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Abstract

The human microbiome is a growing area of research. Enabled by advances in se-
quencing techniques, vast amounts of microbiome data are being generated. Using
this data to answer research questions is challenging due to the compositionality,
sparsity and high-dimensionality of the data. Network techniques have been succes-
fully applied to make sense of microbiome data, yet difficulties still remain. Here,
we compare different methods of preparing data for the use in weighted gene co-
expression network analysis (WGCNA), a popular framework within bioinformatics
utilizing network theory. Three different methods were applied: one based on sim-
ple compositionality, one based on the centered log-ratio transform, and one using
SparCC: an advanced method specifically designed to infer correlations in micro-
biome sequencing data. We found that network results vary widely depending on
the method used.
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1 INTRODUCTION 1

1 Introduction

In and on the human body countless bacteria reside, this collection of bacteria is

commonly know as the microbiome. Microbiomes are complex microbial communi-

ties that are heavily influenced by microbe-microbe, and host-microbe interactions.

The decreasing costs of sequencing techniques expand our possibilities to sequence

microbiome samples and discover more about the relation between personal health

and our microbiome. Vast volumes of microbiome data are being generated yet

disentangling these datasets and generating valuable insight remains challenging.

Many methods have been developed for microbiome data, often based on univariate

testing of single bacteria [1]. Given the complex nature of microbial communities,

univariate methods might not be able to fully grasp the underlying relations. Several

novel approaches based on AI have been recently proposed, such as network tech-

niques [2]. Network theory enables us to examine complex systems using a holistic

approach: one can model and analyse a microbiome and all its complex interactions

in a single network [3]. A widely used framework using network techniques on gene

sequencing data is Weighted Gene Co-expression Network Analysis (WGCNA) [4]

[5].

The multivariate nature of WGCNA enables us to look at more complex relationships

between bacteria, like finding groups (clusters) of bacteria that strongly impact each

other. The starting point of many network techniques like WGCNA is a correlation

matrix containing pairwise correlations between all possible pairs of bacteria.

The compositionality, sparsity, and high-dimensionality of microbiome data pose a

series of unique challenges to construct the correlation matrices [2]. Due to the

novelty of applying network techniques to analyse microbiome data, best practices

regarding how to handle these complex issues have yet to be solidified, resulting in a

multitude of different approaches. Due to these challenging properties, results using

network techniques vary greatly depending on the pre-processing approaches used

to generate the correlation matrix. Which is a problem given researchers’ aims to

achieve reliable and reproducible results.

Unfortunately there currently is not one set approach to prepare data for network

analysis, researchers use a wide array of different methods, resulting in a fragmented

research field.
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Given the data’s unique properties, advanced pre-processing methods may be war-

ranted 1. One of these methods is SparCC, which has been specifically designed to

deal with microbiome sequencing data [6]. SparCC generates correlation matrices

using complex techniques more commonly found in machine learning, a subfield of

AI.

The goal of this paper is to show that the varying methods of constructing correlation

matrices that are actively used by researchers, lead to different network results. I

will argue for the wider adoption of SparCC and other complex approaches that

appropriately deal with the unique challenges of microbiome sequencing data.

2 Microbiome and its statistical challenges

2.1 The human microbiome

An increasing number of studies show correlations between microbiome composition

and health outcomes, ranging from inflammatory bowel disease [7] [8] and cancer

[9], to autism [10] and major depressive disorder [11]. The microbiome is emerging

as a new frontier of human healthcare. Altering the microbiome of patients as an

effective form of treatment or managing people’s microbiome as a measure to prevent

future illness might become feasible in the future. To enable this we must first have

a solid understanding of the microbiome and the factors that influence this complex

system.

It is currently estimated that the average human microbiome consists of between

500-1000 different species of bacteria. These bacterial species combined contain

around 100 times the estimated number of human genes (2,000,000 vs 20,000 genes)

[12]. This quantitative difference helps shed some light on the difficulties in trying to

extract meaningful information from microbiome sequencing data: the microbiome

contains magnitudes more variables, requiring vastly larger datasets than the human

genome project, or vastly superior statistical methods.

