
Department of Information and Computing Sciences

Hybrid Trace Clustering

by

Mehrad Abdollahi

A thesis submitted in fulfilment of the requirements for the
degree of Master of Science

in

Business Informatics

Supervisors:
First Supervisor: Dr. ir. Xixi Lu

Second Supervisor: Dr. ir. Jan Martijn E. M. van der Werf

March 2021

Abstract

Process mining is a relatively young analytical discipline that is used as a
bridge between data mining and business process management. Experts have
been using process mining to extract insights about how processes work in
real life, how many deviations they have compared to their anticipations,
and how these processes can be improved. However, when it comes to large
and complex data, discovered process models by process mining algorithms
might be quite complicated. In such cases, called the discovery of spaghetti-
like models, one cannot simply understand the required knowledge from a
model. One possible approach to avoid this type of models is to cluster
traces that share homogeneous behaviors. While existing approaches offer
promising results, each of them suffers from a drawback, including having
high computational complexity, not producing high quality models, and not
explaining the existence of irrelevant traces in some clusters to name a few.
This thesis aims to hybridize two trace clustering types by introducing an al-
gorithm that makes a balance between the quality of cluster models and run
time of the algorithm. Evaluation of our technique (Hybrid) on six real-life
event logs show meaningful improvements against applying similarity-based
or model-driven techniques individually in terms of quality of process mod-
els. The obtained results of performance and scalability evaluation also reveal
that Hybrid technique delivers clusters on average with lower running times
compared to a state-of-the-art model-driven technique.

Keywords: Trace clustering, Process mining, Process Discovery, Data Min-
ing

Acknowledgements

This thesis is a result of nine months of demanding but also satisfying work.
I started working on this thesis at the beginning of the COVID-19 global
pandemic, a catastrophe that touched not only my life but the whole world.
Doing my master thesis in lockdown and amid the Corona crisis was a big
disappointment and frustration for me. In the end, however, I am delighted
and satisfied with the knowledge I gained in the context of process mining
and output results of the research I did.

I would like to express my deep gratitude to my first supervisor, Xixi Lu,
for her thorough and constructive feedbacks, her patience with my problems
and questions, and her supportive attitude when times were difficult for me.

Also, I want to give my special thanks to my parents and my brother. I
could not have finished my thesis without their endless love, support, and
encouragement.

To all my friends who were in contact with me while writing this thesis,
thank you. I will never forget your help and support when I needed it the
most.

Contents

List of Figures 4

List of Tables 5

1 Introduction 7
1.1 Problem Statement . 8
1.2 Research Questions . 9
1.3 Expected Contributions . 10
1.4 Research Method . 11

2 Preliminaries 13
2.1 Basic Notations . 13
2.2 Event Log . 14
2.3 Process Mining . 15
2.4 Data Clustering . 16
2.5 Trace Clustering . 17

3 Related Literature 19
3.1 Feature vector-based similarity 19
3.2 Syntax-based similarity . 21
3.3 Model-driven . 21
3.4 Mixed-paradigm . 22
3.5 Discussion . 23

4 Hybrid Trace Clustering 25
4.1 Elements . 25
4.2 Algorithm . 27

4.2.1 Step 1: Initial Clustering 29
4.2.2 Step 2: Trace Re-distribution 29
4.2.3 Step 3: New Cluster Initialization 30
4.2.4 Step 4: Iterative Clustering 30

2

CONTENTS 3

4.2.5 Step 5: Final Trace Assignment 31

5 Implementation 33

6 Evaluation 36
6.1 Experimental Setup . 37
6.2 SQ1: Distance and clustering technique 38

6.2.1 Discussion . 46
6.3 SQ2: Input Parameter Configuration 47

6.3.1 Discussion . 48
6.4 SQ 3: Comparative Analysis 49

6.4.1 Discussion . 54
6.4.2 Performance Analysis 54

6.5 Overall Discussion . 57

7 Conclusion 60
7.1 Conclusion . 60
7.2 Limitations . 61
7.3 Future Work . 62

Bibliography 63

APPENDICES 67

A Output Process Models 68

List of Figures

1.1 High Level framework of the Hybrid technique 9
1.2 Engineering Cycle . 12

2.1 Trace Clustering . 18

4.1 Hybrid technique framework 26

5.1 Hybrid technique code architecture 34

6.1 The effects of Distance Metric and Clustering Techniques on
Weighted Average F1-score. 39

6.2 Weighted Average F1-score against Clustering technique. . . . 40
6.3 The effects of flag on Weighted Average F1-score with different

Clustering Techniques. 41
6.4 Effect of Distance metric and Clustering Technique on Run-

ning time. 45
6.5 Effect of 3 input parameters on four real-life logs 48
6.6 Weighted Average F1-score against Clustering techniques . . . 50
6.7 Scalability of Hybrid technique in terms of the number of trace

variants . 57
6.8 Scalability of Hybrid technique in terms of the number of

unique activities . 58

4

List of Tables

2.1 Example of an artificial event log of a hospital 15

3.1 Existing Trace Clustering techniques in the literature 24

6.1 Selected Real-life event logs 38

6.2 Sampled BPI 2012 event logs 38

6.3 Initial clusters found by Hybrid’s first phase for KIM event log 42

6.5 Initial clusters found by Hybrid’s first phase for Road Traffic
fine event log . 42

6.4 Process models discovered from KIM event log for 4 clusters
using Hybrid technique, grouped by clustering algorithm used 43

6.6 Process models discovered from Road Traffic Fine event log
for 4 clusters using Hybrid technique, grouped by clustering
algorithm used . 44

6.7 Process models discovered from BPI 2013 event log for 4 clus-
ters by Hybrid technique and ActiTraC 52

6.8 Process models discovered from Road Traffic Fine event log
for 3 clusters by Hybrid technique and ActiTraC 53

6.9 ActiTraC Real-life Event Logs 55

6.10 Average runtimes of different techniques in seconds 55

6.11 Runtime (in seconds) on artificial logs with 15 unique activities 56

6.12 Runtime (in seconds) on artificial logs with 1000 trace variants 57

A.1 Process models discovered by Hybrid, ActiTraC, and K-means
algorithms from BPI 2013 event log for 4 clusters(first and
second clusters) . 69

A.2 Process models discovered by Hybrid, ActiTraC, and K-means
algorithms from BPI 2013 event log for 4 clusters(third and
fourth clusters) . 70

5

6 LIST OF TABLES

A.3 Process models discovered by Hybrid, ActiTraC, and K-means
algorithms from KIM event log for 4 clusters(first and second
clusters) . 71

A.4 Process models discovered by Hybrid, ActiTraC, and K-means
algorithms from KIM event log for 4 clusters(third and fourth
clusters) . 72

A.5 Process models discovered by Hybrid, ActiTraC, and K-means
algorithms from Road Traffic Fine event log for 4 clusters(first
and second clusters) . 73

A.6 Process models discovered by Hybrid, ActiTraC, and K-means
algorithms from Road Traffic Fine event log for 4 clusters
(third and fourth clusters) . 74

A.7 Process models discovered by Hybrid, ActiTraC, and K-means
algorithms from TSL event log for 4 clusters(first and second
clusters) . 75

A.8 Process models discovered by Hybrid, ActiTraC, and K-means
algorithms from TSL event log for 4 clusters(third and fourth
clusters) . 76

A.9 Process models discovered by Hybrid, ActiTraC, and K-means
algorithms from BPI 2012 event log for 4 clusters(first and
second clusters) . 77

A.10 Process models discovered by Hybrid, ActiTraC, and K-means
algorithms from BPI 2012 event log for 4 clusters (third and
fourth clusters) . 78

A.11 Process models discovered by Hybrid, ActiTraC, and K-means
algorithms from BPI 2018-Reference event log for 4 clusters
(first and second clusters) . 79

A.12 Process models discovered by Hybrid, ActiTraC, and K-means
algorithms from BPI 2018-Reference event log for 4 clusters
(third and fourth clusters) . 80

Chapter 1

Introduction

With the proliferation of stored data in the twenty-first century, various new
disciplines emerged to complement established fields like statistics in trans-
lating raw data into valuable insights. Machine learning and data mining as
examples of these new disciplines are applied in a wide spectrum of areas,
ranging from image and speech recognition to malware filtering and fraud
detection. Detection of spam emails is a tangible and daily example of a
data mining problem that falls within data clustering. As one of the main
tasks of data mining, data clustering groups similar objects together, whereas
objects in different clusters are dissimilar. Therefore, a clustering algorithm
is able to find spam emails and put them in a separate folder.

Process-aware information systems (PAIS) is another domain profiting from
data science solutions. Business Process Management (BPM), Enterprise
Resource Planning (ERP), Customer Relationship Management (CRM) are
only a few of the systems that support processes in an organisation. However,
unlike other areas that use spreadsheet data, these systems’ data relates to
processes. In other words, data about a process, so-called event data, involves
a collection of continuous execution of activities in the flow of time. Since
tabular data science tools are process-agnostic, they are not useful for PAIS.
This obstacle was overcome by the introduction of process mining.

Process mining is a group of techniques developed to monitor and optimise
processes through event data produced by information systems in an organ-
isation. The advent of process mining techniques has opened new opportu-
nities to address gaps between traditional and process-oriented data analysis
tools and methods [38].

This thesis aims to address data clustering, one of the classical data sci-

7

8 CHAPTER 1. INTRODUCTION

ence problems, in the process mining context. The solution provided is a
novel approach that combines two currently available methods in the liter-
ature to produce a competitive technique both in terms of scalability and
quality. Therefore, in the rest of the current chapter, the research prob-
lem is explained, and the respective research questions are discussed. Then
the contributions of this thesis and research methods used are reviewed. In
chapter 2 and 3, preliminary notations and notions, and related works in the
literature are reviewed and discussed, respectively. Chapter 4 explains the
Hybrid technique and its algorithm’s input in detail. Chapter 5 reviews the
implementation of the Hybrid technique, followed by the evaluation discus-
sions in chapter 6. Finally, chapter 7 summarise the findings of this thesis
and discusses limitations and future work.

1.1 Problem Statement

When it comes to process model discovery from event logs that occurred
at different abstraction levels, current discovery algorithms cannot function
accurately. To this end, a wide range of clustering algorithms have been
proposed in the context of process mining. According to a comparative anal-
ysis of trace clustering techniques [37], ActiTraC technique [16] is one of the
best performing approaches that offers promising results in terms of quality
of resulted process models. In ActiTraC, the focus is on the way traces are
distributed among clusters by iteratively measuring the quality of discovered
models.

However, this approach faces two main challenges. First, the running time
of this approach could grow exponentially in the number of distinct process
variants [16]. Second, there could be perfect clusters as well as extremely
poor clusters that decreases the overall average F1-score. On the other hand,
other approaches that concentrate on finding the similarity between traces
sometimes cluster traces that look similar but belong to different process be-
haviours. The reason for this is that these approaches take process agnostic,
data mining techniques that have not been primarily designed for event data.

This thesis proposes a hybrid approach of existing trace clustering methods
to address the drawbacks of each of the mentioned techniques. The target
methods considered are ActiTraC [16], a model-driven clustering technique
and K-means using feature-vector, a similarity-based technique . In the hy-
brid approach, first a similarity-based clustering technique is applied to find
the possible clusters with high levels of fitness and precision. This is done

1.2. RESEARCH QUESTIONS 9

to reduce the amount of computation in the next steps when model-driven
clustering starts. Moreover, unlike ActiTraC [16] that examine trace variants
one by one, hybrid technique take into account the similarity between traces
when building new clusters.

Overall, the Hybrid technique is composed of two main components: ini-
tial clustering and re-clustering. An initial clustering is first applied on the
original event log through data clustering algorithms. Next, traces are re-
clustered with respect to input parameters and results of initial clustering.
The output of the technique is several event log clusters in which produce
less complex process models. A high-level overview of the hybrid technique
is shown in Figure 1.1.

Figure 1.1: High Level framework of the Hybrid technique

1.2 Research Questions

While model-driven techniques results in precise models, in each iteration
they need to re-discover the model to evaluate the participation of a new
trace. Calculating fitness on each iteration for each new trace is a cumber-
some task in terms of computational time. In trace similarity techniques,
the quality of the clusters are revealed only after the clustering task is final-
ized. Therefore, two similar traces might be put in the same cluster, while
they do not improve the process model. This thesis aims to improve current
clustering techniques by offering an algorithm that makes a balance between
run time complexity and quality of cluster models.

