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Abstract

The continued integration of variable renewable energy (VRE) sources in the energy system
is essential for the mitigation of climate change. However, the intermittent, unpredictable,
and distributed nature of mainly solar and wind energy will substantially increase the need
for grid flexibility. Currently, flexibility in the power system is mainly provided by (ther-
mal) generation capacity on the supply side. Consequently, continued and economically
feasible decarbonisation of the energy system will require more flexibility on the demand
side. Demand side management (DSM) in short time frames can consist of demand re-
sponse (DR) and distributed energy storage systems, and relies on smart grids in which
energy management systems may shift loads to dynamically match supply and demand.

This thesis proposes a two-step DSM program which manages distributed battery en-
ergy storage systems (BESS) within a portfolio of solar energy producers and prosumers.
The first step uses model predictive control (MPC) to continuously readjust the aggregate
(dis)charging schedule of the BESSs, based on new solar irradiance and temperature fore-
casts, in order to minimize the imbalances between expected and actual energy generation.
The second step comprises a heuristic control program, which is executed within each time
step of the MPC program and allows for additional (dis)charging in order to (passively)
contribute to grid balance when price peaks are expected in the imbalance market. Both
optimization steps also take into account battery degradation.

In contrast with what is common in the literature, the DSM program is based on actual
market and weather forecasts, as opposed to (model-adjusted) historical data. Perfect
foresight is only assumed with respect to portfolio demand. Solar irradiance forecasts are
recursively improved using a Kalman Filter. An auxiliary optimization program is used to
determine the optimal size of the BESSs. To accurately gauge the potential of the DSM
program, a number of representative days are selected from two sets of weather forecasts
using hierarchical clustering.

The results suggest that MPC is a feasible framework for DSM in an real world envi-
ronment were new weather forecasts come available on a rolling basis. However, while the
Kalman Filter successfully improves the accuracy of the forecasts, the remaining mismatch
between actual and forecasted VRE supply more often than not results in an increase of
total imbalance. This is the case for both forecast data sets, and is also a result of the
24-hour optimization horizon combined with a constraint on the final SoC of the BESS.
Moreover, the net potential economic gain from the Lithium Iron Phosphate batteries
examined is minimal, indicating the necessity of DSM deploying both BESSs and DR.
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Chapter 1

Introduction

1.1 Background

1.1.1 The Energy Transition

In 2019, the Netherlands adopted its national Climate Agreement in fulfillment of the

European Union-wide commitment to Paris Agreement, which targets a 40% reduction

of greenhouse gas emissions by 2030 compared to 1990. Notwithstanding the remaining

gap between its estimated effects and the national target to reduce emissions by 49%

by 2030 compared to 1990, as well as the persistent emissions gap between current global

policies and the abatement required to limit global warming to 1.5 ◦C, this national climate

policy framework envisages an ambitious economic, technological, and societal transition

(Hekkenberg, 2019; Olhoff & Christensen, 2019). A major part of this effort comprises

the decarbonization of electricity generation and the electrification of transportation and

heating. By 2030, offshore wind energy should generate 49 TWh and onshore renewable

energy should generate 35 Twh, about 70% of the total energy mix. By 2050, the share of

non-renewables should be negligible (EZK, 2019). This substantial shift towards variable

renewable energy (VRE) sources will increase the variability and uncertainty of electricity

generation, due to the intermittency and unpredictability of solar and wind energy (Huber

et al., 2014). The electrification of heating and transportation is likely to exacerbate

(inter-temporal) mismatches between supply and demand, since peak demand from these

sources coincides with current peak load hours (Boßmann & Staffell, 2015). Moreover, the

distributed nature of VRE sources, and higher peak loads due electrification, may result

in increasing incidence of local congestion (Siano, 2014; Vardakas et al., 2014). This is

unlikely to be mitigated by enhanced energy efficiency, which has a differently distributed

10



CHAPTER 1. INTRODUCTION 11

impact on the load curve (Baruah et al., 2014).

Consequently, both the technological infrastructure and the market mechanisms of the

electricity system will become increasingly strained (Lund et al., 2015). Beyond a 30%

share of variable renewable energy (VRE) in annual electricity consumption, the flexibility

requirement of the power systems will increase dramatically. More frequent and larger up

and down ramping of operating reserves will be needed to counteract voltage fluctuations

and ensure local power quality1. This will not only increase wear and tear, and reduce

efficiency, reliance on dispatchable thermal generation capacity to balance temporal (and

spatial) mismatches between supply and demand will eventually impede the continued

decarbonization of the energy system (Huber et al., 2014; Kondziella & Bruckner, 2016;

Notton et al., 2018).

Increasing reliance on reserve capacity will also drive up costs during peak demand

hours, while the nearly zero marginal cost of VRE supply will drive down electricity prices

on wholesale spot markets. Higher fluctuations and unpredictability of residual loads - i.e.

electricity demand that cannot be met by renewable electricity generation - will increase

price volatility, intraday trading volume, and demand for peak load capacity and balancing

services (Lund et al., 2015; Nicolosi & Fürsch, 2009). On the supply side, curtailment of

VRE production results in higher Levelised Costs of Electricity, that are often not taken

into account by feasibility studies (Groppi et al., 2020).

1.1.2 Demand Side Flexibility

Context & Concepts

Although strengthening the power grid and expanding international interconnections will

temper the impact of VRE generation, the growing need for flexibility in electricity sys-

tem is inevitable (Lund et al., 2015). Put differently, the system’s ability to "cope with

uncertainty and variability in demand and generation to maintain systems reliability at

reasonable costs" (Ma et al., 2013) must increase. Huber et al. (2014) estimate that a

VRE-share in annual electricity consumption above 30% dramatically increases flexibility

requirements in Europe. While an integrated European balancing area will require a max-

imum hourly net load ramp of 11% of peak load, compared to 30% at the regional level,

this is just the case for a VRE-penetration of 50%. In an European super grid with 100%

1In addition to the location-constraints of VRE-supply its non-synchronous nature and relatively small
installation size further erodes power quality (Sinsel et al., 2020).
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VRE supply, 20% of total annual demand would have to be stored. Twice that capacity

would be required in a non-integrated energy system (Kondziella & Bruckner, 2016). Such

figures underline the substantial effort of integrating VRES into today’s energy system

(Lund et al., 2015; Mier & Weissbart, 2020).

Consequently, the quest for greater flexibility has turned to demand side management

(DSM) in recent years. DSM can be defined as "the planning and implementation of those

electric utility activities designed to influence customer uses of electricity in ways that will

produce desired changes in the utility’s load shape" (Gellings, 1985). Specifically, "DSM

optimizes the power flows in the network, regulates the voltage profiles [...] minimizes the

energy losses, reconfigures the network, [and] exploits storage devices and responsive loads

in an integrated way" (Pilo et al., 2009). DSM encompasses, inter alia, load conservation

(i.e. energy efficiency), strategic load growth, demand response (DR), and demand side

energy storage. These measures can be driven by economic/market-, environmental- and

network reliability-considerations, and increase in economic value and risk to consumer

comfort with shorter time scales (see figure 1.1, where Spinning Reserve is included as

the capacity safeguarding the stability of the system at the smallest timescale)(Aghaei &

Alizadeh, 2013; Chiu et al., 2012; Lampropoulos et al., 2013)). A comprehensive review of

the DR taxonomy is provided in section 2.2.1

Figure 1.1: DSM categories (Diekerhof et al., 2018)

DR refers to those DSM-approaches "designed to incentivize end-users to alter their

short-term electricity consumption patterns by scheduling in time and leveling the instan-

taneous power demand." These control actions may be effectuated by different signals.

Traditionally, frequency-based or direct load control (DLC) mechanisms were only acti-

vated in case of system stress. However, since the 1973 oil crisis and the liberalization

of the electricity system, a range of economic incentive schemes have emerged, which are

concisely presented in section 3.1 (Lampropoulos et al., 2013).
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Figure 1.2 visualizes possible DSM-strategies. all of which exploit flexible loads on the

demand side, which have an adjustable consumption pattern (Rajabi et al., 2017). These

adjustments may mitigate transmission and distribution losses, reliance on expensive op-

erating reserves and the need for grid reinforcement and large scale centralized energy

storage systems (ESS). Hence, DR is considered a cost-effective option to meet the flex-

ibility requirements of power systems with high shares of VRES (Carreiro et al., 2017).

Flexible loads can be roughly divided in deferrable loads and curtailable loads (Diekerhof

et al., 2018). The former can be adjusted through basic shifting of the time of use, if loads

need a constant power supply for a specific period of time or through interruptable shifting

if it is possible to disrupt the load run in addition to shifting its time of use. The latter is

eligible for continuous switching, since the load duration is determined by external upper

and lower set points (Rajabi et al., 2017).

However, a substantial part of power demand is not suitable for these strategies. These

critical loads must be serviced, even during (economically or environmentally) sub-optimal

moments. In this case, distributed energy storage can enable peak shaving and valley

filling instead (Chiu et al., 2012). Especially when combined with battery energy storage,

non-dispatchable photovoltaic (PV) solar installations can become de facto dispatchable,

thus improving the utilization ratio of distributed energy sources and reducing electricity

consumption costs (Han et al., 2015). At the power system level, distributed energy storage

offers advantages over grid-scale installations. For instance, the complexity, and therefore

the cost of battery energy storage, increases with size (Faisal et al., 2018), and centralized

ESS are not able to benefit from the geographical smoothing of VRE supply fluctuations

that occurs in distribution grids (Lund et al., 2015).

Demand Side Management Implementation

Smart Grids are integral to the implementation of DSM, allowing (Home) Energy Man-

agement Systems (H)EMS) to optimally control flexible loads and energy storage systems

(ESS). Through smart metering and (two-way) information and communications tech-

nologies, these control systems are able to respond to supply-side signals, thus improving

efficiency and power quality, while meeting reliability and comfort requirements of the

consumer (Aghaei & Alizadeh, 2013; Kostková et al., 2013; Siano, 2014). However, the

impact of DR in such systems is limited by the amount and type of loads that can be de-

ferred or curtailed. While offering a potential for continuous switching of thermostatically



CHAPTER 1. INTRODUCTION 14

Figure 1.2: Demand Side Management Strategies (Alham et al., 2017)

controllable loads (TCLs) such as electric water heaters and refrigerators, and interrupt-

ible shifting of dish washers, washing machines and clothes dryers, Residential loads are

relatively small (Paterakis et al., 2017). Moreover, the design of efficient DR programs

is complicated due to the heterogeneous and varying consumption patterns of residential

customers, relatively high investment costs and limited participation of the customer base

(Aghaei & Alizadeh, 2013; González et al., 2018; Vardakas et al., 2014). Commercial (and

other non-residential) consumers offer larger flexible loads. Especially large heating, ven-

tilation and air condition (HVAC) systems in commercial buildings provide easier access

to single controllable loads than a large number small residential buildings. Automation

equipment may already be largely present, and large spaces have a higher thermal inertia,

allowing for longer load interruptions (Paterakis et al., 2017). In addition, many commer-

cial building have identical energy consumption patterns which are determined by weather

conditions, design styles and operational behavior (Vardakas et al., 2014). Industrial con-

sumers have large flexible loads which makes the implementation of DR programs easier.

Even though economic and technical constraints may be render load shifting infeasible,

specific large TCLs may be available (Paterakis et al., 2017). Especially electro-thermal

heating units equipped with thermal energy storage systems (TES) are a promising source

of flexibility, which are available at a much lower cost than battery energy storage systems
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(BESS). Due to these limitations, it is estimated that only one third of current electricity

demand is deferrable at the moment. By 2030 this may be increased to at most 55% for

residential demand (Parra et al., 2017), leaving a substantial space for flexibility provi-

sions by distributed BESS. Nonetheless, in addition to stationary distributed ESS, Electric

Vehicles (EVs) may participate in DSM programs as well. EVs may engage in controlled

unidirectional charging or participate in vehicle-to-grid (V2G) programs by controlled bidi-

rectional charging. These measures combine characteristics of energy storage, deferrable

loads and curtailable loads and allow a fleet of EVs could provide peak shaving and valley

filling, as well as balancing services, which improves the economic efficiency of the energy

system (Diekerhof et al., 2018; Paterakis et al., 2017).

At the end-user level, the value of flexible demand and energy storage typically ex-

ceeds the economic gains from increasing self-consumption of distributed VRE sources like

rooftop solar PV systems - only large C&I consumers can individually reap all value from

flexible loads and energy storage(de Heer & van der Laan, 2017). Due to their limited ca-

pacity and controlability, flexible loads of smaller end-users must be combined in a single

system resource to access the relevant market mechanisms. This service is provided by

aggregators2, market intermediaries which provide balancing services to the grid by man-

aging a portfolio of distributed flexible loads (Lampropoulos et al., 2018). Aggregators

may also establish virtual power plants by combining uncontrollable distributed energy

resources (e.g. rooftop solar panels or wind turbines) with controllable resources (e.g.

batteries or generators) (Lampropoulos et al., 2017; Niesten & Alkemade, 2016; Rajabi

et al., 2017). In addition to a number of regulatory, market-, and infrastructure-related

barriers (see e.g Carreiro et al. (2017), Lampropoulos et al. (2018)), effective aggregation

and optimal market participation involves a number of practical and strategic challenges,

such as (1) the accurate forecasting of the baseloads of consumers with distributed VRE

systems; (2) estimation of available flexible loads; (3) modeling the rebound of demand

after DR activation; (4) identifying the most appropriate DR program (e.g. scheduling

based on day-ahead prices, or providing real-time balancing services); (5) accounting for

the diversity of end-user behavior (Lu et al., 2020); (6) effective customer targeting and

clustering in order to exploit similar consumption patterns (Rajabi et al., 2017).

2Also referred to as aggregator companies, demand response aggregators, aggregation service providers.
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1.2 Problem Description

Research Context

As discussed above, the increasing share of VRES in the electricity generation mix will have

a variety of economic repercussions. These "integration costs", which may be decomposed

in profile, balancing and grid-related costs, complement direct investment costs at the

system level. Profile costs are related to the variability of VRES, and arise from the

temporal profile mismatch between electricity generation and consumption. Balancing

costs relate to the uncertainty of VRE generation, and comprise the additional expenditure

to counteract the deviation of actual VRE output from predicted operation. Grid-related

costs arise from investment in additional grid capacity and transmission losses. Of these

components, profile costs and balancing costs have an immediate impact on electricity

consumers, producers and suppliers alike: profile costs reduce the market value of VRES

vis-à-vis conventional dispatchable energy resources, and thus reduce the feasibility of

business cases. Balancing costs are reflected by higher prices in the intraday electricity

market and in the balancing market, since forecast error metrics are positively correlated

across producers, and thus increase the costs of electricity consumption during specific

hours. Meanwhile, this development also offers commercial opportunities for new business

models which deploy flexible energy resources to engage in arbitrage (Hirth et al., 2015).

Balancing cost are especially relevant for this research project’s host organization, an

energy service company (ESCO) which offers - amongst other services - a peer-to-peer

energy exchange platform to its clients. This service enables direct (financial) transactions

between VRE producers, prosumers3 and consumers. The ESCO currently executes these

transactions within its client portfolio through ENTRNCE, an (external) energy market

trading platform which provides access to the wholesale electricity market, where residual

demand from consumers (and prosumers) can be fulfilled or excess supply by producers

(and prosumers) can be sold. Since both peer-to-peer and complementary market trans-

actions have to take place before 11:00 on the day preceding physical delivery, forecasts

may differ substantially from actual supply-and-demand (see figure 1.3). The cost of coun-

teracting these portfolio imbalances, i.e. the imbalance price, is passed on to the ESCO

by the energy trading company which bears balance responsibility for ENTRNCE towards

3Prosumers are electricity consumers who produce (a share of) their own demand (Lampropoulos et al.,
2013).
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the grid operator (see figure 1.5 for an visual representation of this interaction, and sec-

tion 2.1.1 for the relevant definitions). As the energy transition progresses and the share

of intermittent, unpredicatable renewable energy increases, the electricity bills for clients

participating in the platform will increase. To address this, the ESCO is currently explor-

ing the potential of a BESS to reduce imbalances within its portfolio. Put differently, it is

exploring the value proposition and technical potential of becoming an aggregator.

Knowledge Gap

The past two decades have seen a surge in research on optimal (short-term) DSM strate-

gies, deploying (battery) energy storage and demand response to address the profile- and

balancing- and grid related costs that impede the cost-effective integration of high shares

of VRES (Balijepalli et al., 2011). Despite the wide variety of research approaches, a

(non-exhaustive) review (section 2.2.2) of the literature suggests that most contributions

assume a high degree of knowledge about the future states of either the energy market, the

physical energy system or both. This is appropriate if DSM programs narrowly focus on

profile costs and try to gauge optimal system configurations, define economically optimal

schedules based on predetermined RTP (e.g. based on the day-ahead price settlement), or

determine the optimal operation of ESSs (e.g. Maheshwari et al. (2020)).

However, balancing costs related to the unpredictability of VRE integration are an

important reasons for the necessity of DSM, and higher and more volatile prices occur closer

to physical delivery than day-ahead transactions. Research addressing short-term market

mechanisms and the unpredictability of VRE supply, typically relies on the perfect foresight

assumption, and only estimates the economic impact of forecast errors by performing ex-

post sensitivity analyses (e.g. Ding et al. (2014) and J. Wang et al. (2019)). More advanced

approaches incorporate stochastic parameters in optimization frameworks to account for

the impact of imbalance price and VRE supply uncertainty (e.g. Alipour et al., 2017;

Rashidizadeh-Kermani et al., 2019; Tohidi et al., 2018). Alternatively, time-dependent

noise terms can be added to the actual VRE supply or imbalance market data to emulate

decreasing forecast uncertainty in a model predictive control framework (Okur et al. (2019)

and Zhou et al. (2017)). Also Lampropoulos et al. (2015), who employ a hierarchical

predictive control scheme which operates on multiple time scales, apply their model to

historical data.

Notwithstanding the depth and breadth of the literature base proposing novel DSM
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programs, optimization approaches incorporating actual market and VRE-supply forecasts

are a novelty (see e.g. Terlouw et al. (2019)). Most available research on the potential of

(short-term) DSM in the context of VRE integration estimates theoretical economic and

technological feasibility of various DSM schemes and appliances, based on historical data.

The issue of unpredictability of VRE supply and the stochastic nature of the electricity

market are synthetically imposed on the historical data. Meanwhile, current business

challenges require practically feasible DSM approaches, which use actual weather and

market data. This thesis seeks to address this gap.

Figure 1.3: Example of Portfolio Mismatches (kWh)

Figure 1.4: Forecasted (green) and actual (orange) solar irradiation (w/cm2)
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Figure 1.5: CT Energy’s Position in the Electricity Market

1.3 Research Scope & Questions

The knowledge gap identified in the previous section is addressed by analyzing the potential

of DSM for an aggregator portfolio consisting of several solar PV producers and commer-

cial/industrial consumers and prosumers. Specifically, a case study will be conducted by

developing a simulation model in which a number of distributed BESSs are used to reduce

internal4 portfolio imbalances, by shifting loads away from moments of (expected) portfolio

shortage towards moments of (expected) portfolio surplus. In addition, BESSs may be used

to generate additional revenue by providing balancing services to the grid. To fully cap-

ture the unpredictability of both VRE generation and imbalance prices, the proposed ESS

should be based on frequently updated and increasingly near-term weather forecasts, and

the real-time imbalance price signal from the transition system operator. This means that

the potential of demand side energy storage and DSM will be estimated in an environment

of actual error in real world forecasting data, as opposed to relying on model-generated

uncertainty, or error margins imposed ex-post based on historical forecasting accuracy.

4Internal imbalance refers to the difference between the day-ahead expectation and the actual net
portfolio result.
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Main Question

What is the potential of demand side management using distributed battery energy storage

systems to reduce the imbalance costs accrued by the client portfolio of a Dutch electricity

supplier-aggregator, based on near real-time weather and market data?

Sub-Questions

1. How can updated weather forecasts be adequately incorporated throughout the model

horizon?

2. What characteristics of the battery energy storage systems influence their economic

performance?

3. How can imbalance prices be taken into account by the energy management system?

4. What is the optimal battery capacity, considering investment costs and economic

gains of demand side energy storage?

5. How can variations in VRE supply, market conditions, forecasting accuracy be ac-

counted for?

Research Framework

Figure 1.6 gives a general overview of the how the (sub) research questions are organized.

