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Abstract 

Heart Failure is one of the most common reasons for hospitalization of people aged over 65, causing hospitals' 

economic burden. A large reason for the high costs of these patients is both the high readmission costs and rate. 

Predicting the readmission risk at discharge helps the hospital keep patients who are not ready yet to be discharged. 

Traditional readmission prediction methods do not use patients' full admission window to predict readmission 

because of model or data restrictions. These restrictions remove many useful datapoints of patients to predict their 

readmission risk. Using the full admission window does significantly increase the data, hence the need for a scalable 

model. 

This thesis aims to adapt the LSTM model to adjust to new high dimensional data efficiently and proposes extending 

the LSTM with a Convolutional Neural Network, extracting prominent features, and reducing the data dimensions 

low dimensional sequences. The method ensures the LSTM can scale efficiently with new data and increase its 

predictive performance.  

The research approach is based on the CRISP-DM method. The literature review creates an overview of current 

readmission prediction methods, resulting in an optimal model for this thesis to improve. The features and data 

selection are made based on literature and the medical supervisor's input, after which exploratory data analysis is 

performed to exclude irrelevant data records. The CNN-LSTM model is created with the help of the technical 

supervisors. Finally, the CNN-LSTM model is evaluated using 5-fold cross-validation measuring the average AUC, 

training time and number of epochs. The model is compared to baseline models and the standalone parts of the 

CNN-LSTM regarding their predictive performance and scalability. 

The temporal models utilizing the full admission window show the best predictive performance compared to the 

baseline models, showing the power of including the temporal dimension in predicting readmission risk. The 

proposed CNN-LSTM model shows to be the most scalable temporal model with slightly lower predictive power 

than the standalone LSTM option, which is the least scalable model option.  
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 Introduction 

The interest in data analytics surrounding Electronic Health Records (EHR) has surged in recent years. Using EHR 

data to give patients personalized care has been one of the most promising data-driven healthcare directions 

(Cheng et al., 2016; Jin et al., 2018; Yang et al., 2018). The data collected in EHR’s hold valuable information and 

applied in many AI-focused projects for different medical specializations. One of these applications is predicting the 

readmission of heart patients. Heart Failure (HF) is one of the most common reasons for hospitalization of people 

aged over 65, causing hospitals' economic burden (Amarasingham et al., 2010; Yang et al., 2018). It is also expected 

to see an increase in patients because of the population's ageing, currently counting about 26 million adult HF 

patients worldwide (Ponikowski et al., 2014). 

A large reason for the high costs of these patients is both the high readmission costs and rate. In the United States, 

an average one-year Medicare spending is $35465 for non-readmitted patients. Readmitted patients cost an 

average of $56856, which is over 60% higher (Zheng et al., 2019). In addition to these costs, a study shows that 83% 

of their experiment group is hospitalized at least once, and 43% at least four times (Dunlay et al., 2009). HF patients 

also have a high mortality rate, with 17 - 45% of patients dying within one year of admission and the majority dying 

within five years (Ponikowski et al., 2014; Savarese & Lund, 2016).  All these factors explain why the readmission of 

heart patients is a significant burden for hospitals. It has shown that hospital admission is a vital prognostic factor 

for an increased rate of mortality. The more ill a patient is, the more often the patient will be hospitalized because 

of the illness (Ponikowski et al., 2014). Therefore, it is crucial to predict patients' readmission rate and provide them 

with the necessary care. Patients also gradually show factors of HF days or weeks before an actual HF emerges 

(Ponikowski et al., 2016). These gradual indicating factors are stored in a temporal sequence in EHR. They can provide 

the necessary data and input for a Long Short Term Memory (LSTM) model to predict the readmission rate.  

Deep Learning (DL) models are a growing support tool in healthcare. The performance for predictive analysis on 

time series data gives domain experts insight into a specific application for patient care (Choi et al., 2016; Pham et 

al., 2017; Razavian et al., 2016). Current prediction models in healthcare primarily use traditional statistical 

approaches such as linear regression or Cox Regression. These models show worse results than DL for readmission 

prediction and do not grasp all information from the EHR data because of the data's simplification (Brüngger & 

Blozik, 2019; F. Wang et al., 2014). Recently, more research has been executed using DL, such as Recurrent Neural 

Networks (RNN). These models can use the temporal dimension in EHR data, which allows them to adapt to patients' 

dynamically changing variables. An addition to RNN's is the LSTM. This model expands on RNN by making it possible 

to “remember” datapoints longer during the analysis, which combats the vanishing gradient problem of RNN (Gers 

et al., 1999). This improvement made it a valuable model for EHR data analysis. 

A current focus in DL is to create a model that can adapt to the data over time (Faghri et al., 2017; Mayer & Jacobsen, 

2020). DL models such as LSTM are traditionally trained on a dataset once and then used in production, but with 

constantly changing data it is possible that these trained models can get out of date. Therefore more DL models 

are being created with a focus on scalability (Wen, 2019). The result would be a trained, continuously model learning 

from new data to give a more accurate prediction. Training an LSTM model on new data is a slow process due to 

the model's depth (Wen, 2019). This thesis focuses on adapting the current baseline LSTM model to adapt efficiently 

to new high-dimensional data, advancing the healthcare domain because EHR data keeps growing with each 

patient's treatment. So, scalable LSTM models can provide new predictions based on new data in a dynamic setting.  
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1.1 Motivation  

Trying to predict readmission risk has been a long-standing problem. There is no study with a CNN-LSTM model 

predicting readmission based on EHR data, even though this model can handle high dimensional temporal data. 

Older studies modify the data to a simplified version making the data applicable for their analysis (Felker et al., 2004; 

Keenan et al., 2008; Zolfaghar et al., 2013). This method leads to information loss of the clinical data points in EHR 

data, therefore limiting their studies' impact. This thesis intends to solve this problem with a CNN-LSTM model and 

researches its applicability for high-dimensional many to one time series classification. Currently, less is known about 

the use of the model to high dimensional time series data. Opening a new technique for many domains, with this 

thesis potentially contributing to patients' health care. Additionally, the impact of dynamic predicting is researched 

in this thesis. Finding out if continuously predicting on most recent patient data is beneficial compared to traditional 

learning. 

1.2 Objective 

Using the design science template of (Wieringa, 2014), the objective of this thesis is: 

- To improve the prediction of readmission risk of heart failure patients, which is achieved using the novel 

data structure of detailed admission windows.  

- By creating a CNN-LSTM model in a dynamic setting to handle high dimensional time series data 

continuously updating over time. The created CNN-LSTM model shows to benefit from the best 

characteristics of the standalone models. 

- That satisfies predictive performance and scalability criteria, which is shown in the results making the CNN-

LSTM the most scalable model with only a small reduction in predictive performance. 

- So that doctors can predict readmission risk more accurate, potentially contributing to society by 

improving care for heart failure patients. The results show the CNN-LSTM model to outperform baseline 

models making the detailed admission windows combined with the CNN-LSTM a more accurate and 

scalable option than baseline methods.  

1.3 Research questions 

The following main question is created to accomplish the objective state above:  

“How can the readmission risk of a patient with heart failure be predicted dynamically, using a scalable 

Long Short Term Memory model based on Electronic Health Records?” 

The main question is decomposed into three different sub-questions stated below. 

1. What makes a machine learning model scalable? 

1.1. How can the LSTM model be adapted to perform in a scalable setting? 

To fully understand what makes a model scalable, an analysis is performed on scalability, the 

achievability, and the importance thereof. The knowledge obtained is used to adapt the LSTM model's 

shortcomings to make the model work in a scalable setting, answering question 1.1. 

2. What are the current methods of predicting the readmission risk of patients? 

By reviewing the current literature surrounding readmission prediction, an overview is created to analyze 

the current studies. This overview confirms our proposed model's novelty and is used to extract the most 

promising features in deliberation with the doctors at the UCMU. 

 

3. How does the adapted LSTM model perform compared to other (baseline) models concerning 

scalability and predictive performance? 
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The adapted LSTM model is validated in an experiment using k-Fold cross-validation, comparing baseline 

methods to the new model. This validation results in an understanding of how the model improved 

regarding its predictive performance and scalability. The metrics used to analyze these two factors are the 

AUC score for predictive performance. The combination of training time and the number of epochs is used 

to evaluate the models' scalability. 

1.3.1  Contribution 

Based on the objective and by answering the research questions, the thesis contributes to the scientific body of 

knowledge by creating a new machine learning model by extending the LSTM model with a CNN for scalability of 

high dimensional temporal sequence data. This adaption is compared to baseline methods and related machine 

learning approaches. The comparison is made on their predictive performance by measuring their AUC, the number 

of epochs and training times. The addition of a CNN model should reduce the total model's training time without 

losing significant predictive performance. Next to using a new model to predict readmission risk, a unique body of 

data is used from the UNRAVEL Research Data Platform (Sammani et al., 2019). This data body combines ten years 

of unique features from real-world HER, which is unique compared to previous research. 

1.4 Outline of and justification for a chosen research method 

During this research, the design science method is used as the overarching method. Design science is the design 

and investigation of artefacts in context. The artefacts of research are designed to interact with a problem context 

to improve an aspect in that context. The artefact in this research is the new scalable model in the context of 

readmission prediction. The design science method is part of the Engineering Cycle, consisting of five different steps: 

problem investigation, treatment design, treatment validation, treatment implementation, and implementation 

evaluation. In a design science project, research is restricted to the first four tasks of the engineering Cycle: problem 

investigation, treatment design, treatment validation, and treatment implementation (Wieringa, 2014). 

The CRoss Industry Standard Process for Data Mining (CRISP-DM) framework is used in addition to the design cycle. 

CRISP-DM is a specific method created for data-focused research, and therefore better fits this thesis's context. The 

steps in CRISP-DM do overlap with the design cycle but provide in-depth steps for data-focused research compared 

to the design cycle. The blue squares in Figure 1 are the global description of the steps taken. These steps are 

generally executed in a specific order that allows for iterative progress throughout the thesis. The CRISP-DM 

framework and overlap with design science are explained below and consist of the following steps (Pete Chapman 

et al., 2000): 

Problem investigation  

1. Business Understanding: This step focuses on understanding the project's objectives and requirements from 

the different stakeholder's points of view. A project plan is created based on these objectives, and the 

business question is converted to a data mining problem definition. Within this step, the literature review 

is done. Using the snowball technique, relevant papers are selected and reviewed to form the context of 

the problem. Based on the literature and the medical supervisor's input, a problem statement is defined, 

solving the current literature gap. This step's output is the problem description, problem statement, and 

literature review and are explained in chapters 2 and 3. 

 

2. Data Understanding: This step focusses on selecting and collecting the relevant data while also 

investigating the possible data problems valuable subsets. This step will analyze the raw EHR data of the 

UMCU and get familiar with the structure and content. A selection of patients and admission is made in 

collaboration with the medical supervisor, finding all unplanned heart failure admissions. Based on the 

problem statement and literature, a selection of features is constructed only to extract the relevant medical 

records. To complete the data understanding step, an export is made from the UNRAVEL data platform of 
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the patients selected. These patients are linked to their medical records, creating an initial dataset of the 

patients and their medical state. Explanatory data analysis is executed to determine the prediction classes' 

distribution, find missing values, outliers, and check for normality of the features. The results of this step 

are described in chapter 4. 

Treatment design 

3. Data Preparation: Here, all activities to construct the final dataset are executed. These activities include 

cleaning, deduplication, selection, and converting data. During this thesis, a clean dataset is created from 

the raw EHR data gathered from the databases of the UMCU. Instead of having medical records per patient, 

the medical records need to be linked to individual admissions. Each patient’s admission is exported and 

transformed into an admission window. The medical records data is cleaned by removing empty values 

and outliers. The admission windows are then filled with medical records of the patient on the 

corresponding days. The features and rows are then structured into a temporal data set for the final models. 

Observations are correctly labelled, with their prediction targets either being readmitted <30 days or 

readmitted >30 days. This step's output is a temporal and non-temporal dataset to be used for the models 

in the experiment and is described in chapter 4. 

 

4. Modelling: Modelling the data is done in two ways, as the modelling techniques in this thesis require two 

different data formats. The data is constructed in a temporal and a non-temporal dataset. The non-

temporal dataset is used for the baseline model, while the temporal data set is used for the CNN-LSTM 

method and its standalone parts. The CNN-LSTM model is created with the help of the technical supervisors 

and the data science team of the UMCU. The optimal structure is found with the use of experiments while 

constantly changing the hyperparameters and optimizations techniques such as batch normalization, 

dropout, and regularization. The other models, compared to the CNN-LSTM, are also selected and 

constructed. The baseline models are the DT and MLP using the non-temporal dataset. The temporal 

models are the CNN and LSTM standalone as well as the CNN-LSTM combination.  

 

Treatment validation: 

5. Evaluation: The project now results in multiple models of seemingly high quality, and this step puts the 

models to the test. The models are applied to a set of tests regarding the business understanding step; 

after that, a decision will be made regarding optimal model choice. An experiment is set up to evaluate the 

models based on their scalability and predictive performance. The evaluation is done by using 5-fold Cross-

validation (CV) on the datasets created in the data preparation phase, using the average measures over 

the five folds. The CNN-LSTM model is compared to baseline models and related models such as a DT, 

MLP, CNN, and LSTM. Evaluation of the predictive performance is done by analyzing the AUC measure. 

The scalability is measured by analyzing the training times and the total number of epochs used for training. 

The results are visualized and shared with the technical and medical supervisors to include their expertise 

in the evaluation. 

 

Treatment Implementation: 

6. Deployment: This step is not performed in this thesis, as is explained in chapter 1.4.1. 
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Figure 1 CRISP-DM (Pete Chapman et al., 2000) 

1.4.1  Adaptation to this thesis. 

The steps of CRISP-DM can be applied to the activities of this research. The first activity of performing a literature 

review will answer sub-question one and two and give a complete understanding of the business and data. An 

experiment is set up with this information, answering sub-question three by performing data preparation, modelling, 

and evaluation. 

