptation (e.g. moving a
room by a few cells, changing a room size or shape a little...) was needed
to make the layout logical.

• A score of A average(2) was given if one or two moves (e.g. Switching
two rooms, moving a room to the other side...) were needed to make the
layout logical.

• A score of B bad(1) was given if 3 moves were needed to make the layout
logical.

• A score of VB very bad(0) was given if more than 3 moves were needed
to make the layout logical.

We consider a layout logical when it could be used as it is by an architect,
even if some aspects could still be seen as odd or imperfect.

When giving a score to the distance we also gave a value from 0 to 4, where
in this case 0 means that two floor-plans are equivalent and 4 that they are
completely different. No further rules were specified, but when comparing we
considered that simple rotations and flips of a layout did not count as different,
and we specifically paid attention to room clusters and their adjacencies, mean-
ing that two layouts that have similar clusters featuring the same adjacencies
(without considering room shape) were seen as similar.

It is important to mention that these scores were given by one person and
that no user study was performed.

6 Results

To get results the method was developed using unity for the visualization. We
performed 17 experiments, for each we generated 10 floor-plans. First we ran
the program with 3 different house types, with their respective connectivity
graphs seen in figure 17 and their respective room parameters (see Table 4, 5
and 6).

For these experiments, it took the method around 3 million iterations (see
Table 7), with each house type slightly increasing in time with the complexity.
And on average it took 62 minutes to generate each floor-plan of the house type

19

(a) House type 1

(b) House type 2

(c) House type 3

Figure 17: Connectivity graphs for each house type.

1, 55 minutes for each floor-plan of the house type 2 and finally 98 minutes per
floor-plan for the house type 3, while the number of iterations stayed around
3M. Although the initial time to completion is quite high, the method seems to
scale quite well. Where from 7 rooms in house type 1 to 14 rooms in house type
3, meaning that for an increase of 200% the time only increased by 158%. For
the subsequent experiments the time needed varied but it is not relevant since
they were mostly bound to how the fit function changed. The bottleneck of our
implementation is mostly the grid size since to find holes the method explores
all outside cells around the floor-plan, the following bottleneck is also bound by
the number of cells because of the check for a potential split point in the remove
cell move type. This means that by reducing the plot size and/or increasing the
width of the cell we could reduce the time needed drastically. To test this we
performed an experiment with the cell width to 0.8cm double our normal size.
This made each floor-plan take 29 minutes on average, therefore reducing the
time needed by half.

Additionally to the increase in time, the results from the three different

20

House Type MinSize MaxSize MaxRatio

1 Hallway - - -
1 Living room 50 60 1.5
1 Kitchen 40 50 1.5
1 Bedroom 40 50 1.5
1 Bedroom 40 50 1.5
1 Bathroom 10 20 1.5
1 Extra 10 20 1.5

Table 4: Room parameters for house type 1.

House Type MinSize MaxSize MaxRatio

2 Hallway - - -
2 Living room 30 40 1.5
2 Kitchen 20 30 1.5
2 Bedroom 15 25 1.5
2 Bedroom 15 25 1.5
2 Bathroom 10 20 1.5
2 utility 5 15 1.5
2 Garage 30 40 1.5
2 Master Bedroom 20 30 1.5
2 Bathroom 10 20 1.5

Table 5: Room parameters for house type 2.

house type seem to suggest that the method will perform worse the more rooms
and connections we have. In the table 8 we can see how the quality is worse for
the house type 3 and the distance between the floor-plans increases.

The fitness score due to the use of SA is very volatile at the start and
slowly increases while reducing its spread. In figure 18 we can see how fitness
score progresses and how it seems to stabilize around the sample 650 (2.9M
iteration). Additionally, it seems as if the method never fully reaches stability
which could be due to our sample rate (3000 iterations) which is bigger than
our stopping condition (2000 iterations, and could suggests that our stopping
condition should be longer.