Sub-questions 1, 2, 3 relate to model structure and the relevant parameters of the three

subsystems explicitly considered by this thesis: (1) the imbalance market, (2) the BESSs,

and (3) solar PV production. Sub-question 4 addresses to the optimal system configuration

which is determined using an auxiliary optimization model. Sub-question 5 addresses the

necessity to obtain the final estimation results by applying the model to a representative

subset of the available input data. In this manner, the intra-annual variation of energy

supply and imbalance prices can be adequately captured even if the simulation cannot be

applied to the full data-set due to limited computational capacity.
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Figure 1.6: Research Framework

1.4 Outline

This thesis is organized as follows: chapter 2 reviews the grey and academic literature on

relevant aspects of demand side management, namely (1) the market context; (2) different

categories of DSM programs and optimization models; (3) the role of (battery) energy

storage system storage in DSM and the key characteristics of battery technology. This

review will inform the research strategy (section 3.1), the optimization approach (section

3.2 and 3.5) and the (mathematical) descriptions of the sub-systems (section 3.3, 3.4). The

results obtained from the model are presented in chapter 4. Chapter 5 and 6 respectively

discuss the results and conclude this report by formulating an answer to the research

questions. Figure 1.7 provides a schematic guide to this thesis’ structure.
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Figure 1.7: Thesis Outline



Chapter 2

Literature Review

2.1 Flexibility in the Dutch Electricity Market

2.1.1 The wholesale electricity market

The European power system is an interconnected network managed by Transmission Sys-

tem Operators (TSO) responsible for typically national1 control areas. Distribution Sys-

tem Operators (DSO) connect individual end-users to the transmission network through

medium and low voltage networks. Each connection (or main metering) point to the grid

has one associated supplier and one Balance Responsible Party2 (BRP). Suppliers source

electricity from producers, and supply and invoice electricity to end-users. (ENTSO-E,

2020; Lampropoulos et al., 2017). The day before physical delivery, BRPs submit the

expected aggregate demand/supply schedules of their grid connections (E-Programs) to

the TSO, and are financially responsible for discrepancies between expected and actual net

energy injected in or withdrawn from the system during each Imbalance Settlement Period

(ISP) of 15 minutes. Not all BRPs manage the connections of end-users: trading BRPs

only engage in energy trading and only manage their own connection (Tanrisever et al.,

2015).

Wholesale electricity trading in the Netherlands takes place on three exchanges, which

are connected to several other European countries. The European Energy Derivatives

Exchange (ENDEX) is the futures market for standardized electricity products, and is

active up to 2 days ahead of physical settlement (see figure Figure 2.1). The lion’s share of

all electricity trading consists of bilateral transactions on this market. Short term trading

1Germany has four control areas
2Also referred to as Programme Responsible Party (Programma Verantwoordelijke, in Dutch)

23
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takes place on the European Power EXchange3 (EPEX), a spot market consisting of the

Day-Ahead Market (DAM) and the Intra-day market (IDM). On the DAM, anonymous

bidding results in a supply-demand curve, which determines a uniform clearing price for

each hour at market closure (12:00 on the day prior to physical delivery). On the IDM,

which closes 5 minutes before physical delivery electricity, the smallest trading unit is 15

minutes, referred to as Program Time Unit (PTU)) (Lampropoulos et al., 2018; Tanrisever

et al., 2015). The third exchange, which deals with the discrepancies, or imbalances,

between traded and actual volumes, is discussed in the subsequent section.

Figure 2.1: Electricity market operation in the time domain. The time scale of interest to this
thesis is demarcated in grey (Lampropoulos, 2014)

2.1.2 Imbalance Price Settlement

Since demand and supply cannot be perfectly forecasted, the TSO has to anticipate im-

balances to maintain power quality4. Hence, the TSO procures operating reserves on the

Ancillary Services Market (ASM)5, where it is the single-buyer. During each PTU, these

can be activated in response to negative imbalances (i.e. BRPs have a shortage compared

to their DAM and IDM commitments) or deactivated in response to positive imbalances

(i.e. BRPs have a surplus), respectively. This is referred to as upward regulation (the in-

crease of injection or decrease of withdrawal of electrical energy) and downward regulation

(the decrease of injection or increase of withdrawal). The required capacity is provided

by Balancing Service Providers (BSPs), offering the different types of reserves, which are
3Colloquially still referred to as Amsterdam Power Exchange (APX), its former name
4The appropriate voltage level alternating at the appropriate sinewave frequency, which may only

deviate by 50 mHz from the nominal value of 50 Hz (European Commission, 2017).
5In addition to these balancing services, AS comprise black start capability, the provision of reactive

power and the compensation for network losses, but these are of low relevance to (emerging) aggregators
and not treated in this thesis.
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outlined below and differ primarily in terms of activation time (see figure 2.2). To be com-

plete, it should be mentioned that the TSO may - within the same timeframe - also engage

in imbalance netting with other TSOs, through International Grid Control Cooperation

(IGCC) (Lampropoulos et al., 2018).

1. Frequency Containment Reserves (FCR) are contracted ex ante to be fully

activated within 30 seconds after a sudden frequency deviation, and are hence "the

first line of defense against frequency deviations in the grid" (de Heer & van der Laan,

2017). These formerly called "primary reserves" are subject to strict requirements

with respect to metering and data exchange, and are awarded a compensation for

standing by with a certain capacity (>1 MW), which is established via a weekly

auction (Lampropoulos et al., 2018).

2. Automatic Frequency Restoration Reserves (aFRR) (also referred to as reg-

ulating capacity and previously called "secondary reserves") must be fully activated

within 15 minutes in order to restore the nominal value after initial frequency con-

tainment. For each ISP, a minimum quantity of bids for upward and downward

regulation must placed in the auction, one month ahead of time6 (Poplavskaya &

De Vries, 2019). These bids are complement via a daily auction of "free bids", which

can be changed until 30 minutes before the ISP.

3. Manual Frequency Restoration Reserves (mFRR) are only activated in case

of longer lasting or larger incidents that exhaust aFRR, and were formerly referred

to as tertiary reserves. Through a manual procedure, the TSO activates either di-

rectly activated reserves (mFRRda (also referred to as reserve capacity)), which must

reach full activation within the ISP it was called upon, or scheduled activated re-

serves (mFRRsa (also referred to as incident reserves) which are called upon in

advance. While mFRRda-bids are selected via a monthly auction and BSPs receive

an additional compensation for the electricity supplied based on the DAM prices, the

purchasing of mFRRsa is similar to aFRR (Lampropoulos et al., 2018).

4. Replacement Reserve used to be referred to as slow tertiary reserves, which were

to be activated in case of power plant malfunctioning. However, the IDM has replaced

the function of RR, which are no longer used in the Netherlands (Lampropoulos et

al., 2018).



CHAPTER 2. LITERATURE REVIEW 26

Figure 2.2: Graphical representation of balancing services based on activation time and mecha-
nism. Note that RR does no longer exists in the Netherlands (Aine, 2018)

Bids for both upward and/or downward regulation by all reserve types are ranked

based on ascending price. This merit order dictates which bids are called upon first, and

establishes a uniform balancing energy price based on marginal pricing. Hence, all actived

aFRR, mFRRsa and mFRRda offers receive the lowest activated bid price for downward

regulation (which is expressed in terms of negative energy) and highest activated bid price

for upward regulation (TenneT, 2020). The imbalance price to which BRPs with a shortage

or surplus are subject is the result of this pricing scheme and the overall system balance,

which is described by the regulation state. When no upward or downward regulation takes

place (regulation state = 0), small shortages and surpluses are settled based on the average

of upward and downward bids (the mid price). During regulations states 1 (upward), -

1 (downward), and 2 (both upward and downward) the marginal bid prices apply. The

direction of its internal imbalance vis à vis the market state, and the sign of the marginal

price, determines whether the BRP will be subject to positive or negative costs. For

instance, during downward regulation, the settlement price may be negative, which means

a positive surplus is penalized. A example of the upward, downward and settled imbalance

prices is provided by figure 2.3. While imbalance price settlement takes place ex-post, one

day after physical delivery, a market forecast is broadcast every minute by the TSO for

the current ISP (Okur et al., 2019; Tanrisever et al., 2015).

2.1.3 Aggregators in the Electricity Market

Aggregation services may be implemented in different ways, ranging from integrated ap-

proaches were the aggregator-role is assumed by an supplier-BRP, to isolated entities en-

6This has recently changed to the day before delivery (en Markt, 2019).
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Figure 2.3: example of upward and downward settlement prices

tering into contracts with end-users, suppliers and BRPs to respectively procure flexibility,

energy supply and gain access to the wholesale market (de Heer & van der Laan, 2017).

Aggregated flexibility may be offered in all sub-markets. On the DAM, the 1 hour-

settlement period is relatively long for the exchange of flexibility and the early market

closure results in sub-optimal forecasting of RES (Lampropoulos et al., 2018). Moreover,

simulation results show that the contribution to system balancing is more profitable strat-

egy. This is mainly driven by the more frequent and larger price spreads in the imbalance

market (IM). On the other hand, IM-risks are higher due to its stochastic nature (Lam-

propoulos et al., 2017). The IDM is typically too illiquid in the Netherlands: there is a

considerable risk that no counter-party bids can be found (Chaves-Ávila et al., 2013). Cur-

rently, the technological and capacity requirements for offering the market-based balancing

services depicted in figure 2.2 are substantial barriers to entry (Lampropoulos et al., 2018).

However, the preceding section eluded to the fact that BRPs with imbalance positions

opposite to the system state may be subject to a negative imbalance price, and may be
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rewarded for contributing "voluntarily" to system balance in real time. Since the Dutch

TSO provides a market update in near real-time, BRPs may consciously provide "informal"

balancing services without actively participating in the ASM, by deviating from their day-

ahead schedule in the economically advantageous direction. So-called passive contribution

may be a more feasible strategy for aggregators seeking market entry (Lampropoulos et

al., 2015). Moreover, potential revenues from passive contribution have been increasing

steadily over the past years (Lampropoulos et al., 2017).

2.2 Demand Side Management Programs

2.2.1 Categorization

Short term DSM programs are commonly classified based on the underlying motivation

mechanism, but may be distinguished based on control mechanisms or decision variables

as well (Vardakas et al., 2014). These approaches largely overlap with the more specific,

and historical classification by Lampropoulos et al. (2013).

Motivation mechanisms can be either price-based, or market-based (Jordehi, 2019).

A range of price-based7 programs exist. Flat Pricing schemes apply constant electricity

prices, Time-of-Use Pricing (ToUP) uses a fixed stepped rate structure, and Critical Peak

Pricing (CPP) applies an additional pre-set mark-up in case of system stress. Peak Load

Pricing and Real Time Pricing (RTP) deploy variable prices based on the actual electricity

cost, which are respectively set the day before and in real time (Vardakas et al., 2014).

Figure 2.4 gives a sense of the time scale at which these pricing mechanism apply, and

demonstrates that today’s electricity market effectively combines several pricing mecha-

nisms. Market-based8 DR programs may involve: (1) Direct Load Control (DLC), which

allow an external entity (traditionally the utility) to remotely adjust end-user appliances;

(2) Curtailable Load Programs and Emergency Programs, where medium and large con-

sumers are contracted to turn off specific loads when requested by the utility; (3) Capacity

Market Programs, Demand Bidding and Ancillary Service Market Programs, where end

users actively offer balancing services on the electricity market. (Paterakis et al., 2017;

Siano, 2014; Vardakas et al., 2014).

7Also referred to a time-based DR.
8Also referred to as incentive- or event-based DR.
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Control mechanisms are either centralized, decentralized, or distributed. In central-

ized control schemes, one single entity monitors and coordinates (schedules) loads, e.g.

via remote-controlled relays or internet connections. Decentralized schemes disseminate

information about the grid state (e.g. through grid frequency or RTP) directly to end-user

whose demand is adjusted by a local control mechanism(Vardakas et al., 2014). Distributed

schemes contain a central optimizer which facilitates global coordination of local assets with

private objective functions (Diekerhof et al., 2018; Lampropoulos et al., 2013).

Decisions variables may either address the activation time of schedulable loads in order

to reduce power consumption during instances of peak demand. Alternatively, Energy-

management reduces specific loads in order to reduce power consumption during peak

hours, by controlling appliances with flexible, but non-schedulable loads. Both program-

types may also be combined (Vardakas et al., 2014).

Finally, Balijepalli et al. (2011) and Siano (2014) suggest a classification based on dis-

patchable or physical DR versus non-dispatchable or market-based DR. The former refers

to ancillary services (e.g. Demand Bidding) and responds to real-time balancing require-

ments, while the latter refers to all price-based schemes.

Figure 2.4: Demand Response Approaches (Siano, 2014)
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2.2.2 Optimization Methods

The purpose of sections 1.1.1, 1.1.2 was to introduce the concept of flexibility as a scarce

resource in the power system. Accordingly, mathematical optimization is the quintessential

analytical tool for DSM. As opposed to the classical optimal dispatch problem of (large)

electrical power plants, DR programs essentially comprise optimal coordination problems,

enabling the scheduling of energy demand, supply and storage based on predefined tar-

gets. Numerous optimization techniques have been used to minimize electricity costs,

emissions, grid-consumption or volatility, or maximize self-consumption, profits or social

welfare (Jordehi, 2019; Vardakas et al., 2014).

A fully fledged DSM system should establish a trade-off between the objectives at the

customer and system level, for instance by comprising a two- (or multiple-) level hierarchy

to enable the horizontal integration and interaction between individual consumers and

producers (e.g. Z. Xu et al. (2016), Salah et al. (2018), (Henríquez et al., 2017)). In

addition, a DSM system should: (1) be scalable, (2) enable each user to determine - within

limits - its own objective function, (3) take into account relevant sources of uncertainty,

(4) the algorithm needs to converge to optimal or near-optimal results in a suitable time

to stay within the operation time window of the actions of the flexibility provider and the

flexibility user, (5) the optimization algorithm needs to ensure customer privacy and treat

sensitive data carefully. (Diekerhof et al., 2018) Naturally, a DR program may be limited

to one, or a subset of these principles, depending on the context of the actual application.

The remainder of this section presents a (non-exhaustive) overview of the most relevant

optimization techniques.

Mathematical Optimization

Linear Programming (LP) finds the values of a set (the design vector) of choice vari-

ables that minimize or maximize a linear function (or multiple linear functions, in the

case of multi-objective optimization), subject to a set of linear constraints. The objective

function determines the desired characteristic of the system that is optimized (e.g. total

energy consumption (Vardakas et al., 2014). Typically, LP is applied to dynamic opti-

mization problems, in which the objective function is solved over a certain time horizon,

consisting of consecutive time steps. In this case, the parameters in the objective function

need not be fixed, but may change over time, despite being exogenously determined. By
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contrast, the system’s dynamics are captured by state variables, whose change is endoge-

nously determined by dynamic equations (Rogosich, 2000).

A common target for DR programs is electricity cost minimization, which is achieved

by formulating the a load scheduling procedure and applying an appropriate pricing scheme

(Vardakas et al., 2014). For example, Ding et al. (2014) and J. Wang et al. (2019) optimize

DR in industrial facilities with PV systems and TCLs, and respectively stationary an ESS

and EVs with V2G-functionality. A State Task Network (STN) captures the industrial

process by representing the steps of the process as task nodes, and the materials involved

as state nodes. The former are schedulable tasks, functioning at different operation statuses

with a specific electricity demand, number of workers, heat dissipation from equipment,

material consumption rate and production rate. Within these status-specific constraints, a

production requirement must met at the lowest possible total electricity costs. In both sys-

tems, energy management is based on day-ahead TOU-pricing for both selling and buying,

assumes PV generation schedules are known in advance, and minimizes total electricity

costs using Mixed Integer Linear Programming. In MILP, some variables in the design

vector are integers - specifically binary integers ({1,0}) representing the ON/OFF-status

of appliances (Jordehi, 2019).

Convex programming is the general form of LP, and allows for some non-linearity. Due

to the convexity of the objective function(s) and/or constraint(s) some non-linearity is

permitted. Since local optima are also global optima, the computation remains efficient

(Boyd & Vandenberghe, 2004). Rivera et al. (2016) employ CP to minimize the non-linear

costs in an V2G-aggregation scheme. The cost function includes battery degradation as a

quadratic function9. Sundstrom and Binding (2011) capture the power loss when charging

an EV battery with QP, although it is shown that the linear approximation is sufficient.

Park et al. (2017) use convexity to characterize user inconvenience form re-scheduling

of a set of appliances. The objective function is combined with a quadratic objective

function characterizing energy costs of the household with a PV system and an ESS. Non-

convex, non-linear programming (NLP) is compared to MILP and LP by Ommen et al.

(2014), who optimize a district heating system comprising heat pumps, Combined Heat

and Power (CHP) plants and boilers. Sensitivity analysis shows that while NLP is the most

accurate, the computational time is orders of magnitude larger than MILP. For this reason

(Maheshwari et al., 2020) decompose the non-linear degradation behaviour of a stationary

9Quadratic programming (QP) is a subclass of convex programming.
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BESS into ten linear segments, which are then included in a linear program.

Stochastic Optimization (SO) methods represent uncertain parameters by random

variables instead of deterministic data (Barbato & Capone, 2014). This relaxes the as-

sumption of perfect forecasting implied by the methods discussed above, and thus enables

more accurate estimation of optimal scheduling based on RTP and uncertain VRE supply.

For instance, Tohidi and Gibescu (2018) use a stochastic MILP to simulate the revenue of

a BESS which performs arbitrage between the DAM and IM. The constraints of the op-

timization problem are probability-weighted summations of a range of possible forecasts,

which is iteratively extended until the difference in revenue between two consecutive fore-

casts are fall below a certain value. Alternatively, uncertainty may be addressed by Robust

Optimization, which is applied when the probability distribution of uncertain parameters is

not accurately known, but instead represented by an uncertainty set (Barbato & Capone,

2014).

(Meta)heuristic Optimization overcomes the computational limitations of conven-

tional (exact) optimization, by using artificial intelligence methods to solve nonlinear pro-

grams. These nature-inspired algorithms use a combination of randomization and local

search10 to find approximate, near-optimal solutions in a more reasonable time-frame. For

instance, Genetic Algorithms (GA) mimic natural selection of possible solutions ("genes")

by reproduction and recombination ("cross-over"), as as well as mutation (Antonopoulos

et al., 2020; Dengiz et al., 2019). In (González et al., 2018) and (Morales González et al.,

2016) Genetic Algorithms optimize DR frameworks comprising respectively four clusters

of medical freezers and a refrigerated warehouse. The differential equations characterizing

TCLs, and the binary integers capturing switching result in Mixed-Integer Non-Linear Pro-

grams, which cannot be solved in a reasonable time-frame by conventional computational

method. Particle Swarm Optimization is a widely used AI-method for VVP and V2G sys-

tems, where are a large number of variables and non-linear functions must be considered.

PSO is an iterative process in which a large number of potential solutions ("particles") are

moving towards the position of the most optimal particle in the population "swarm" in

the preceding iterative step (Antonopoulos et al., 2020).

In addition to these high-level, problem-independent techniques, optimization methods

may also be based on explicit, problem-specific rules (heuristics). For instance Dengiz et al.

(2019) design use a heuristic control scheme to set the modulation degree ( [0,1] for heat
10Local Search algorithms find optimal solution by comparing one possible solution to the next (Pirlot,

1996)
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pumps, which by inserting the current price pt to an empirical distribution function Ft(p)

based on a range of past price values.

Model Predictive Control

Model predictive control algorithms use a system model to predict future states of the

system and determine the best possible control trajectory. This operating schedule contains

the values of adjustable independent variables that minimize a certain cost function in the

presence of disturbances (independent variables that the system cannot influence). The

optimization problem is solved over a given prediction horizon. However, in contrast to

the methods described above, only the control horizon (i.e. the first step(s) of the control

sequence) is actually implemented (see figure 2.5) (Afram & Janabi-Sharifi, 2014; Fischer

& Madani, 2017).

Figure 2.5: evolution of the system variables in an MPC approach for HVAC load control (Bian-
chini et al., 2016)

Subsequently, the prediction horizon is shifted forward and the optimization is per-
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formed again for a prediction horizon starting at the next time instant, based on new

measurements and updated forecasts. This so-called receding horizon approach introduces

feedback to the model since the new state is influenced by past control actions and related

disturbances (Avci et al., 2013; Oldewurtel et al., 2012; Privara et al., 2011). MPC can

thus be understood as a closed-loop control system.