The final step of the CRISP-DM will not be performed in this research for the same reason treatment implementation 

is not covered. This is because the thesis will show the possible improvement of the CNN-LSTM model in an 

experimental setting. Further steps are necessary to decide if the model is optimal for deployment, such as external 

validations and clinical trials. These additional steps and deployment are outside the scope of this thesis. 

 

1.5 Thesis outline 

The structure of the thesis is as follows. Chapter 2 describes the domain preliminaries and provides the necessary 

background information, context and finally specifies the problem statement. Chapter 3 presents the literature 

review showing the relevance of the study and the gap in current research. Following is chapter 4, which describes 

the process steps taken to create the final dataset and build the prediction models' framework. The prediction 

models' results are explained in chapter 5, including the thesis's discussion and limitations. Finally, all sources are 

displayed in chapter 6 and all appendixes supporting the text in the thesis are shown in chapter 7.  
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 Domain preliminaries  

The next chapter includes the relevant literature surrounding the domain of heart patient readmission prediction. 

The chapter focusses on describing heart failure, EHR data, and gives an overview of popular readmission prediction 

techniques.  

2.1 Heart failure description and current techniques for risk prediction 

This chapter describes Heart Failure (HF) and creates an overview of the current readmission prediction techniques. 

2.1.1  Definition of Heart Failure 

The term HF is a clinical syndrome caused by a cardiac abnormality. It describes a situation when the heart is not 

able to circulate blood throughout the body. Different causes can be attributed to this phenomenon, for example, 

the cardiac muscle's inability to pump blood (i.e., muscle weakness or rhythm disturbance) or by obstructions in the 

outflow tract (aortic valve stenosis) or by systemic high blood pressures. There are many causes for HF, such as high 

blood pressure (systemic high blood pressure), infections (cardiac muscle inflammation), or an unhealthy lifestyle 

(myocardial infarction) (Ponikowski et al., 2014). Classical symptoms leading to heart failure are having fluids in the 

lungs (dyspnea), tiredness, edemas around the ankles and an increased heart rate. 

HF can be separated as Acute Heart Failure (AHF) and Chronic Heart Failure (CHF). As the names indicate, the 

difference between the two is how quickly HF occurs. The European Society of Cardiology guidelines describe AHF 

to happen suddenly and CHF to develop slowly over time. When a patient has suffered from AHF, the patient is 

classified as stable when their symptoms and signs have remained unchanged for at least one month (Ponikowski 

et al., 2016). When a stable CHF patient is deteriorating, it is classified as decompensated. The decompensation may 

happen quickly or slowly but often leads to hospital admission, which is an event of considerable prognostic 

importance (Ponikowski et al., 2016). 

Another option of differentiating HF patients is by measuring the ratio of blood ejected between the systole and 

diastole in the left ventricle after each beat: The Left Ventricular Ejection Fraction (LVEF). A difference is made 

between three categories concerning the LVEF. First, patients with a high LVEF percentage are typically considered 

to have Heart Failure with Preserved Ejection Fraction (HFpEF). HFpEF is also known as diastolic HF, which occurs 

when the heart cannot relax between each heartbeat. Secondly, patients with a low LVEF are classified as Heart 

Failure with Reduced Ejection Fraction (HFrEF) or Systolic HF, meaning the heart cannot pump enough blood 

through the body. A third group is between these classes having mid-range ejection fraction (HFmrEF). These 

patients are described as being in the grey area (Ponikowski et al., 2016). A patient is put in a class based on their 

LVEF score. An overview of each class and its corresponding LVEF score is given in Table 1. A split is done because 

of the difference in morbidity, mortality, and treatment options for each class.  

This thesis focuses on readmission risk prediction for CHF patients with both diastolic and systolic HF options and 

are selected based on their diagnoses and corresponding ICD10 codes. CHF patients are selected because of the 

slow showing aspects of CHF are shown in EHR data and can be used as a prognostic factor for the prediction model 

(SAITO et al., 2020). 

Table 1: LVEF score per type of Heart Failure. 

LVEF Type of HF 

>= 50% Preserved ejection fraction (HFpEF) 

40 – 49% Mid-range ejection fraction (HFmrEF) 

< 40% Reduced ejection fraction (HFrEF) 



Dynamic Readmission Prediction Using Scalable Models 11 

 

  

2.2 EHR data description and challenges 

The following section describes the EHR data structure and gives an example of how to use this data. The data 

challenged are also described. 

2.2.1  EHR data 

The adoption rate of EHR data in hospitals has been growing in recent years (Adler-Milstein et al., 2015). The EHR 

data makes it possible to store patient data in a (semi)-structured form. The EHR data is then used throughout the 

hospital and used for patient recruitment, diagnoses, and analysis. EHR data is gathered from multiple different data 

sources, such as manually entered diagnoses from doctors and automated export from patient health systems 

(Sammani et al., 2019). These data sources can be separated by Electronic Medical Records (EMR) and Sensor Data 

(SD). Where EMR data is high-dimensional data consisting of structured and unstructured data such as lab results 

and textual description of patients, SD is collected from different medical devices such as ECG sensors and stream 

patient data in real-time. These sensors generate massive and various types of data streams (Lee et al., 2017). 

The EHR data structure is set up to store data in a temporal sequence, resulting in all interactions with a patient 

being stored on a timeline. Figure 2 shows an example of a timeline. As the Figure shows, it records all medical 

events on a specific timestamp in sequential order (Sammani et al., 2019). This thesis uses data from the UNRAVEL 

research data platform. UNRAVEL is a database of selected heart patients at the UMCU. An overview of UNRAVEL 

and its sources of patient data is shown in Appendix 2. 

 

Figure 2: Temporal sequence of EHR data (Sammani et al., 2019) 

2.2.2  Challenges  

Working with EHR data has proven to be a complicated process because the extraction of a patient's individual 

characteristics is an ambiguous process with many data factors that hinder the ease of extraction. (Lee et al., 2017) 

describes the following challenges for using EHR data. 

High dimensionality: As shown in Figure 2, for each timestamp, many possible events are registered. The codes 

used to identify these events are based on the ICD-10 standard (Organization, 1993). The standard has more than 

14000 diagnosis codes. However, one patient is usually only diagnosed with a minuscule subset of codes, which 

creates a high dimensional vector per patient which is also sparse, resulting in a model with many parameters and 

increased complexity. Two techniques used to combat these challenges: feature selection and feature creation. 

Feature selection only picks out the most crucial feature; feature creation embeds features into a lower-dimensional 

space. 

Sparsity: EHR data is also sensitive to sparsity due to high dimensionality. The high dimensionality creates sparsity 

on the Y-axis of the sequential data matrix. However, there is also a sparsity of data on the X-axis. The X-axis or time 
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axis has sparse data because of the interval of diagnoses that are executed. Diagnoses are made by doctors or other 

healthcare professionals that are not scheduled in a structured interval, and sometimes the diagnosis is not entered 

because of human error. Multiple techniques are available to impute new data, such as mean imputation or forward/ 

back-filling.  

Irregularity: Two main factors appear in the concept of irregularity. The first is that EHR data is only recorded for 

the time that a patient is hospitalized. So, the data does not include readings from the time spent at home in 

between hospitalization. Second, even when a patient is hospitalized, not all the diagnosis events are done in the 

same interval, even for the same illness. The irregularity can be combated using overlapping features, time 

adjustment, or transforming the data so that all events fit a one-time window. 

Selection bias: The bias problem comes primarily from patient sampling, which appears when the sampling rate is 

dependent on patients' states and dependent on doctors' judgment of the patients. One reason for this is because 

ill patients are sampled more than healthy patients. 

Temporality: (Cheng et al., 2016) also states temporality as a challenge. The reason is that the constant of new data 

input created by new diagnoses made on patients results in an evolving patient record which then becomes more 

valuable than old records of patients. Using the most recent data is a significant challenge; a continuous update is 

needed for the data to analyze the patient’s temporality accurately.  

The proposed model will focus on solving the first three challenges by using a CNN's capabilities to reduce the 

dimensions by extracting the most relevant features into convolutional layers. These features are then forwarded to 

the LSTM to analyze their temporal linkage, and a final prediction is made. The challenge of temporality is handled 

using the new model in a dynamic setting, continuously retraining the most relevant data. The patients that are 

selected for this study all come from the UMCU hospital. The results might not be generalizable with all hospitals, 

because the UMCU is a tertiary hospital, which means that the UMCU primarily handles specialized patient cases. 

External validation is necessary to achieve generalizability, but this is outside the scope of this thesis. 

The next section gives an overview of popular ML techniques, including the new model and explains their capability 

of handling the sequential EHR data. 

2.3 Machine learning techniques for risk prediction 

Many different analysis techniques are used to predict HF patients' readmission risk, as is shown in Table 2. These 

techniques show different results when applied to EHR data for readmission prediction. This thesis focusses on 

analytics approaches that can perform on sequential data. The main difference in the approaches is how the models 

input the EHR data. Which is either done by using one vector as input or by using a sequence of data. The following 

section describes the baseline methods used in healthcare and ML approaches that focus on sequential data. 

2.3.1  Single vector input 

As discussed in chapter 2.2, the specific characteristics of EHR are too complex for specific analysis methods. An 

aggregation of the data is done to create a compatible dataset for specific analysis methods. This aggregation is 

done by combining multiple feature vectors or sequences into one. An example of this is summing or averaging the 

vectors. A disadvantage of this method is that the individual vector's information is lost combined with their 

temporal relationship. A visual representation is shown in Figure 3.  
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Figure 3: The left sequences are aggregated and stored as averages in the final feature vector. 

Logistic Regression 

Logistic regression (LR) is one of the most used traditional methods used for healthcare predictions, as shown in 

Table 2, where the early techniques predominantly use LR as their method. LR is also one of the most used methods 

for predicting a binary classification. The sigmoid output of LR makes it always be between 0 and 1. Based on the 

output, it predicts the object probability of corresponding to one of the classes. An output probability of <0.50 is 

assigned to class 0 and >0.50 to class 1. An LR input is the aggregated feature vector where each feature is combined 

with a weight resulting in a prediction score, as shown in Figure 4. 

 

Figure 4: Logistic regression where (F) are the features and combined with the bias (b) resulting in a sigmoid 
activation function. 

Cox Proportional Hazards Regression 

Cox Proportional Hazards Regression (CHPR) is an extension of survival analysis. Survival analysis is used to model 

the time it takes for an event to happen. It is developed by medical researchers to measure a population's lifespan 

(Walters, 2009) and is a traditional prediction method in the medical field. Other fields have taken the CHPR method 

and use it for predicting the duration of the client to stay in a store or the time to failure of a machine. These 

examples have an assumed survival function that describes the predicted survival over time, where survival in this 

thesis is not being readmitted.  

CHPR extends on survival analysis by using multiple variables for its analysis, making it like multiple regression 

analysis but with the dependent variable being the hazard function at a specific time. The model's input is the feature 

vector, just like LR, and each feature is connected to a coefficient that increases or decreases the log of the hazard 

ratio (Fox & Weisberg, 2011). These partial hazard ratios are combined with the baseline hazard of time and show 

the probability of survival or total hazard at a given time, as is shown in Figure 5: 
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Figure 5: Cox Proportional Hazards Regression formula (Wikipedia) 

Each input feature's partial hazard ratio has a positive or negative influence on the total hazard depending on its 

score. When the partial hazard ratio is 1, it does not affect the probability of survival. A partial hazard ratio higher 

than 1 translates into a positive effect on the survival probability, which extends the event from happening. The 

opposite happens when the partial hazard ratio is lower than 1. 

A notable flaw of CPHR is that the model can only identify risk factors that increase or decrease the probability of 

survival. The model does not calculate the actual baseline hazard, making it impossible to perform a personalized 

prediction by inputting a patient's values. This limitation was combatted by taking the risk factors and combining 

them with the marginal distribution of readmission and was first introduced by (Chin & Goldman, 1997). 

Support Vector Machine 

Support Vector Machines (SVM) is a robust algorithm used for regression and classification problems. SVM's are 

designed initially to be a binary classifier just as LR, but they can also predict multinomial problems. An SVM's goal 

is to find the optimal hyperplane for separating the classes by finding the maximum distance between the two data 

points of both classes. A plane is created in the gap with the maximum distance and the corresponding margin. 

These margins are set on each class's data point closest to the hyperplane and are called the support vectors. Real 

data sets usually do not have one gap in classes for the hyperplane to be placed. That is why a soft margin method 

was introduced by (Farhat, 1992). This method splits the data set as optimal as possible where one class fits the 

highest degree (Bellazzi & Zupan, 2008). 

 

Figure 6: SVM finding the optimal hyperplane and extending the margins to the closest support vectors (Bellazzi & 
Zupan, 2008) 

SVM has shown to be a great performer which requires low computational power to run. It has been increasingly 

used in medicine and bioinformatics. SVM shows to be a great option when focused on predictive performance 

compared to artificial neural networks, which usually require more computational power to run (Bellazzi & Zupan, 

2008). 
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Multilayer Perceptron 

Multilayer Perceptron is the first form of neural networks. They are a feedforward network consisting of one input 

layer, one or multiple hidden layers, and one output layer. These layers each have neurons that have a weighted link 

with each other. This web of weighted links is optimized during the training stage of this model. Each neuron takes 

the input from the feature vector or previous neuron and performs an activation function such as a sigmoid or tanh 

function, making all inputs summed and scaled for the next layer. The output layer would have a sigmoid function 

in classification problems. This way, an output can be assigned to a class just as in the LR. 

 

Figure 7: Multilayer perceptron where (x) is the feature vector, and (Φ) the activation function. 

The main advantage of MLP compared to traditional methods is that the MLP can model highly complex and non-

linear relations of features. It also adapts to these features automatically instead of the developer needing to adapt 

the model for specific relationships. It can learn the relationships from the training data and can apply this 

knowledge to future predictions. 