This thesis is about design and investigation of a hybrid clustering algo-
rithm in the context of process mining. According to [44], research problems

10 CHAPTER 1. INTRODUCTION

in design science associates with design problems (DP) and knowledge prob-
lems (KP). Although the main research question (RQ) is a design problem,
its sub-questions (SQ) include two design problems and one knowledge prob-
lem. The main research question is formulated as follows:

How to combine similarity-based and model-driven clustering tech-
niques to propose a novel technique that makes a balance between
quality of cluster models and run time of the algorithm? (DP)

This question can be decomposed into the following sub-questions:

• SQ1: Which distance metric and clustering technique result in fastest
clustering while not compromising quality of process models? (DP)

Finding similar traces of a trace can be done in different ways, in which
each of them affect the performance of the algorithm. For this thesis,
data clustering algorithm and distance metric used could substantially
influence both quality of cluster models and runtime of the technique.
Therefore, the effect of these two measures is examined individually
and collectively for this sub-research question.

• SQ2: What are the effects of different input parameters on the results
of clustering? (KP)

Hybrid algorithm has more input parameters that influence the results
of clustering. In this thesis, the effect of different parameter values will
be reviewed.

• SQ3: How does the Hybrid technique perform compared to existing ap-
proaches? (DP)

The performance of Hybrid technique is against existing clustering
techniques with different clustering types, both in terms of quality of
process models and algorithm’s running time.

1.3 Expected Contributions

In this thesis, a new way of trace clustering is proposed. The effect of dis-
tance metrics between traces and the evaluation metrics of the models are
investigated in this thesis. Therefore, researchers can use findings of this
thesis not only in their works in trace clustering but also in other scopes of

1.4. RESEARCH METHOD 11

process mining, such as process discovery.

Moreover, one can look at the Hybrid technique as a framework. Input
parameters can be configured by the user, more clustering algorithms could
be embedded in the technique, and other process model quality criteria can
be applied to adapt the results according to the problem requirements.

Finally, the Hybrid technique is implemented in Python, the most popu-
lar programming language, according to GitHub and Google trends [33].
The implementation is based on a process-mining compliant Python library,
PM4PY, and it is publicly available as a Python package at GitHub.

1.4 Research Method

This thesis follows the design science methodology offered by [44]. The pri-
mary research question is a design problem, and thus, the engineering cycle
is selected as the research framework. Besides, this thesis took an iterative
approach towards the engineering cycle. For example, the Hybrid technique
algorithm’ design and inputs were revised after initial results of first proto-
types. Figure 1.2 shows the tasks executed in each four steps of the engi-
neering cycle.

The problem was identified and explored further following a thorough lit-
erature study in the problem investigation step. The literature study was
conducted using forward\backward snowballing on terms such as trace clus-
tering, process instance clustering, clustering in process mining, data mining
in process mining, and so forth.

Based on the literature study findings, a novel clustering technique is sug-
gested in the treatment design step. Decisions on Hybrid algorithm design
were affected both by deficiencies in similar techniques in literature and re-
sults of first versions of algorithm. Input parameters were also modified since
the thesis began to have definitive configurations.

For the treatment validation step, several real-life event logs were employed
to evaluate the Hybrid technique. These event logs have been used in the lit-
erature extensively, and thus, they can be considered benchmark data. The
Hybrid technique was also evaluated against other techniques in literature
with different input parameters to generalize results. More information con-
cerning evaluation can be found in chapter 6.

12 CHAPTER 1. INTRODUCTION

Figure 1.2: Engineering Cycle

Treatment implementation step was conducted in the Python programming
language. The Hybrid technique will be added to available open-source pro-
cess mining Python libraries and can be accessed openly.

Chapter 2

Preliminaries

In this chapter, all required concepts and notations used in this thesis are
defined formally. Definitions begin with basic mathematical notations which
is then followed by event log and process mining related concepts respectively.
In the last part, data and trace clustering techniques are introduced.

2.1 Basic Notations

Definition 2.1.1 (Set). A set is a distinct collection of elements. The num-
ber of elements in a set denotes the size a set. If a set does not have any
member, it is called an empty set and is denoted by ∅. Let A and B be two
sets, then following concepts are defined:

• Element. x ∈ A denotes x is an element(member) of the set A

• Union. A ∪ B = {x : x ∈ A ∨ x ∈ B} is denoted as the union of sets
A and B

• Intersection. A ∩ B = {x : x ∈ A ∧ x ∈ B} is denoted as the
intersection of sets A and B

• Subset. A ⊂ B denotes set A is a subset of B if A ∩B = A

Definition 2.1.2 (function). f is a function from A to B that maps an
element in A to an element in B and is denoted as f : A→ B

Definition 2.1.3 (Multiset). A multiset m over set A is a collection of
elements that unlike a set, each element instance can appear multiple times.
It is denoted as a funtion m : A→ N which maps every element to its number
of occurrences in the multiset. For example, given multi set m = [a31, a

2
2, a

4
3]

over A = {a1, a2, a3}, then m(a1) = 3, m(a2) = 2, and m(a3) = 4.

13

14 CHAPTER 2. PRELIMINARIES

Definition 2.1.4 (Sequence). A sequence σ =< a1, a2, ..., an > over the set
A is an enumerated and ordered collection of elements of size n, where ai ∈ A
and 1 ≤ i ≤ n.

2.2 Event Log

Process mining techniques can be leveraged only if pertinent input data is
provided. These types of data are recorded by information systems like En-
terprise Resource Planning (ERP) or Customer Relationship Management
(CRM) in the form of so-called Event logs. As the name suggests, event logs
contain a set of events recorded during the execution of a process. Each
event denotes an activity that has been executed at a certain time by a par-
ticular performer and within the context of a particular case. A sequence
of events that represents an orderly list of the same process instance execu-
tions from the start to the end is referred to as trace. Each process instance
is manifested as a trace and an event log is represented by a multiset of traces.

Table 2.1 shows a fragment of an event log of a healthcare process. Every
row in this table outlines an event, and each column represents an attribute
of an event. The Case column indicates to which case or process instance
an event belongs to. The timestamp column shows the completion execution
time of an activity that corresponds to the event. The values of the column
Activity are associated with the event’s activity name and columns Resource
and Location show the event’s corresponding performer and their location in
the hospital, respectively. It is worth noting that essential requirements for
an event log are only the first three columns, namely, case id, activity, and
timestamp. If an event log contains these features, it can be used as input for
process mining techniques. The remainder of the columns provide additional
information that could be missing in other event logs.

Definition 2.1 (Event, Attribute). Let E be the set of all possible event
identifiers, N be the set of all possible attribute names, and V be the set of
all possible attribute values. For any e ∈ E, n ∈ N , and v ∈ V , mapping
function πn : E → V maps event e to the corresponding value v for the
attribute name n. As indicated before, the minimum number of attributes
for an event in an event log is three. Therefore, if e does not have attribute
n, then we define it as πn(e) = ⊥.

Definition 2.2 (Trace). Let σ =< e1, e2, ...en >∈ E∗ be a finite sequence
of events recorded for a process instance (case), where each event appears

2.3. PROCESS MINING 15

Case Activity Timestamp Location Resource

1 Registration 2020-11-09 10:30 Emergency Kim

1 Triage request 2020-11-09 10:35 Emergency Kim

1 Triage 2020-11-09 10:41 Emergency Bao

3 Surgery 2020-11-09 10:34 Operation room Ali

2 Admit to hospital 2020-11-09 11:00 Reception Raj

1 Discharge to home 2020-11-09 10:52 Emergency Kim

2 Blood test 2020-11-09 11:30 Laboratory Pete

2 MRI 2020-11-09 12:00 Operation room Bao

3 Doctor appointment 2020-11-09 13:00 Ward Ali

3 Registration 2020-11-09 13:30 ICU Raj

4 kidney function test 2020-11-09 12:45 Laboratory Pete

...

Table 2.1: Example of an artificial event log of a hospital

only once. σ is called a trace if for any i and j where 1 ≤ i < j ≤ n,
πtimestamp(ei) ≤ πtimestamp(ej). In other words, the ordering in a trace should
respect the timestamp attribute of events.

Definition 2.3 (Event Log). An event log L = {σ1, σ2, ...σn} ⊆ E∗ is
a finite set of traces where each event appears only once in the entire log, i.e,
for any σ, σ′ ∈ L, σ 6= σ′ and for any events e ∈ σ and e′ ∈ σ′, e 6= e′.

Definition 2.4 (Trace Variant). Let A be the set of all possible activity
names. A trace variant is a unique sequence of activities over A∗. Let σv

be the set of all traces σ1, σ2, ...σn ∈ L such that share a same sequence of
activities. Assume TV = {σv

1 , σ
v
2 , ...σ

v
n} is the set of all trace variants in the

log, then for any i, j (i 6= j) and σv
i , σ

v
j ∈ TV , σv

i 6= σv
j .

2.3 Process Mining

Finding the bottlenecks and predicting delays in a process, and support-
ing process redesign decisions are only a few benefits of business processes
analysis [19]. The results of these analysis are then projected onto process
models which bring opportunities for relevant experts to optimize processes.
While traditional business intelligence tools and dashboards are useful in
data-driven contexts, they are not able to produce valuable insights for op-

16 CHAPTER 2. PRELIMINARIES

erational processes and process-centric contexts [38]. Van der Aalst argues
that data mining techniques do not take into account the end-to-end na-
ture of process data [38]. Consequently, he offered process mining, a novel
approach that incorporates both process model-driven and data mining ap-
proaches.

Process mining has three main domains: Process discovery, conformance
checking, and process enhancement. In process discovery, an abstract repre-
sentation of an event log is built in well-known notations, e.g., BPMN [43] or
Petri net [32]. In conformance checking, an existing process model is com-
pared to the event log of the same process and then, deviations of the model
from the log are identified. Process enhancement is about improving and ex-
tending process models in order to derive models that describe the behavior
in the log more precisely.

2.4 Data Clustering

Clustering is a very well-known technique in data mining that has been ap-
plied in many fields such as biology, image pattern recognition, and business
intelligence. In this unsupervised classification technique, data points are
grouped together based on their similarity in such a way that objects in
the same cluster are most similar to each other, while they have minimum
similarity with objects in other clusters [25]. Similarity in the most of the
cases is defined by a distance function such as Euclidean distance, Manhat-
tan distance, and Cosine similarity. Han et al. [23] group basic clustering
techniques into the following categories: partitioning, hierarchical, density-
based, and Grid-based methods.

In partitioning methods, data is divided into k groups, in which k is pro-
vided by the user. Then, in an iterative manner, clusters are improved by
substituting objects between clusters until a local optimum is reached for
each cluster. Greedy approaches like k-means and k-medoids are among the
best performing partitioning algorithms.

In hierarchical clustering, as the name suggests, a hierarchy of clusters is
made. Then groups of objects that are close to each other in the hierarchy
are merged in a bottom-up approach. We can also start with one cluster and
divide it into smaller clusters in a top-down approach.

In density-based approaches, the absolute distance between objects does not

2.5. TRACE CLUSTERING 17

define similarity, but density between objects defines it. Clustering of the
objects continue until the minimum number of objects in a certain radius,
density, is satisfied and does not exceeds some threshold.

Grid-based approaches build a space with finite number of cells that forms
a grid. Object space is then transformed into this grid structure and the
whole process of clustering is done in this space, regardless of number of
data objects.

2.5 Trace Clustering

Trace clustering is the intersection of data mining and process mining. Dis-
covering a single model from a complex event log leads to a complex model
with twisted and tangled arcs and transitions that is extremely difficult for
a domain expert to read. Therefore, data mining approaches are applied
in the context of the process mining to divide the complex log into smaller
logs. Consequently, models discovered from smaller logs are less complicated
and more comfortable to read. Many studies have been made into this field
that includes both adaptations of the data mining ideas and novel techniques
designed particularly for event logs. Trace clustering could be model-driven
or trace similarity driven. While the former looks for traces that improve
the model, the latter cluster traces that are close in terms of their distance.
Figure 2.1 shows an overview of how application of trace clustering can make
a difference.

18 CHAPTER 2. PRELIMINARIES

Figure 2.1: Trace Clustering

Chapter 3

Related Literature

In this section, existing trace clustering studies are investigated. Generally,
these studies can be put into three main types in which the first two ap-
proaches focus on the similarity between traces, while the third methods are
model-driven. In the first type, traces are mapped into vectors so that data
mining distance metrics can be applied. In the second type, string similarity
metrics are used to find similar traces. In the third type, the focus is directly
on the quality of discovered models and distribution of traces among clusters.