In recent years, MPC has gained traction as building climate control method aimed at

increasing energy efficiency while ensuring end-user comfort. Although MPC is a determin-

istic method, it is able to incorporate time-varying disturbances and system parameters

(e.g. weather conditions, room occupancy) (Afram & Janabi-Sharifi, 2014; Oldewurtel

et al., 2010). Since "offline" optimization based on RTP and VRE-generation over a long

horizon (e.g. day-ahead) is heavily influenced by uncertainty, MPC is an increasingly pop-

ular method for DR programs (Bianchini et al., 2016) and optimal battery charging (Tian

et al., 2020). Okur et al. (2019) consider an aggregator which controls heat pumps in resi-

dential and commercial buildings with rooftop solar PV. MPC is used to minimize internal

imbalances - i.e. "the differences between the DAM bid and the actual energy exchange

with the power grid in real-time" - for each PTU. Solar generation is assumed to be the

only source of deviation from the DAM bids, i.e. the planned net energy exchange with the

grid. Other sources of internal portfolio imbalances, such as errors in the demand forecasts

of consumers, are neglected. Increasingly accurate solar irradiance forecasts are simulated

from actual measured data, and assumed to be updated every hour. The MPC program

runs every 15 minutes, and may shift flexible demand by at most 2 hours. Lampropoulos

et al. (2015) construct a hierarchical optimization model which first constructs a arbitrage

schedule for a BESS on the DAM. On the operation day, MPC refines the schedule using

passive contribution, which is achieved by intra-hour optimization over a receding horizon

of 12 hours, based on new, more accurate forecasts. Finally, a real-time control framework

minimizes imbalances in the local low voltage grid within each ISP. The authors compare

the revenue from the hierarchical model, with only day-ahead scheduling or only intra-hour

passive contribution in the imbalance settlement system, and find that the latter is most

profitable, whereas the profitability of day-ahead scheduling is sensitive to the efficiency of

the battery and the volatility of the DAM. While the battery model uses one nonlinear con-

straints, it should be noted that the optimization programs employed in MPC are typically

linear, despite the non-linear behaviour of loads encountered in MPC-based DR-programs.

Linearization or convexification is usually required, since MPC prioritizes computational
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performance over model accuracy (Fischer & Madani, 2017). Finally, stochastic MPC al-

lows the remaining short-time forecasting uncertainty to by systematically incorporated

by including chance constraints in the optimization model, which only must be met in a

probabilistic sense (Mesbah, 2016).

2.3 Battery Energy Storage Systems

2.3.1 Energy Storage Technologies and Demand Side Management

As was mentioned before, notwithstanding the relevance of DR, the incorporation of energy

storage in the demand side of is imperative for the continued integration of VRES in the

power system. Amongst the wide range of applications of ESSs are time-shifting energy over

longer periods, avoiding curtailment and network congestion during peak production hours,

maintaining power quality and reliability, and providing capacity backup for unexpected

contingencies. ESS may play a role on the supply side by offering ancillary services to the

grid by responding to imbalances in aggregate demand/supply profiles, or act as flexible

loads on the demand side, modifying the profile as seen by the grid operator (Evans et al.,

2012; Koohi-Fayegh & Rosen, 2020; Luo et al., 2015; Parra et al., 2017; Zakeri & Syri,

2015).

In all cases, energy storage involves converting energy from a non-storable to a storable

form which can be kept for a certain time period in a certain medium. Typically, five

classes of energy storage technologies are distinguished: mechanical, electrical, electro-

chemical, chemical and thermal. An extensive overview of these technologies, which is

beyond the scope of this thesis, can be found in Aneke and Wang, 2016; Evans et al., 2012;

Guney and Tepe, 2017; Luo et al., 2015. Such publications typically offer a comparison

of these technologies based on a variety of metrics: (1) energy density and/or specific en-

ergy (amount of energy (kWh) stored per unit volume and/or unit weight (respectively),

(2) power density and/or specific power (time rate of energy transfer (W) per kilogram,

(3) overall storage capacity (MWh), (4) round-trip efficiency (ratio of total energy input

to total energy output), (5) response time, (6) self-discharge (energy dissipation during

longer-term storage), (7) life-time and amount of cycles, and (8) techno-economic matu-

rity.

These characteristics inform the suitability of specific technologies for different pur-

poses. For instance, power quality management, which relies on very fast response times
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to smooth frequency disturbances on a nano- to milisecond scale, can be adequately ful-

filled by flywheels, capacitors and superconducting magnetic energy storage systems. While

having a long cycle life, they have among the highest capital costs (e/kWh) due to their

short run times once activated. In contrast, Sensible Heat Storage (SHS), the most sim-

ple thermal energy storage technology which stores energy by heating or cooling solids

or liquids (especially water), has low capital cost and may provide energy over a longer

period, but has relatively low charging and discharging rates (Evans et al., 2012). Figure

2.6 provides a schematic overview of different storage technologies relevant in the context

of VRE integration.

Figure 2.6: Comparison of different ESSs based on system sizing and power output, mapped
based on their applicability for the provision of uninterrupted power supply (UPS), transmission
and distribution grid support, large scale storage (Guney & Tepe, 2017)

In the context of demand side energy storage and energy management, electrochemical

energy storage, and specifically battery energy storage systems (BESS) are most com-

monly applied. The other type of electrochemical energy storage, redox flow batteries,

offer great potential for large scale energy storage, though costs continue to be challenge

(Koohi-Fayegh & Rosen, 2020). Even though thermal energy storage is cheaper, for energy

management purposes on the demand side, BESS are advantageous, as they are able to

simultaneously maintain power quality, shift loads, and offer medium-term standby reserve

capacity (Evans et al., 2012). Moreover, batteries have a relatively high efficiency, exhibit

low self-discharge, are easily scalable and location independent (Han et al., 2015; Hesse et
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al., 2017). Battery types are typically distinguished based on the materials of the electrodes

and electrolyte, the essential components of electrochemical cells (see section 2.3.1. At a

higher conceptual level, battery can consist of primary, non-rechargable cells and secondary

cells, which can be recharged, and are considered here. Of the various types, lead-acid,

sodium-sulfer and lithium-ion batteries are currently of most relevance to the integration of

VRES. While sometimes included in related research, nickel-cadmium/-manganese batter-

ies are unlikely to be used for DSM applications, due to high costs, environmental concerns

and charging-behaviour dependent degradation (the so-called memory-effect (Luo et al.,

2015)).

The Lead-acid battery is the most widely applied and mature technology on the market,

and has been a common choice in isolated power systems to ensure uninterrupted power

supply (UPS). While low costs and relatively high cycle efficiencies are beneficial, the cycle

life of these Pb-acid batteries is rather low and the anode/cathode/electrolyte give rise

to environmental concerns during the production and disposal phase (Evans et al., 2012;

Zakeri & Syri, 2015).

Sodium-sulfur (NaS) batteries use a high-temperature reaction between sodium and

sulpher which are separated by a solid, beta alumni electrolyte. The technology offers

high energy density, relatively high energy efficiency and higher rated power capacity than

other batteries, and consists of non-toxic materials. However its high operating costs

and operating temperature currently still stand in the way of commercial deployment as

utility-scale BESS. (Luo et al., 2015; Zakeri & Syri, 2015).

Lithium-ion batteries play an increasingly import role in electrical energy storage, due

to their high energy density, long lifetime (1̃0.000 cycles), relatively high cycle efficiency

of up to 97%, and low self-discharge rate (Zakeri & Syri, 2015). Due to their relatively

small size and weight, Li-ion batteries have become a prominent energy storage technology

for essentially every application, ranging from mobile phones and portable electric tools

to electric vehicles. Li-ion batteries are mostly cobalt- or phosphate-based, the latter of

which has been developed more recently, but offers higher efficiency while maintaining

energy and power density nearly as high as cobalt. Moreover, the availability of cobalt is

limited, resulting in higher material costs (Evans et al., 2012).
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2.3.2 Battery Technology

Similar to the previous section, the physical and economic characteristics and parameters

of BESSs will only be discussed to the extend that these are relevant to the models outlined

in section 3.2. Consequently, the thesis focuses on Li-ion (Phosphate) batteries hereafter,

based on their applicability to the research context (demand side energy storage, load

shifting and grid support). The following paragraph first summarizes the general working

principles and parameters of batteries. Secondly, battery degradation, a major contribu-

tor to the operating costs of a BESS and a relevant factor for the modelling of battery

behaviour, will be discussed.

Working principle

Battery cells consist of positive and negative electrodes. In Li-ion cells, lithium ions are

released from the negative electrode, referred to as the anode, during discharging. These

ions migrate through the electrolyte, which conducts only ions, and are diffused into to the

delithiated positive electrode (the cathode). Meanwhile, electrons are conducted externally

from the negative to the positive electrode, which are electrically insulated. This oxida-

tion/reduction process generates a current, and is reversed during charging, when insertion

takes place at the negative electrode and oxidation at the positive electrode, which is now

referred to as anode. (Chen et al., 2020). The cell’s potential power and energy, as well

as its safety and lifetime, are determined by the cell’s geometry and format. For instance,

for a given material composition, a cell can offer either higher energy capacity (mAh),

or higher power capacity (V), depending on the thickness of the electrode (Maheshwari,

2018).

The ratio of power output and energy capacity of the battery is called the c-rate.

While power output determines the rate of (dis)charge, the energy capacity refers to the

amount of energy that can be stored. For instance, at 1 C, a 2 Ah battery can provide 2

A current continuously for one hour. When a number of cells are connected in a module,

the resulting power and energy arises from the parallel/series configuration. To ensure all

cells are charged evenly, and safe operation is guaranteed, all modules are equipped with

battery management systems.

The capacity delivered by a module is expressed in kWh, while power output is ex-

pressed in kW. Rated power and energy output refer to the maximum capacities of the



CHAPTER 2. LITERATURE REVIEW 39

BESS. The relationship between both quantities is relevant for the specific use case in

power systems: for peak shaving and UPS at the demand side, the system should be able

to provide energy for a sustained period of time, while ancillary service provision requires

shorter energy bursts at high power ratings (McLaren et al., 2016). Here, a distinction

can be made between continuous load current, which may be sustained for a long time,

and pulse load current, which may be higher, but can only be sustained for brief period.

These maximum currents can be expressed using C-rate and E-rate, since they are capac-

ity dependent. The amount of energy present in the battery as a percentage of its total

capacity is referred to as State of Charge (SOC). The inverse of this is sometimes referred

to as Depth of Discharge (DoD), however this thesis refers to DoD as the total differ-

ence between the maximum and the minimum SOC (Maheshwari, 2018). The roundtrip

efficiency of completing a charge/discharge cycle depends on operating conditions of the

battery, such as the temperature, the state of charge, the C-rate. For a lithium-ion cell,

the efficiency falls within the range of 92%-96% (Renewable, IRENA, et al., 2017).

Battery Degradation

BESSs for DSM applications typically require a relatively large rated power output, and

consequently, a large amount of cells. The means the initial investment costs of the system

are high, and the preservation of the BESS’s life time is of critical importance: once battery

capacity degrades below 80% of initial capacity, batteries are typically considered to have

reached End-of-Life (EoL) (Muenzel et al., 2015; Omar et al., 2014). Hence, a key factor

in the economic optimization of BESSs are the operating costs arising from degradation

(B. Xu et al., 2016).

Degradation occurs continuously in both the electrolyte, and the positive and negative

electrodes, and comprises changes in the composition of the electrolyte, and the reduction

of active lithium in the electrodes. The underlying mechanisms can be decomposed in

calendar degradation and cycle degradation (Maheshwari, 2018). Calendar degradation

occurs naturally over time, while being influenced by the conditions of the surrounding

environment such as temperature, and by usage patterns, such as the average SoC. The

rate at which cycle degradation takes place is the result of the (dis) charging behaviour,

expressed in terms of DoD and C-rate. The battery life can also be expressed in term of full

cycles that can be performed. This cycle life depends primarily on DoD, temperature, and

C-rate. The results obtained by Omar et al. (2014) who examine the impact of different
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cycle depths are visualized in figure 2.7).

Due to their impact on total costs, cycle and calendar aging should be included in

system optimization problems (Cardoso et al., 2018). Battery degradation models can be

categorized into theoretical and empirical approaches. The former uses explicit equations

to capture both physical and chemical characteristics, while the latter fit curves to em-

pirical data to find general equations from discrete cycling measurement points. While

electrochemical models are accurate and insightful, empirical models reduce complexity of

model tuning. However, adequate empirical models must take into account the relevant

charging parameters, such as state-of-charge, (dis)charging currents, depths of discharge

and temperature (Muenzel et al., 2015). In fact, empirical models are tailored to specific

BES installations, requiring extensive data collection. Alternatively, semi-empirical mod-

els combine theoretical relations with empirical observations to obtain more generalizable

models (B. Xu et al., 2016).

Figure 2.7: Cycle life of a lithium-iron phosphate battery versus cycle depth (Omar et al., 2014).
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Methods

3.1 Research Strategy

3.1.1 Optimal BESS Control

The DSM program proposed in this case study envisages a centralized energy management

system exerting direct load control over distributed demand side battery energy storage

systems. Electricity is supplied by 4 utility-scale solar PV systems and 8 prosumers with

rooftop solar systems. In addition to the prosumers, the aggregator services the critical

electricity demand of 9 consumers. Figure 3.1 provides a schematic representation of the

system, whose control scheme aligns actual electricity demand from and supply to the grid

as much as possible with the supply-demand schedule submitted to the day-ahead market,

by managing energy flows to and from the battery systems, taking into account updated

solar energy generation forecasts. Moreover, the system takes note of the imbalance market

in order to provide balancing services to the grid. Hence, the EMS must respond to two

sources of dynamic data: (1) frequently updated solar energy generation forecasts, and (2)

real-time imbalance market signals. For simplicity, the demand schedules are assumed to

be static.

Assumption 1: Perfect foresight is assumed with respect to the day-ahead demand

forecasts of all critical loads. Hence, there is no imbalance between actual consump-

tion and the day-ahead schedules of the clients in the portfolio.

Based on to the reviewed literature (e.g. Okur et al. (2019)), MPC is a suitable method

to achieve the objective of a DSM program with these general characteristics. The pro-

gram’s objective can be expressed in terms of energy, achieved by reducing imbalances

between day-ahead and updated demand/supply-schedules as much as possible, while max-

41
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imizing passive contribution using remaining battery capacity. Alternatively, the objective

can be expressed in terms of imbalance costs, achieved by minimizing internal imbalances

and/or by generating revenue through passive contribution based on the price signal from

the imbalance market. While the problem definition presented in section 1.2 clearly favours

the latter formulation, the settlement process of imbalance costs comprises an important

caveat for the suitability of MPC. After all, the prediction horizon required for MPC-

induced load-shifting exceeds the forecasting horizon of imbalance prices. Research on

imbalance price forecasting model beyond a single PTU is few and far between, and it is

beyond the scope of both this thesis and the available data to develop an entirely novel

price forecasting model. While it is certainly possible to feed (moving)-average imbalance

prices in the model and thus account for diurnal or seasonal variations, such a heuristic ap-

proach would obfuscate the economic trade-off between actual imbalance costs and battery

degradation costs.

Instead, this thesis proposes a DSM program with two targets: first, absolute imbalance

reduction in terms of energy is targeted over the remainder of the optimization period.

Secondly, the program may engage in passive contribution within the time steps of the

model, in response to imbalance price forecasts. This hierarchical, two-step framework is

loosely inspired by Lampropoulos et al. (2015). The rationale for the first step depends

on assumption (2), which is non binding, but does imply that welfare maximization is not

actively obstructed by imbalance minimization, and is based on the literature covered in

section 1.2.

Assumption 2: The direction of internal imbalances are correlated with the direction

of market imbalances and are by and large positive, so internal imbalance will gen-

erally not result in negative imbalance costs, i.e. reducing imbalances is generally

reduces costs.

Accordingly, the proposed control program consists of two steps:

1. Before each PTU starts, an MILP-based MPC program will be used to define an

optimal control schedule which minimizes internal portfolio imbalances and battery

degradation over the entire prediction horizon, without reference to the imbalance

price signal.

2. During each PTU, the optimal control schedule defined in step (1) may be amended

in real time by a heuristic model, using the imbalance market forecasts received
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Figure 3.1: Schematic of the case study

during the first minutes of the PTU.

Although in reality the heuristic control program is executed within a PTU, i.e. after

step 1 has been implemented, the proposed mathematical optimization model will treat the

impact of this adjustment as taking place during the entire PTU. Hence, the resolution of

the model can be kept uniform at 15 minute intervals across the two optimization programs.

Instead of the time-unit, other variables will be adjusted to account for the shorter duration

of the control action. Consequently, intra-PTU augmentation or reversal of control actions

set by the MPC program results in a uniform adjustment of the control schedule. This

means that the impact of the time duration of the heuristic control action on, for instance,

battery degradation, is neglected.

Assumption 3: Once the effect of their shorter duration on net energy input or output

is accounted for, the impact of intra-PTU heuristic control actions on the energy

system does not differ from the impact of inter-PTU actions by the MPC-program

3.1.2 Optimal BESS sizing

As already alluded to above, there is a definite discrepancy between the thrust of the main

research question, which concerns the economic potential of proposed BESS-based DSM

scheme, and the EMS proposed in the previous sections, which only targets imbalance

costs secondarily. Most importantly, the program is unable to minimize the aggregate of

the total capital and operational costs of the BESSs and the total imbalance costs over

the entire optimization horizon. To address this issue, a second, auxiliary optimization
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program is set up to define the economically optimal static parameters of the system,

i.e. the aggregate size of the BESSs and the relative importance of degradation vis á vis

imbalance reduction. Based on these optimal parameters, the DSM program’s potential in

the context of forecasting uncertainty can be examined.

To this end, the program as described above will be restated to optimize the system

at once, over a fixed horizon of 96 PTUs, while emulating the components and scope of

the MPC program as much as possible. Since the perfect foresight assumption applies, the

second step mentioned in section 3.1.1 is no longer required, and the possibility for passive

contribution can be included in one single, multi-objective optimization program, which

is presented in section 3.5. Due to the single optimization horizon, this program is able

to evaluate the potential of the MPC strategy for a range of battery sizes within a more

feasible time-frame than the actual MPC program.

3.1.3 Chapter outline

The remainder of this chapter is organized as follows: Section 3.2 describes the specific

outline of the model in a conceptual manner, sections 3.3 and 3.4 present the mathematical

formulations of each component of the first and second step of the control program, respec-

tively. Section 3.5 presents the adjusted optimization program to determine the optimal

configuration. The combined model predictive control program and the heuristic model

are represented in pseudocode form in algorithm1. This description also includes a number

of data pre-processing steps, which are introduced in chapter 4.

3.2 Conceptual Model

Essentially, the DR-model’s implementation comprises three generic elements: (1) an op-

timization program executed over the entire prediction horizon; (2) a heuristic control

strategy enabling passive contribution; (3) the overall control sequence, which first exe-

cutes the optimal control actions during the current PTU, and subsequently updates the

prediction horizon for the subsequent model run during the next PTU, changing the state

of the battery systems, which introduces feedback to the model. This third element en-

velops the first two elements and can be sufficiently captured by a rudimentary schematic

representation of the control model in flow chart 3.2. In contrast, the optimization program

and the heuristic control strategy merit a more detailed discussion.
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3.2.1 Predictive Imbalance Minimization

The MPC’s prediction horizon consists of two input vectors, which relate to sub-question

1 : (1) the aggregated critical/non-flexible demand and supply schedules of all clients in

the portfolio as submitted on the day-ahead market, and (2) the updated solar energy

generation forecasts, which are also aggregated. The latter vector is the predicted element

of the MPC program, and is obtained by combining a frequently updated external weather

forecast with a moving-average auto-regressive (ARMA) model by making use of a Kalman

filter. It should be noted that this step, which is discussed in section 4.3, implies that the

future states of the system are, strictly speaking, only in part "model predicted". In

contracts, the choice variables of the BESSs (sub-question 2 ) are, except for their starting

values, determined entirely endogenously by equations capturing the battery’s physical

characteristics.

To consider the full solar energy generation forecast and optimally exploit the capacity

of the BESS, a prediction horizon of 24 hours (96 PTUs) will be used. This will also allow

restrictions to be placed on specific final values (see section 3.3). Since the day-ahead

supply/demand schedules are only determined at 11:00 each day, the feasible end-point of

the optimization horizon is 23:45 of each day before this moment, but may be extended

to 23:45 of the next day after 11:00. For simplicity, to reduce computational times and

to maintain closer control over the battery (see section 3.3.2, the computations will keep

the final PTU fixed at 23:45. Hence, the optimization occurs over a shrinking horizon, as

opposed the receding horizon as applied in standard MPC programs.

3.2.2 Passive Contribution Strategy

Even after the operating schedules of the controllable distributed energy sources have

been adjusted to minimize imbalances, the system may still contain a certain amount of

flexibility: the BESS may be (dis)charged further to contribute to grid stability. However,

given the scarcity of this resource, passive contribution should only take place when peak

imbalance prices occur. This strategy is implemented using a heuristic prediction model,

and addresses sub-question 3. The model consists of three steps:

1. A price threshold is set based on historical data to ensure only imbalance price peaks

of a certain magnitude trigger the activation of the distributed energy resources in

the portfolio.
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2. Two binary regression models are used to predict (1) the regulation state and (2)

whether the settled price will be exceed the price threshold during the current PTU.

3. These predictions will determine whether passive contribution may take place. While

the response to the TSO’s regulation and price forecast is binary, the magnitude of

actual passive contribution is maximized within the general system constraints, and

the MPC schedule set by the first part of the DSM program.

The prediction models require 6 minutes of forecast data, which is broadcast by the TSO

with a 3-minute delay. If the heuristic model’s run-time is sufficiently short, the passive

contribution can take place during the last five minutes of each PTU. This means that the

first step of the DR program must take place within these 5 minutes, as each subsequent

MPC-run requires the passive contribution data as input and must be completed before

the start of the next PTU.

