
UTRECHT UNIVERSITY

BACHELOR THESIS

Enriching training data with syntactic
knowledge and the effect on performance
of a neural network on natural language

processing tasks

Author:
Yuri Teerlink

Supervisor:
dr. Gijs Wijnholds

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Faculty of Humanities
Utrecht University

January 23, 2021

http://www.uu.com
http://faculty.university.com
http://department.university.com

i

UTRECHT UNIVERSITY

Abstract
Faculty of Humanities

Utrecht University

Bachelor of Science

Enriching training data with syntactic knowledge and the effect on performance
of a neural network on natural language processing tasks

by Yuri Teerlink

Compared to neural networks (NN), humans can learn new concepts using only
very little data. The ability to learn so efficiently might be due to the use of ab-
stractions. To find similarities between human and machine learning this research
will analyze if NN benefits from syntactic information during training. We will aim
to answer the following question: How does enriching training data with syntactic
knowledge affect the performance of a NN on natural language processing tasks?
This research examines the results of Long Short Term Memory models (LSTM)
trained on two different types of datasets; one without Part of Speech tags (a form of
abstract knowledge) and a dataset that is supplemented with POS-tags. The results
show that an LSTM trained on a relatively small dataset supplemented with POS-
tags outperforms an LSTM trained on a regular dataset. The increase in performance
might suggest that neural networks benefit from abstract information, which in turn
might show some similarities in the way humans and machines learn.

HTTP://WWW.UU.COM
http://faculty.university.com
http://department.university.com

ii

Acknowledgements
First, I would like to express my appreciation towards my supervisor Gijs Wijnholds,
for helping me all the way through and continually finding new ways to motivate
and help me along with this project. Vicky, for carefully reading and providing
valuable feedback. Ruben van Doorn, for giving the final push in the right direction.
Wout and Koen, for their continuous help and motivation.

iii

Contents
Abstract i

Acknowledgements ii

1 Introduction 1
1.1 Structure of this paper . 2

2 Theoretical Background 3
2.1 Neural networks and their success . 3
2.2 Recurrent Neural Networks . 4
2.3 Long Short Term Memory Model . 5
2.4 Syntactic Information . 6

2.4.1 Part of Speech . 6
2.4.2 Parse Trees . 6

2.5 Natural Language Processing Tasks . 7
2.5.1 Named Entity Recognition . 8
2.5.2 Part of Speech Tagging . 8

3 Methods 9
3.1 SoNaR-500 Dataset . 9
3.2 Long Short Term Memeory Model . 11
3.3 Hyperparameters . 11
3.4 Evaluation . 12

4 Results 13

5 Discussion 14

6 Conclusion 16
References . 17

1

Chapter 1

Introduction

Human beings are capable of learning new concepts using very little data. For exam-
ple, a child learning the difference between two objects will be able to differentiate
the two after looking at only a couple of examples (Bloom, 2000). If we compare this
to a neural network attempting the same task it will need a lot more training exam-
ples than the child. One explanation for the fact that humans can learn so efficiently,
is the use of abstractions. Our ability to make abstractions allows us to generalize
information better and therefore learn faster (Tenenbaum et. al., 2015). Besides being
able to distinguish objects based on very little data, humans, especially children, are
capable of learning new languages extraordinarily fast (Carey, 2009). This impres-
sive performance on language can be mainly attributed to the use of abstractions, in
this case, the use of syntactic knowledge (Baroni, 2019).

Gaining an understanding of the way humans learn is a broad topic of research
within the field of artificial intelligence. Researchers hope to gain more understand-
ing of how humans learn by creating models, such as neural networks, which learn
(Lake et. al., 2017). If for instance, we see that a model performs better using some
form of abstract knowledge, this might suggest it is learning similar to humans. A
field of research where such models are being studied is Natural Language Pro-
cessing (NLP). Here, language models are being trained to execute various NLP-
tasks. These language models perform exceptionally well on various NLP-tasks:
the machine-translation engine behind Google Translate [1] is improved each day
(Läubli and Orrego Carmona, 2017), chatbots are created that can mimic humans al-
most seamlessly (Adiwardana et al., 2020) and OpenAI’s GPT-3 language model is
capable of human-like creative writing (Branwen, 2020).