In addition to established techniques in literature, a novel technique based on
model-driven and similarity-based paradigms was introduced in 2019. This
research will be discussed, and its differences with this thesis will be high-
lighted separately after the main clustering types have been presented.

3.1 Feature vector-based similarity

One way to use data mining clustering algorithms in the context of process
mining is to transform each trace to a vector that represents one or more
quantitative characteristic of that trace. Different perspectives of a trace
have been quantified and used to vectorize a trace in the past works. Greco
et al. [22] as one of the early works in trace clustering considered frequent
sub-sequences of traces as feature vectors and used two thresholds to define
the frequent sub-sequences. Then, each trace is mapped into a point in vec-
toral space so a data clustering techniques like k-means can be applied to
group similar traces with each other.

19

20 CHAPTER 3. RELATED LITERATURE

Work of [15] continued and improved the study of [22] by introducing a
discovery algorithm independent approach that avoid over-generalization in
the resulted process models. After transforming traces into a vectoral space,
k-means technique with Euclidean distance are applied in order to cluster the
similar cases. However, for overfit clusters, structural patterns in which lead
the model to show behaviors that are not in the log are captured. Therefore,
this type of clusters will split into smaller clusters until optimal models are
discovered from these clusters.

Bose et al. [6] presented a robust context-aware approach that leverage
the so-called conserved patterns, sub-sequences of activities that are con-
served across multiple cases. These conserved patterns are then considered
as features in the space vector model, and traces that share many conserved
patterns between them are clustered together. Authors also used Euclidean
metric to calculate the distance between features and applied the Agglomer-
ative hierarchical clustering technique as the clustering algorithm.

Reviewed literature so far only considered control-flow perspective as the
baseline for trace comparison without incorporating context. Following stud-
ies have incorporated context by considering other perspectives.

Song et al. [36] introduced a novel approach to divide the log into homoge-
neous subset of traces by using activities’ information, like their transitions,
originators and their performance. In this work, other perspectives are con-
sidered in the process of finding similarities between traces by defining them
as trace profiles. Profiling can go beyond well-known perspectives as custom
profiles can be built if additional information is available in the event log.
Afterwards, each trace with candidate profiles is converted to a vector to
calculate its distance with other traces with similar profiles. Authors have
done several experiments with three different distance measures and four
clustering techniques which makes this study a flexible approach for trace
clustering. The pitfall of this approach could be the curse of dimensionality.
Too many dimensions make the distance between many traces look equal and
the results of clustering inaccurate.

In [8], Ceravolo et al. adopted the trace profiling [36] approach and intro-
duced position profile, a triple that considers the occurrence of an activity
at a certain position with its respective frequency. In order to be able to
perform different distance metrics, they transformed the whole event log to
an integer matrix based on the notion of position profile. For measuring the
similarity, unlike Cosine that work with normal distribution, they chose a

3.2. SYNTAX-BASED SIMILARITY 21

probability distribution independent approach that is based on inferential
statistics.

3.2 Syntax-based similarity

In this approach, traces are compared with each other in terms of their syn-
tactic difference. In other words, the distance between two traces is defined
as the number of operations (deletion, insertion, substitution) needed for the
first trace to transform to the second one. One of the most common tech-
niques in this area is Levenshtein distance [28].

In [5], Bose and van der Aalst measured the similarity between traces with
General Edit Distance, however they applied a cost function in order to
automatically penalize the edit operations of uncorrelated and contrasting
activities. Quadratic time complexity could be the main drawback of this
approach.

Di Francescomarino et al. [18] also used edit distance in order to find simi-
larity matrix between traces. Then, they used DBSCAN technique to cluster
traces based on the density of similar process instances.

3.3 Model-driven

Unlike the previous two methods, in the model-driven approach, a trace joins
a cluster if only it improves the quality of the cluster model. Consequently,
the distance between traces is ignored when clustering traces.

The work of [7] as one the first works of sequence clustering introduced
a model-based clustering. In this work, Cadez et al. used the Expected-
maximization algorithm [17] to cluster users of a web site based on their
behaviors by learning a mixture of first-order Markov models. Ferreira et al.
[21] did the same approach as [7] but in the context of process mining to
cluster sequences of activities.

In [16], authors tried to find the optimal distribution of traces between clus-
ters that leads to maximum quality of process models of clusters. In other
words, they do not aim to find the similarity between traces, but rather they

22 CHAPTER 3. RELATED LITERATURE

cluster traces that fit in a certain process model. They argue that data mining
techniques does not consider the quality of underlying process models gener-
ated for each cluster during the clustering. Authors refer to this problem as
the divergence between the evaluation bias and clustering bias and propose
a new approach based on active learning that first take unique cases and,
based on their distance or frequency, they are clustered together as primal
clusters. Clusters accept members only if the fitness is optimized, otherwise
traces are allocated to a thrash cluster or are distributed equally between
other clusters. Active trace clustering (ActiTraC) which will be referred in
this thesis extensively, is quadratic in terms of distinct process instances.

In [42], Veiga and Ferreira combined trace clustering with First order Markov
models using a hierarchical approach. Initially, random clusters are built, and
traces are distributed among them. Consequently, the cluster models (state
transition probabilities of the Markov chain of each cluster) are evaluated.
Then iteratively, traces are re-assigned to the clusters and evaluation is done
again until algorithm converges, and cluster models do not change. Addition-
ally, a probabilistic approach suits logs with diverse behaviors. Nevertheless,
authors add a pre-processing step to deal with the noise by removing uncom-
mon and rare sequences that affect probabilistic models. This step involves
dropping sequences with low support.

The work of Hompes et al. [24] combines the model-based and feature vector-
based approaches. In this work, case data have also been considered, as the
event log is first split up into consecutive time windows (time perspective).
Then cases are transformed into vectors and a similarity matrix is calculated
by applying Cosine similarity measure. A vector of case age factors for in-
stance can be used to decrease the case similarity to incorporate the effect
of time. Eventually, similarity matrix is the input of the MCL algorithm
(Markov Cluster)[41].

3.4 Mixed-paradigm

De Koninck and De Weerdt [12] introduced a novel trace clustering that
adopts the ideas of both distance-based and model-driven clustering. The
evaluation results show that the mixed-paradigm approach performed bet-
ter in three domains, namely internal consistency, process model quality,
and computational complexity, compared to existing trace clustering tech-
niques. Although the mixed-paradigm and hybrid approach proposed in this
thesis look similar, there are differences between them. The main differ-

3.5. DISCUSSION 23

ence is the way distance-driven and model-driven paradigms are applied. In
the mixed-paradigm, traces are first divided into super-instances and sub-
instances based on their distance, and then clusters are built based on super-
instances. In the final step, the same approach in ActiTraC [16] is applied
to distribute traces among clusters. In the hybrid approach, the distribu-
tion step is not model-driven only, as it takes into account the close traces
of a candidate trace as well. Also, an initialization step pick accurate clus-
ters before trace distribution starts, which could lead to improvements in
performance in some event logs.

3.5 Discussion

Feature vector-based allows researchers to apply data mining algorithms and
concepts on event data. Also, all perspectives of an event log can be mapped
into vectors and used in the clustering, which leads to higher quality results.
However, using a vectorial space with too many features brings a large com-
putation load that results in an extremely long run time of a technique.

Syntax-based approaches also are expensive in terms of computation. Calcu-
lating the distance between two traces with a simple syntax-based approach
like general edit distance takes quadratic time. Also, ignoring the order of
activities when computing syntactical difference between two traces is an-
other drawback of this method.

Besides, according to a study that incorporated expert knowledge in cluster-
ing [13], both of these approaches suffer from another drawback in clustering,
and that is irrelevant clustering of traces. This is because two traces might
be similar according to the distance measures, but do represent different be-
haviours.

In model-driven trace clustering traces are grouped if together they improve
the quality of the models quantitatively. However, the main drawback of
model-driven approaches is the high computational complexity. Qualification
of traces in cluster membership is achieved through model quality evaluation
which is an expensive task in terms of calculation. The evaluation also de-
pends on many factors, including the underlying discovery algorithm, model
quality metrics used, and the kind of evaluation (token-based or alignment-
based). For example, ActiTraC could require 50 times more resources than
similarity-based approaches, as demonstrated in the ActiTraC paper.

24 CHAPTER 3. RELATED LITERATURE

The idea of this thesis is inspired by the drawbacks of techniques in the lit-
erature. Delivering an accurate technique with reasonable computation time
by combining the advantages of existing methods is the main task of this
thesis. Table 3.1 shows an overview of existing trace clustering techniques
in the literature, grouped by clustering type, method used, and clustering
technique.

Technique Clustering Type Method Clustering Technique

Greco et al.[22] Feature Vector Frequent features K-means

De Medeiros et al. [15] Feature Vector Frequent Patterns K-means

Bose et al. [6] Feature Vector Conserved patterns Hierarchical

Song et al. [36] Feature Vector Trace Profiling Multiple techniques

Ceravolo et al. [8] Feature Vector Trace Profiling Hierarchical

Bose et. al [5] Syntax General edit distance Hierarchical

Ferreira et. al [21] Model-driven Markov model + EM K-cluster

De Weerdt et al. [16] Model-driven Active learning K-cluster

Veiga et al. [42] Model-driven Markov Chains Hierarchical

Hompes [24] Model-driven Markov cluster algorithm K-cluster

De Koninck et al. [12] Feature Vector + Model-driven Active learning K-means

Technique column is the citation of the respective paper; Clustering Type
column shows the type of trace clustering; Method column indicates what method
the paper used; Clustering Technique column refers to the underlying clustering
technique used, which is mostly a data clustering algorithm. K-cluster in this
column includes techniques in which the number of clusters, k, is set beforehand,
however it does not indicate a specific algorithm.

Table 3.1: Existing Trace Clustering techniques in the literature

Chapter 4

Hybrid Trace Clustering

This chapter discusses the approach proposed by this thesis and addresses
the arguments surrounding decisions. It is worth noting that Hybrid tech-
nique is not limited to the configuration used in this thesis. A clustering
problem could be approached by a more generalized Hybrid technique using
different input parameter values.

Figure 4.1 illustrates the main steps of Hybrid technique framework. After
providing the event log and input parameters, a data clustering algorithm is
applied on the event log to identify and exclude high quality clusters from
the rest of the clustering task. Unqualified traces are then marked in the
second step and initialize a new cluster in the third step. In the fourth step,
traces are assigned based on their performance on cluster models, and in the
fifth step, remaining traces are put together as a trash cluster. Full details
of the algorithm is described in section 4.2.

4.1 Elements

In the Hybrid technique, process models are iteratively evaluated quanti-
tatively. Many of the techniques in the literature have used quantitative
process model quality metrics to evaluate clusters [16, 5, 6, 36]. Fitness, pre-
cision, generalizability, and simplicity, are the four quality criteria proposed
by Van der Aalst [38] and are considered as the baseline in the quantitative
evaluation of process models.

Quality metrics can be used in different ways. For instance, in [35], au-
thors used fitness and precision but gave them different weights for their
quantitative model evaluation. The same authors also used Cardoso and the

25

26 CHAPTER 4. HYBRID TRACE CLUSTERING

Figure 4.1: Hybrid technique framework

size of the model (total number of transitions, arcs, and places of a Petri
net), to qualitatively evaluate models. Authors of ActiTraC [16] used only
a specific type of fitness (ICS-Fitness) [14] as their sole evaluation metric in
the iteration phase.

In this thesis, fitness, precision, and F1-score are chosen as model evalu-
ation metrics. Regarding the rationale behind this decision, it can be argued
that in a clustering problem, we are looking for readable models such that
each represent a certain behaviour in the event log. Therefore, fitness is cho-
sen as we are looking for models that are able to represent the behaviour seen
in the event log, while precision is chosen because each cluster should not
cover non-homogeneous behaviour or traces that belong to other clusters. To
balance fitness and precision, F1-score of each cluster is calculated, giving
both metrics equal importance. F1-score is calculated as in Equation 4.1:

F1 = 2 ∗ fitness ∗ precision
fitness+ precision

(4.1)

Also, since clusters have different sizes, cluster weight (size) is incorporated
in the F1-score to have a better indication of average quality of all clusters.
Let l be the size of a cluster and 1 ≤ i ≤ n. Then, the weighted average
F1-score (F1WA) is calculated as in Equation 4.2:

F1WA =

∑n
i=1 li ∗ F1i∑n

i=1 li
(4.2)

4.2. ALGORITHM 27

Weighted average F1-score is an appropriate metric for evaluation of Hy-
brid technique which will be used later frequently in chapter 6.