3.3 Minimizing Internal Imbalances

3.3.1 Model Predictive Control Program

The proposed MILP is a multi-objective optimization problem, which minimizes the sum

of the absolute portfolio imbalances ∆post
t between the day-ahead production/consumption

schedule and updated schedule based on the most recent forecast, while also minimizing

battery degradation D. The schedule is optimized for the remaining run-time of the model,

between current PTU (k) and final PTU (T = 96). The multi-objective approach is

achieved by including fictitious variable ζ in the objective function (3.1a), which can be

varied exogenously between 0 and 1 to determine the optimal weighting factor of the

objectives. Both objectives are expressed as percentages (i.e. % imbalance remaining after

the optimal schedule is implemented, and % of battery capacity degradation). This section

outlines the constraints related to ∆post
t . ∆pre

t are a vector of static parameter set before the

optimization is performed, and depend on the updated expected demand/supply schedule

of the portfolio ÊACT,pret , estimated before flexible distributed energy sources are activated

(3.1c). Crucially, the demand/supply schedule actually realized (EACTt ) remains unknown

during the model run.

Constraints (3.1d) and the left-hand side of (3.1e) serve a twofold purpose. Mathemat-

ically, the formulation ensures ∆post
t is the absolute value of the imbalances at t as both
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Imbalance Minimization Passive Contribution

Start (t=1)

Solar PV &
demand model

Update GHI
& Temp data

Recalculate port-
folio imbalance MILP I

Optimal BESS
schedule

Update imbal-
ance market data

Set price
threshold π∗

Binary pre-
diction model

E[price] > π∗ MILP II

Amend BESS
schedule

yes

t+1<96

no

End

no

Shift: t=t+1

yes

Figure 3.2: Rudimentary flowchart of the MPC and heurstic program
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∆+
t (portfolio surplus, EDAk − ÊACTk > 0) and ∆−t (portfolio shortage, EDAk − ÊACTk < 0)

are expressed as positive values. Practically, it allows for the straightforward adjustment

of the predictive control model to optimize the system configuration. These variables can

be adjusted through ÊACTk in (3.1e), which aggregates the distributed energy resources

described in (sub)section 3.3.2 as expressed by equation (3.1f).

Throughout this thesis, k denotes the current PTU, i.e. the first PTU in the optimal

schedule and t refers to each PTU between k and the final PTU T . Figure 3.3 visualizes

how the MPC-program solves (3.1a) and implements the model outcome for the upcoming

PTU, after which the (shrinking) optimization horizon is shifted forward by one PTU.

The subsequent section addresses degradation objective D. Algorithm 1 describes the

complete program, including the passive contribution model in pseudo-code. Note that in

the algorithm, the expected/forecasted actual demand/supply schedule ÊACTt is denoted

as EACT,fcstt

minimize ζ ·∆% · 100 + (1− ζ) ·D (3.1a)

subject to ∆% =

∑T=96
t=k ∆post

t∑T=96
t=k |∆

pre
t |

(3.1b)

∆pre
t = EDAt − ÊACT,pret ∀ t ∈ {k, ..., T} (3.1c)

∆post
t = ∆+

t + ∆−t ∀ t ∈ {k, ..., T} (3.1d)

∆+
t −∆−t = EDAt − ÊACTt ∀ t ∈ {k, ..., T} (3.1e)

ÊACTt =

I=nc∑
i=1

EACT,NFt,i −
I=np∑
i=1

ÊACT,PVt,i︸ ︷︷ ︸
not controllable

+

I=nb∑
i=1

EBESSt,i︸ ︷︷ ︸
controllable

∀ t ∈ {k, ..., T} (3.1f)

EDAt =

I=15∑
i=1

EDA,NFt,i −
I=6∑
i=1

EDA,PVt,i︸ ︷︷ ︸
by definition

∀ t ∈ {k, ..., T} (3.1g)
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t=k=1 T=96

t t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 6 t+ 7 t+ 8 t+ 9 t+ 10t+ 11 t+ ... t+ 95

δτ = 15 min

optimization horizon MILP at 23:45

t=k=2 T=96

t t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 6 t+ 7 t+ 8 t+ 9 t+ 10 t+ ... t+ 94

implement run k=1
optimization horizon MILP at 00:00

t=k=3 T=96

t t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 6 t+ 7 t+ 8 t+ 9 t+ ... t+ 93

implement run k=2
optimization horizon MILP at 00:15

t=k=4 T=96

t t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 6 t+ 7 t+ 8 t+ ... t+ 92

implement run k=3
optimization horizon MILP at 00:30

t=k T=96

t t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ ... t+ 96− k

implement run k -1
optimization horizon MILP at h

Figure 3.3: Optimization horizons of the MILP-based predictive control model at PTUs k=[1,4]
and at one undefined PTU k. Aach MILP is solved during the previous PTU, after which the
control action is implemented (indicated in bright blue), after which the MPC shifts forward on
the time axis.

3.3.2 Battery Energy Storage System Model

The reduction of imbalances by charging or discharging the BESSs is governed by the charg-

ing and discharging dynamics of the modules, and by the additional objectives reducing

the total degradation of the batteries over the optimization horizon. These quantitative

characteristics, which where qualitatively introduced in section 2.3.2, are introduced here.

The specific BESS analyzed in this thesis comprises n LiFePO4 modules which contain

45 cells of 17 Ah with a nominal voltage of 3.2 V, in a 15s3p configuration, delivering a rated

capacity of 2,4 kWh. All relevant characteristics of the battery module are listed in table

3.1. The BESS’s total capacity (or rather, rated battery energy (kWh)) stems from the

combination of an optimal number of modules in the battery pack. It should be noted that

the model remains agnostic with respect to the series/parallel configuration of the BESS,

and only uses the maximum (dis)charge current and rated voltage to establish maximum

(dis)charging capacity (i.e.Pmax,dis(charge)(W ) = Imax,(dis)charge ∗ Unom ∗ nmodules):
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Assumption 4: The configuration of the modules does not alter the BESS charac-

teristics in terms of power (kW ), energy (kWh) and degradation rate.

The cycle life of the battery, which is assumed to be static, is taken from (Omar et al.,

2014), and only depends on the maximum DoD of 60% (C-rate is limited and it is assumed

high temperatures do not occur) The next section outlines the physical limitations of the

BESS,comprising the battery’s rated capacity and energy, maximum (dis)charge current,

round-trip efficiency of the entire BESS, and static restrictions to prevent high rates of

degradation. The second objective of the MILP, the amount of degradation caused by

battery activation, will be introduced subsequently. In algorithm 1, the complete vector of

(static) battery parameters is referred to as ZBESS .

Charging and Discharging

Whilst the optimization program targets energy (costs), battery input and output are

modeled in terms of power (kW ). Therefore equation (3.2a) includes time duration δτ =

0.25h during which power transfer takes place. Note that the model treats the combined

BESSs as one system, with an aggregate output. During each PTU t of duration δτ , the

aggregated BESSs must either demand energy by charging, or supply energy by discharging,

or remain inactivate, but simultaneous charging and discharging may not occur. This

limitation is ensured by introducing binary variable βt in constraints (3.2b), (3.2c), (3.2d)

and (3.2e). These equations also imply non-negativity and constrain the battery maximum

(dis)charge rate (kW ) (Antoniadou-Plytaria et al., 2020; Maheshwari et al., 2020; J. Wang

et al., 2019). The latter is primarily determined by the grid1: the decentralized BESS

hypothesized here is distributed amongst a predetermined number of end-users (see section

3.5), so the grid capacity is the aggregate of all connections with a BESS. However, up to

a certain BESS size, (3.2d) and (3.2e) will be binding. After all, the amount of modules

determines the (dis)charge power of the total BESS, due to the upper limits of (dis)charge

current and voltage).

The battery system’s charging and discharging dynamics are governed by SoC-equation

(3.3a). By including QBESS in the equation, the total energy storage capacity of the

BESS is included in the model. The energy ultimately stored and recovered is reduced

by efficiencies ηch and ηdis, which comprise both conversion and internal battery losses

1The assumed 3-phase connection has a maximum current of 160 A and maximum voltage of 230 V,
resulting in a maximum (disc)charge power of approximately 100 kW per connection (Liander, 2014)
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(Antoniadou-Plytaria et al., 2020). In order to limit calendar degradation, the state of

charge is kept within health constraints (3.3b). SoC at t = 0 (i.e. at 23:45 of the pre-

ceding day) and t = 96 (i.e. the final PTU) is set at 50% (3.3c) (Schneider et al., 2020).

However, when the shrinking optimization horizon is still relatively long and the potential

for passive contribution is still uncertain, a uniform constraint for t = 96 is needlessly

binding: the MPC program may (dis)charge the battery early on in the day to meet the

constraint, thus increasing imbalance. This activation may turn out to be unnecessary or

even counterproductive during subsequent model runs as new weather forecasts come in,

or opportunities for passive contribution arise. Hence, constraint (3.3d) tightens linearly

as the horizon shrinks.

I=nb∑
i=1

EBESSt,i = (P cht − P dist ) · δτ ∀ t ∈ {k, ..., T} (3.2a)

0 ≤ P cht ≤ βt · P grid,maxt ∀ t ∈ {k, ..., T} (3.2b)

0 ≤ P dist ≤ (1− βt) · P grid,maxt ∀ t ∈ {k, ..., T} (3.2c)

0 ≤ P cht ≤ βt · P ch,maxt ∀ t ∈ {k, ..., T} (3.2d)

0 ≤ P dist ≤ (1− βt) · P dis,maxt ∀ t ∈ {k, ..., T} (3.2e)

SoCt = SoCt−1−
1

ηdis ·QBESS
· P dist · δτ

+
ηch

QBESS
· P cht · δτ ∀ t ∈ {k, ..., T} (3.3a)

SoCmin ≤ SoCk ≤ SoCmax ∀ t ∈ {k, ..., T} (3.3b)

SoC0 = 50% (3.3c)

50% · k
96

≤ SoC96 ≤ 50% · (2− k

96
) (3.3d)

While the model predictive control program does reduce calendar degradation through

constraint (3.3b) and cycle degradation through objective D, the techno-economic reper-
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cussions (i.e. power fade) of these mechanisms on the battery capacity QBESS , is not con-

sidered by the optimization programs in the MPC-framework. However, the optimal sizing

program in section 3.5, does explicitly include degradation costs. Finally, self-discharging

of the BESS is neglected.

Assumption 5: The maximum energy capacity (kWh) (dis) charge rate (kW ), and

(dis)charging efficiency (%) remain constant over the life-cycle of the battery, and

are not influenced by environmental or operating conditions (Antoniadou-Plytaria

et al., 2020; Maheshwari et al., 2020).

Assumption 6: Since self-discharge rate of Li-ion batteries is very small, this variable

is neglected in the SoC-formula.

Table 3.1: battery module parameters

minimum rated energy capacity 2.4 kWh

rated voltage 48 V

nominal capacity 50 Ah

max. charge current 50 A

max. discharge current 75 A

max. charge C-rate 1C

max. discharge C-rate 1.5C

min. State of Charge 20%

max. State of Charge 80%

battery costs 500e/kWh

cycle life2 at 60%DoD 10000

(dis)charging efficiency 94%

grid capacity 100 kWh (·10 connections)

Battery Degradation

Whilst constraints (3.2e) and (3.3a) limit calendar degradation, the life-cycle costs of the

BESS is also affected by cycle aging, which depends on (dis)charging rates and current

throughput (Schneider et al., 2020). Hence, the second part of the objective function

minimizes total battery degradation D over the control horizon. The degradation formula
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applied here is based on Schimpe et al. (2018), who present a range of semi-empirical models

to capture several cycle aging effects that occur under different temperature conditions.

The model is parameterized on experimental data obtained from a life-time test study

conduced on a commercial LiFePO4 cell with a nominal capacity of 3 Ah and a nominal

voltage of 3.2V, designed for stationary applications (Schimpe et al., 2018). While the

model error for cell capacity loss is below 1% of initial cell capacity, it should be noted

that application of this model to the current problem presupposes that the parameters can

be reliably generalized to a LiFePO4 cell of 17 Ah. Moreover, the(dis)charging power of the

entire BESS should arise from a uniform current through the battery. These assumptions

(7 and 8) implicitly follow Cardoso et al. (2018) and D. Wang et al. (2016), who utilize a

semi-empirical model parameterized on a 1.5 Ah LiNiCoO2 cell by J. Wang et al., 2014, to

optimize BESSs with energy ratings of multiple kilowatt-hours.

Assumption 7: The battery energy management system ensures uniform (dis)charging

behaviour across all modules and cells, regardless of the BESS module and cell con-

figuration.

Assumption 8: The parameters in equation (3.4) do not depend on battery cell

capacity.

Since the application of the model proposed here assumes the reference temperature (298.15

K) is maintained throughout, a number of capacity loss mechanisms pertaining to the tem-

perature dependence of both calendar and cycle degradation are not considered. Similarly,

SOCmax is below the region in which the cycle aging mechanism for high SOC-levels ap-

plies . Consequently, the capacity loss model reduces to (3.4), where kcycle,lowT,Ref refers

to the cycle degradation stress factor (4.009 · 10−4 ·Ah−0.5) which applies at the low refer-

ence temperatures. This equations depends on the current rate in two ways. The charge

throughput in the charge direction QCh (which is half of the total charge throughput) ,

captures the assumed mechanism for lithium loss, while the current rate also enters via an

exponential correlation term with the charge current ICh, nominal cell capacity Cnom, and

maximum charging current ICh,ref . Finally, βlowT = 2.64h. To facilitate implementation,

(3.5b) restates the model in term of C-rate (3.5a). The total degradation accumulated over

the optimization horizon is simply (3.5c)
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QLoss,Cyc,LowT = kcycle,lowT,Ref · exp[βlowT ·
ICh − ICh,ref

Cnom
] ·
√
QCh (3.4)

C-ratet=
P cht + P dist

QBESS
(3.5a)

Qloss,t =4.009 · 10−4 · exp[2.64 ·
C-ratet · Cnom − ICh,ref

Cnom
] ·
√

C-ratet · Cnom · δτ
2

(3.5b)

D =

T=96∑
t=k

Qloss,t ∀ t ∈ {k, ..., T} (3.5c)

In the implementation of the model, (3.5b) is captured by a piecewise linear function

to circumvent the formula’s non-linearity in C-ratet. To ensure computational efficiency, a

rather coarse linearization in 5 domains is used (see figure 3.4)

Figure 3.4: Piecewise linearization of capacity loss model 3.5b

3.4 Heuristic Control Program

The control method enabling passive contribution proposed in this thesis is referred to as

’heuristic’, because the control actions are based on a number of pre-determined ’rules’,

as opposed to exact empirical or theoretical models. The rule underlying the heuristic

model proposed in this thesis is expressed as a percentile in the frequency distribution of

historical imbalance prices, and approach loosely borrowed from Dengiz et al. (2019). The

value is related to this percentile is the price threshold referred to in section 3.2.2. The

percentile itself, which relates to the "scarcity" of the flexibility available in the system, is

introduced in section 3.4.1. The subsequent steps of the program, i.e. (1) the combination
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of statistical models to predict regulation states and imbalance prices, and (2) the opti-

mization program to determine the maximum feasible amount of passive contribution, are

outlined in subsections 3.4.2 and 3.4.3.

3.4.1 Price Threshold Setting

To ensure a certain calendar life, the number of charging cycles that may be performed

during on model run is constrained. This number, N0 is obtained from the system op-

timization model introduced in section3.5. The difference between this number and the

amount of cycles already performed determines the "scarcity" of the available battery ca-

pacity at a particular point in time. After each run of the MPC-model, the amount of full

equivalent cycles (FEC) performed over the entire optimization horizon (both to minimize

imbalances and engage in passive contribution) is calculated. The cycle counting method

adopted by this thesis may be referred to as half-cycle counting. This is a more rudi-

mentary approach than rainflow cycle counting, the most common alternative, which is a

separate algorithm. However, Antoniadou-Plytaria et al. (2020) find that results obtained

using both approaches largely correspond. The FECs performed to minimize imbalance

determines the potential amount of BESS activations "left" for passive contribution in

terms of n PTUs (3.7). As mentioned earlier, the maximum depth of discharge (DODmax)

is defined as the difference between SOCmax and SOCmin.

FECt =
1

2

T=96∑
t=0

PBESS,cht + PBESS,dist + 1
3 · P

pc,D
t + 1

3 · P
pc,U
t

QBESS
· δτ (3.6)

activationst = (N0 − FECt) ∗
QBESS ∗DODmax

P(dis)charge,max · 1
3 · δτ

(3.7)

percentileup = max{(1− activationsk
T − k

) ∗ 100%, 50%}∀ activationsk >0 (3.8a)

percentiledown= min{(activationsk
T − k

) ∗ 100%, 50%} ∀ activationsk >0 (3.8b)

The number of activations still available at PTU=k must be exploited optimally during

the remaining horizon. The heuristic proposed by this model is the ratio of n remaining
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activation to n remaining PTUs (T − k), which is converted into percentile. For instance,

if the BESS may be activated twice during a remaining horizon of 20 PTUs (i.e. between

18:45 and 00:00), the passive contribution should only take place if the upward imbal-

ance price (which is paid by the TSO) is above the 90th percentile of historical upward

imbalance prices (3.8a). Alternatively, downward imbalance prices should be below the

10th percentile, as these prices are paid by the aggregator (3.8b). To account for seasonal

variation, a (rolling) window of 30 days around the operation date during the previous 5

years is used. This approach ensures that, if the day progresses without any activation

taking place, the activation threshold will decline. The 50th percentile is used as the lower

and upper bound for the upward and downward regulation price respectively.

3.4.2 Intra-PTU Imbalance Price Forecasting

Hypothetically, the objective funciton of the heuristic control model is (3.9), where λUt and

λDt are binary variables distinguishing downward and upward regulation from all other

possible states, respectively. On account of the imbalance settlement system of the TSO,

the optimal upward regulation price, πUt is positive from the perspective of the aggrega-

tor, and the optimal downward imbalance price πDt is negative. Corresponding to the sign

convention of ∆t in constraint (3.1d) in section 3.3.1, both upward and downward contribu-

tion, Epc,upt and Epc,downt are modeled as positive values, allowing for more straightforward

formulation in combination with the imbalance price. It should be noted however, that this

crucially contrasts with the sign convention of the underlying subsystems, where energy

production is expressed as a negative value (3.1f).

maximize
T=96∑
t=0

Epc,upt λUt π
U
t + Epc,downt λDt π

D
t (3.9)

where λUt + λDt = 1

λUt , λ
D
t ∈ {0, 1}

Since both λt and πt, are unknown ahead of time, (3.9) cannot be actually implemented.

Instead, the heuristic control program employs two pairs of binary regression models to

formulate predictions about both components of the market state. The first pair is used
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to forecast if either regulation state 1 or -1 will occur, the second to forecast if either

the upward or downward imbalance price threshold will be surpassed. For simplicity, this

approach ignores the possibility of regulation state 2, which is treated as 0. The probability

of a regulation state occurring is estimated conditional on a vector X of market forecast

data. This data consists of a relevant subset of all market data published by TenneT during

the first 6 minutes of each PTU, i.e. upward and downward adjustment capacity activated,

upward and downward reserve capacity activated and the highest and lowest bid price for

upward and downward regulation, respectively (see table 4.4. In addition, the differences

of all variables and several time-related dummy variables will be included. The sequential

selection of relevant variables from data accumulated during the first 6 minutes of each

PTU is outlined section 4.3.

The prediction of a certain regulation state occurring is obtained from logistical re-

gression models (3.10a) and (3.11a), which estimate the probability of one particular state

occurring. Upward and downward regulation are thus expressed as predicted binary vari-

ables λ̂Dt and λ̂Ut . The binary settlement price variables πD≤DTh,pr
t and πU≥UTh,pr

t take

on 1 if the settlement price respectively falls below or above the upwards or downwards

regulation price percentile determined by (3.8a) and (3.8b). Since these variables are deter-

mined by the conditional probability Pr(πt ≤ / ≥ πTht |λ = 1), the forecast data on which

models (3.12a) and (3.13a) are estimated a subset of the total historical sample where λDt

= 1 and λUt = 1, respectively.