Where humans do not require much input, previous and current NLP requires
enormous datasets to learn and improve. This does not only increase training time,
it is also not representative of human learning. As human learning is based on ab-
stractions (syntactic information), a possible improvement for NLP is to supplement
syntactic information to training sets.

Therefore, this thesis aims to supplement syntactic knowledge to training data
and analyze whether this improves the performance of NLP. This aim results in the
following research question:

How does enriching training data with syntactic knowledge affect the performance
of a neural network on natural language processing tasks?

1https://translate.google.com/

https://translate.google.com/

Chapter 1. Introduction 2

1.1 Structure of this paper

We will briefly give an outline of how this paper is structured. Chapter 2 will provide
the theoretical background knowledge relevant to this paper, in specific (recurrent)
neural networks models, language models, abstractions, NLP-tasks, and the relation
between human and machine learning. Chapter 3 will discuss the methods that will
be used. Chapter 4 will present the results obtained during the research. And finally,
we will conclude with a summary in Chapter 5.

3

Chapter 2

Theoretical Background

This chapter provides a brief description of the most important technical and linguis-
tic concepts that will be discussed in this thesis. General technical concepts regard-
ing neural networks are not included in this chapter assuming the reader is aware
of these. However, recurrent neural networks and long short term memory models
will be discussed in detail as these lay the foundation for the experiment which will
be performed. The linguistic concepts that will be discussed are part-of-speech tags,
these tags will be used as syntactic information in this experiment, and parse trees,
which have been the subject of previous research. Finally, the chapter will conclude
with two different types of natural language processing tasks that can be used to
measure the performance of a neural network. The first NLP-task that will be dis-
cussed is named entity recognition, which is used in this experiment. The second
task is part-of-speech tagging, a widely used NLP-tasks on which neural networks
reach near-human performance.

2.1 Neural networks and their success

Ever since the thaw of the so-called ‘AI Winter’ (Howe, 2007), there has been an
increase in the usage and research of neural networks. The sudden increase in pop-
ularity can be attributed to the increase in computing power and increasingly larger
datasets being available (Smith et al., 2006). However, regular feedforward neural
networks do have some drawbacks, as they tend to underfit and underutilize com-
puting resources (Lipton and Berkowitz, 2015). Nevertheless, there is no denying
the apparent success within the field of AI. Relevant examples are gameplaying sys-
tems such as AlphaZero and AlphaGo (Silver et al., 2017), IBM’s Watson (Ferrucci
et al., 2010), and Google Translate’s [1] performance on language translation. What
caused the success within the field of AI? In order to better utilize the available com-
puting power and larger datasets, more complex models had to be designed, such
as different kinds of deep learning architectures (i.e. convolutional neural networks,
recurrent neural networks).

Another limitation of regular feedforward networks is that there is no ideal way
for a neural network (NN) to process sequential data. Take for example an im-
age classification task: a neural network would be perfectly capable of identifying
whether a certain object or person appears in one given image. However, if we make

1https://translate.google.com/

https://translate.google.com/

Chapter 2. Theoretical Background 4

things more complicated, for example, by asking a network to determine the move-
ment of a person in a given sequence of images, it would have no way of producing
output at each given timestep. The reason why this is hard for a regular NN, is due
to the assumption of time independence, this makes it impossible for the network to
maintain a time sequence in order.

2.2 Recurrent Neural Networks

Recurrent Neural Networks (RNN) offer a solution to the incapacity of NN’s to deal
with temporal sequences. RNNs have a hidden state vector which will be updated
each iteration. This section will go into greater detail about how the hidden layer
operates.