Moreover, the Hybrid technique algorithm also depends on the task of pro-
cess discovery. Cluster models are continuously discovered and assessed, and
thus, the selection of process discovery algorithm is a critical task. In this
thesis, Inductive miner (IM) [27] without any filtering, and default setting,
has been chosen as the primary discovery algorithm. Inductive miner is one
of the most compelling discovery algorithms when the target is to have mod-
els with the highest F1-scores [2]. According to the same study, [2], Inductive
miner also discovers less complicated process models compared to many other
available techniques .

4.2 Algorithm

The Pseudo-code in Algorithm 1 describes the algorithm of the Hybrid tech-
nique and it will be referenced again throughout this chapter. Furthermore,
the algorithm’s inputs, parameters, and outputs are explained first, and then
each step of the algorithm is presented in detail. It is worthy to note that
while different values of algorithm’s input are investigated in this thesis, al-
gorithm parameters use a default setting.

Input Parameters

• Event log. An event log that process discovery algorithms are unable
to produce a single comprehensible process model from it. The Hybrid
clustering technique divides into several clusters.

• Number of Clusters (NC). The number of clusters that are going
to be obtained should be set beforehand. This parameter also decides
when the algorithm should stop looking for more clusters.

• Initial F1-score Threshold (FT). This is the F1-score threshold
that distinguishes appropriate clusters in the first step. Setting it too
low lead to qualification of unnecessary clusters and setting it too high
only qualify highly accurate clusters in this step.

28 CHAPTER 4. HYBRID TRACE CLUSTERING

• Neighborhood Size (NS). This parameter decides how many similar
traces of a single frequent trace should be considered when building a
new cluster. A large size results in too many traces in a starting cluster,
and small size puts the bias of the technique towards the model-driven
side.

• Distance Metric. This parameter lets the user choose the distance
metric. The distance metric can be either a syntax-based or feature
vector-based.

• Clustering Technique. This parameter defines which data clustering
technique is used in the first step of the Hybrid technique.

Algorithm parameters

• Minimum Cluster Size (MCS). Experiments done in this thesis
have shown that sometimes clustering technique in the first step results
in clusters with very few traces, but with a high F1-score. Without any
condition, these clusters satisfy the F1-score threshold and therefore are
added to the final clusters. An example of this phenomena is cluster
number 4 found by K-means in table A.2 in appendix that includes
only 5 traces, but has a perfect F1-score. In order to avoid these sort
of clusters, a minimum cluster size condition is practiced. In this thesis,
minimum size is set to 300.

• Discovery Algorithm. This parameter indicates the process discov-
ery algorithm used in each step of the hybrid technique. All models in
this thesis were discovered using Inductive miner.

• Intermediate Model quality measure. Users can choose the model
quality criteria used in the mode-driven part of Hybrid technique. The
intermediate model quality evaluates models whenever a new trace vari-
ant is tested on a cluster. Examples for this parameter are fitness,
precision, and complexity to name a few. The weight of each metric
could also be tuned with respect to the needs of problem. In this thesis,
harmonic mean of fitness and precision is adopted as default setting.

Output

• A collection of sub-event logs that each belong to a cluster.

4.2. ALGORITHM 29

4.2.1 Step 1: Initial Clustering

The goal of the first step is to see if we can find proper clusters in terms of
F1-score, using only a trace similarity-based approach with the least com-
putational complexity. According to [5], mapping traces into vectors with a
bag-of-activities (BOA) approach and calculating the distance between them
using Euclidean measure can be done in linear time with accordance to the
length of the trace, which is the number of activities in the trace.

Moreover, traditional clustering algorithms with the least amount of com-
putational complexity are applied that can utilise the BOA model. Based on
a survey on clustering algorithms [45], K-means [29] and DBSCAN [20] are
among the fastest algorithms and therefore, are chosen for this step.

Line 3 in the algorithm 1 executes this step. The resulting clusters are used
later in the next step.

4.2.2 Step 2: Trace Re-distribution

In this step, the F1-score of resulted cluster models is measured and com-
pared to the initial F1-score threshold (FT) that is set by the user as an input.
Clusters that satisfy FT are qualified as final clusters, and their traces will
not participate in the next steps of the algorithm. Clusters that do not meet
the FT are dissolved with the condition that traces that were put in the same
cluster are marked with the same flag. These flags are the used in the next
step to build a new cluster.

Moreover, initial clusters are evaluated using token-based replay [39] fitness
and precision. Although token-based conformance checking provides less ac-
curate diagnostics than alignment-based [34], it is less time-consuming [38].
Since in the first step we are looking for highly accurate initial clusters while
not compromising time, token-based replay conformance checking is selected
for evaluation in this step.

Lines 5-12 in algorithm 1 are responsible for execution of this step. First
a cluster model is discovered using Inductive Miner in lines 5 and 6. Then,
the F1-score is checked in line 7. If a cluster is qualified, it will be joined to
the final clusters in line 8, otherwise, the flag function is executed in line 12.

30 CHAPTER 4. HYBRID TRACE CLUSTERING

4.2.3 Step 3: New Cluster Initialization

The purpose of this step is to create a new cluster with the condition that
we have not reached the expected number of clusters (NC) yet. If we reach
this step and there exist (NC - 1) clusters, step 5 is executed. Otherwise, the
following procedure is performed.

From the remaining traces, the most frequent trace variant is picked in order
to start a new cluster. Next, the neighbourhood of this variant is checked for
similar variants that have not been flagged in the previous step, which then
are added to the cluster. The size of the neighbourhood (NS) is fixed by the
user as an input. The reason for checking neighbourhood is that we want
to group as many traces that are close and have not been clustered together
yet as possible. In other words, we want to try a different trace distribution
between clusters. After the most frequent variant and the variants in its
neighbourhood are identified, all traces belonging to these variants comprise
a new cluster.

In line 13 of the algorithm 1, loop conditions indicate this step’s require-
ment. Also, line 17 shows the participation’s flag and distance conditions for
traces.

4.2.4 Step 4: Iterative Clustering

In this step, remaining traces are examined on the new cluster. The changes
in the cluster model’s F1-score decide the participation of the candidate
traces in the cluster.

Initially, the most frequent variant is identified and added to the cluster.
The changes in the F1-score of the cluster model is monitored.
Two following scenarios could happen:

• If F1-score of the model decreases, the minimum cluster size(MCS) is
checked. If the cluster satisfy MCS, the selected variant is ignored,
the cluster is finalized, no other trace is added to the cluster anymore,
and step 3 is repeated again. If the size condition is not satisfied, step
4 is repeated again.

• If F1-score increases, all traces belonging to the nominated trace variant
are added to the cluster and step 4 is repeated again.

Lines 20-31 in the algorithm 1 show how this step is executed. Lines 20-27
are repeated until there is a variant that does not improve the F1-score of

4.2. ALGORITHM 31

the model. After the repetition is interrupted by an unfit variant, the cluster
is finalized in line 30 and conditions of the big loop in line 13 are rechecked.

4.2.5 Step 5: Final Trace Assignment

Remaining variants (the ones that have not been assigned to any cluster yet)
are put together in a so called trash cluster as the final cluster (line 32 in
algorithm 1. Trash clusters’ traces are only put together whenever pre-set
number of clusters is reached. Absence of any similarity-based or model-
driven clustering task on these traces mostly results in poor cluster models
in terms of fitness and precision.

32 CHAPTER 4. HYBRID TRACE CLUSTERING

Algorithm 1: Hybrid Trace Clustering Algorithm

Input: Original event log L, Number of clusters k, Distance metric
DM , Clustering technique CT , neighbourhood size ns, F1-score
threshold ft, and minimum cluster size mcs

Output: collection of event log clusters FC
1 RT ← ∅ // Remaining traces that are not clustered yet

2 IC ← ∅ // Denotes the initial set of clusters

3 IC ← CT (L, k) // Initial clustering using K-means or DBSCAN

4 counter ← 0 // Cluster counter that increments whenever a cluster is

finalized

5 for every cluster in IC do
6 PMcluster ← IM(cluster) // Process model PMcluster of each cluster

is discovered using Inductive miner algorithm IM

7 if F1-score(cluster, PM) > ft ∧length(cluster) ≥ mcs then
8 FC ← cluster
9 RT ← L \cluster

10 else
11 for tracevariant in cluster do
12 flag(variant) // Variants in an unqualified cluster get the

same flag

13 while RT 6= ∅∧counter6=k-1 do
14 NC ← ∅ // A new cluster is initiated

15 trace variants← frequent variant finder(RT, ns)
16 for variant in trace variants do

17 if distDM(variantfrequent, variant) < 2 ∧ variantflagfrequent 6=
variantflag then

18 NC ← NC ∪ {traceivariant} // All traces with the same

trace variant as variant are added to the new cluster

19 RT ← RT \{traceivariant}

20 repeat
21 PM ← IM(NC)
22 variantfrequent ← frequent variant finder(RT, 1)
23 NCnew ← NC ∪ {tracevariantfrequent

}
24 PMnew ← IM(NCnew)
25 if F1-score(NCnew, PMnew) ≥ F1-score(NC,PM) then
26 NC ← NCnew

27 RT ← RT \{tracevariantfrequent
}

28 until
29 F1-score(NCnew, PMnew)

≤ F1-score(NC,PM) ∧ length(NC) ≥ mcs

30 FC ← FC ∪NCnew

31 count← count+ 1

32 FC ← FC ∪RT // Remaining traces are grouped as trash cluster

33

Chapter 5

Implementation

This section discusses the implementation of the Hybrid technique and ex-
plains all other required information pertaining to implementation. The al-
gorithm used in the Hybrid technique is implemented using Python program-
ming language and is publicly available at Github. Thus, first, all libraries
used in the implementation are reviewed. Then the main functions of the
Hybrid technique algorithm are described.

• PM4PY [4]: An open source library that supports process mining al-
gorithms in Python. The Hybrid technique is developed based on this
library, meaning discovery and conformance checking algorithms are
borrowed from PM4PY.

• NumPy: An open source library that supports high level mathemat-
ical functions as well as multi-dimensional matrices. For this thesis,
it has been used to calculate the trace similarities according to their
distance. In other words, implementation of both bag of activities and
Levenshtein has used Numpy.

• Scikit-learn: An open-source library that supports machine learning
algorithms. K-means and DBSCAN algorithms used in this thesis are
utilised from scikit-learn library.

For the calculation of process models’ fitness in the algorithm, token-based
variant of the replay fitness is used. The implementation of this variant in
PM4PY is based on a new and faster version of token-based replay fitness [3].
Regarding the calculation of precision, ETConformance (using token-based
replay) implementation of PM4PY is used.

33

https://github.com/mehradabd/hybrid-trace-clustering

34 CHAPTER 5. IMPLEMENTATION

For the calculation of fitness and precision in the evaluation of the Hybrid
technique, alignemnt-based replay fitness and align-ETConformance imple-
mentations of fitness and precision in the PM4PY are used respectively.

The code architecture of implementation is visualized in figure 5.1. There are
three main python modules in the implementation: algorithm, dist calc, and
clustering algo. The main module, algorithm, includes three main functions,
in which apply is the the function that provokes the algorithm. This function
calls other two main functions, new cluster and trace distribution. K-means
and DBSCAN are implemented in clustering algo module and will be used
in the apply function. Functions in the dist calc are used in the new cluster.

Figure 5.1: Hybrid technique code architecture

1 import pm4py

2 import hybrid_trace_clustering

3

4 DEFAULT_DISCOVERY_TECHNIQUE = ’inductive miner ’

5 DEFAULT_CLUSTERING_TECHNIQUE = ’K-means ’

6 DEFAULT_NUMBER_OF_CLUSTERS = 4

7 DEFAULT_DISTANCE_TECHNIQUE = ’levenshtein ’

8 DEFAULT_F1_SCORE_THRESHOLD = 0.95

9 DEFAULT_NEIGHBORHOOD_SIZE = 10

10

11 event_log = pm4py.xes_importer.apply("example_log.xes")

12 clusters = hybrid_trace_clustering.algorithm.apply(

13 event_log ,

14 initial_f1_score=DEFAULT_F1_SCORE_THRESHOLD ,

15 number_of_clusters=DEFAULT_NUMBER_OF_CLUSTERS ,

16 neighbourhood_size=DEFAULT_NEIGHBORHOOD_SIZE ,

35

17 distance_technique=DEFAULT_DISTANCE_TECHNIQUE ,

18 clustering_technique=DEFAULT_CLUSTERING_TECHNIQUE ,

19 discovery_technique=DEFAULT_DISCOVERY_TECHNIQUE)

Listing 5.1: Hybrid trace clustering code usage example in Python

Chapter 6

Evaluation

In a data clustering problem, evaluation of resulted clusters centers on how
well clusters fit the data. If ground truth is available, cluster quality could
be assessed by comparing the homogeneity or completeness of clusters to
labelled data. When the ground truth is unavailable, scientists switch to
methods that quantify how compact or separated clusters are as an alterna-
tive approach.