Pr(λDt = 1|Xt)=
1

1 + e−(β0 + βXt)
(3.10a)

λ̂Dt =


0, if Pr(λDt = 0) ≤ 0.5

1, if Pr(λDt = 1) > 0.5

(3.10b)

Pr(λUt = 1|Xt)=
1

1 + e−(β0 + βXt)
(3.11a)

λ̂Uk =


0, if Pr(λUt = 0) ≤ 0.5

1, if Pr(λUt = 1) > 0.5

(3.11b)
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Pr(πDt ≤ π
DTh
t |XD

t )= frac11 + e−(β0 + βX) (3.12a)

π̂D≤DTh
t =


0, if Pr(πDt < πDTh

t ) ≤ 0.5

1, if Pr(πDt < πDTh
t ) > 0.5

(3.12b)

Pr(πUt ≥ π
UTh
t |XU

t ) =
1

1 + e−(β0 + βX)
(3.13a)

π̂U≥UTh
t =


0, if Pr(πUt > πUTh

t ) ≤ 0.5

1, if Pr(πUt > πUTh
t ) > 0.5

(3.13b)

t=k T=96

t t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 6 t+ ... t+ 96− k

II. implement run k

I. optimization horizon for MILP run k

III. apply heuristic model during k

IV. implement heuristic k
t=k+1 T=96

t t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ ... t+ 96− (k + 1)

V. optimization horizon MILP run k+1

Figure 3.5: The timeline of the heuristic program as integrated in the MPC timeline. Data is
obtained and the model is applied during the first 10 minutes (the dark gray area), after which
the blue PTU is updated with the control action set for the final 5 minutes, which are indicated
in green.

3.4.3 Passive Contribution Model

The products of the regulation state prediction and the settlement price prediction enter as

parameters λ̂Ut π̂
U≥UTh
t and λ̂Dt π̂

D≤DTh
t in an MILP which largely mirrors the constraints of

imbalance minimization problem. However, the objective equation (3.14a) is singular, and

does not include battery degradation since high levels of degradation are already prevented

by (3.7). Crucially, passive contribution (kWh) should be maximized when high regulation

prices occur, but within the limits of the previously reduced imbalance. This is achieved
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by constraints (3.14b) -(3.14f), where P t is output of the imbalance minimization problem.

While the (dis)charging schedule may not be changed during the current PTU k, the

schedule may change for upcoming PTUs, but only if no imbalance ( ∆pre
t ) is forecast.

Figure 3.5 visualizes how the passive contribution model is embedded in the optimization

horizon of the MPC-program.

maximize Epct = (P pc,Dt λD,prt πD≤DTh,pr
t + P pc,Ut λU,prt πU≥UTh,pr

t )
δτ

3
∀ t = k (3.14a)

subject to P pc,Dt = P pc,Ut =0 ∀ t ∈ {k + 1, ., T}(3.14b)

P cht = P cht ∀ t = k (3.14c)

P dist = P dist ∀ t = k (3.14d)

P cht = P cht ∀ t ∈ {k + 1, ., T} ∧ ∆pre
t 6= 0 (3.14e)

P dist = P dist ∀ t ∈ {k + 1, ., T} ∧ ∆pre
t 6= 0 (3.14f)

0 ≤ P pc,Dt ≤ γt· (P grid,maxt − P cht ) ∀ t = k (3.14g)

0 ≤ P pc,Ut ≤ (1− γt)· (P grid,maxt − P dist )∀ t = k (3.14h)

0 ≤ P pc,Dt ≤ γt· (P ch,maxt − P cht ) ∀ t = k (3.14i)

0 ≤ P pc,Ut ≤ (1− γt)· (P dis,maxt − P dist ) ∀ t = k (3.14j)

0 ≤ P cht ≤ βt· P grid,maxt ∀ t ∈ {k, ., T} (3.14k)

0 ≤ P dist ≤ (1− βt)· P grid,maxt ∀ t ∈ {k, ., T} (3.14l)

0 ≤ P cht ≤ βt· P ch,maxt ∀ t ∈ {k, ., T} (3.14m)

0 ≤ P dist ≤ (1− βt)· P dis,maxt ∀ t ∈ {k, ., T} (3.14n)
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SoCt = SoCt−1 −
1

ηdis ·QBESS
· (P dist + P pc,Ut · δτ

3
)

+
ηch

QBESS
· (P cht + P pc,Dt · δτ

3
) ∀ t ∈ {k, ., T − 1} (3.14o)

SoCmin ≤ SoCt ≤ SoCmax ∀ t ∈ {k, ., T} (3.14p)

SoC0 = 50% (3.14q)

50% · k
96
≤ SoC96≤ 50% · (2− k

96
) (3.14r)

3.5 Optimal System Size

An estimation of the economically optimal BESS size must consider the cost reduction

realized by minimizing imbalance reduction and the revenue generated by engaging in pas-

sive contribution, as well as the capital and operating costs of the battery. Hence, the

analysis compares the total costs accrued under the business as usual scenario with the

costs accrued under demand side management. The BAU costs can be simply determined

by equation (3.15), where πt is the settled imbalance price. πt is taken as a negative, since

a positive portfolio imbalance (i.e. a portfolio surplus) in combination with a positive

settlement price results in payment from the TSO to the aggregator (TenneT, 2020). The

imbalance costs accrued by the MPC-program, depend on the interaction of (remaining)

portfolio surplus ∆+
t and shortage ∆−t after imbalance minimization, with the regulation

state and imbalance market price. When upwards regulation, downwards regulation and

mid imbalances price (πUt , πDt and πMt , respectively) are positive, portfolio shortage results

in costs. Specifically, (3.16) demonstrates these possible interactions, where (A) comprises

costs associated with a portfolio shortage and (B) comprises costs associated with a port-

folio surplus.
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Algorithm 1: Model Predictive and Heuristic Control Program

Input: ENF, hist,EPV, hist,GHIhist,Temphist

EDA,ZBESS

πhist, λhist,XTSO, hist, πFCST, λFCST,XTSO, FCST

for PTU=1 to T=96 do
Input: GHIfcst,Tempfcst,GHIact[1...PTU−1]

function (1) Demand Model(ENF, hist):
return ENF fcst

function (2) Kalman Filter(GHIhist[...,0], GHIfcst, GHIact[1...PTU−1]):
return GHIKF

function (3) PV Regression Model(GHIKF , Tempfcst, EPV, hist,

GHIhist, Temphist):
return EPV, fcst

EACT, fcst ← ENF, fcst − EPV, fcst

∆pre, fcst ← EDA − EACT, fcst

MILP I Imbalance Minimization(∆pre, fcst, ZBESS, SOC∗PTU−1):
return EBESS , PBESS, D, SOCPTU , ∆post, fcst

Output: EBESS schedule for [PTU,...,T]
function (4) Full Equivalent Cycle( PBESS, ZBESS):

return FEC
function (5) Remaining Activations( FEC, n cycles, ZBESS):

return n remaining activations
Input: XTSO,fcst

if n remaining activations > 0 then

function(6) Set Price Threshold(XTSO,hist, n activations):
return πUTh

t , πDTh
t

Heuristic Logistic Regression 1(XTSO,hist, XTSO,fcst, λhist):
return λ̂U , λ̂D

Heuristic Logistic Regression 2( XTSO,hist , XTSO,fcst, πhist,

πUTh
t , πDTh

t ):
return π̂U≥UTh

t π̂D≤DTh
t

MILP II Passive Contribution( λ̂U , λ̂D, π̂U≥UTh
t , π̂D≤DTh

t ,

∆pre, fcst, ZBESS, SOCPTU , ∆post, fcst , PBESS, D):
return EPC, PPC, SOC∗PTU

Output: adjusted EBESS activation for [PTU]
end

PTU ← PTU + 1

end
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CostBAU =

T=96∑
t=0

(EDAt − EACTt ) · −πt (3.15)

Cost∆,MPC=
T=96∑
t=0

∆−t · (λUt πUt + λDt π
D
t + (1− λDt − λUt ) · πMt )︸ ︷︷ ︸

A: (EDA
k < EACT

k )

−∆+
t · (λUt πUt + λDt π

D
t + (1− λDt − λUt ) · πMt )︸ ︷︷ ︸

B: (EDA
k > EACT

k )

(3.16)

where λUt + λDt = 1

λUt , λ
D
t ∈ {0, 1}

The costs of the BESS model costs comprise capital expenditure (CAPEX) and oper-

ational costs (OPEX). Since this thesis does not perform a long-term investment analysis,

and only applies the model to single-day horizons, it uses a simplified cost calculation

approach. CAPEX are uniformly divided by the total lifetime of the BESS, without ac-

counting for interest or discount rate (Blok & Nieuwlaar, 2020). OPEX are estimated based

on the assumption that total operating costs during the cycle life of the battery are 33% of

the total CAPEX (Renewable, IRENA, et al., 2017). In this optimization problem, a total

number of 5000 cycles is used, which 50% of the amount used in the MPC program. This

more conservative estimate is adopted to account for the definitional unclearity of DOD,

which has a major impact on the cycle life (Maheshwari, 2018), combined with the fact

that the battery’s is used more intensively when the perfect foresight assumption applies.

Except for the calendar life and FECt, all variables in (3.17) enter into the MILP as

parameters. To identify the optimal number of modules, the MILP is run for a range of

BESS sizes. The calendar life of the BESS depends on the degradation rate of the battery

and the end of life capacity (80%) (3.18) 3 Since the degradation rate Qloss,t is calculated for

each PTU with equation (3.5b), CAPEX is directly influenced by (dis) charging behavior.

In contrast, equation (3.6) of the heuristic model must be restated as (3.19) to determine

the full equivalent cycles during a single PTU.

The revenue accrued by upward and downward passive contribution is determined by

3Note that 3.18 is obtained from the discrete exponential decay formula.
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(3.20). Note that the revenue from downward regulation arises from negative imbalance

prices πDt . Finally, the total net costs of the DSM system during the entire optimization

horizon are calculated by (3.21), in which the avoided imbalance costs are included as a

negative cost of the battery.

CostBESS =

T=96∑
t=0

Nmodules · Costmodule(
EUR
kWh ) · EBESS,rated(kWh)

calendar lifet(PTU)

+
0.33% ·Nmodules · Costmodule(

EUR
kWh ) · FECt

cycle life(PTU)
(3.17)

calendar lifet =
log(0.8)

1− 0.01 ∗Qloss,t(%)
(3.18)

FECt =
1

2

PBESS,cht + PBESS,dist + 1
3 · P

pc,D
t + 1

3 · P
pc,U
t

QBESS
· δτ (3.19)

RevenuePC =

T=96∑
t=0

P pc,Ut · λUt πUt ·
δτ

3
− P pc,Dt · λDt πDt ·

δτ

3
(3.20)

Costnet = CostBESS − (Cost∆,BAU − Cost∆,MPC)−RevenuePC (3.21)

In order to emulate the DSM-program as much as possible, the resulting costs for a

range of different battery sizes are obtained using a Lexicographic optimization approach,

which optimizes multiple objectives subject to a predefined preference order (Castro-

Gutiérrez et al., 2009). The optimal solutions of each objective function are compared

with respect to this order.

In the present case, the sequential minimization of internal imbalances and passive

contribution can be reflected by optimization program (3.22a)-(3.22g), which has a fixed

optimization horizon (t = [1, 96]). Also note that constraint (3.22g) now contains the

actually realized, as opposed the expected supply/demand schedule of the portfolio EACTt .

The objective function of the imbalance minimization program, f1, is prioritized over the

objective of the costs minimization/passive contribution program, f2 by (3.22b). Hence,

the optimal solution of the latter must ensure the minimal imbalances f∗1 , achieved by

choice variables X∗. Vector g1 in (3.22d) contains all constraints of the energy system, i.e.
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(3.1d) - (3.5c).

minimize f2(X) = −(RevenuePC − CostBESS) (3.22a)

subject to f1(X) ≤ f1(X*) (3.22b)

g1(X) ≤ 0 (3.22c)

where: f1(X) = ζ ·∆% · 100 + (1− ζ) ·D (3.22d)

∆% =

∑T=96
t=1 ∆post

t∑T=96
t=1 |EDAt − EACTt |

) ∀t ∈ {1, ..., T} (3.22e)

∆post
t = ∆+

t + ∆−t ∀t ∈ {1, ..., T} (3.22f)

∆+
t −∆−t = EDAt − EACTt ∀t ∈ {1, ..., T} (3.22g)



Chapter 4

Data Preparation and Exploratory Analysis

4.1 Production-Consumption Portfolio

The production-consumption portfolio considered here consists of 21 clients, which have

been classified based on their production/consumption ratio1. A typical profile of each

client type can be seen in figure 4.1. The rudimentary data of the entire portfolio is

shown in table 4.1. Since the perfect forecasting assumption is applied to demand data, no

specific analysis are performed on the energy demand data. The solar energy supply data,

imbalance market data and the selection of representative sample periods, are addressed

hereafter.

4.2 Solar Energy Supply Simulation

The forecasted solar PV generation schedule is estimated based on frequently updated

weather forecasts, comprising Global Horizontal Irradiance (GHI) and temperature (T ).

GHI (W/m2) is the amount of shortwave solar radiation received by one square meter

horizontal to the earth’s surface. While predicted day-ahead and actual solar PV gener-

ation schedules are available for all locations, weather forecast updates are only available

for a single location. To achieve consistency between the schedules, the raw day-ahead

and actual data is replaced by simulated forecasts and actual generation schedules. These

simulations are based on a baseline regression model commonly applied in solar PV fore-

casting. While this model is less accurate than state of the art estimation techniques, the

difference appears to be minimal (Gigoni et al., 2017). Moreover, the analysis of thesis

focuses on the reduction of imbalances between day-ahead predictions and actual energy

1If the maximum net uptake from the grid is less than one third of total production, the client is
labeled as a producer

65
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Figure 4.1: Typical supply-demand profiles of each customer type

supply, based on relative improvements in forecasts over time, as opposed to the absolute

accuracy of the generation schedules. Finally, the model is not used for out-of-sample

predictions, but instead simulates generation schedules for the same installations based

on actual measurements over the same time period. Nonetheless, it should be noted that

especially the volatility of solar energy generation cannot be captured by these regression

based simulations (see figure 4.2).

The multivariate linear regression model proposed by (Gigoni et al., 2017) relates solar

power generated at hour t to GHI, which enters equation (4.1) as its level and its quadratic

term, and in interaction with temperature. The model parameters β1 > 0, β2 < 0 , and

β3 < 0, indicate, that (1) power generation increases with higher GHI, but decreasingly

so as (1) solar radiation intensifies and (2) temperature increases. To take into account

unknown environmental factors that may vary over time, the regression model is applied

to a rolling window of d days in both directions. To prevent the straight application

of proposed regression model from producing sub-optimal simulations, and to select the
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Table 4.1: Daily average contribution to portfolio supply/demand from each client

net_uptake production consumption PVmax kW-peak
(kWh/day) (kWh/day) (kWh/day) (kWh/day) (kW)

producer1 -495.23 497.35 2.12 1185.52 200.00
producer2* -202.88 243.34 40.47 1483.10 230.00
producer3* -143.79 246.79 103.01 1539.80 230.00
producer4 -6188.29 6262.28 73.98 15582.96 2000.00
prosumer1 -346.52 572.19 225.67 1497.15 266.00
prosumer2 774.29 434.17 1208.47 973.10 134.00
prosumer3 171.40 291.22 462.62 693.90 100.00
prosumer4 564.07 1024.24 1588.31 2409.41 360.00
prosumer5 202.68 469.12 671.81 1170.25 150.00
prosumer6* 618.60 426.79 1045.40 1087.62 170.00
prosumer7* 756.17 240.20 996.38 1213.46 180.00
prosumer8 -107.09 249.09 142.00 657.40 93.00
consumer1 496.69 0.00 496.69
consumer2 549.30 0.00 549.30
consumer3 624.69 0.00 624.69
consumer4 392.72 0.00 392.72
consumer5 7393.89 0.00 7393.89
consumer6 202.05 0.00 202.05
consumer7 5438.67 0.00 5438.67
consumer8 3872.85 0.00 3872.85
consumer9 2381.86 0.00 2381.86
mean 807.44 521.75 1329.19 2457.81 342.75

optimal rolling window, all different configurations of the level, square and interaction of the

explanatory variables were tested. Results of this analysis for all solar PV producers and

prosumers, which were performed using the Statsmodels libary in Python, are presented in

appendix tables A.1 and A.2. In most cases the model proposed in the literature performs

best, while the optimal window size varies.

EPV = β1 ·GHI + β2 ·GHI2 + β3 ·GHIt · Tt + υt (4.1)

EPV,∗t,d =

I∑
i=1

β̂
i,[d−4,d+4]
1 ·GHI, ∗t + β̂

i,[d−4,d+4]
2 ·GHI, ∗2t

+β̂
i,[d−4,d+4]
3 ·GHI, ∗t · T, ∗t∀ i ∈ {i...I} (4.2)

The total solar PV production during each time step is estimated with the general

function formula (4.2), where the .̂ signifies fitted parameters, i refers to the individual
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Figure 4.2: Sample of a simulated vs original solar PV energy generation profile

solar system to which the parameters are fitted, t refers to the hour to which the forecast

is applied, and d to the day in the training data. * May either refer to actual measurements

(ACT ), day-ahead forecasts (DA) or the most recent updates available at PTU=k.

4.3 Solar Irradiance Forecasting

Actual GHI and Temperature data with an hourly resolution are obtained from the Dutch

public broadcaster KNMI (2019-2020). Hourly day-ahead and updated GHI and Temper-

ature forecasts were obtained from two sources. Primarily2, data from the commercial

forecaster Buienradar (BR), which is available for the period September 2020 - Januari

2021 is used. To provide more context to these results, forecasts by the KNMI are used

for the period 2019 - 2020. Since these dates do not overlap, exact comparisons are not

possible, however, the wider range of especially the KNMI-data allows for a better repre-

sentation of the model outcome under different circumstances.

New forecast updates by Buienradar are obtained every 15 minutes, while updates

by the KNMI forecasts are updated at a 6 hours frequency. However, actual changes in

the GHI forecasts are less frequent. The histograms in figure 4.3 visualize th probability

distribution of updates per forecasted hour in the dataset (the hours before sunrise and

after sundown are excluded).

Crucially, weather forecasts should increasingly approach the actual values if the model

predictive control program is to reduce imbalances. Counter-intuitively, this is not neces-

sarily the case (see table 4.2). Section 4.3.1 introduces a recursive post-estimation technique
2The models presented in sections 4.2, 4.3.1, and 4.4 are trained on the data until September 2020,

which means the time period of the KNMI forecasts is part of the training data
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Table 4.2: forecast error BR

date RMSE DA RMSE 1h RMSE 4h RMSE 8h cluster
2020-12-09 45.9786 45.4342 45.259 45.1693 0
2020-10-03 47.9875 56.3015 57.4785 49.5992 0
2020-12-04 33.0914 33.9172 34.1461 31.1304 0
2020-12-23 12.418 11.8831 11.2235 11.3867 0
2020-11-27 42.9402 45.2881 46.8129 43.5699 0
2020-09-18 35.9889 31.9574 31.7835 36.63 1
2020-09-30 67.405 69.2736 67.8651 70.2153 1
2020-09-21 30.6668 29.2456 28.8001 32.2222 1
2020-09-12 120.782 114.578 116.202 117.425 1
2020-09-07 32.9689 28.5984 28.2025 31.6646 1
2020-12-06 34.785 42.3636 44.467 42.9323 2
2020-10-20 28.6072 25.9979 25.4502 26.965 2
2020-10-06 44.6053 37.2971 37.4747 36.8752 2
2020-11-10 38.9379 38.7094 38.2676 37.8046 2
2020-11-22 12.7031 12.476 14.1419 13.1208 2
mean 41.991 41.5548 41.8383 41.7807

to tune these forecasts based on actual data. This method is applied to hourly data, which

is subsequently upsampled and linearly interpolated to match the resolution of the MPC

program. Hence, h as opposed to t is adopted as the time-subscript in this subsection.

Figure 4.3: Distribution of number of forecast revisions for each hour. Left: Buienradar; Right:
KNMI

4.3.1 Recursive Forecast Improvements

The recursive post-estimation method proposed in this thesis employs a Kalman Filter

(KF). This algorithm estimates the states of a stochastic dynamic system at h by com-

bining model-generated predictions x̂h|h−1 with actual measurements Zh−1. The process

disturbance and measurement noise are used to determine the contribution of each esti-

mation component to a new revised (i.e. filtered) estimation. This approach effectively
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enables the estimation of unknown disturbances in measurement data by using existing

knowledge of the system. As this noise is recorded during the previous states of the sys-

tem, the KF is a recursive algorithm, which comprises a form of feedback control. The KF

has been successfully used in many engineering applications, traditionally to more accu-

rately estimate the trajectory of aircraft and satellites Simon (2001). Moreover, the KF

has been used in a variety of energy systems applications, such as Hokoi et al. (1990), Kim

and Park (2017), Louka et al. (2008), and Pelland et al. (2013).

In the absence of a theoretical model, this thesis uses an (rolling) Auto-regressive

Moving Average (ARMA) model as the state equation of in the Kalman filter, similar to

Hokoi et al. (1990). In the proposed set-up, the externally obtained GHI-forecasts 3 are

treated as as measurement data Zh. The subsequent paragraph introduces the ARMA

model, section 4.3.1 outlines the implementation of the Kalman Filter.