Although the flexibility of MLP is a great feature, it does come at the price of computation power. MLP takes more 

processing power to run and can grow to an extensive network when multiple hidden layers are used. A trade-off 

is made between computational performance and predictive performance. The more hidden layers used usually 

increase the predictive performance in the cost of higher needed computational power. Another problem is that 

the model is prone to overfitting. This happens when the model has high predictive power for the trained data set 

but fails to predict on new data correctly. This overfitting problem is combatted by different methods like early 

stopping (Montavon et al., 2012), regularization (Demyanov, 2015), and dropout (Srivastava et al., 2014). 

Recently the use of MLP in healthcare has been growing in (Shahid et al., 2019). With the help of recent studies 

combatting the disadvantages, it is a useful model to use. The specific use of readmission prediction has shown its 

promising application (Awan et al., 2019; Goudjerkan & Jayabalan, 2019). 
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2.3.2  Sequence input 

The models mentioned above are not able to model the temporal characteristic of EHR data. However, as mentioned 

in chapter 2.1, this temporal characteristic holds valuable information. This chapter describes algorithms used in 

healthcare that includes the temporal dimension into their calculations. 

Hidden Markov Model 

The Hidden Markov Model (HMM) is a first and relatively simple method to model sequential data. HMM, are 

probabilistic models used to predict a sequence of hidden variables based on a set of observed variables. This 

prediction is only possible by assuming that the sequence is a Markov process, which means that the probability of 

an event happening is based on the state of a previous event. A classic example is predicting the weather (hidden 

variable) when looking at a person’s clothes (observed variable). Observing a warm jacket predicts that it is probably 

a cold day. The links between the observed and hidden variables show the influential probability as is shown in 

Figure 8, where there are four observed variables to predict the three hidden variables.  

 

Figure 8: Hidden Markov Model (Wikipedia) 

HMM has been used in healthcare for multiple different studies, but the model also shows flaws. The first being the 

assumption necessary that the sequence is a Markov process. Not all historical data in healthcare complies with this 

assumption, which makes the model obsolete. The second problem is that the complexity of the model rises 

considerably when more hidden states are introduced. However, HMM shows promising results in different medical 

studies. No previous studies surrounding readmission prediction are found using the HMM because the prediction 

of readmission is not based on a Markov process. 

Convolutional Neural Network 

Convolutional Neural Networks (CNN) are primarily used in image classification. The use of CNN for different 

domains has grown since the victory of AlexNet in the ImageNet competition (Krizhevsky et al., 2012). Its use of 

CNN spread to image recognition (Szegedy et al., 2014) and natural language processing tasks (Bahdanau et al., 

2015), showing promising results and increasing the use of CNN for time series analysis.  

CNN is primarily used as a feature extraction and dimensional reduction method. When taking a 2D image, it looks 

at all the pixels and groups individual sections into a smaller two-dimensional convolutional feature. A pooling 

technique is used to locate characteristics of the image and extract these from the convolutional layer, which results 

in a large image being shrunk to the essential characteristics, which can be used as input for another model. This 

compression reduces the computational effort for the final model. 
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The same principle applies to time series classification, but the convolution can act as a sliding filter of the time 

series. That would result in a one-dimensional convolution layer of time. So, when convolution is done with the 

length of 3 and the filter set to [1/3, 1/3, 1/3] and will apply a moving average of the time window with a length of 

3. The formula for applying a convolution for a set timestamp is given in Figure 9. 

 

 

Figure 9: Result of a convolution (C) applied on a univariate time series (X) of length (T) with a filter (ω) of length (l), 
bias parameter (b) non-linear function (f) (Ismail Fawaz et al., 2019) 

A pooling layer then filters the convolutions. The final discriminative layer takes the input from the pooling layers 

and creates a probability distribution of the dataset classes. This step is comparable to the activation functions of 

the MLP and results in the final prediction outcome. An overview of a CNN for time series analysis is given in Figure 

10. 

 

Figure 10: Convolutional neural network with 3 hidden layers (Ismail Fawaz et al., 2019) 

CNN is used in healthcare for various reasons, such as activity recognition (Uddin & Hassan, 2019) and image 

classification (Qayyum et al., 2017). It has also shown to be effective at readmission prediction as multiple studies 

from Table 2 use CNN as a method. These studies use CNN image analysis (Cheng et al., 2016) or text mining (Liu 

et al., 2019) to predict readmission. So, CNN can lower high-dimensional data sets to create lighter computational 

models, including the temporal dimension. All these benefits make the CNN a reliable performing algorithm for 

readmission prediction. 

Long Short Term Memory 

Long Short Term Memory (LSTM) is an adaption of a Recurrent Neural Network (RNN). An RNN is a feed-forward 

neural network like MLP, but it has an internal memory to store previous predictions' output. The storage makes all 

input related to each other and handled with the same weight. So, the final output depends on the input of the 

previous steps. One problem with RNN's is the vanishing gradient problem, which occurs when the models are fed 

too much data and start to "forget" the first inputs it received. An adaption is made to combat forgetfulness, which 

is an LSTM model (Gers et al., 1999). 

LSTM models include a forget gate which makes it possible to learn or forget efficiently. It also features a cell state 

which is the memory of the LSTM. The forget gate is connected to the cell state and calculates how much of the 

previous cell state it needs to forget. This way, the first input of an LSTM can survive throughout all the hidden 

layers, as shown in Figure 11. 
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Figure 11: LSTM model where X is the new input and H the output for the specific timestamp. The blue circles are tahn 
functions, and the red are sigmoid functions. 

LSTM in healthcare has also shown multiple applications (Ontology & Travel, 2019; Yu et al., 2019). These 

applications show LSTM to perform better than standard analysis using aggregated features. The applications of 

LSTM methods for readmission prediction are text mining and time series analysis, which is also used for the LSTM 

entry in Table 2.  

Although LSTM shows excellent performance, it also comes with a high computational cost. The hidden layers of an 

LSTM are fully connected and need to memorize previous computations for each time step. Making it more 

computationally expensive, the more extensive the time sequences are, which makes it hard for an LSTM model to 

scale when more data is added to the model.  

2.3.3  Evaluation 

The mentioned models can give a classification prediction, but to evaluate these models' performance, a test is 

done to calculate specific metrics. These metrics are precision, recall, NPV, F1 and AUC score. Calculating these 

metrics is done based on the confusion matrix filled by the number of True/False Positives (TP/FP) and True/False 

Negatives (TN/FN). The accuracy is predominantly used to indicate the predictive performance, which is not 

sufficient as a comparable metric between algorithms. In Figure 12, a confusion matrix is shown. The predicted 

values are compared to the actual values of the test data set. When a model predicts a 1 and the test set's actual 

value is a 1, then it is a TP. The same applies when a 0 is predicted, and the actual value is also a 0.  When the model 

predicts a 1, but the actual value is 0, then it is called a False positive, and an FN is predicted when the model 

predicts a 0 when the actual value is a 1.  

 

Figure 12: Confusion matrix 

As shown in section 3.2, all readmission prediction methods are compared using the Area Under the Curve (AUC) 

metric, also known as the C-statistic. The AUC proceeds from the confusion matrix and is calculated from the TP 

ratio against the FP ratio. These ratios are called sensibility and specificity. Combining the ratios results in a Receiver 
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Operating Characteristic (ROC) curve. The AUC is the area underneath the ROC and shows a score between 0.5 and 

1. The closer the AUC is to the 1, the better it distinguishes the classes. The AUC is also favorable over accuracy 

when dealing with imbalanced data. The AUC is favorable because high accuracy can be achieved by only predicting 

the majority class. Only predicting the majority class would results in a low AUC score because the model did not 

distinguish the classes correctly. The complete list of evaluation metrics for classification is given in Figure 14. 

 

Figure 13: ROC and AUC score output 
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Figure 14: Evaluation metrics 

Problem statement 

This thesis's goal is adapting the LSTM model to efficiently adjust to new high dimensional data and give a new 

prediction using the new data. The new data is needed because of the evolving state of a patient. When the patient 

goes through a new clinical test or gets new medication, it influences their health. The model needs these new 

investigations to update the prediction as the previous prediction becomes irrelevant due to the patient's care. This 

thesis proposes an adapted model by extending the LSTM with a Convolutional Neural Network, extracting 

prominent features, and reducing the EHR data dimensions into low dimensional sequences. The method ensures 

the LSTM can scale efficiently with new data and increase its predictive performance.  

The technical problem can be stated as: with a combination of 𝑋1 … 𝑋𝑛 investigations with a timestamp 𝑡 ∈ [0, 𝑇] 

is given with each investigation being data from medical appliances, lab results, or clinical measurements by staff, 

containing 𝑖1 … 𝑖𝑗   results. Resulting in the data points of the sequence to be stated as: 𝑋𝑖,𝑗
𝑡

 These data points are 

chronologically ordered into a sequence S and used to predict the patient's readmission risk within 30 days. So, 

given a sequence S with the length of T and height of X investigations where each investigation contains i results, 

can we predict 𝑌 ∈ {0,1} where Y is the risk of readmission within 30 days after sequence S. 
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 Literature review 

The next chapter gives a comprehensive description of scalability in ML and shows its importance, and aims to 

answer sub-question 1 and 2. The chapter is set up by first focusing on the definition and characteristics of scalable 

ML. Afterwards, a semi-systematic analysis is done on the current state of readmission prediction. 

3.1 Scalable machine learning 

Research into large scale ML has grown recently, making it possible to solve more complex problems, such as text 

mining or voice recognition (Parker, 2012). Problems of that nature require higher complexity models or a high 

amount of data input to create an optimal result. Creating issues for current models that are used for empirical 

learning (static learning). This learning method involves a model to learn on a set of examples, a training set, and 

give a prediction based on this training set. When the training set's data increases or the models become more 

complex, it results in an increased difficulty making the computational requirements for training higher (Chilimbi et 

al., 2014).  

 

Figure 15: Model complexity formula (Chilimbi et al., 2014) 

The complexity challenges are more prominent in deep learning than baseline models, where highly complex 

models need much computational power. The challenges of scalability are strongly connected with the 

characteristics and challenges of big data. The 4-V's model of big data describes the characteristics to be Volume 

(the growing data scale), Variety (various types of data), Velocity (rapid generation and timelines of data), and Value 

(extract significant value from dense data) (Gupta et al., 2016). Scalable ML focuses on using scalable models to 

discovering meaningful value out of fast-growing and changing data (Gupta et al., 2016). The following definition 

of scalable machine learning is given based on these characteristics. “A scalable model is a model able to handle a 

large amount of data without consuming ever-growing amounts of computational resources within a practical time 

frame (Bekkerman et al., 2012).” Achieving a scalable model is done by focusing on one or all the following parts of 

the pipeline: machine scaling, algorithm optimization, and data management, which are explained below. 

Machine scaling 

A solution to combat processing time is to add more processing power, as is mentioned in (Gomes et al., 2019; 

Mayer & Jacobsen, 2020). An increase in power is chosen (over other machine scaling methods) when a single 

machine is not capable of executing the computations. The addition of processing power is created by adding CPU 

or GPU clusters, creating a network of processing machines. Not all algorithms are optimized for distributed work; 

therefore, it is not always a solution to add more computing power. The main challenge is to split the model into 

partitions for the workers, creating model parallelism. Reinforcement learning is a common approach to split across 

multiple workers. The advantage of model parallelism is reducing the memory used per workers, but it comes with 

the disadvantage of heavy communication between the workers. Communication between workers makes it hard 

to effectively split the CNN-LSTM models as processes stall due to synchronization delays and communications 

overhead. Making it so that more machines does not necessarily mean a decrease in training time (Mayer & 

Jacobsen, 2020).  
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Algorithm optimization 

The goal of algorithm optimization is to reduce the neural network's loss function in the fastest way possible by 

adapting the model's hyperparameters (Faghri et al., 2017). This way, the model can tweak its performance 

automatically during training. The optimization algorithm helps by solving specific optimization issues. These issues 

can be divided into three steps. The first step is starting the neural network to converge to the lowest loss. The 

second step is making the converging happen as fast as possible, and the third step is to ensure that the lowest loss 

is achieved (global minima) (Sun, 2019). Defining the amount of loss is done by measuring the difference between 

the predicted value against the actual value. There are multiple loss calculations such as Mean Square Error and 

Cross-Entropy Loss. Improving any of the three steps decreases the learning time, making it faster and adaptable to 

larger data sets. 

Data management 

The final part of scalability is data management. Increasing the model with growing amounts of data needs to be 

managed in a regulated process, creating a data stream. For a data-stream, the assumption is made that the data 

evolves and may be infinite, but processing the data needs to be done with finite resources. Literature shows two 

main approaches for data-stream classification problems: batch learning or instance learning (Read et al., 2012).  

Batch learning or dynamic learning occurs when a model is fed new data. It uses its current train set and the new 

batch data to update the model, resulting in a static learning model retrained regularly using additional data. Batch 

learning handles the data characteristic of variety and velocity by increasing the training examples over time. The 

main disadvantages of batch learning are that a specific batch size needs to be specified. That old batches of data 

need to be deleted due to computational restraints, making room for new batches. The model can only retrain when 

a new batch is full of new instances, delaying the model's update.  

Instance learning or online learning works by building an initial pre-trained model and retrain only on the new data. 

The model will update whenever a new instance of data is available. Instance learning is primarily used in systems 

that need to update their prediction in (near) real-time. Instance learning also handles the variety and velocity, but 

it also efficiently manages the volume of data by only training on the new data. Its real-time prediction application 

makes it also arguably better in extracting value when an instant prediction is necessary. The disadvantages of 

incremental learning are that there are far fewer algorithms available for classification. The model needs a far greater 

number of examples to learn a concept correctly. 