Similar to feedforward networks, recurrent neural networks consist of a con-
nected feedforward network, in which cycles are not allowed. However, what dif-
ferentiates an RNN from a regular NN, is the fact that an RNN possesses an addi-
tional hidden layer consisting of recurrent nodes. This hidden state vector allows
the network to “remember” a previously seen state and keep track of the previous
state, as a means to more effectively process sequential data. In contrast with the
non-cyclic property of feedforward neural networks, cycles are allowed within the
hidden layer in an RNN. Because of the occurrence of cycles, a datapoint at timestep
t − 1 may influence a datapoint at timestep t. For instance, at timestep t, nodes
within the hidden layer h(t) not only get information from the current data point
x(t), but also from the hidden layer h(t−1) of the network’s previous state. Moreover,
the output y(t) at each time t is determined by the current hidden node h(t). Since
h(t) is partly based on h(t−1), which in turn is based on x(t−1) it becomes clear how
previously seen data can influence data being processed at time step t. The following
equations are necessary for the calculations of the process in an RNN:

h(t) = σ(Whx · xt + Whh · h(t−1) + bh) (2.1)

ŷ = so f tmax(Wyh · h(t) + by) (2.2)

Where Whx is the conventional weight matrix for the input layer, Whh is the ma-
trix corresponding to the recurrent weights, itself, and the nodes of the following
time steps. Wyh is the weight matrix corresponding to the given output layer at each
time step. Lastly, bh and by correspond to the bias weights.

The availability of ŷ at each timestep t allows an RNN to produce output at each
timestep, allowing data to be processed as shown in Figure 2.1

The recurrence of RNN comes at a cost, however. The gradient is prone to
problems, such as exploding or vanishing while backpropagating (Hochreiter et al.,
2001). During backpropagation, the gradient is computed by taking the derivative.
Consider a network with n layers, this will cause n derivatives to be multiplied to-
gether. In the case where the derivative is large, multiplying will only increase the

Chapter 2. Theoretical Background 5

FIGURE 2.1: A systematic overview of an RNN processing sequen-
tial data one image at a time, where the ingoing arrows represent the
input at each timestep and the outgoing arrows represent the corre-

sponding label that is predicted.

gradient to the extent that the value will keep on increasing exponentially, causing
a so-called ‘exploding gradient’. In contrast, if the derivative becomes sufficiently
small, multiplying it will cause the gradient to converge to zero, corresponding to
the vanishing gradient problem.

2.3 Long Short Term Memory Model

In 1997, Hochreiter and Schmidhuber first introduced their Long Short Term Mem-
ory (LSTM) model as a way to handle the vanishing gradient problem. At first sight,
an RNN and LSTM do not differ that much from each other, as both have a hidden
layer. What makes LSTMs unique, however, is that each node in a hidden layer is
what Hochreiter and Schmidhuber call a “memory cell” (Hochreiter and Schmid-
huber, 1997). The self-recurrent edges within the memory cell allow the gradient to
pass over the cell without vanishing or exploding.

FIGURE 2.2: A systematic overview of a memory cell: The current hid-
den and cell state, ht and ct, are updated using the hidden and
cell state of the previous iteration, ht−1, and ct−1. Image obtained
from https://towardsdatascience.com/predictive-analysis-rnn-lstm-

and-gru-to-predict-water-consumption-e6bb3c2b4b02

Chapter 2. Theoretical Background 6

Figure 2.2 gives a systematic overview of the memory cells which replace the
standard hidden nodes of an RNN. Furthermore, the following formulas show all
the computations involved within the memory cell.

One iteration over the memory cell goes as follows: the previous hidden state
ht−1 is combined with the current input vector xt and passed along to the forget gate
of the memory cell, as shown in Figure 2.2. Within the forget gate, xt and ht−1 are
multiplied with their respective weight matrices, the sum of this multiplication is
passed through a σ-function. The resulting vector ft is multiplied with the previous
cell state ct−1: their product represents what information is desired to remain and
what can be forgotten. Next, the cell state must be updated, which takes two steps.
Firstly, xt and ht−1 are passed through the input gate to determine which values will
be updated. Secondly, a vector containing new candidate values is computed within
the tanh-layer, giving us C̃t. Now the cell state can be updated by adding the product
of the forget gate ft and Ct−1 to the product of the input gate it with C̃t. The output
yt of the current time step is equal to the current hidden cell state. ht is computed by
taking the product of the output gate ot and the tanh of the current cell state Ct. The
cell state Ct, together with the hidden state ht, will be passed along to the next node
in the network.