1When mentioning pre-processing I generally mean all data handling starting from the raw
count data up until and including construction of the correlation matrix.
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2.2 Statistical challenges

Microbiome data science is facing serious challenges caused by various statisti-

cal properties of microbiome data, such as compositionality, sparsity, and high-

dimensionality. These properties can introduce various biases when not appropri-

ately taken into account. In this section, I will discuss four important properties

and how they can introduce biases when they are not properly dealt with.

2.2.1 Compositionality

One of the special properties of microbiome data is its compositionality. This prop-

erty, not often seen in other fields of data science is the result of a necessary standard

manipulation to deal with microbiome sequencing data (MSD). MSD is commonly

generated using high-throughput sequencing techniques. These techniques match

genetic material in a sample to known gene sequences, thus identifying the species

present in the sample.

Results are often presented using counts: a relatively abundant bacteria will have

high counts and rare bacteria will have low counts. The dataset will be presented

as a matrix M = mij, with each row i being a sample from a volunteer, and each

column j a species of bacteria. Elements mij contain the sequence count of bacteria

j found in sample i. The read count of sample j is the sum of all elements of that

sample:

read count(j) =
∑
k

mkj (1)

Due to inadequacies of the sequencing process, the read count varies widely between

samples. Because of this variation, the generated data only contains meaningful

information concerning the relative abundance of bacteria (how the bacteria relate

to one another within a given sample). Changing the data into compositional data

ensures that the meaningless absolute counts can’t impact statistical analysis down-

stream. Making data compositional is done by dividing the vector containing the

bacteria counts of a sample by the sum of the vector. This way the resulting vector

sums to 1, with each element representing the relative abundance of a bacteria in

this sample.



2 MICROBIOME AND ITS STATISTICAL CHALLENGES 4

More precisely, define a count matrix S, with elements sij being the count of the ith

sample and the jth bacteria. Then cij is the relative abundance of bacteria j in the

ith sample.

cij =
sij
n∑
k=1

sik

(2)

Though necessary, the now compositional structure introduces a new statistical chal-

lenge. Because of its compositionality, all bacteria are now negatively correlated with

each other, since the abundances of the bacteria sum up to one. If one bacteria hap-

pens to have a high relative abundance it will be negatively correlated with every

other bacteria, since it monopolizes part of the available sum to 1, suppressing the

values of the other bacteria.

Log-ratio transformations have been proposed as a solution to normalise composi-

tional data: [13] [14]. First developed to deal with rock and soil samples, log-ratio

transforms create pairwise abundance ratios that contain true knowledge about the

relationship between these two variable [15]. This will be discussed in detail at

section 3.1.2.

Unfortunately, these transforms are unable to fully deal with the spurious correla-

tions caused by the compositionality of the data mentioned above. Furthermore,

log-ratio transforms typically cannot be directly applied due to another property of

microbiome data: sparsity.

2.2.2 Sparsity

Microbiome data is Sparse, which means that many elements in the dataset are zeros.

This is problematic since part of our solution to the problem of compositionality is

the log-ratio transform, yet we cannot take logarithms of zero. The cause of these

zeros is also unknown: a bacteria might truly not be present in the sample or it was

present and the sequencing device was not sensitive enough to sense it. Silverman et

al. [16] show that the underlying source of zeros can impact results in a meaningful

way.

The two obvious solutions are to remove zero elements from the data, or adding

a pseudocount to all elements. Since the sparsity is so large, removing all zero

elements would not leave much remaining. The more widely used strategy is adding
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a pseudocount to all elements, this way no elements are deleted and logarithms can

be used.

Pseudocounts can cause spurious correlations because of the compositionality Since

original zeros in a sample have the same count after the pseudocount. Low abun-

dant bacteria will become correlated simply because their counts have the same

number across samples. The correlation between two bacteria effectively becomes

an indication of the number of zero counts on these bacteria.