One common problem of working with any of the two approaches is that data-streams are susceptible to concept 

drift. Concept drift occurs when the underlying data distribution changes over time. Concept drift reduces the 

accuracy of models as the data streams change (Tsymbal, 2004). This reduction happens when a hidden context 

influences the target concept, which means that a factor not included in the predictor variables influences the 

outcome. An example can be seasonality in weather or changing living conditions that influence patients' health 

(Tsymbal, 2004). A model needs to be able to detect these changes and adapt accordingly.  

Concept drift is expected to happen in most data streams with batch and instance learning but detecting concept 

drift is important with instance learning since the model only learns on new data. With instance learning, the model 

is susceptible to drift because a new instance can hold a hidden context without linking it to previous or coming 

data. Concept drift does not occur in batch learning because the model can see the new context shift over a group 

of instances and adapt to it gradually (Read et al., 2012). 

There are three methods for handling concept drift: instance weighting, instance selection, and ensemble learning. 

Instance weighting uses an algorithm to link new instances to the current concept with a corresponding weight, 

influencing that instance's importance. However, instance weighting has been seen to be prone to overfitting by 

(Klinkenberg, 2004), making it perform worse than the other methods.  
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Instance selection is shown to perform better by selecting instances relevant to the current concept. The most 

common technique for this is window selection, with a window moving along the timeline selecting new instances 

when available, forgetting the old instances. Originally these window sizes were fixed, but more research has been 

done on adaptive window sizes to increase detection of concept drift (Klinkenberg, 2004). With this method batch 

learning becomes less susceptible to drift because a new batch is also a new window selection.  

Ensemble learning uses multiple models to weight or select new instances. The first system handles drift by creating 

a base model of concept descriptions, usually consisting of original features and combining these outcomes with 

new models training on new data. (Nick Street & Kim, 2001) Furthermore, (Haixun Wang et al., 2003) show a 

technique that divides the total data set into sequential chunks of the same fixed size, training the model on those 

chucks and ensemble the outcome to combat concept drift. 

With this thesis focusing on solving the challenge of temporality, most focus is given to data management and not 

machine scaling or optimization. The EHR data will be analyzed using batch learning, where this thesis’s experiment 

uses all admission available, without a window selection. Future weekly windows would be optimal to add because 

the system of the UMCU updates weekly, making each week a suitable batch of new learning data. The weekly 

batches would also combat concept drift.  

Scalable LSTM 

Reviewing the LSTM model for scalability shows a significant flaw regarding data management. LSTM's value of 

solving the vanishing gradient problem requires holding many previous states in memory. Holding previous states 

in memory does lead to a linear increase in memory as more time steps are passed. Studies are focusing on making 

the LSTM scalable by hardware acceleration (Yazdani et al., 2019), adapting the model to more efficiently talk to 

hardware components (Li et al., 2019), or by better optimization (Al-Shedivat et al., 2017). This thesis focusses on 

making the LSTM scalable by data management and controlling the increasing input.  

So, reducing the input while keeping the necessary information is crucial for making the LSTM scalable. (Alonso et 

al., 2019) proposes to predict electrical power consumption with big data in a scalable fashion by training a shallow 

LSTM on a subset of the data and applying the model to other similar power consumption samples. Producing 

promising results is limited to only having univariate forecasting, and it shows little generalizability as the samples 

need to be like the train data. It also does not show the efficiency gain in training times, besides claiming the model 

to be X times faster related to the subsets created, as the model must only train on one subset. 

The medical study (Maragatham & Devi, 2019) uses big data and the LSTM model to predict HF. They compare one 

hot encoding technique to their novel medical concept vectors. They conclude that one hot encoding creates too 

large of a dataset, significantly increasing the memory necessity of the LSTM model. Their new medical concept 

vectors use NLP to create one vector based on diagnoses to reduce the dataset dimensions significantly. Instead of 

taking 5500 seconds, it took 700 seconds of training time to complete classifying 35000 patients, making the model 

7,8 times faster. This increase in speed indicates that the lower the memory usage of the LSTM, the more efficient it 

can predict, making it more scalable for big data.  

Another method for reducing the dataset while still containing the relevant information are CNN’s. These models 

have been primarily used in image time series problems and outperformed LSTM models because CNN can 

compress the 2d image into a smaller convolutional layer (Chen et al., 2019; Guo et al., 2018). CNN has also been 

shown to predict time series data. The CNN's are more efficient than LSTM’s, but research shows that they cannot 

always outperform LSTM in predictive performance (Chen et al., 2019; Guo et al., 2018; Livieris et al., 2020; J. Wang 

et al., 2016). Combining the two methods makes the CNN reduces the input of the LSTM, making it more efficient 

and able to scale on big data. Adding the CNN would increase the time an epoch needs to go through the model, 

but this does not increase the overall training time as the total amount of epoch necessary is reduced, resulting in 
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the model (Tsironi et al., 2017) to be 2,7 times faster. Therefore, the combination of a CNN and LSTM is most 

favorable. 

CNN is also known for learning the internal representation of time sequences, as is shown in (Ismail Fawaz et al., 

2019; Kim & Cho, 2019; Livieris et al., 2020), dealing with the challenges of high dimensionality, sparse, and irregular 

data. The study (Livieris et al., 2020) uses a CNN to extract meaningful features from a univariate time series. It 

combines this with an LSTM model to identify long and short-term dependencies, predicting gold prices, making 

the combination perform better than using the LSTM alone. The study (Kim & Cho, 2019) used a CNN-LSTM 

structure to forecast household power consumption with multivariate time series data. The CNN made sure that the 

noise is removed, reducing the data for the LSTM, and creating an efficient and robust model able to train quickly 

on large amounts of data compared to the vanilla LSTM. The difference between this thesis and the previous two 

studies is that their data is more continuous than EHR data. So, an adaptation of the model is needed for EHR data.  

Creating a hybrid model that leverages both the CNN and LSTM strengths would benefit efficiency and scalability. 

Reducing the input of the LSTM while keeping the most relevant features and making it possible to use the temporal 

relationship between features. Placing the CNN-LSTM model in a dynamic setting also deals with the final challenge 

of temporality, profiting from the continuous updates from new data. 
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3.2 The current state of readmission prediction  

Many different methods are used to make a predictive model, with most of them showing average results. Most of 

the methods use baseline statistical concepts such as logistic regression or survival analysis. More studies have been 

done using DL models for readmission prediction, showing better results regarding their predictive performance, as 

shown in Table 2.  

Multiple review studies by (Ouwerkerk et al., 2014; Ross et al., 2008; Tripoliti et al., 2017) created a detailed overview 

of the current state of readmission prediction. Although the studies provide a comprehensive review, few mentions 

of models use a neural network or deep learning. Presumably, because research using deep learning in health care 

has primarily been conducted in recent years. An overview of current studies is given in Table 2. Here, multiple 

studies are compared to their used method, prediction window, and performance. All performance is measured 

using the Area Under the Curve (AUC) score. An explanation of this measure is given in chapter 2.3.3. 

Table 2: Overview of current literature of readmission prediction. Full model names can be found in the appendix.   

# Study Model 
Prediction 

window 

Prediction 

outcome 

Performance 

(AUC) 
Data set 

1 (Kang et al., 2016) DT 60 days HF 0.59 Questionnaire 

2 (Philbin & DiSalvo, 1999) LR 365 days HF 0.60 Questionnaire 

3 (Keenan et al., 2008) LR 30 days All-cause 0.60 High-level EHR 

4 (Zolfaghar et al., 2013) RF 30 days HF 0.63 High-level EHR 

5 (Allam et al., 2019) RNN 30 days All-cause 0.65 High-level EHR 

6 (Felker et al., 2004) LR 60 days All-cause 0.69 Low-level EHR 

7 (Roy et al., 2015) HDC 30 days HF 0.69 Low-level EHR 

8 (Shah et al., 2015) SVM 180 days HF 0.70 Low-level EHR 

9 (Yang et al., 2018) DSRF 60 days HF 0.71 
High/low-level 

EHR 

10 (Haishuai Wang et al., 2018) CNN 60 days HF 0.71 Low-level EHR 

11 (Liu et al., 2019) CNN 30 days All-cause 0.72 
Clinical notes 

text 

12 (Hameed & Bukhari, 2020) ANN 30 days All-cause 0.75 High-level EHR 

13 (Cheng et al., 2016) CNN 180 days HF 0.76 

Images of 

admission 

sequence 

14 (Ashfaq et al., 2019) LSTM 30 days HF 0.77 
High/low level 

EHR 

15 (Koulaouzidis et al., 2016) NB 1 day HF 0.82 Home sensors 

 

Table 2 shows that the average AUC of baseline methods is generally lower than the AUC of deep learning methods. 

This difference can be explained by the simplification that occurs when using baseline methods instead of deep 

learning methods. Also, specific deep learning methods are specialized for performing on time series data. Making 

deep learning methods specialized for time series data the best method to use. The datasets used can be 

categorized as high-level EHR data, low-level EHR data, or secondary data. Where high-level EHR data uses 

aggregated features such as total count of lab tests, and low-level EHR are clinical values from a lab test. Secondary 

data are all datasets not using EHR data, such as question airs, clinical notes, image data, and home sensors. 
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Method analysis 

Analyzing the methods of Table 2 show that the lowest-performing studies use a questionnaire or build a model on 

high-level EHR data. (Kang et al., 2016; Philbin & DiSalvo, 1999) created a questionnaire to predict readmission risk 

based on second-hand variables such as living conditions, insurance, and education level. Both studies created an 

own scoring method on the questionnaire, where the more point a patient score, the higher the readmission risk. 

Both studies also select patients who use Medicare, which means that more low-income patients are selected for 

the study, making it not generalizable to all patients. The use of second-hand variables should not be used to predict 

readmission. The study (Keenan et al., 2008) also focusses on Medicare patients. However, it uses a method to 

categorize patients on individual EHR values, such as stating if a patient has a high or low heart rate. This method 

improves on questionnaires as it comes closer to the actual clinical values of patients. It does state the model used 

to have a computational limitation as it cannot account for the within-patient correlation of multiple index heart 

failure hospitalizations per patient. 

Other studies using high-level EHR data such as (Zolfaghar et al., 2013) and (Allam et al., 2019) improve on Keenan's 

study by using more intricate models to predict readmission risk. Another exciting part of this study is the integration 

of big data. As Zolfaghar notes, this has shown exciting features such as hospital rating to enrich the patient dataset. 

Although these data points' publicity is only available at the state or county-level and many data points are missing. 

To solve the missingness of the data, an average is taken to impute the data. Zolfaghar also notes that an RF can 

train high amounts of data efficiently and in parallel, but the method only shows that an RF can run parallel on 

multiple Mahout nodes and does not relate to improving predictive performance. The study's limitation is that only 

the current values of patients’ EHR data are taken and not historical data points of patients. (Allam et al., 2019) use 

of an RNN mitigates this limitation and includes previous data points from patients, increasing the predictive results. 

Improving on the limitation of the Zolfaghar but still uses high-level administrative data instead of rich EHR data. 

An increase in predictive performance is observed when the rich low-level EHR data is used as in the studies of 

(Felker et al., 2004; Roy et al., 2015; Shah et al., 2015). These studies share the same limitations as Zolfaghar as they 

do not include patients' historical data points. Felker's computational limitation is also shown as they only use five 

features for their simple LR model. Meanwhile, Shah is the study with the most features showing promising low-

level EHR results. It only trains the model on a small dataset of 379 patients, this combined with the long prediction 

window, makes the result less generalizable. A more generalizable study is (Roy et al., 2015) this is the only study 

using a clustering technique to classify readmission risk in stages, differentiating between 3 stages of readmission 

risk. It also does this on 6378 patients making it one of the larger datasets in the analysis. 

Almost none of the studies handle the temporality challenge that was introduced by (Cheng et al., 2016). The only 

study to use a form of dynamic predicting is (Yang et al., 2018). In this study, they use a moving window technique 

that updates its predictions over time. It shows that new data provide as well or better data points to predict 

readmission, resulting in a model saving computational memory and power and making dynamic prediction more 

efficient and effective than traditional methods using empirical learning. Using the sliding window technique also 

combats concept drift by using monthly batches to update the model. Essentially, creating an optimal instance 

selection every month. The limitation of the study is the use of the random forest as an analyzing method. 

Simplifying the data and losing temporal linkage between features. So, changing out the random forest for a more 

advanced model could improve predictive performance. Making it possible for this study to use their method 

combined with the proposed CNN-LSTM model of this thesis. 

The final studies using DL are (Ashfaq et al., 2019; Hameed & Bukhari, 2020; Haishuai Wang et al., 2018). These 

studies all include historical datapoints from patients on a large scale and improve on the previous studies by 

combining high and low-level EHR data points. With the focus (Haishuai Wang et al., 2018), using the CNN to extract 

EHR data features automatically creates an end-to-end prediction model. This study provides promising results 

compared to manual feature extraction. The study (Hameed & Bukhari, 2020) focuses on the admission and 
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discharge locations as the most influencing features to predict readmission, showing new results because of the 

inclusion of alternative care locations. Taken from this study, it might be interesting to include discharge location 

as a variable combined with the low-level EHR data. The final study of (Ashfaq et al., 2019) shows the best method 

to predict readmission based on EHR data. This study combines high & low-level EHR data and can use historical 

data points from patients. The selection of features is made by doctors and machines, making a unique combination 

of features compared to the other studies. This study's limitation is that it only contains patients from a single region 

in Sweden, making it a homogeneous population. Furthermore, it does not use the clinical data points from lab 

results but states the lab as a categorical feature.  