Auto-regressive Moving Average Model

The ACF and PACF plots 4.4 of GHI for 2020-2021 provides insights in the most appro-

priate prediction model. The Autocorrelation Function (ACF) plot indicates that GHIh is

positively correlated with 5 of its lags, and also shows a clear seasonal pattern4. Moreover,

the Partial Autocorrelation Function (PACF) plot indicates that the part of GHIh that is

not predicted by its lags (i.e. the prediction error), is also correlated with its lags. This

means an Autoregressive Moving Average Model is most appropriate. To find the optimal

combination of between auto-regressive and moving average orders (respectively p and q),

a grid search is performed using the Statsmodels libary in Python. The results of this anal-

ysis are presented in the left section of appendix table B.1. While the Dickey-Fuller test

provides a strong evidence against the presence of a unit root (i.e. the data is stationary),

the diurnal trend of GHI within shorter time horizons may render an ARIMA model more

suitable. Hence, the grid search also includes order of integration d.

The right section of appendix table B.1 sorts all ARMA(p,q) combinations by the

Aikaike Information Criterion. This common metric estimates the trade-off between good-

ness of fit and overfitting the model Stock and Watson (2015). The ARMA(4,0,2) model,

which exhibits both low prediction errors and has a relatively low AIC-score has functional

3For simplicity, and in order to reduce computational complexity, the temperature forecasts is not
included in the Kalman filter, based on its smaller role in the regression models (4.2)

4While SARIMA models may yield more accurate forecasting results, a more elaborate model would
complicate the formulation of the Kalman filter, and the delay the computation time of the model. Hence,
SARIMA models are not considered here.
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form 4.4. Parameters φp and γq are estimated on the optimal a backward looking window

of 16 days.

xh − φ1 · xh−1 − φ2 · xh−2 − φ3 · xh−3 − φ4 · xh−4 = wh + γ1 · wh−1 + γ2 · wh−2

where w ∼ N(0, σ2)
(4.4)

Figure 4.4: ACF and PACF plots of GHI data

Kalman Filter

The Kalman filter is typically modeled as a sequence of two sets of matrix equations, which

record the propagation of estimated states and error co-variance. The first set are referred

to as time update equations, and project forward the system state and modeling error.

The second set are referred to as measurement update equations which revise these a priori

estimates by incorporating new measurements and measurement noise (Bishop, Welch, et

al., 2001). The calculation procedure thus consists of the prediction and correction steps

outlined below. Note that in the proposed application of the KF, a clear distinction is

made between predictions, which are obtained from the model, and forecasts which are

treated as measurement data.
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1. Prediction The prediction step simply applies the ARMA-model, which is restated

in matrix form by equation(4.5), where the state vector X−h is the a priori prediction

obtained from the ARMA(4,2) model, fitted to a window of 15 days prior to h using the

Statsmodels-library in python. System state matrices, and the [1x1] variance matrix of

residual wh are subsequently used in the a priori error covariance calculation (4.6) P−h ,

which itself relies on the previous KF iteration. As starting value, P−0 is used, which is the

variance-covariance matrix of the auto-regressive parameters φ.

X̂
−
h = Fh−1 ·Xh−1 + Gh−1 · wh (4.5)

where Fh =


φ1 1 0 0

φ2 0 1 0

φ3 0 0 1

φ4 0 0 0

 ,Xh =


xh

xh−1

xh−2

xh−3

 , Gh =


1

γh−1

γh−2

0



P−h = Fh−1 ·P+
h−1 · F

T
h−1 + Gh−1 · σ2

h−1 ·GT
h−1 (4.6)

where P−0 =


σ2
φ1

σφ1,2 σφ1,3 σφ1,4

σφ2,1 σ2
φ2

σφ2,3 σφ2,4

σφ3,1 σφ3,2 σ2
φ3

σφ3,4

σφ4,1 σφ4,2 σφ4,3 σ2
φ4


2a. Kalman Gain Calculation The Kalman gain, which expresses the weight that

should be placed on the contribution of the externally obtained forecasts, as opposed to

the model prediction, is estimated based on the variance of the forecasting error vup to

h-1, which is obtained from the "measurement" equation 4.8. Due to matrix H, vthis is

simply the latest forecasting error. Consequently, the KF is able quickly adjust the revised

predictions if forecast accuracy improves or deteriorates.

Zh = H ·Xh + vh

where v ∼ N(0,R−h−1), H =
[
1 0 0 0

] (4.8)
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Kh = P−h ·H
T · (H ·P−h ·H

T + Rh−1)−1 (4.9)

2b. Correction In common applications, the KF-algorithm minimizes the noise in

real-time estimations, e.g. of the position of a satellite (e.g. Wickert and Siddappa (2018).

In contrast, the proposed application of the KF reduces the error in solar irradiance forecast.

Hence, X̂
+
and X̂

−
now refer to the prediction model’s projection over the entire forecasting

horizon, which is (i.e. 24− h). Therefore the Kalman gain obtained from the most recent

prediction and forecast is applied to the entire forecasting vector.

X̂
+
h,..,24−h = X̂

−
h + Kh · (Zh,...,24−h −H · X̂−h ) (4.10)

P+
h = P−h −Kh ·H ·P−h (4.11)

In figure 4.5, the sequentially generated 1-hour ahead KF-forecasts are presented for

6 representative5 MPC-runs, together with the actual GHI record and the original GHI

forecast. A similar figure (B.1) for the KNMI forecasts is included in appendix B. The

corresponding table ?? demonstrates that the application of the KF indeed reduces the

forecast error, and is most succesful in doing so when applied to the KNMI forecasts.

Table 4.3: Error metrics of Kalman filtered vs original forecasts

2020 RMSE_kf RMSE_org cluster
12-09 37.84 47.60 0
10-03 39.94 43.65 0
12-04 31.16 36.53 0
12-23 12.49 12.58 0
09-18 41.64 43.92 1
09-30 83.93 88.58 1
09-21 33.68 36.12 1
09-12 140.64 140.70 1
12-06 31.07 36.89 2
10-20 32.71 35.49 2
10-06 67.68 65.72 2
11-10 40.8 47.09 2
mean 46.4649 49.4930

2019 RMSE_kf RMSE_org cluster
01-07 10.58 12.29 0
09-03 55.17 48.25 0

03-06 25.482435 43.600219 1
01-04 10.446324 31.709782 1

09-06 59.43 61.58 2
07-04 20.15 20.66 2

07-03 89.88 112.99 3
07-06 78.52 100.49 3

w. mean 47.35 56.96

5The selection of representative days are discussed in section 4.5.1.
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Figure 4.5: 1-hour ahead forecast before and after applying the Kalman filter

4.4 Imbalance Market Forecasting

4.4.1 Data Preparation

The LR models introduced in section 3.4.2 are applied to the first 6 minutes of market

data published by TenneT, displayed in table 4.4. The data is augmented by taking the

differences and the overall slope of each variable. Moreover, the probability distribution

of imbalance prices varies depending on the hour and month in which price settlement

takes place, especially at the margins (see figures 4.6 and 4.7). To take into account this

variation, both hours (in periods of 6 hours) and months (in periods of 2 months) are

added to the data as dummy variables in forecasting models 3.12a and 3.13a. The data

set, which covers 2015-2021 is split in a training set (before 01-09-2020) and testing set

(after 01-09-2020) to avoid overfitting. Moreover, the class balance of regulation state

dummies and price threshold dummies is evaluated. While the regulation state data is

fairly balanced (see figure 4.8), the price threshold dummy represents only fraction of the

data below 30%. An LR model trained on this data is likely to frequently fail to identify

the minority class (i.e. the imbalance prices above threshold). For LR models applied

to large datasets, the preferred method to address this issue is undersampling, reducing
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Table 4.4: imbalance market settlement forecast

variable mean min max
IGCCup 30.00 0.00 735.00
IGCCdow 40.75 0.00 953.00
upward 31.06 0.00 666.00
downward 29.05 0.00 672.00
upward reserve 0.15 0.00 145.00
downward reserve 0.03 0.00 225.00
emergency 0.00 0.00 1.00
highest price upwards 22.50 0.00 936.12
mid price upwards 31.86 -31.07 107.40
lowest price downwards 8.70 -500.00 186.51

the size of the majority class by randomly removing a certain amount of instances in the

dataset (Tantithamthavorn et al., 2018). The result of this method can be observed in

figure 4.9.

4.4.2 Variable Selection

The 25 independent variables with the most predictive power are selected using the re-

cursive feature elimination (RFE) algorithm in the Scikit-learn library in Python (Guyon

& Elisseeff, 2003; Kuhn, Johnson, et al., 2013). In order to construct both feasible and

parsimonious models, LR models with random combinations of these features are tested

in a loop, each time dropping those that do not increase the goodness of fit (pseudo R2).

In the case of regulation state forecasting, this coincides with high significance levels of

the selected variables (lower than p = 0.01). Moreover, a small number of previously elim-

inated variables turn out to improve the predictive power and are thus included in the

model. The selected features are highlighted in appendix tables C.1 and C.2.

The statistical output of the resulting models as implemented in Statsmodels can be

found in the appendix as well, where output tables C.3 and C.4 correspond to logistic

regression equations (3.10a) and (3.11a). C.5 and C.6 correspond to equations (3.12a)

and (3.13a). Note that in the threshold prediction models, the p-values of some variables

exceed 0.1, despite improving the model’s goodness of fit. These variables are nonetheless

retained, as the models are judged based on their predictive performance, in terms of true

positive and true negative rate. These metrics are visualized by confusion matrices 4.10(b)

- 4.10(e). The models exhibit low false positive rates, meaning battery activations are very

unlikely to result in negative passive contribution revenue. However, the false negative
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rates are relatively high. To address this, the binary classification models 3.10a-3.13a can

be made more sensitive by lowering the classification criteria 0.5 (Provost, 2000).

4.5 Selecting Representative Days

Due to computational limitations, the DSM-program cannot be applied to the entire

dataset. This is a common challenge in energy systems optimization studies, which can be

addressed by selecting a "limited number of well-chosen representative historical periods"

(Poncelet et al., 2016) (Schütz et al., 2018). After all, in order to obtain reliable (cost)

estimates it is essential to correctly capture the variability of VRES (Nahmmacher et al.,

2016). This issue can be addressed by simply selecting days which diverging conditions,

which capture the model outcome in different scenarios. However, since there is no consis-

tent criterion to make this selection, more advanced selection methods may be preferred

(Poncelet et al., 2016). The most common strategy, the application of a clustering algo-

rithm, is applied in this thesis as well. Specifically, Ward’s hierarchical clustering method

is used to identify days with similar characteristics following a procedure proposed by Nah-

mmacher et al. (2016) who utilize it to produce input data for the European electricity

system model LIMES-EU, which adequately replicates the variability of electricity demand

and multi-regional VRE generation.

4.5.1 Hierarchical Clustering

(1) Data Normalization

The dates from which representative days can be selected are constrained by the dates for

which forecast updates are available, i.e. 1 September 2020 - 31 December 2020 for the BR

forecasts and one week per month for 1 Januari 2020 - 31 December 2019 for the KNMI

forecasts.

A subset of the other key variables that define the optimization environment - the

(mean) solar irradiance, the errors in the day-ahead solar irradiance forecasts, (mean and

maximum) upward and downward settlement price and price volatility - are selected from

the available data. In order to correctly compare the "distances" between the days based

on each of these variables, the data is normalized.
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(2) Clustering Algorithm

The (agglomerative) hierarchical clustering algorithm minimizes the deviation between

historic days dd with a vector of selected variables (Vd) Vd and their cluster "representative"

c with vector (Vc) (4.12).

min
∑
c

∑
d∈Dc

||Vd − V ∗c ||2 (4.12)

The procedure starts with clusters of just one member, and iteratively combines these

clusters in a way that achieves the smallest increase in the Sum of Squares between the

data in the cluster and a vector of the means of these variables, i.e. the cluster centroid

c (Ward Jr, 1963). The algorithm implements these iterations by sequentially combining

the clusters with the smallest euclidean distance until there is only one cluster left. In this

thesis, the algorithm is applied to the data using the python-based Scikit-learn library.

(3) Define n Clusters

Based on the resulting dendrogram (figure 4.11), seven clusters may be identified in both

the BR- and the KNMI-dataset. However, since some initial clusters are very small, this

thesis adopts a higher level clustering in three BR-clusters and four KNMI-clusters6.

(4) Select Representative Days

Finally, for each cluster, a number of dates closest to the centroid are selected as represen-

tative days. This "distance" is the simple mean deviation between all measured values of

the respective day and the centroid values. The selected representative days can be found

in table 4.5.

For the BR-clusters, it can be observed that the most relevant distinguishing features of

the hierarchical clusters are average GHI, with clusters 0, 1 and 2 respectively representing

higher, lower and medium average solar energy generation. Secondly, average upward

regulation price and price volatility are distinguishing features, with clusters 0, 1 and 2

respectively representing, higher, lower and medium average prices and price volatility.

In addition, the maximum upwards imbalance price is noticeably higher for cluster 0.

The KNMI-clusters exhibit a similar pattern. In addition, there are noticeable differences

between the market environment in 2019 and 2020. Especially maximum and average

6This corresponds to the results of additional k-means clustering, which estimates the ideal amount of
clusters (see appendix figure D.1)
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upwards regulation prices are higher in 2020.

Based on these days, the total model outcome of the entire dataset can be estimated.

To this end, the weighted average of the results of each cluster is taken, to account for the

size of each cluster relative to the size of the dataset7.

Table 4.5: Days selected using Ward’s Hierarchical Clustering Method

2020 HC ghi RMSE up down maxup max down σ2
up σ2

up x-x
12-09 0 11.0 44.0 78.0 4.0 450.0 -101.0 10110.0 335.0 0.0
10-03 0 19.0 49.0 57.0 3.0 450.0 -82.0 9021.0 433.0 0.0
12-04 0 20.0 31.0 52.0 11.0 523.0 -124.0 11605.0 609.0 0.0
12-23 0 6.0 11.0 81.0 9.0 397.0 -31.0 12226.0 303.0 0.0
11-27 0 7.0 43.0 41.0 12.0 450.0 -74.0 5433.0 337.0 0.0
09-18 1 198.0 36.0 47.0 7.0 250.0 -100.0 6213.0 338.0 0.0
09-30 1 59.0 69.0 60.0 9.0 347.0 -78.0 6810.0 250.0 0.0
09-21 1 180.0 32.0 40.0 6.0 352.0 -79.0 5437.0 322.0 0.0
09-12 1 92.0 115.0 37.0 2.0 248.0 -143.0 3549.0 1298.0 0.0
09-07 1 187.0 31.0 28.0 9.0 362.0 -19.0 2793.0 137.0 0.0
12-06 2 16.0 42.0 39.0 9.0 260.0 -129.0 3634.0 395.0 0.0
10-20 2 21.0 26.0 32.0 9.0 259.0 -29.0 2604.0 185.0 0.0
10-06 2 49.0 36.0 21.0 8.0 252.0 -72.0 1682.0 402.0 0.0
11-10 2 53.0 37.0 32.0 3.0 257.0 -133.0 4392.0 1090.0 0.0
11-22 2 31.0 13.0 30.0 14.0 217.0 -42.0 817.0 178.0 0.0
w. mean8 53.31 39.55 46.52 6.67 334.75 -93.33 6298.90 494.40 0.0

2019 HC ghi RMSE up down maxup max down σ2
up σ2

up x-x
01-07 0 9.0 15.0 41.0 15.0 267.0 -53.0 2796.0 484.0 0.0
09-03 0 64.0 35.0 42.0 7.0 244.0 -9.0 3564.0 103.0 0.0
11-07 0 21.0 20.0 31.0 12.0 451.0 -41.0 4736.0 233.0 0.0
03-06 1 33.0 44.0 50.0 9.0 348.0 -147.0 5040.0 509.0 0.0
01-04 1 4.0 20.0 60.0 14.0 270.0 -130.0 3845.0 961.0 0.0
11-02 1 58.0 33.0 52.0 0.0 215.0 -138.0 4201.0 596.0 0.0
09-06 2 120.0 88.0 19.0 4.0 227.0 -74.0 1049.0 342.0 0.0
07-04 2 313.0 20.0 25.0 7.0 258.0 -151.0 1627.0 404.0 0.0
09-04 2 63.0 62.0 30.0 5.0 247.0 -71.0 3642.0 276.0 0.0
07-03 3 223.0 124.0 19.0 8.0 268.0 -40.0 1445.0 146.0 0.0
07-06 3 185.0 67.0 36.0 7.0 350.0 -75.0 4253.0 209.0 0.0
08-04 3 244.0 106.0 15.0 10.0 108.0 -1.0 471.0 125.0 0.0
w. mean9 130.99 57.94 31.84 7.77 264.38 -75.41 2786.46 334.01 0.0

7Nahmmacher et al. (2016) perform one final scaling step to account for the difference between the
weighted average of the clusters and the historical data. However, due to time restraints, and since the
analysis in this thesis does not involve multi-year extrapolation, this step is skipped.

8Cluster 0, 1, and 2 respectively represent 37.2%, 19.8%, and 43.0% of the total sample
9Cluster 0, 1, 2, and 3 respectively represent 3....
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Figure 4.6: Probability distribution of the settlement price for different time intervals (top: full
price range; bottom left: above 90th percentile (upward regulation); bottom right: below 10th
percentile (downward regulation))

Figure 4.7: Probability distribution of the settlement price for different months, e.g. ’j-f’ refers
to January and February (top: full price range; bottom left: above 90th percentile (upward regu-
lation); bottom right: below 10th percentile (downward regulation))
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Figure 4.8: Class balance of regulation states (2015-2019)

Figure 4.9: Class balance of price thresholds before and after random undersampling (2015-2019)

(b) (c)

(d) (e)

Figure 4.10: (b) upward regulation (87% accurate); (c) downward regulation (86% accurate); (d)
upward threshold (91% accurate); and (e) downward threshold, (92% accurate).
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Figure 4.11: Dendrograms of Hierarchical Clustering (Buienradar (left) and KNMI (right))



Chapter 5

Results

This chapter first presents the results of the auxiliary system optimization model outlined in

section 3.5. The implications of these results motivate the parameters chosen for the model

predictive-heuristic control framework. Subsequently, the outcomes of the actual program

are presented in section 5.2, separately in terms of imbalance reduction and imbalance

costs reduction achieved by the DSM program, and in terms of the revenue generated by

passive contribution.

5.1 Optimal System Conguration

5.1.1 Optimal Battery Energy Storage Size

The BESS modules under consideration are small relative to the average imbalance, and

are equally divided over a 10 grid connections with a maximum capacity (100 kWh).

The optimal system configuration model is thus applied to a range of aggregated BESS

sizes of up to 50 modules per connection. Based on historical data, solar PV energy

generation is simulated, both actual supply, and the day-ahead forecast. The difference

between both (the internal portfolio imbalance (see figure 5.8 and 5.7)) is minimized by

optimally deploying the aggregated BESSs. The optimization program is executing using

Gurobi Optimization (2021), an optimization solver available for Python, and applied to

the representative days in the BR-clusters. The optimal battery size can be determined

in terms of imbalance reduction achieved by the system, battery degradation, total costs,

and net costs.

As can be observed in figure 5.1, beyond a certain aggregate BESS size (250 modules),

82
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the additional capacity only reduces imbalances when daily balance is unusually high1.

A similar pattern exists for the degradation rate (figure 5.2). Figure 5.3 visualizes equa-

tion (3.21) and demonstrates that additional capacity beyond 250 modules is mainly used

for passive contribution during days with high imbalance prices and high price volatility

(i.e. BR cluster 0). Nonetheless, this ability does have a positive impact on the economic

feasibility of the BESS. Figure 5.4 demonstrates that the system must consist of approx-

imately 200 modules to break even. Under the perfect foresight assumption, a BESS of

approximately 350 modules appears to be optimal. However, it appears that a battery with

the assumed characteristics is not able to substantially reduce imbalance costs in general.

Naturally, the amount of FECs decreases as with increasing battery size. The smallest

configuration performs approximately 2 cycles more cycles per day than the largest config-

uration. The economically optimal amount of cycles (performed by a 350-module system)

is rounded downward to 4.

Figure 5.1: Remaining absolute daily imbalance for different BESS sizes

Figure 5.2: Degradation for different BESS sizes

1This can be observed from the "boxes" in the box-plot, which contain the interquartile range of the
imbalance data and decrease only slightly after a certain capacity



CHAPTER 5. RESULTS 84

Figure 5.3: Full cost structure for different BESS sizes, respectively grouped from left to right
for clusters 0, 1 and 2

Figure 5.4: Net system costs per module

5.1.2 Optimal Multi-Objective Optimization Weight

The system optimization model also allows for the comparison of the results achieved by

different optimization weights ζ in equation (3.22e). The resulting scatter-plot visual-

izes the pareto frontier, which consists of weights produce dominant solutions, for which

degradation rates cannot be reduced without increasing the remaining imbalance. Other

solutions are dominated, and can be improved without increasing degradation or decreasing

imbalance reduction (Certa et al., 2011).