Within the context of process mining, there is another opportunity for cluster
assessment, regardless of the availability of ground truth. Since clustering
on an event log aims to derive simpler process models, the quality of cluster
models is of the highest importance. Therefore, the cluster models’ quality
can be considered as an evaluation metric alongside data clustering metrics
for overall performance assessment.

Process models have been assessed both qualitatively and quantitatively in
the literature. While in the former domain experts’ knowledge is utilised,
four main quality metrics are used for the latter. In [30], authors took ad-
vantage of the knowledge of healthcare experts and asked them to divide the
list of patients of a hospital into homogeneous groups. Then, they used these
groups as clusters to train their own technique. While this approach leads
to significant accurate results, it is out of scope of this thesis. Nevertheless,
readability of resulted cluster models of different techniques will be discussed
in this thesis.

In this chapter, the experimental setup is explained in the first section. The
next three sections are aligned with the research questions and their respec-
tive results. The final section discusses the overall evaluation of Hybrid
technique.

36

6.1. EXPERIMENTAL SETUP 37

6.1 Experimental Setup

In order to evaluate the hybrid technique, over 300 hundred experiment runs
have been done. All the experiments for this thesis are conducted on a Mac-
Book Pro 2020 with a 2 GHz Quad-Core Intel Core i5 processor and 16GB
of RAM. Python 3.8 on PyCharm IDE was chosen as the experiment envi-
ronment.

Since the hybrid technique is evaluated in terms of both run time and quality
of cluster models, two different experiment settings are used for evaluation.
Experiments concerning models’ quality have been conducted on six real-life
event logs such that each belong to various domains. KIM event log belong
to Help desk process of the ICT service of KU Leuven [1]. TSL event log
belongs to a second-line CRM process [1]. Both KIM and TSL are borrowed
from ActiTraC research paper [16] . Road Traffic Fine event log is taken
from an information system that manages road traffic fines [31]. BPI 2012 is
the event log of a Dutch financial institute [9]. BPI 2013 event log belongs
to IT department of Volvo in Belgium [10]. Data of BPI 2018-Reference is
provided by data experts, a medium-sized IT company [11]. Table 6.1 shows
event logs used for experiments.

Experiments have been repeated for three, four, and five clusters for every
input configuration and for each log with inductive miner as the discovery
algorithm and alignment-based F1-score as the the main evaluation metric.
In addition, Hybrid technique is also compared with other clustering tech-
niques. For this purpose, Hybrid technique has bee evaluated on standard
input parameters in order to keep the consistency.

It is also important to note that among experiments’ real-life event logs, BPI
2012 has been sampled due to high computational demands of alignment-
based conformance-checking on this log. Therefore, to avoid long hours of
experiments only for this one log, a random sampling has been done on BPI
2012. BPI 2012 log originally has 36 unique activities, which this amount
is reduced to 8, 9, and 11 for sampled logs. For all input parameters, the
average of 10 experimental runs for each sampled log is recorded and the
mean of all results, run times and F1-scores, is recorded for BPI 2012 value.
Table 6.2 shows the sampling results of BPI 2012.

38 CHAPTER 6. EVALUATION

Event Log #Cases #Variants #Unique Activities

BPI challenge 2012 [9] 13087 4366 36
BPI challenge 2013 [10] 7554 2278 13

BPI challenge 2018-Reference [11] 43802 515 6
KIM [1] 24770 1174 18
TSL [1] 17812 1908 42

Road Traffic Fine [31] 150370 231 11

Table 6.1: Selected Real-life event logs

Sampled Log #Cases #Variants #Activities

BPI 2012-8 13087 4366 8
BPI 2012-9 13087 2278 9
BPI 2012-11 13087 515 11

Table 6.2: Sampled BPI 2012 event logs

6.2 SQ1: Distance and clustering technique

This section addresses the first sub-research question by showing the results
of the relevant experiments. The first sub-research question is formulated as
follows:

SQ1: Which distance metric and clustering technique result in the fastest
clustering while not compromising the quality of process models?

In order to find the most accurate and fastest distance and clustering tech-
niques, experiments conducted while all other input parameters were fixed.
In the rest of this section, first cluster models are evaluated quantitatively
and qualitatively, and then the running time of experiments is reviewed.

Quality in terms of F1-score

The individual effects of distance metric and clustering technique on the
weighted average F1-score are depicted in Figure 6.1 for all logs. Starting
with the distance metric, it can be observed that levenshtein has higher mean
F1-score among all logs. Only in BPI 2018-ref two metrics has the same value.
However, no clustering technique offers a consistent improvement. DBSCAN
performed better in KIM, Road, and TSL event logs, while K-means resulted
in higher F1-scores in BPI 2013 and BPI 2012. Regarding BPI 2018, DB-

6.2. SQ1: DISTANCE AND CLUSTERING TECHNIQUE 39

(a) Effect of Distance Metric (b) Effect of Clustering Technique

Figure 6.1: The effects of Distance Metric and Clustering Techniques on
Weighted Average F1-score.

SCAN performed slightly better.

Figure 6.2 shows the combined effect of distance metric and clustering tech-
nique for each event log. Base on the plots, it can be deducted that appli-
cation of levenshtein with DBSCAN results in significantly higher scores in
Road 6.2a and KIM 6.2b logs. This combination has slightly better results
in 6.2c, 6.2d, and 6.2f as well. Only in 6.2e this combination is not the best
performing one.

The Effect of flag in Model’s quality

The inclusion of flags in the algorithm affects how the initial clustering results
are used in the next steps of the algorithm. Therefore, before starting the
qualitative analysis of cluster models, this sub-section investigates the effect
of flag on the clustering technique used in the first step of Hybrid’s algorithm.

As can be seen in Figure 6.3, except for one log (TSL), employment of flag
results in the higher F1-scores when DBSCAN is used as the clustering tech-
nique. On the other hand, except for one log (BPI 2013), having flag results
in lower F1-scores. This is because K-means could barely miss high quality
clusters because of the threshold. The traces in these clusters are not al-
lowed to be together because of the flag condition. However, DBSCAN could
find few but huge clusters, or many but small clusters. The flag condition
then penalizes the clusters not satisfying the threshold correctly. The next

40 CHAPTER 6. EVALUATION

(a) Road Traffic Fine. (b) KIM.

(c) TSL. (d) BPI 2012.

(e) BPI 2013. (f) BPI 2018-Reference.

Figure 6.2: Weighted Average F1-score against Clustering technique.

6.2. SQ1: DISTANCE AND CLUSTERING TECHNIQUE 41

sub-section discusses the relation between the quality of models and flag’s
contribution.

(a) Effect of Flag when K-means is
used

(b) Effect of Flag when DBSCAN is
used

Figure 6.3: The effects of flag on Weighted Average F1-score with different
Clustering Techniques.

Cluster Models’ Quality

In order to observe the effect of the clustering algorithm in practice, discov-
ered process models are investigated qualitatively in this part. According to
figure 6.1b, DBSCAN on logs KIM and Road traffic fine results in higher
weighted average F1-score compared to when K-means is used. Therefore,
we seek more insight in these two event logs with Levenshtein as the un-
derlying distance metric for the comparison, and 0.95 as the initial F1-score
threshold. In order to fit the models in one table for the sake of simplicity,
trash clusters of both types are also ignored in tables.

Table 6.3 shows the results of first phase of Hybrid with different cluster-
ing algorithms. Looking at the F1-scores, it is apparent that no cluster is
qualified as a final cluster in the first phase. However, what is important for
us to recognise in the table below is that, DBSCAN only found one cluster.
Since this huge cluster is not qualified, all traces are marked with the same
flag. When a new cluster is built in the second step of the algorithm, only the
one most frequent variant initialises the new cluster. All other variants have
the same flag and are not allowed to be grouped together. The outcome of

42 CHAPTER 6. EVALUATION

this event can be seen in the clusters of table 6.4, when the first and second
clusters of DBSCAN have perfect F1-score. Overall, clusters of DBSCAN
only comprise of a few number of variants because of the flag condition.

Hybrid Variant

#Traces/ F1-score Cluster number
Cluster 1 Cluster 2 Cluster 3 Cluster 4

HybridDBSCAN 24770/0.662 - - -

HybridK−means 5092/0.523 6622/0.739 6242/0.489 6814/0.690

Table 6.3: Initial clusters found by Hybrid’s first phase for KIM event log

On the other hand, K-means resulted in four unqualified clusters, which re-
sults in four flags. This allows the next step of the algorithm more flexibility
to chose variants. The outcome of this event is visualised in the K-means
clusters in the table 6.4. Although the clusters of K-means have lower F1-
scores compared to DBSCAN, its models cover more behaviours.

Road traffic fine is another event log which clustering algorithm used makes
a meaningful difference in the final weighted average F1-scores. As table 6.5
shows, only one cluster from K-means is qualified as the final clusters. Ta-
ble 6.6 shows the resulted clusters of Hybrid technique when DBSCAN and
K-means are employed.

Hybrid Variant

#Traces/ F1-score Cluster number
Cluster 1 Cluster 2 Cluster 3 Cluster 4

HybridDBSCAN 70510/0.828 79814/0.76 46/0.736 -

HybridK−means 20540/0.798 56887/0.59 22973/0.711 49970/0.999

Table 6.5: Initial clusters found by Hybrid’s first phase for Road Traffic fine
event log

Like KIM event log in the previous part, DBSCAN found two perfect clusters
which are basically comprise of single variants. This is due to the fact that
DBSCAN marks the most of the traces with only two flags, according to table
6.5. On the contrary, K-means clusters are comprised of multiple variants,
which makes them cover several behaviours.

6.2. SQ1: DISTANCE AND CLUSTERING TECHNIQUE 43

Hybrid Variant Number of clusters cluster number Number of Traces F1-score

HybridDBSCAN 4 1 3660 1.0

HybridK−means 4 1 8956 0.92

HybridDBSCAN 4 2 6762 1.0

HybridK−means 4 2 10051 0.72

HybridDBSCAN 4 3 3442 0.747

HybridK−means 4 3 721 0.73

Table 6.4: Process models discovered from KIM event log for 4 clusters using
Hybrid technique, grouped by clustering algorithm used

44 CHAPTER 6. EVALUATION

Hybrid Variant Number of clusters cluster number Number of Traces F1-score

HybridDBSCAN 4 1 56482 1.0

HybridK−means 4 1 49970 0.999

HybridDBSCAN 4 2 66756 1.0

HybridK−means 4 2 78016 0.942

HybridDBSCAN 4 3 19688 0.910

HybridK−means 4 3 20899 0.912

Table 6.6: Process models discovered from Road Traffic Fine event log for 4
clusters using Hybrid technique, grouped by clustering algorithm used

Run Time

This sub-section investigates the effect of distance metric and clustering tech-
niques on the run time of the algorithm. Figure 6.4 shows the results of
running time of the Hybrid algorithm on the six event logs. What stands
out from the figure below is that no single configuration is always associated

6.2. SQ1: DISTANCE AND CLUSTERING TECHNIQUE 45

(a) Road Traffic Fine. (b) KIM.

(c) TSL. (d) BPI 2012.

(e) BPI 2013. (f) BPI 2018-Reference.

Figure 6.4: Effect of Distance metric and Clustering Technique on Running
time.

46 CHAPTER 6. EVALUATION

with the lowest run time. In addition, 6.4 shows that the distance metric has
no effect on the run time on the Road and TSL logs. Another observation
is that while BOA distance metric with DBSCAN associates with lower run
times on BPI 2012 and BPI 2013 logs, Levenshtein distance metric performs
more efficient when combined with K-means. For KIM and BPI 2018, the
difference that distance metric makes is negligible.

Regarding the effect of only clustering technique, the number of cases which
K-means performs better, 6.4a, 6.4d, and 6.4f is greater than the number of
cases which DBSCAN does. Except for TSL event log (6.4c) which DBSCAN
is considerably faster than K-means, K-means is faster or slightly slower than
DBSCAN. In addition, K-means results in faster clustering when combined
with Levenshtein distance metric, compared to BOA.