The studies (Cheng et al., 2016; Koulaouzidis et al., 2016; Liu et al., 2019) are not relevant to this thesis. They show 

exciting results, but completely different methods (Liu et al., 2019) use text mining on clinical notes for its 

predictions. The study does confirm that getting low-level clinical results are essential for prediction, as there are 

used as features but in the form of words instead of numbers. (Cheng et al., 2016) uses image classification by 

marking all the investigations of patient timelines with “1”. Creating a matrix showing when and how many times 

an investigation occurred. This matrix is converted to an image and then used to predict the readmission. This 

method only uses meta-features and only performs well when 90%+ of the data is used for training, resulting in a 

low generalizable and low performing model. (Koulaouzidis et al., 2016)'s study is the highest performing one and 

shows a promising future research method as they use IOT health sensors on patients at home. Using the IoT sensors 

makes it possible to be closer to the patient and measure outside the hospital. Although the study shows promising 

results, it does so by only having a small dataset of 309 patients and only predicting one day in the feature.  

All these methods are to use an LSTM method that handles historical data points and can combine high and low-

level EHR data. The model should not look at second-hand influencing variables such as income or living location 

as this does not improve the predictability. It also shows the necessity for the model to include historical data from 

patients. Finally, the model should include the dynamic setting of (Yang et al., 2018) to dynamically predict over 

time, as this would deal with the challenge of temporality. An adaption of these methods is needed for this thesis 

because of the intricacy of our dataset. This thesis needs a model able to take in large amounts of historical EHR 

data. 

For this reason, a focusing is given to the models using a recurrent structure for EHR data. The RNN structure of 

(Allam et al., 2019) is not a viable option because of the vanishing gradient problem. The CNN of (Haishuai Wang 

et al., 2018) shows promising results but lacks the performance of using the temporal links between features such 

as the LSTM model by (Ashfaq et al., 2019). The LSTM model's problem is that it will not scale when it is continuously 

fed new data, as the memory will increase because a lot of previous time steps are kept in memory. 

Data analysis 

Another factor influencing the predictive performance is the data used as input for the model. The studies show 

multiple different data sources such as simplified questionnaire answers, clinical notes, or clinical history of patients. 

Studies such as (Kang et al., 2016; Philbin & DiSalvo, 1999) using questionnaires mostly use demographic data of 

the patient to predict their change op readmission, showing the influence of age, living location, and social-

economic class. These studies base the readmission risk on second-hand influences instead of direct clinical data, 

showing worse predictive power.  

A notable observation is that relatively few studies use clinical investigations, such as ECG scans or echoes. More 

common is creating a meta-feature counting the number of scans, still resulting in high AUC scores. An explanation 

for this method can be that sicker patients need more investigation, mitigating the need for results from each 

investigation (Allam et al., 2019). A second reason can be that the used model cannot handle all clinical results from 

each test as studies using such features tend to use a linear regression using a relatively low number of features. 

The study of (Shah et al., 2015) is the study that uses the most clinical data points, creating a comprehensive clinical 
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pattern of each patient and showing promising results. This clinical pattern is also shown in the study using clinical 

notes combined with text mining (Liu et al., 2019), revealing direct clinical information from patients in a different 

format. Using the popular meta-features in combination with detailed clinical results show the best results and input 

for a model, as this gives the best representation of the patient's history (Ashfaq et al., 2019; Hameed & Bukhari, 

2020; Yang et al., 2018). Using data taken from home sensors (Koulaouzidis et al., 2016) or image data (Cheng et al., 

2016) is outside this thesis's scope because these data sources are not available. 

Scalability 

The only study focusing on scalable readmission data is (Zolfaghar et al., 2013), showing the need for a big data 

analytics platform such as Mahout when the dataset increases with new admissions over time. With Mahout, they 

use machine scaling with multiple nodes to predict readmission in parallel, making it possible to handle 1.5 million 

records of patient data. The other studies do not use large enough data sets to call it big data and do not show 

training time in their studies to compare.  

Using an LSTM to predict readmission shows the best performance in the literature review, which is not surprising. 

LSTM is one of the state-of-the-art time series classification models (Smirnov & Nguifo, 2018). The problems 

surrounding the expensive computational need for LSTM make it hard to scale for big data. Using the techniques 

mentioned in 4.1, it is possible to efficiently adapt the LSTM to include a growing patient’s history over time. Using 

this novel model with promising features such as the popular meta-features (count of admission, investigations) 

and low-level clinical results (lab, ECG, echo results), creates the optimal solution for readmission prediction that 

updates over time. No distributed analytics platforms, such as Mahout, are used because of the focus on data 

management and not machine scaling. 
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 Solution process 

The following chapter describes the complete process in developing and evaluating the CNN-LSTM model against 

the other models. The chapter follows the structure of the CRISP-DM cycle, starting from domain understanding to 

evaluation. 

The experiment resources are all delivered from the UMCU hospital, consisting of a research pc with an Intel i5-6500 

processor and 32GB ram. All code is executed using Python 3.7.5 combined with the anaconda environment, a full 

list of packages and versions are listed in Appendix 3. 

4.1 Domain understanding 

The experiment is conducted at the Department of Cardiology at the University Medical Center Utrecht in the 

Netherlands. The dataset used for the experiment comes from the UNRAVEL research data platform. The experiment 

follows the steps of CRISP-DM and is explained in chapter 1.4. Multiple medical, statistical, and technical experts 

from the UNRAVEL team have been consulted throughout the process. The UNRAVEL platform contains a unique 

dataset of tertiary patient data from the UMCU hospital. All patients have proven or suspected cardiac disease and 

have permitted to use their medical history data. The data is updated weekly and consists of a mix in EMR and SD 

data, all stored in temporal sequences. 

The experiment consists of the first goal being to predict the readmission risk based on admission history. The 

unique addition is that a full admission window with daily timesteps is used as input for the LSTM model instead of 

aggregated results from previous admissions. Using the data windows would give the LSTM lower-level data and 

insight to make its prediction compared to baseline models. By using the full admissions window, the total data 

significantly increases. The second goal is to combat high training times by creating an addition to the LSTM with a 

CNN making testing to see if this addition would scale up time series analysis while keeping the same predictive 

performance. A comparison of the AUC is made to evaluate the models' predictive performance, where a higher 

AUC results in better predictive performance. Their training times and the number of epochs is compared to evaluate 

the models' scalability. Lower training times and a lower number of epochs means the model is more scalable. 

With the medical supervisor's help from the UMCU, a comprehensive overview is created to describe the objective 

and current solutions for the problem entirely. The overview is shown in chapter 2 in this document, where an 

explanation is given for this experiment's need and to compare existing methods and results. With the technical 

supervisor's help from Utrecht University and the medical supervisor, a selection of the most promising methods 

and data selection is created; the selection is shown in Table 2. It explains which methods and data are optimal for 

the experiment. This experiment tries to predict readmission risk within 30 days because hospitals do not get 

reimbursement for readmitted patients within 30 days. 

4.2 Data understanding 

The data collected from the UNRAVEL database is selected with the help of the medical supervisor. A selection of 

heart failure patients is made by selecting patient id’s based on medical diagnoses. These patients are then cross-

referenced with medical data relevant to predicting the readmission risk of heart failure patients. All data is collected 

and exported into CSV files using the SAS enterprise platform, which is the front-end system connected to the 

UNRAVEL database. 

The patients' diagnoses are stored in text, and to select the relevant patients, a filter is applied. Patients that have 

the following key-words in their diagnoses: “hartfal”, “hartdecomp”,” decompensatio cordis” are diagnosed with 

heart failure and are selected. Within this selection, an exclusion rule is created based on the following text: “Cardiaal 
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probleem, muv hartinfarct, hartritmestoornis, hartfalen”, which excludes the diagnose of not having heart failure. All 

patient ids are selected based on these conditions and results in a list of 3632 patients.  

Next to the patient list, a selection is made on admissions that adhere to the right characteristics. Not all patient 

admissions are selected as a viable admission. The characteristics of a viable admission are that the admission needs 

to be at the cardiology department. The admission was unplanned, meaning that the origin of admission was not 

from the waiting list. The admission needs to be clinical; this excludes checkup admissions or medicine pick up 

meetings. Finally, the admission needs to be longer than one day, including the critical admission requiring recovery 

time. Combining the patient list with their viable admissions creates a list of 7783 admissions. 

These admissions serve as the time windows where all medical tests occur. The relevant medical tests and results 

are divided into the following categories: ECG tests, echo tests, patients’ demographics, including length and weight, 

blood pressure tests, blood lab tests, medication history and related diagnoses. The results from these categories 

will fill the time window of the admissions for each patient. All data sources are connected based on the pseudo 

patient id and date; with these data points, it is possible to create a full admission window for each patient. The data 

characteristic of each data source is shown in Table 4.  

Table 3: Total data taken per source from UNRAVEL platform. 

Data source Variable type No. records No. features 

Patient demographics Categorical / continuous 3632 3 

Admission Categorical / continuous 7783 7 

ECG Continuous 153859 19 

Echo Continuous 15008 31 

Length Continuous 60354 3 

Weight Continuous 60354 3 

Blood pressure Continuous 672409 5 

Blood lab Continuous 116102 11 

Medication Categorical 717092 3 

Diagnoses Categorical 3860 4 

 

Exploring these data sources shows a large difference in the amount of test being consulted per patient. Blood 

pressure is tested multiple times per day and shows the most data, while echoes are tested the least. This difference 

shows the first challenge of sparsity when creating the final time windows, as it would create empty values when a 

test is not executed on that day. This also shows why it is hard to include low-level test results because it introduces 

a significant increase in missing values. The exploration also shows that the prediction target is imbalanced as 89,9% 

of patients are not readmitted within 30 days. The data quality shows to be mostly clean, as most of the data is 

generated by machines. The length and weight data source's quality shows the most problems as these are inserted 

by doctors and show a wrong comma placement or wrong characters. All manually entered data sources are 

analyses, and outliers are discussed with the medical supervisor to create cut-off limits to combat these errors.  

Table 4: Patient and admission descriptive 

Patient 

n 3632 

Gender Male: 2356 / Female: 1276 

Age at discharge Mean: 65 / Std: 15 

Admission 

n 7783 

Average admission duration Mean: 12.6 days / Std: 16.7 

Readmission within 30 days (%) 793 (10.1%) 
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4.3 Data preparation 

The data preparation is essential since this thesis uniquely combines actual test results with temporal admission 

windows. Extending the meta-features used in other studies with low-level test results on day by day basis. The 

additional features come with the challenge of error-prone data due to manually entering test results and increased 

empty values because of the irregularity and sparsity found in HER records. Another challenge is converting all 

records into admissions windows compatible with the CNN-LSTM model. The addition of test features and temporal 

time windows are expected to increase predictive performance because of a more extensive representation of the 

patient’s admission, compared to aggregating the features into a single row. The predictive performance is 

measured by the AUC score, where the temporal dataset is expected to result in a higher AUC score. 

A selection of relevant features is created from the data sources based on literature and the medical supervisor's 

input. The medical supervisor selects the medical features from each test. Besides these features, the list is enriched 

by multiple meta-features showing promising results in the relevant literature. These features are counts of each 

test and admissions, each admission duration, the origin location, and discharge location. 

To prepare the features for the models, a mix of preparation methods are performed. All data preparation steps are 

done in Python. Each data sources undergoes the following steps: 

1. Feature conversion to the appropriate data type, such as astype(int) for patient id’s, astype(float) for test 

values and as to_datetime() for all dates. All dates are also represented in YYYY-MM-DD. 

2. Converted binary categorical features to 0 or 1 and used one-hot encoding for multivariable categorical 

features. 

3. Renamed features to a common name so that the different datasets can be merged. 

4. Removed outliers based on statistics or cut-off limits created by the medical supervisor. 

With these steps, only test results are removed or converted. No patients or admissions are removed for the final 

dataset. To create an overview of the features per patient, a dataset is created where each row represents a patient 

with the columns representing the features. The demographic features are measured at first admission, combined 

with all the patients’ test results. When a test has been performed multiple times on a patient, an average value is 

taken from those tests, resulting in a descriptive dataset used for Table 6. Based on this dataset is each feature 

analyzed using descriptive statistics to check for inconsistencies and missing values. Validating the steps of the data 

preparation to make sure no unwanted records are created. 

To analyze the difference between the target classes, a test is done to compare each feature's values. Determining 

which test is necessary is decided based on the distribution of the feature. Checking each feature's distribution is 

done by visually inspecting each feature's histogram and applying a Shapiro-Wilk (SW) test. All missing values are 

removed before an SW test is performed. Based on the SW results, it is possible to determine the right test to 

compare the differences between classes for each feature. The SW test is measured with an alpha of 0.05, meaning 

that all features with a value >0.05 are normally distributed and <0.05 are not normally distributed.  

The SW shows that all features are not normally distributed, resulting in a Kruskal-Wallis test to determine the 

difference between the target classes. All categorical features are compared using a Chi-square test. The overview 

based on all data, descriptive statistics, missingness and the differences between the prediction labels is shown in 

Table 6. An adaption of Table 6 with the values of the patient at baseline is given in Appendix 4.  

Analyzing Table 6 shows that not all patients undergo the same test, with all patients at least having one ECG test. 

The features with the most missing values are the ones related to the echo test. When an echo is performed, 

measurements are done for specific features, so not all features are filled with every echo. Another reason for the 

missing values is that the missing values actual represents valuable information. When analyzing the ECG features, 

an empty PR interval can show the possibility of heart rhythm disorders. So, it is not possible to fill or remove all 
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empty test results. Another observation is that the most significantly different features are mostly the meta-

features, with only some of the test results showing a significant difference between the classes. These features 

also show that patients with multimorbidity are more likely to be readmitted within 30 days. 