When looking at the results from the experiments without one of the fitness
parameters (see Figures 12, 13, 14, 15, and Table 9), we can see how much
of an impact each parameter has. In some cases the resulting floor-plans are
to be expected, examples of this are the removal of the maximum size, all
rooms will take as much space as possible, or the removal of the rectangularity
parameter which will make the rooms grow randomly and end up with a stair-
like blob shape. The opposite case, when removing the minimum size, does
not make the rooms become one cell but do seem to make the rooms become
smaller than they should. Removing the ratio does not seem to affect the

21

House Type MinSize MaxSize MaxRatio

3 Hallway - - -
3 Hallway - - -
3 Living room 30 40 1.5
3 Kitchen 30 40 1.5
3 Toilet 5 15 1.5
3 Bedroom 20 30 1.5
3 Bedroom 20 30 1.5
3 Bedroom 20 30 1.5
3 Bathroom 10 20 1.5
3 Pantry 5 15 1.5
3 Garage 30 40 1.5
3 Master Bedroom 20 30 1.5
3 Closet 5 15 1.5
3 Bathroom 10 20 1.5

Table 6: Room parameters for house type 3.

Type Avg Iterations Total Time (sec) Avg per Floor-plan (min)

1 3,136,510.6 37,251.74 62.09
2 2,824,203.2 33,040.88 55.07
3 3,108,501.75 59,377.33 98.9

Table 7: Running time for the generation of 10 floor-plans for each type of
house.

generation too much as the sizes are still met and the rectangularity plus the
random growth make the rooms tend to a squared shape. When removing
the connection parameters the layout looks similar but there is no logic in the
placement of the rooms. In the results without the holes penalization, no holes
actually appeared but we have seen it happen in other runs. Additionally, when
removing the one wide penalty we get long ”arms” additions to the rooms,
but it seems to help the corridor shape, although they would be considered
too narrow. Removing these parameters also affects the requirement score as
the results without rectangularity get the highest average with 95.1, since the
method is no longer restricted to a room shape and makes it easier to reach
the connections. These removals also seem to increase distance, which suggest
that removing restrictions will increase diversity due to the randomness of the
method.

From the resulting generation, we can see that our method manages to pro-
duce very different and diverse layouts. Where the distance measure only return
0 when comparing the same floor-plan together. This can also be seen in the
qualitative evaluation in table 10 where all house types have an average distance
score above the 2 (the middle between 0 and 4), and with house type 3 having

22

Type Avg Fitness Fitness SD Avg Req* Req* SD Avg Distance
1 271.1 384.2 78.3 15.8 30.7
2 618.1 254.4 85.6 6.1 40.7
3 629.5 424.5 63.4 41.8 51.36

Table 8: Statistics from the experiments from each type of houses. *Req refers
to the Requirement score.

Figure 18: This graph shows the progression of the fit function over time. The
X axis is the sample number taken every 3000 iterations, and the Y axis is the
fitness score. For this experiment we used room type 1.

a maximum score as the average.
When analyzing the measures with the qualitative score (see Table 10) we

find that there is a decently high correlation between the fitness score and the
requirement score of 0.52. But this does not translate so well when compared
to our qualitative score from 0 to 4. Where the correlation stays at 0.22. When
comparing the distance function to our qualitative values we get a correlation
of 0.33 which is better but still not ideal. This seems to point out that our
measures are too simple compared to what we look for in a house layout. Of
course, the requirement score is only showing how well the input conditions were
followed and not the quality. And that the distance measure is only looking at
internal values and not at more complex considerations.

23

Type Avg Fit Fit SD Avg Req* Req* SD Avg Dist
Normal 1 271.1 384.2 78.3 15.8 30.7

Ratio 395.6 198.9 78.6 7.8 26.1
Rect 1072.8 75.5 95.1 5.7 75.7

1 Wide 612.3 94.8 32.8 19.3 21.2
Min Size 352.5 107.5 73.7 12.6 31.9
Max Size -860.50 500.7 46.8 14.1 108.7

Size -562.6 343.9 22.1 30.9 108.1
Holes 389.4 135.8 76.5 10.8 27.7

1 WideHoles 382.2 166.5 63.1 36.1 32.7
Dist 202.7 167.9 68.3 14.8 25.3

Connectivity -2.7 113.2 64.6 22.8 20.5
BoundingBox 260.1 305.3 79.7 4.7 31.9

Table 9: Statistics from the experiments without each fitness parameter. *Req
refers to the Requirement score.