2.2.3 High-dimensionality

The high-dimensionality of microbiome data is a more common statistical problem

that occurs when one has a large number of variables relative to the number of

samples, also called the small N large P problem. Because of the high number

of variables correlations between variables may be found by chance, without there

being any real correlation between them. This problem is often solved by being

very cautious when interpreting results from small N large P datasets, and requiring

incredibly strong p-values. The number of variables are high in microbiome datasets

since there are many different kinds of bacteria co-existing on and inside our bodies.

Test subjects for microbiome studies rarely number more than a couple hundred

people.

2.2.4 Diversity

The three properties mentioned above can be even more challenging depending on

the amount of diversity within the ecosystem. with low diversity exacerbating the

spurious correlations caused by the compositionality of the dataset. Unfortunately

this is often the case in microbiome communities.

Friedman & Alm [6] show that when diversity is low, shuffling the dataset and

computing Pearson correlation yield many correlations (where none should exist

because the data is random). This effect lessens as species diversity increases, though

some spurious correlations remain at high diversity. This indicates that species

diversity influences the magnitude of the other statistical challenges of microbiome

data
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3 Methods for statistical analysis of microbiome

Microbiome sequencing data will be used to create networks in three steps: the first

is pre-processing, the second is creation of a correlation matrix, and the third is the

construction of networks based on these matrices.

3.1 pre-processing

Pre-processing is necessary to transform the count data into relative abundances

and deal with zeros

3.1.1 compositional

With a count matrix S, and element sij being the count of the jth bacteria in the ith

sample. And cij being the relative abundance of the jth bacteria in the ith sample.

cij =
sij
n∑
k=1

sik

(3)

which guarantees that the relative abundances of sample i sum to 1.

n∑
k=1

cik = 1 (4)

3.1.2 Centered log ratio transform + 1

We start by adding 1 to all the counts to deal with the zeros in our count matrix S,

creating a count + 1 matrix S∗.

s∗ij = sij + 1 (5)

S∗ will be turned into the compositional matrix C∗ using equation 3.

taking the log of each element

lij = log(c∗ij) (6)
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The mean of row i

µi =

n∑
k=1

lik

n
(7)

Each element minus the mean of its row.

clrij = lij − µi (8)

3.2 SparCC

SparCC is a technique for inferring correlations from compositional data developed

by Friedman & Alm [6]. SparCC requires two conditions to be met for it to be a

valid method of inference: ”(1) the number of different components is large, and

(2) the true correlation network is ‘sparse’ (i.e., most components are not strongly

correlated with each other)” [6].

The biggest benefit from using this approach lies in the lower rate of spurious corre-

lations compared to conventional methods. Especially when the number of effective

species is low (i.e., a few species dominate the ecosystem) the risk of finding cor-

relations without any biological cause is very high. In microbial networks of low

diversity, inferred connections are often dominated by negative correlations to the

dominant specie, which leads to positive correlations among the remaining species

[6].

SparCC starts with a log-ratio transform, the advantages are that the ratios between

bacteria are independent of other bacteria, solving part of the problem of composi-

tionality.

yij = log
xi
xj

= log xi − log xj (9)

Where xi is the compositional fraction of bacterium i.

Note that the element yij contains is a fraction, containing information regarding

the relation of the two bacteria i and j. This means that applying equation 9 to

a single sample/row results in a matrix of size P X P where P is the number of
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bacteria. Applying this equation to a complete count matrix results in a 3D matrix

of dimensions P X P X N where N is the number of samples.

tij ≡ V ar[yij] (10)

is used to describe the variance across all samples. If two bacteria are perfectly

correlated, their ratio remains constant and tij = 0. When to bacteria are not

correlated, the ratio will vary widely and the corresponding tij will be large. tij is

still hard to interpret because it lacks a scale. The following equation helps:

tij = ω2
i + ω2

j − 2pijωiωj (11)

where ω2
i and ω2

j are the variances of the log-transformed basis abundances of bac-

terium i and j.