Table 5: Feature overview of target classes. Continuous variables: Mean [Q1, Q3]. Categorical variables: n (%) 

Feature  Missing Overall Readmitted > 30 Readmitted < 30 P-Value 

Patients   3632 3074 558  

Origin location 

clinical 0 3154 (86.8) 2664 (86.7) 490 (87.8) 

0.002 nonclinical  311 (8.6) 280 (9.1) 31 (5.6) 

other  167 (4.6) 130 (4.2) 37 (6.6) 

Discharge location 

clinical 0 302 (8.3) 273 (8.9) 29 (5.2) 

<0.001 nonclinical  3192 (87.9) 2665 (86.7) 527 (94.4) 

other  138 (3.8) 136 (4.4) 2 (0.4) 

Gender 
F 0 1276 (35.1) 1099 (35.8) 177 (31.7) 0.074 

M  2356 (64.9) 1975 (64.2) 381 (68.3)  

Age at discharge 

(years)  

 0 65.0 [55.0,75.0] 65.0 [55.0,75.0] 65.0 [55.2,73.0] 0.528 

VentricularRate 

(b/min)  
 0 80.4 [72.5,89.4] 80.2 [72.2,89.4] 81.2 [74.1,89.5] 0.103 

AtrialRate (b/min)  0 88.1 [76.7,104.8] 87.9 [76.3,104.9] 89.2 [79.3,104.3] 0.089 

P RInterval (ms)  115 166.4 [148.8,186.9] 166.4 [148.9,187.0] 166.1 [148.8,186.1] 0.629 

QRS Duration (ms)  0 112.7 [96.2,137.8] 111.7 [95.6,137.2] 117.2 [100.8,142.0] <0.001 

Q TInterval (ms)  0 403.9 [377.4,432.4] 403.3 [376.7,431.4] 408.7 [382.7,435.4] 0.010 

PAxis (°)  108 54.7 [42.8,65.7] 55.1 [42.8,65.9] 53.0 [42.7,64.4] 0.058 

RAxis (°)  0 23.1 [-12.1,59.5] 21.9 [-12.4,58.8] 28.4 [-9.4,62.6] 0.032 

TAxis (°)  0 73.7 [46.5,103.8] 73.9 [46.8,104.1] 73.1 [46.3,102.5] 0.889 

QOnset (ms)  0 209.3 [193.0,215.9] 209.8 [193.9,216.3] 206.2 [187.5,214.1] <0.001 

QOffset (ms)  0 265.2 [256.0,272.6] 265.2 [256.4,272.7] 265.2 [250.7,271.9] 0.192 

POffset (ms)  119 173.3 [149.4,187.5] 174.0 [150.8,188.0] 168.6 [144.4,183.4] <0.001 

T Onset (ms)  0 310.7 [296.9,321.2] 310.9 [297.5,321.6] 310.2 [292.6,319.4] 0.024 

T Offset (ms)  0 405.1 [384.0,419.9] 405.3 [384.8,420.0] 404.1 [378.2,418.6] 0.073 

QRS Onset (ms)  0 208.6 [192.1,215.5] 209.1 [192.9,215.8] 205.1 [187.0,213.7] <0.001 

QRS Offset (ms)  0 264.6 [254.3,272.0] 264.6 [255.2,272.0] 264.6 [248.0,271.4] 0.164 

QTcFredericia (ms)  0 436.3 [417.6,463.8] 435.4 [416.5,462.8] 442.9 [423.1,469.5] <0.001 

Ao V2 max (cm/s)  1046 125.2 [103.2,164.2] 125.7 [103.3,164.5] 122.3 [103.0,160.6] 0.423 

Ao max PG 

(mm[Hg]) 
 1046 6.4 [4.3,10.9] 6.4 [4.3,10.9] 6.2 [4.3,10.3] 0.528 

EDV (mL)  1118 166.3 [115.9,237.5] 165.1 [114.6,237.4] 170.0 [120.6,238.7] 0.398 

IVSd (cm)  1291 1.0 [0.9,1.2] 1.0 [0.9,1.2] 1.0 [0.9,1.2] 0.270 

LV mass(C)d (g)  1308 213.7 [171.7,265.2] 212.8 [171.7,265.6] 217.5 [171.4,263.5] 0.304 

LVIDd (cm)  1168 5.5 [4.8,6.2] 5.5 [4.8,6.2] 5.5 [4.9,6.1] 0.578 

LVPWd (cm)  1253 1.0 [0.9,1.1] 1.0 [0.9,1.1] 1.0 [0.9,1.1] 0.822 

TAPSE (cm)  1449 1.8 [1.5,2.1] 1.8 [1.5,2.1] 1.7 [1.4,2.0] 0.004 

TR Max vel (cm/s)  1424 256.5 [229.0,288.9] 256.9 [229.5,289.1] 255.1 [227.1,287.9] 0.398 

EF (%)  1322 43.0 [29.5,58.4] 43.2 [29.4,58.9] 41.7 [30.2,56.0] 0.579 

ESV (mL)  1318 85.0 [47.8,135.6] 84.9 [47.3,135.4] 86.9 [51.6,140.2] 0.286 

LA dimension (cm)  1767 4.6 [4.1,5.2] 4.6 [4.1,5.2] 4.7 [4.1,5.3] 0.120 
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LV mass(C)dI 

(g/m2) 
 1550 109.0 [89.9,132.7] 108.8 [89.3,132.3] 110.8 [93.0,135.2] 0.129 

Lat Peak E' Vel 

(cm/s) 
 1545 8.1 [6.3,10.4] 8.1 [6.3,10.4] 8.5 [6.6,10.6] 0.090 

LVIDs (cm)  1498 4.2 [3.3,5.3] 4.2 [3.3,5.3] 4.3 [3.4,5.3] 0.515 

MV E/A   1509 1.2 [0.8,1.9] 1.2 [0.8,1.9] 1.5 [1.0,2.3] <0.001 

Med Peak E' Vel 

(cm/s) 
 1539 5.7 [4.6,7.2] 5.7 [4.6,7.2] 5.8 [4.6,7.1] 0.446 

TDI E/e'  1616 13.1 [9.9,18.6] 12.9 [9.8,18.2] 13.9 [10.8,20.1] 0.004 

TDI E/e' Lateraal  1621 9.3 [7.1,13.0] 9.3 [7.1,12.9] 9.7 [7.2,13.4] 0.264 

BSA(Haycock) 

(m2) 
 1604 2.0 [1.8,2.1] 2.0 [1.8,2.1] 1.9 [1.8,2.1] 0.392 

LA Volume 

(biplane) (mL) 
 2385 82.7 [64.3,105.7] 81.5 [62.4,103.9] 89.8 [71.2,112.5] <0.001 

LA Volume / BSA 

(mL/m2) 
 2425 42.3 [33.5,53.7] 41.5 [33.1,53.3] 45.9 [37.5,55.8] <0.001 

Length (meter)  705 1.7 [1.7,1.8] 1.7 [1.7,1.8] 1.7 [1.7,1.8] 0.135 

Weight (kg)  705 77.0 [67.3,88.1] 77.0 [67.3,88.3] 76.8 [67.9,87.5] 0.623 

BMI (kg/m2)  672 25.5 [22.9,28.9] 25.5 [22.9,28.9] 25.4 [22.7,28.5] 0.230 

ALAT (U/L)  1113 26.7 [19.5,41.6] 26.0 [19.0,40.7] 29.5 [22.1,45.8] <0.001 

ASAT (U/L)  1134 32.0 [24.8,46.9] 31.7 [24.4,45.7] 34.8 [26.5,53.6] <0.001 

BNP (pmol/L)  1719 106.0 [49.0,237.8] 103.8 [47.0,237.7] 126.7 [56.7,239.0] 0.036 

Creatinine 

(µmol/L) 
 1056 103.6 [81.7,138.9] 101.8 [80.6,136.7] 114.4 [88.5,147.0] <0.001 

eGFR (ml)  1261 55.8 [42.5,70.5] 56.2 [43.0,71.0] 52.8 [40.7,67.6] 0.005 

gamma-GT (U/L)  1132 57.0 [33.0,110.1] 55.7 [32.0,107.7] 65.2 [35.8,124.3] 0.002 

Kalium (mmol/L)  1062 4.2 [4.1,4.4] 4.2 [4.1,4.4] 4.3 [4.1,4.4] 0.101 

Natrium (mmol/L)  1066 137.5 [136.0,139.0] 137.6 [136.0,139.0] 137.2 [135.6,138.6] 0.001 

Systolic blood 

pressure (mmHg) 
 1093 118.8 [106.6,131.2] 119.6 [107.5,131.9] 115.0 [102.6,128.0] <0.001 

Diastolic blood 

pressure (mmHg) 
 1093 70.0 [64.1,76.3] 70.0 [64.1,76.2] 69.9 [63.9,76.5] 0.685 

Ecg count  0 31.0 [15.0,58.0] 28.0 [14.0,50.0] 61.0 [31.0,95.0] <0.001 

Echo count  856 4.0 [2.0,7.0] 4.0 [2.0,7.0] 5.0 [3.0,12.0] <0.001 

Blood count  1093 148.0 [40.0,345.0] 127.0 [34.0,290.0] 334.0 [133.0,589.0] <0.001 

Lab count  1054 26.0 [11.0,57.0] 24.0 [10.0,51.0] 46.0 [26.0,100.0] <0.001 

Medication count  766 125.0 [46.0,289.8] 111.0 [42.2,260.0] 237.5 [95.5,482.5] <0.001 

Diagnoses count  0 32.0 [17.0,57.0] 30.0 [15.0,53.0] 47.0 [28.0,76.0] <0.001 

Ischemic 
0.0 0 2462 (67.8) 2092 (68.1) 370 (66.3) 

0.445 
1.0  1170 (32.2) 982 (31.9) 188 (33.7) 

Idiopathic 
0.0 0 2962 (81.6) 2536 (82.5) 426 (76.3) 

0.001 
1.0  670 (18.4) 538 (17.5) 132 (23.7) 

Avg adm duration  0 9.0 [5.0,16.0] 9.0 [5.0,16.0] 10.0 [6.4,15.1] 0.014 

Adm count  0 1.0 [1.0,3.0] 1.0 [1.0,2.0] 4.0 [3.0,6.0] <0.001 

Adm duration  0 15.0 [8.0,34.0] 13.0 [7.0,27.0] 43.0 [23.0,76.0] <0.001 
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Data structuring 

To include the temporal dimension for the CNN-LSTM, a restructure is necessary. By converting all admissions into 

separate time series, the temporal dimension is added. The admission and discharge date of each admission per 

patient is taken and imputed with days, creating a window with the first row being the admission day and the final 

row the discharge day. All rows in between are days the patient was admitted to the hospital, creating a time 

window with days as time steps. A visual representation is given in Figure 16. 

 

Figure 16: Timeseries structure of patient admissions (A1 & A2) with features (X) between admission day (A_day) and 
discharge day (D_day) 

All tests results are saved in combination with the patient id and test date. Each test result is one row that can be 

merged with the patient’s admission window (An) by patient id and date (E1). Patients can receive a test outside of 

the selected admissions windows. Because of scheduled checkups or other planned events, these results are also 

used to fill the admission window and have the most relevant patient results. Filling the time windows is done by 

merging all test to the time window's closest date while only looking forward to finding the closest date. So, the 

tests done between admission windows can only influence the next admission window (E2 and E3). When multiple 

tests are done on the same day or between admission, an average is used for all test results while still adding each 

test to the count features. An overview is given in Figure 17.  

The label given to each admission is based on the days between the discharge date and the next admission date. 

An admission is labelled a 1 when the next admission date is less than 30 days after the discharge date. Otherwise, 

the admission is labelled with a 0. 

 

Figure 17: Admission window (A) labelling and exam (E) assigning overview. 

Combining all 7783 admission windows results in a dataset of 98672 rows long and 70 features wide. All 

admissions are then min-max scaled and padded as this is required for the CNN-LSTM. The dataset is adjusted for 
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the baseline models used for comparison. These models are not able to utilize the temporal dimension. So, the 

data is reduced to one row per admission. The reduction is created by forward filling each admission and taking 

the final row of each admission as observation, simulating the model to know each feature's last possible result. 

4.4 Modelling 

The modelling technique proposed in this thesis is the CNN-LSTM model. The model would combine both the CNN 

and LSTM model strengths to create the best of both worlds’ solution. The strengths of each model are explained 

in chapter 2.3. A comparison is made with four other models: DT, MLP, CNN and LSTM. These models are chosen to 

compare the difference between models that cannot use the temporal dimension (DT & MLP), and the CNN and 

LSTM are tested to see the improvement compared to their individual parts. The temporal models are expected to 

outperform on predictive performance compared to the baseline models because of the reasons given in section 

4.3. Analyzing the models' scalability is done based on the training time and the total number of epochs. The LSTM 

is expected to provide the highest AUC score but the longest training time. The CNN-LSTM is expected to 

significantly reduce the training time while matching or improving the AUC score of the LSTM.  

All models are built-in Python using the Scikit-learn package for the DT and TensorFlow 2.3.0 for the other models. 

Many experiments have been done to find the optimal model structure. The first model started small with just and 

LSTM layer and is evolved to the final CNN-LSTM model described below. The optimal hyperparameters are found 

using the method described in section training and test design. 

CNN-LSTM 

The proposed CNN-LSTM model consists of multiple layers and results in a many to one classification solution. The 

first layer is the convolution layer which takes in the input file and analyses the features using one-dimensional 

convolution combined with temporal padding. This step is repeated twice, after which each convolution is pooled 

using a max pool layer, reducing the rows of the admission window, and keeping the most relevant data points. The 

pooling layer's result is masked and used as input for the LSTM layer, which chronologically goes through all the 

pooling rows twice. The LSTM then outputs to a fully connected layer merging all variables to a final output cell 

using sigmoid activation to keep the output between 0 and 1. A visual representation is given in Figure 18. 

 

Figure 18: CNN-LSTM model 

Other models 

The CNN and LSTM model are also used as stand-alone models. The structure of these stand-alone models is the 

same as in their combined form. The only difference for the CNN is that the output after the pooling layer is 

flattened before it is connected to the fully connected layer. The difference for the LSTM is that the raw input is 
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masked and used as input, resulting in the full admission being used for the prediction. The MLP is built using 

three fully connected layers with a narrowing structure, and the DT is built using the Scikit package. The LR is 

replaced for the DT because the data does not meet the assumptions for the LR. All models have multiple 

parameters that are tuned to get the desired output. An overview of all model structures and tunable parameters 

for each model are shown in Appendix 5. 