Primarily, figure 5.5, demonstrates that the differences between all solution are most
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Figure 5.5: Average model outcomes for different weight (ζ)

likely negligible. Nonetheless, ζ = 0.5 yields a dominant, Pareto optimal solution, which

also results in a relative balance between both objectives, as opposed to dominant weights

on the boundaries. Hence, weight ζ = 0.5 is used in the implementation of (3.1a) .

5.2 Model Predictive & Heuristic Control

5.2.1 Imbalance Minimization

The DSM program introduced in chapter 3 is implemented in Gurobi Optimization (2021)

as well. The program produces an optimal BESS activation schedule, which is updated for

the remainder of the day by every iteration of the program. The generated BESS schedule

reduces the expected remaining total imbalance
∑T=96

t=k ∆post, but aims to reduce actual

remaining total imbalance. Figures 5.9, 5.10 and 5.11 provide a single example of the DSM

program’s iteratively defined schedule for BR-clusters 0, 1 and 2, and figures 5.12, 5.13, 5.14

and 5.15 for KNMI-clusters 0, 1, 2 and 3, respectively. Additional output examples can be

found in appendix E. While the top three sub-graphs are based on the optimization output

with respect to the forecasted data used by the model, the bottom sub-graph visualizes

the impact of the control actions on actual imbalance ex-post. The top figures distinguish

positive imbalance (surplus) and negative imbalance (shortage) as positive and negative
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values. The bottom figure shows absolute imbalance, which can either decrease (green)

or increase (red) as a result of battery charging. The frequent occurrence of red areas

clearly indicates that important discrepancies exists between actual and forecasted data,

even after applying the Kalman filter. In addition, imbalances are caused by the end of

the day, in order to meet constraint (3.3d).

This issue is summarized in table 5.1, which compares the mathematical and the concep-

tual (actual) objective of the model for 4 days per BR-cluster and 2 days per KNMI-cluster.

For both clusters, the model generally manages to successfully reduce forecasted imbalance

reduction. On some days this is not the case due to a combination of one-directional

imbalance throughout the run-time and the final SoC constraint (3.3d). However these

expected results do not reflect the actual imbalance. Specifically, the column "imbalance

reduction" contains the program’s conceptual/intended objective, as opposed to the math-

ematical objective of the MILP. This is the difference between "actual imbalance" and

"actual remaining", the later referring to the imbalance after the DSM program has been

implemented. Positive values indicate positive, successful, imbalance reduction, while neg-

ative values indicate that the imbalance is actually exacerbated by the program’s control

actions. Although the results of cluster 1 are somewhat positive, this is a minority cluster

in the sample. A similar pattern emerges in the KNMI-cluster.

5.2.2 Imbalance Costs Reduction

The ultimate goal of the MILP-based MPC program is the reduction of imbalance costs,

which are calculated using equations (3.20) and (3.21), and presented in table 5.2. By

design, the model reduces imbalance costs regardless of the direction, even if imbalance

costs are negative. However, as can be expected from table 5.1, the DSM program does not

manage to reduce imbalance costs in all but two cases, if the BESS is rescheduled based on

the BR forecasts. If the KNMI forecasts are used, the model is more successful in absolute

terms, but this is most likely more indicative of the different market conditions in 2020.

In addition, since negative imbalance costs are also reduced, the mean imbalance costs are

still higher compared to the BAU-case.

5.2.3 Passive Contribution

Finally, the revenue from passive contribution can be found in table 5.3. While revenue

from upward passive contribution is decidedly positive, the magnitude of the revenue varies
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Table 5.1: Actual and forecasted imbalance reduction

BR actual actual forecast forecast imbalance degradation
imbalance remaining imbalance remaining reduction

2020 HC (kWh) (kWh) (kWh) (kWh) (kWh) (%)
10-03 0 10702.93 11151.51 4563.69 4702.51 -448.58 0.000421
12-04 0 2384.62 2517.70 1940.37 1875.17 -133.07 0.000225
12-09 0 3628.44 3897.99 3323.03 3592.58 -269.55 0.000234
12-23 0 683.0 731.58 140.97 163.26 -48.53 0.000175
09-18 1 6972.23 6235.33 4409.43 3895.55 736.91 0.006184
09-21 1 5358.98 4943.12 2844.93 2263.13 415.85 0.001376
09-30 1 7591.08 7715.82 4162.52 4048.59 -124.74 0.000510
09-12 1 19179.45 19102.86 12399.52 11824.89 76.58 0.004448
10-06 2 8684.19 8550.57 4928.90 4359.38 133.62 0.005208
10-20 2 728.05 999.02 486.28 397.77 -270.96 0.000490
12-06 2 2949.49 2994.02 2523.56 2568.10 -44.54 0.000282
11-10 2 8225.59 8377.27 8730.42 8241.24 -151.68 0.000175
w. mean 5767.97 5833.19 3898.66 3725.70 -69.61 0.00138

KNMI actual actual forecast forecast imbalance degradation
imbalance remaining imbalance remaining reduction

2019 HC (kWh) (kWh) (kWh) (kWh) (kWh) (%)
01-07 0 574.02 607.61 240.75 264.21 -33.59 0.000344
09-03 0 1273.41 2780.57 1940.28 1235.22 -1507.16 0.003734
01-04 1 910.57 1085.32 523.47 495.01 -174.75 0.000423
03-06 1 1693.33 1512.39 2051.55 1244.80 180.94 0.001173
07-04 2 838.14 1218.63 900.21 314.43 -380.49 0.000910
09-06 2 4785.22 4569.98 5935.61 4888.54 215.24 0.008789
07-03 3 4340.74 4198.89 3009.11 2569.32 141.85 0.000527
07-06 3 3100.88 3493.51 3341.15 2662.93 -392.63 0.000870
w. mean 1.72 2440.05 2658.06 2528.58 1946.68 -218.01 0.002441

significantly, both within and between clusters. This corresponds to the large differences in

(negative) passive contribution costs encountered in the results of the static MILP. More-

over, the differences in maximum imbalance prices between 2019 and 2020, also effects

the weighted mean of the revenue. Finally, downward passive contribution does not al-

ways yield positive revenue, since negative price peaks occur less frequently, and are less

pronounced.

5.2.4 Computational Feasibility

A crucial element of the model is the time its takes to compute the optimal control actions.

The passive contribution step should take place after the 9th and before the 10th minute of

each PTU, i.e. after the market data is received and before the final five minutes in which
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Table 5.2: Imbalance costs without (BAU) and after applying the DSM program

BR (2020) HC BAU (e) DSM (e)
10-03 0 1150.53 1176.47
12-23 0 71.64 85.01
12-04 0 128.23 133.14
12-09 0 338.16 354.51
09-18 1 445.54 428.33
09-21 1 315.69 319.44
09-30 1 496.01 489.31
09-12 1 744.92 750.57
10-06 2 230.67 283.98
10-20 2 40.33 43.56
12-06 2 170.33 178.47
11-10 2 177.22 212.29
w. mean 322.73 338.36

KNMI (2019) HC BAU (e) DSM (e)
2019-01-07 0 -34.52 -6.69
2019-09-03 0 -14.62 22.70

2019-03-06 1 -58.25 6.26
2019-01-04 1 86.54 82.50

2019-07-04 2 -8.42 11.73
2019-09-06 2 102.11 115.32

2019-07-03 3 92.23 90.09
2019-07-06 3 85.20 80.64

w. mean 38.98 55.42

Table 5.3: passive contribution revenue

BR (2020) HC down (e) up (e)
10-03 0 0.40 121.08
12-23 0 -4.15 281.13
12-04 0 56.08 586.28
12-09 0 51.20 352.96
09-18 1 -1.49 292.09
09-21 1 6.89 275.86
09-30 1 -9.31 147.98
09-12 1 43.24 90.69
10-06 2 66.35 125.95
10-20 2 0.00 33.35
12-06 2 -5.71 13.00
11-10 2 36.66 89.17
w. mean 22.03 192.81

KNMI (2019) HC down (e) up (e)
01-07 0 18.17 232.55
09-03 0 -1.06 227.28

03-06 1 0.00 412.40
01-04 1 25.91 102.79

07-04 2 0.00 78.95
09-06 2 -1.46 68.38

07-03 3 8.80 0.00
07-06 3 29.47 -0.00

w. mean 9.04 114.70

the passive contribution must take place begin. Li-ion batteries have a short response

time with an order of magnitude of microseconds (Evans et al., 2012). Hence, the time

window in which the heuristic predictions models and the passive contribution program

must be completed can be close to 60 seconds. After the passive contribution step has been

implemented, 5 minutes remain for the MPC-program to shift forward and re-optimize the

battery schedule based on new data. The simulations were carried out on a Intel Core i5

processor with 8 GB RAM. Figure 5.6) shows a histogram of the runtimes of each part of

the DSM program, both of which fit (by and large) in the available time window.
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Figure 5.6: Histograms of the time duration of running the imbalance market minimization
program and the passive contribution program.

Figure 5.7: Portfolio imbalance BR (2020) - one day for each cluster



CHAPTER 5. RESULTS 90

Figure 5.8: Portfolio imbalance KNMI (2019) - one day for each cluster

Figure 5.9: Example of model run BR-cluster 0 (4 december 2020)
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Figure 5.10: Example of model run BR-cluster 1 (21 September 2020)

Figure 5.11: example of model run BR-cluster 2 (20 Oktober 2020)
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Figure 5.12: Example of model run KNMI-cluster 0 (7 January 2019)

Figure 5.13: Example of model run KNMI-cluster 1 (6 March 2019)
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Figure 5.14: Example of model run KNMI-cluster 2 (4 July 2019)

Figure 5.15: Example of model run KNMI-cluster 2 (6 July 2019)



Chapter 6

Discussion

6.1 Reflection & Interpretation

6.1.1 Research Context

Several distinct features of VRES complicate their integration in the power system, and

thus impede the phasing out of GHG emitting capacity. In short, VRE supply is ob-

tained from (1) intermittent and (2) unpredictable primary energy resources, by (3) non-

synchronous1 generators which have (4) a relatively small size, is (5) location-dependent

and (6) has low short-term costs (Sinsel et al., 2020). The research effort addressing these

challenges has surged in recent years, especially regarding the intermittency and unpre-

dictability of solar and wind energy, and their effect on electricity prices. An overwhelming

literature base examines technological and economic optimization schemes to counteract

the increasing variability of supply by leveraging latent demand flexibility or by optimally

deploying (distributed) energy storage systems.

This thesis belongs within this strand of research, with a specific focus on the unpre-

dictability of VRE supply. In fact, aspects (1) and (3)-(5) were explicitly not considered:

the EMS proposed focuses exclusively on mismatches caused by erroneous solar energy

supply forecasts. At the market level, imbalance price peaks also occur due to forecast

errors. To reap higher economic and environment gains from the demand side flexibil-

ity offered by distributed BESS, a DSM program should probably address simultaneously

more challenges posed by VRE supply, for instance by increasing self-consumption. This

would require a DSM program with additional optimization objectives, steps or hierarchies.

However, the scope of this thesis was purposefully limited to a relatively rudimentary DSM

1Conventional electricity generation exhibits a high degree of rotational inertia, which helps stabilize
the system frequency

94
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program. Instead, the underlying goal was to examine the potential and challenges of the

real world application of more elaborate models proposed in the literature, whose merit is

often evaluated theoretically, based on simulated stochasticity and post-estimation tech-

niques such as sensitivity analysis. Instead, the DSM program proposed is based on actual

solar irradiance and temperature forecasts and employs computationally feasible forecast-

ing and optimization techniques.

6.1.2 Results

To create a realistic economic optimization environment, a non-linear battery degradation

model is adopted, and the optimal size of the distributed BESSs is determined based on

a fixed horizon MILP. The latter enables a comparison of the model outcome based on

perfect foresight, versus forecast data. The economic potential of passive contribution is

clear, and allows the BESSs to break even: when the CAPEX and OPEX of the battery

are included, the BESS is able to substantially reduce imbalance costs and achieve slightly

negative costs if the batteries are optimally sized. This means that the potential economic

gain from the system is not substantial. Moreover, the actual implementation of the DSM

program shows that these results can hardly be obtained in a forecast-based simulation

environment.

The MPC framework of the DSM program clearly demonstrates the benefit of reschedul-

ing the BESSs as new forecasts are received. Throughout the model run, substantial

changes in the magnitude and timing of battery activation occurs. However, there is a

persistent discrepancy between forecast and actual measurements, which is not reliably

reduced over time by new forecasts. These results provide an insight in the remaining

challenges of VRE integration: even with additional pre-processing of the forecast data

using a Kalman filter, the program does not reliably reduce actual imbalances.

The passive contribution strategy developed in this thesis does approach the economic

potential estimated by the perfect foresight-optimization. Especially upward regulations

can be a reliable source of revenue, even though the contributions to the grid only last for

5 minutes. This revenue has the same order of magnitude as the capital and operational

costs of the BESSs, and can therefore ensure the break-even point its reached, while the

remaining capacity is deployed for other objectives.
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6.2 Assumptions & Limitations

Data Availability

The goal of this thesis is to provide an insight in the challenges of implementing DSM

programs in practice. Hence, the DSM program is based on actual data accumulated by

the host organization of this research project. However, since the available forecast data

is limited to one location over a 6-month period, the presented results have some caveats.

Even though additional forecast data by a different forecasting agency adds to the validity

of the analysis, the periods of the data-sets do not overlap, which means a one-on-one

comparison is not possible. This discrepancy is exacerbated by the changing imbalance

price environment between 2019 and 2020.

More importantly, weather forecasts for the 6-month period in 2020 are only available

for one location. Consequently, predicted and actual VRE supply data must be aligned

artificially. Hence, the actual supply data of the PV installations is simulated using regres-

sion models based on historical data, which are applied to the measurement data at the

forecast location. Consequently, the original resolution of 15 minutes of actual energy pro-

duction data was reduced to one hour and then interpolated, due to the 1 hour-resolution

of the measurement and forecast data. While the KNMI forecasts are available for more

locations, the period of the KNMI data (2019) does not correspond to the period for which

PV generation data of the entire producer-prosumer-portfolio is available at a 15-minute

resolution (2020). Also in this case, actual production would have to be simulated. These

1-hour resultion, regression-bases simulation do not account for the full volatility of actual

solar PV supply.

Modeling Assumptions

A number of modeling assumptions imply an simplification of the actual portfolio imbal-

ances, which may result in overly optimistic results. These assumptions (1-7) have been

demarcated in throughout this report. Of these assumptions, the perfect foresight with

respect to the energy demand has the most substantial impact on the results. Secondly, the

operating costs of the BESS when engaging in passive contribution may be underestimated,

since 5-minute (dis) charging "bursts" are "spread out" over 15 minutes (assumption 3 ).

The battery model in general does not consider (1) the configuration of modules in the

BESS; (2) capacity fade and decline of efficiency over time; (3) self-discharge; (4). At a
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more conceptual level, the model only includes grid constraints at the individual level,

and only considers the market mechanism afterwards. This means that the location of the

distributed BESSs is essentially irrelevant.

6.3 Suggestions for Further Research

Model Predictive Control Framework

Further research may apply more advanced forecasting methods within the same frame-

work. First of all, more accurate solar PV generation forecasting models are available, and

may be successfully replace the regression models (Antonanzas et al., 2016). Likewise, the

diurnal trend nature of solar PV generation could be more accurately captured by seasonal

ARIMA models, improving the Kalman Filter. Due to time constraints this could not be

tested, though especially further ahead model predictions may benefit from this approach,

enabling more effective scheduling.

The Kalman Filter proves to be an effective method in the context MPC-based DSM

programs. However, applying KF to absolute solar irradiance values may not reap its full

potential. In a real world application, it would likely be more effective to apply KF to

forecast errors in energy generation, based on measured data with a 15 minute resolution.

This would enable the filter, which now only targets forecasting error in solar irradiance,

to account for the full range of "hidden" noise in the system.

Given the frequent occurrence of days with a unidirectional imbalance, it would be

worthwhile to research the benefits of extending the optimization horizon beyond 24 hours.

This would reduce the impact of SoC-constraint (3.3d) on the battery charging, allowing

the battery to (dis)charge during more benefial hours.

Finally, due to time constraints caused by the encountered inaccuracy of the original

solar irradiance forecasts, additional flexible distributed energy resources could not be

included in the model. Given the impact of the battery costs on the overall EMS costs,

and absence of potential revenue, it would be worthwhile to run these simulations for a

combined distributed TES-BESS system.

Heuristic Control Program

The heuristic control program is the only segment of the proposed DSM model that yields

uniquely positive results in its current form. However, its contribution to the BESSs’
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capacity to reduce internal imbalance via the MPC-program could be improved. Firstly,

the activation price threshold could be adjusted based on the average direction of the

daily imbalance. Especially if a net shortage is expected, the threshold for downward

regulation could be raised to a higher price level, even slightly above zero. Alternatively

the threshold could be lowered if a net surplus is expected. Moreover, additional analysis

could be directed to identifying the optimal classification threshold, to reduce the large

number of false negative predictions. This is especially relevant given end-constraint of the

battery schedule, which seriously limit the ability of the battery to reduce imbalance, if

the total daily imbalance in strongly positive or negative.

Secondly, the logistic regression model proved to be an accurate and computation-

ally efficient method for imbalance price forecasting, which may be sufficiently effected to

forecast imbalance price peaks over a longer time horizon, beyond single PTUs. Given

arbitrage opportunities are likely to decrease as more players enter the (voluntary) imbal-

ance market, and not all countries reward passive contribution, this may become a more

prudent strategy.



Chapter 7

Conclusion

The aim of this thesis, i.e. the main research question, was the examine the potential of

demand side management to reduce the imbalance costs billed to the clients of a Dutch

supplier-aggregator, causes by mismatches between the day-ahead demand/supply schedule

submitted to the day-ahead market, and actual demand and supply. In contrast with the

common approach in the literature, the performance to the proposed model is estimated

based on actual forecasts data. A model predictive control framework allowed for the

iterative inclusion of more recent weather forecasts throughout the modeling horizon (sub-

question 1 ). Since the forecasts of both agencies used in this thesis do not reliably get

more accurate over time, a Kalman filter is implemented to ensure new forecasts actually

improve the forecasting accuracy.

The demand side appliances included in the model are distributed BESSs. To accurately

capture the costs of these systems, a non-linear battery degradation model is included in

the objective function of the DSM program’s central MILP, while variable BESS costs

are included in the optimal sizing framework ((sub-question 2). Moreover, a number of

degradation-prone (dis) charging behaviours are prevented by static constraints relating

the SoC, C-rate and daily cycles.

To take into account imbalance costs (sub-question 3 ), a binary forecasting framework

based on a price threshold-heuristic is constructed. The resulting model is able to update

the optimal (dis)charging schedule of the BESSs within the limited time-period available

to download the data, generate new forecasts and solve the optimization problem.

An auxiliary optimization problem is solved to determine the optimal aggregate size

of the distributed BESSs (sub-question 4 ). A system of 35 modules per connection (10)

results in a slightly negative net cost per battery module and has an aggregate capacity of

840 kWh (compared to a total (average) daily consumption of 27.9 MW).

99
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To test the system on a valid subset of the data, a sample of representative days

are selected by hierarchical clustering using Ward’s method. The clustering is based on

variations in VRE supply, market conditions and forecasting accuracy (sub-question 5 ).