ω2
i =

(
∑
xi − x̄)2

n− 1
(12)

and pij is the correlation between them [6]

tij < ω2
i +ω2

j indicates a positive correlation and tij > ω2
i +ω2

j a negative correlation.

Solving equation 11 for all variables gives us the correlation matrix. Unfortunately

equation 11 cannot be solved as there are more unknown variables than equations.

Rewriting equation 11 gives

pij =
ω2
i + ω2

j − tij
2ωiωj

(13)

To solve equation 13, SparCC approximates the base variances ω2
i for each bacterium

by assuming average correlations pij are small. Approximating the base variances is

done through estimating the component fractions using a bayesian framework and a

Dirichlet distribution. Since the estimates of the component fractions are taken from

the Dirichlet distribution, the SparCC method is non-deterministic. Any further

mathematical details can be found in the paper by Friedman & Alm [6] and are

beyond the scope of this paper
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Iterative SparCC

Iterative SparCC improves upon SparCC by excluding components (pairs of bacte-

ria) under certain conditions to stop them from impacting other correlations. After

removing a component, the algoritm is run again but with all remaining components.

A pair of Components can be removed under two conditions:

1. The most strongly correlated pair is removed if the magnitude of this correlation

exceeds a certain threshold.

2. If two components form an exclusive pair, meaning that all other combinations

have been excluded through (1), the two components are removed from analysis.

In case (2), the removed components are completely removed from analysis since the

components violate the sparsity assumption of the system. Meeting requirement (2)

indicates that all other possible pairs of the two components i and j have been

excluded through (1), meaning all of these possible pairs have a correlation that

exceeds the given threshold.

3.3 network notations

A network is a system comprised of Nodes and Edges. Nodes are the hubs in the

network and the Edges, also called Vertices are the connections between Nodes.

Take a social network for example: the Nodes will be people and the Edges will be

connections between people, representing friendships for instance.

Adjacency matrix:

Networks are are often represented in an adjacency matrix format. Consider a net-

work with n nodes. To construct an n x n matrix A = [aij] an adjacency function is

used, with the most commonly used being:

aij =

1 if sij ≥ τ

0 if sij < τ
(14)

where sij is the pairwise correlation between elements i and j. Eq 14 is a ”hard”

adjacency function because connections between nodes at or above the threshold τ

result in an edge and connections below τ are ignored. All adjacency functions need

to map onto [0, 1].
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Networks can be discrete or continuous. discrete networks consist only of simple

binary connections between nodes; there either is a connection or there isn’t one.

However, The networks we will use are weighted networks. This means that edges

have a continuous value instead of a 0 or 1, often called a weight. The value repre-

sents the strength of the connection between two nodes.

The degree of a node i is the sum of its weights:

p(i) =
n∑
k=1

aik (15)

meaning highly connected nodes have the highest degree. This definition is needed

for when we discuss scale-free networks.

3.4 Weighted Gene Co-Expression Network Analysis

Weighted gene co-expression network analysis was originally created to deal with

gene sequencing data and has been incredibly popular over the years. Though

microbiome data is very different (bacteria instead of genes), it has been promoted

by some researchers as a way of analysing microbiome data [2]

The WGCNA framework can be used to construct biologically relevant networks, it

includes methods to reduce noise, cluster groups, and further methods of analysis.

Clustering bacteria helps mitigate the high-dimensionality discussed at 2.2.3 The

WGCNA framework proposes the power adjacency function:

aij = power(sij, β) ≡ | sij |β (16)

where | sij | is the absolute value of sij, necessary because adjacency functions

must map onto [0, 1], and soft power parameter β ≤ 1 The effect of this function is

the shrinkage of the correlation matrix ie., correlations get smaller, with the most

pronounced effect on the smallest correlations. The choice of β has far reaching

consequences for the pairwise connection strengths. For example, increasing β will

shrink more of the smaller correlations, decreasing the amount of noise in the network

but also leaving only the largest pairs with a noticeable connection.
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3.4.1 Scale-free networks

Many biological networks have been shown to approach a scale free topology. There-

fore B. Zhang & Horvath [4] proposed that a good way of picking a β can be achieved

by measuring how closely networks generated with various β fit a scale-free topology.