6.2.1 Discussion

There is no consistent pattern for a combination of distance metric or cluster-
ing technique that results in the best performance in terms of quality. While
Levenshtein clearly surpasses BOA in terms of quality of cluster models, there
is not enough proof that Levenshtein always performs more efficiently than
BOA. Unlike having no pattern between distance and clustering techniques
for the quality of models, using K-means and Levenshtein associates with
lower run times, while this DBSCAN and BOA together achieves a faster
clustering.

Concerning the effect of the clustering algorithm on quality of cluster models,
several observations could be noticed. DBSCAN offers the same or higher
scores compared to K-means. Only in the BPI 2013 event log, K-means pro-
duced models with higher quality.

The outcome of incorporating flag is that the highest quality K-means clus-
ters cover more behaviours, while DBSCAN clusters lean towards atomic
behaviours. This could occur while both might produce models with ap-
proximately close F1-scores. We can argue that there is a higher chance
for unqualified traces in K-means to get different flags compared to DB-
SCAN. This is because K-means always results in k clusters, while there is
no guarantee for DBSCAN to find a specific number of clusters. Therefore,
as observed in the qualitative part, all traces could get the same flag. This
will substantially affect the distribution of traces among clusters for the rest
of the algorithm

6.3. SQ2: INPUT PARAMETER CONFIGURATION 47

6.3 SQ2: Input Parameter Configuration

The Hybrid technique has five input parameters. In the section 6.2, the
effect of distance and clustering technique was investigated individually and
collectively. In this section, the rest of the parameters are examined. The
plots in Figure 6.5 illustrate which parameter values lead to the highest
possible F1-score. It is worthy to note that K-means and Levenshtein were
chosen as the clustering technique and distance metric respectively, and the
rest of the experiments’ parameter space was considered as follows:

• Number of Clusters: {3, 4, 5}

• Neighbourhood Size: {10, 30}

• F1-Score Threshold: {0.85, 0.95}

Figure 6.5 shows results of different input values on F1-score of cluster mod-
els. The order of values in x-axis of plots is as follows: neighbourhood size/
F1-score threshold

What is interesting about the data in Figure 6.5 is that the neighbourhood
size does not have a significant effect on the F1-score, except for slight vari-
ations in KIM and Road logs. For KIM event log, reducing the size from 30
to 10 improves the quality, regardless of the number of clusters. This case
also applies for Road on 4 and 5 clusters, except that for 3 clusters, neigh-
bourhood of size 30 improves the quality. Despite differences, the effect of
the neighbourhood size is insignificant individually.

Moreover, F1-Score threshold used in the first step may change the final
results. For example, in the TSL log, for 4 and 5 clusters and size of 10
for neighbourhood, 0.85 as threshold results in higher F1-scores compared
to 0.95. Nonetheless, for the same number of clusters but with a neigh-
bourhood size of 30, the effect of threshold is neutralised. In Road, there is
an immediate improvement in F1-score when the threshold is lowered as well.

In the BPI 2013 log, it is apparent that a lower threshold achieves higher
F1-score. However, this effect is only applicable to 4 and 5 clusters and not
to 3 clusters. This finding conforms to the results of TSL log and Road
that when looking for 3 clusters, input parameter variations does not make
a significant difference.

48 CHAPTER 6. EVALUATION

6.3.1 Discussion

It can be argued that collective effects of input parameters is much greater
than each parameters’ individual effect. The initial F1-score appears to have
a significant effect on F1-score only when there more than 3 clusters. The
neighbourhood’s size shows its meaningful impact when the initial F1-score
threshold is set to 0.85. While the effect could lose its significance when
the threshold is set to 0.95. In addition, since every event log represents a
different behaviour, it is infeasible to find an input configuration for Hybrid
technique that is optimal for all event logs.

Figure 6.5: Effect of 3 input parameters on four real-life logs

Other input parameters were initially considered. However, since they did
not changed the final results significantly, even with collaboration with other
parameters, they were dropped eventually. For instance, the minimum dis-

6.4. SQ 3: COMPARATIVE ANALYSIS 49

tance that qualifies two traces as close to be put in the same cluster was
initially an input parameter with 2, 5, and 8 as the parameter space. How-
ever, no significant change was made into the final models’ F1-score.

6.4 SQ 3: Comparative Analysis

This section addresses the third sub-research question by showing the results
of the relevant experiments. The third research question is formulated as
follows:

SQ3: How does the Hybrid technique perform compared to existing approaches?

In this section, Hybrid technique is evaluated in terms of quality against
two other techniques, each with a different underlying clustering paradigm:
ActiTraC, and K-means. Output models of mentioned techniques for all logs
are available in the appendix A. Input parameters used for Hybrid technique
are K-means as clustering technique, Levenshtein as distance metric, 0.95
and 10 as F1-score threshold and neighbourhood size respectively. In this
thesis, these values are called default input parameters.

In order to show how much trace clustering improves the quality of pro-
cess models, the results of applying No Clustering is also included in the
comparative analysis. Six plots in figure 6.6 shows the weighted average F1-
scores against clustering techniques for each log. Each point in a plot reveals
the mean of weighted average F1-scores of cluster models when the goal was
to find a certain number of clusters.

The most striking aspect of plots in figure 6.6 is that except for BPI 2013
log in 6.6e, Hybrid technique is able to find clusters with the highest mean
F1-scores compared to other techniques. In 6.6e, Hybrid technique only fails
to perform better than traditional K-means in 4 and 5 clusters. Although
ActiTraC is a clustering technique with model-driven approach, it is yet to
deliver models with higher F1-score compared to K-means. This case can
be noticed in Road (6.6a), BPI 2012 (6.6d), BPI 2013 (6.6e), and BPI 2018
(6.6f) logs, where K-means has higher weighted average F1-scores. Bearing
in mind that Hybrid technique uses K-means, it can be observed that com-
bining similarity-based and model-driven techniques result in better overall
performance.

Although Hybrid technique results outperform other techniques in quantita-

50 CHAPTER 6. EVALUATION

(a) Road Traffic Fine. (b) KIM.

(c) TSL. (d) BPI 2012.

(e) BPI 2013. (f) BPI 2018-Reference.

Figure 6.6: Weighted Average F1-score against Clustering techniques

6.4. SQ 3: COMPARATIVE ANALYSIS 51

tive analysis, this thesis also analyzes the quality of process models of each
cluster for each technique. This is done to investigate the differences between
resulting process models, in terms of size of clusters, homogeneity, and most
importantly, the models’ simplicity. Therefore, first Hybrid and ActiTraC
output models are compared and discussed on three different logs.

Table 6.7 illustrates cluster models of both techniques when applied on BPI
2013 log with four as the number of desired clusters. In the first glance, it
can be observed from table 6.7 that while the first two output clusters of the
Hybrid technique have a higher F1-score, they look more complicated than
the first two clusters of ActiTraC. However, the first two clusters of Hybrid
technique hold more traces (3038 and 1171) than ActiTraC (1749 and 524).
Another observation is that activity Queued as the third most frequent ac-
tivity (17.62%), is absent in the first two big clusters of ActiTraC. At the
same time, Queued is represented in the second and third cluster of Hybrid
technique.

Table 6.8 shows another example. Note that for this log, all models ini-
tiate with Create Fine activity. For the sake of better understanding of
comparison, we ignore this activity when counting the number of activities
in a model or discussing model’s complexity.

While the first two clusters’ size for both techniques is close to each other,
ActiTraC produced models with higher complexity and lower F1-score. The
Hybrid technique’s first cluster only includes 3 activities, while ActiTraC
covers 10 activities. For example, in the first cluster of Hybrid in figure 6.8,
after a fine is created, a process can be finished when either one of Appeal
to Judge, Send Fine, and Payment, the most frequent activities of this log,
is executed. However, this behaviour is present in all clusters of ActiTraC
alongside other behaviours. Even in the second cluster of Hybrid technique,
you could not finish a process with just executing one of the Appeal to Judge,
Send Fine, and Payment activities. Also, all sorts of behaviour can be seen
in the third cluster of Hybrid technique only because it is the trash cluster.
The trash clusters is only made after fit and precise clusters are finalized
first.

52 CHAPTER 6. EVALUATION

Type Number of clusters cluster number Number of Traces F1-score

Hybrid 4 1 3038 0.983

ActiTraC 4 1 1749 0.749

Hybrid 4 2 1171 0.862

ActiTraC 4 2 524 0.8

Hybrid 4 3 534 0.775

ActiTraC 4 3 352 0.667

Hybrid 4 4 2811 0.717

ActiTraC 4 4 4929 0.752

Table 6.7: Process models discovered from BPI 2013 event log for 4 clusters
by Hybrid technique and ActiTraC

6.4. SQ 3: COMPARATIVE ANALYSIS 53

Type Number of clusters cluster number Number of Traces F1-score

Hybrid 3 1 56482 1.0

ActiTraC 3 1 58813 0.687

Hybrid 3 2 66756 1.0

ActiTraC 3 2 59585 0.478

Hybrid 3 3 27132 0.747

ActiTraC 3 3 31972 0.68

Table 6.8: Process models discovered from Road Traffic Fine event log for 3
clusters by Hybrid technique and ActiTraC

54 CHAPTER 6. EVALUATION

6.4.1 Discussion

Clusters resulting from ActiTraC tend to be more general than the Hybrid
technique, meaning that they include more trace variants which could belong
to other clusters. ActiTraC attempts to put as many traces as possible in a
cluster only if they fit the model and consider no punishment for traces exist-
ing in other clusters. On the other hand, output models of Hybrid are mainly
limited to a set of specific trace variants. Accordingly, Hybrid technique is
more successful than ActiTraC in satisfying the fundamental provision of
clustering, building clusters with a high degree of intracluster homogeneity
while these clusters have a high degree of intercluster heterogeneity. It can be
argued that since Hybrid and ActiTraC underlying algorithms are essentially
different, no concrete evidence can be given about the reasons of differences
in resulting cluster models. Nevertheless, the fact that Hybrid technique con-
siders both fitness and precision and the absence of any precision metric in
ActiTraC as the intermediate model quality criteria could be one of reasons
of the difference between two techniques.

Another argument regarding the difference between ActiTraC and Hybrid
could be that the focus of ActiTraC is on the quality of initial clusters. This
can be observed in the number of traces in each cluster. Many traces are
pushed back to trash cluster, making these clusters worthless since the de-
rived models are extremely complex. For example, trash clusters of ActiTraC
in both Road Traffic fine and BPI 2013 event logs are larger than Hybrid, as
can be seen in tables 6.8 and 6.7 respectively. This could also be the reason
why ActiTraC performed poorly in calculation of weighted average F1-scores
of cluster models compared to Hybrid in figure 6.6. Large trash clusters with
low F1-scores penalize the overall performance significantly.

6.4.2 Performance Analysis

This section discusses runtime performance and scalability of the Hybrid
technique. First, the runtime of Hybrid on four real-life event logs is com-
pared to ActiTraC’s runtime. Then, the scalability of Hybrid technique is
assessed individually based on artificial logs.

6.4. SQ 3: COMPARATIVE ANALYSIS 55

Runtime Comparison

Table 6.9 shows the four event logs used in the assessment against ActiTraC.
These event logs have been specifically selected to have the same experimental
setting. Due to technical difficulties, which will be later explained in the
limitation part, it was opted to narrow the evaluation to event logs in table
6.9. Since these four logs are used for performance evaluation in the ActiTraC
origin paper [16], they set a sound ground for a valid comparison with Hybrid
technique.

Event Log #Cases #Variants #Unique Activities

ICP 12391 1411 70
MCRM 956 212 22

KIM 24770 1174 18
TSL 17812 1908 42

Table 6.9: ActiTraC Real-life Event Logs

Table 6.10 presents the performance numbers of average runtimes for both
ActiTraC variants (freq and MRA) and Hybrid techniques, best results em-
bolden for each log.

It is apparent from the table 6.10 that Hybrid technique outperform both
ActiTraC variants in ICP, KIM, and TSL logs. MCRM is the only log that
MRA variant of ActiTraC performs faster than Hybrid, though freq variant
performs only slightly better than Hybrid technique.

Event Log
Technique

Hybrid ActiTraCfreq ActiTraCMRA

ICP 52.873 348.682 618.691

MCRM 82.165 61.739 13.328

KIM 15.277 279.912 178.496

TSL 228.222 302.383 371.68

Table 6.10: Average runtimes of different techniques in seconds

Scalability

Hybrid algorithm’s computational complexity depends considerably on sev-

56 CHAPTER 6. EVALUATION

eral factors. Underlying process discovery technique, how fitness and pre-
cision are calculated in each iteration, and distance metrics used, all affect
the performance of the technique. However, in order to assess how perfor-
mance scales with respect to the input log characteristics, two main criteria
are considered in this section, namely the number of trace variants and the
number of unique activities. Two sets of artificial logs were created to in-
vestigate the effect of these two criteria. Event logs are generated using the
PTandLogGenerator [26] package in ProM [40], an open source process min-
ing tool. For scalability assessments in this section, each log has been tested
with 5 experiment runs, and the run time results are provided with a 95 %
confidence interval.