2.4 Syntactic Information

Abstractions are at the heart of this research. The type of abstractions that will be
used are the ones that are common in grammar. Two common types of syntactic
information are parts of speech and parse trees.

2.4.1 Part of Speech

Traditional grammar has a way of classifying words in different word categories de-
pending on their respective syntactic and morphological properties. The collective
name for these word categories is part of speech (POS). Classifying words in differ-
ent word categories gives more information and insight about their use and proper-
ties. For example, verbs can express an action, nouns generally will denote things
and objects, while adjectives give information about the qualities of these things and
objects. The most commonly used parts of speech are noun, verb, adjective, pro-
noun, preposition, conjunction, interjection, numeral, and determiner. Besides these
nine parts of speech, there is a wide variety of different levels of separation depend-
ing on how precise a denotation is required.

2.4.2 Parse Trees

Parse trees are directed tree graphs that represent the hierarchical structure of a sen-
tence. Figure 2.3 gives an example of how a parse tree can represent a sentence. A
node within a parse tree functions as a token for a word within a sentence, the edges

Chapter 2. Theoretical Background 7

FIGURE 2.3: Left: a possible parse tree for the sentence "I saw a man
with binoculars." Right: visual representation of the corresponding

sentence

represent the syntactic relation between the tokens. Parse trees show the underlying
structure of a sentence and the relation between its constituents.

FIGURE 2.4: Left: the second possible parse tree for the sentence "I
saw a man with binoculars." Right: visual representation of the corre-

sponding sentence

However, the sentence “I saw the man with binoculars” is an example of what
is known as an ambiguous sentence i.e., it has more than one interpretation. In this
case, it is unclear as to who exactly is holding the binoculars. This is one useful appli-
cation for the use of parse trees. Using the parse tree shown in Figure 2.3 it becomes
clear that the “I” in the given sentence is the one holding the binoculars resolving
ambiguity. Figure 2.4 gives another parsing of the same sentence, here, it is the man
holding the binoculars as shown in the corresponding visualization. Depending on
the context we can choose the corresponding parse tree to appropriately resolve the
ambiguity and give the sentences their proper meaning.

2.5 Natural Language Processing Tasks

There are two natural language processing (NLP) tasks that are of interest to this
research. NLP-tasks are used to measure the performance of a language model, in
this case, an LSTM.

Chapter 2. Theoretical Background 8

2.5.1 Named Entity Recognition

Named entity recognition is an NLP-task focused on information extraction of un-
structured text. The goal of this task is to identify words in a given sentence that are a
named entity i.e. a person, location, organization, monetary value, time expression,
etc. Take for example the following sentence:

Vlaanderen onderschrijft expliciet de doelstellingen van de UNESCO .

Then the correct corresponding named entities will be:

(Vlaanderen, B-loc), (onderschrijft, O), (expliciet, O), (de, O), (doelstellingen, O), (van, O),
(de, O), (UNESCO, B-org), (., O)

As shown in the example above the named entities are labeled accordingly. The
labels consist of two parts separated with an “-”. The first character indicates whether
the labeled word is the first word of a named entity as is the case in the given exam-
ple. In the case of a named entity that consists of multiple words the first label of the
first word will contain a “B” and the other labels will start with an “I”. The second
part of the label denotes the type of entity the word belongs to, again looking at the
example above “loc” in the label “Vlaanderen” corresponds to location, and “org”
in the label of “UNESCO” stands for organization.

2.5.2 Part of Speech Tagging

Like named entity recognition, part of speech tagging is a task where for a given
sentence each word needs to be correctly classified with its corresponding label. As
the name suggests, with part of speech tagging a trained language model is tasked
to correctly predict the part of speech of each word within a sentence. Classifying
the same sentence that was shown for the NER tasks but now with part of speech
tags gives us:

(Vlaanderen, N), (onderschrijft, WW), (expliciet, ADJ), (de, LID), (doelstellingen, N),
(van, VZ), (de, LID), (UNESCO, N), (., LET)

The following chapter will go into greater details about how the experiment is
performed, the data and model will be used and, how the experiment is evaluated.