Type AVG Quality SDTD Quality Avg Dist SDTD Dist
1 2.17 1.33 2.47 1.06
2 2.17 0.98 3.07 0.8
3 1.17 0.76 4 1.2

Table 10: Results of the qualitative evaluation.

7 Conclusion & Future Work

In conclusion, we have a system that manages to generate very diverse floor-
plans to the detriment of achieving consistent quality. We believe this method
can be used by a architect during the early stages of residential projects to
generate layout ideas that could be further explored. The method is simple
which makes it easy to implement in most architectural software which also
makes it easily customizable and adaptable to specific project requirements
while still producing a good amount of diversity.

We believe that adding more restrictions to the method could improve its
consistency in quality while not reducing the diversity too much. For example
adding an entryway room connected to the hallway with an additional parameter
to the fitness function would help it stay at the border of the layout, which
could be also applied to other rooms that we might want to stay at the border
(Garages, Bedrooms or others) would greatly increase the correctness of the
results. Alternatively the method could have an entryway as mentioned but no
hallway during the generation, and like some previous methods, add the hallway
in a post-processing step if needed. Another improvement could be the addition
of an adjacency graph that would work the same way as the connectivity graph
but represent only suggestions to the position of rooms. This could greatly
increase the logic in the layouts without reducing the diversity.

24

Additionally, we noticed that our method would not allow the creation of a
layout similar to the image reference we got for the house type 3 (see Figure
24 in the appendix), which features an L-shaped house with a garden. This
could be potentially fixed by adding the garden to the connectivity graph, or
by removing the bounding box from the fitness function.

To improve the speed of our method we believe that by placing the rooms
together at the initialization and not allowing the remove cell move type to
create holes, would allow us to avoid our main bottleneck all together and would
make the system a few times faster. This placement could be done by placing
the connectivity graph as a planar graph. Furthermore re-implementing the
system with C++, and avoiding Unity would probably also make the system
faster. Then there is always the possibility of changing the grid size to increase
performance but also reducing complexity to the results.

Further improvements can always be made tweaking the fitness weights,
cooling rate and stopping condition. And more features could be added. Having
different room types be affected differently by the fitness function (for example
having stick-on rooms being heavily pushed to their respective rooms or the
entryway as mentioned above).

Additional future work could be the accommodation of the method to work
in a 3D grid. This way terrain height could be taken into account, and the
addition of multiple floors. And the method could be expanded to further assist
the architect throughout the duration of the project.

Finally, further work could be done to both metrics to more accurately
represent our perception of the quality and distance. This could be coupled
with a user study as a mean of verification and as a way of understanding what
aspects of a floor layout we look for and more accurately design these measures.

References

[1] Emile Aarts, Emile HL Aarts, and Jan Karel Lenstra. Local search in
combinatorial optimization. Princeton University Press, 2003.

[2] Mark Bruls, Cornelis Huizing, and Jarke J. van Wijk. “Squarified Treemaps”.
In: VisSym. 2000.

[3] Daniel Camozzato. “A method for growth-based procedural floor plan
generation”. PhD thesis. Pontificia Universidade Catolica do Rio Grande
do Sul, 2015.

[4] City Engine. url: https://www.esri.com/en-us/arcgis/products/
arcgis-cityengine/overview?rmedium=www_esri_com_EtoF&rsource=

/en - us / arcgis / products / esri - cityengine / overview. (accessed:
14.02.2021).

[5] Subhajit Das, Colin Day, John Hauck, John Haymaker, and Diana Davis.
“Space plan generator: Rapid generationn & evaluation of floor plan design
options to inform decision making”. In: ACADIA (2016), pp. 106–115.

25

[6] Adam Doulgerakis. “Genetic programming+ unfolding embryology in au-
tomated layout planning”. PhD thesis. UCL (University College London),
2007.

[7] Prosenjit Bose Evan Hahn and A.D. Whitehead. “Persistent realtime
building interior generation”. In: SIGGRAPH symposium on Videogames
(2006). doi: https://doi.org/10.1145/1183316.1183342.