A scale-free network is defined as a network in which the degree distribution follows

a power law. Which roughly means that the number of nodes with a certain degree

monotonically decreases when the degree gets higher: p(k) ∼ k−γ

A network’s scale-free fit can be calculated and plotted using the WGCNA frame-

work. The protocol describes that the best method for picking a β is by generating

networks using varying β, and plotting the resulting model fit. From the plot one

can find the lowest β which achieves a R2 which is sufficient.

An alternative approach, described by Bartzis et al. [17] calculates the minimally

required β from the number of samples and variables:

P (P − 1)

2(
√
N)β

< 1 (17)

where P is the number of variables and N the number of samples. Solving equation

17 gives the minimally required β.

3.4.2 Topological Overlap Matrix

B. Zhang & Horvath [4] propose using the topological overlap dissimilarity of nodes

as a basis for identifying nodes that are tightly connected to each other. A Topo-

logical Overlap Matrix (TOM) Ω = [ωij] shows how similar nodes are to each other,

with higher values for ωij indicating higher similarity.

ωij =
gij + aij

min{ki, kj}+ 1− aij
(18)

Where ki and kj are the degrees of node i and node j. aij is the weight of the

connection between node i and node j. Note that

gij =
∑
u

aiuauj (19)
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which measures the connections with a third node that nodes i and j have in com-

mon. wij = 1 if all the neighbors of the node with the lower degree are connected to

the other node, and nodes i and j are connected to each other. wij = 0 if the pair of

nodes are not connected to each other, and the nodes are not connected with each

other through a direct neigbor.

The dissimilarity is easily calculated by

dωij = 1− ωij (20)

B. Zhang & Horvath [4] show that this method leads to more distinct clusters than

the alternative measure: dij = 1−|pij| where |pij| is the absolute pairwise correlation.

3.4.3 Hierarchical clustering

Once the dissimilarity matrix has been constructed, module detection is the next

step. These groups of highly interconnected bacteria are found by using the hi-

erarchical clustering algorithm (HCL). The built-in R function hclust() is used to

perform this operation.

Hierarchical clustering is a form of unsupervised learning, meaning that no group

labels are available: the algorithm only utilizes the data itself (the dissimilar TOM

in this case) to find clusters. One drawback of this clustering method is that the

number of clusters in a system is not objectively known, thus making it difficult to

separate the bacteria in the correct number of clusters. Hierarchical clustering is

presented as the default approach used to find modules in the WGCNA framework

and was therefore used, any further discussion of this algorithm is beyond the scope

of this paper.

4 Application to Immuno defficiency microbiome

dataset

4.1 introduction

To compare the various methods of creating networks for microbiome analysis, a

16S rRNA sequencing dataset was used. This dataset contains oral swabs from 41

healthy controls, and 103 patients diagnosed with various forms of common variable
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immunodeficiency disease (CVID)[18]. Of the 8 remaining samples we did not have

patient data but I decided to include them since their unknown medical status has

no impact on the results. Given the significant interactions between the immune sys-

tem and microbiome[19], it is expected that the bacterial compositions vary widely

between samples, enabling us to easily find networks of related bacteria.

We will show varying results depending on different pre-processing methods. And

then compare these results, all code can be found on Github.

data handling

The dataset consists of 152 samples and 170 bacteria classified at genus level, also

called L6 (this is the level between family (L5) and species (L7)). This dataset was

cleaned and as is standard practice in MB data analysis, any genus with a zero

count in over 90% of the samples was removed. All samples were checked to have a

minimum read count of over 8000, this was found to be true so no samples had to

be removed from the dataset.

this cleaned dataset of 152 samples and 59 bacteria is used for all further analysis.