As can be seen in the Table 6.11, the first set is comprised of five event
logs. To determine the effect of increasing the number of trace variants, all
of the logs have the same number of unique activities. This number is set to
15. According to the table below, the runtime increases linearly in terms of
number of trace variants. Looking at Figure 6.7, it is also apparent that for
3, 4, and 5 clusters, runtime is linear in terms of number of trace variants.

#Clusters
#Variants

100 300 597 996 1985

3 15.2 21.2 54.6 98.7 216.9

CI [8.45, 20.94] [21.19, 21.35] [30.38, 82.94] [80.97, 113.90] [139.52, 283.00]

4 18.0 37.8 76.2 142.1 1429.3

CI [11.49, 25.69] [34.73, 40.45] [73.96, 78.10] [131.61, 154.48] [796.11, 1970.02]

5 21.8 55.8 133.5 206.4 1503.7

CI [17.51, 26.77] [34.29, 80.97] [128.52, 139.37] [151.06, 253.67] [1168.21, 1790.17]

Table 6.11: Runtime (in seconds) on artificial logs with 15 unique activities

The second set of artificial event logs were made to examine how Hybrid
technique scales with respect to the number of unique activities in a log. It
is worthy to note that although the second set of artificial event logs have
different number of unique activities, all of them have 1000 trace variants.
Table 6.12 shows the average run times of event logs for 3, 4, and 5 clusters.
Figure 6.8 also plots the increase of run time in accordance with the increase
of unique activities on a logarithmic scale.

According to table 6.12, while the number of unique activities increases 5
units on each step, the run time does not follow a same pattern. For exam-
ple for 4 clusters, from 10 to 20 activities, the run time increases from 55.45
seconds to 254.12 seconds. This means while number of activities doubled,

6.5. OVERALL DISCUSSION 57

Figure 6.7: Scalability of Hybrid technique in terms of the number of trace
variants

run time was 4 times more than 55.45. It can be observed that, growth rate
from 15 to 20 is not equal to growth from 20 to 30. However, the growth
rate is not exponential in overall.

#Clusters
#Activities

10 15 20 25 30

3 39.46 53.57 206.42 204.98 153.77

CI [14.36, 64.55] [43.17, 63.98] [76.75, 336.09] [121.01, 288.96] [91.19, 216.36]

4 55.45 71.61 254.12 314.68 230.91

CI [35.66, 75.23] [60.41, 82.81] [157.39, 350.85] [198.05, 431.31] [174.61, 287.21]

5 104.09 90.89 301.01 354.11 273.41

CI [28.74, 179.43] [76.26, 105.53] [224.89, 377.13] [289.93, 418.28] [205.01, 341.81]

Table 6.12: Runtime (in seconds) on artificial logs with 1000 trace variants

6.5 Overall Discussion

In this section, an overall discussion of the algorithm’s results is delivered.
The findings of this thesis are based on pre-defined algorithm parameters,

58 CHAPTER 6. EVALUATION

Figure 6.8: Scalability of Hybrid technique in terms of the number of unique
activities

and algorithm only takes into consideration the control-flow perspective of
traces when clustering.

Results of Hybrid algorithm in figure 6.6 (comparison with other techniques),
are based on a default input parameters. However, this default setting did
not necessarily resulted in the best performance. For example, in most real-
life logs, DBSCAN resulted in higher quality clusters with run time being
compromised compared to K-means, as can be observed in figures 6.2 and
6.4. Therefore, if taking a long time is not a concern, DBSCAN with Lev-
enshtein might be the better first option for clustering. On the other hand,
there are other options for having a faster clustering. Setting a lower F1-
score threshold would make algorithm accept more clusters in the first step,
which helps the model-driven part of the algorithm to process fewer trace
variants. Choosing a larger size for the neighbourhood too builds a greater
initial cluster that consequently, reduces the computational complexity of the
model-driven part. However, as discussed in section 6.3, a larger neighbour-
hood resulted in lower average F1-scores. While the combination of K-means
with Levenshtein, lower F1-score thresholds, and larger neighbourhood sizes
may be a more rational option for a faster clustering, it could compromise

6.5. OVERALL DISCUSSION 59

the quality of process models.

Moreover, since determining the optimal number of clusters is a classic prob-
lem in data clustering, evaluation of Hybrid technique was conducted only
on 3, 4, and 5 clusters. However, these three numbers are not optimal for all
event logs, as figure 6.6c (TSL) suggests that only a slight improvement was
witnessed through clustering. Therefore, the task of discovering the number
of clusters could be assigned to domain experts in order to have cluster mod-
els with the highest quality.

Lastly, current evaluation results are limited to only six real-life logs with
specific algorithm parameters, including Inductive miner and F1-score as dis-
covery algorithm and intermediate model quality criteria, respectively. Hy-
brid technique is designed in a way that different distance metrics, clustering
algorithms, discovery algorithm, and model quality criteria can be integrated
in it. Therefore, a more comprehensive benchmarking setting could be de-
vised to find the most optimal results, in terms of both run time and model
quality, for each event log.

Chapter 7

Conclusion

7.1 Conclusion

Although research on improvement of process discovery algorithms contin-
ues, the motivation for dividing the event logs to smaller logs remains the
same. Trace clustering techniques improve both quality of process models,
as well as reduces the amount of time needed to discocer a single model. The
algorithm in this thesis is designed to achieve the same goals of a trace clus-
tering technique, with higher quality and performance. Hybrid technique is
devised after a thorough literature review and identification of current trace
clustering deficiencies.

Data clustering algorithms group data points based on their distance in a
feature vector space. However, they are unable to perform strongly un-
der process-oriented event logs. Researchers attempted to overcome this
deficiency by adopting data clustering ideas in the process mining context.
However, some of the resulting clusters may contain irrelevant traces or may
still be rather complicated. On the other hand, a second type of techniques
was developed that only focused on the quality of process models. Nev-
ertheless, these type of techniques suffer from considerable computational
complexity. Hybrid technique proposed in this thesis takes advantage of
traditional data clustering algorithms in the first step to find high quality
clusters in a reasonable run time. In the next step of the algorithm, based
on the distances between traces, clusters are initialized. These new clusters
then follow a models-driven approach to find traces that inherently improve
process model’s fitness and precision at the same time.

The Hybrid technique is evaluated on six real-life event logs both in terms of

60

7.2. LIMITATIONS 61

run time and quality. The results show that it produces clusters with higher
overall average F1-score compared to ActiTraC, a prominent clustering tech-
nique in the literature and K-means, a data clustering technique. Process
models produced by Hybrid technique also shown to have more homogene-
ity compared to ActiTraC and K-means models. In other words, Hybrid’s
models more distinguishable than other techniques since mostly they do not
share the same trace variants, or even close varriants with each other.

In addition, the run time comparison results demonstrated that Hybrid tech-
nique runs faster than ActiTraC in 3 out of 4 event logs used in the ActiTraC
original paper. Results of scalability assessments also show that Hybrid tech-
nique’s run time grows linearly in terms of the number of trace variants and
also, it does not grow exponentially in terms of number of distinct activities.

Finally, in order to test the Hybrid technique, it has been implemented
in Python and is publicly available at GitHub. Researchers are capable of
configuring input parameters and investigate different variations of the algo-
rithm. To this reason, the Hybrid technique can contribute to researchers’
work both in the process mining and data mining fields.

7.2 Limitations

An important limitation lies in the fact that the performance evaluation of
Hybrid technique and ActiTraC could not take place in the same environ-
ment. This is because ActiTraC was implemented in ProM using Java, while
Hybrid technique is implemented in Python. Therefore, runtime comparisons
was only limited to four logs used in the ActiTraC paper. Due to technical
differences between Java and Python, the runtime numbers could not be en-
tirely accurate.

Secondly, the study was also limited by the high computational complex-
ity of the alignment-based evaluation one two occasions. The First one is
regarding BPI 2012 log, as F1-score of produced clusters could not be com-
puted in a practical state in terms of time. Although the log was sampled
with three different sizes and 5 times for each, caution must be applied as
the findings might not be completely transferable to the original log. Due
to the same reason, the F1-scores of clusters produced by K-means for TSL
log were not be computed. However, by looking at the extremely complex
cluster models in the A.7 and A.8, it can be concluded that they have a
low F1-score. Consequently, they would not invalidate the fact that Hybrid

https://github.com/mehradabd/hybrid-trace-clustering

62 CHAPTER 7. CONCLUSION

technique performed better.

7.3 Future Work

There are several avenues for future work. Firstly, further studies regarding
the role of data clustering algorithms in the first step would be worthwhile.
These data clustering algorithms can be the subject of optimisation, and
could also be incorporated in the further steps of the Hybrid algorithm again.

Finding neighbour traces in the Hybrid algorithm is now only based on
frequency. Although techniques like K-nearest neighbour (KNN) compro-
mise the algorithm’s performance with training time requirement, they would
make the algorithm more accurate if optimised. Therefore, KNN and similar
approaches could be investigated in the future studies.

Accurately incorporating more input parameters within the algorithm could
be another avenue for future work. An example of this could be the min-
imum distance that qualifies two close traces. Also, as of now, only one
syntax-based and one vector-based distance metrics are used. In future in-
vestigations, it might be possible to use different distance metrics.

Lastly, further research could also be conducted to determine the effective-
ness of different intermediate process model quality criteria. Different weights
could be given to fitness and precision, or metrics concerning the model’s
complexity could be incorporated.

Bibliography

[1] ActiTraC: Active Trace Clustering. process mining research from re-
searchers in belgium. http://processmining.be/actitrac/.

[2] Adriano Augusto, Raffaele Conforti, Marlon Dumas, Marcello La Rosa,
Fabrizio Maria Maggi, Andrea Marrella, Massimo Mecella, and Allar
Soo. Automated discovery of process models from event logs: Review
and benchmark, volume 31. IEEE, 2018.

[3] Alessandro Berti and Wil MP van der Aalst. Reviving token-based
replay: Increasing speed while improving diagnostics. In ATAED@ Petri
Nets/ACSD, pages 87–103, 2019.

[4] Alessandro Berti, Sebastiaan J van Zelst, and Wil van der Aalst. Process
mining for python (pm4py): bridging the gap between process-and data
science. arXiv preprint arXiv:1905.06169, 2019.

[5] RP Jagadeesh Chandra Bose and Wil MP Van der Aalst. Context aware
trace clustering: Towards improving process mining results. In Proceed-
ings of the 2009 SIAM International Conference on Data Mining, pages
401–412. SIAM, 2009.

[6] RP Jagadeesh Chandra Bose and Wil MP van der Aalst. Trace clustering
based on conserved patterns: Towards achieving better process models.
In International Conference on Business Process Management, pages
170–181. Springer, 2009.

[7] Igor Cadez, David Heckerman, Christopher Meek, Padhraic Smyth, and
Steven White. Model-based clustering and visualization of navigation
patterns on a web site. Data mining and knowledge discovery, 7(4):399–
424, 2003.

[8] Paolo Ceravolo, Ernesto Damiani, Mohammadsadegh Torabi, and Sylvio
Barbon. Toward a new generation of log pre-processing methods for

63

http://processmining.be/actitrac/

64 BIBLIOGRAPHY

process mining. In International Conference on Business Process Man-
agement, pages 55–70. Springer, 2017.

[9] BPI Challenge. 4tu. centre for research data, 2012.

[10] BPI Challenge. 4tu. centre for research data, 2013.

[11] BPI Challenge. 4tu. centre for research data, 2018.

[12] Pieter De Koninck and Jochen De Weerdt. Scalable mixed-paradigm
trace clustering using super-instances. In 2019 International Conference
on Process Mining (ICPM), pages 17–24. IEEE, 2019.

[13] Pieter De Koninck, Klaas Nelissen, Bart Baesens, Seppe vanden
Broucke, Monique Snoeck, and Jochen De Weerdt. An approach for
incorporating expert knowledge in trace clustering. In International
Conference on Advanced Information Systems Engineering, pages 561–
576. Springer, 2017.

[14] Ana Karla A de Medeiros, Anton JMM Weijters, and Wil MP van der
Aalst. Genetic process mining: an experimental evaluation. Data Mining
and Knowledge Discovery, 14(2):245–304, 2007.