Training and test design 

All admissions are divided into a train (80%) and test (20%) dataset using a stratified split. The stratification ensures 

that the class imbalance is the same in both the train and test set, dismissing a split's possibility of zero or low 

observations of the readmit <30 days class. To prevent overfitting, a combination of early stopping, dropout and 

regularization is applied during training. To handle the class imbalance of the dataset, a class weight is generated 

that balances out the observations. There is no separate trainset created at the start to use for final testing. The low 

amount of data and the low number of readmitted <30 days class make it unfavorable to split the data. CV is used 

instead of creating a separate test set to ensure the model is tested on multiple data splits, making the results more 

generalizable. Multiple data augmentation methods are tried, such as time flipping and event shuffling, but with 

minimal improvement for the final prediction.  

The hyperparameters are set by selecting and evaluating a broad set of parameters on one-fold. After which, a 

subset of optimal parameters is evaluated using 5-fold cross-validation. Selecting the optimal hyper-parameters is 

done using the model's parameters, having the highest average AUC score of all 5-fold. The final model is then 

trained using 300 epochs with early stopping set to 10 epochs. The models are evaluated and compared by taking 

the average test AUC predicted over 5-folds.  
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 Results 

The following chapter evaluates the results from the experiment as well as discussing the interpretation of the 

results. Finally, the limitations and future works are discussed. 

5.1 Evaluation 

To answer SQ3 of the thesis, an evaluation is done on each model concerning their predictive performance using 

the AUC score and their ability to scale by analyzing the training time and the number of epochs. Table 7 shows the 

results of all models, ordered by the AUC score.  

Predictive performance 

An evaluation is done to check if the model predictions are better than random and statistically significant before 

comparing the results. The check is done by taking one prediction and measure the AUC score after shuffling the 

true labels 10000 times. Doing this test with an alpha of 0.05 shows that the AUC needs to be higher than 0.53 to 

be statistically significant.  

Analyzing the models' predictive performance shows an improvement of the models using the temporal dimension 

compared to the baseline models. Looking at the baseline models shows that the MLP outperforms the DT on all 

metrics except the precision. The MLP is the best performing model using aggregated features. The best performing 

models benefit from the temporal dimension. Although all temporal models perform close to each other, the CNN 

shows moderate performance overall compared to all temporal models, tying on NPV with the CNN-LSTM and 

outperforming on the recall compared to the LSTM. The LSTM proves to be the best performing model overall, with 

only falling short of the CNN-LSTM regarding the NPV and recall. The CNN-LSTM model does not create the best 

of both worlds’ situation regarding predictive performance, creating the lowest AUC score of all temporal models. 

However, it shows the highest recall score, which is impressive regarding the large imbalance in the data. 

An ensemble method is also applied to improve predictive performance. The ensemble method uses the predictions 

of 2 models and takes the average of these predictions as the final output. The ensembles tried are an MLP & LSTM 

combination and a combination of the standalone CNN & LSTM. These two ensembles test if the combination of a 

non-temporal and temporal model improves the prediction power and the second ensemble tries to combine the 

strongest models. Both ensembles do not improve the predictive performance, as shown in the final two rows of 

Table 7.  

Table 6: Experiment results 

Model Precision NPV Recall F1 AUC 
Duration 

(minutes) 
Epochs 

DT 0,12 0,90 0,20 0,15 0,52 0,00 - 

MLP 0,12 0,91 0,60 0,19 0,55 0,47 201 

CNN-LSTM 0,12 0,93 0,75 0,20 0,59 5,93 16,2 

CNN 0,13 0,93 0,65 0,21 0,60 6,81 43,4 

LSTM 0,13 0,92 0,61 0,22 0,62 16,96 28,2 

MLP & LSTM 0,13 0,93 0,68 0,21 0,57 - - 

CNN & LSTM 0,13 0,93 0,64 0,22 0,58 - - 
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Scalability 

By evaluating the training time and training epochs, it is possible to determine the models' scalability. A model is 

scalable when the model can handle more data without significantly increasing training times. Analyzing Table 7 

shows that the models with the lowest training times are the baseline models. The DT finishes near-instantaneous 

while the MLP needs about half a minute to finish training, resulting in the DT being more scalable than the MLP. 

Understandably, the baseline models training times are lower as the models need to process significantly less data 

than the temporal models.  

Looking at the temporal models show a significant difference between the techniques used. The slowest temporal 

model is the LSTM which has the most complex internal structure and while the LSTM needs fewer epochs than 

the CNN. The CNN needs the most epochs out of the temporal models, but because the model is faster per 

epoch, the CNN takes less time than the LSTM making it the seconds fastest model, only falling short to the CNN-

LSTM. The CNN-LSTM is the best model when evaluating scalability. While the model does show to take longer 

per epoch, the model needs the least epochs to converge, resulting in the quickest model overall. So, the CNN-

LSTM does create the best of both worlds’ scenario when it comes to scalability. 

Explainability 

As typical in healthcare and other domains, it is also preferred to know why the model gives a particular prediction. 

Current tools do not allow to analyze the temporal models extensively. An analysis of the feature importance is 

done to get an idea of which features influences the model prediction the most. The feature importance score is an 

average of the importance score over 5-folds made by the DT, with the top 25 features shown in Figure 19. 

Analyzing the results show that the strongest feature is the patient's age at the time of discharge, which is also 

confirmed as a vital feature by the medical experts. The other features are a mix of high- and low-level features with 

the ECG tests values showing the most essential low-level features and age at discharge, combined with diagnose 

count and admission features being the most essential high-level features. A reason for the high number of ECG 

features can be that these features have the most variance because the ECG test is the most occurring. The test 

results also show high multicollinearity, explaining that multiple ECG test values are equally important. The reason 

for the high-level features to be important is grounded by the fact that patients that are more ill are generally older, 

have more test done and are longer in the hospital, explaining the high importance of the high-level features. While 

most of the features align with the literature’s essential features, it does not align compared to the feature analysis. 

The model shows age at discharge to be the most crucial feature, while this feature is not significantly different 

between the groups. This selection of non-significant features does explain why the DT performs lower than the 

other models. 

Combing all results from the experiments show the clear benefit of using the temporal data set when evaluating 

the AUC score, with all temporal models outperforming the baseline models. While this does significantly increase 

the data, combining the temporal data set with the proposed CNN-LSTM model shows quick training times, making 

the CNN-LSTM the most scalable option to improve readmission prediction compared to the baseline methods. 

Using the novel approach in this thesis of using the temporal data with the CNN-LSTM model shows an 

improvement in readmission prediction compared to baseline methods without creating long training times. 
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Figure 19: Top 25 Features from the decision tree 

5.2 Discussion 

With the ever-increasing data globally, the necessity for models that can handle more data is significant in many 

areas such as healthcare. The increase in data leads to more information for complex models to predict challenging 

topics more accurately, such as readmission prediction. Current research shows baseline models' limitations 

compared to RNN models when predicting time-series events because of temporal data exclusion. Including 

temporal data generally improves predictive power at the cost of significant longer training times. This thesis 

investigates a solution to create a scalable RNN for efficient time series analysis. This chapter discusses the main 

research question's results and corresponding sub-questions stated in chapter 1.3.  

SQ. 1: What makes a machine learning model scalable? 

The characteristics of a scalable model described in chapter 3.1 are closely related to the 4-V’s of big data, but where 

big data focusses on storing data in machine learning, the focus is on how to discover meaningful value from the 

data. The following definition of scalable machine learning is given based on these characteristics. “A scalable model 

is a model able to handle a large amount of data without consuming ever-growing amounts of computational 

resources within a practical time frame (Bekkerman et al., 2012).” Achieving a scalable model can be done by focusing 

on one or more parts of the ML pipeline, such as machine scaling, algorithm optimization, and data management. 
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Machine scaling helps by adding more processing power with more compute units. This method's downside is that 

not all algorithms are optimized to work over multiple compute units, resulting in more overhead for the model to 

process the tasks in a distributed matter. Resulting in machine scaling not being a simple solution of just adding 

more compute units to improve the training times. Algorithm optimization is done by optimizing the process of 

finding the lowest loss by adapting hyperparameters. The first step is starting the neural network to converge to the 

lowest loss. The second step is making the converging happen as fast as possible, and the third step is to ensure 

that the lowest loss is achieved (global minima). Data management help regulate the continues incoming data 

streams. These streams update the model using batch (multiple instances) or dynamic learning (one instance). 

Analyzing the LSTM internal structure shows a significant flaw. With the LSTM solving for the vanishing gradient 

problem, the model holds previous states in memory, leading to a linear increase in memory. To combat this, a 

reduction of input data is necessary. An efficient way of doing so is by convoluting the raw data before inserting it 

in the LSTM. The CNN-LSTM combination has shown to work in fields as images analysis and text mining. Creating 

a hybrid model that leverages both the CNN and LSTM strengths would benefit efficiency and scalability, reducing 

the input of the LSTM while keeping the most relevant features and making it possible to use the temporal 

relationship between features. Placing the CNN-LSTM model in a dynamic setting also deals with the final challenge 

of temporality, profiting from the continuous updates from new data. 

SQ. 2: What are the current methods of predicting the readmission risk of patients? 

Chapter 3.2 describes a review of recent readmission prediction papers with their results summarized in Table 3. A 

clear divide is shown in the average predictive performance of RNN compared to other methods while also making 

clear the right data features to use for readmission prediction. By analyzing the methods used in previous studies, 

a distinction is made between models that can use the temporal dimension or not. It is shown that the use of an 

LSTM outperforms other temporal models, and the model should be able to handle high- and low-levels features. 

The only method performing better is a method using sensors at home to analyze patients' health, resulting in a 

lower time to event, and giving more accurate data.  

Analyzing the optimal features shows that it is best to use direct patient clinical data without influencing variables 

such as living location or social-economic class. Besides taking the medical tests' direct results, it is optimal to create 

meta-features of the test, such as the total count of tests taken. Combining these high-level meta-features with low-

level medical test data shows the optimal feature set to predict readmission. Little attention is given to the scalability, 

with only one paper combining big data and machine scaling to test baseline model over large amounts of data. 

Creating a scalable version of the LSTM would create a better version of the best model. Using the novel CNN-LSTM 

model with promising features such as the popular meta-features (count of admission, investigations) and low-level 

clinical results (lab, ECG, echo results), creates the optimal solution for readmission prediction that updates over 

time. 

SQ. 3: How does the adapted LSTM model perform compared to other (baseline) models concerning 

scalability and predictive performance? 

The results described in chapter 4.5 show that based on the cardiology patient’s dataset, the temporal models' 

predictive performance outperforms the baseline models, showing the temporal dimension's impact. The best 

performing model is the LSTM model, although all temporal models do not show much difference in their predictive 

performance. The scalability results show that the baseline models perform significantly faster than the temporal 

models, which is understandable as the baseline models need to process far less data than the temporal models. 

Because of the reduction in data, it is not fair to compare the baseline modes' results directly with the temporal 

models. The most scalable temporal model is the novel approach of CNN-LSTM. The model needs the least epochs 

to converge, giving it the lowest overall training time of all temporal models. This fast convergence does come at a 

small predictive performance cost as the CNN-LSTM model scores slightly lower when comparing the AUC. From 
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this result, one can state that the CNN-LSTM combination creates the best of both world situation for scalable time 

series classification. 

Predictive performance/scalability trade-off 

Since our data structuring method increases the information available for the temporal models, one can expect the 

predictive power to increase. Analyzing the results shows this effect because when trying to scale the models, some 

form of aggregation is necessary, resulting in loss of information. Because of the aggregation, it is expected to have 

a trade-off between scalability and predictive power. Even though the baseline models are much quicker and easily 

scale to more data, it is not comparable to the temporal models as the difference in data processed is too large. The 

predictive power is also significantly less than the temporal models, making the models quick but ineffective. 

However, it is possible to compare the models within their group for the temporal models. The summary is that the 

temporal models show better predictive power, utilizing the temporal dimension to strengthen their predictions. 

The CNN-LSTM is the quickest model, making it the best scalable option out of all the models. 

MRQ: How can the readmission risk of a patient with heart failure be predicted dynamically, using a scalable 

Long Short Term Memory model based on Electronic Health Records 

This thesis proposed a new model for scalable time-series classifications by creating a CNN-LSTM combination, 

making it possible for a large amount of time-series data to be processed efficiently with minimal loss on predictive 

performance. The review of current research regarding readmission prediction and scalable time series analysis 

combined with the experiment results shows improved predictive performance of the temporal models. This thesis 

shows the clear benefit of the novel approach, creating detailed admission windows, including the low level EHR 

records. The temporal models outperform the baseline methods, showing the increase in data helping with the 

prediction. The proposed CNN-LSTM model show to be the most scalable model out of the temporal models. The 

CNN-LSTM trains on the data in 1/3 of the time compared to the LSTM model with only a slight trade-off in the 

predictive performance. With the CNN-LSTM model being the most scalable, it can quickly retrain over time and 

predict patients' readmission risk dynamically, creating a clear benefit over baseline models used in the experiment. 

That said, there is still work to be done as all models' predictive power is not strong compared to most of the 

methods in Table 2. 

Clinical relevance 

As the CNN-LSTM model is created to help as a decision support tool for doctors, an evaluation is done with the 

medical supervisor to analyze this thesis's clinical relevance. Discussing the results with the medical supervisor made 

it clear that this thesis is a first step towards the event's temporal analysis. However, the current predictive 

performance is not high enough for it to provide confident predictions. The current model gives calming predictions 

because of the high NPV and low precision values. Another reason for the model not being used in the clinical 

environment is the model's lack of interpretability. More work needs to be done to analyze why the CNN-LSTM 

predicts the given output per patient. While the results show improvement using the temporal data, an external 

validation is needed to validate the model’s predictions further. A randomized clinical trial is necessary to confirm 

the actual improvement to healthcare, resulting in the model’s actual clinical relevance.  