Three different methods were used to create the correlation matrices necessary for

network analysis, these will be referred to as compositional transform, clr1 transform

and SparCC. The resulting correlation heatmaps are shown in figure 1. Note that

the SparCC correlation matrix shown in the figure is less colorful than the other

matrices, indicating weaker correlations. This is in line with our expectations: the

other two methods remain prone to finding spurious correlations due to the prop-

erties of microbiome data, driving up correlations which result in brighter graphs.

Spearman correlation was chosen since it is non-parametric.

compositional transform

Compositional transformation as described 3.1.1 is applied to the dataset. The

result is used to construct a correlation matrix using Spearman’s correlation. The

correlation matrix has a median of 0.06 and an interquartile range (IQR) of 0.32

clr1 transform

Centered log ration transform as described 3.1.2 is applied to the dataset. The

result is used to construct a correlation matrix using Spearman’s correlation. The

resulting correlation matrix has a median of 0.01 and an IQR of 0.45
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(a) Spearman correlation after compositional
transformation
median: 0.06 , IQR: 0.32

(b) Spearman correlation after clr1 transfor-
mation
median: 0.01 , IQR: 0.45

(c) SparCC correlation
median: -0.01 , IQR: 0.23

Figure 1: Correlation heatmaps that result from the three methods

SparCC

The SparCC algorithm is applied using the SpiecEasi R package [20]. Parameters

are: 20 outer iterations, 10 inner iterations, and a correlation threshold of 0.1. Since

SparCC is non-deterministic, this procedure is run 10 times and the correlation

matrix is averaged. The resulting correlation matrix has a median of -0.01 and

an IQR of 0.23. This IQR that is significantly lower than those of the CLR1 and

Compositional transform, indicating that SparCC is more conservative in attributing

correlation.

4.2 Network construction

TO find a good soft power β, scale-free topology fit is plotted for all three methods

using WGCNA’s inbuild functions. The resulting plots show extremely high variance

making it impossible to reliably pick a good β. The plots can be found in the

appendix/adjacent material. The alternative approach described by Bartzis et al.

[17] was used. We take the smallest whole number for β that satisfies equation 17,

which is 3.
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Figure 2: Dendrograms and clustering of all three methods

Network adjacency matrices are constructed from the correlation matrices using

the function adjacency.fromSimilarity() from the WGCNA R package. Topological

Overlap matrix and dissimilar TOM are calculated. Using hierarchical clustering,

dendrograms are generated using AVERAGA and the dendrogram is separate into

clusters using WGCNA’s function cutreeDynamic(). The parameter for minimum

module size is set to three bacteria. All parameters are kept the same for all three

methods.

The resulting modules and networks can be seen in figure 3.

One can easily see that the three methods result in networks that look very dissimilar

visually. As expected, the number of edges that satisfy the 0.05 threshold are much

fewer in SparCC network than the other two.

4.3 Consensus Analysis

To examine the effects of the different pre-processing approaches we will now take a

more detailed look at the clusters we found. If the pre-processing methods had little

impact on the results, we would find that the clusters found following pre-processing

would have significant overlap. However, if we find large difference in the generated

clusters between methods, we can conclude that the three approaches cause different
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Compositional CLR1 SparCC 
Module 
(#nodes) 

Bacteria Module 
(#nodes) 

Bacteria Module 
(#nodes) 

Bacteria 

Turquoise 
(13) 

Alloprevotella, Prevotellaceae, 
Mogibacterium, 
Eubacterium_nodatum_group, 
Butyrivibrio_2, Lachnoanaerobaculum, 
Stomatobaculum, Lachnospiraceae, 
Ruminococcaceae_UCG-014, 
Solobacterium, uncultured.1, Leptotrichia, 
Kingella 
 

Turquoise 
(21) 