[8] Grasshopper3D. url: https://www.grasshopper3d.com/. (accessed:
15.02.2021).

[9] Zifeng Guo and Biao Li. “Evolutionary approach for spatial architecture
layout design enhanced by an agent-based topology finding system”. In:
Frontiers of Architectural Research 6 (2016), pp. 53–62. doi: https://
doi.org/10.1016/j.foar.2016.11.003.

[10] M.E. J.F.BrotchieB.C.E. D.Eng.M.P.T.LinzeyB.E. “A model for integrated
building design”. In: Building Science 6.3 (1971), pp. 89–96. doi: https:
//doi.org/10.1016/0007-3628(71)90020-X.

[11] K. Kozminski and E. Kinnen. “An Algorithm for Finding a Rectangular
Dual of a Planar Graph for Use in Area Planning for VLSI Integrated Cir-
cuits”. In: 21st Design Automation Conference Proceedings. 1984, pp. 655–
656.

[12] Robin S Liggett. “Automated facilities layout: past, present and future”.
In: Automation in Construction 9.2 (2000), pp. 197–215. issn: 0926-5805.
doi: https://doi.org/10.1016/S0926-5805(99)00005-9. url: https:
//www.sciencedirect.com/science/article/pii/S0926580599000059.

[13] Ricardo Lopes, Tim Tutenel, Ruben M Smelik, Klaas Jan De Kraker, and
Rafael Bidarra. “A constrained growth method for procedural floor plan
generation”. In: Proc. 11th Int. Conf. Intell. Games Simul. 2010, pp. 13–
20.

[14] Fernando Marson and Soraia Raupp Musse. “Automatic real-time gener-
ation of floor plans based on squarified treemaps algorithm”. In: Interna-
tional Journal of Computer Games Technology 2010 (2010).

[15] Jess Martin. “Procedural house generation: A method for dynamically
generating floor plans”. In: Proceedings of the Symposium on Interactive
3D Graphics and Games. 2006, pp. 1–2.

[16] Paul Merrell, Eric Schkufza, and Vladlen Koltun. “Computer-generated
residential building layouts”. In: ACM SIGGRAPH Asia 2010 papers.
2010, pp. 1–12.

[17] Jeremy Michalek, Ruchi Choudhary, and Panos Papalambros. “Archi-
tectural layout design optimization”. In: Engineering Optimization 34.5
(2002), pp. 461–484.

[18] Wil Michiels, Emile Aarts, and Jan Korst. Theoretical aspects of local
search. Springer Science & Business Media, 2007.

26

[19] Ralph H J M Otten. “Graphs in floor-plan design”. In: International Jour-
nal of Circuit Theory and Applications 16.4 (1988), pp. 391–410. issn:
1097-007X. doi: 10.1002/cta.4490160405.

[20] Marc Pirlot. “General local search methods”. In: European Journal of Op-
erational Research 92.3 (1996), pp. 493–511. issn: 0377-2217. doi: https:
//doi.org/10.1016/0377- 2217(96)00007- 0. url: https://www.

sciencedirect.com/science/article/pii/0377221796000070.

[21] Revit Architecture. url: https://www.autodesk.com/products/revit/
architecture. (accessed: 15.02.2021).

[22] Eugénio Rodrigues, Adélio Rodrigues Gaspar, and Álvaro Gomes. “An
approach to the multi-level space allocation problem in architecture us-
ing a hybrid evolutionary technique”. In: Automation in Construction 35
(2013), pp. 482–498.

[23] Peter J M Van Laarhoven and Emile H L Aarts. “Simulated annealing”.
In: Simulated Annealing: Theory and Applications. Springer, 1987, pp. 7–
15.

Appendix

In this first figures (see Figures 22, 23 and 24) you can see the images of the
house we used as templates for our house types.

In the following figures you will find the our choice of the best 6 floor-plans
for each experiment.

27

Figure 19: Floor-plan used as a template for the house type 1.

28

Figure 20: Floor-plan used as a template for the house type 2.