5.3 Limitations & future work 

The first limitation of the study is the patient cohort used for the analysis. The cohort is specialized because the 

UMCU is a tertiary hospital, and the study is done at the cardiology department. Combining this selection with the 

admission rules resulted in a large class imbalance, with only 10% of the readmissions being within 30 days. The 

literature study showed this to be 25 - 30% usually. This class imbalance is not optimal for machine learning models 

and making the results less generalizable for other hospital patients. The second limitation is related to the hyper-

parameters used for the model comparison. The optimal hyper-parameters are chosen based on a pre-defined 
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value-list, it is possible that the best parameter was not included and not tested. The third limitation is the used 

features from test results as not all patients received the same test; it creates many empty values, which hurts 

prediction. It might be possible to combine features from the test results before applying the feature to the final 

timeline. Finally, it was impossible to test a sliding window's effect affecting the amount of necessary training data 

because of time restrictions. The sliding window's effect would be an exciting addition in future work as this addition 

would significantly help reduce training time when dealing with larger datasets. Another option for future research 

is to apply the CNN-LSTM model for a different application to see its impact. Combining this with additional model 

validation can create an improved version that is more generalizable for all many-to-on time series analysis. An 

external validation at another hospital is also interesting to research as well as a clinical trial to see the impact of 

the model when used by doctors. 
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 Appendix 

1. Model abbreviations  

DT: Decision Tree Baseline 

LR: Linear Regression Baseline 

RNN: Recurrent Neural Network Deep learning 

HDC: Hierarchical Dynamic Clustering Baseline 

DSRF: Dynamic Survival Random Forest Deep learning 

CNN: Convolutional Neural network Deep learning 

NN: Neural Network Deep learning 

LSTM: Long Short Term Memory Deep learning 

RF: Random Forest Baseline 

NB: Naive Bayes Baseline 
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2. UNRAVEL framework 
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3. Python packages used 

 

Name version 

Python 3.7.9 

Numpy 1.18.5 

Tensorflow 2.3.0 

Pandas 1.1.3 

Sklearn 0.23.2 

matplotlib 3.3.2 

pathlib 2.3.5 
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4. Table one of patient cohort at baseline 

   Missing Overall 0.0 1.0 P-Value 

n    3632 3074 558  

Origin location clinical 0 3154 (86.8) 2664 (86.7) 490 (87.8) 

0.002 

 

nonclinical  311 (8.6) 280 (9.1) 31 (5.6) 

other  167 (4.6) 130 (4.2) 37 (6.6) 

Discharge 

location 

clinical 0 302 (8.3) 273 (8.9) 29 (5.2) 

<0.001 

 

nonclinical  3192 (87.9) 2665 (86.7) 527 (94.4) 

other  138 (3.8) 136 (4.4) 2 (0.4) 

Gender F 0 1276 (35.1) 1099 (35.8) 177 (31.7) 0.074 

M  2356 (64.9) 1975 (64.2) 381 (68.3)  

Age at discharge   0 65.0 [55.0,75.0] 65.0 [55.0,75.0] 65.0 [55.2,73.0] 0.528 

VentricularRate    237 81.3 [71.9,91.3] 81.3 [71.9,91.5] 81.5 [72.1,90.2] 0.985 

AtrialRate    237 86.9 [74.3,103.9] 86.9 [74.4,103.9] 86.9 [74.2,103.4] 0.954 

P RInterval    370 163.5 [146.3,184.5] 163.2 [146.5,184.7] 165.0 [145.5,183.6] 0.707 

QRS Duration    237 108.0 [94.2,133.8] 107.2 [93.7,133.4] 111.7 [96.9,137.7] 0.003 

Q TInterval    237 400.6 [373.6,429.3] 400.2 [373.1,428.8] 402.5 [376.6,433.1] 0.109 

PAxis    364 53.7 [40.5,65.4] 54.0 [40.7,65.7] 52.0 [39.4,64.2] 0.043 

RAxis    237 20.8 [-14.5,57.7] 20.0 [-15.1,57.2] 27.7 [-11.0,61.0] 0.033 

TAxis    237 74.1 [42.9,105.0] 74.1 [42.5,105.0] 74.1 [44.3,106.0] 0.717 

QOnset    237 210.6 [194.2,216.5] 211.0 [195.5,216.8] 207.5 [186.7,214.9] <0.001 

QOffset    237 265.0 [255.7,272.3] 265.0 [256.2,272.5] 264.6 [247.5,271.3] 0.076 

POffset    372 174.8 [148.0,188.9] 175.6 [150.1,189.3] 170.4 [135.9,185.9] <0.001 

T Onset    237 309.9 [294.7,321.4] 310.2 [295.9,321.5] 308.4 [285.5,320.7] 0.010 

T Offset    237 404.1 [381.0,420.2] 404.4 [382.3,420.3] 402.3 [366.1,418.9] 0.018 

QRS Onset    237 210.0 [193.1,216.2] 210.5 [194.2,216.4] 206.4 [183.7,214.0] <0.001 

QRS Offset    237 264.4 [253.4,271.8] 264.5 [254.6,272.0] 263.9 [239.8,270.8] 0.025 

QTcFredericia    237 434.1 [414.4,461.0] 433.6 [414.3,459.7] 438.3 [416.6,465.3] 0.028 

Ao V2 max   1925 124.1 [99.5,162.2] 125.1 [100.5,162.1] 117.3 [96.6,162.4] 0.136 

Ao max PG   1925 6.2 [4.0,10.7] 6.3 [4.1,10.7] 5.6 [3.8,11.0] 0.160 

EDV   1976 176.6 [122.3,262.6] 175.3 [121.8,264.5] 186.3 [127.1,254.1] 0.710 

IVSd   2139 1.0 [0.9,1.2] 1.0 [0.9,1.2] 1.0 [0.8,1.2] 0.940 

LV mass(C)d   2156 222.5 [177.3,275.0] 222.4 [178.3,274.9] 223.0 [172.7,277.2] 0.858 

LVIDd   2032 5.6 [5.0,6.4] 5.6 [4.9,6.4] 5.7 [5.0,6.3] 0.657 

LVPWd   2109 1.0 [0.9,1.1] 1.0 [0.9,1.1] 1.0 [0.8,1.1] 0.816 

TAPSE   2286 1.8 [1.4,2.1] 1.8 [1.4,2.1] 1.7 [1.3,2.1] 0.339 

TR Max vel   2259 263.0 [232.3,294.8] 262.8 [231.8,294.2] 264.8 [234.0,298.0] 0.433 

EF   2164 37.7 [25.6,53.9] 38.2 [25.7,54.8] 36.4 [25.6,49.1] 0.212 

ESV   2160 97.4 [55.2,152.6] 97.0 [53.7,152.6] 103.1 [63.8,153.2] 0.257 

LA dimension   2521 4.6 [4.1,5.2] 4.6 [4.1,5.2] 4.6 [4.1,5.3] 0.165 

LV mass(C)dI   2395 115.7 [94.2,140.6] 115.3 [94.1,139.7] 118.8 [94.9,144.4] 0.352 

Lat Peak E' Vel   2400 7.9 [6.0,9.9] 7.9 [6.0,9.9] 8.0 [6.3,10.0] 0.465 

LVIDs   2331 4.6 [3.5,5.6] 4.5 [3.4,5.6] 4.6 [3.7,5.7] 0.192 

MV E/A   2316 1.2 [0.8,1.9] 1.2 [0.8,1.9] 1.5 [0.9,2.4] <0.001 

Med Peak E' Vel   2393 5.6 [4.4,7.0] 5.5 [4.3,7.0] 5.7 [4.5,6.8] 0.629 
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TDI E/e'   2461 14.0 [10.2,19.1] 13.8 [10.2,18.9] 14.6 [10.9,21.2] 0.061 

TDI E/e' Lateraal   2474 9.9 [7.5,13.7] 9.8 [7.5,13.6] 10.2 [7.1,14.5] 0.608 

BSA(Haycock)   2459 2.0 [1.8,2.1] 2.0 [1.8,2.1] 1.9 [1.8,2.1] 0.158 

LA Volume 

(biplane) 

  

3010 86.6 [67.0,108.4] 84.6 [65.6,107.1] 93.0 [72.5,121.7] 0.015 

LA Volume / 

BSA 

  

3040 43.5 [34.5,55.8] 43.3 [33.9,55.1] 45.1 [37.1,63.8] 0.024 

length   1615 1.7 [1.7,1.8] 1.7 [1.7,1.8] 1.7 [1.7,1.8] 0.134 

Weight   1615 77.0 [67.1,89.2] 77.1 [67.1,89.2] 76.5 [66.6,89.1] 0.673 

BMI   1596 25.5 [22.9,29.1] 25.6 [23.0,29.1] 25.1 [22.4,28.5] 0.128 

ALAT   2060 29.3 [20.2,47.2] 28.3 [20.0,46.2] 33.6 [24.6,52.9] 0.001 

ASAT   2073 34.0 [25.8,51.4] 33.6 [25.5,50.1] 36.4 [27.5,64.4] 0.047 

BNP   2579 142.5 [65.0,291.5] 135.5 [64.0,290.0] 168.5 [73.6,313.1] 0.214 

Creatinine   2033 96.3 [77.6,126.2] 95.6 [77.3,124.5] 99.9 [80.6,130.9] 0.105 

eGFR   2248 57.5 [45.1,72.6] 57.6 [45.4,73.0] 56.0 [43.3,69.7] 0.098 

gamma-GT   2078 61.2 [35.0,113.7] 60.0 [34.3,113.0] 67.0 [39.9,118.4] 0.066 

Kalium   2034 4.2 [4.0,4.4] 4.2 [4.0,4.4] 4.2 [4.1,4.4] 0.587 

Natrium   2035 137.5 [135.8,139.0] 137.5 [135.9,139.2] 137.0 [135.5,138.4] 0.002 

Systolic blood 

pressure 

  

2037 118.0 [105.1,130.3] 118.3 [105.9,130.8] 113.7 [100.9,127.0] 0.001 

Diastolic blood 

pressure 

  

2037 69.8 [64.3,75.2] 69.7 [64.3,75.1] 70.4 [64.1,75.6] 0.360 

Ecg count   237 15.0 [8.0,27.0] 14.0 [8.0,25.0] 22.0 [13.0,36.0] <0.001 

Echo count   1710 2.0 [1.0,4.0] 2.0 [1.0,4.0] 3.0 [2.0,5.0] <0.001 

Blood count   2037 52.0 [22.0,100.0] 47.0 [21.0,92.0] 85.0 [43.0,132.0] <0.001 

Lab count   2031 18.0 [8.0,39.0] 16.0 [7.0,36.0] 31.0 [14.8,56.2] <0.001 

Medication 

count 

  

1664 58.5 [21.0,121.0] 56.0 [21.0,115.0] 78.0 [14.2,172.5] 0.002 

Diagnoses count   20 14.0 [8.0,27.0] 14.0 [8.0,27.0] 16.0 [8.0,28.0] 0.021 

Ischemic 

  

0.0 0 2462 (67.8) 2092 (68.1) 370 (66.3) 0.445 

 1.0  1170 (32.2) 982 (31.9) 188 (33.7) 

Idiopathic 

  

0.0 0 2962 (81.6) 2536 (82.5) 426 (76.3) 0.001 

 1.0  670 (18.4) 538 (17.5) 132 (23.7) 

Avg adm 

duration 

  

0 9.0 [5.0,16.0] 9.0 [5.0,16.0] 10.0 [6.4,15.1] 0.014 

Adm count   0 1.0 [1.0,3.0] 1.0 [1.0,2.0] 4.0 [3.0,6.0] <0.001 

Adm duration   0 15.0 [8.0,34.0] 13.0 [7.0,27.0] 43.0 [23.0,76.0] <0.001 
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5. Hyperparameters 

Parameter Value option 

Pooling [ 1, 2, 3, 4, 5] 

Filter [ 1, 3, 4, 5, 8, 10] 

Dropout [ 0, 0.01, 0.05,   0.1,   0.15, 0.2] 

L1 regularizers [ 0, 0.1, 0.01, 0.001, 0.0001, 0.00001] 

L2 regularizers [ 0, 0.1, 0.01, 0.001, 0.0001, 0.00001] 

Learning rate [0.0001, 0.0005, 0.00001, 0.00005] 

  

CNN-LSTM  CNN 

convolution layer  convolution layer 

Hidden nodes 70  Hidden nodes 70 

filter 4  filter 4 

convolution layer  convolution layer 

Hidden nodes 70  Hidden nodes 70 

filter 4  filter 4 

Pooling 3  Pooling 3 

Masking layer  Flatten layer 

LSTM layer  Dense layer 

Hidden nodes 64  Hidden nodes 10 

LSTM layer  output layer 

Hidden nodes 32  Hidden nodes 1 

Dense layer  Optimization 

Hidden nodes 10  Dropout 0,2 

output layer  L1 & L2 regulizer 0,01 

Hidden nodes 1  Batchnormalization  
Optimization    

Recurrent dropout 0,2    

L1 & L2 regulizer 0,01    

Batchnormalization   LSTM 

   Masking layer 

MLP  LSTM layer 

Dense layer  Hidden nodes 64 

Hidden nodes 70  LSTM layer 

Dense layer  Hidden nodes 32 

Hidden nodes 50  Dense layer 

Dense layer  Hidden nodes 10 

Hidden nodes 10  output layer 

output layer  Hidden nodes 1 

Hidden nodes 1  Optimization 

Optimization  Recurrent dropout 0,2 

Dropout 0,1  L1 & L2 regulizer 0,001 

L1 & L2 regulizer 0,001  Batchnormalization  

 