9

Chapter 3

Methods

This experiment tries to show whether there is a difference in performance between
a network that has had access to syntactic information during training and one that
was purely trained on the words. This will lead to four networks being trained for
the NER task. The first network will be trained on a large dataset consisting only
of sentences with (word, label) tuples. The second network will be trained on a
smaller dataset consisting of sentences but with an added part of speech data. The
third network will again only use sentences with the word, label information but
this time using the smaller dataset. Lastly, a network will be trained on sentences
where the words will be ignored and the network only has access to part of speech
and label data. The code that is used for this experiment is available at [1].

3.1 SoNaR-500 Dataset

The dataset that will be used in this experiment is the SoNaR-1 dataset which is a
subset of the Dutch SoNaR-corpus SoNaR-500, which is a data set that is fully lem-
matized and annotated with part of speech tags. The SoNaR-1 data set consists of
approximately one million words and is provided with various kinds of semantic
annotations (e.g. named entities, spatial and geotemporal relations). For more infor-
mation about the SoNaR-corpus see [2].

For this experiment different partitions of the named entity and part of speech
task were chosen. The first network will be trained on the full named entity dataset
which amounts to 39,149 sentences for the training, 8,649 for the validation, and
8,538 for the test set. For the following parts of the experiment, we combined the
sentences from the named entity with those that also occur in the part of speech
dataset. The intersection of both datasets amounts to 5,221 sentences for the training,
1,120 for the validation, and 1,118 for the test set. Table 3.1 shows a distribution of
the named entity labels for both datasets and Table 3.2 shows the labels and their
meaning.

1https://github.com/iehkaatee/LSTM_project_ner
2https://taalmaterialen.ivdnt.org/download/tstc-sonar-corpus/

https://github.com/iehkaatee/LSTM_project_ner
https://taalmaterialen.ivdnt.org/download/tstc-sonar-corpus/

Chapter 3. Methods 10

TABLE 3.1: Number of labels for each category in the full and com-
bined dataset.

NER label Full dataset Combined dataset
B-loc 25461 2901
B-pro 3768 337
I-pro 5686 837
B-per 14077 1896
B-org 9750 1629
B-misc 7114 1075
I-misc 2377 366
I-org 7014 1199
I-per 9111 1276
I-loc 2562 256
B-eve 1077 61
I-eve 1041 52

TABLE 3.2: NER labels and their corresponding description.

NER label Description
"B" prefix Begin named entity
"I" prefix Continuation named entity
loc Location
per Person
pro Product
org Organization
misc Miscellaneaous
eve Event
O Other

Chapter 3. Methods 11

3.2 Long Short Term Memeory Model

The LSTM model that is used for this experiment is implemented in python using
the PyTorch library[3]. PyTorch provides many ready-to-use models that can be eas-
ily implemented and modifiable to a wide variety of projects. This experiment will
require two different kinds of LSTM models, one for processing the data without
POS-tags and one for data with POS-tags. The model that will only train on (word,
label) data as input is a straightforward basic LSTM model without any special ad-
justments, see Figure 3.1 for a schematic overview of the model. However, feeding
the combined data to the network required an additional embedding layer dedicated
to the part of speech tags. Figure 3.2 shows an adjusted LSTM and how the embed-
ding layer of the parts of speech is combined with that of the word embedding and
is passed to the memory cell of the LSTM. The combined embedding layer is the re-
sult of concatenating the word embedding layer with the part of speech embedding
layer to create one combined embedding layer. The Adam optimizer (Kingma and
Ba, 2014) was used with a learning rate of a=0.001.

FIGURE 3.1: A systematic overview an standard LSTM processing
only the given words at each timestep.

FIGURE 3.2: A systematic overview of the altered LSTM processing
the combined word and POS data.