29

Figure 21: Floor-plan used as a template for the house type 3.

30

(a) Fitness Score: 313 (b) Fitness Score: 447

(c) Fitness Score: 466 (d) Fitness Score: 485

(e) Fitness Score: 518 (f) Fitness Score: 483

Figure 22: Result for the generation of the house type 1.

31

(a) Fitness Score: 680 (b) Fitness Score: 714

(c) Fitness Score: 720 (d) Fitness Score: 737

(e) Fitness Score: 763 (f) Fitness Score: 793

Figure 23: Result for the generation of the house type 2.

32

(a) Fitness Score: 1012 (b) Fitness Score: 1101

(c) Fitness Score: 804 (d) Fitness Score: 849

(e) Fitness Score: 901 (f) Fitness Score: 923

Figure 24: Result for the generation of the house type 3.

33

(a) Fitness Score: 147 (b) Fitness Score: 147

(c) Fitness Score: 439 (d) Fitness Score: 470

(e) Fitness Score: 471
(f) Fitness Score: 539

Figure 25: Result for the generation of the house type 1 without the Bounding
parameter in the fitness function.

34

(a) Fitness Score: -222 (b) Fitness Score: -94

(c) Fitness Score: 130 (d) Fitness Score: 40

(e) Fitness Score: 81 (f) Fitness Score: 98

Figure 26: Result for the generation of the house type 1 without the Connections
parameter in the fitness function.

35

(a) Fitness Score: 108 (b) Fitness Score: 206

(c) Fitness Score: 322 (d) Fitness Score: 346

(e) Fitness Score: 424 (f) Fitness Score: 441

Figure 27: Result for the generation of the house type 1 without the Distance
parameter in the fitness function.

36

(a) Fitness Score: 322 (b) Fitness Score: 347

(c) Fitness Score: 386 (d) Fitness Score: 459

(e) Fitness Score: 555 (f) Fitness Score: 595

Figure 28: Result for the generation of the house type 1 without the Fill pa-
rameter in the fitness function.

37

(a) Fitness Score: 266 (b) Fitness Score: 392

(c) Fitness Score: 443 (d) Fitness Score: 478

(e) Fitness Score: 459 (f) Fitness Score: 580

Figure 29: Result for the generation of the house type 1 without the One Wide
Holes parameter in the fitness function.

38

(a) Fitness Score: -251 (b) Fitness Score: -446

(c) Fitness Score: -634 (d) Fitness Score: -82

(e) Fitness Score: -837 (f) Fitness Score: -961

Figure 30: Result for the generation of the house type 1 without Maximum Size
parameter in the fitness function.

39

(a) Fitness Score: 350 (b) Fitness Score: 365

(c) Fitness Score: 398 (d) Fitness Score: 429

(e) Fitness Score: 461 (f) Fitness Score: 499

Figure 31: Result for the generation of the house type 1 without Minimum Size
parameter in the fitness function.

40

(a) Fitness Score: -205 (b) Fitness Score: -57

(c) Fitness Score: -574 (d) Fitness Score: -655

(e) Fitness Score: -748 (f) Fitness Score: -769

Figure 32: Result for the generation of the house type 1 without Size parameters
in the fitness function.

41

(a) Fitness Score: 635 (b) Fitness Score: 368

(c) Fitness Score: 653 (d) Fitness Score: 662

(e) Fitness Score: 693 (f) Fitness Score: 763

Figure 33: Result for the generation of the house type 1 without One Wide
parameter in the fitness function.

42

(a) Fitness Score: 452 (b) Fitness Score: 488

(c) Fitness Score: 491
(d) Fitness Score: 518

(e) Fitness Score: 541 (f) Fitness Score: 584

Figure 34: Result for the generation of the house type 1 without the Ratio
parameter in the fitness function. 43

(a) Fitness Score: 1050 (b) Fitness Score: 1065

(c) Fitness Score: 1097 (d) Fitness Score: 1116

(e) Fitness Score: 1120 (f) Fitness Score: 1125

Figure 35: Result for the generation of the house type 1 without the Rectangu-
larity parameter in the fitness function.

44