The absence of large negative costs per battery unit implies no substantial net reduction

in imbalance costs can be achieved using this program in combination with the proposed

battery type. Moreover, this result is obtained in a perfect foresight framework, which

nonetheless manages to substantially reduce imbalance costs. This is in stark contrast to

imbalance cost reduction achieved in the MPC-framework. Using forecast data, substantial

mismatches with actual delivery result in larger imbalances, and concurrently, in higher

imbalance costs. Despite the substantial research effort on DSM programs, the apparently

limited ability to reduce imbalance based on real forecast data appears pose a significant

challenge for continued VRE integration.
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Appendix A

Solar PV Generation

Table A.1: Best performing regression model for each producer

client model d RMSE nRMSE Rsq Betas p_values
prod1 GHI,GHIsq,GHITemp 4 5.500 2.750 0.953 [0.19, 0.0, -0.0] [0.05, 0.14, 0.16]

12 5.652 2.826 0.951 [0.19, 0.0, -0.0] [0.0, 0.15, 0.05]
14 5.687 2.844 0.950 [0.2, 0.0, -0.0] [0.0, 0.15, 0.07]
10 5.755 2.878 0.950 [0.19, 0.0, -0.0] [0.0, 0.01, 0.05]

prod2 GHI,GHIsq,GHITemp 6 6.821 2.966 0.906 [1.25, -0.01, 0.06] [0.0, 0.05, 0.26]
4 7.004 3.045 0.909 [1.26, -0.01, 0.05] [0.03, 0.14, 0.34]

GHI,Temp,GHITemp 6 7.012 3.049 0.902 [1.14, 0.26, 0.02] [0.0, 0.24, 0.52]
GHI,GHIsq,Temp 6 7.044 3.063 0.905 [1.45, -0.01, 0.11] [0.0, 0.1, 0.52]

prod3 GHI,GHIsq,GHITemp 6 7.235 3.146 0.905 [1.24, -0.01, 0.07] [0.0, 0.08, 0.21]
4 7.400 3.217 0.909 [1.25, -0.01, 0.06] [0.03, 0.17, 0.33]

GHI,Temp,GHITemp 6 7.433 3.232 0.901 [1.14, 0.25, 0.03] [0.0, 0.3, 0.41]
GHI,GHITemp 6 7.474 3.249 0.900 [1.17, 0.03] [0.0, 0.38]

prod4 GHI,GHIsq,GHITemp 4 49.510 2.476 0.963 [1.9, 0.0, -0.02] [0.0, 0.0, 0.31]
GHI,GHIsq,Temp 4 50.715 2.536 0.962 [1.71, 0.0, -0.26] [0.0, 0.0, 0.49]
GHI,GHIsq 4 50.887 2.544 0.962 [1.68, 0.0] [0.0, 0.0]
GHI,GHIsq,GHITemp 6 51.958 2.598 0.963 [1.9, 0.0, -0.02] [0.0, 0.0, 0.14]

112



APPENDIX A. SOLAR PV GENERATION 113

Table A.2: Best performing regression model for each producer

client model d RMSE nRMSE Rsq Betas p_values
pros1 GHI,GHIsq,GHITemp 8 5.413 2.035 0.945 [0.33, 0.0, -0.0] [0.0, 0.03, 0.11]

4 5.445 2.047 0.944 [0.32, 0.0, -0.0] [0.0, 0.16, 0.16]
26 5.451 2.049 0.949 [0.32, 0.0, -0.0] [0.0, 0.0, 0.15]
14 5.454 2.050 0.949 [0.32, 0.0, -0.0] [0.0, 0.0, 0.19]

pros2 GHI,GHIsq,GHITemp 4 8.351 6.232 0.695 [0.11, 0.0, -0.0] [0.14, 0.15, 0.09]
GHI,GHITemp 4 8.549 6.380 0.680 [0.11, 0.0] [0.2, 0.14]
GHI,Temp,GHITemp 4 8.553 6.383 0.680 [0.12, -0.06, 0.0] [0.2, 0.39, 0.14]
GHI,GHIsq,GHITemp 6 8.963 6.689 0.666 [0.08, 0.0, 0.01] [0.21, 0.09, 0.02]

pros3 GHI,GHIsq 4 9.345 9.345 0.532 [0.15, 0.0] [0.05, 0.05]
GHI,GHIsq,Temp 4 9.375 9.375 0.533 [0.15, -0.0, 0.03] [0.08, 0.05, 0.53]
GHI,GHIsq,GHITemp 4 9.442 9.442 0.581 [0.07, -0.0, 0.0] [0.07, 0.07, 0.17]
GHI,Temp 4 9.747 9.747 0.506 [0.17, -0.01] [0.0, 0.38]

pros4 GHI,GHIsq,GHITemp 4 29.584 8.218 0.694 [0.06, 0.0, 0.03] [0.12, 0.14, 0.12]
GHI,Temp,GHITemp 4 31.068 8.630 0.679 [0.15, 0.02, 0.04] [0.12, 0.34, 0.17]
GHI,GHIsq 4 31.143 8.651 0.646 [0.51, 0.0] [0.0, 0.09]
GHI,GHITemp 4 31.211 8.670 0.678 [0.16, 0.04] [0.12, 0.15]

pros5 GHI,GHIsq,GHITemp 14 5.355 3.570 0.946 [0.19, 0.0, -0.0] [0.0, 0.0, 0.29]
12 5.375 3.583 0.946 [0.18, 0.0, -0.0] [0.0, 0.01, 0.31]
20 5.389 3.592 0.946 [0.19, 0.0, -0.0] [0.0, 0.0, 0.17]
22 5.394 3.596 0.945 [0.19, 0.0, -0.0] [0.0, 0.0, 0.19]

pros6 GHI,GHIsq,Temp 14 3.786 2.227 0.943 [0.24, 0.0, -0.04] [0.0, 0.1, 0.27]
16 3.788 2.228 0.944 [0.24, 0.0, -0.04] [0.0, 0.09, 0.25]

GHI,GHIsq,GHITemp 8 3.788 2.228 0.942 [0.25, 0.0, -0.0] [0.0, 0.19, 0.23]
GHI,GHIsq,Temp 4 3.794 2.232 0.944 [0.24, 0.0, -0.06] [0.0, 0.13, 0.37]

pros7 GHI,GHIsq,GHITemp 4 14.291 7.940 0.513 [0.15, -0.01, 0.11] [0.14, 0.23, 0.04]
6 14.689 8.160 0.472 [0.18, -0.01, 0.18] [0.1, 0.2, 0.15]

GHI,GHIsq 4 14.691 8.162 0.453 [0.59, -0.0] [0.0, 0.24]
GHI,GHIsq,Temp 4 14.761 8.201 0.453 [0.56, -0.0, 0.23] [0.0, 0.27, 0.42]

pros8 GHI,GHIsq,GHITemp 8 2.280 2.452 0.942 [0.14, 0.0, -0.0] [0.0, 0.09, 0.18]
GHI,GHIsq,Temp 8 2.288 2.460 0.941 [0.13, 0.0, -0.03] [0.0, 0.14, 0.34]
GHI,GHIsq,GHITemp 4 2.290 2.463 0.942 [0.13, 0.0, -0.0] [0.0, 0.15, 0.2]
GHI,GHIsq,Temp 10 2.294 2.466 0.942 [0.13, 0.0, -0.03] [0.0, 0.09, 0.34]



Appendix B

Kalman Filter

Table B.1: Error metrics of ARIMA(p,d,q) models with p=[3,5],d=[0,1],q[1,2] (left) and AIC’s
of ARMA(p,q) models p=[0,5],q=[0,2], applied to a backward looking rolling windows between 5
and 25 days.

window (d) (p,d,q) MSE RMSE MAE
15 (5, 0, 1) 1.708e+04 97.478 84.427

(4, 0, 1) 1.704e+04 97.553 84.488
(5, 0, 2) 1.706e+04 97.564 84.553

16 (4, 0, 1) 1.700e+04 97.596 84.709
(4, 0, 2) 1.671e+04 97.603 84.573
(5, 0, 1) 1.706e+04 97.642 84.706
(3, 0, 2) 1.672e+04 97.659 84.212

14 (4, 0, 1) 1.706e+04 97.660 84.493
17 (4, 0, 2) 1.709e+04 97.706 84.684
14 (4, 0, 2) 1.710e+04 97.779 84.729

(5, 0, 1) 1.716e+04 97.843 84.704
11 (5, 0, 1) 1.683e+04 97.961 84.837
15 (4, 0, 2) 1.713e+04 97.974 84.908
17 (4, 0, 1) 1.740e+04 98.029 84.915
19 (3, 0, 2) 1.685e+04 98.047 84.336
24 (4, 0, 2) 1.736e+04 98.056 84.502
13 (4, 0, 2) 1.702e+04 98.099 84.974
24 (5, 1, 2) 1.746e+04 98.220 85.411
11 (4, 0, 1) 1.691e+04 98.248 85.043
10 (5, 0, 2) 1.690e+04 98.254 85.346
13 (4, 0, 1) 1.713e+04 98.264 85.122
10 (5, 0, 1) 1.676e+04 98.314 85.327
13 (5, 0, 1) 1.719e+04 98.409 85.261
17 (5, 0, 1) 1.769e+04 98.484 85.307
18 (4, 0, 1) 1.781e+04 98.541 85.470
10 (4, 0, 2) 1.655e+04 98.652 85.782

Order (p,d,q) AIC
(2, 0, 2) 3594.35
(3, 0, 1) 3594.51
(3, 0, 2) 3594.93
(4, 0, 2) 3595.36
(5, 0, 2) 3595.55
(2, 0, 1) 3595.80
(4, 0, 1) 3596.06
(5, 0, 1) 3596.56
(4, 0, 0) 3597.11
(5, 0, 0) 3597.72
(3, 0, 0) 3603.46
(2, 0, 0) 3618.25
(1, 0, 2) 3633.14
(1, 0, 1) 3653.49
(1, 0, 0) 3712.85
(0, 0, 2) 3793.78
(0, 0, 1) 3934.10
(0, 0, 0) 4264.31
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Figure B.1: 1-hour ahead forecast before and after applying the Kalman Filter



Appendix C

Imbalance Market Forecasting

Table C.1: Selected Features upward and downward regulation

rank upward regulation
27 1 slope_downward
31 1 3_upward_res
26 1 d6_downward
32 1 4_upward_res
33 1 5_upward_res
34 1 6_upward_res
20 1 6_downward
42 1 0_downward_res
16 1 2_downward
29 1 1_upward_res
14 1 0_downward
44 1 2_downward_res
43 1 1_downward_res
11 1 d5_upward
76 1 6_price_high
48 1 6_downward_res
47 1 5_downward_res
5 1 5_upward
12 1 d6_upward
6 1 6_upward
30 1 2_upward_res
7 1 d1_upward
46 1 4_downward_res
104 1 6_price_low
45 1 3_downward_res
13 18 slope_upward
9 36 d3_upward

rank downward regulation
30 1 2_upward_res
32 1 4_upward_res
31 1 3_upward_res
88 1 4_price_mid
29 1 1_upward_res
27 1 slope_downward
26 1 d6_downward
42 1 0_downward_res
43 1 1_downward_res
44 1 2_downward_res
20 1 6_downward
45 1 3_downward_res
33 1 5_upward_res
47 1 5_downward_res
46 1 4_downward_res
104 1 6_price_low
75 1 5_price_high
76 1 6_price_high
4 1 4_upward
6 1 6_upward
48 1 6_downward_res
34 1 6_upward_res
77 1 d1_price_high
82 1 d6_price_high
12 1 d6_upward
99 2 1_price_low

Table C.2: Selected Features upward and downward price threshold
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Table C.3: Logit Model: Upward Regulation

Model: Logit Pseudo R-squared: 0.454
Dependent Variable: reg_up AIC: 145249.0070
Date: 2021-03-07 11:41 BIC: 145422.4015
No. Observations: 198724 Log-Likelihood: -72608.
Df Model: 16 LL-Null: -1.3287e+05
Df Residuals: 198707 LLR p-value: 0.0000
Converged: 1.0000 Scale: 1.0000
No. Iterations: 8.0000

Coef. Std.Err. z P> |z| [0.025 0.975]
6_price_low -0.0400 0.0005 -83.6742 0.0000 -0.0409 -0.0391
1_upward_res -0.1067 0.0034 -31.5472 0.0000 -0.1133 -0.1001
d6_downward -0.0859 0.0032 -26.7915 0.0000 -0.0922 -0.0796
0_downward 0.0330 0.0009 35.2695 0.0000 0.0312 0.0348
d1_upward -0.0161 0.0023 -7.1373 0.0000 -0.0206 -0.0117
6_upward 0.1230 0.0029 42.0143 0.0000 0.1173 0.1288
6_price_high 0.0205 0.0004 50.7044 0.0000 0.0197 0.0213
3_downward_res -0.1452 0.0086 -16.9063 0.0000 -0.1620 -0.1284
5_upward -0.1075 0.0029 -37.5726 0.0000 -0.1131 -0.1019
2_downward -0.0283 0.0017 -16.9030 0.0000 -0.0316 -0.0250
d3_upward -0.0117 0.0034 -3.4810 0.0005 -0.0183 -0.0051
6_downward -0.0321 0.0010 -30.8935 0.0000 -0.0341 -0.0300
slope_upward 0.0526 0.0071 7.4096 0.0000 0.0387 0.0665
reg_up_LAG 0.5581 0.0165 33.7671 0.0000 0.5257 0.5905
reg_down_LAG -0.9209 0.0184 -50.1517 0.0000 -0.9569 -0.8849
reg_up_2LAG -0.5567 0.0155 -35.9270 0.0000 -0.5870 -0.5263
reg_down_2LAG -0.5834 0.0153 -38.1265 0.0000 -0.6134 -0.5534
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Table C.4: Logit Model: Downward Regulation

Model: Logit Pseudo R-squared: 0.479
Dependent Variable: reg_down AIC: 140816.1332
Date: 2021-03-07 17:02 BIC: 140989.5276
No. Observations: 198724 Log-Likelihood: -70391.
Df Model: 16 LL-Null: -1.3513e+05
Df Residuals: 198707 LLR p-value: 0.0000
Converged: 1.0000 Scale: 1.0000
No. Iterations: 9.0000

Coef. Std.Err. z P> |z| [0.025 0.975]
1_price_low 0.0060 0.0005 13.3530 0.0000 0.0051 0.0069
d1_price_high -0.0321 0.0018 -17.7693 0.0000 -0.0357 -0.0286
0_downward_res 0.1497 0.0075 19.8869 0.0000 0.1349 0.1644
3_upward_res 0.1281 0.0046 28.0753 0.0000 0.1192 0.1370
6_price_low 0.0390 0.0004 88.2156 0.0000 0.0382 0.0399
6_downward 0.0242 0.0002 100.7681 0.0000 0.0237 0.0246
d6_downward 0.0643 0.0017 38.6537 0.0000 0.0610 0.0675
4_upward 0.0791 0.0012 65.2331 0.0000 0.0767 0.0815
slope_downward 0.0730 0.0019 38.5627 0.0000 0.0693 0.0767
6_upward -0.0879 0.0015 -59.1056 0.0000 -0.0908 -0.0850
d6_price_high -0.0524 0.0012 -42.9514 0.0000 -0.0548 -0.0500
5_price_high -0.0428 0.0007 -65.0674 0.0000 -0.0441 -0.0416
4_price_mid -0.0224 0.0005 -47.4433 0.0000 -0.0233 -0.0215
reg_up_LAG -0.4445 0.0199 -22.2946 0.0000 -0.4836 -0.4054
reg_down_LAG 0.7264 0.0182 39.8690 0.0000 0.6907 0.7621
reg_up_2LAG -0.1292 0.0183 -7.0601 0.0000 -0.1650 -0.0933
reg_down_2LAG -0.2461 0.0176 -13.9890 0.0000 -0.2806 -0.2116
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Table C.5: Logit Model: Predict Surpassing of Upward Threshold

Model: Logit Pseudo R-squared: 0.516
Dependent Variable: threshold_up AIC: 29817.3577
Date: 2021-03-07 17:28 BIC: 30064.0412
No. Observations: 68626 Log-Likelihood: -14882.
Df Model: 26 LL-Null: -30727.
Df Residuals: 68599 LLR p-value: 0.0000
Converged: 1.0000 Scale: 1.0000
No. Iterations: 9.0000

Coef. Std.Err. z P> |z| [0.025 0.975]
d6_upward 0.0929 0.0026 35.9004 0.0000 0.0878 0.0980
3_price_mid -0.1475 0.0015 -96.1205 0.0000 -0.1505 -0.1445
6_price_low 0.0505 0.0026 19.4172 0.0000 0.0454 0.0556
5_price_high 0.0577 0.0019 29.8991 0.0000 0.0539 0.0614
0-6 -0.8482 0.0431 -19.6875 0.0000 -0.9327 -0.7638
m-j -1.0994 0.0476 -23.0820 0.0000 -1.1927 -1.0060
0_emergency 4.3652 1.1429 3.8195 0.0001 2.1252 6.6052
d6_downward -0.0821 0.0092 -8.9442 0.0000 -0.1001 -0.0641
1_price_high 0.0072 0.0020 3.6476 0.0003 0.0033 0.0110
s-o -0.8971 0.0482 -18.6175 0.0000 -0.9915 -0.8026
j-f -0.0796 0.0540 -1.4737 0.1406 -0.1855 0.0263
d6_price_high 0.0650 0.0019 33.7765 0.0000 0.0612 0.0688
6-12 0.0338 0.0393 0.8583 0.3907 -0.0433 0.1108
d2_price_low 0.0294 0.0063 4.6923 0.0000 0.0171 0.0417
4_emergency -0.4115 0.8800 -0.4676 0.6401 -2.1363 1.3133
12-18 -0.2052 0.0344 -5.9710 0.0000 -0.2725 -0.1378
j-a -1.2080 0.0479 -25.2428 0.0000 -1.3018 -1.1142
1_emergency -2.2535 1.4369 -1.5684 0.1168 -5.0697 0.5627
0_price_high 0.0018 0.0017 1.0535 0.2921 -0.0015 0.0051
1_upward_res -0.0369 0.0086 -4.2895 0.0000 -0.0538 -0.0201
2_upward 0.0232 0.0033 7.0317 0.0000 0.0168 0.0297
3_price_high 0.0098 0.0021 4.6152 0.0000 0.0056 0.0140
3_upward -0.0040 0.0064 -0.6172 0.5371 -0.0165 0.0086
4_price_high 0.0090 0.0026 3.4689 0.0005 0.0039 0.0142
4_upward -0.0253 0.0037 -6.9286 0.0000 -0.0325 -0.0182
d4_downward -0.0513 0.0079 -6.5142 0.0000 -0.0667 -0.0359
d6_price_mid -0.3946 0.3201 -1.2326 0.2177 -1.0220 0.2328



APPENDIX C. IMBALANCE MARKET FORECASTING 120

Table C.6: Logit Model: Predict Surpassing of Downward Threshold

Model: Logit Pseudo R-squared: 0.408
Dependent Variable: threshold_down AIC: 26515.2276
Date: 2021-03-07 17:50 BIC: 26727.0609
No. Observations: 73876 Log-Likelihood: -13235.
Df Model: 22 LL-Null: -22369.
Df Residuals: 73853 LLR p-value: 0.0000
Converged: 1.0000 Scale: 1.0000
No. Iterations: 8.0000

Coef. Std.Err. z P> |z| [0.025 0.975]
3_upward 0.0433 0.0130 3.3360 0.0008 0.0178 0.0687
6_downward 0.0017 0.0008 1.9966 0.0459 0.0000 0.0034
s-o -0.5332 0.0498 -10.7159 0.0000 -0.6308 -0.4357
6_price_high -0.0135 0.0040 -3.4094 0.0007 -0.0213 -0.0057
12-18 -0.2091 0.0331 -6.3165 0.0000 -0.2740 -0.1442
3_price_low -0.0050 0.0023 -2.1972 0.0280 -0.0094 -0.0005
d2_upward -0.0196 0.0071 -2.7815 0.0054 -0.0335 -0.0058
3_upward_res 0.0389 0.0099 3.9169 0.0001 0.0195 0.0584
0_price_low -0.0136 0.0022 -6.1569 0.0000 -0.0179 -0.0092
d6_downward 0.0951 0.0030 31.6323 0.0000 0.0892 0.1010
6_price_low -0.0413 0.0015 -28.3156 0.0000 -0.0441 -0.0384
1_price_low -0.0243 0.0028 -8.7959 0.0000 -0.0297 -0.0189
2_upward -0.0223 0.0095 -2.3513 0.0187 -0.0410 -0.0037
6_upward -0.0295 0.0062 -4.7674 0.0000 -0.0417 -0.0174
m-j -0.3018 0.0505 -5.9784 0.0000 -0.4008 -0.2029
j-f 0.0834 0.0444 1.8764 0.0606 -0.0037 0.1704
0_downward -0.0120 0.0024 -5.0867 0.0000 -0.0166 -0.0074
1_downward 0.0189 0.0029 6.5630 0.0000 0.0132 0.0245
1_price_mid 1.2658 0.4098 3.0888 0.0020 0.4626 2.0690
2_price_low -0.0121 0.0026 -4.6439 0.0000 -0.0172 -0.0070
3_price_mid -1.3251 0.4098 -3.2334 0.0012 -2.1282 -0.5219
4_price_high 0.0033 0.0032 1.0347 0.3008 -0.0030 0.0096
d5_price_low 0.0147 0.0024 6.2136 0.0000 0.0101 0.0194



Appendix D

Select Representative Days

Figure D.1: The elbow plots obtained from k-means clustering of BR and KNMI data offer a
heuristic to determine the optimal amount of clusters. The plot show the decrease in the Sum
of Squared distances of the data points in the cluster as the number of clusters increase. The
inflection point ("elbow") of the plot indicates the optimal number of clusters
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Appendix E

Results

Figure E.1: model run 9 December 2020 (BR-cluster 0)
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Figure E.2: model run 3 Oktober 2020 (BR-cluster 0)

Figure E.5: model run 6 December 2020 (BR-cluster 2)
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Figure E.3: model run 18 September 2020 (BR-cluster 1)

Figure E.4: model run 30 September 2020 (BR-cluster 1)
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Figure E.6: model run 6 Oktober 2020 (BR-cluster 2)
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