[15] Ana Karla Alves De Medeiros, Antonella Guzzo, Gianluigi Greco,
Wil MP Van Der Aalst, AJMM Weijters, Boudewijn F Van Dongen,
and Domenico Saccà. Process mining based on clustering: A quest for
precision. In International Conference on Business Process Manage-
ment, pages 17–29. Springer, 2007.

[16] Jochen De Weerdt, Seppe Vanden Broucke, Jan Vanthienen, and Bart
Baesens. Active trace clustering for improved process discovery. IEEE
Transactions on Knowledge and Data Engineering, 25(12):2708–2720,
2013.

[17] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum
likelihood from incomplete data via the em algorithm. Journal of the
Royal Statistical Society: Series B (Methodological), 39(1):1–22, 1977.

[18] Chiara Di Francescomarino, Marlon Dumas, Fabrizio Maria Maggi, and
Irene Teinemaa. Clustering-based predictive process monitoring. IEEE
transactions on services computing, 2016.

[19] Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A Reijers.
Business process management. Springer, 2013.

BIBLIOGRAPHY 65

[20] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al.
A density-based algorithm for discovering clusters in large spatial
databases with noise. In Kdd, volume 96, pages 226–231, 1996.

[21] Diogo Ferreira, Marielba Zacarias, Miguel Malheiros, and Pedro Fer-
reira. Approaching process mining with sequence clustering: Exper-
iments and findings. In International conference on business process
management, pages 360–374. Springer, 2007.

[22] Gianluigi Greco, Antonella Guzzo, Luigi Pontieri, and Domenico Sacca.
Discovering expressive process models by clustering log traces. IEEE
Transactions on knowledge and data engineering, 18(8):1010–1027, 2006.

[23] Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts
and techniques. Elsevier, 2011.

[24] BFA Hompes, Joos CAM Buijs, Wil MP van der Aalst, Prabhakar M
Dixit, and Johannes Buurman. Detecting changes in process behavior
using comparative case clustering. In International Symposium on Data-
Driven Process Discovery and Analysis, pages 54–75. Springer, 2015.

[25] Anil K Jain, M Narasimha Murty, and Patrick J Flynn. Data clustering:
a review. ACM computing surveys (CSUR), 31(3):264–323, 1999.

[26] Toon Jouck and Benôıt Depaire. Ptandloggenerator: A generator for
artificial event data. BPM (Demos), 1789:23–27, 2016.

[27] Sander JJ Leemans, Dirk Fahland, and Wil MP van der Aalst. Dis-
covering block-structured process models from event logs-a constructive
approach. In International conference on applications and theory of Petri
nets and concurrency, pages 311–329. Springer, 2013.

[28] Vladimir I Levenshtein. Binary codes capable of correcting deletions,
insertions, and reversals. In Soviet physics doklady, volume 10, pages
707–710, 1966.

[29] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on
information theory, 28(2):129–137, 1982.

[30] Xixi Lu, Seyed Amin Tabatabaei, Mark Hoogendoorn, and Hajo A Rei-
jers. Trace clustering on very large event data in healthcare using fre-
quent sequence patterns. In International Conference on Business Pro-
cess Management, pages 198–215. Springer, 2019.

66 BIBLIOGRAPHY

[31] Felix Mannhardt, Massimiliano De Leoni, Hajo A Reijers, and Wil MP
Van Der Aalst. Balanced multi-perspective checking of process confor-
mance. Computing, 98(4):407–437, 2016.

[32] Carl Adam Petri and Wolfgang Reisig. Petri net. Scholarpedia,
3(4):6477, 2008.

[33] Willem Roper. Python Remains Most Popular Programming Language.
https://www.statista.com/chart/21017/most-popular-programming-
languages/, March 2020.

[34] Anne Rozinat and Wil MP Van der Aalst. Conformance checking of
processes based on monitoring real behavior. Information Systems,
33(1):64–95, 2008.

[35] Mohammadreza Fani Sani, Mathilde Boltenhagen, and Wil van der
Aalst. Prototype selection based on clustering and conformance met-
rics for model discovery. arXiv preprint arXiv:1912.00736, 2019.

[36] Minseok Song, Christian W Günther, and Wil MP Van der Aalst. Trace
clustering in process mining. In International conference on business
process management, pages 109–120. Springer, 2008.

[37] Tom Thaler, Simon Felix Ternis, Peter Fettke, and Peter Loos. A com-
parative analysis of process instance cluster techniques. Wirtschaftsin-
formatik, 2015:423–437, 2015.

[38] Wil Van Der Aalst. Data science in action. In Process mining, pages
3–23. Springer, 2016.

[39] Wil Van der Aalst, Arya Adriansyah, and Boudewijn van Dongen. Re-
playing history on process models for conformance checking and per-
formance analysis. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 2(2):182–192, 2012.

[40] Boudewijn F Van Dongen, Ana Karla A de Medeiros, HMW Verbeek,
AJMM Weijters, and Wil MP van Der Aalst. The prom framework: A
new era in process mining tool support. In International conference on
application and theory of petri nets, pages 444–454. Springer, 2005.

[41] Stijn vanDongen. A cluster algorithm for graphs. Information Systems
[INS], (R 0010), 2000.

BIBLIOGRAPHY 67

[42] Gabriel M Veiga and Diogo R Ferreira. Understanding spaghetti mod-
els with sequence clustering for prom. In International conference on
business process management, pages 92–103. Springer, 2009.

[43] Stephen A White. Introduction to bpmn. Ibm Cooperation, 2(0):0, 2004.

[44] Roel J Wieringa. Design science methodology for information systems
and software engineering. Springer, 2014.

[45] Rui Xu and Donald Wunsch. Survey of clustering algorithms. IEEE
Transactions on neural networks, 16(3):645–678, 2005.

Appendix A

Output Process Models

68

69

Clustering technique Number of clusters cluster number Number of Traces F1-score

Hybrid 4 1 3038 0.984

ActiTraC 4 1 1749 0.75

K-means 4 1 4509 0.885

Hybrid 4 2 1171 0.862

ActiTraC 4 2 524 0.8

K-means 4 2 3038 0.984

Table A.1: Process models discovered by Hybrid, ActiTraC, and K-means
algorithms from BPI 2013 event log for 4 clusters(first and second clusters)

70 APPENDIX A. OUTPUT PROCESS MODELS

Clustering technique Number of clusters cluster number Number of Traces F1-score

Hybrid 4 3 534 0.775

ActiTraC 4 3 352 0.667

K-means 4 3 2 0.565

Hybrid 4 4 2811 0.717

ActiTraC 4 4 4929 0.752

K-means 4 4 5 1.0

Table A.2: Process models discovered by Hybrid, ActiTraC, and K-means
algorithms from BPI 2013 event log for 4 clusters(third and fourth clusters)

71

Clustering technique Number of clusters cluster number Number of Traces F1-score

Hybrid 4 1 3660 1.0

ActiTraC 4 1 18422 0.758

K-means 4 1 5092 0.523

Hybrid 4 2 6762 1.0

ActiTraC 4 2 2761 0.573

K-means 4 2 6622 0.758

Table A.3: Process models discovered by Hybrid, ActiTraC, and K-means
algorithms from KIM event log for 4 clusters(first and second clusters)

72 APPENDIX A. OUTPUT PROCESS MODELS

Clustering technique Number of clusters cluster number Number of Traces F1-score

Hybrid 4 3 3442 1.0

ActiTraC 4 3 953 0.543

K-means 4 3 6242 0.49

Hybrid 4 4 10906 0.632

ActiTraC 4 4 2634 0.527

K-means 4 4 6814 0.718

Table A.4: Process models discovered by Hybrid, ActiTraC, and K-means
algorithms from KIM event log for 4 clusters(third and fourth clusters)

73

Type Number of clusters cluster number Number of Traces F1-score

Hybrid 4 1 56482 1.0

ActiTraC 4 1 58813 0.687

K-means 4 1 20540 0.798

Hybrid 4 2 66756 1.0

ActiTraC 4 2 59585 0.478

K-means 4 2 56887 0.590

Table A.5: Process models discovered by Hybrid, ActiTraC, and K-means
algorithms from Road Traffic Fine event log for 4 clusters(first and second
clusters)

74 APPENDIX A. OUTPUT PROCESS MODELS

Type Number of clusters cluster number Number of Traces F1-score

Hybrid 4 3 19688 0.910

ActiTraC 4 3 20767 0.908

K-means 4 3 22973 0.725

Hybrid 4 4 7444 0.758

ActiTraC 4 4 11205 0.758

K-means 4 4 49970 0.999

Table A.6: Process models discovered by Hybrid, ActiTraC, and K-means
algorithms from Road Traffic Fine event log for 4 clusters (third and fourth
clusters)

75

Clustering technique Number of clusters cluster number Number of Traces F1-score

Hybrid 4 1 2877 0.845

ActiTraC 4 1 5587 0.769

K-means 4 1 9182 -

Hybrid 4 2 2783 0.881

ActiTraC 4 2 4591 0.682

K-means 4 2 3115 -

Table A.7: Process models discovered by Hybrid, ActiTraC, and K-means
algorithms from TSL event log for 4 clusters(first and second clusters)

76 APPENDIX A. OUTPUT PROCESS MODELS

Clustering technique Number of clusters cluster number Number of Traces F1-score

Hybrid 4 3 1116 0.837

ActiTraC 4 3 246 1.0

K-means 4 3 2510 -

Hybrid 4 4 11036 0.638

ActiTraC 4 4 7388 0.55

K-means 4 4 3005 -

Table A.8: Process models discovered by Hybrid, ActiTraC, and K-means
algorithms from TSL event log for 4 clusters(third and fourth clusters)

77

Clustering technique Number of clusters cluster number Number of Traces F1-score

Hybrid 4 1 4696 1.0

ActiTraC 4 1 3480 1.0

K-means 4 1 2246 0.73

Hybrid 4 2 1876 1.0

ActiTraC 4 2 1876 1.0

K-means 4 2 4696 1.0

Table A.9: Process models discovered by Hybrid, ActiTraC, and K-means
algorithms from BPI 2012 event log for 4 clusters(first and second clusters)

78 APPENDIX A. OUTPUT PROCESS MODELS

Clustering technique Number of clusters cluster number Number of Traces F1-score

Hybrid 4 3 1806 0.657

ActiTraC 4 3 1220 0.676

K-means 4 3 3376 0.813

Hybrid 4 4 4709 0.676

ActiTraC 4 4 6511 0.516

K-means 4 4 2769 0.685

Table A.10: Process models discovered by Hybrid, ActiTraC, and K-means
algorithms from BPI 2012 event log for 4 clusters (third and fourth clusters)

79

Clustering technique Number of clusters cluster number Number of Traces F1-score

Hybrid 4 1 30738 1.0

ActiTraC 4 1 30734 1.0

K-means 4 1 30738 1.0

Hybrid 4 2 10332 0.957

ActiTraC 4 2 5448 0.914

K-means 4 2 10332 0.957

Table A.11: Process models discovered by Hybrid, ActiTraC, and K-means
algorithms from BPI 2018-Reference event log for 4 clusters (first and second
clusters)

80 APPENDIX A. OUTPUT PROCESS MODELS

Clustering technique Number of clusters cluster number Number of Traces F1-score

Hybrid 4 3 2633 0.973

ActiTraC 4 3 2252 1.0

K-means 4 3 2633 0.973

Hybrid 4 4 99 0.75

ActiTraC 4 4 5368 0.8

K-means 4 4 99 0.75

Table A.12: Process models discovered by Hybrid, ActiTraC, and K-means
algorithms from BPI 2018-Reference event log for 4 clusters (third and fourth
clusters)

	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Research Questions
	Expected Contributions
	Research Method

	Preliminaries
	Basic Notations
	Event Log
	Process Mining
	Data Clustering
	Trace Clustering

	Related Literature
	Feature vector-based similarity
	Syntax-based similarity
	Model-driven
	Mixed-paradigm
	Discussion

	Hybrid Trace Clustering
	Elements
	Algorithm
	Step 1: Initial Clustering
	Step 2: Trace Re-distribution
	Step 3: New Cluster Initialization
	Step 4: Iterative Clustering
	Step 5: Final Trace Assignment

	Implementation
	Evaluation
	Experimental Setup
	SQ1: Distance and clustering technique
	Discussion

	SQ2: Input Parameter Configuration
	Discussion

	SQ 3: Comparative Analysis
	Discussion
	Performance Analysis

	Overall Discussion

	Conclusion
	Conclusion
	Limitations
	Future Work

	Bibliography
	APPENDICES
	Output Process Models