3.3 Hyperparameters

The hyperparameters were chosen using a parameter sweep trying different values
step by step, keeping track of which settings improved performance. For the number

3https://pytorch.org/

Chapter 3. Methods 12

of epochs, we started at 5 and kept increasing the number of epochs by 5 each time
until there was no more significant increase in performance. The same was done
for batch sizes here we started at 100 and kept increasing by 100 each run. The
embedding and hidden dimension layers started from 20 and were increased by
10 each run. Due to limitations with computing power, the parameters are only
optimized for one model. The optimal parameters found for this model will be used
for the other models as well. This resulted in the following parameters being used:

• Epochs: 40

• Batch size: 200

• Hidden dimension: 82

• Embedding dimension: 82

• Learning rate: α = 0.0001

3.4 Evaluation

One important thing to take into consideration during the evaluation was the fact
that most words within a sentence are not a named entity (label = “O”). Therefore,
when evaluating the performance of the models including “O”-labels will always
perform reasonably well due to the frequency of the “O” labels. To correctly measure
the performance of the correct named entities that were predicted the choice was
made to neglect the “O” labels (for other) and only look at the labels the network
guessed correctly. The metrics that are used to measure performance are F1-score,
precision, and recall.

13

Chapter 4

Results
The Combined dataset without POS (M1) showed baseline precision values of 0.493
(precision), 0.499 (recall) and 0.496 (F1). As a control, a model was trained (M2) on
a full dataset showing improvement of all parameters as was expected from a larger
dataset.

After supplementation of POS (M3) precision, recall and F1 were increased by
approximately 10% which is almost equal to the results of M2, trained on the full
dataset. Lastly, a model trained on only pos performed nowhere close to the other
models.

Model Precision Recall F1-score

M1: combined dataset,
without POS 0.493 0.499 0.496

M2: full dataset,
without POS 0.562 0.549 0.553

M3: combined dataset,
with POS 0.549 0.565 0.557

M4: combined dataset,
only POS 0.661 0.234 0.346

TABLE 4.1: Precision, recall and F1-score of each of the models
achieved on NER.

14

Chapter 5

Discussion
This research investigated whether an LSTM trained on data that is supplemented
with syntactic information will increase its performance. To test this, we performed
several experiments and compared the results of different training compositions.
First, we compared models trained on the combined or full dataset showing an in-
crease of all parameters. This was an expected finding, as the full dataset consisted
of four times the training examples.

The major result of these experiments is that an LSTM trained on the enriched
dataset performs significantly better than a model that is trained on a regular dataset
of the same size (M1: f 1 = 0.557 vs. M2: f 1 = 0.496). A possible explanation for
the increase in performance is that syntactic information, in this case, part-of-speech
tags, helps the network differentiate between what is a named entity and what is
not. Intuitively this makes sense, for example, knowing whether a given word is a
verb makes it less likely that that word will be a named entity. The increase in perfor-
mance might suggest that syntactic information positively affects a neural network’s
ability to differentiate named entities from non-named entities. Another interest-
ing result was that even though the enriched dataset was significantly smaller in
size (size dataset) this did not cause the network that was trained on the smaller
set to underperform in comparison with the network trained on the larger dataset.
On the contrary, the network that was trained on a smaller dataset supplemented
with syntactic information even has a slightly higher performance than the network
trained on the larger dataset without syntactic information (M1: f 1 = 0.557 vs. M3:
f 1 = 0.553). This second observation indicates that supplementing data with syntac-
tic information might increase the rate at which neural networks train. Furthermore,
in line with the expectations, a model trained on only POS data performed subpar
compared to the other models. Intuitively this makes sense because by using only
POS-tags it will be harder to distinguish words that share the same POS-tag.

Limitations

Several limitations should be noted. The first is that the performance of the networks
trained for this experiment is nowhere near the performance of some of the state-of-
the-art models that exist today. For instance, Chiu and Nichols’s bidirectional LSTM
with character-level features obtains f1-scores upwards of 90% (Chiu and Nichols,
2016). The difference in the performance of the network that is trained in this study
and that of Chiu and Nichols networks can be explained by multiple reasons. The
first is the size of the dataset, the initial dataset contained 56,336 sentences and the

Chapter 5. Discussion 15

combined dataset even contained as few as 7,459 sentences, if we compare this to
the dataset used by Chiu and Nichols: CoNLL-2003 (train: 204,567, dev: 51,578,
test: 46,666) and OntoNotes 5.0 (train: 1,088,503, dev: 147,724, test: 152,728) this
difference becomes apparent. That a network that is trained on a significantly larger
dataset performs better should come as no surprise. Furthermore, due to limitations
in computing power, this experiment used a network with a simple architecture,
examples show that complex architectures can perform significantly better.