F0332, Bifidobacterium, 
Bifidobacteriaceae, Rothia, 
Bergeyella, Chloroplast, 
Granulicatella, Lactobacillus, 
Catonella, Oribacterium, 
Lachnospiraceae, Dialister, 
uncultured.1, Fusobacterium, 
Streptobacillus, Eikenella, Kingella, 
Neisseriaceae, Aggregatibacter, 
Treponema_2, Corynebacterium_all 

Turquoise 
(15) 

Actinomyces, Atopobium, 
Prevotellaceae, Bergeyella, 
Abiotrophia, Mogibacterium, 
Butyrivibrio_2, Stomatobaculum, 
Ruminococcaceae_UCG-014, 
Solobacterium, Megasphaera, 
Veillonella, Neisseriaceae, 
Prevotella_all, Selenomonas_all 

Blue (12) Actinomyces, Rothia, Atopobium, 
Abiotrophia, Granulicatella, Streptococcus, 
Megasphaera, Veillonella, Actinobacillus, 
Aggregatibacter, Prevotella_all, 
Selenomonas_all 

Blue (18) Actinomyces, Atopobium, 
Porphyromonas, Capnocytophaga, 
Gemella, Lactobacillales, 
Mogibacterium, Butyrivibrio_2, 
Lachnoanaerobaculum, 
Stomatobaculum, 
Ruminococcaceae_UCG-014, 
Megasphaera, Veillonella, 
Leptotrichia, Neisseria, 
Haemophilus, Prevotella_all, 
Selenomonas_all 

Blue (13) Bifidobacterium, Bifidobacteri-
aceae, Alloprevotella, Chloroplast, 
Lactobacillus, Peptostreptococcus, 
Dialister, Fusobacterium, Phyllo-
bacterium, Bradyrhizobium, Sphin-
gomonas, Achromobacter, 
Corynebacterium_all 
 

Brown (9) F0332, Porphyromonas, Capnocytophaga, 
Bergeyella, Lautropia, Eikenella, 
Neisseria, Neisseriaceae, Haemophilus 

Brown (14) Alloprevotella, Campylobacter, 
Abiotrophia, Streptococcus, 
Eubacterium_nodatum_group, 
Peptostreptococcus, Solobacterium, 
uncultured_bacterium.5, 
Phyllobacterium, Bradyrhizobium, 
Sphingomonas, Achromobacter, 
Lautropia, Actinobacillus 

Brown (10) F0332, Gemella, Streptococcus, 
Lactobacillales, 
Eubacterium_nodatum_group, 
Streptobacillus, Lautropia, 
Kingella, Actinobacillus, 
Aggregatibacter 

Yellow (7) Campylobacter, Catonella, Oribacterium, 
Candidatus_Saccharimonas, 
uncultured_bacterium.5, 
Saccharimonadales, Corynebacterium_all 

Yellow (4) Prevotellaceae, Tannerella, 
Parvimonas, Peptococcus 

Yellow (9) Campylobacter, Catonella, 
Lachnoanaerobaculum, 
Oribacterium, Lachnospiraceae, 
Leptotrichia, 
Candidatus_Saccharimonas, 
uncultured_bacterium.5, Eikenella 

Green (6) Tannerella, Parvimonas, Peptococcus, 
Peptostreptococcus, Fusobacterium, 
Treponema_2 

  Green (5) Porphyromonas, Capnocytophaga, 
uncultured.1, Neisseria, 
Haemophilus 

Red (4) Phyllobacterium, Bradyrhizobium, 
Sphingomonas, Achromobacter   Red (4) Rothia, Tannerella, Granulicatella, 

Treponema_2 

Black(4) Bifidobacterium, Bifidobacteriaceae, 
Lactobacillus, Dialister     

Pink (4) Gemella, Lactobacillales, Streptobacillus     

 
  

Figure 3: Table showing the modules generated by the different approaches and the
names of the bacteria in those modules. Their respective networks are shown at the
bottom, the circles indicating bacteria and their size is the degree of the bacteria in
the network. Edges over 0.05 are shown as lines between nodes.
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(a) (b)

(c)

Figure 4: Consensus tables comparing all three methods

outcomes, since it’s the only part of the process that has been modified. All other

parameters have been kept equal across the three methods.

figure 4c shows the module overlap between the CLR1 clusters and the Compo-

sitional clusters. One can see that everything is spread out, the are hardly any

modules where both methods agree on. Some of the best agreements are comp: red

and CLR1: brown, all bacteria that belong to the comp: red module, also belong

to the CLR1: brown module. CLR1: blue shows a more illustrative story: the bac-

teria that are clustered together in the blue module when using CLR1 are spread

out across 4 modules when using a Compositional only approach. Similar lack of

agreement can be seen when comparing SparCC with CLR1 or SparCC with Com-

positional. Bacteria that are unable to become a member of a cluster end up in the

grey module. Some examples of modules shown as networks can be seen in the A

5 Conclusion and discussion

Considering the medical relevance of the human microbiome, standard statistical

methods are necessary to extract useful information from microbiome sequencing

data. Network techniques have been shown to capture important relations often

missed by univariate approaches and have become one of the most popular methods
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of analysing microbiome data. To create networks, one needs the pairwise correla-

tions between all bacteria.

Unfortunately, the challenging nature of the data, caused by its compositionality,

sparsity and high-dimensionality introduce various statistical artifacts that are dif-

ficult to deal with. There is currently not one set approach to deal with these

challenges, with researchers using a wide array of different methods, resulting in a

fragmented research field.

To investigate the effects of various methods they were applied to the oral section

of the CVID dataset. This dataset contains oral samples of 152 volunteers, part

healthy controls, part patients with a compromised immune system.

Three different methods (compositional, CLR1, and SparCC) have been imple-

mented to produce correlation matrices necessary for network techniques. The

networks generated from these matrices, and the clusters found with them, have

been shown to be heavily impacted by the pre-processing approaches used. Espe-

cially the clusters found using hierarchical clustering were shown to be extremely

dissimilar. Code can be found on Github.

SparCC is most likely the superior method since it was conservative in attribut-

ing correlations, while we know that the other two approaches produce spurious

correlations caused by the statistical properties of the data.

This paper shows that complex techniques often originating in fields like computer

science and AI can help solve challenging problems in a different domain.

One approach similar to SparCC is Spiec Easi (SE) [21]. SE is another complex

technique that promises to deal with the challenges of microbiome data. It would

be interesting to see how these two methods compare. No strong advice can be given

based on this thesis since the underlying biological relationships remain unknown.

We can say with certainty that different methods lead to different results, not which

result is correct.

Further research utilizing simulated datasets with full knownledge of the underlying

system might provide valuable information and enable us to separate approaches.

Best case would be that this leads to a clear result that accelerates adoption of the

singular best approach throughout the field.

The dataset used in this paper is considered very small (59X 152), network tech-

niques are often applied to much larger datasets with many more variables and
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samples. Since larger networks are considered more robust, it’s small size might

have exacerbated the differences found between the different methods.
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Figure 5: Relative abundances of the bacteria, colors show the cluster the bacteria
belongs to. Clusters from Compositional approach

Figure 6: Relative abundances of the bacteria, colors show the cluster the bacteria
belongs to. Clusters from CLR1 approach

A Appendix
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Figure 7: Relative abundances of the bacteria, colors show the cluster the bacteria
belongs to. Clusters from SparCC approach

Figure 8: Network of brown module from the SparCC approach
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Figure 9: Network of turquoise module from the SparCC approach

Figure 10: Network of yellow module from the SparCC approach
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Figure 11: Network of blue module from the CLR1 approach

Figure 12: Network of brown module from the CLR1 approach
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Figure 13: Network of yellow module from the CLR1 approach

Figure 14: Network of yellow module from the Compositional approach
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Figure 15: Network of brown module from the Compositional approach

Figure 16: Network of pink module from the Compositional approach
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