16

Chapter 6

Conclusion
This research analyzed whether an LSTM model trained on a dataset that is sup-
plemented with syntactic information increases its performance on named entity
recognition. Our results show that not only does a model that is trained on an en-
riched dataset outperform a model trained on a regular dataset, the model that was
provided with syntactic information needed only a fraction of the number of train-
ing examples to achieve the same results as a model trained without. Still, there is
still much room for improvement for further research. For example, this experiment
made use of a relatively basic neural network architecture, an LSTM model that is
losing in popularity to newer models like transformers (Vaswani et al., 2017) which
show promising performances in the field of natural language processing. Further-
more, since combining the part-of-speech dataset with the regular dataset resulted
in a relatively small dataset it would be worth studying the performance of a similar
experiment but using a larger dataset. Nevertheless, the increase in performance of
a network trained with the help of syntactic knowledge might suggest that a neu-
ral network can benefit from the use of abstractions. If it is the case that neural
networks, like humans, make use of abstractions, this suggests that there might be
some similarities in the way neural networks and humans learn. Taken together,
supplementing a dataset with a form of abstract information seems well worth the
effort.

References 17

References

Adiwardana, D., Luong, M.-T., So, D. R., Hall, J., Fiedel, N., Thoppilan, R., . . .
others (2020). Towards a human-like open-domain chatbot. arXiv preprint
arXiv:2001.09977.

Baroni, M. (2020). Linguistic generalization and compositionality in modern arti-
ficial neural networks. Philosophical Transactions of the Royal Society B, 375(1791),
20190307.

Bloom, P. (2002). How children learn the meanings of words. MIT press.
Branwen, G. (2020). Gpt-3 creative fiction.
Carey, S. (2000). The origin of concepts. Journal of Cognition and Development, 1(1),

37–41.
Chiu, J. P., & Nichols, E. (2016). Named entity recognition with bidirectional lstm-

cnns. Transactions of the Association for Computational Linguistics, 4, 357–370.
Ferrucci, D., Brown, E., Chu-Carroll, J., Fan, J., Gondek, D., Kalyanpur, A. A., . . .

others (2010). Building watson: An overview of the deepqa project. AI magazine,
31(3), 59–79.

Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J., et al. (2001). Gradient flow
in recurrent nets: the difficulty of learning long-term dependencies. A field guide to
dynamical recurrent neural networks. IEEE Press.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computa-
tion, 9(8), 1735–1780.

Howe, J. (2007). Artificial intelligence at edinburgh university: A perspective.
Archived from the original on, 17.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2017). Building
machines that learn and think like people. Behavioral and brain sciences, 40.

Läubli, S., & Orrego-Carmona, D. (2017). When google translate is better than some
human colleagues, those people are no longer colleagues.

Lipton, Z. C., Berkowitz, J., & Elkan, C. (2015). A critical review of recurrent neural
networks for sequence learning. arXiv preprint arXiv:1506.00019.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., . . . oth-
ers (2017). Mastering chess and shogi by self-play with a general reinforcement
learning algorithm. arXiv preprint arXiv:1712.01815.

Smith, C., McGuire, B., Huang, T., & Yang, G. (2006). The history of artificial intelli-
gence.

Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D. (2011). How to grow
a mind: Statistics, structure, and abstraction. science, 331(6022), 1279–1285.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Polo-
sukhin, I. (2017). Attention is all you need. arXiv preprint arXiv:1706.03762.

	Abstract
	Acknowledgements
	Introduction
	Structure of this paper

	Theoretical Background
	Neural networks and their success
	Recurrent Neural Networks
	Long Short Term Memory Model
	Syntactic Information
	Part of Speech
	Parse Trees

	Natural Language Processing Tasks
	Named Entity Recognition
	Part of Speech Tagging

	Methods
	SoNaR-500 Dataset
	Long Short Term Memeory Model
	Hyperparameters
	Evaluation

	Results
	Discussion
	Conclusion
	References

